/* * Copyright (c) 2004 Jeffrey M. Hsu. All rights reserved. * Copyright (c) 2004 The DragonFly Project. All rights reserved. * * This code is derived from software contributed to The DragonFly Project * by Jeffrey M. Hsu. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of The DragonFly Project nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific, prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Copyright (c) 2004 Jeffrey M. Hsu. All rights reserved. * * License terms: all terms for the DragonFly license above plus the following: * * 4. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * * This product includes software developed by Jeffrey M. Hsu * for the DragonFly Project. * * This requirement may be waived with permission from Jeffrey Hsu. * This requirement will sunset and may be removed on July 8 2005, * after which the standard DragonFly license (as shown above) will * apply. */ /* * Copyright (c) 1982, 1986, 1991, 1993, 1995 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)in_pcb.c 8.4 (Berkeley) 5/24/95 * $FreeBSD: src/sys/netinet/in_pcb.c,v 1.59.2.27 2004/01/02 04:06:42 ambrisko Exp $ * $DragonFly: src/sys/netinet/in_pcb.c,v 1.25 2004/08/11 02:36:22 dillon Exp $ */ #include "opt_ipsec.h" #include "opt_inet6.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET6 #include #include #endif /* INET6 */ #ifdef IPSEC #include #include #endif #ifdef FAST_IPSEC #if defined(IPSEC) || defined(IPSEC_ESP) #error "Bad idea: don't compile with both IPSEC and FAST_IPSEC!" #endif #include #include #define IPSEC #endif /* FAST_IPSEC */ struct in_addr zeroin_addr; /* * These configure the range of local port addresses assigned to * "unspecified" outgoing connections/packets/whatever. */ int ipport_lowfirstauto = IPPORT_RESERVED - 1; /* 1023 */ int ipport_lowlastauto = IPPORT_RESERVEDSTART; /* 600 */ int ipport_firstauto = IPPORT_RESERVED; /* 1024 */ int ipport_lastauto = IPPORT_USERRESERVED; /* 5000 */ int ipport_hifirstauto = IPPORT_HIFIRSTAUTO; /* 49152 */ int ipport_hilastauto = IPPORT_HILASTAUTO; /* 65535 */ /* Allocate ephermal source ports in random order. */ int ipport_randomized = 1; static __inline void RANGECHK(int var, int min, int max) { if (var < min) var = min; else if (var > max) var = max; } static int sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS) { int error; error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req); if (!error) { RANGECHK(ipport_lowfirstauto, 1, IPPORT_RESERVED - 1); RANGECHK(ipport_lowlastauto, 1, IPPORT_RESERVED - 1); RANGECHK(ipport_firstauto, IPPORT_RESERVED, USHRT_MAX); RANGECHK(ipport_lastauto, IPPORT_RESERVED, USHRT_MAX); RANGECHK(ipport_hifirstauto, IPPORT_RESERVED, USHRT_MAX); RANGECHK(ipport_hilastauto, IPPORT_RESERVED, USHRT_MAX); } return (error); } SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, "IP Ports"); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowfirst, CTLTYPE_INT|CTLFLAG_RW, &ipport_lowfirstauto, 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, lowlast, CTLTYPE_INT|CTLFLAG_RW, &ipport_lowlastauto, 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, first, CTLTYPE_INT|CTLFLAG_RW, &ipport_firstauto, 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, last, CTLTYPE_INT|CTLFLAG_RW, &ipport_lastauto, 