/* * Copyright (c) 1982, 1986, 1988, 1990, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93 * $FreeBSD: src/sys/kern/uipc_socket2.c,v 1.55.2.17 2002/08/31 19:04:55 dwmalone Exp $ * $DragonFly: src/sys/kern/uipc_socket2.c,v 1.15 2005/01/26 23:09:57 hsu Exp $ */ #include "opt_param.h" #include #include #include #include /* for maxfiles */ #include #include #include #include #include #include #include #include #include #include #include #include /* for aio_swake proto */ #include #include #include int maxsockets; /* * Primitive routines for operating on sockets and socket buffers */ u_long sb_max = SB_MAX; u_long sb_max_adj = SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */ static u_long sb_efficiency = 8; /* parameter for sbreserve() */ /* * Procedures to manipulate state flags of socket * and do appropriate wakeups. Normal sequence from the * active (originating) side is that soisconnecting() is * called during processing of connect() call, * resulting in an eventual call to soisconnected() if/when the * connection is established. When the connection is torn down * soisdisconnecting() is called during processing of disconnect() call, * and soisdisconnected() is called when the connection to the peer * is totally severed. The semantics of these routines are such that * connectionless protocols can call soisconnected() and soisdisconnected() * only, bypassing the in-progress calls when setting up a ``connection'' * takes no time. * * From the passive side, a socket is created with * two queues of sockets: so_incomp for connections in progress * and so_comp for connections already made and awaiting user acceptance. * As a protocol is preparing incoming connections, it creates a socket * structure queued on so_incomp by calling sonewconn(). When the connection * is established, soisconnected() is called, and transfers the * socket structure to so_comp, making it available to accept(). * * If a socket is closed with sockets on either * so_incomp or so_comp, these sockets are dropped. * * If higher level protocols are implemented in * the kernel, the wakeups done here will sometimes * cause software-interrupt process scheduling. */ void soisconnecting(so) struct socket *so; { so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); so->so_state |= SS_ISCONNECTING; } void soisconnected(so) struct socket *so; { struct socket *head = so->so_head; so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); so->so_state |= SS_ISCONNECTED; if (head && (so->so_state & SS_INCOMP)) { if ((so->so_options & SO_ACCEPTFILTER) != 0) { so->so_upcall = head->so_accf->so_accept_filter->accf_callback; so->so_upcallarg = head->so_accf->so_accept_filter_arg; so->so_rcv.sb_flags |= SB_UPCALL; so->so_options &= ~SO_ACCEPTFILTER; so->so_upcall(so, so->so_upcallarg, 0); return; } TAILQ_REMOVE(&head->so_incomp, so, so_list); head->so_incqlen--; so->so_state &= ~SS_INCOMP; TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); head->so_qlen++; so->so_state |= SS_COMP; sorwakeup(head); wakeup_one(&head->so_timeo); } else { wakeup(&so->so_timeo); sorwakeup(so); sowwakeup(so); } } void soisdisconnecting(so) struct socket *so; { so->so_state &= ~SS_ISCONNECTING; so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE); wakeup((caddr_t)&so->so_timeo); sowwakeup(so); sorwakeup(so); } void soisdisconnected(so) struct socket *so; { so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED); wakeup((caddr_t)&so->so_timeo); sbdrop(&so->so_snd, so->so_snd.sb_cc); sowwakeup(so); sorwakeup(so); } /* * When an attempt at a new connection is noted on a socket * which accepts connections, sonewconn is called. If the * connection is possible (subject to space constraints, etc.) * then we allocate a new structure, propoerly linked into the * data structure of the original socket, and return this. * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED. */ struct socket * sonewconn(struct socket *head, int connstatus) { struct socket *so; struct pru_attach_info ai; if (head->so_qlen > 3 * head->so_qlimit / 2) return ((struct socket *)0); so = soalloc(0); if (so == NULL) return ((struct socket *)0); if ((head->so_options & SO_ACCEPTFILTER) != 0) connstatus = 0; so->so_head = head; so->so_type = head->so_type; so->so_options = head->so_options &~ SO_ACCEPTCONN; so->so_linger = head->so_linger; so->so_state = head->so_state | SS_NOFDREF; so->so_proto = head->so_proto; so->so_timeo = head->so_timeo; so->so_cred = crhold(head->so_cred); ai.sb_rlimit = NULL; ai.p_ucred = NULL; ai.fd_rdir = NULL; /* jail code cruft XXX JH */ if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat, NULL) || /* Directly call function since we're already at protocol level. */ (*so->so_proto->pr_usrreqs->pru_attach)(so, 0, &ai)) { sodealloc(so); return ((struct socket *)0); } if (connstatus) { TAILQ_INSERT_TAIL(&head->so_comp, so, so_list); so->so_state |= SS_COMP; head->so_qlen++; } else { if (head->so_incqlen > head->so_qlimit) { struct socket *sp; sp = TAILQ_FIRST(&head->so_incomp); (void) soabort(sp); } TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list); so->so_state |= SS_INCOMP; head->so_incqlen++; } if (connstatus) { sorwakeup(head); wakeup((caddr_t)&head->so_timeo); so->so_state |= connstatus; } return (so); } /* * Socantsendmore indicates that no more data will be sent on the * socket; it would normally be applied to a socket when the user * informs the system that no more data is to be sent, by the protocol * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data * will be received, and will normally be applied to the socket by a * protocol when it detects that the peer will send no more data. * Data queued for reading in the socket may yet be read. */ void socantsendmore(so) struct socket *so; { so->so_state |= SS_CANTSENDMORE; sowwakeup(so); } void socantrcvmore(so) struct socket *so; { so->so_state |= SS_CANTRCVMORE; sorwakeup(so); } /* * Wait for data to arrive at/drain from a socket buffer. */ int sbwait(sb) struct sockbuf *sb; { sb->sb_flags |= SB_WAIT; return (tsleep((caddr_t)&sb->sb_cc, ((sb->sb_flags & SB_NOINTR) ? 0 : PCATCH), "sbwait", sb->sb_timeo)); } /* * Lock a sockbuf already known to be locked; * return any error returned from sleep (EINTR). */ int sb_lock(sb) struct sockbuf *sb; { int error; while (sb->sb_flags & SB_LOCK) { sb->sb_flags |= SB_WANT; error = tsleep((caddr_t)&sb->sb_flags, ((sb->sb_flags & SB_NOINTR) ? 0 : PCATCH), "sblock", 0); if (error) return (error); } sb->sb_flags |= SB_LOCK; return (0); } /* * Wakeup processes waiting on a socket buffer. Do asynchronous notification * via SIGIO if the socket has the SS_ASYNC flag set. */ void sowakeup(so, sb) struct socket *so; struct sockbuf *sb; { struct selinfo *selinfo = &sb->sb_sel; selwakeup(selinfo); sb->sb_flags &= ~SB_SEL; if (sb->sb_flags & SB_WAIT) { sb->sb_flags &= ~SB_WAIT; wakeup((caddr_t)&sb->sb_cc); } if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL) pgsigio(so->so_sigio, SIGIO, 0); if (sb->sb_flags & SB_UPCALL) (*so->so_upcall)(so, so->so_upcallarg, MB_DONTWAIT); if (sb->sb_flags & SB_AIO) aio_swake(so, sb); KNOTE(&selinfo->si_note, 0); if (sb->sb_flags & SB_MEVENT) { struct netmsg_so_notify *msg, *nmsg; TAILQ_FOREACH_MUTABLE(msg, &selinfo->si_mlist, nm_list, nmsg) { if (msg->nm_predicate((struct netmsg *)msg)) { TAILQ_REMOVE(&selinfo->si_mlist, msg, nm_list); lwkt_replymsg(&msg->nm_lmsg, msg->nm_lmsg.ms_error); } } if (TAILQ_EMPTY(&sb->sb_sel.si_mlist)) sb->sb_flags &= ~SB_MEVENT; } } /* * Socket buffer (struct sockbuf) utility routines. * * Each socket contains two socket buffers: one for sending data and * one for receiving data. Each buffer contains a queue of mbufs, * information about the number of mbufs and amount of data in the * queue, and other fields allowing select() statements and notification * on data availability