/* * SYS/THREAD.H * * Implements the architecture independant portion of the LWKT * subsystem. * * Types which must already be defined when this header is included by * userland: struct md_thread * * $DragonFly: src/sys/sys/thread.h,v 1.59 2004/10/13 19:51:31 dillon Exp $ */ #ifndef _SYS_THREAD_H_ #define _SYS_THREAD_H_ #ifndef _SYS_STDINT_H_ #include /* __int types */ #endif #ifndef _SYS_PARAM_H_ #include /* MAXCOMLEN */ #endif #ifndef _SYS_QUEUE_H_ #include /* TAILQ_* macros */ #endif #ifndef _SYS_MSGPORT_H_ #include /* lwkt_port */ #endif #ifndef _SYS_TIME_H_ #include /* struct timeval */ #endif struct globaldata; struct proc; struct thread; struct lwkt_queue; struct lwkt_token; struct lwkt_tokref; struct lwkt_wait; struct lwkt_ipiq; struct lwkt_cpu_msg; struct lwkt_cpu_port; struct lwkt_rwlock; struct lwkt_msg; struct lwkt_port; struct lwkt_cpusync; union sysunion; typedef struct lwkt_queue *lwkt_queue_t; typedef struct lwkt_token *lwkt_token_t; typedef struct lwkt_tokref *lwkt_tokref_t; typedef struct lwkt_wait *lwkt_wait_t; typedef struct lwkt_cpu_msg *lwkt_cpu_msg_t; typedef struct lwkt_cpu_port *lwkt_cpu_port_t; typedef struct lwkt_rwlock *lwkt_rwlock_t; typedef struct lwkt_ipiq *lwkt_ipiq_t; typedef struct lwkt_cpusync *lwkt_cpusync_t; typedef struct thread *thread_t; typedef TAILQ_HEAD(lwkt_queue, thread) lwkt_queue; /* * Differentiation between kernel threads and user threads. Userland * programs which want to access to kernel structures have to define * _KERNEL_STRUCTURES. This is a kinda safety valve to prevent badly * written user programs from getting an LWKT thread that is neither the * kernel nor the user version. */ #if defined(_KERNEL) || defined(_KERNEL_STRUCTURES) #ifndef _MACHINE_THREAD_H_ #include /* md_thread */ #endif #ifndef _MACHINE_FRAME_H_ #include #endif #else struct intrframe; #endif /* * Tokens are used to serialize access to information. They are 'soft' * serialization entities that only stay in effect while the thread is * running. If the thread blocks, other threads can run holding the same * tokens. The tokens are reacquired when the original thread resumes. * * A thread can depend on its serialization remaining intact through a * preemption. An interrupt which attempts to use the same token as the * thread being preempted will reschedule itself for non-preemptive * operation, so the new token code is capable of interlocking against * interrupts as well as other cpus. * * Tokens are managed through a helper reference structure, lwkt_tokref, * which is typically declared on the caller's stack. Multiple tokref's * may reference the same token. */ typedef struct lwkt_token { struct globaldata *t_cpu; /* the current owner of the token */ struct globaldata *t_reqcpu; /* requesting cpu */ int t_unused01; /* (used to be generation number) */ } lwkt_token; typedef struct lwkt_tokref { lwkt_token_t tr_tok; /* token in question */ __uint32_t tr_magic; /* sanity check */ lwkt_tokref_t tr_next; /* linked list */ lwkt_tokref_t tr_gdreqnext; /* based at gd_tokreqbase */ struct globaldata *tr_reqgd; /* requesting cpu */ } lwkt_tokref; #define LWKT_TOKREF_MAGIC1 \ ((__uint32_t)0x544f4b52) /* normal */ #define LWKT_TOKREF_MAGIC2 \ ((__uint32_t)0x544f4b53) /* pending req */ #define LWKT_TOKREF_INIT(tok) \ { tok, LWKT_TOKREF_MAGIC1 } #define LWKT_TOKREF_DECLARE(name, tok) \ lwkt_tokref name = LWKT_TOKREF_INIT(tok) /* * Wait structures deal with blocked threads. Due to the way remote cpus * interact with these structures stable storage must be used. */ typedef struct lwkt_wait { lwkt_queue