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hifirst, CTLTYPE_INT|CTLFLAG_RW, &ipport_hifirstauto, 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_PROC(_net_inet_ip_portrange, OID_AUTO, hilast, CTLTYPE_INT|CTLFLAG_RW, &ipport_hilastauto, 0, &sysctl_net_ipport_check, "I", ""); SYSCTL_INT(_net_inet_ip_portrange, OID_AUTO, randomized, CTLFLAG_RW, &ipport_randomized, 0, ""); /* * in_pcb.c: manage the Protocol Control Blocks. * * NOTE: It is assumed that most of these functions will be called at * splnet(). XXX - There are, unfortunately, a few exceptions to this * rule that should be fixed. * * NOTE: The caller should initialize the cpu field to the cpu running the * protocol stack associated with this inpcbinfo. */ void in_pcbinfo_init(struct inpcbinfo *pcbinfo) { LIST_INIT(&pcbinfo->pcblisthead); pcbinfo->cpu = -1; } /* * Allocate a PCB and associate it with the socket. */ int in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo) { struct inpcb *inp; #ifdef IPSEC int error; #endif inp = zalloc(pcbinfo->ipi_zone); if (inp == NULL) return (ENOBUFS); bzero((caddr_t)inp, sizeof *inp); inp->inp_gencnt = ++pcbinfo->ipi_gencnt; inp->inp_pcbinfo = inp->inp_cpcbinfo = pcbinfo; inp->inp_socket = so; #ifdef IPSEC error = ipsec_init_policy(so, &inp->inp_sp); if (error != 0) { zfree(pcbinfo->ipi_zone, inp); return (error); } #endif #ifdef INET6 if (INP_SOCKAF(so) == AF_INET6 && ip6_v6only) inp->inp_flags |= IN6P_IPV6_V6ONLY; if (ip6_auto_flowlabel) inp->inp_flags |= IN6P_AUTOFLOWLABEL; #endif so->so_pcb = (caddr_t)inp; LIST_INSERT_HEAD(&pcbinfo->pcblisthead, inp, inp_list); pcbinfo->ipi_count++; return (0); } int in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct thread *td) { struct socket *so = inp->inp_socket; struct proc *p = td->td_proc; unsigned short *lastport; struct sockaddr_in *sin; struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; u_short lport = 0; int wild = 0, reuseport = (so->so_options & SO_REUSEPORT); int error, prison = 0; KKASSERT(p); if (TAILQ_EMPTY(&in_ifaddrhead)) /* XXX broken! */ return (EADDRNOTAVAIL); if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY) return (EINVAL); /* already bound */ if (!(so->so_options & (SO_REUSEADDR|SO_REUSEPORT))) wild = 1; /* neither SO_REUSEADDR nor SO_REUSEPORT is set */ if (nam != NULL) { sin = (struct sockaddr_in *)nam; if (nam->sa_len != sizeof *sin) return (EINVAL); #ifdef notdef /* * We should check the family, but old programs * incorrectly fail to initialize it. */ if (sin->sin_family != AF_INET) return (EAFNOSUPPORT); #endif if (sin->sin_addr.s_addr != INADDR_ANY && prison_ip(td, 0, &sin->sin_addr.s_addr)) return (EINVAL); lport = sin->sin_port; if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { /* * Treat SO_REUSEADDR as SO_REUSEPORT for multicast; * allow complete duplication of binding if * SO_REUSEPORT is set, or if SO_REUSEADDR is set * and a multicast address is bound on both * new and duplicated sockets. */ if (so->so_options & SO_REUSEADDR) reuseport = SO_REUSEADDR | SO_REUSEPORT; } else if (sin->sin_addr.s_addr != INADDR_ANY) { sin->sin_port = 0; /* yech... */ bzero(&sin->sin_zero, sizeof sin->sin_zero); if (ifa_ifwithaddr((struct sockaddr *)sin) == NULL) return (EADDRNOTAVAIL); } if (lport != 0) { struct inpcb *t; /* GROSS */ if (ntohs(lport) < IPPORT_RESERVED && p && suser_cred(p->p_ucred, PRISON_ROOT)) return (EACCES); if (p && p->p_ucred->cr_prison) prison = 1; if (so->so_cred->cr_uid != 0 && !IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) { t = in_pcblookup_local(inp->inp_pcbinfo, sin->sin_addr, lport, prison ? 