/******************************************************************************* * * Module Name: hwregs - Read/write access functions for the various ACPI * control and status registers. * $Revision: 152 $ * ******************************************************************************/ /****************************************************************************** * * 1. Copyright Notice * * Some or all of this work - Copyright (c) 1999 - 2003, Intel Corp. * All rights reserved. * * 2. License * * 2.1. This is your license from Intel Corp. under its intellectual property * rights. You may have additional license terms from the party that provided * you this software, covering your right to use that party's intellectual * property rights. * * 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a * copy of the source code appearing in this file ("Covered Code") an * irrevocable, perpetual, worldwide license under Intel's copyrights in the * base code distributed originally by Intel ("Original Intel Code") to copy, * make derivatives, distribute, use and display any portion of the Covered * Code in any form, with the right to sublicense such rights; and * * 2.3. Intel grants Licensee a non-exclusive and non-transferable patent * license (with the right to sublicense), under only those claims of Intel * patents that are infringed by the Original Intel Code, to make, use, sell, * offer to sell, and import the Covered Code and derivative works thereof * solely to the minimum extent necessary to exercise the above copyright * license, and in no event shall the patent license extend to any additions * to or modifications of the Original Intel Code. No other license or right * is granted directly or by implication, estoppel or otherwise; * * The above copyright and patent license is granted only if the following * conditions are met: * * 3. Conditions * * 3.1. Redistribution of Source with Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification with rights to further distribute source must include * the above Copyright Notice, the above License, this list of Conditions, * and the following Disclaimer and Export Compliance provision. In addition, * Licensee must cause all Covered Code to which Licensee contributes to * contain a file documenting the changes Licensee made to create that Covered * Code and the date of any change. Licensee must include in that file the * documentation of any changes made by any predecessor Licensee. Licensee * must include a prominent statement that the modification is derived, * directly or indirectly, from Original Intel Code. * * 3.2. Redistribution of Source with no Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification without rights to further distribute source must * include the following Disclaimer and Export Compliance provision in the * documentation and/or other materials provided with distribution. In * addition, Licensee may not authorize further sublicense of source of any * portion of the Covered Code, and must include terms to the effect that the * license from Licensee to its licensee is limited to the intellectual * property embodied in the software Licensee provides to its licensee, and * not to intellectual property embodied in modifications its licensee may * make. * * 3.3. Redistribution of Executable. Redistribution in executable form of any * substantial portion of the Covered Code or modification must reproduce the * above Copyright