wa_waitq; /* list of waiting threads */ lwkt_token wa_token; /* who currently owns the list */ int wa_gen; int wa_count; } lwkt_wait; #define MAXCPUFIFO 16 /* power of 2 */ #define MAXCPUFIFO_MASK (MAXCPUFIFO - 1) #define LWKT_MAXTOKENS 16 /* max tokens beneficially held by thread */ /* * Always cast to ipifunc_t when registering an ipi. The actual ipi function * is called with both the data and an interrupt frame, but the ipi function * that is registered might only declare a data argument. */ typedef void (*ipifunc_t)(void *arg); typedef void (*ipifunc2_t)(void *arg, struct intrframe *frame); typedef struct lwkt_ipiq { int ip_rindex; /* only written by target cpu */ int ip_xindex; /* written by target, indicates completion */ int ip_windex; /* only written by source cpu */ ipifunc2_t ip_func[MAXCPUFIFO]; void *ip_arg[MAXCPUFIFO]; int ip_npoll; } lwkt_ipiq; /* * CPU Synchronization structure. See lwkt_cpusync_start() and * lwkt_cpusync_finish() for more information. */ typedef void (*cpusync_func_t)(lwkt_cpusync_t poll); typedef void (*cpusync_func2_t)(void *data); struct lwkt_cpusync { cpusync_func_t cs_run_func; /* run (tandem w/ acquire) */ cpusync_func_t cs_fin1_func; /* fin1 (synchronized) */ cpusync_func2_t cs_fin2_func; /* fin2 (tandem w/ release) */ void *cs_data; int cs_maxcount; volatile int cs_count; cpumask_t cs_mask; }; /* * The standard message and queue structure used for communications between * cpus. Messages are typically queued via a machine-specific non-linked * FIFO matrix allowing any cpu to send a message to any other cpu without * blocking. */ typedef struct lwkt_cpu_msg { void (*cm_func)(lwkt_cpu_msg_t msg); /* primary dispatch function */ int cm_code; /* request code if applicable */ int cm_cpu; /* reply to cpu */ thread_t cm_originator; /* originating thread for wakeup */ } lwkt_cpu_msg; /* * reader/writer lock */ typedef struct lwkt_rwlock { lwkt_wait rw_wait; thread_t rw_owner; int rw_count; int rw_requests; } lwkt_rwlock; #define rw_token rw_wait.wa_token /* * Thread structure. Note that ownership of a thread structure is special * cased and there is no 'token'. A thread is always owned by the cpu * represented by td_gd, any manipulation of the thread by some other cpu * must be done through cpu_*msg() functions. e.g. you could request * ownership of a thread that way, or hand a thread off to another cpu. * * NOTE: td_pri is bumped by TDPRI_CRIT when entering a critical section, * but this does not effect how the thread is scheduled by LWKT. */ struct md_intr_info; struct caps_kinfo; struct thread { TAILQ_ENTRY(thread) td_threadq; TAILQ_ENTRY(thread) td_allq; lwkt_port td_msgport; /* built-in message port for replies */ struct proc *td_proc; /* (optional) associated process */ struct pcb *td_pcb; /* points to pcb and top of kstack */ struct globaldata *td_gd; /* associated with this cpu */ const char *td_wmesg; /* string name for blockage */ void *td_wchan; /* waiting on channel */ int td_pri; /* 0-31, 31=highest priority (note 1) */ int td_flags; /* TDF flags */ int td_gen; /* wait queue chasing generation number */ /* maybe preempt */ void (*td_preemptable)(struct thread *td, int critpri); void (*td_release)(struct thread *td); union { struct md_intr_info *intdata; } td_info; char *td_kstack; /* kernel stack */ int td_kstack_size; /* size of kernel stack */ char *td_sp; /* kernel stack pointer for LWKT restore */ void (*td_switch)(struct thread *ntd); lwkt_wait_t td_wait; /* thread sitting on wait structure */ __uint64_t td_uticks; /* Statclock hits in user mode (uS) */ __uint64_t