0 : INPLOOKUP_WILDCARD); if (t && (!in_nullhost(sin->sin_addr) || !in_nullhost(t->inp_laddr) || (t->inp_socket->so_options & SO_REUSEPORT) == 0) && (so->so_cred->cr_uid != t->inp_socket->so_cred->cr_uid)) { #ifdef INET6 if (!in_nullhost(sin->sin_addr) || !in_nullhost(t->inp_laddr) || INP_SOCKAF(so) == INP_SOCKAF(t->inp_socket)) #endif return (EADDRINUSE); } } if (prison && prison_ip(td, 0, &sin->sin_addr.s_addr)) return (EADDRNOTAVAIL); t = in_pcblookup_local(pcbinfo, sin->sin_addr, lport, prison ? 0 : wild); if (t && !(reuseport & t->inp_socket->so_options)) { #ifdef INET6 if (!in_nullhost(sin->sin_addr) || !in_nullhost(t->inp_laddr) || INP_SOCKAF(so) == INP_SOCKAF(t->inp_socket)) #endif return (EADDRINUSE); } } inp->inp_laddr = sin->sin_addr; } if (lport == 0) { ushort first, last; int count; if (inp->inp_laddr.s_addr != INADDR_ANY && prison_ip(td, 0, &inp->inp_laddr.s_addr )) { inp->inp_laddr.s_addr = INADDR_ANY; return (EINVAL); } inp->inp_flags |= INP_ANONPORT; if (inp->inp_flags & INP_HIGHPORT) { first = ipport_hifirstauto; /* sysctl */ last = ipport_hilastauto; lastport = &pcbinfo->lasthi; } else if (inp->inp_flags & INP_LOWPORT) { if (p && (error = suser_cred(p->p_ucred, PRISON_ROOT))) { inp->inp_laddr.s_addr = INADDR_ANY; return (error); } first = ipport_lowfirstauto; /* 1023 */ last = ipport_lowlastauto; /* 600 */ lastport = &pcbinfo->lastlow; } else { first = ipport_firstauto; /* sysctl */ last = ipport_lastauto; lastport = &pcbinfo->lastport; } /* * Simple check to ensure all ports are not used up causing * a deadlock here. * * We split the two cases (up and down) so that the direction * is not being tested on each round of the loop. */ if (first > last) { /* * counting down */ if (ipport_randomized) *lastport = first - (arc4random() % (first - last)); count = first - last; do { if (count-- < 0) { /* completely used? */ inp->inp_laddr.s_addr = INADDR_ANY; return (EADDRNOTAVAIL); } --*lastport; if (*lastport > first || *lastport < last) *lastport = first; lport = htons(*lastport); } while (in_pcblookup_local(pcbinfo, inp->inp_laddr, lport, wild)); } else { /* * counting up */ if (ipport_randomized) *lastport = first + (arc4random() % (last - first)); count = last - first; do { if (count-- < 0) { /* completely used? */ inp->inp_laddr.s_addr = INADDR_ANY; return (EADDRNOTAVAIL); } ++*lastport; if (*lastport < first || *lastport > last) *lastport = first; lport = htons(*lastport); } while (in_pcblookup_local(pcbinfo, inp->inp_laddr, lport, wild)); } } inp->inp_lport = lport; if (prison_ip(td, 0, &inp->inp_laddr.s_addr)) { inp->inp_laddr.s_addr = INADDR_ANY; inp->inp_lport = 0; return (EINVAL); } if (in_pcbinsporthash(inp) != 0) { inp->inp_laddr.s_addr = INADDR_ANY; inp->inp_lport = 0; return (EAGAIN); } return (0); } /* * Transform old in_pcbconnect() into an inner subroutine for new * in_pcbconnect(): Do some validity-checking on the remote * address (in mbuf 'nam') and then determine local host address * (i.e., which