/* * Copyright (c) 2001 Wind River Systems * Copyright (c) 1997, 1998, 1999, 2001 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.29 2003/12/01 21:06:59 ambrisko Exp $ * $DragonFly: src/sys/dev/netif/bge/if_bge.c,v 1.38 2005/05/31 14:11:42 joerg Exp $ * */ /* * Broadcom BCM570x family gigabit ethernet driver for FreeBSD. * * Written by Bill Paul * Senior Engineer, Wind River Systems */ /* * The Broadcom BCM5700 is based on technology originally developed by * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has * two on-board MIPS R4000 CPUs and can have as much as 16MB of external * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo * frames, highly configurable RX filtering, and 16 RX and TX queues * (which, along with RX filter rules, can be used for QOS applications). * Other features, such as TCP segmentation, may be available as part * of value-added firmware updates. Unlike the Tigon I and Tigon II, * firmware images can be stored in hardware and need not be compiled * into the driver. * * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus. * * The BCM5701 is a single-chip solution incorporating both the BCM5700 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701 * does not support external SSRAM. * * Broadcom also produces a variation of the BCM5700 under the "Altima" * brand name, which is functionally similar but lacks PCI-X support. * * Without external SSRAM, you can only have at most 4 TX rings, * and the use of the mini RX ring is disabled. This seems to imply * that these features are simply not available on the BCM5701. As a * result, this driver does not implement any support for the mini RX * ring. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for vtophys */ #include /* for vtophys */ #include #include #include #include #include #include #include #include #include #include #include "if_bgereg.h" #define BGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) /* "controller miibus0" required. See GENERIC if you get errors here. */ #include "miibus_if.h" /* * Various supported device vendors/types and their names. Note: the * spec seems to indicate that the hardware still has Alteon's vendor * ID burned into it, though it will always be overriden by the vendor * ID in the EEPROM. Just to be safe, we cover all possibilities. */ #define BGE_DEVDESC_MAX 64 /* Maximum device description length */ static struct bge_type bge_devs[] = { { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700, "Broadcom BCM5700 Gigabit Ethernet" }, { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700, "Broadcom BCM5701 Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700, "Broadcom BCM5700 Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701, "Broadcom BCM5701 Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X, "Broadcom BCM5702X Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, BCOM_DEVICEID_BCM5702X, "Broadcom BCM5702X Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X, "Broadcom BCM5703X Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, BCOM_DEVICEID_BCM5703X, "Broadcom BCM5703X Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C, "Broadcom BCM5704C Dual Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S, "Broadcom BCM5704S Dual Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705, "Broadcom BCM5705 Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M, "Broadcom BCM5705M Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705_ALT, "Broadcom BCM5705M Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782, "Broadcom BCM5782 Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, BCOM_DEVICEID_BCM5788, "Broadcom BCM5788 Gigabit Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901, "Broadcom BCM5901 Fast Ethernet" }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2, "Broadcom BCM5901A2 Fast Ethernet" }, { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1, "SysKonnect Gigabit Ethernet" }, { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000, "Altima AC1000 Gigabit Ethernet" }, { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001, "Altima AC1002 Gigabit Ethernet" }, { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100, "Altima AC9100 Gigabit Ethernet" }, { 0, 0, NULL } }; static int bge_probe(device_t); static int bge_attach(device_t); static int bge_detach(device_t); static void bge_release_resources(struct bge_softc *); static void bge_txeof(struct bge_softc *); static void bge_rxeof(struct bge_softc *); static void bge_tick(void *); static void bge_stats_update(struct bge_softc *); static void bge_stats_update_regs(struct bge_softc *); static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *); static void bge_intr(void *); static void bge_start(struct ifnet *); static int bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *); static void bge_init(void *); static void bge_stop(struct bge_softc *); static void bge_watchdog(struct ifnet *); static void bge_shutdown(device_t); static int bge_ifmedia_upd(struct ifnet *); static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *); static uint8_t bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *); static int bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t); static void bge_setmulti(struct bge_softc *); static void bge_handle_events(struct bge_softc *); static int bge_alloc_jumbo_mem(struct bge_softc *); static void bge_free_jumbo_mem(struct bge_softc *); static struct bge_jslot *bge_jalloc(struct bge_softc *); static void bge_jfree(void *); static void bge_jref(void *); static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *); static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *); static int bge_init_rx_ring_std(struct bge_softc *); static void bge_free_rx_ring_std(struct bge_softc *); static int bge_init_rx_ring_jumbo(struct bge_softc *); static void bge_free_rx_ring_jumbo(struct bge_softc *); static void bge_free_tx_ring(struct bge_softc *); static int bge_init_tx_ring(struct bge_softc *); static int bge_chipinit(struct bge_softc *); static int bge_blockinit(struct bge_softc *); #ifdef notdef static uint8_t bge_vpd_readbyte(struct bge_softc *, uint32_t); static void bge_vpd_read_res(struct bge_softc *, struct vpd_res *, uint32_t); static void bge_vpd_read(struct bge_softc *); #endif static uint32_t bge_readmem_ind(struct bge_softc *, uint32_t); static void bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t); #ifdef notdef static uint32_t bge_readreg_ind(struct bge_softc *, uint32_t); #endif static void bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t); static int bge_miibus_readreg(device_t, int, int); static int bge_miibus_writereg(device_t, int, int, int); static void bge_miibus_statchg(device_t); static void bge_reset(struct bge_softc *); static device_method_t bge_methods[] = { /* Device interface */ DEVMETHOD(device_probe, bge_probe), DEVMETHOD(device_attach, bge_attach), DEVMETHOD(device_detach, bge_detach), DEVMETHOD(device_shutdown, bge_shutdown), /* bus interface */ DEVMETHOD(bus_print_child, bus_generic_print_child), DEVMETHOD(bus_driver_added, bus_generic_driver_added), /* MII interface */ DEVMETHOD(miibus_readreg, bge_miibus_readreg), DEVMETHOD(miibus_writereg, bge_miibus_writereg), DEVMETHOD(miibus_statchg, bge_miibus_statchg), { 0, 0 } }; static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc)); static devclass_t bge_devclass; DECLARE_DUMMY_MODULE(if_bge); DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, 0, 0); DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, 0, 0); static uint32_t bge_readmem_ind(struct bge_softc *sc, uint32_t off) { device_t dev = sc->bge_dev; pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4); return(pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4)); } static void bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val) { device_t dev = sc->bge_dev; pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4); pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4); } #ifdef notdef static uint32_t bge_readreg_ind(struct bge_softc *sc, uin32_t off) { device_t dev = sc->bge_dev; pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4); return(pci_read_config(dev, BGE_PCI_REG_DATA, 4)); } #endif static void bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val) { device_t dev = sc->bge_dev; pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4); pci_write_config(dev, BGE_PCI_REG_DATA, val, 4); } #ifdef notdef static uint8_t bge_vpd_readbyte(struct bge_softc *sc, uint32_t addr) { device_t dev = sc->bge_dev; uint32_t val; int