/* * Copyright (c) 1997, 1998 John S. Dyson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice immediately at the beginning of the file, without modification, * this list of conditions, and the following disclaimer. * 2. Absolutely no warranty of function or purpose is made by the author * John S. Dyson. * * $FreeBSD: src/sys/vm/vm_zone.c,v 1.30.2.6 2002/10/10 19:50:16 dillon Exp $ * $DragonFly: src/sys/vm/vm_zone.c,v 1.17 2004/10/26 04:33:11 dillon Exp $ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include static MALLOC_DEFINE(M_ZONE, "ZONE", "Zone header"); #define ZONE_ERROR_INVALID 0 #define ZONE_ERROR_NOTFREE 1 #define ZONE_ERROR_ALREADYFREE 2 #define ZONE_ROUNDING 32 #define ZENTRY_FREE 0x12342378 static void *zget(vm_zone_t z); /* * Return an item from the specified zone. This function is interrupt/MP * thread safe, but might block. */ void * zalloc(vm_zone_t z) { void *item; lwkt_tokref ilock; #ifdef INVARIANTS if (z == NULL) zerror(ZONE_ERROR_INVALID); #endif lwkt_gettoken(&ilock, &z->zlock); if (z->zfreecnt <= z->zfreemin) { item = zget(z); /* * PANICFAIL allows the caller to assume that the zalloc() * will always succeed. If it doesn't, we panic here. */ if (item == NULL && (z->zflags & ZONE_PANICFAIL)) panic("zalloc(%s) failed", z->zname); } else { item = z->zitems; #ifdef INVARIANTS KASSERT(item != NULL, ("zitems unexpectedly NULL")); if (((void **) item)[1] != (void *) ZENTRY_FREE) zerror(ZONE_ERROR_NOTFREE); ((void **) item)[1] = 0; #endif z->zitems = ((void **) item)[0]; z->zfreecnt--; z->znalloc++; } lwkt_reltoken(&ilock); return item; } /* * Free an item to the specified zone. This function is interrupt/MP * thread safe, but might block. */ void zfree(vm_zone_t z, void *item) { lwkt_tokref ilock; lwkt_gettoken(&ilock, &z->zlock); ((void **) item)[0] = z->zitems; #ifdef INVARIANTS if (((void **) item)[1] == (void *) ZENTRY_FREE) zerror(ZONE_ERROR_ALREADYFREE); ((void **) item)[1] = (void *) ZENTRY_FREE; #endif z->zitems = item; z->zfreecnt++; lwkt_reltoken(&ilock); } /* * This file comprises a very simple zone allocator. This is used * in lieu of the malloc allocator, where needed or more optimal. * * Note that the initial implementation of this had coloring, and * absolutely no improvement (actually perf degradation) occurred. * * Note also that the zones are type stable. The only restriction is * that the first two longwords of a data structure can be changed * between allocations. Any data that must be stable between allocations * must reside in areas after the first two longwords. * * zinitna, zinit, zbootinit are the initialization routines. * zalloc, zfree, are the allocation/free routines. */ static struct vm_zone *zlist; static int sysctl_vm_zone(SYSCTL_HANDLER_ARGS); static int zone_kmem_pages, zone_kern_pages, zone_kmem_kvaspace; /* * Create a zone, but don't allocate the zone structure. If the * zone had been previously created by the zone boot code, initialize * various parts of the zone code. * * If waits are not allowed during allocation (e.g. during interrupt * code), a-priori allocate the kernel virtual space, and allocate * only pages when needed. * * Arguments: * z pointer to zone structure. * obj pointer to VM object (opt). * name name of zone. * size size of zone entries. * nentries number of zone entries allocated (only ZONE_INTERRUPT.) * flags ZONE_INTERRUPT -- items can be allocated at interrupt time. * zalloc number of pages allocated when memory is needed. * * Note that when using ZONE_INTERRUPT, the size of the zone is limited * by the nentries argument. The size of the memory allocatable is * unlimited if ZONE_INTERRUPT is not set. * */ int zinitna(vm_zone_t z, vm_object_t obj, char *name, int size, int