/*- * Copyright (c) 1991 The Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * William Jolitz. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from: @(#)isa.c 7.2 (Berkeley) 5/13/91 * $FreeBSD: src/sys/i386/isa/intr_machdep.c,v 1.29.2.5 2001/10/14 06:54:27 luigi Exp $ * $DragonFly: src/sys/i386/isa/Attic/intr_machdep.c,v 1.23 2004/07/24 20:21:34 dillon Exp $ */ /* * This file contains an aggregated module marked: * Copyright (c) 1997, Stefan Esser * All rights reserved. * See the notice for details. */ #include "use_isa.h" #include "use_mca.h" #include "opt_auto_eoi.h" #include #ifndef SMP #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include /** FAST_HI */ #include #ifdef PC98 #include #include #include #else #include #endif #include #if NISA > 0 #include #endif #include #include #include #ifdef APIC_IO #include #endif #include #if NMCA > 0 #include #endif /* XXX should be in suitable include files */ #ifdef PC98 #define ICU_IMR_OFFSET 2 /* IO_ICU{1,2} + 2 */ #define ICU_SLAVEID 7 #else #define ICU_IMR_OFFSET 1 /* IO_ICU{1,2} + 1 */ #define ICU_SLAVEID 2 #endif #ifdef APIC_IO /* * This is to accommodate "mixed-mode" programming for * motherboards that don't connect the 8254 to the IO APIC. */ #define AUTO_EOI_1 1 #endif #define NR_INTRNAMES (1 + ICU_LEN + 2 * ICU_LEN) static inthand2_t isa_strayintr; #if defined(FAST_HI) && defined(APIC_IO) static inthand2_t isa_wrongintr; #endif static void init_i8259(void); void *intr_unit[ICU_LEN*2]; u_long *intr_countp[ICU_LEN*2]; inthand2_t *intr_handler[ICU_LEN*2] = { isa_strayintr, isa_strayintr, isa_strayintr, isa_strayintr, isa_strayintr, isa_strayintr, isa_strayintr, isa_strayintr, isa_strayintr, isa_strayintr, isa_strayintr, isa_strayintr, isa_strayintr, isa_strayintr, isa_strayintr, isa_strayintr, isa_strayintr, isa_strayintr, isa_strayintr, isa_strayintr, isa_strayintr, isa_strayintr, isa_strayintr, isa_strayintr, isa_strayintr, isa_strayintr, isa_strayintr, isa_strayintr, isa_strayintr, isa_strayintr, isa_strayintr, isa_strayintr, }; static struct md_intr_info { int irq; u_int mask; int mihandler_installed; u_int *maskp; } intr_info[ICU_LEN*2]; static inthand_t *fastintr[ICU_LEN] = { &IDTVEC(fastintr0), &IDTVEC(fastintr1), &IDTVEC(fastintr2), &IDTVEC(fastintr3), &IDTVEC(fastintr4), &IDTVEC(fastintr5), &IDTVEC(fastintr6), &IDTVEC(fastintr7), &IDTVEC(fastintr8), &IDTVEC(fastintr9), &IDTVEC(fastintr10), &IDTVEC(fastintr11), &IDTVEC(fastintr12), &IDTVEC(fastintr13), &IDTVEC(fastintr14), &IDTVEC(fastintr15), #if defined(APIC_IO) &IDTVEC(fastintr16), &IDTVEC(fastintr17), &IDTVEC(fastintr18), &IDTVEC(fastintr19), &IDTVEC(fastintr20), &IDTVEC(fastintr21), &IDTVEC(fastintr22), &IDTVEC(fastintr23), #endif /* APIC_IO */ }; unpendhand_t *fastunpend[ICU_LEN] = { IDTVEC(fastunpend0), IDTVEC(fastunpend1), IDTVEC(fastunpend2), IDTVEC(fastunpend3), IDTVEC(fastunpend4), IDTVEC(fastunpend5), IDTVEC(fastunpend6), IDTVEC(fastunpend7), IDTVEC(fastunpend8), IDTVEC(fastunpend9), IDTVEC(fastunpend10), IDTVEC(fastunpend11), IDTVEC(fastunpend12), IDTVEC(fastunpend13), IDTVEC(fastunpend14), IDTVEC(fastunpend15), #if defined(APIC_IO) IDTVEC(fastunpend16), IDTVEC(fastunpend17), IDTVEC(fastunpend18), IDTVEC(fastunpend19), IDTVEC(fastunpend20), IDTVEC(fastunpend21), IDTVEC(fastunpend22), IDTVEC(fastunpend23), #endif }; static inthand_t *slowintr[ICU_LEN] = { &IDTVEC(intr0), &IDTVEC(intr1), &IDTVEC(intr2), &IDTVEC(intr3), &IDTVEC(intr4), &IDTVEC(intr5), &IDTVEC(intr6), &IDTVEC(intr7), &IDTVEC(intr8), &IDTVEC(intr9), &IDTVEC(intr10), &IDTVEC(intr11), &IDTVEC(intr12), &IDTVEC(intr13), &IDTVEC(intr14), &IDTVEC(intr15), #if