i; pci_write_config(dev, BGE_PCI_VPD_ADDR, addr, 2); for (i = 0; i < BGE_TIMEOUT * 10; i++) { DELAY(10); if (pci_read_config(dev, BGE_PCI_VPD_ADDR, 2) & BGE_VPD_FLAG) break; } if (i == BGE_TIMEOUT) { device_printf(sc->bge_dev, "VPD read timed out\n"); return(0); } val = pci_read_config(dev, BGE_PCI_VPD_DATA, 4); return((val >> ((addr % 4) * 8)) & 0xFF); } static void bge_vpd_read_res(struct bge_softc *sc, struct vpd_res *res, uint32_t addr) { size_t i; uint8_t *ptr; ptr = (uint8_t *)res; for (i = 0; i < sizeof(struct vpd_res); i++) ptr[i] = bge_vpd_readbyte(sc, i + addr); return; } static void bge_vpd_read(struct bge_softc *sc) { int pos = 0, i; struct vpd_res res; if (sc->bge_vpd_prodname != NULL) free(sc->bge_vpd_prodname, M_DEVBUF); if (sc->bge_vpd_readonly != NULL) free(sc->bge_vpd_readonly, M_DEVBUF); sc->bge_vpd_prodname = NULL; sc->bge_vpd_readonly = NULL; bge_vpd_read_res(sc, &res, pos); if (res.vr_id != VPD_RES_ID) { device_printf(sc->bge_dev, "bad VPD resource id: expected %x got %x\n", VPD_RES_ID, res.vr_id); return; } pos += sizeof(res); sc->bge_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_INTWAIT); for (i = 0; i < res.vr_len; i++) sc->bge_vpd_prodname[i] = bge_vpd_readbyte(sc, i + pos); sc->bge_vpd_prodname[i] = '\0'; pos += i; bge_vpd_read_res(sc, &res, pos); if (res.vr_id != VPD_RES_READ) { device_printf(sc->bge_dev, "bad VPD resource id: expected %x got %x\n", VPD_RES_READ, res.vr_id); return; } pos += sizeof(res); sc->bge_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_INTWAIT); for (i = 0; i < res.vr_len + 1; i++) sc->bge_vpd_readonly[i] = bge_vpd_readbyte(sc, i + pos); } #endif /* * Read a byte of data stored in the EEPROM at address 'addr.' The * BCM570x supports both the traditional bitbang interface and an * auto access interface for reading the EEPROM. We use the auto * access method. */ static uint8_t bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest) { int i; uint32_t byte = 0; /* * Enable use of auto EEPROM access so we can avoid * having to use the bitbang method. */ BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM); /* Reset the EEPROM, load the clock period. */ CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL)); DELAY(20); /* Issue the read EEPROM command. */ CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr); /* Wait for completion */ for(i = 0; i < BGE_TIMEOUT * 10; i++) { DELAY(10); if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE) break; } if (i == BGE_TIMEOUT) { if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n"); return(0); } /* Get result. */ byte = CSR_READ_4(sc, BGE_EE_DATA); *dest = (byte >> ((addr % 4) * 8)) & 0xFF; return(0); } /* * Read a sequence of bytes from the EEPROM. */ static int bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len) { size_t i; int err; uint8_t byte; for (byte = 0, err = 0, i = 0; i < len; i++) { err = bge_eeprom_getbyte(sc, off + i, &byte); if (err) break; *(dest + i) = byte; } return(err ? 1 : 0); } static int bge_miibus_readreg(device_t dev, int phy, int reg) { struct bge_softc *sc; struct ifnet *ifp; uint32_t val, autopoll; int i; sc = device_get_softc(dev); ifp = &sc->arpcom.ac_if; /* * Broadcom's own driver always assumes the internal * PHY is at GMII address 1. On some chips, the PHY responds * to accesses at all addresses, which could cause us to * bogusly attach the PHY 32 times at probe type. Always * restricting the lookup to address 1 is simpler than * trying to figure out which chips revisions should be * special-cased. */ if (phy != 1) return(0); /* Reading with autopolling on may trigger PCI errors */ autopoll = CSR_READ_4(sc, BGE_MI_MODE); if (autopoll & BGE_MIMODE_AUTOPOLL) { BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); DELAY(40); } CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY| BGE_MIPHY(phy)|BGE_MIREG(reg)); for (i = 0; i < BGE_TIMEOUT; i++) { val = CSR_READ_4(sc, BGE_MI_COMM); if (!(val & BGE_MICOMM_BUSY)) break; } if (i == BGE_TIMEOUT) { if_printf(ifp, "PHY read timed out\n"); val = 0; goto done; } val = CSR_READ_4(sc, BGE_MI_COMM); done: if (autopoll & BGE_MIMODE_AUTOPOLL) { BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); DELAY(40); } if (val & BGE_MICOMM_READFAIL) return(0); return(val & 0xFFFF); } static int bge_miibus_writereg(device_t dev, int phy, int reg, int val) { struct bge_softc *sc; uint32_t autopoll; int i; sc = device_get_softc(dev); /* Reading with autopolling on may trigger PCI errors */ autopoll = CSR_READ_4(sc, BGE_MI_MODE); if (autopoll & BGE_MIMODE_AUTOPOLL) { BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); DELAY(40); } CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY| BGE_MIPHY(phy)|BGE_MIREG(reg)|val); for (i = 0; i < BGE_TIMEOUT; i++) { if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) break; } if (autopoll & BGE_MIMODE_AUTOPOLL) { BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); DELAY(40); } if (i == BGE_TIMEOUT) { if_printf(&sc->arpcom.ac_if, "PHY read timed out\n"); return(0); } return(0); } static void bge_miibus_statchg(device_t dev) { struct bge_softc *sc; struct mii_data *mii; sc = device_get_softc(dev); mii = device_get_softc(sc->bge_miibus); BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE); if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) { BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII); } else { BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII); } if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX); } else { BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX); } } /* * Handle events that have triggered interrupts. */ static void bge_handle_events(struct bge_softc *sc) { } /* * Memory management for jumbo frames. */ static int bge_alloc_jumbo_mem(struct bge_softc *sc) { struct bge_jslot *entry; caddr_t ptr; int i; /* Grab a big chunk o' storage. */ sc->bge_cdata.bge_jumbo_buf = contigmalloc(BGE_JMEM, M_DEVBUF, M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); if (sc->bge_cdata.bge_jumbo_buf == NULL) { if_printf(&sc->arpcom.ac_if, "no memory for jumbo buffers!\n"); return(ENOBUFS); } SLIST_INIT(&sc->bge_jfree_listhead); /* * Now divide it up into 9K pieces and save the addresses * in an array. Note that we play an evil trick here by using * the first few bytes in the buffer to hold the the address * of the softc structure for this interface. This is because * bge_jfree() needs it, but it is called by the mbuf management * code which will not pass it to us explicitly. */ ptr = sc->bge_cdata.bge_jumbo_buf; for (i = 0; i < BGE_JSLOTS; i++) { entry = &sc->bge_cdata.bge_jslots[i]; entry->bge_sc = sc; entry->bge_buf = ptr; entry->bge_inuse = 0; entry->bge_slot = i; SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link); ptr += BGE_JLEN; } return(0); } static void bge_free_jumbo_mem(struct bge_softc *sc) { contigfree(sc->bge_cdata.bge_jumbo_buf, BGE_JMEM, M_DEVBUF); } /* * Allocate a jumbo buffer. */ static struct bge_jslot * bge_jalloc(struct bge_softc *sc) { struct bge_jslot *entry; entry = SLIST_FIRST(&sc->bge_jfree_listhead); if (entry == NULL) { if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n"); return(NULL); } SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link); entry->bge_inuse = 1; return(entry); } /* * Adjust usage count on a jumbo buffer. */ static void bge_jref(void *arg) { struct bge_jslot *entry = (struct bge_jslot *)arg; struct bge_softc *sc = entry->bge_sc; if (sc == NULL) panic("bge_jref: can't find softc pointer!"); if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) panic("bge_jref: asked to reference buffer " "that we don't manage!"); else if (entry->bge_inuse == 0) panic("bge_jref: buffer already free!"); else entry->bge_inuse++; } /* * Release a jumbo buffer. */ static void bge_jfree(void *arg) { struct bge_jslot *entry = (struct bge_jslot *)arg; struct bge_softc *sc = entry->bge_sc; if (sc == NULL) panic("bge_jfree: can't find softc pointer!"); if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) panic("bge_jfree: asked to free buffer that we don't manage!"); else if (entry->bge_inuse == 0) panic("bge_jfree: buffer already free!"); else if (--entry->bge_inuse == 0) SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link); } /* * Intialize a standard receive ring descriptor. */ static int bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m) { struct mbuf *m_new = NULL; struct bge_rx_bd *r; if (m == NULL) { m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR); if (m_new == NULL) return (ENOBUFS); m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; } else { m_new = m; m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; m_new->m_data = m_new->m_ext.ext_buf; } if (!sc->bge_rx_alignment_bug) m_adj(m_new, ETHER_ALIGN); sc->bge_cdata.bge_rx_std_chain[i] = m_new; r = &sc->bge_rdata->bge_rx_std_ring[i]; BGE_HOSTADDR(r->bge_addr, vtophys(mtod(m_new, caddr_t))); r->bge_flags = BGE_RXBDFLAG_END; r->bge_len = m_new->m_len; r->bge_idx = i; return(0); } /* * Initialize a jumbo receive ring descriptor. This allocates * a jumbo buffer from the pool managed internally by the driver. */ static int bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m) { struct mbuf *m_new = NULL; struct bge_rx_bd *r; if (m == NULL) { struct bge_jslot *buf; /* Allocate the mbuf. */ MGETHDR(m_new, MB_DONTWAIT, MT_DATA); if (m_new == NULL) return(ENOBUFS); /* Allocate the jumbo buffer */ buf = bge_jalloc(sc); if (buf == NULL) { m_freem(m_new); if_printf(&sc->arpcom.ac_if, "jumbo allocation failed " "-- packet dropped!