Notice, and the following Disclaimer and Export Compliance * provision in the documentation and/or other materials provided with the * distribution. * * 3.4. Intel retains all right, title, and interest in and to the Original * Intel Code. * * 3.5. Neither the name Intel nor any other trademark owned or controlled by * Intel shall be used in advertising or otherwise to promote the sale, use or * other dealings in products derived from or relating to the Covered Code * without prior written authorization from Intel. * * 4. Disclaimer and Export Compliance * * 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED * HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE * IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE, * INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY * UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY * IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A * PARTICULAR PURPOSE. * * 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES * OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR * COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT, * SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY * CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL * HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS * SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY * LIMITED REMEDY. * * 4.3. Licensee shall not export, either directly or indirectly, any of this * software or system incorporating such software without first obtaining any * required license or other approval from the U. S. Department of Commerce or * any other agency or department of the United States Government. In the * event Licensee exports any such software from the United States or * re-exports any such software from a foreign destination, Licensee shall * ensure that the distribution and export/re-export of the software is in * compliance with all laws, regulations, orders, or other restrictions of the * U.S. Export Administration Regulations. Licensee agrees that neither it nor * any of its subsidiaries will export/re-export any technical data, process, * software, or service, directly or indirectly, to any country for which the * United States government or any agency thereof requires an export license, * other governmental approval, or letter of assurance, without first obtaining * such license, approval or letter. * *****************************************************************************/ #define __HWREGS_C__ #include "acpi.h" #include "acnamesp.h" #include "acevents.h" #define _COMPONENT ACPI_HARDWARE ACPI_MODULE_NAME ("hwregs") /******************************************************************************* * * FUNCTION: AcpiHwClearAcpiStatus * * PARAMETERS: Flags - Lock the hardware or not * * RETURN: none * * DESCRIPTION: Clears all fixed and general purpose status bits * ******************************************************************************/ ACPI_STATUS AcpiHwClearAcpiStatus ( UINT32 Flags) { ACPI_STATUS Status; ACPI_FUNCTION_TRACE ("HwClearAcpiStatus"); ACPI_DEBUG_PRINT ((ACPI_DB_IO, "About to write %04X to %04X\n", ACPI_BITMASK_ALL_FIXED_STATUS, (UINT16) ACPI_GET_ADDRESS (AcpiGbl_FADT->XPm1aEvtBlk.Address))); if (Flags & ACPI_MTX_LOCK) { Status = AcpiUtAcquireMutex (ACPI_MTX_HARDWARE); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } } Status = AcpiHwRegisterWrite (ACPI_MTX_DO_NOT_LOCK, ACPI_REGISTER_PM1_STATUS, ACPI_BITMASK_ALL_FIXED_STATUS); if (ACPI_FAILURE (Status)) { goto UnlockAndExit; } /* Clear the fixed events */ if (ACPI_VALID_ADDRESS (AcpiGbl_FADT->XPm1bEvtBlk.Address)) { Status = AcpiHwLowLevelWrite (16, ACPI_BITMASK_ALL_FIXED_STATUS, &AcpiGbl_FADT->XPm1bEvtBlk); if (ACPI_FAILURE (Status)) { goto UnlockAndExit; } } /* Clear the GPE Bits in all GPE registers in all GPE blocks */ Status = AcpiEvWalkGpeList (AcpiHwClearGpeBlock); UnlockAndExit: if (Flags & ACPI_MTX_LOCK) { (void) AcpiUtReleaseMutex (ACPI_MTX_HARDWARE); } return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiGetSleepTypeData * * PARAMETERS: SleepState - Numeric sleep state * *SleepTypeA - Where SLP_TYPa is returned * *SleepTypeB - Where SLP_TYPb is returned * * RETURN: Status - ACPI status * * DESCRIPTION: Obtain the SLP_TYPa and SLP_TYPb values for the requested sleep * state. * ******************************************************************************/ ACPI_STATUS AcpiGetSleepTypeData ( UINT8 SleepState, UINT8 *SleepTypeA, UINT8 *SleepTypeB) { ACPI_STATUS Status = AE_OK; ACPI_OPERAND_OBJECT *ObjDesc; ACPI_FUNCTION_TRACE ("AcpiGetSleepTypeData"); /* * Validate parameters */ if ((SleepState > ACPI_S_STATES_MAX) || !SleepTypeA || !SleepTypeB) { return_ACPI_STATUS (AE_BAD_PARAMETER); } /* * Evaluate the namespace object containing the values for this state */ Status = AcpiNsEvaluateByName ((char *) AcpiGbl_DbSleepStates[SleepState], NULL, &ObjDesc); if (ACPI_FAILURE (Status)) { ACPI_DEBUG_PRINT ((ACPI_DB_EXEC, "%s while evaluating SleepState [%s]\n", AcpiFormatException (Status), AcpiGbl_DbSleepStates[SleepState])); return_ACPI_STATUS (Status); } /* Must have a return object */ if (!ObjDesc) { ACPI_REPORT_ERROR (("Missing Sleep State object\n")); Status = AE_NOT_EXIST; } /* It must be of type Package */ else if (ACPI_GET_OBJECT_TYPE (ObjDesc) != ACPI_TYPE_PACKAGE) { ACPI_REPORT_ERROR (("Sleep State object not a Package\n")); Status = AE_AML_OPERAND_TYPE; } /* The package must have at least two elements */ else if (ObjDesc->Package.Count < 2) { ACPI_REPORT_ERROR (("Sleep State package does not have at least two elements\n")); Status = AE_AML_NO_OPERAND; } /* The first two elements must both be of type Integer */ else if ((ACPI_GET_OBJECT_TYPE (ObjDesc->Package.Elements[0]) != ACPI_TYPE_INTEGER) || (ACPI_GET_OBJECT_TYPE (ObjDesc->Package.Elements[1]) != ACPI_TYPE_INTEGER)) { ACPI_REPORT_ERROR (("Sleep State package elements are not both Integers (%s, %s)\n", AcpiUtGetObjectTypeName (ObjDesc->Package.Elements[0]), AcpiUtGetObjectTypeName (ObjDesc->Package.Elements[1]))); Status = AE_AML_OPERAND_TYPE; } else { /* * Valid _Sx_ package size, type, and value */ *SleepTypeA = (UINT8) (ObjDesc->Package.Elements[0])->Integer.Value; *SleepTypeB = (UINT8) (ObjDesc->Package.Elements[1])->Integer.Value; } if (ACPI_FAILURE (Status)) { ACPI_DEBUG_PRINT ((ACPI_DB_ERROR, "While evaluating SleepState [%s], bad Sleep object %p type %s\n", AcpiGbl_DbSleepStates[SleepState], ObjDesc, AcpiUtGetObjectTypeName (ObjDesc))); } AcpiUtRemoveReference (ObjDesc); return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiHwGetRegisterBitMask * * PARAMETERS: RegisterId - Index of ACPI Register to access * * RETURN: The bit mask to be used when accessing the register * * DESCRIPTION: Map RegisterId into a register bit mask. * ******************************************************************************/ ACPI_BIT_REGISTER_INFO * AcpiHwGetBitRegisterInfo ( UINT32 