defined(APIC_IO) &IDTVEC(intr16), &IDTVEC(intr17), &IDTVEC(intr18), &IDTVEC(intr19), &IDTVEC(intr20), &IDTVEC(intr21), &IDTVEC(intr22), &IDTVEC(intr23), #endif /* APIC_IO */ }; #ifdef PC98 #define NMI_PARITY 0x04 #define NMI_EPARITY 0x02 #else #define NMI_PARITY (1 << 7) #define NMI_IOCHAN (1 << 6) #define ENMI_WATCHDOG (1 << 7) #define ENMI_BUSTIMER (1 << 6) #define ENMI_IOSTATUS (1 << 5) #endif /* * Handle a NMI, possibly a machine check. * return true to panic system, false to ignore. */ int isa_nmi(cd) int cd; { int retval = 0; #ifdef PC98 int port = inb(0x33); log(LOG_CRIT, "NMI PC98 port = %x\n", port); if (epson_machine_id == 0x20) epson_outb(0xc16, epson_inb(0xc16) | 0x1); if (port & NMI_PARITY) { log(LOG_CRIT, "BASE RAM parity error, likely hardware failure."); retval = 1; } else if (port & NMI_EPARITY) { log(LOG_CRIT, "EXTENDED RAM parity error, likely hardware failure."); retval = 1; } else { log(LOG_CRIT, "\nNMI Resume ??\n"); } #else /* IBM-PC */ int isa_port = inb(0x61); int eisa_port = inb(0x461); log(LOG_CRIT, "NMI ISA %x, EISA %x\n", isa_port, eisa_port); #if NMCA > 0 if (MCA_system && mca_bus_nmi()) return(0); #endif if (isa_port & NMI_PARITY) { log(LOG_CRIT, "RAM parity error, likely hardware failure."); retval = 1; } if (isa_port & NMI_IOCHAN) { log(LOG_CRIT, "I/O channel check, likely hardware failure."); retval = 1; } /* * On a real EISA machine, this will never happen. However it can * happen on ISA machines which implement XT style floating point * error handling (very rare). Save them from a meaningless panic. */ if (eisa_port == 0xff) return(retval); if (eisa_port & ENMI_WATCHDOG) { log(LOG_CRIT, "EISA watchdog timer expired, likely hardware failure."); retval = 1; } if (eisa_port & ENMI_BUSTIMER) { log(LOG_CRIT, "EISA bus timeout, likely hardware failure."); retval = 1; } if (eisa_port & ENMI_IOSTATUS) { log(LOG_CRIT, "EISA I/O port status error."); retval = 1; } #endif return(retval); } /* * ICU reinitialize when ICU configuration has lost. */ void icu_reinit() { int i; init_i8259(); for(i=0;i 0 if (MCA_system) outb(IO_ICU1, 0x19); /* reset; program device, four bytes */ else #endif outb(IO_ICU1, 0x11); /* reset; program device, four bytes */ outb(IO_ICU1+ICU_IMR_OFFSET, NRSVIDT); /* starting at this vector index */ outb(IO_ICU1+ICU_IMR_OFFSET, IRQ_SLAVE); /* slave on line 7 */ #ifdef PC98 #ifdef AUTO_EOI_1 outb(IO_ICU1+ICU_IMR_OFFSET, 0x1f); /* (master) auto EOI, 8086 mode */ #else outb(IO_ICU1+ICU_IMR_OFFSET, 0x1d); /* (master) 8086 mode */ #endif #else /* IBM-PC */ #ifdef AUTO_EOI_1 outb(IO_ICU1+ICU_IMR_OFFSET, 2 | 1); /* auto EOI, 8086 mode */ #else outb(IO_ICU1+ICU_IMR_OFFSET, 1); /* 8086 mode */ #endif #endif /* PC98 */ outb(IO_ICU1+ICU_IMR_OFFSET, 0xff); /* leave interrupts masked */ outb(IO_ICU1, 0x0a); /* default to IRR on read */ #ifndef PC98 outb(IO_ICU1, 0xc0 | (3 - 1)); /* pri order 3-7, 0-2 (com2 first) */ #endif /* !PC98 */ #if NMCA > 0 if (MCA_system) outb(IO_ICU2, 0x19); /* reset; program device, four bytes */ else #endif outb(IO_ICU2, 0x11); /* reset; program device, four bytes */ outb(IO_ICU2+ICU_IMR_OFFSET, NRSVIDT+8); /* staring at this vector index */ outb(IO_ICU2+ICU_IMR_OFFSET, ICU_SLAVEID); /* my slave id is 7 */ #ifdef PC98 outb(IO_ICU2+ICU_IMR_OFFSET,9); /* 8086 mode */ #else /* IBM-PC */ #ifdef AUTO_EOI_2 outb(IO_ICU2+ICU_IMR_OFFSET, 2 | 1); /* auto EOI, 8086 mode */ #else outb(IO_ICU2+ICU_IMR_OFFSET,1); /* 8086 mode */ #endif #endif /* PC98 */ outb(IO_ICU2+ICU_IMR_OFFSET, 0xff); /* leave interrupts masked */ outb(IO_ICU2, 0x0a); /* default to IRR on read */ } /* * Caught a stray interrupt, notify */ static void isa_strayintr(void *vcookiep) { int intr = (void **)vcookiep - &intr_unit[0]; /* DON'T BOTHER FOR NOW! */ /* for some reason, we get bursts of intr #7, even if not enabled! */ /* * Well the reason you got bursts of intr #7 is because someone * raised an interrupt line and dropped it before the 8259 could * prioritize it. This is documented in the intel data book. This * means you have BAD hardware! I have changed this so that only * the first 5 get logged, then it quits logging them, and puts * out a special message. rgrimes 3/25/1993 */ /* * XXX TODO print a different message for #7 if it is for a * glitch. Glitches can be distinguished from real #7's by * testing that the in-service bit is _not_ set. The test * must be done before sending an EOI so it can't be done if * we are using AUTO_EOI_1. */ if (intrcnt[1 + intr] <= 5) log(LOG_ERR, "stray irq %d\n", intr); if (intrcnt[1 + intr] == 5) log(LOG_CRIT, "too many stray irq %d's; not logging any more\n", intr); } #if defined(FAST_HI) && defined(APIC_IO) /* * This occurs if we mis-programmed the APIC and its vector is still * pointing to the slow vector even when we thought we reprogrammed it * to the high vector. This can occur when interrupts are improperly * routed by the APIC. The unit data is opaque so we have to try to * find it in the unit array. */ static void isa_wrongintr(void *vcookiep) { int intr; for (intr = 0; intr < ICU_LEN*2; ++intr) { if (intr_unit[intr] == vcookiep) break; } if (intr == ICU_LEN*2) { log(LOG_ERR, "stray unknown irq (APIC misprogrammed)\n"); } else if (intrcnt[1 + intr] <= 5) { log(LOG_ERR, "stray irq ~%d (APIC misprogrammed)\n", intr); } else if (intrcnt[1 + intr] == 6) { log(LOG_CRIT, "too many stray irq ~%d's; not logging any more\n", intr); } } #endif #if NISA > 0 /* * Return a bitmap of the current interrupt requests. This is 8259-specific * and is only suitable for use at probe time. */ intrmask_t isa_irq_pending(void) { u_char irr1; u_char irr2; irr1 = inb(IO_ICU1); irr2 = inb(IO_ICU2); return ((irr2 << 8) | irr1); } #endif int update_intr_masks(void) { int intr, n=0; u_int mask,*maskptr; for (intr=0; intr < ICU_LEN; intr ++) { #if defined(APIC_IO) /* no 8259 SLAVE to ignore */ #else if (intr==ICU_SLAVEID) continue; /* ignore 8259 SLAVE output */ #endif /* APIC_IO */ maskptr = intr_info[intr].maskp; if (!maskptr) continue; *maskptr |= SWI_CLOCK_MASK | (1 << intr); mask = *maskptr; if (mask != intr_info[intr].mask) { #if 0 printf ("intr_mask[%2d] old=%08x new=%08x ptr=%p.\n", intr, intr_info[intr].mask, mask, maskptr); #endif intr_info[intr].mask = mask; n++; } } return (n); } static void update_intrname(int intr, char *name) { char buf[32]; char *cp; int name_index, off, strayintr; /* * Initialise strings for bitbucket and stray interrupt counters. * These have statically allocated indices 0 and 1 through ICU_LEN. */ if (intrnames[0] == '\0') { off = sprintf(intrnames, "???") + 1; for (strayintr = 0; strayintr < ICU_LEN; strayintr++) off += sprintf(intrnames + off, "stray irq%d", strayintr) + 1; } if (name == NULL) name = "???"; if (snprintf(buf, sizeof(buf), "%s irq%d", name, intr) >= sizeof(buf)) goto use_bitbucket; /* * Search for `buf' in `intrnames'. In the usual case when it is * not found, append it to the end if there is enough space (the \0 * terminator for the previous string, if any, becomes a