\n"); return(ENOBUFS); } /* Attach the buffer to the mbuf. */ m_new->m_ext.ext_arg = buf; m_new->m_ext.ext_buf = buf->bge_buf; m_new->m_ext.ext_free = bge_jfree; m_new->m_ext.ext_ref = bge_jref; m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN; m_new->m_data = m_new->m_ext.ext_buf; m_new->m_flags |= M_EXT; m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size; } else { m_new = m; m_new->m_data = m_new->m_ext.ext_buf; m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN; } if (!sc->bge_rx_alignment_bug) m_adj(m_new, ETHER_ALIGN); /* Set up the descriptor. */ r = &sc->bge_rdata->bge_rx_jumbo_ring[i]; sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new; BGE_HOSTADDR(r->bge_addr, vtophys(mtod(m_new, caddr_t))); r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING; r->bge_len = m_new->m_len; r->bge_idx = i; return(0); } /* * The standard receive ring has 512 entries in it. At 2K per mbuf cluster, * that's 1MB or memory, which is a lot. For now, we fill only the first * 256 ring entries and hope that our CPU is fast enough to keep up with * the NIC. */ static int bge_init_rx_ring_std(struct bge_softc *sc) { int i; for (i = 0; i < BGE_SSLOTS; i++) { if (bge_newbuf_std(sc, i, NULL) == ENOBUFS) return(ENOBUFS); }; sc->bge_std = i - 1; CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std); return(0); } static void bge_free_rx_ring_std(struct bge_softc *sc) { int i; for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) { m_freem(sc->bge_cdata.bge_rx_std_chain[i]); sc->bge_cdata.bge_rx_std_chain[i] = NULL; } bzero(&sc->bge_rdata->bge_rx_std_ring[i], sizeof(struct bge_rx_bd)); } } static int bge_init_rx_ring_jumbo(struct bge_softc *sc) { int i; struct bge_rcb *rcb; for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS) return(ENOBUFS); }; sc->bge_jumbo = i - 1; rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb; rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0); CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo); return(0); } static void bge_free_rx_ring_jumbo(struct bge_softc *sc) { int i; for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) { m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]); sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL; } bzero(&sc->bge_rdata->bge_rx_jumbo_ring[i], sizeof(struct bge_rx_bd)); } } static void bge_free_tx_ring(struct bge_softc *sc) { int i; if (sc->bge_rdata->bge_tx_ring == NULL) return; for (i = 0; i < BGE_TX_RING_CNT; i++) { if (sc->bge_cdata.bge_tx_chain[i] != NULL) { m_freem(sc->bge_cdata.bge_tx_chain[i]); sc->bge_cdata.bge_tx_chain[i] = NULL; } bzero(&sc->bge_rdata->bge_tx_ring[i], sizeof(struct bge_tx_bd)); } } static int bge_init_tx_ring(struct bge_softc *sc) { sc->bge_txcnt = 0; sc->bge_tx_saved_considx = 0; CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0); /* 5700 b2 errata */ if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, 0); CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); /* 5700 b2 errata */ if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) CSR_WRITE_4(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); return(0); } static void bge_setmulti(struct bge_softc *sc) { struct ifnet *ifp; struct ifmultiaddr *ifma; uint32_t hashes[4] = { 0, 0, 0, 0 }; int h, i; ifp = &sc->arpcom.ac_if; if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { for (i = 0; i < 4; i++) CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF); return; } /* First, zot all the existing filters. */ for (i = 0; i < 4; i++) CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0); /* Now program new ones. */ LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; h = ether_crc32_le( LLADDR((struct sockaddr_dl *)ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7f; hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F); } for (i = 0; i < 4; i++) CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]); } /* * Do endian, PCI and DMA initialization. Also check the on-board ROM * self-test results. */ static int bge_chipinit(struct bge_softc *sc) { int i; uint32_t dma_rw_ctl; /* Set endianness before we access any non-PCI registers. */ #if BYTE_ORDER == BIG_ENDIAN pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_BIGENDIAN_INIT, 4); #else pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_LITTLEENDIAN_INIT, 4); #endif /* * Check the 'ROM failed' bit on the RX CPU to see if * self-tests passed. */ if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL) { if_printf(&sc->arpcom.ac_if, "RX CPU self-diagnostics failed!\n"); return(ENODEV); } /* Clear the MAC control register */ CSR_WRITE_4(sc, BGE_MAC_MODE, 0); /* * Clear the MAC statistics block in the NIC's * internal memory. */ for (i = BGE_STATS_BLOCK; i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t)) BGE_MEMWIN_WRITE(sc, i, 0); for (i = BGE_STATUS_BLOCK; i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t)) BGE_MEMWIN_WRITE(sc, i, 0); /* Set up the PCI DMA control register. */ if (pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) & BGE_PCISTATE_PCI_BUSMODE) { /* Conventional PCI bus */ dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD | (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) | (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) | (0x0F); } else { /* PCI-X bus */ /* * The 5704 uses a different encoding of read/write * watermarks. */ if (sc->bge_asicrev == BGE_ASICREV_BCM5704) dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD | (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) | (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT); else dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD | (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) | (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) | (0x0F); /* * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround * for hardware bugs. */ if (sc->bge_asicrev == BGE_ASICREV_BCM5703 || sc->bge_asicrev == BGE_ASICREV_BCM5704) { uint32_t tmp; tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f; if (tmp == 0x6 || tmp == 0x7) dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE; } } if (sc->bge_asicrev == BGE_ASICREV_BCM5703 || sc->bge_asicrev == BGE_ASICREV_BCM5704 || sc->bge_asicrev == BGE_ASICREV_BCM5705) dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA; pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4); /* * Set up general mode register. */ CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_WORDSWAP_NONFRAME| BGE_MODECTL_BYTESWAP_DATA|BGE_MODECTL_WORDSWAP_DATA| BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS| BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM); /* * Disable memory write invalidate. Apparently it is not supported * properly by these devices. */ PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4); /* Set the timer prescaler (always 66Mhz) */ CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/); return(0); } static int bge_blockinit(struct bge_softc *sc) { struct bge_rcb *rcb; volatile struct bge_rcb *vrcb; int i; /* * Initialize the memory window pointer register so that * we can access the first 32K of internal NIC RAM. This will * allow us to set up the TX send ring RCBs and the RX return * ring RCBs, plus other things which live in NIC memory. */ CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0); /* Note: the BCM5704 has a smaller mbuf space than other chips. */ if (sc->bge_asicrev != BGE_ASICREV_BCM5705) { /* Configure mbuf memory pool */ if (sc->bge_extram) { CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_EXT_SSRAM); if (sc->bge_asicrev == BGE_ASICREV_BCM5704) CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000); else CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000); } else { CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1); if (sc->bge_asicrev == BGE_ASICREV_BCM5704) CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000); else CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000); } /* Configure DMA resource pool */ CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, BGE_DMA_DESCRIPTORS); CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000); } /* Configure mbuf pool watermarks */ if (sc->bge_asicrev == BGE_ASICREV_BCM5705) { CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10); } else { CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50); CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20); } CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60); /* Configure DMA resource watermarks */ CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5); CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10); /* Enable buffer manager */ if (sc->bge_asicrev != BGE_ASICREV_BCM5705) { CSR_WRITE_4(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN); /* Poll for buffer manager start indication */ for (i = 0; i < BGE_TIMEOUT; i++) { if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE) break; DELAY(10); } if (i == BGE_TIMEOUT) { if_printf(&sc->arpcom.ac_if, "buffer manager failed to start\n"); return(ENXIO); } } /* Enable flow-through queues */ CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); /* Wait until queue initialization is complete */ for (i = 0; i < BGE_TIMEOUT; i++) { if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0) break; DELAY(10); } if (i == BGE_TIMEOUT) { if_printf(&sc->arpcom.ac_if, "flow-through queue init failed\n"); return(ENXIO); } /* Initialize the standard RX ring control block */ rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb; BGE_HOSTADDR(rcb->bge_hostaddr, vtophys(&sc->bge_rdata->bge_rx_std_ring)); if (sc->bge_asicrev == BGE_ASICREV_BCM5705) rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0); else rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0); if (sc->bge_extram) rcb->bge_nicaddr = BGE_EXT_STD_RX_RINGS; else rcb->bge_nicaddr = BGE_STD_RX_RINGS; CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi); CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo); CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr); /* * Initialize the jumbo RX ring control block * We set the 'ring disabled' bit in the flags * field until we're actually ready to start * using this ring (i.e. once we set the MTU * high enough to require it). */ if (sc->bge_asicrev != BGE_ASICREV_BCM5705) { rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb; BGE_HOSTADDR(rcb->bge_hostaddr, vtophys(&sc->bge_rdata->bge_rx_jumbo_ring)); rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, BGE_RCB_FLAG_RING_DISABLED); if (sc->bge_extram) rcb->bge_nicaddr = BGE_EXT_JUMBO_RX_RINGS; else rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS; CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi); CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo); CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr); /* Set up dummy disabled mini ring RCB */ rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb; rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED); CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); } /* * Set the BD ring replentish thresholds. The recommended * values are 1/8th the number of descriptors allocated to * each ring. */ CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, BGE_STD_RX_RING_CNT/8); CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT/8); /* * Disable all unused send rings by setting the 'ring disabled' * bit in the flags field of all the TX send ring control blocks. * These are located in NIC memory. */ vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START + BGE_SEND_RING_RCB); for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) { vrcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED); vrcb->bge_nicaddr = 0; vrcb++; } /* Configure TX RCB 0 (we use only the first ring) */ vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START + BGE_SEND_RING_RCB); vrcb->bge_hostaddr.bge_addr_hi = 0; BGE_HOSTADDR(vrcb->bge_hostaddr, vtophys(&sc->bge_rdata->bge_tx_ring)); vrcb->bge_nicaddr = BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT); if (sc->bge_asicrev != BGE_ASICREV_BCM5705) vrcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0); /* Disable all unused RX return rings */ vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB); for (i = 0; i < BGE_RX_RINGS_MAX; i++) { vrcb->bge_hostaddr.bge_addr_hi = 0; vrcb->bge_hostaddr.bge_addr_lo = 0; vrcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, BGE_RCB_FLAG_RING_DISABLED); vrcb->bge_nicaddr = 0; CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO + (i * (sizeof(uint64_t))), 0); vrcb++; } /* Initialize RX ring indexes */ CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, 0); CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0); CSR_WRITE_4(sc, BGE_MBX_RX_MINI_PROD_LO, 0); /* * Set up RX return ring 0 * Note that the NIC address for RX return rings is 0x00000000. * The return rings live entirely within the host, so the * nicaddr field in the RCB isn't used. */ vrcb = (volatile struct bge_rcb *)(sc->bge_vhandle + BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB); vrcb->bge_hostaddr.bge_addr_hi = 0; BGE_HOSTADDR(vrcb->bge_hostaddr, vtophys(&sc->bge_rdata->bge_rx_return_ring)); vrcb->bge_nicaddr = 0x00000000; vrcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0); /* Set random backoff seed for TX */ CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF, sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] + sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] + sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] + BGE_TX_BACKOFF_SEED_MASK); /* Set inter-packet gap */ CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620); /* * Specify which ring to use for packets that don't match * any RX rules. */ CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08); /* * Configure number of RX lists. One interrupt distribution * list, sixteen active lists, one bad frames class. */ CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181); /* Inialize RX list placement stats mask. */ CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF); CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1); /* Disable host coalescing until we get it set up */ CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000); /* Poll to make sure it's shut down. */ for (i = 0; i < BGE_TIMEOUT; i++) { if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE)) break; DELAY(10); } if (i == BGE_TIMEOUT) { if_printf(&sc->arpcom.ac_if, "host coalescing engine failed to idle\n"); return(ENXIO); } /* Set up host coalescing defaults */ CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks); CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks); CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds); CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds); if (sc->bge_asicrev != BGE_ASICREV_BCM5705) { CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0); CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0); } CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0); CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0); /* Set up address of statistics block */ if (sc->bge_asicrev != BGE_ASICREV_BCM5705) { CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, 0); CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, vtophys(&sc->bge_rdata->bge_info.bge_stats)); CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK); CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK); CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks); } /* Set up address of status block */ CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, 0); CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, vtophys(&sc->bge_rdata->bge_status_block)); sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0; sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0; /* Turn on host coalescing state machine */ CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE); /* Turn on RX BD completion state machine and enable attentions */ CSR_WRITE_4(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN); /* Turn on RX list placement state machine */ CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); /* Turn on RX list selector state machine. */ if (sc->bge_asicrev != BGE_ASICREV_BCM5705) CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); /* Turn on DMA, clear stats */ CSR_WRITE_4(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB| BGE_MACMODE_RXDMA_ENB|BGE_MACMODE_RX_STATS_CLEAR| BGE_MACMODE_TX_STATS_CLEAR|BGE_MACMODE_RX_STATS_ENB| BGE_MACMODE_TX_STATS_ENB|BGE_MACMODE_FRMHDR_DMA_ENB| (sc->bge_tbi ? BGE_PORTMODE_TBI : BGE_PORTMODE_MII)); /* Set misc. local control, enable interrupts on attentions */ CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN); #ifdef notdef /* Assert GPIO pins for PHY reset */ BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0| BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2); BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0| BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2); #endif /* Turn on DMA completion state machine */ if (sc->bge_asicrev != BGE_ASICREV_BCM5705) CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); /* Turn on write DMA state machine */ CSR_WRITE_4(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS); /* Turn on read DMA state machine */ CSR_WRITE_4(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS); /* Turn on RX data completion state machine */ CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); /* Turn on RX BD initiator state machine */ CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); /* Turn on RX data and RX BD initiator state machine */ CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE); /* Turn on Mbuf cluster free state machine */ if (sc->bge_asicrev != BGE_ASICREV_BCM5705) CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); /* Turn on send BD completion state machine */ CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); /* Turn on send data completion state machine */ CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE); /* Turn on send data initiator state machine */ CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); /* Turn on send BD initiator state machine */ CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); /* Turn on send BD selector state machine */ CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF); CSR_WRITE_4(sc, BGE_SDI_STATS_CTL, BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER); /* ack/clear link change events */ CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED| BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE| BGE_MACSTAT_LINK_CHANGED); /* Enable PHY auto polling (for MII/GMII only) */ if (sc->bge_tbi) { CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK); } else { BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16); if (sc->bge_asicrev == BGE_ASICREV_BCM5700) CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_MI_INTERRUPT); } /* Enable link state change attentions. */ BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED); return(0); } /* * Probe for a Broadcom chip. Check the PCI vendor and device IDs * against our list and return its name if we find a match. Note * that since the Broadcom controller contains VPD support, we * can get the device name string from the controller itself instead * of the compiled-in string. This is a little slow, but it guarantees * we'll always announce the right product name. */ static int bge_probe(device_t dev) { struct bge_softc *sc; struct bge_type *t; char *descbuf; uint16_t product, vendor; product = pci_get_device(dev); vendor = pci_get_vendor(dev); for (t = bge_devs; t->bge_name != NULL; t++) { if (vendor == t->bge_vid && product == t->bge_did) break; } if (t->bge_name == NULL) return(ENXIO); sc = device_get_softc(dev); #ifdef notdef sc->bge_dev = dev; bge_vpd_read(sc); device_set_desc(dev, sc->bge_vpd_prodname); #endif descbuf = malloc(BGE_DEVDESC_MAX, M_TEMP, M_WAITOK); snprintf(descbuf, BGE_DEVDESC_MAX, "%s, ASIC rev. %#04x", t->bge_name, pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >> 16); device_set_desc_copy(dev, descbuf); if (pci_get_subvendor(dev) == PCI_VENDOR_DELL) sc->bge_no_3_led = 1; free(descbuf, M_TEMP); return(0); } static int bge_attach(device_t dev) { int s; uint32_t command; struct ifnet *ifp; struct bge_softc *sc; uint32_t hwcfg = 0; uint32_t mac_addr = 0; int error = 0, rid; uint8_t ether_addr[ETHER_ADDR_LEN]; s = splimp(); sc = device_get_softc(dev); sc->bge_dev = dev; callout_init(&sc->bge_stat_timer); /* * Map control/status registers. */ pci_enable_busmaster(dev); pci_enable_io(dev, SYS_RES_MEMORY); command = pci_read_config(dev, PCIR_COMMAND, 4); if (!(command & PCIM_CMD_MEMEN)) { device_printf(dev, "failed to enable memory mapping!\n"); error = ENXIO; goto fail; } rid = BGE_PCI_BAR0; sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); if (sc->bge_res == NULL) { device_printf(dev, "couldn't map memory\n"); error = ENXIO; goto fail; } sc->bge_btag = rman_get_bustag(sc->bge_res); sc->bge_bhandle = rman_get_bushandle(sc->bge_res); sc->bge_vhandle = (vm_offset_t)rman_get_virtual(sc->bge_res); /* Allocate interrupt */ rid = 0; sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE); if (sc->bge_irq == NULL) { device_printf(dev, "couldn't map interrupt\n"); error = ENXIO; goto fail; } error = bus_setup_intr(dev, sc->bge_irq, INTR_TYPE_NET, bge_intr, sc, &sc->bge_intrhand, NULL); if (error) { bge_release_resources(sc); device_printf(dev, "couldn't set up irq\n"); goto fail; } ifp = &sc->arpcom.ac_if; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); /* Try to reset the chip. */ bge_reset(sc); if (bge_chipinit(sc)) { device_printf(dev, "chip initialization failed\n"); bge_release_resources(sc); error = ENXIO; goto fail; } /* * Get station address from the EEPROM. */ mac_addr = bge_readmem_ind(sc, 0x0c14); if ((mac_addr >> 16) == 0x484b) { ether_addr[0] = (uint8_t)(mac_addr >> 8); ether_addr[1] = (uint8_t)mac_addr; mac_addr = bge_readmem_ind(sc, 0x0c18); ether_addr[2] = (uint8_t)(mac_addr >> 24); ether_addr[3] = (uint8_t)(mac_addr >> 16); ether_addr[4] = (uint8_t)(mac_addr >> 8); ether_addr[5] = (uint8_t)mac_addr; } else if (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) { device_printf(dev, "failed to read station address\n"); bge_release_resources(sc); error = ENXIO; goto fail; } /* Allocate the general information block and ring buffers. */ sc->bge_rdata = contigmalloc(sizeof(struct bge_ring_data), M_DEVBUF, M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0); if (sc->bge_rdata == NULL) { bge_release_resources(sc); error = ENXIO; device_printf(dev, "no memory for list buffers!\n"); goto fail; } bzero(sc->bge_rdata, sizeof(struct bge_ring_data)); /* Save ASIC rev. */ sc->bge_chipid = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) & BGE_PCIMISCCTL_ASICREV; sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid); sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid); /* * Try to allocate memory for jumbo buffers. * The 5705 does not appear to support jumbo frames. */ if (sc->bge_asicrev != BGE_ASICREV_BCM5705) { if (bge_alloc_jumbo_mem(sc)) { device_printf(dev, "jumbo buffer allocation failed\n"); bge_release_resources(sc); error = ENXIO; goto fail; } } /* Set default tuneable values. */ sc->bge_stat_ticks = BGE_TICKS_PER_SEC; sc->bge_rx_coal_ticks = 150; sc->bge_tx_coal_ticks = 150; sc->bge_rx_max_coal_bds = 64; sc->bge_tx_max_coal_bds = 128; /* 5705 limits RX return ring to 512 entries. */ if (sc->bge_asicrev == BGE_ASICREV_BCM5705) sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705; else sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT; /* Set up ifnet structure */ ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = bge_ioctl; ifp->if_start = bge_start; ifp->if_watchdog = bge_watchdog; ifp->if_init = bge_init; ifp->if_mtu = ETHERMTU; ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1); ifq_set_ready(&ifp->if_snd); ifp->if_hwassist = BGE_CSUM_FEATURES; ifp->if_capabilities = IFCAP_HWCSUM; ifp->if_capenable = ifp->if_capabilities; /* * Figure out what sort of media we have by checking the * hardware config word in the first 32k of NIC internal memory, * or fall back to examining the EEPROM if necessary. * Note: on some BCM5700 cards, this value appears to be unset. * If that's the case, we have to rely on identifying the NIC * by its PCI subsystem ID, as we do below for the SysKonnect * SK-9D41. */ if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG); else { bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET, sizeof(hwcfg)); hwcfg = ntohl(hwcfg); } if ((hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) sc->bge_tbi = 1; /* The SysKonnect SK-9D41 is a 1000baseSX card. */ if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41) sc->bge_tbi = 1; if (sc->bge_tbi) { ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd, bge_ifmedia_sts); ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL); ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL); ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL); ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO); } else { /* * Do transceiver setup. */ if (mii_phy_probe(dev, &sc->bge_miibus, bge_ifmedia_upd, bge_ifmedia_sts)) { device_printf(dev, "MII without any PHY!