to be implemented. * * Data stored in a socket buffer is maintained as a list of records. * Each record is a list of mbufs chained together with the m_next * field. Records are chained together with the m_nextpkt field. The upper * level routine soreceive() expects the following conventions to be * observed when placing information in the receive buffer: * * 1. If the protocol requires each message be preceded by the sender's * name, then a record containing that name must be present before * any associated data (mbuf's must be of type MT_SONAME). * 2. If the protocol supports the exchange of ``access rights'' (really * just additional data associated with the message), and there are * ``rights'' to be received, then a record containing this data * should be present (mbuf's must be of type MT_RIGHTS). * 3. If a name or rights record exists, then it must be followed by * a data record, perhaps of zero length. * * Before using a new socket structure it is first necessary to reserve * buffer space to the socket, by calling sbreserve(). This should commit * some of the available buffer space in the system buffer pool for the * socket (currently, it does nothing but enforce limits). The space * should be released by calling sbrelease() when the socket is destroyed. */ int soreserve(struct socket *so, u_long sndcc, u_long rcvcc, struct rlimit *rl) { if (sbreserve(&so->so_snd, sndcc, so, rl) == 0) goto bad; if (sbreserve(&so->so_rcv, rcvcc, so, rl) == 0) goto bad2; if (so->so_rcv.sb_lowat == 0) so->so_rcv.sb_lowat = 1; if (so->so_snd.sb_lowat == 0) so->so_snd.sb_lowat = MCLBYTES; if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat) so->so_snd.sb_lowat = so->so_snd.sb_hiwat; return (0); bad2: sbrelease(&so->so_snd, so); bad: return (ENOBUFS); } static int sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS) { int error = 0; u_long old_sb_max = sb_max; error = SYSCTL_OUT(req, arg1, sizeof(int)); if (error || !req->newptr) return (error); error = SYSCTL_IN(req, arg1, sizeof(int)); if (error) return (error); if (sb_max < MSIZE + MCLBYTES) { sb_max = old_sb_max; return (EINVAL); } sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES); return (0); } /* * Allot mbufs to a sockbuf. * Attempt to scale mbmax so that mbcnt doesn't become limiting * if buffering efficiency is near the normal case. */ int sbreserve(struct sockbuf *sb, u_long cc, struct socket *so, struct rlimit *rl) { /* * rl will only be NULL when we're in an interrupt (eg, in tcp_input) * or when called from netgraph (ie, ngd_attach) */ if (cc > sb_max_adj) return (0); if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc, rl ? rl->rlim_cur : RLIM_INFINITY)) { return (0); } sb->sb_mbmax = min(cc * sb_efficiency, sb_max); if (sb->sb_lowat > sb->sb_hiwat) sb->sb_lowat = sb->sb_hiwat; return (1); } /* * Free mbufs held by a socket, and reserved mbuf space. */ void sbrelease(sb, so) struct sockbuf *sb; struct socket *so; { sbflush(sb); (void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY); sb->sb_mbmax = 0; } /* * Routines to add and remove * data from an mbuf queue. * * The routines sbappend() or sbappendrecord() are normally called to * append new mbufs to a socket buffer, after checking that adequate * space is available, comparing the function sbspace() with the amount * of data to be added. sbappendrecord() differs from sbappend() in * that data supplied is treated as the beginning of a new record. * To place a sender's address, optional access rights, and data in a * socket receive buffer, sbappendaddr() should be used. To place * access rights and data in a socket receive buffer, sbappendrights() * should be used. In either case, the new data begins a new record. * Note that unlike sbappend() and sbappendrecord(), these routines check * for the caller that there will be enough space to store the data. * Each fails if there is not enough space, or if it cannot find