separator). */ for (cp = intrnames, name_index = 0; cp != eintrnames && name_index < NR_INTRNAMES; cp += strlen(cp) + 1, name_index++) { if (*cp == '\0') { if (strlen(buf) >= eintrnames - cp) break; strcpy(cp, buf); goto found; } if (strcmp(cp, buf) == 0) goto found; } use_bitbucket: printf("update_intrname: counting %s irq%d as %s\n", name, intr, intrnames); name_index = 0; found: intr_countp[intr] = &intrcnt[name_index]; } /* * NOTE! intr_handler[] is only used for FAST interrupts, the *vector.s * code ignores it for normal interrupts. */ int icu_setup(int intr, inthand2_t *handler, void *arg, u_int *maskptr, int flags) { #if defined(FAST_HI) && defined(APIC_IO) int select; /* the select register is 8 bits */ int vector; u_int32_t value; /* the window register is 32 bits */ #endif /* FAST_HI */ u_long ef; u_int mask = (maskptr ? *maskptr : 0); #if defined(APIC_IO) if ((u_int)intr >= ICU_LEN) /* no 8259 SLAVE to ignore */ #else if ((u_int)intr >= ICU_LEN || intr == ICU_SLAVEID) #endif /* APIC_IO */ return (EINVAL); if (intr_handler[intr] != isa_strayintr) return (EBUSY); ef = read_eflags(); cpu_disable_intr(); /* YYY */ intr_handler[intr] = handler; intr_unit[intr] = arg; intr_info[intr].maskp = maskptr; intr_info[intr].mask = mask | SWI_CLOCK_MASK | (1 << intr); #if 0 /* YYY fast ints supported and mp protected but ... */ flags &= ~INTR_FAST; #endif #if defined(FAST_HI) && defined(APIC_IO) if (flags & INTR_FAST) { /* * Install a spurious interrupt in the low space in case * the IO apic is not properly reprogrammed. */ vector = TPR_SLOW_INTS + intr; setidt(vector, isa_wrongintr, SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); vector = TPR_FAST_INTS + intr; setidt(vector, fastintr[intr], SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); } else { vector = TPR_SLOW_INTS + intr; #ifdef APIC_INTR_REORDER #ifdef APIC_INTR_HIGHPRI_CLOCK /* XXX: Hack (kludge?) for more accurate clock. */ if (intr == apic_8254_intr || intr == 8) { vector = TPR_FAST_INTS + intr; } #endif #endif setidt(vector, slowintr[intr], SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); } #ifdef APIC_INTR_REORDER set_lapic_isrloc(intr, vector); #endif /* * Reprogram the vector in the IO APIC. * * XXX EOI/mask a pending (stray) interrupt on the old vector? */ if (int_to_apicintpin[intr].ioapic >= 0) { select = int_to_apicintpin[intr].redirindex; value = io_apic_read(int_to_apicintpin[intr].ioapic, select) & ~IOART_INTVEC; io_apic_write(int_to_apicintpin[intr].ioapic, select, value | vector); } #else setidt(ICU_OFFSET + intr, flags & INTR_FAST ? fastintr[intr] : slowintr[intr], SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); #endif /* FAST_HI && APIC_IO */ INTREN(1 << intr); write_eflags(ef); return (0); } int icu_unset(intr, handler) int intr; inthand2_t *handler; { u_long ef; if ((u_int)intr >= ICU_LEN || handler != intr_handler[intr]) { printf("icu_unset: invalid handler %d %p/%p\n", intr, handler, (((u_int)intr >= ICU_LEN) ? (void *)-1 : intr_handler[intr])); return (EINVAL); } INTRDIS(1 << intr); ef = read_eflags(); cpu_disable_intr(); /* YYY */ intr_countp[intr] = &intrcnt[1 + intr]; intr_handler[intr] = isa_strayintr; intr_info[intr].maskp = NULL; intr_info[intr].mask = HWI_MASK | SWI_MASK; intr_unit[intr] = &intr_unit[intr]; #ifdef FAST_HI_XXX /* XXX how do I re-create dvp here? */ setidt(flags & INTR_FAST ? TPR_FAST_INTS + intr : TPR_SLOW_INTS + intr, slowintr[intr], SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); #else /* FAST_HI */ #ifdef APIC_INTR_REORDER