\n"); bge_release_resources(sc); bge_free_jumbo_mem(sc); error = ENXIO; goto fail; } } /* * When using the BCM5701 in PCI-X mode, data corruption has * been observed in the first few bytes of some received packets. * Aligning the packet buffer in memory eliminates the corruption. * Unfortunately, this misaligns the packet payloads. On platforms * which do not support unaligned accesses, we will realign the * payloads by copying the received packets. */ switch (sc->bge_chipid) { case BGE_CHIPID_BCM5701_A0: case BGE_CHIPID_BCM5701_B0: case BGE_CHIPID_BCM5701_B2: case BGE_CHIPID_BCM5701_B5: /* If in PCI-X mode, work around the alignment bug. */ if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) & (BGE_PCISTATE_PCI_BUSMODE | BGE_PCISTATE_PCI_BUSSPEED)) == BGE_PCISTATE_PCI_BUSSPEED) sc->bge_rx_alignment_bug = 1; break; } /* * Call MI attach routine. */ ether_ifattach(ifp, ether_addr); fail: splx(s); return(error); } static int bge_detach(device_t dev) { struct bge_softc *sc; struct ifnet *ifp; int s; s = splimp(); sc = device_get_softc(dev); ifp = &sc->arpcom.ac_if; ether_ifdetach(ifp); bge_stop(sc); bge_reset(sc); if (sc->bge_tbi) { ifmedia_removeall(&sc->bge_ifmedia); } else { bus_generic_detach(dev); device_delete_child(dev, sc->bge_miibus); } bge_release_resources(sc); if (sc->bge_asicrev != BGE_ASICREV_BCM5705) bge_free_jumbo_mem(sc); splx(s); return(0); } static void bge_release_resources(struct bge_softc *sc) { device_t dev; dev = sc->bge_dev; if (sc->bge_vpd_prodname != NULL) free(sc->bge_vpd_prodname, M_DEVBUF); if (sc->bge_vpd_readonly != NULL) free(sc->bge_vpd_readonly, M_DEVBUF); if (sc->bge_intrhand != NULL) bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand); if (sc->bge_irq != NULL) bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq); if (sc->bge_res != NULL) bus_release_resource(dev, SYS_RES_MEMORY, BGE_PCI_BAR0, sc->bge_res); if (sc->bge_rdata != NULL) contigfree(sc->bge_rdata, sizeof(struct bge_ring_data), M_DEVBUF); return; } static void bge_reset(struct bge_softc *sc) { device_t dev; uint32_t cachesize, command, pcistate; int i, val = 0; dev = sc->bge_dev; /* Save some important PCI state. */ cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4); command = pci_read_config(dev, BGE_PCI_CMD, 4); pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4); pci_write_config(dev, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR| BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4); /* Issue global reset */ bge_writereg_ind(sc, BGE_MISC_CFG, BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1)); DELAY(1000); /* Reset some of the PCI state that got zapped by reset */ pci_write_config(dev, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR| BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW, 4); pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4); pci_write_config(dev, BGE_PCI_CMD, command, 4); bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1)); /* * Prevent PXE restart: write a magic number to the * general communications memory at 0xB50. */ bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER); /* * Poll the value location we just wrote until * we see the 1's complement of the magic number. * This indicates that the firmware initialization * is complete. */ for (i = 0; i < BGE_TIMEOUT; i++) { val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM); if (val == ~BGE_MAGIC_NUMBER) break; DELAY(10); } if (i == BGE_TIMEOUT) { if_printf(&sc->arpcom.ac_if, "firmware handshake timed out\n"); return; } /* * XXX Wait for the value of the PCISTATE register to * return to its original pre-reset state. This is a * fairly good indicator of reset completion. If we don't * wait for the reset to fully complete, trying to read * from the device's non-PCI registers may yield garbage * results. */ for (i = 0; i < BGE_TIMEOUT; i++) { if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate) break; DELAY(10); } /* Enable memory arbiter. */ if (sc->bge_asicrev != BGE_ASICREV_BCM5705) CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); /* Fix up byte swapping */ CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_MODECTL_BYTESWAP_NONFRAME| BGE_MODECTL_BYTESWAP_DATA); CSR_WRITE_4(sc, BGE_MAC_MODE, 0); DELAY(10000); return; } /* * Frame reception handling. This is called if there's a frame * on the receive return list. * * Note: we have to be able to handle two possibilities here: * 1) the frame is from the jumbo recieve ring * 2) the frame is from the standard receive ring */ static void bge_rxeof(struct bge_softc *sc) { struct ifnet *ifp; int stdcnt = 0, jumbocnt = 0; ifp = &sc->arpcom.ac_if; while(sc->bge_rx_saved_considx != sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) { struct bge_rx_bd *cur_rx; uint32_t rxidx; struct mbuf *m = NULL; uint16_t vlan_tag = 0; int have_tag = 0; cur_rx = &sc->bge_rdata->bge_rx_return_ring[sc->bge_rx_saved_considx]; rxidx = cur_rx->bge_idx; BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt); if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) { have_tag = 1; vlan_tag = cur_rx->bge_vlan_tag; } if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) { BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx]; sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL; jumbocnt++; if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { ifp->if_ierrors++; bge_newbuf_jumbo(sc, sc->bge_jumbo, m); continue; } if (bge_newbuf_jumbo(sc, sc->bge_jumbo, NULL) == ENOBUFS) { ifp->if_ierrors++; bge_newbuf_jumbo(sc, sc->bge_jumbo, m); continue; } } else { BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); m = sc->bge_cdata.bge_rx_std_chain[rxidx]; sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL; stdcnt++; if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { ifp->if_ierrors++; bge_newbuf_std(sc, sc->bge_std, m); continue; } if (bge_newbuf_std(sc, sc->bge_std, NULL) == ENOBUFS) { ifp->if_ierrors++; bge_newbuf_std(sc, sc->bge_std, m); continue; } } ifp->if_ipackets++; #ifndef __i386__ /* * The i386 allows unaligned accesses, but for other * platforms we must make sure the payload is aligned. */ if (sc->bge_rx_alignment_bug) { bcopy(m->m_data, m->m_data + ETHER_ALIGN, cur_rx->bge_len); m->m_data += ETHER_ALIGN; } #endif m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN; m->m_pkthdr.rcvif = ifp; #if 0 /* currently broken for some packets, possibly related to TCP options */ if (ifp->if_hwassist) { m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; if ((cur_rx->bge_ip_csum ^ 0xffff) == 0) m->m_pkthdr.csum_flags |= CSUM_IP_VALID; if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) { m->m_pkthdr.csum_data = cur_rx->bge_tcp_udp_csum; m->m_pkthdr.csum_flags |= CSUM_DATA_VALID; } } #endif /* * If we received a packet with a vlan tag, pass it * to vlan_input() instead of ether_input(). */ if (have_tag) { VLAN_INPUT_TAG(m, vlan_tag); have_tag = vlan_tag = 0; continue; } (*ifp->if_input)(ifp, m); } CSR_WRITE_4(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx); if (stdcnt) CSR_WRITE_4(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std); if (jumbocnt) CSR_WRITE_4(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo); } static void bge_txeof(struct bge_softc *sc) { struct bge_tx_bd *cur_tx = NULL; struct ifnet *ifp; ifp = &sc->arpcom.ac_if; /* * Go through our tx ring and free mbufs for those * frames that have been sent. */ while (sc->bge_tx_saved_considx != sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) { uint32_t idx = 0; idx = sc->bge_tx_saved_considx; cur_tx = &sc->bge_rdata->bge_tx_ring[idx]; if (cur_tx->bge_flags & BGE_TXBDFLAG_END) ifp->if_opackets++; if (sc->bge_cdata.bge_tx_chain[idx] != NULL) { m_freem(sc->bge_cdata.bge_tx_chain[idx]); sc->bge_cdata.bge_tx_chain[idx] = NULL; } sc->bge_txcnt--; BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT); ifp->if_timer = 0; } if (cur_tx != NULL) ifp->if_flags &= ~IFF_OACTIVE; } static void bge_intr(void *xsc) { struct bge_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; uint32_t status; #ifdef notdef /* Avoid this for now -- checking this register is expensive. */ /* Make sure this is really our interrupt. */ if (!