interface) to use to access that remote host. * * This preserves definition of in_pcbconnect(), while supporting a * slightly different version for T/TCP. (This is more than * a bit of a kludge, but cleaning up the internal interfaces would * have forced minor changes in every protocol). */ int in_pcbladdr(inp, nam, plocal_sin) struct inpcb *inp; struct sockaddr *nam; struct sockaddr_in **plocal_sin; { struct in_ifaddr *ia; struct sockaddr_in *sin = (struct sockaddr_in *)nam; if (nam->sa_len != sizeof *sin) return (EINVAL); if (sin->sin_family != AF_INET) return (EAFNOSUPPORT); if (sin->sin_port == 0) return (EADDRNOTAVAIL); if (!TAILQ_EMPTY(&in_ifaddrhead)) { ia = TAILQ_FIRST(&in_ifaddrhead); /* * If the destination address is INADDR_ANY, * use the primary local address. * If the supplied address is INADDR_BROADCAST, * and the primary interface supports broadcast, * choose the broadcast address for that interface. */ if (sin->sin_addr.s_addr == INADDR_ANY) sin->sin_addr = IA_SIN(ia)->sin_addr; else if (sin->sin_addr.s_addr == (u_long)INADDR_BROADCAST && (ia->ia_ifp->if_flags & IFF_BROADCAST)) sin->sin_addr = satosin(&ia->ia_broadaddr)->sin_addr; } if (inp->inp_laddr.s_addr == INADDR_ANY) { struct route *ro; ia = (struct in_ifaddr *)NULL; /* * If route is known or can be allocated now, * our src addr is taken from the i/f, else punt. * Note that we should check the address family of the cached * destination, in case of sharing the cache with IPv6. */ ro = &inp->inp_route; if (ro->ro_rt && (!(ro->ro_rt->rt_flags & RTF_UP) || ro->ro_dst.sa_family != AF_INET || satosin(&ro->ro_dst)->sin_addr.s_addr != sin->sin_addr.s_addr || inp->inp_socket->so_options & SO_DONTROUTE)) { RTFREE(ro->ro_rt); ro->ro_rt = (struct rtentry *)NULL; } if (!(inp->inp_socket->so_options & SO_DONTROUTE) && /*XXX*/ (ro->ro_rt == (struct rtentry *)NULL || ro->ro_rt->rt_ifp == (struct ifnet *)NULL)) { /* No route yet, so try to acquire one */ bzero(&ro->ro_dst, sizeof(struct sockaddr_in)); ro->ro_dst.sa_family = AF_INET; ro->ro_dst.sa_len = sizeof(struct sockaddr_in); ((struct sockaddr_in *) &ro->ro_dst)->sin_addr = sin->sin_addr; rtalloc(ro); } /* * If we found a route, use the address * corresponding to the outgoing interface * unless it is the loopback (in case a route * to our address on another net goes to loopback). */ if (ro->ro_rt && !(ro->ro_rt->rt_ifp->if_flags & IFF_LOOPBACK)) ia = ifatoia(ro->ro_rt->rt_ifa); if (ia == NULL) { u_short fport = sin->sin_port; sin->sin_port = 0; ia = ifatoia(ifa_ifwithdstaddr(sintosa(sin))); if (ia == NULL) ia = ifatoia(ifa_ifwithnet(sintosa(sin))); sin->sin_port = fport; if (ia == NULL) ia = TAILQ_FIRST(&in_ifaddrhead); if (ia == NULL) return (EADDRNOTAVAIL); } /* * If the destination address is multicast and an outgoing * interface has been set as a multicast option, use the * address of that interface as our source address. */ if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) && inp->inp_moptions != NULL) { struct ip_moptions *imo; struct ifnet *ifp; imo = inp->inp_moptions; if (imo->imo_multicast_ifp != NULL) { ifp = imo->imo_multicast_ifp; TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link) if (ia->ia_ifp == ifp) break; if (ia == NULL) return (EADDRNOTAVAIL); } } /* * Don't do pcblookup call