RegisterId) { ACPI_FUNCTION_NAME ("HwGetBitRegisterInfo"); if (RegisterId > ACPI_BITREG_MAX) { ACPI_DEBUG_PRINT ((ACPI_DB_ERROR, "Invalid BitRegister ID: %X\n", RegisterId)); return (NULL); } return (&AcpiGbl_BitRegisterInfo[RegisterId]); } /******************************************************************************* * * FUNCTION: AcpiGetRegister * * PARAMETERS: RegisterId - ID of ACPI BitRegister to access * ReturnValue - Value that was read from the register * Flags - Lock the hardware or not * * RETURN: Value is read from specified Register. Value returned is * normalized to bit0 (is shifted all the way right) * * DESCRIPTION: ACPI BitRegister read function. * ******************************************************************************/ ACPI_STATUS AcpiGetRegister ( UINT32 RegisterId, UINT32 *ReturnValue, UINT32 Flags) { UINT32 RegisterValue = 0; ACPI_BIT_REGISTER_INFO *BitRegInfo; ACPI_STATUS Status; ACPI_FUNCTION_TRACE ("AcpiGetRegister"); /* Get the info structure corresponding to the requested ACPI Register */ BitRegInfo = AcpiHwGetBitRegisterInfo (RegisterId); if (!BitRegInfo) { return_ACPI_STATUS (AE_BAD_PARAMETER); } if (Flags & ACPI_MTX_LOCK) { Status = AcpiUtAcquireMutex (ACPI_MTX_HARDWARE); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } } Status = AcpiHwRegisterRead (ACPI_MTX_DO_NOT_LOCK, BitRegInfo->ParentRegister, &RegisterValue); if (Flags & ACPI_MTX_LOCK) { (void) AcpiUtReleaseMutex (ACPI_MTX_HARDWARE); } if (ACPI_SUCCESS (Status)) { /* Normalize the value that was read */ RegisterValue = ((RegisterValue & BitRegInfo->AccessBitMask) >> BitRegInfo->BitPosition); *ReturnValue = RegisterValue; ACPI_DEBUG_PRINT ((ACPI_DB_IO, "Read value %8.8X register %X\n", RegisterValue, BitRegInfo->ParentRegister)); } return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiSetRegister * * PARAMETERS: RegisterId - ID of ACPI BitRegister to access * Value - (only used on write) value to write to the * Register, NOT pre-normalized to the bit pos. * Flags - Lock the hardware or not * * RETURN: None * * DESCRIPTION: ACPI Bit Register write function. * ******************************************************************************/ ACPI_STATUS AcpiSetRegister ( UINT32 RegisterId, UINT32 Value, UINT32 Flags) { UINT32 RegisterValue = 0; ACPI_BIT_REGISTER_INFO *BitRegInfo; ACPI_STATUS Status; ACPI_FUNCTION_TRACE_U32 ("AcpiSetRegister", RegisterId); /* Get the info structure corresponding to the requested ACPI Register */ BitRegInfo = AcpiHwGetBitRegisterInfo (RegisterId); if (!BitRegInfo) { ACPI_REPORT_ERROR (("Bad ACPI HW RegisterId: %X\n", RegisterId)); return_ACPI_STATUS (AE_BAD_PARAMETER); } if (Flags & ACPI_MTX_LOCK) { Status = AcpiUtAcquireMutex (ACPI_MTX_HARDWARE); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } } /* Always do a register read first so we can insert the new bits */ Status = AcpiHwRegisterRead (ACPI_MTX_DO_NOT_LOCK, BitRegInfo->ParentRegister, &RegisterValue); if (ACPI_FAILURE (Status)) { goto UnlockAndExit; } /* * Decode the Register ID * Register ID = [Register block ID] | [bit ID] * * Check bit ID to fine locate Register offset. * Check Mask to determine Register offset, and then read-write. */ switch (BitRegInfo->ParentRegister) { case ACPI_REGISTER_PM1_STATUS: /* * Status Registers are different from the rest. Clear by * writing 1, and writing 0 has no effect. So, the only relevant * information is the single bit we're interested in, all others should * be