set_lapic_isrloc(intr, ICU_OFFSET + intr); #endif setidt(ICU_OFFSET + intr, slowintr[intr], SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL)); #endif /* FAST_HI */ write_eflags(ef); return (0); } /* The following notice applies beyond this point in the file */ /* * Copyright (c) 1997, Stefan Esser * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: src/sys/i386/isa/intr_machdep.c,v 1.29.2.5 2001/10/14 06:54:27 luigi Exp $ * */ typedef struct intrec { intrmask_t mask; inthand2_t *handler; void *argument; struct intrec *next; char *name; int intr; intrmask_t *maskptr; int flags; } intrec; static intrec *intreclist_head[ICU_LEN]; /* * The interrupt multiplexer calls each of the handlers in turn. The * ipl is initially quite low. It is raised as necessary for each call * and lowered after the call. Thus out of order handling is possible * even for interrupts of the same type. This is probably no more * harmful than out of order handling in general (not harmful except * for real time response which we don't support anyway). */ static void intr_mux(void *arg) { intrec **pp; intrec *p; intrmask_t oldspl; for (pp = arg; (p = *pp) != NULL; pp = &p->next) { oldspl = splq(p->mask); p->handler(p->argument); splx(oldspl); } } static intrec* find_idesc(unsigned *maskptr, int irq) { intrec *p = intreclist_head[irq]; while (p && p->maskptr != maskptr) p = p->next; return (p); } static intrec** find_pred(intrec *idesc, int irq) { intrec **pp = &intreclist_head[irq]; intrec *p = *pp; while (p != idesc) { if (p == NULL) return (NULL); pp = &p->next; p = *pp; } return (pp); } /* * Both the low level handler and the shared interrupt multiplexer * block out further interrupts as set in the handlers "mask", while * the handler is running. In fact *maskptr should be used for this * purpose, but since this requires one more pointer dereference on * each interrupt, we rather bother update "mask" whenever *maskptr * changes. The function "update_masks" should be called **after** * all manipulation of the linked list of interrupt handlers hung * off of intrdec_head[irq] is complete, since the chain of handlers * will both determine the *maskptr values and the instances of mask * that are fixed. This function should be called with the irq for * which a new handler has been add blocked, since the masks may not * yet know about the use of this irq for a device of a certain class. */ static void update_mux_masks(void) { int irq; for (irq = 0; irq < ICU_LEN; irq++) { intrec *idesc = intreclist_head[irq]; while (idesc != NULL) { if (idesc->maskptr != NULL) { /* our copy of *maskptr may be stale, refresh */ idesc->mask = *idesc->maskptr; } idesc = idesc->next; } } } static void update_masks(intrmask_t *maskptr, int irq) { intrmask_t mask = 1 << irq; if (maskptr == NULL) return; if (find_idesc(maskptr, irq) == NULL) { /* no reference to this maskptr was found in this irq's chain */ *maskptr &= ~mask; } else { /* a reference to this maskptr was found in this irq's chain */ *maskptr |= mask; } /* we need to update all values in the intr_mask[irq] array */ update_intr_masks(); /* update mask in chains of the interrupt multiplex handler as well */ update_mux_masks(); } /* * Add an interrupt handler to the linked list hung off of intreclist_head[irq] * and install a shared interrupt multiplex handler, if necessary. Install * an interrupt thread for each interrupt (though FAST interrupts will not * use it). The preemption procedure checks the CPL. lwkt_preempt() will * check relative thread priorities