mbufs * to store additional information in. * * Reliable protocols may use the socket send buffer to hold data * awaiting acknowledgement. Data is normally copied from a socket * send buffer in a protocol with m_copy for output to a peer, * and then removing the data from the socket buffer with sbdrop() * or sbdroprecord() when the data is acknowledged by the peer. */ /* * Append mbuf chain m to the last record in the * socket buffer sb. The additional space associated * the mbuf chain is recorded in sb. Empty mbufs are * discarded and mbufs are compacted where possible. */ void sbappend(sb, m) struct sockbuf *sb; struct mbuf *m; { struct mbuf *n; if (m == 0) return; n = sb->sb_mb; if (n) { while (n->m_nextpkt) n = n->m_nextpkt; do { if (n->m_flags & M_EOR) { sbappendrecord(sb, m); /* XXXXXX!!!! */ return; } } while (n->m_next && (n = n->m_next)); } sbcompress(sb, m, n); } /* * sbappendstream() is an optimized form of sbappend() for protocols * such as TCP that only have one record in the socket buffer, are * not PR_ATOMIC, nor allow MT_CONTROL data. */ void sbappendstream(struct sockbuf *sb, struct mbuf *m) { KKASSERT(m->m_nextpkt == NULL); sbcompress(sb, m, sb->sb_lastmbuf); } #ifdef SOCKBUF_DEBUG void sbcheck(sb) struct sockbuf *sb; { struct mbuf *m; struct mbuf *n = 0; u_long len = 0, mbcnt = 0; for (m = sb->sb_mb; m; m = n) { n = m->m_nextpkt; for (; m; m = m->m_next) { len += m->m_len; mbcnt += MSIZE; if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */ mbcnt += m->m_ext.ext_size; } } if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) { printf("cc %ld != %ld || mbcnt %ld != %ld\n", len, sb->sb_cc, mbcnt, sb->sb_mbcnt); panic("sbcheck"); } } #endif /* * As above, except the mbuf chain * begins a new record. */ void sbappendrecord(sb, m0) struct sockbuf *sb; struct mbuf *m0; { struct mbuf *m; if (m0 == 0) return; m = sb->sb_mb; if (m) while (m->m_nextpkt) m = m->m_nextpkt; /* * Put the first mbuf on the queue. * Note this permits zero length records. */ sballoc(sb, m0); if (m) m->m_nextpkt = m0; else sb->sb_mb = m0; m = m0->m_next; m0->m_next = 0; if (m && (m0->m_flags & M_EOR)) { m0->m_flags &= ~M_EOR; m->m_flags |= M_EOR; } sbcompress(sb, m, m0); } /* * As above except that OOB data * is inserted at the beginning of the sockbuf, * but after any other OOB data. */ void sbinsertoob(sb, m0) struct sockbuf *sb; struct mbuf *m0; { struct mbuf *m; struct mbuf **mp; if (m0 == 0) return; for (mp = &sb->sb_mb; *mp ; mp = &((*mp)->m_nextpkt)) { m = *mp; again: switch (m->m_type) { case MT_OOBDATA: continue; /* WANT next train */ case MT_CONTROL: m = m->m_next; if (m) goto again; /* inspect THIS train further */ } break; } /* * Put the first mbuf on the queue. * Note this permits zero length records. */ sballoc(sb, m0); m0->m_nextpkt = *mp; *mp = m0; m = m0->m_next; m0->m_next = 0; if (m && (m0->m_flags & M_EOR)) { m0->m_flags &= ~M_EOR; m->m_flags |= M_EOR; } sbcompress(sb, m, m0); } /* * Append address and data, and optionally, control (ancillary) data * to the receive queue of a socket. If present, * m0 must include a packet header with total length. * Returns 0 if no space in sockbuf or insufficient mbufs. */ int sbappendaddr(sb, asa, m0, control) struct sockbuf *sb; const struct sockaddr *asa; struct mbuf *m0, *control; { struct mbuf *m, *n; int space = asa->sa_len; if (m0 && (m0->m_flags & M_PKTHDR) == 0) panic("sbappendaddr"); if (m0) space += m0->m_pkthdr.len; for (n = control; n; n = n->m_next) { space += n->m_len; if (n->m_next == 0) /* keep pointer to last control buf */ break; } if (space > sbspace(sb)) return (0); if (asa->sa_len > MLEN) return (0); MGET(m, MB_DONTWAIT, MT_SONAME); if (m == 0) return (0); m->m_len = asa->sa_len; bcopy(asa, mtod(m, caddr_t), asa->sa_len); if (n) n->m_next = m0; /* concatenate data to control */ else control = m0; m->m_next = control; for (n = m; n; n = n->m_next) sballoc(sb, n); n = sb->sb_mb; if (n) { while (n->m_nextpkt) n = n->m_nextpkt; n->m_nextpkt = m; } else sb->sb_mb = m; return (1); } int sbappendcontrol(sb, m0, control) struct sockbuf *sb; struct mbuf *control, *m0; { struct mbuf *m, *n; int space = 0; if (control == 0) panic("sbappendcontrol"); for (m = control; ; m = m->m_next) { space += m->m_len; if (m->m_next == 0) break; } n = m; /* save pointer to last control buffer */ for (m = m0; m; m = m->m_next) space += m->m_len; if (space > sbspace(sb)) return (0); n->m_next = m0; /* concatenate data to control */ for (m = control; m; m = m->m_next) sballoc(sb, m); n = sb->sb_mb; if (n) { while (n->m_nextpkt) n = n->m_nextpkt; n->m_nextpkt = control; } else sb->sb_mb = control; return (1); } /* * Compress mbuf chain m into the socket * buffer sb following mbuf n. If n * is null, the buffer is presumed empty. */ void sbcompress(sb, m, n) struct sockbuf *sb; struct mbuf *m, *n; { int eor = 0; struct mbuf *o; while (m) { eor |= m->m_flags & M_EOR; if (m->m_len == 0 && (eor == 0 || (((o = m->m_next) || (o = n)) && o->m_type == m->m_type))) { m = m_free(m); continue; } if (n && (n->m_flags & M_EOR) == 0 && M_WRITABLE(n) && m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */ m->m_len <= M_TRAILINGSPACE(n) && n->m_type == m->m_type) { bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len, (unsigned)m->m_len); n->m_len += m->m_len; sb->sb_cc += m->m_len; m = m_free(m); continue; } if (n) n->m_next = m; else sb->sb_mb = m; sb->sb_lastmbuf = m; sballoc(sb, m); n = m; m->m_flags &= ~M_EOR; m = m->m_next; n->m_next = 0; } if (eor) { if (n) n->m_flags |= eor; else printf("semi-panic: sbcompress"); } } /* * Free all mbufs in a sockbuf. * Check that all resources are reclaimed. */ void sbflush(sb) struct sockbuf *sb; { if (sb->sb_flags & SB_LOCK) panic("sbflush: locked"); while (sb->sb_mbcnt) { /* * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty: * we would loop forever. Panic instead. */ if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len)) break; sbdrop(sb, (int)sb->sb_cc); } KASSERT(!(sb->sb_cc || sb->sb_mb || sb->sb_mbcnt || sb->sb_lastmbuf), ("sbflush: cc %ld || mb %p || mbcnt %ld || mbtail %p", sb->sb_cc, sb->sb_mb, sb->sb_mbcnt, sb->sb_lastmbuf)); } /* * Drop data from (the front of) a sockbuf. */ void sbdrop(sb, len) struct sockbuf *sb; int len; { struct mbuf *m; struct mbuf *next; next = (m = sb->sb_mb) ? m->m_nextpkt : 0; while (len > 0) { if (m == 0) { if (next == 0) panic("sbdrop"); m = next; next = m->m_nextpkt; continue; } if (m->m_len > len) { m->m_len -= len; m->m_data += len; sb->sb_cc -= len; break; } len -= m->m_len; sbfree(sb, m); m = m_free(m); } while (m && m->m_len == 0) { sbfree(sb, m); m = m_free(m); } if (m) { sb->sb_mb = m; m->m_nextpkt = next; } else { sb->sb_mb = next; sb->sb_lastmbuf = NULL; } } /* * Drop a record off the front of a sockbuf * and move the next record to the front. */ void sbdroprecord(sb) struct sockbuf *sb; { struct mbuf *m; m = sb->sb_mb; if (m) { sb->sb_mb = m->m_nextpkt; do { sbfree(sb, m); m = m_free(m); } while (m); } } /* * Create a "control" mbuf containing the specified data * with the specified type for presentation on a socket buffer. */ struct mbuf * sbcreatecontrol(p, size, type, level) caddr_t p; int size; int type, level; { struct cmsghdr *cp; struct mbuf *m; if (CMSG_SPACE((u_int)size) > MCLBYTES) return ((struct mbuf *) NULL); if ((m = m_get(MB_DONTWAIT, MT_CONTROL)) == NULL) return ((struct mbuf *) NULL); if (CMSG_SPACE((u_int)size) > MLEN) { MCLGET(m, MB_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_free(m); return ((struct mbuf *) NULL); } } cp = mtod(m, struct cmsghdr *); m->m_len = 0; KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m), ("sbcreatecontrol: short mbuf")); if (p != NULL) (void)memcpy(CMSG_DATA(cp), p, size); m->m_len = CMSG_SPACE(size); cp->cmsg_len = CMSG_LEN(size); cp->cmsg_level = level; cp->cmsg_type = type; return (m); } /* * Some routines that return EOPNOTSUPP for entry points that are not * supported by a protocol. Fill in as needed. */ int pru_accept_notsupp(struct socket *so, struct sockaddr **nam) { return EOPNOTSUPP; } int pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct thread *td) { return EOPNOTSUPP; } int pru_connect2_notsupp(struct socket *so1, struct socket *so2) { return EOPNOTSUPP; } int pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data, struct ifnet *ifp, struct thread *td) { return EOPNOTSUPP; } int pru_listen_notsupp(struct socket *so, struct thread *td) { return EOPNOTSUPP; } int pru_rcvd_notsupp(struct socket *so, int flags) { return EOPNOTSUPP; } int pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags) { return EOPNOTSUPP; } /* * This isn't really a ``null'' operation, but it's the default one * and doesn't do anything destructive. */ int pru_sense_null(struct socket *so, struct stat *sb) { sb->st_blksize = so->so_snd.sb_hiwat; return 0; } /* * Make a copy of a sockaddr in a malloced buffer of type M_SONAME. Callers * of this routine assume that it always succeeds, so we have to use a * blockable allocation even though we might be called from a critical thread. */ struct sockaddr * dup_sockaddr(const struct sockaddr *sa) { struct sockaddr *sa2; sa2 = malloc(sa->sa_len, M_SONAME, M_INTWAIT); bcopy(sa, sa2, sa->sa_len); return (sa2); } /* * Create an external-format (``xsocket'') structure using the information * in the kernel-format socket structure pointed to by so. This is done * to reduce the spew of irrelevant information over this interface, * to isolate user code from changes in the kernel structure, and * potentially to provide information-hiding if we decide that * some of this information should be hidden from users. */ void sotoxsocket(struct socket *so, struct xsocket *xso) { xso->xso_len = sizeof *xso; xso->xso_so = so; xso->so_type = so->so_type; xso->so_options = so->so_options; xso->so_linger = so->so_linger; xso->so_state = so->so_state; xso->so_pcb = so->so_pcb; xso->xso_protocol = so->so_proto->pr_protocol; xso->xso_family = so->so_proto->pr_domain->dom_family; xso->so_qlen = so->so_qlen; xso->so_incqlen = so->so_incqlen; xso->so_qlimit = so->so_qlimit; xso->so_timeo = so->so_timeo; xso->so_error = so->so_error; xso->so_pgid = so->so_sigio ? so->so_sigio->sio_pgid : 0; xso->so_oobmark = so->so_oobmark; sbtoxsockbuf(&so->so_snd, &xso->so_snd); sbtoxsockbuf(&so->so_rcv, &xso->so_rcv); xso->so_uid = so->so_cred->cr_uid; } /* * This does the same for sockbufs. Note that the xsockbuf structure, * since it is always embedded in a socket, does not include a self * pointer nor a length. We make this entry point public in case * some other mechanism needs it. */ void sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb) { xsb->sb_cc = sb->sb_cc; xsb->sb_hiwat = sb->sb_hiwat; xsb->sb_mbcnt = sb->sb_mbcnt; xsb->sb_mbmax = sb->sb_mbmax; xsb->sb_lowat = sb->sb_lowat; xsb->sb_flags = sb->sb_flags; xsb->sb_timeo = sb->sb_timeo; } /* * Here is the definition of some of the basic objects in the kern.ipc * branch of the MIB. */ SYSCTL_NODE(_kern, KERN_IPC, ipc, CTLFLAG_RW, 0, "IPC"); /* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */ static int dummy; SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, ""); SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLTYPE_INT|CTLFLAG_RW, &sb_max, 0, sysctl_handle_sb_max, "I", "Maximum socket buffer size"); SYSCTL_INT(_kern_ipc, OID_AUTO, maxsockets, CTLFLAG_RD, &maxsockets, 0, "Maximum number of sockets avaliable"); SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW, &sb_efficiency, 0, ""); /* * Initialise maxsockets */ static void init_maxsockets(void *ignored) { TUNABLE_INT_FETCH("kern.ipc.maxsockets", &maxsockets); maxsockets = imax(maxsockets, imax(maxfiles, nmbclusters)); } SYSINIT(param, SI_SUB_TUNABLES, SI_ORDER_ANY, init_maxsockets, NULL);