written as 0 so they will be left unchanged. */ Value = ACPI_REGISTER_PREPARE_BITS (Value, BitRegInfo->BitPosition, BitRegInfo->AccessBitMask); if (Value) { Status = AcpiHwRegisterWrite (ACPI_MTX_DO_NOT_LOCK, ACPI_REGISTER_PM1_STATUS, (UINT16) Value); RegisterValue = 0; } break; case ACPI_REGISTER_PM1_ENABLE: ACPI_REGISTER_INSERT_VALUE (RegisterValue, BitRegInfo->BitPosition, BitRegInfo->AccessBitMask, Value); Status = AcpiHwRegisterWrite (ACPI_MTX_DO_NOT_LOCK, ACPI_REGISTER_PM1_ENABLE, (UINT16) RegisterValue); break; case ACPI_REGISTER_PM1_CONTROL: /* * Write the PM1 Control register. * Note that at this level, the fact that there are actually TWO * registers (A and B - and B may not exist) is abstracted. */ ACPI_DEBUG_PRINT ((ACPI_DB_IO, "PM1 control: Read %X\n", RegisterValue)); ACPI_REGISTER_INSERT_VALUE (RegisterValue, BitRegInfo->BitPosition, BitRegInfo->AccessBitMask, Value); Status = AcpiHwRegisterWrite (ACPI_MTX_DO_NOT_LOCK, ACPI_REGISTER_PM1_CONTROL, (UINT16) RegisterValue); break; case ACPI_REGISTER_PM2_CONTROL: Status = AcpiHwRegisterRead (ACPI_MTX_DO_NOT_LOCK, ACPI_REGISTER_PM2_CONTROL, &RegisterValue); if (ACPI_FAILURE (Status)) { goto UnlockAndExit; } ACPI_DEBUG_PRINT ((ACPI_DB_IO, "PM2 control: Read %X from %8.8X%8.8X\n", RegisterValue, ACPI_FORMAT_UINT64 (ACPI_GET_ADDRESS (AcpiGbl_FADT->XPm2CntBlk.Address)))); ACPI_REGISTER_INSERT_VALUE (RegisterValue, BitRegInfo->BitPosition, BitRegInfo->AccessBitMask, Value); ACPI_DEBUG_PRINT ((ACPI_DB_IO, "About to write %4.4X to %8.8X%8.8X\n", RegisterValue, ACPI_FORMAT_UINT64 (ACPI_GET_ADDRESS (AcpiGbl_FADT->XPm2CntBlk.Address)))); Status = AcpiHwRegisterWrite (ACPI_MTX_DO_NOT_LOCK, ACPI_REGISTER_PM2_CONTROL, (UINT8) (RegisterValue)); break; default: break; } UnlockAndExit: if (Flags & ACPI_MTX_LOCK) { (void) AcpiUtReleaseMutex (ACPI_MTX_HARDWARE); } /* Normalize the value that was read */ ACPI_DEBUG_EXEC (RegisterValue = ((RegisterValue & BitRegInfo->AccessBitMask) >> BitRegInfo->BitPosition)); ACPI_DEBUG_PRINT ((ACPI_DB_IO, "Set bits: %8.8X actual %8.8X register %X\n", Value, RegisterValue, BitRegInfo->ParentRegister)); return_ACPI_STATUS (Status); } /****************************************************************************** * * FUNCTION: AcpiHwRegisterRead * * PARAMETERS: UseLock - Mutex hw access. * RegisterId - RegisterID + Offset. * * RETURN: Value read or written. * * DESCRIPTION: Acpi register read function. Registers are read at the * given offset. * ******************************************************************************/ ACPI_STATUS AcpiHwRegisterRead ( BOOLEAN UseLock, UINT32 RegisterId, UINT32 *ReturnValue) { UINT32 Value1 = 0; UINT32 Value2 = 0; ACPI_STATUS Status; ACPI_FUNCTION_TRACE ("HwRegisterRead"); if (ACPI_MTX_LOCK == UseLock) { Status = AcpiUtAcquireMutex (ACPI_MTX_HARDWARE); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } } switch (RegisterId) { case ACPI_REGISTER_PM1_STATUS: /* 16-bit access */ Status = AcpiHwLowLevelRead (16, &Value1, &AcpiGbl_FADT->XPm1aEvtBlk); if (ACPI_FAILURE (Status)) { goto UnlockAndExit; } /* PM1B is optional */ Status = AcpiHwLowLevelRead (16, &Value2, &AcpiGbl_FADT->XPm1bEvtBlk); Value1 |= Value2; break; case ACPI_REGISTER_PM1_ENABLE: /* 16-bit access */ Status = AcpiHwLowLevelRead (16, &Value1, &AcpiGbl_XPm1aEnable); if (ACPI_FAILURE (Status)) { goto UnlockAndExit; } /* PM1B is optional */ Status = AcpiHwLowLevelRead (16, &Value2, &AcpiGbl_XPm1bEnable); Value1 |= Value2; break; case