here; return interface in plocal_sin * and exit to caller, that will do the lookup. */ *plocal_sin = &ia->ia_addr; } return (0); } /* * Outer subroutine: * Connect from a socket to a specified address. * Both address and port must be specified in argument sin. * If don't have a local address for this socket yet, * then pick one. */ int in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct thread *td) { struct sockaddr_in *if_sin; struct sockaddr_in *sin = (struct sockaddr_in *)nam; struct sockaddr_in sa; struct ucred *cr = td->td_proc ? td->td_proc->p_ucred : NULL; int error; if (cr && cr->cr_prison != NULL && in_nullhost(inp->inp_laddr)) { bzero(&sa, sizeof sa); sa.sin_addr.s_addr = htonl(cr->cr_prison->pr_ip); sa.sin_len = sizeof sa; sa.sin_family = AF_INET; error = in_pcbbind(inp, (struct sockaddr *)&sa, td); if (error) return (error); } /* Call inner routine to assign local interface address. */ if ((error = in_pcbladdr(inp, nam, &if_sin)) != 0) return (error); if (in_pcblookup_hash(inp->inp_cpcbinfo, sin->sin_addr, sin->sin_port, inp->inp_laddr.s_addr ? inp->inp_laddr : if_sin->sin_addr, inp->inp_lport, FALSE, NULL) != NULL) { return (EADDRINUSE); } if (inp->inp_laddr.s_addr == INADDR_ANY) { if (inp->inp_lport == 0) { error = in_pcbbind(inp, (struct sockaddr *)NULL, td); if (error) return (error); } inp->inp_laddr = if_sin->sin_addr; } inp->inp_faddr = sin->sin_addr; inp->inp_fport = sin->sin_port; in_pcbinsconnhash(inp); return (0); } void in_pcbdisconnect(inp) struct inpcb *inp; { inp->inp_faddr.s_addr = INADDR_ANY; inp->inp_fport = 0; in_pcbremconnhash(inp); if (inp->inp_socket->so_state & SS_NOFDREF) in_pcbdetach(inp); } void in_pcbdetach(inp) struct inpcb *inp; { struct socket *so = inp->inp_socket; struct inpcbinfo *ipi = inp->inp_pcbinfo; #ifdef IPSEC ipsec4_delete_pcbpolicy(inp); #endif /*IPSEC*/ inp->inp_gencnt = ++ipi->ipi_gencnt; in_pcbremlists(inp); so->so_pcb = 0; sofree(so); if (inp->inp_options) (void)m_free(inp->inp_options); if (inp->inp_route.ro_rt) rtfree(inp->inp_route.ro_rt); ip_freemoptions(inp->inp_moptions); inp->inp_vflag = 0; zfree(ipi->ipi_zone, inp); } /* * The calling convention of in_setsockaddr() and in_setpeeraddr() was * modified to match the pru_sockaddr() and pru_peeraddr() entry points * in struct pr_usrreqs, so that protocols can just reference then directly * without the need for a wrapper function. The socket must have a valid * (i.e., non-nil) PCB, but it should be impossible to get an invalid one * except through a kernel programming error, so it is acceptable to panic * (or in this case trap) if the PCB is invalid. (Actually, we don't trap * because there actually /is/ a programming error somewhere... XXX) */ int in_setsockaddr(so, nam) struct socket *so; struct sockaddr **nam; { int s; struct inpcb *inp; struct sockaddr_in *sin; /* * Do the malloc first in case it blocks. */ MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME, M_WAITOK | M_ZERO); sin->sin_family = AF_INET; sin->sin_len = sizeof *sin; s = splnet(); inp = sotoinpcb(so); if (!inp) { splx(s); free(sin, M_SONAME); return (ECONNRESET); } sin->sin_port = inp->inp_lport; sin->sin_addr = inp->inp_laddr; splx(s); *nam = (struct sockaddr *)sin; return (0); } int in_setpeeraddr(so, nam) struct socket *so; struct