(CSR_READ_4(sc, BGE_MISC_LOCAL_CTL) & BGE_MLC_INTR_STATE)) return; #endif /* Ack interrupt and stop others from occuring. */ CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1); /* * Process link state changes. * Grrr. The link status word in the status block does * not work correctly on the BCM5700 rev AX and BX chips, * according to all available information. Hence, we have * to enable MII interrupts in order to properly obtain * async link changes. Unfortunately, this also means that * we have to read the MAC status register to detect link * changes, thereby adding an additional register access to * the interrupt handler. */ if (sc->bge_asicrev == BGE_ASICREV_BCM5700) { status = CSR_READ_4(sc, BGE_MAC_STS); if (status & BGE_MACSTAT_MI_INTERRUPT) { sc->bge_link = 0; callout_stop(&sc->bge_stat_timer); bge_tick(sc); /* Clear the interrupt */ CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_MI_INTERRUPT); bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR); bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR, BRGPHY_INTRS); } } else { if ((sc->bge_rdata->bge_status_block.bge_status & BGE_STATFLAG_UPDATED) && (sc->bge_rdata->bge_status_block.bge_status & BGE_STATFLAG_LINKSTATE_CHANGED)) { sc->bge_rdata->bge_status_block.bge_status &= ~(BGE_STATFLAG_UPDATED| BGE_STATFLAG_LINKSTATE_CHANGED); /* * Sometimes PCS encoding errors are detected in * TBI mode (on fiber NICs), and for some reason * the chip will signal them as link changes. * If we get a link change event, but the 'PCS * encoding error' bit in the MAC status register * is set, don't bother doing a link check. * This avoids spurious "gigabit link up" messages * that sometimes appear on fiber NICs during * periods of heavy traffic. (There should be no * effect on copper NICs.) */ status = CSR_READ_4(sc, BGE_MAC_STS); if (!(status & (BGE_MACSTAT_PORT_DECODE_ERROR| BGE_MACSTAT_MI_COMPLETE))) { sc->bge_link = 0; callout_stop(&sc->bge_stat_timer); bge_tick(sc); } sc->bge_link = 0; callout_stop(&sc->bge_stat_timer); bge_tick(sc); /* Clear the interrupt */ CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED| BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE| BGE_MACSTAT_LINK_CHANGED); /* Force flush the status block cached by PCI bridge */ CSR_READ_4(sc, BGE_MBX_IRQ0_LO); } } if (ifp->if_flags & IFF_RUNNING) { /* Check RX return ring producer/consumer */ bge_rxeof(sc); /* Check TX ring producer/consumer */ bge_txeof(sc); } bge_handle_events(sc); /* Re-enable interrupts. */ CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0); if ((ifp->if_flags & IFF_RUNNING) && !ifq_is_empty(&ifp->if_snd)) (*ifp->if_start)(ifp); } static void bge_tick(void *xsc) { struct bge_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; struct mii_data *mii = NULL; struct ifmedia *ifm = NULL; int s; s = splimp(); if (sc->bge_asicrev == BGE_ASICREV_BCM5705) bge_stats_update_regs(sc); else bge_stats_update(sc); callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc); if (sc->bge_link) { splx(s); return; } if (sc->bge_tbi) { ifm = &sc->bge_ifmedia; if (CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_TBI_PCS_SYNCHED) { sc->bge_link++; CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF); if_printf(ifp, "gigabit link up\n"); if (!ifq_is_empty(&ifp->if_snd)) (*ifp->if_start)(ifp); } splx(s); return; } mii = device_get_softc(sc->bge_miibus); mii_tick(mii); if (!sc->bge_link) { mii_pollstat(mii); if (mii->mii_media_status & IFM_ACTIVE && IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { sc->bge_link++; if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) if_printf(ifp, "gigabit link up\n"); if (!ifq_is_empty(&ifp->if_snd)) (*ifp->if_start)(ifp); } } splx(s); } static void bge_stats_update_regs(struct bge_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; struct bge_mac_stats_regs stats; uint32_t *s; int i; s = (uint32_t *)&stats; for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) { *s = CSR_READ_4(sc, BGE_RX_STATS + i); s++; } ifp->if_collisions += (stats.dot3StatsSingleCollisionFrames + stats.dot3StatsMultipleCollisionFrames + stats.dot3StatsExcessiveCollisions + stats.dot3StatsLateCollisions) - ifp->if_collisions; } static void bge_stats_update(struct bge_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; struct bge_stats *stats; stats = (struct bge_stats *)(sc->bge_vhandle + BGE_MEMWIN_START + BGE_STATS_BLOCK); ifp->if_collisions += (stats->txstats.dot3StatsSingleCollisionFrames.bge_addr_lo + stats->txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo + stats->txstats.dot3StatsExcessiveCollisions.bge_addr_lo + stats->txstats.dot3StatsLateCollisions.bge_addr_lo) - ifp->if_collisions; #ifdef notdef ifp->if_collisions += (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames + sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames + sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions + sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) - ifp->if_collisions; #endif } /* * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data * pointers to descriptors. */ static int bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx) { struct bge_tx_bd *f = NULL; struct mbuf *m; uint32_t frag, cur, cnt = 0; uint16_t csum_flags = 0; struct ifvlan *ifv = NULL; if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) && m_head->m_pkthdr.rcvif != NULL && m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN) ifv = m_head->m_pkthdr.rcvif->if_softc; m = m_head; cur = frag = *txidx; if (m_head->m_pkthdr.csum_flags) { if (m_head->m_pkthdr.csum_flags & CSUM_IP) csum_flags |= BGE_TXBDFLAG_IP_CSUM; if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM; if (m_head->m_flags & M_LASTFRAG) csum_flags |= BGE_TXBDFLAG_IP_FRAG_END; else if (m_head->m_flags & M_FRAG) csum_flags |= BGE_TXBDFLAG_IP_FRAG; } /* * Start packing the mbufs in this chain into * the fragment pointers. Stop when we run out * of fragments or hit the end of the mbuf chain. */ for (m = m_head; m != NULL; m = m->m_next) { if (m->m_len != 0) { f = &sc->bge_rdata->bge_tx_ring[frag]; if (sc->bge_cdata.bge_tx_chain[frag] != NULL) break; BGE_HOSTADDR(f->bge_addr, vtophys(mtod(m, vm_offset_t))); f->bge_len = m->m_len; f->bge_flags = csum_flags; if (ifv != NULL) { f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG; f->bge_vlan_tag = ifv->ifv_tag; } else { f->bge_vlan_tag = 0; } /* * Sanity check: avoid coming within 16 descriptors * of the end of the ring. */ if ((BGE_TX_RING_CNT - (sc->bge_txcnt + cnt)) < 16) return(ENOBUFS); cur = frag; BGE_INC(frag, BGE_TX_RING_CNT); cnt++; } } if (m != NULL) return(ENOBUFS); if (frag == sc->bge_tx_saved_considx) return(ENOBUFS); sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END; sc->bge_cdata.bge_tx_chain[cur] = m_head; sc->bge_txcnt += cnt; *txidx = frag; return(0); } /* * Main transmit routine. To avoid having to do mbuf copies, we put pointers * to the mbuf data regions directly in the transmit descriptors. */ static void bge_start(struct ifnet *ifp) { struct bge_softc *sc; struct mbuf *m_head = NULL; uint32_t prodidx = 0; sc = ifp->if_softc; if (!sc->bge_link) return; prodidx = CSR_READ_4(sc, BGE_MBX_TX_HOST_PROD0_LO); while(sc->bge_cdata.bge_tx_chain[prodidx] == NULL) { m_head = ifq_poll(&ifp->if_snd); if (m_head == NULL) break; /* * XXX * safety overkill. If this is a fragmented packet chain * with delayed TCP/UDP checksums, then only encapsulate * it if we have enough descriptors to handle the entire * chain at once. * (paranoia -- may not actually be needed) */ if (m_head->m_flags & M_FIRSTFRAG && m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) { if ((BGE_TX_RING_CNT - sc->bge_txcnt) < m_head->m_pkthdr.csum_data + 16) { ifp->if_flags |= IFF_OACTIVE; break; } } /* * Pack the data into the transmit ring. If we * don't have room, set the OACTIVE flag and wait * for the NIC to drain the ring. */ if (bge_encap(sc, m_head, &prodidx)) { ifp->if_flags |= IFF_OACTIVE; break; } m_head = ifq_dequeue(&ifp->if_snd); BPF_MTAP(ifp, m_head); } /* Transmit */ CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); /* 5700 b2 errata */ if (sc->bge_chiprev == BGE_CHIPREV_5700_BX) CSR_WRITE_4(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; } static void bge_init(void *xsc) { struct bge_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; uint16_t *m; int s; s = splimp(); if (ifp->if_flags & IFF_RUNNING) { splx(s); return; } /* Cancel pending I/O and flush