nentries, int flags, int zalloc) { int totsize; if ((z->zflags & ZONE_BOOT) == 0) { z->zsize = (size + ZONE_ROUNDING - 1) & ~(ZONE_ROUNDING - 1); lwkt_token_init(&z->zlock); z->zfreecnt = 0; z->ztotal = 0; z->zmax = 0; z->zname = name; z->znalloc = 0; z->zitems = NULL; z->znext = zlist; zlist = z; } z->zflags |= flags; /* * If we cannot wait, allocate KVA space up front, and we will fill * in pages as needed. This is particularly required when creating * an allocation space for map entries in kernel_map, because we * do not want to go into a recursion deadlock with * vm_map_entry_reserve(). */ if (z->zflags & ZONE_INTERRUPT) { totsize = round_page(z->zsize * nentries); zone_kmem_kvaspace += totsize; z->zkva = kmem_alloc_pageable(kernel_map, totsize); if (z->zkva == 0) { zlist = z->znext; return 0; } z->zpagemax = totsize / PAGE_SIZE; if (obj == NULL) { z->zobj = vm_object_allocate(OBJT_DEFAULT, z->zpagemax); } else { z->zobj = obj; _vm_object_allocate(OBJT_DEFAULT, z->zpagemax, obj); } z->zallocflag = VM_ALLOC_SYSTEM | VM_ALLOC_INTERRUPT; z->zmax += nentries; } else { z->zallocflag = VM_ALLOC_NORMAL | VM_ALLOC_SYSTEM; z->zmax = 0; } if (z->zsize > PAGE_SIZE) z->zfreemin = 1; else z->zfreemin = PAGE_SIZE / z->zsize; z->zpagecount = 0; if (zalloc) z->zalloc = zalloc; else z->zalloc = 1; return 1; } /* * Subroutine same as zinitna, except zone data structure is allocated * automatically by malloc. This routine should normally be used, except * in certain tricky startup conditions in the VM system -- then * zbootinit and zinitna can be used. Zinit is the standard zone * initialization call. */ vm_zone_t zinit(char *name, int size, int nentries, int flags, int zalloc) { vm_zone_t z; z = (vm_zone_t) malloc(sizeof (struct vm_zone), M_ZONE, M_NOWAIT); if (z == NULL) return NULL; z->zflags = 0; if (zinitna(z, NULL, name, size, nentries, flags, zalloc) == 0) { free(z, M_ZONE); return NULL; } return z; } /* * Initialize a zone before the system is fully up. This routine should * only be called before full VM startup. */ void zbootinit(vm_zone_t z, char *name, int size, void *item, int nitems) { int i; z->zname = name; z->zsize = size; z->zpagemax = 0; z->zobj = NULL; z->zflags = ZONE_BOOT; z->zfreemin = 0; z->zallocflag = 0; z->zpagecount = 0; z->zalloc = 0; z->znalloc = 0; lwkt_token_init(&z->zlock); bzero(item, nitems * z->zsize); z->zitems = NULL; for (i = 0; i < nitems; i++) { ((void **) item)[0] = z->zitems; #ifdef INVARIANTS ((void **) item)[1] = (void *) ZENTRY_FREE; #endif z->zitems = item; item = (uint8_t *)item + z->zsize; } z->zfreecnt = nitems; z->zmax = nitems; z->ztotal = nitems; if (zlist == 0) { zlist = z; } else { z->znext = zlist; zlist = z; } } /* * void *zalloc(vm_zone_t zone) -- * Returns an item from a specified zone. May not be called from a * FAST interrupt or IPI function. * * void zfree(vm_zone_t zone, void *item) -- * Frees an item back to a specified zone. May not be called from a * FAST interrupt or IPI function. */ /* * Internal zone routine. Not to be called from external (non vm_zone) code. */ static void * zget(vm_zone_t z) { int i; vm_page_t m; int nitems, nbytes; void *item; if (z == NULL) panic("zget: null zone"); if (z->zflags & ZONE_INTERRUPT) { /* * Interrupt zones do not mess with the kernel_map, they * simply populate an existing mapping. */ nbytes = z->zpagecount * PAGE_SIZE; nbytes -= nbytes % z->zsize; item = (char *) z->zkva + nbytes; for (i = 0; ((i < z->zalloc) && (z->zpagecount < z->zpagemax)); i++) { vm_offset_t zkva; m = vm_page_alloc(z->zobj, z->zpagecount, z->zallocflag); /* note: z might be modified due to blocking */ if (m == NULL) break; zkva = z->zkva + z->zpagecount * PAGE_SIZE; pmap_kenter(zkva, VM_PAGE_TO_PHYS(m)); /* YYY */ bzero((caddr_t) zkva, PAGE_SIZE); z->zpagecount++; zone_kmem_pages++; vmstats.v_wire_count++; } nitems = ((z->zpagecount * PAGE_SIZE) - nbytes) / z->zsize; } else if (z->zflags & ZONE_SPECIAL) { /* * The special zone is the one used for vm_map_entry_t's. * We have to avoid an infinite recursion in * vm_map_entry_reserve() by using vm_map_entry_kreserve() * instead. The map entries are pre-reserved by the kernel * by vm_map_entry_reserve_cpu_init(). */ nbytes = z->zalloc * PAGE_SIZE; item = (void *)kmem_alloc3(kernel_map, nbytes, KM_KRESERVE); /* note: z might be modified due to blocking */ if (item != NULL) { zone_kern_pages += z->zalloc; bzero(item, nbytes); } else { nbytes = 0; } nitems = nbytes / z->zsize; } else { /* * Otherwise allocate KVA from the kernel_map. */ nbytes = z->zalloc * PAGE_SIZE; item = (void *)kmem_alloc3(kernel_map, nbytes, 0); /* note: z might be modified due to blocking */ if (item != NULL) { zone_kern_pages += z->zalloc; bzero(item, nbytes); } else { nbytes = 0; } nitems = nbytes / z->zsize; } z->ztotal += nitems; /* * Save one for immediate allocation */ if (nitems != 0) { nitems -= 1; for (i = 0; i < nitems; i++) { ((void **) item)[0] = z->zitems; #ifdef INVARIANTS ((void **) item)[1] = (void *) ZENTRY_FREE; #endif z->zitems = item; item = (uint8_t *)item + z->zsize; } z->zfreecnt += nitems; z->znalloc++; } else if (z->zfreecnt > 0) { item = z->zitems; z->zitems = ((void **) item)[0]; #ifdef INVARIANTS if (((void **) item)[1] != (void *) ZENTRY_FREE) zerror(ZONE_ERROR_NOTFREE); ((void **) item)[1] = 0; #endif z->zfreecnt--; z->znalloc++; } else { item = NULL; } /* * A special zone may have used a kernel-reserved vm_map_entry. If * so we have to be sure to recover our reserve so we don't run out. * We will panic if we run out. */ if (z->zflags & ZONE_SPECIAL) vm_map_entry_reserve(0); return item; } static int sysctl_vm_zone(SYSCTL_HANDLER_ARGS) { int error=0; vm_zone_t curzone, nextzone; char tmpbuf[128]; char tmpname[14]; snprintf(tmpbuf, sizeof(tmpbuf), "\nITEM SIZE LIMIT USED FREE REQUESTS\n"); error = SYSCTL_OUT(req, tmpbuf, strlen(tmpbuf)); if (error) return (error); for (curzone = zlist; curzone; curzone = nextzone) { int i; int len; int offset; nextzone = curzone->znext; len = strlen(curzone->zname); if (len >= (sizeof(tmpname) - 1)) len = (sizeof(tmpname) - 1); for(i = 0; i < sizeof(tmpname) - 1; i++) tmpname[i] = ' '; tmpname[i] = 0; memcpy(tmpname, curzone->zname, len); tmpname[len] = ':'; offset = 0; if (curzone == zlist) { offset = 1; tmpbuf[0] = '\n'; } snprintf(tmpbuf + offset, sizeof(tmpbuf) - offset, "%s %6.6u, %8.8u, %6.6u, %6.6u, %8.8u\n", tmpname, curzone->zsize, curzone->zmax, (curzone->ztotal - curzone->zfreecnt), curzone->zfreecnt, curzone->znalloc); len = strlen((char *)tmpbuf); if (nextzone == NULL) tmpbuf[len - 1] = 0; error = SYSCTL_OUT(req, tmpbuf, len); if (error) return (error); } return (0); } #if defined(INVARIANTS) void zerror(int error) { char *msg; switch (error) { case ZONE_ERROR_INVALID: msg = "zone: invalid zone"; break; case ZONE_ERROR_NOTFREE: msg = "zone: entry not free"; break; case ZONE_ERROR_ALREADYFREE: msg = "zone: freeing free entry"; break; default: msg = "zone: invalid error"; break; } panic(msg); } #endif SYSCTL_OID(_vm, OID_AUTO, zone, CTLTYPE_STRING|CTLFLAG_RD, \ NULL, 0, sysctl_vm_zone, "A", "Zone Info"); SYSCTL_INT(_vm, OID_AUTO, zone_kmem_pages, CTLFLAG_RD, &zone_kmem_pages, 0, "Number of interrupt safe pages allocated by zone"); SYSCTL_INT(_vm, OID_AUTO, zone_kmem_kvaspace, CTLFLAG_RD, &zone_kmem_kvaspace, 0, "KVA space allocated by zone"); SYSCTL_INT(_vm, OID_AUTO, zone_kern_pages, CTLFLAG_RD, &zone_kern_pages, 0, "Number of non-interrupt safe pages allocated by zone");