td_sticks; /* Statclock hits in system mode (uS) */ __uint64_t td_iticks; /* Statclock hits processing intr (uS) */ int td_locks; /* lockmgr lock debugging YYY */ int td_refs; /* hold position in gd_tdallq / hold free */ int td_nest_count; /* prevent splz nesting */ #ifdef SMP int td_mpcount; /* MP lock held (count) */ int td_cscount; /* cpu synchronization master */ #else int td_mpcount_unused; /* filler so size matches */ int td_cscount_unused; #endif struct timeval td_start; /* start time for a thread/process */ char td_comm[MAXCOMLEN+1]; /* typ 16+1 bytes */ struct thread *td_preempted; /* we preempted this thread */ struct caps_kinfo *td_caps; /* list of client and server registrations */ lwkt_tokref_t td_toks; /* tokens beneficially held */ struct md_thread td_mach; }; /* * Thread flags. Note that TDF_RUNNING is cleared on the old thread after * we switch to the new one, which is necessary because LWKTs don't need * to hold the BGL. This flag is used by the exit code and the managed * thread migration code. * * LWKT threads stay on their (per-cpu) run queue while running, not to * be confused with user processes which are removed from the user scheduling * run queue while actually running. */ #define TDF_RUNNING 0x0001 /* thread still active */ #define TDF_RUNQ 0x0002 /* on an LWKT run queue */ #define TDF_PREEMPT_LOCK 0x0004 /* I have been preempted */ #define TDF_PREEMPT_DONE 0x0008 /* acknowledge preemption complete */ #define TDF_IDLE_NOHLT 0x0010 /* we need to spin */ #define TDF_MIGRATING 0x0020 /* thread is being migrated */ #define TDF_SINTR 0x0040 /* interruptability hint for 'ps' */ #define TDF_SYSTHREAD 0x0100 /* system thread */ #define TDF_ALLOCATED_THREAD 0x0200 /* zalloc allocated thread */ #define TDF_ALLOCATED_STACK 0x0400 /* zalloc allocated stack */ #define TDF_VERBOSE 0x0800 /* verbose on exit */ #define TDF_DEADLKTREAT 0x1000 /* special lockmgr deadlock treatment */ #define TDF_STOPREQ 0x2000 /* suspend_kproc */ #define TDF_WAKEREQ 0x4000 /* resume_kproc */ #define TDF_TIMEOUT 0x8000 /* tsleep timeout */ #define TDF_INTTHREAD 0x00010000 /* interrupt thread */ #define TDF_NORESCHED 0x00020000 /* Do not reschedule on wake */ #define TDF_BLOCKED 0x00040000 /* Thread is blocked */ /* * Thread priorities. Typically only one thread from any given * user process scheduling queue is on the LWKT run queue at a time. * Remember that there is one LWKT run queue per cpu. * * Critical sections are handled by bumping td_pri above TDPRI_MAX, which * causes interrupts to be masked as they occur. When this occurs a * rollup flag will be set in mycpu->gd_reqflags. */ #define TDPRI_IDLE_THREAD 0 /* the idle thread */ #define TDPRI_USER_IDLE 4 /* user scheduler idle */ #define TDPRI_USER_NORM 6 /* user scheduler normal */ #define TDPRI_USER_REAL 8 /* user scheduler real time */ #define TDPRI_KERN_LPSCHED 9 /* scheduler helper for userland sch */ #define TDPRI_KERN_USER 10 /* kernel / block in syscall */ #define TDPRI_KERN_DAEMON 12 /* kernel daemon (pageout, etc) */ #define TDPRI_SOFT_NORM 14 /* kernel / normal */ #define TDPRI_SOFT_TIMER 16 /* kernel / timer */ #define TDPRI_EXITING 19 /* exiting thread */ #define TDPRI_INT_SUPPORT 20 /* kernel / high priority support */ #define TDPRI_INT_LOW 27 /* low priority interrupt */ #define TDPRI_INT_MED 28 /* medium priority interrupt */ #define TDPRI_INT_HIGH 29 /* high priority interrupt */ #define TDPRI_MAX 31 #define TDPRI_MASK 31 #define TDPRI_CRIT 32 /* high bits of td_pri used for crit */ #ifdef _KERNEL #define LWKT_THREAD_STACK (UPAGES * PAGE_SIZE) #endif #define