sockaddr **nam; { int s; struct inpcb *inp; struct sockaddr_in *sin; /* * Do the malloc first in case it blocks. */ MALLOC(sin, struct sockaddr_in *, sizeof *sin, M_SONAME, M_WAITOK | M_ZERO); sin->sin_family = AF_INET; sin->sin_len = sizeof *sin; s = splnet(); inp = sotoinpcb(so); if (!inp) { splx(s); free(sin, M_SONAME); return (ECONNRESET); } sin->sin_port = inp->inp_fport; sin->sin_addr = inp->inp_faddr; splx(s); *nam = (struct sockaddr *)sin; return (0); } void in_pcbnotifyall(head, faddr, errno, notify) struct inpcbhead *head; struct in_addr faddr; void (*notify) (struct inpcb *, int); { struct inpcb *inp, *ninp; int s; /* * note: if INP_PLACEMARKER is set we must ignore the rest of * the structure and skip it. */ s = splnet(); for (inp = LIST_FIRST(head); inp != NULL; inp = ninp) { ninp = LIST_NEXT(inp, inp_list); if (inp->inp_flags & INP_PLACEMARKER) continue; #ifdef INET6 if (!(inp->inp_vflag & INP_IPV4)) continue; #endif if (inp->inp_faddr.s_addr != faddr.s_addr || inp->inp_socket == NULL) continue; (*notify)(inp, errno); } splx(s); } void in_pcbpurgeif0(head, ifp) struct inpcb *head; struct ifnet *ifp; { struct inpcb *inp; struct ip_moptions *imo; int i, gap; for (inp = head; inp != NULL; inp = LIST_NEXT(inp, inp_list)) { if (inp->inp_flags & INP_PLACEMARKER) continue; imo = inp->inp_moptions; if ((inp->inp_vflag & INP_IPV4) && imo != NULL) { /* * Unselect the outgoing interface if it is being * detached. */ if (imo->imo_multicast_ifp == ifp) imo->imo_multicast_ifp = NULL; /* * Drop multicast group membership if we joined * through the interface being detached. */ for (i = 0, gap = 0; i < imo->imo_num_memberships; i++) { if (imo->imo_membership[i]->inm_ifp == ifp) { in_delmulti(imo->imo_membership[i]); gap++; } else if (gap != 0) imo->imo_membership[i - gap] = imo->imo_membership[i]; } imo->imo_num_memberships -= gap; } } } /* * Check for alternatives when higher level complains * about service problems. For now, invalidate cached * routing information. If the route was created dynamically * (by a redirect), time to try a default gateway again. */ void in_losing(inp) struct inpcb *inp; { struct rtentry *rt; struct rt_addrinfo info; if ((rt = inp->inp_route.ro_rt)) { bzero((caddr_t)&info, sizeof info); info.rti_flags = rt->rt_flags; info.rti_info[RTAX_DST] = rt_key(rt); info.rti_info[RTAX_GATEWAY] = rt->rt_gateway; info.rti_info[RTAX_NETMASK] = rt_mask(rt); rt_missmsg(RTM_LOSING, &info, rt->rt_flags, 0); if (rt->rt_flags & RTF_DYNAMIC) (void) rtrequest1(RTM_DELETE, &info, NULL); inp->inp_route.ro_rt = NULL; rtfree(rt); /* * A new route can be allocated * the next time output is attempted. */ } } /* * After a routing change, flush old routing * and allocate a (hopefully) better one. */ void in_rtchange(inp, errno) struct inpcb *inp; int errno; { if (inp->inp_route.ro_rt) { rtfree(inp->inp_route.ro_rt); inp->inp_route.ro_rt = 0; /* * A new route can be allocated the next time * output is attempted. */ } } /* * Lookup a PCB based on the local address and port. */ struct inpcb * in_pcblookup_local(pcbinfo, laddr, lport_arg, wild_okay) struct inpcbinfo *pcbinfo; struct in_addr laddr; u_int lport_arg; int wild_okay; { struct inpcb *inp; int matchwild = 3, wildcard; u_short lport = lport_arg; struct inpcbporthead *porthash; struct inpcbport *phd; struct inpcb *match = NULL; /* * Best fit PCB lookup. * * First see if this local port is in use by looking on the * port hash list. */ porthash = &pcbinfo->porthashbase[INP_PCBPORTHASH(lport, pcbinfo->porthashmask)]; LIST_FOREACH(phd, porthash, phd_hash) { if (phd->phd_port == lport) break; } if (phd != NULL) { /* * Port is in use by one or more PCBs. Look for best * fit. */ LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) { wildcard = 0; #ifdef INET6 if ((inp->inp_vflag & INP_IPV4) == 0) continue; #endif if (inp->inp_faddr.s_addr != INADDR_ANY) wildcard++; if (inp->inp_laddr.s_addr != INADDR_ANY) { if (laddr.s_addr == INADDR_ANY) wildcard++; else if (inp->inp_laddr.s_addr != laddr.s_addr) continue; } else { if (laddr.s_addr != INADDR_ANY) wildcard++; } if (wildcard && !wild_okay) continue; if (wildcard < matchwild) { match = inp; matchwild = wildcard; if (matchwild == 0) { break; } } } } return (match); } /* * Lookup PCB in hash list. */ struct inpcb * in_pcblookup_hash(pcbinfo, faddr, fport_arg, laddr, lport_arg, wildcard, ifp) struct inpcbinfo *pcbinfo; struct in_addr faddr, laddr; u_int fport_arg, lport_arg; boolean_t wildcard; struct ifnet *ifp; { struct inpcbhead *head; struct inpcb *inp; u_short fport = fport_arg, lport = lport_arg; /* * First look for an exact match. */ head = &pcbinfo->hashbase[INP_PCBCONNHASH(faddr.s_addr, fport, laddr.s_addr, lport, pcbinfo->hashmask)]; LIST_FOREACH(inp, head, inp_hash) { #ifdef INET6 if (!(inp->inp_vflag & INP_IPV4)) continue; #endif if (in_hosteq(inp->inp_faddr, faddr) && in_hosteq(inp->inp_laddr, laddr) && inp->inp_fport == fport && inp->inp_lport == lport) { /* found */ return (inp); } } if (wildcard) { struct inpcb *local_wild = NULL; #ifdef INET6 struct inpcb *local_wild_mapped = NULL; #endif struct inpcontainer *ic; struct inpcontainerhead *chead; chead = &pcbinfo->wildcardhashbase[ INP_PCBWILDCARDHASH(lport, pcbinfo->wildcardhashmask)]; LIST_FOREACH(ic, chead, ic_list) { inp = ic->ic_inp; #ifdef INET6 if (!(inp->inp_vflag & INP_IPV4)) continue; #endif if (inp->inp_lport == lport) { if (ifp && ifp->if_type == IFT_FAITH && !(inp->inp_flags & INP_FAITH)) continue; if (inp->inp_laddr.s_addr == laddr.s_addr) return (inp); if (inp->inp_laddr.s_addr == INADDR_ANY) { #ifdef INET6 if (INP_CHECK_SOCKAF(inp->inp_socket, AF_INET6)) local_wild_mapped = inp; else #endif local_wild = inp; } } } #ifdef INET6 if (local_wild == NULL) return (local_wild_mapped); #endif return (local_wild); } /* * Not found. */ return (NULL); } /* * Insert PCB into connection hash table. */ void in_pcbinsconnhash(struct inpcb *inp) { struct inpcbinfo *pcbinfo = inp->inp_cpcbinfo; struct inpcbhead *bucket; u_int32_t hashkey_faddr, hashkey_laddr; #ifdef INET6 if (inp->inp_vflag & INP_IPV6) { hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX JH */; hashkey_laddr = inp->in6p_laddr.s6_addr32[3] /* XXX JH */; } else { #endif hashkey_faddr = inp->inp_faddr.s_addr; hashkey_laddr = inp->inp_laddr.s_addr; #ifdef INET6 } #endif KASSERT(!