for us as long as we properly pass through * critpri. * * The interrupt thread has already been put on the run queue, so if we cannot * preempt we should force a reschedule. * * YYY needs work. At the moment the handler is run inside a critical * section so only the preemption cpl check is used. */ static void cpu_intr_preempt(struct thread *td, int critpri) { struct md_intr_info *info = td->td_info.intdata; if ((curthread->td_cpl & (1 << info->irq)) == 0) lwkt_preempt(td, critpri); else need_lwkt_resched(); /* XXX may not be required */ } static int add_intrdesc(intrec *idesc) { int irq = idesc->intr; intrec *head; /* * YYY This is a hack. The MI interrupt code in kern/kern_intr.c * handles interrupt thread scheduling for NORMAL interrupts. It * will never get called for fast interrupts. On the otherhand, * the handler this code installs in intr_handler[] for a NORMAL * interrupt is not used by the *vector.s code, so we need this * temporary hack to run normal interrupts as interrupt threads. * YYY FIXME! */ if (intr_info[irq].mihandler_installed == 0) { struct thread *td; intr_info[irq].mihandler_installed = 1; intr_info[irq].irq = irq; td = register_int(irq, intr_mux, &intreclist_head[irq], idesc->name); td->td_info.intdata = &intr_info[irq]; td->td_preemptable = cpu_intr_preempt; printf("installed MI handler for int %d\n", irq); } head = intreclist_head[irq]; if (head == NULL) { /* first handler for this irq, just install it */ if (icu_setup(irq, idesc->handler, idesc->argument, idesc->maskptr, idesc->flags) != 0) return (-1); update_intrname(irq, idesc->name); /* keep reference */ intreclist_head[irq] = idesc; } else { if ((idesc->flags & INTR_EXCL) != 0 || (head->flags & INTR_EXCL) != 0) { /* * can't append new handler, if either list head or * new handler do not allow interrupts to be shared */ if (bootverbose) printf("\tdevice combination doesn't support " "shared irq%d\n", irq); return (-1); } if (head->next == NULL) { /* * second handler for this irq, replace device driver's * handler by shared interrupt multiplexer function */ icu_unset(irq, head->handler); if (icu_setup(irq, intr_mux, &intreclist_head[irq], 0, 0) != 0) return (-1); if (bootverbose) printf("\tusing shared irq%d.\n", irq); update_intrname(irq, "mux"); } /* just append to the end of the chain */ while (head->next != NULL) head = head->next; head->next = idesc; } update_masks(idesc->maskptr, irq); return (0); } /* * Create and activate an interrupt handler descriptor data structure. * * The dev_instance pointer is required for resource management, and will * only be passed through to resource_claim(). * * There will be functions that derive a driver and unit name from a * dev_instance variable, and those functions will be used to maintain the * interrupt counter label array referenced by systat and vmstat to report * device interrupt rates (->update_intrlabels). * * Add the interrupt handler descriptor data structure created by an * earlier call of create_intr() to the linked list for its irq and * adjust the interrupt masks if necessary. * * WARNING: This is an internal function and not to be used by device * drivers. It is subject to change without notice. */ intrec * inthand_add(const char *name, int irq, inthand2_t handler, void *arg, intrmask_t *maskptr, int flags) { intrec *idesc; int errcode = -1; intrmask_t oldspl; if (ICU_LEN > 8 * sizeof *maskptr) { printf("create_intr: ICU_LEN of %d too high for %d bit intrmask\n", ICU_LEN, 8 * sizeof *maskptr); return (NULL); } if ((unsigned)irq >= ICU_LEN) { printf("create_intr: requested irq%d too high, limit is %d\n", irq, ICU_LEN -1); return (NULL); } idesc = malloc(sizeof *idesc, M_DEVBUF, M_WAITOK); if (idesc == NULL) return NULL; bzero(idesc, sizeof *idesc); if (name == NULL) name = "???"; idesc->name = malloc(strlen(name) + 1, M_DEVBUF, M_WAITOK); if (idesc->name == NULL) { free(idesc, M_DEVBUF); return NULL; } strcpy(idesc->name, name); idesc->handler = handler; idesc->argument = arg; idesc->maskptr = maskptr; idesc->intr = irq; idesc->flags = flags; /* block this irq */ oldspl = splq(1 << irq); /* add irq to class selected by maskptr */ errcode = add_intrdesc(idesc); splx(oldspl); if (errcode != 0) { if (bootverbose) printf("\tintr_connect(irq%d) failed, result=%d\n", irq, errcode); free(idesc->name, M_DEVBUF); free(idesc, M_DEVBUF); idesc = NULL; } return (idesc); } /* * Deactivate and remove the interrupt handler descriptor data connected * created by an earlier call of intr_connect() from the linked list and * adjust theinterrupt masks if necessary. * * Return the memory held by the interrupt handler descriptor data structure * to the system. Make sure, the handler is not actively used anymore, before. */ int inthand_remove(intrec *idesc) { intrec **hook, *head; int irq; int errcode = 0; intrmask_t oldspl; if (idesc == NULL) return (-1); irq = idesc->intr; /* find pointer that keeps the reference to this interrupt descriptor */ hook = find_pred(idesc, irq); if (hook == NULL) return (-1); /* make copy of original list head, the line after may overwrite it */ head = intreclist_head[irq]; /* unlink: make predecessor point to idesc->next instead of to idesc */ *hook = idesc->next; /* now check whether the element we removed was the list head */ if (idesc == head) { oldspl = splq(1 << irq); /* check whether the new list head is the only element on list */ head = intreclist_head[irq]; if (head != NULL) { icu_unset(irq, intr_mux); if (head->next != NULL) { /* install the multiplex handler with new list head as argument */ errcode = icu_setup(irq, intr_mux, &intreclist_head[irq], 0, 0); if (errcode == 0) update_intrname(irq, NULL); } else { /* install the one remaining handler for this irq */ errcode = icu_setup(irq, head->handler, head->argument, head->maskptr, head->flags); if (errcode == 0) update_intrname(irq, head->name); } } else { /* revert to old handler, eg: strayintr */ icu_unset(irq, idesc->handler); } splx(oldspl); } update_masks(idesc->maskptr, irq); free(idesc, M_DEVBUF); return (0); } /* * ithread_done() * * This function is called by an interrupt thread when it has completed * processing a loop. We re-enable interrupts and interlock with * ipending. * * See kern/kern_intr.c for more information. */ void ithread_done(int irq) { struct mdglobaldata *gd = mdcpu; int mask = 1 << irq; thread_t td; td = gd->mi.gd_curthread; KKASSERT(td->td_pri >= TDPRI_CRIT); lwkt_deschedule_self(td); INTREN(mask); if (gd->gd_ipending & mask) { atomic_clear_int_nonlocked(&gd->gd_ipending, mask); INTRDIS(mask); lwkt_schedule_self(td); } else { lwkt_switch(); } } #ifdef SMP /* * forward_fast_remote() * * This function is called from the receiving end of an IPIQ when a * remote cpu wishes to forward a fast interrupt to us. All we have to * do is set the interrupt pending and let the IPI's doreti deal with it. */ void forward_fastint_remote(void *arg) { int irq = (int)arg; struct mdglobaldata *gd = mdcpu; atomic_set_int_nonlocked(&gd->gd_fpending, 1 << irq); atomic_set_int_nonlocked(&gd->mi.gd_reqflags, RQF_INTPEND); } #endif