buffers. */ bge_stop(sc); bge_reset(sc); bge_chipinit(sc); /* * Init the various state machines, ring * control blocks and firmware. */ if (bge_blockinit(sc)) { if_printf(ifp, "initialization failure\n"); splx(s); return; } /* Specify MTU. */ CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN); /* Load our MAC address. */ m = (uint16_t *)&sc->arpcom.ac_enaddr[0]; CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0])); CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2])); /* Enable or disable promiscuous mode as needed. */ if (ifp->if_flags & IFF_PROMISC) { BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); } else { BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); } /* Program multicast filter. */ bge_setmulti(sc); /* Init RX ring. */ bge_init_rx_ring_std(sc); /* * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's * memory to insure that the chip has in fact read the first * entry of the ring. */ if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) { uint32_t v, i; for (i = 0; i < 10; i++) { DELAY(20); v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8); if (v == (MCLBYTES - ETHER_ALIGN)) break; } if (i == 10) if_printf(ifp, "5705 A0 chip failed to load RX ring\n"); } /* Init jumbo RX ring. */ if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) bge_init_rx_ring_jumbo(sc); /* Init our RX return ring index */ sc->bge_rx_saved_considx = 0; /* Init TX ring. */ bge_init_tx_ring(sc); /* Turn on transmitter */ BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE); /* Turn on receiver */ BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE); /* Tell firmware we're alive. */ BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); /* Enable host interrupts. */ BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA); BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 0); bge_ifmedia_upd(ifp); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; splx(s); callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc); } /* * Set media options. */ static int bge_ifmedia_upd(struct ifnet *ifp) { struct bge_softc *sc = ifp->if_softc; struct ifmedia *ifm = &sc->bge_ifmedia; struct mii_data *mii; /* If this is a 1000baseX NIC, enable the TBI port. */ if (sc->bge_tbi) { if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) return(EINVAL); switch(IFM_SUBTYPE(ifm->ifm_media)) { case IFM_AUTO: break; case IFM_1000_SX: if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) { BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX); } else { BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX); } break; default: return(EINVAL); } return(0); } mii = device_get_softc(sc->bge_miibus); sc->bge_link = 0; if (mii->mii_instance) { struct mii_softc *miisc; for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL; miisc = LIST_NEXT(miisc, mii_list)) mii_phy_reset(miisc); } mii_mediachg(mii); return(0); } /* * Report current media status. */ static void bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct bge_softc *sc = ifp->if_softc; struct mii_data *mii; if (sc->bge_tbi) { ifmr->ifm_status = IFM_AVALID; ifmr->ifm_active = IFM_ETHER; if (CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_TBI_PCS_SYNCHED) ifmr->ifm_status |= IFM_ACTIVE; ifmr->ifm_active |= IFM_1000_SX; if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX) ifmr->ifm_active |= IFM_HDX; else ifmr->ifm_active |= IFM_FDX; return; } mii = device_get_softc(sc->bge_miibus); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; } static int bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr) { struct bge_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; int s, mask, error = 0; struct mii_data *mii; s = splimp(); switch(command) { case SIOCSIFMTU: /* Disallow jumbo frames on 5705. */ if ((sc->bge_asicrev == BGE_ASICREV_BCM5705 && ifr->ifr_mtu > ETHERMTU) || ifr->ifr_mtu > BGE_JUMBO_MTU) error = EINVAL; else { ifp->if_mtu = ifr->ifr_mtu; ifp->if_flags &= ~IFF_RUNNING; bge_init(sc); } break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { /* * If only the state of the PROMISC flag changed, * then just use the 'set promisc mode' command * instead of reinitializing the entire NIC. Doing * a full re-init means reloading the firmware and * waiting for it to start up, which may take a * second or two. */ if (ifp->if_flags & IFF_RUNNING && ifp->if_flags & IFF_PROMISC && !(sc->bge_if_flags & IFF_PROMISC)) { BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); } else if (ifp->if_flags & IFF_RUNNING && !(ifp->if_flags & IFF_PROMISC) && sc->bge_if_flags & IFF_PROMISC) { BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC); } else bge_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) { bge_stop(sc); } } sc->bge_if_flags = ifp->if_flags; error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: if (ifp->if_flags & IFF_RUNNING) { bge_setmulti(sc); error = 0; } break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: if (sc->bge_tbi) { error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia, command); } else { mii = device_get_softc(sc->bge_miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); } break; case SIOCSIFCAP: mask = ifr->ifr_reqcap ^ ifp->if_capenable; if (mask & IFCAP_HWCSUM) { if (IFCAP_HWCSUM & ifp->if_capenable) ifp->if_capenable &= ~IFCAP_HWCSUM; else ifp->if_capenable |= IFCAP_HWCSUM; } error = 0; break; default: error = ether_ioctl(ifp, command, data); break; } splx(s); return(error); } static void bge_watchdog(struct ifnet *ifp) { struct bge_softc *sc = ifp->if_softc; if_printf(ifp, "watchdog timeout -- resetting\n"); ifp->if_flags &= ~IFF_RUNNING; bge_init(sc); ifp->if_oerrors++; } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void bge_stop(struct bge_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; struct ifmedia_entry *ifm; struct mii_data *mii = NULL; int mtmp, itmp; if (!sc->bge_tbi) mii = device_get_softc(sc->bge_miibus); callout_stop(&sc->bge_stat_timer); /* * Disable all of the receiver blocks */ BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE); BGE_CLRBIT(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); BGE_CLRBIT(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); if (sc->bge_asicrev != BGE_ASICREV_BCM5705) BGE_CLRBIT(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); BGE_CLRBIT(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE); BGE_CLRBIT(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); BGE_CLRBIT(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE); /* * Disable all of the transmit blocks */ BGE_CLRBIT(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); BGE_CLRBIT(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); BGE_CLRBIT(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); BGE_CLRBIT(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE); BGE_CLRBIT(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE); if (sc->bge_asicrev != BGE_ASICREV_BCM5705) BGE_CLRBIT(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); BGE_CLRBIT(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); /* * Shut down all of the memory managers and related * state machines. */ BGE_CLRBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE); BGE_CLRBIT(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE); if (sc->bge_asicrev != BGE_ASICREV_BCM5705) BGE_CLRBIT(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); if (sc->bge_asicrev != BGE_ASICREV_BCM5705) { BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE); BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); } /* Disable host interrupts. */ BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); CSR_WRITE_4(sc, BGE_MBX_IRQ0_LO, 1); /* * Tell firmware we're shutting down. */ BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); /* Free the RX lists. */ bge_free_rx_ring_std(sc); /* Free jumbo RX list. */ if (sc->bge_asicrev != BGE_ASICREV_BCM5705) bge_free_rx_ring_jumbo(sc); /* Free TX buffers. */ bge_free_tx_ring(sc); /* * Isolate/power down the PHY, but leave the media selection * unchanged so that things will be put back to normal when * we bring the interface back up. */ if (!sc->bge_tbi) { itmp = ifp->if_flags; ifp->if_flags |= IFF_UP; ifm = mii->mii_media.ifm_cur; mtmp = ifm->ifm_media; ifm->ifm_media = IFM_ETHER|IFM_NONE; mii_mediachg(mii); ifm->ifm_media = mtmp; ifp->if_flags = itmp; } sc->bge_link = 0; sc->bge_tx_saved_considx = BGE_TXCONS_UNSET; ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ static void bge_shutdown(device_t dev) { struct bge_softc *sc = device_get_softc(dev); bge_stop(sc); bge_reset(sc); }