/* Copyright (C) 2008-2015 Free Software Foundation, Inc. Contributor: Joern Rennecke on behalf of Synopsys Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see . */ #include "../arc-ieee-754.h" #if 0 /* DEBUG */ .global __muldf3 .balign 4 __muldf3: push_s blink push_s r2 push_s r3 push_s r0 bl.d __muldf3_c push_s r1 ld_s r2,[sp,12] ld_s r3,[sp,8] st_s r0,[sp,12] st_s r1,[sp,8] pop_s r1 bl.d __muldf3_asm pop_s r0 pop_s r3 pop_s r2 pop_s blink cmp r0,r2 cmp.eq r1,r3 jeq_s [blink] and r12,DBL0H,DBL1H bic.f 0,0x7ff80000,r12 ; both NaN -> OK jeq_s [blink] b abort #define __muldf3 __muldf3_asm #endif /* DEBUG */ __muldf3_support: /* This label makes debugger output saner. */ .balign 4 FUNC(__muldf3) .Ldenorm_2: breq.d DBL1L,0,.Lret0_2 ; 0 input -> 0 output norm.f r12,DBL1L mov.mi r12,21 add.pl r12,r12,22 neg r11,r12 asl_s r12,r12,20 lsr.f DBL1H,DBL1L,r11 ror DBL1L,DBL1L,r11 sub_s DBL0H,DBL0H,r12 mov.eq DBL1H,DBL1L sub_l DBL1L,DBL1L,DBL1H /* Fall through. */ .global __muldf3 .balign 4 __muldf3: mulu64 DBL0L,DBL1L ld.as r9,[pcl,0x68] ; ((.L7ff00000-.+2)/4)] bmsk r6,DBL0H,19 bset r6,r6,20 and r11,DBL0H,r9 breq.d r11,0,.Ldenorm_dbl0 and r12,DBL1H,r9 breq.d r12,0,.Ldenorm_dbl1 mov r8,mlo mov r4,mhi mulu64 r6,DBL1L breq.d r11,r9,.Linf_nan bmsk r10,DBL1H,19 breq.d r12,r9,.Linf_nan bset r10,r10,20 add.f r4,r4,mlo adc r5,mhi,0 mulu64 r10,DBL0L add_s r12,r12,r11 ; add exponents add.f r4,r4,mlo adc r5,r5,mhi mulu64 r6,r10 tst r8,r8 bclr r8,r9,30 ; 0x3ff00000 bset.ne r4,r4,0 ; put least significant word into sticky bit bclr r6,r9,20 ; 0x7fe00000 add.f r5,r5,mlo adc r7,mhi,0 ; fraction product in r7:r5:r4 lsr.f r10,r7,9 rsub.eq r8,r8,r9 ; 0x40000000 sub r12,r12,r8 ; subtract bias + implicit 1 brhs.d r12,r6,.Linf_denorm rsub r10,r10,12 .Lshift_frac: neg r8,r10 asl r6,r4,r10 lsr DBL0L,r4,r8 add.f 0,r6,r6 btst.eq DBL0L,0 cmp.eq r4,r4 ; round to nearest / round to even asl r4,r5,r10 lsr r5,r5,r8 adc.f DBL0L,DBL0L,r4 xor.f 0,DBL0H,DBL1H asl r7,r7,r10 add_s r12,r12,r5 adc DBL0H,r12,r7 j_s.d [blink] bset.mi DBL0H,DBL0H,31 /* N.B. This is optimized for ARC700. ARC600 has very different scheduling / instruction selection criteria. */ /* If one number is denormal, subtract some from the exponent of the other one (if the other exponent is too small, return 0), and normalize the denormal. Then re-run the computation. */ .Lret0_2: lsr_s DBL0H,DBL0H,31 asl_s DBL0H,DBL0H,31 j_s.d [blink] mov_s DBL0L,0 .balign 4 .Ldenorm_dbl0: mov_s r12,DBL0L mov_s DBL0L,DBL1L mov_s DBL1L,r12 mov_s r12,DBL0H mov_s DBL0H,DBL1H mov_s DBL1H,r12 and r11,DBL0H,r9 .Ldenorm_dbl1: brhs r11,r9,.Linf_nan brhs 0x3ca00001,r11,.Lret0 sub_s DBL0H,DBL0H,DBL1H bmsk.f DBL1H,DBL1H,30 add_s DBL0H,DBL0H,DBL1H beq.d .Ldenorm_2 norm r12,DBL1H sub_s r12,r12,10 asl r5,r12,20 asl_s DBL1H,DBL1H,r12 sub DBL0H,DBL0H,r5 neg r5,r12 lsr r6,DBL1L,r5 asl_s DBL1L,DBL1L,r12 b.d __muldf3 add_s DBL1H,DBL1H,r6 .Lret0: xor_s DBL0H,DBL0H,DBL1H bclr DBL1H,DBL0H,31 xor_s DBL0H,DBL0H,DBL1H j_s.d [blink] mov_s DBL0L,0 .balign 4 .Linf_nan: bclr r12,DBL1H,31 xor_s DBL1H,DBL1H,DBL0H bclr_s DBL0H,DBL0H,31 max r8,DBL0H,r12 ; either NaN -> NaN ; otherwise inf or.f 0,DBL0H,DBL0L mov_s DBL0L,0 or.ne.f DBL1L,DBL1L,r12 not_s DBL0H,DBL0L ; inf * 0 -> NaN mov.ne DBL0H,r8 tst_s DBL1H,DBL1H j_s.d [blink] bset.mi DBL0H,DBL0H,31 /* We have checked for infinity / NaN input before, and transformed denormalized inputs into normalized inputs. Thus, the worst case exponent overflows are: 1 + 1 - 0x400 == 0xc02 : maximum underflow 0x7fe + 0x7fe - 0x3ff == 0xbfd ; maximum overflow N.B. 0x7e and 0x7f are also values for overflow. If (r12 <= -54), we have an underflow to zero. */ .balign 4 .Linf_denorm: lsr r6,r12,28 brlo.d r6,0xc,.Linf asr r6,r12,20 add.f r10,r10,r6 brgt.d r10,0,.Lshift_frac mov_s r12,0 beq.d .Lround_frac add r10,r10,32 .Lshift32_frac: tst r4,r4 mov r4,r5 bset.ne r4,r4,1 mov r5,r7 brge.d r10,1,.Lshift_frac mov r7,0 breq.d r10,0,.Lround_frac add r10,r10,32 brgt r10,21,.Lshift32_frac b_s .Lret0 .Lround_frac: add.f 0,r4,r4 btst.eq r5,0 mov_s DBL0L,r5 mov_s DBL0H,r7 adc.eq.f DBL0L,DBL0L,0 j_s.d [blink] adc.eq DBL0H,DBL0H,0 .Linf: mov_s DBL0L,0 xor.f DBL1H,DBL1H,DBL0H mov_s DBL0H,r9 j_s.d [blink] bset.mi DBL0H,DBL0H,31 ENDFUNC(__muldf3) .balign 4 .L7ff00000: .long 0x7ff00000