CACHE_NTHREADS 6 #define IN_CRITICAL_SECT(td) ((td)->td_pri >= TDPRI_CRIT) #ifdef _KERNEL extern struct vm_zone *thread_zone; #endif /* * Applies both to the kernel and to liblwkt. */ extern struct thread *lwkt_alloc_thread(struct thread *template, int stksize, int cpu); extern void lwkt_init_thread(struct thread *td, void *stack, int stksize, int flags, struct globaldata *gd); extern void lwkt_set_comm(thread_t td, const char *ctl, ...); extern void lwkt_wait_free(struct thread *td); extern void lwkt_free_thread(struct thread *td); extern void lwkt_wait_init(struct lwkt_wait *w); extern void lwkt_gdinit(struct globaldata *gd); extern void lwkt_switch(void); extern void lwkt_preempt(thread_t ntd, int critpri); extern void lwkt_schedule(thread_t td); extern void lwkt_schedule_self(thread_t td); extern void lwkt_deschedule(thread_t td); extern void lwkt_deschedule_self(thread_t td); extern void lwkt_acquire(thread_t td); extern void lwkt_yield(void); extern void lwkt_yield_quick(void); extern void lwkt_token_wait(void); extern void lwkt_hold(thread_t td); extern void lwkt_rele(thread_t td); extern void lwkt_block(lwkt_wait_t w, const char *wmesg, int *gen); extern void lwkt_signal(lwkt_wait_t w, int count); extern int lwkt_havetoken(lwkt_token_t tok); extern int lwkt_havetokref(lwkt_tokref_t xref); extern void lwkt_gettoken(lwkt_tokref_t ref, lwkt_token_t tok); extern int lwkt_trytoken(lwkt_tokref_t ref, lwkt_token_t tok); extern void lwkt_gettokref(lwkt_tokref_t ref); extern int lwkt_trytokref(lwkt_tokref_t ref); extern void lwkt_reltoken(lwkt_tokref_t ref); extern void lwkt_reqtoken_remote(void *data); extern int lwkt_chktokens(thread_t td); extern void lwkt_drain_token_requests(void); extern void lwkt_token_init(lwkt_token_t tok); extern void lwkt_token_uninit(lwkt_token_t tok); extern void lwkt_token_pool_init(void); extern lwkt_token_t lwkt_token_pool_get(void *ptraddr); extern void lwkt_rwlock_init(lwkt_rwlock_t lock); extern void lwkt_rwlock_uninit(lwkt_rwlock_t lock); extern void lwkt_exlock(lwkt_rwlock_t lock, const char *wmesg); extern void lwkt_shlock(lwkt_rwlock_t lock, const char *wmesg); extern void lwkt_exunlock(lwkt_rwlock_t lock); extern void lwkt_shunlock(lwkt_rwlock_t lock); extern void lwkt_setpri(thread_t td, int pri); extern void lwkt_setpri_self(int pri); extern int lwkt_checkpri_self(void); extern void lwkt_setcpu_self(struct globaldata *rgd); extern int lwkt_send_ipiq(struct globaldata *targ, ipifunc_t func, void *arg); extern int lwkt_send_ipiq_passive(struct globaldata *targ, ipifunc_t func, void *arg); extern int lwkt_send_ipiq_bycpu(int dcpu, ipifunc_t func, void *arg); extern int lwkt_send_ipiq_mask(cpumask_t mask, ipifunc_t func, void *arg); extern void lwkt_wait_ipiq(struct globaldata *targ, int seq); extern int lwkt_seq_ipiq(struct globaldata *targ); extern void lwkt_process_ipiq(void); #ifdef _KERNEL extern void lwkt_process_ipiq_frame(struct intrframe frame); #endif extern void lwkt_cpusync_simple(cpumask_t mask, cpusync_func_t func, void *data); extern void lwkt_cpusync_fastdata(cpumask_t mask, cpusync_func2_t func, void *data); extern void lwkt_cpusync_start(cpumask_t mask, lwkt_cpusync_t poll); extern void lwkt_cpusync_add(cpumask_t mask, lwkt_cpusync_t poll); extern void lwkt_cpusync_finish(lwkt_cpusync_t poll); extern void crit_panic(void); extern struct proc *lwkt_preempted_proc(void); extern int lwkt_create (void (*func)(void *), void *arg, struct thread **ptd, struct thread *template, int tdflags, int cpu, const char *ctl, ...); extern void lwkt_exit (void) __dead2; #endif