(inp->inp_flags & INP_CONNECTED), ("already on hash list")); inp->inp_flags |= INP_CONNECTED; /* * Insert into the connection hash table. */ bucket = &pcbinfo->hashbase[INP_PCBCONNHASH(hashkey_faddr, inp->inp_fport, hashkey_laddr, inp->inp_lport, pcbinfo->hashmask)]; LIST_INSERT_HEAD(bucket, inp, inp_hash); } /* * Remove PCB from connection hash table. */ void in_pcbremconnhash(struct inpcb *inp) { KASSERT(inp->inp_flags & INP_CONNECTED, ("inp not connected")); LIST_REMOVE(inp, inp_hash); inp->inp_flags &= ~INP_CONNECTED; } /* * Insert PCB into port hash table. */ int in_pcbinsporthash(struct inpcb *inp) { struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; struct inpcbporthead *pcbporthash; struct inpcbport *phd; /* * Insert into the port hash table. */ pcbporthash = &pcbinfo->porthashbase[ INP_PCBPORTHASH(inp->inp_lport, pcbinfo->porthashmask)]; /* Go through port list and look for a head for this lport. */ LIST_FOREACH(phd, pcbporthash, phd_hash) if (phd->phd_port == inp->inp_lport) break; /* If none exists, malloc one and tack it on. */ if (phd == NULL) { MALLOC(phd, struct inpcbport *, sizeof(struct inpcbport), M_PCB, M_INTWAIT | M_NULLOK); if (phd == NULL) return (ENOBUFS); /* XXX */ phd->phd_port = inp->inp_lport; LIST_INIT(&phd->phd_pcblist); LIST_INSERT_HEAD(pcbporthash, phd, phd_hash); } inp->inp_phd = phd; LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist); return (0); } void in_pcbinswildcardhash_oncpu(struct inpcb *inp, struct inpcbinfo *pcbinfo) { struct inpcontainer *ic; struct inpcontainerhead *bucket; bucket = &pcbinfo->wildcardhashbase[ INP_PCBWILDCARDHASH(inp->inp_lport, pcbinfo->wildcardhashmask)]; ic = malloc(sizeof(struct inpcontainer), M_TEMP, M_INTWAIT); ic->ic_inp = inp; LIST_INSERT_HEAD(bucket, ic, ic_list); } /* * Insert PCB into wildcard hash table. */ void in_pcbinswildcardhash(struct inpcb *inp) { struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; KKASSERT(pcbinfo != NULL); in_pcbinswildcardhash_oncpu(inp, pcbinfo); inp->inp_flags |= INP_WILDCARD; } void in_pcbremwildcardhash_oncpu(struct inpcb *inp, struct inpcbinfo *pcbinfo) { struct inpcontainer *ic; struct inpcontainerhead *head; /* find bucket */ head = &pcbinfo->wildcardhashbase[ INP_PCBWILDCARDHASH(inp->inp_lport, pcbinfo->wildcardhashmask)]; LIST_FOREACH(ic, head, ic_list) { if (ic->ic_inp == inp) goto found; } return; /* not found! */ found: LIST_REMOVE(ic, ic_list); /* remove container from bucket chain */ free(ic, M_TEMP); /* deallocate container */ } /* * Remove PCB from wildcard hash table. */ void in_pcbremwildcardhash(struct inpcb *inp) { struct inpcbinfo *pcbinfo = inp->inp_pcbinfo; KASSERT(inp->inp_flags & INP_WILDCARD, ("inp not wildcard")); in_pcbremwildcardhash_oncpu(inp, pcbinfo); inp->inp_flags &= ~INP_WILDCARD; } /* * Remove PCB from various lists. */ void in_pcbremlists(inp) struct inpcb *inp; { if (inp->inp_lport) { struct inpcbport *phd = inp->inp_phd; LIST_REMOVE(inp, inp_portlist); if (LIST_FIRST(&phd->phd_pcblist) == NULL) { LIST_REMOVE(phd, phd_hash); free(phd, M_PCB); } } if (inp->inp_flags & INP_WILDCARD) { in_pcbremwildcardhash(inp); } else if (inp->inp_flags & INP_CONNECTED) { in_pcbremconnhash(inp); } LIST_REMOVE(inp, inp_list); inp->inp_pcbinfo->ipi_count--; } int prison_xinpcb(struct thread *td, struct inpcb *inp) { struct ucred *cr; if (td->td_proc == NULL) return (0); cr = td->td_proc->p_ucred; if (cr->cr_prison == NULL) return (0); if (ntohl(inp->inp_laddr.s_addr) == cr->cr_prison->pr_ip) return (0); return (1); }