ACPI_REGISTER_PM1_CONTROL: /* 16-bit access */ Status = AcpiHwLowLevelRead (16, &Value1, &AcpiGbl_FADT->XPm1aCntBlk); if (ACPI_FAILURE (Status)) { goto UnlockAndExit; } Status = AcpiHwLowLevelRead (16, &Value2, &AcpiGbl_FADT->XPm1bCntBlk); Value1 |= Value2; break; case ACPI_REGISTER_PM2_CONTROL: /* 8-bit access */ Status = AcpiHwLowLevelRead (8, &Value1, &AcpiGbl_FADT->XPm2CntBlk); break; case ACPI_REGISTER_PM_TIMER: /* 32-bit access */ Status = AcpiHwLowLevelRead (32, &Value1, &AcpiGbl_FADT->XPmTmrBlk); break; case ACPI_REGISTER_SMI_COMMAND_BLOCK: /* 8-bit access */ Status = AcpiOsReadPort (AcpiGbl_FADT->SmiCmd, &Value1, 8); break; default: ACPI_DEBUG_PRINT ((ACPI_DB_ERROR, "Unknown Register ID: %X\n", RegisterId)); Status = AE_BAD_PARAMETER; break; } UnlockAndExit: if (ACPI_MTX_LOCK == UseLock) { (void) AcpiUtReleaseMutex (ACPI_MTX_HARDWARE); } if (ACPI_SUCCESS (Status)) { *ReturnValue = Value1; } return_ACPI_STATUS (Status); } /****************************************************************************** * * FUNCTION: AcpiHwRegisterWrite * * PARAMETERS: UseLock - Mutex hw access. * RegisterId - RegisterID + Offset. * * RETURN: Value read or written. * * DESCRIPTION: Acpi register Write function. Registers are written at the * given offset. * ******************************************************************************/ ACPI_STATUS AcpiHwRegisterWrite ( BOOLEAN UseLock, UINT32 RegisterId, UINT32 Value) { ACPI_STATUS Status; ACPI_FUNCTION_TRACE ("HwRegisterWrite"); if (ACPI_MTX_LOCK == UseLock) { Status = AcpiUtAcquireMutex (ACPI_MTX_HARDWARE); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } } switch (RegisterId) { case ACPI_REGISTER_PM1_STATUS: /* 16-bit access */ Status = AcpiHwLowLevelWrite (16, Value, &AcpiGbl_FADT->XPm1aEvtBlk); if (ACPI_FAILURE (Status)) { goto UnlockAndExit; } /* PM1B is optional */ Status = AcpiHwLowLevelWrite (16, Value, &AcpiGbl_FADT->XPm1bEvtBlk); break; case ACPI_REGISTER_PM1_ENABLE: /* 16-bit access*/ Status = AcpiHwLowLevelWrite (16, Value, &AcpiGbl_XPm1aEnable); if (ACPI_FAILURE (Status)) { goto UnlockAndExit; } /* PM1B is optional */ Status = AcpiHwLowLevelWrite (16, Value, &AcpiGbl_XPm1bEnable); break; case ACPI_REGISTER_PM1_CONTROL: /* 16-bit access */ Status = AcpiHwLowLevelWrite (16, Value, &AcpiGbl_FADT->XPm1aCntBlk); if (ACPI_FAILURE (Status)) { goto UnlockAndExit; } Status = AcpiHwLowLevelWrite (16, Value, &AcpiGbl_FADT->XPm1bCntBlk); break; case ACPI_REGISTER_PM1A_CONTROL: /* 16-bit access */ Status = AcpiHwLowLevelWrite (16, Value, &AcpiGbl_FADT->XPm1aCntBlk); break; case ACPI_REGISTER_PM1B_CONTROL: /* 16-bit access */ Status = AcpiHwLowLevelWrite (16, Value, &AcpiGbl_FADT->XPm1bCntBlk); break; case ACPI_REGISTER_PM2_CONTROL: /* 8-bit access */ Status = AcpiHwLowLevelWrite (8, Value, &AcpiGbl_FADT->XPm2CntBlk); break; case ACPI_REGISTER_PM_TIMER: /* 32-bit access */ Status = AcpiHwLowLevelWrite (32, Value, &AcpiGbl_FADT->XPmTmrBlk); break; case ACPI_REGISTER_SMI_COMMAND_BLOCK: /* 8-bit access */ /* SMI_CMD is currently always in IO space */ Status = AcpiOsWritePort (AcpiGbl_FADT->SmiCmd, Value, 8); break; default: Status = AE_BAD_PARAMETER; break; } UnlockAndExit: if (ACPI_MTX_LOCK == UseLock) { (void) AcpiUtReleaseMutex (ACPI_MTX_HARDWARE); } return_ACPI_STATUS (Status); } /****************************************************************************** * * FUNCTION: AcpiHwLowLevelRead * * PARAMETERS: Width - 8, 16, or 32 * Value - Where the value is returned * Register - GAS register structure * * RETURN: Status * * DESCRIPTION: Read from either memory, IO, or PCI config space. * ******************************************************************************/ ACPI_STATUS AcpiHwLowLevelRead ( UINT32 Width, UINT32 *Value, ACPI_GENERIC_ADDRESS *Reg) { ACPI_PCI_ID PciId; UINT16 PciRegister; ACPI_STATUS Status; ACPI_FUNCTION_NAME ("HwLowLevelRead"); /* * Must have a valid pointer to a GAS structure, and * a non-zero address within. However, don't return an error * because the PM1A/B code must not fail if B isn't present. */ if ((!Reg) || (!ACPI_VALID_ADDRESS (Reg->Address))) { return (AE_OK); } *Value = 0; /* * Three address spaces supported: * Memory, IO, or PCI_Config. */ switch (Reg->AddressSpaceId) { case ACPI_ADR_SPACE_SYSTEM_MEMORY: Status = AcpiOsReadMemory ( (ACPI_PHYSICAL_ADDRESS) ACPI_GET_ADDRESS (Reg->Address), Value, Width); break; case ACPI_ADR_SPACE_SYSTEM_IO: Status = AcpiOsReadPort ((ACPI_IO_ADDRESS) ACPI_GET_ADDRESS (Reg->Address), Value, Width); break; case ACPI_ADR_SPACE_PCI_CONFIG: PciId.Segment = 0; PciId.Bus = 0; PciId.Device = ACPI_PCI_DEVICE (ACPI_GET_ADDRESS (Reg->Address)); PciId.Function = ACPI_PCI_FUNCTION (ACPI_GET_ADDRESS (Reg->Address)); PciRegister = (UINT16) ACPI_PCI_REGISTER (ACPI_GET_ADDRESS (Reg->Address)); Status = AcpiOsReadPciConfiguration (&PciId, PciRegister, Value, Width); break; default: ACPI_DEBUG_PRINT ((ACPI_DB_ERROR, "Unsupported address space: %X\n", Reg->AddressSpaceId)); return (AE_BAD_PARAMETER); } ACPI_DEBUG_PRINT ((ACPI_DB_IO, "Read: %8.8X width %2d from %8.8X%8.8X (%s)\n", *Value, Width, ACPI_FORMAT_UINT64 (ACPI_GET_ADDRESS (Reg->Address)), AcpiUtGetRegionName (Reg->AddressSpaceId))); return (Status); } /****************************************************************************** * * FUNCTION: AcpiHwLowLevelWrite * * PARAMETERS: Width - 8, 16, or 32 * Value - To be written * Register - GAS register structure * * RETURN: Status * * DESCRIPTION: Write to either memory, IO, or PCI config space. * ******************************************************************************/ ACPI_STATUS AcpiHwLowLevelWrite ( UINT32 Width, UINT32 Value, ACPI_GENERIC_ADDRESS *Reg) { ACPI_PCI_ID PciId; UINT16 PciRegister; ACPI_STATUS Status; ACPI_FUNCTION_NAME ("HwLowLevelWrite"); /* * Must have a valid pointer to a GAS structure, and * a non-zero address within. However, don't return an error * because the PM1A/B code must not fail if B isn't present. */ if ((!Reg) || (!ACPI_VALID_ADDRESS (Reg->Address))) { return (AE_OK); } /* * Three address spaces supported: * Memory, IO, or PCI_Config. */ switch (Reg->AddressSpaceId) { case ACPI_ADR_SPACE_SYSTEM_MEMORY: Status = AcpiOsWriteMemory ( (ACPI_PHYSICAL_ADDRESS) ACPI_GET_ADDRESS (Reg->Address), Value, Width); break; case ACPI_ADR_SPACE_SYSTEM_IO: Status = AcpiOsWritePort ((ACPI_IO_ADDRESS) ACPI_GET_ADDRESS (Reg->Address), Value, Width); break; case ACPI_ADR_SPACE_PCI_CONFIG: PciId.Segment = 0; PciId.Bus = 0; PciId.Device = ACPI_PCI_DEVICE (ACPI_GET_ADDRESS (Reg->Address)); PciId.Function = ACPI_PCI_FUNCTION (ACPI_GET_ADDRESS (Reg->Address)); PciRegister = (UINT16) ACPI_PCI_REGISTER (ACPI_GET_ADDRESS (Reg->Address)); Status = AcpiOsWritePciConfiguration (&PciId, PciRegister, (ACPI_INTEGER) Value, Width); break; default: ACPI_DEBUG_PRINT ((ACPI_DB_ERROR, "Unsupported address space: %X\n", Reg->AddressSpaceId)); return (AE_BAD_PARAMETER); } ACPI_DEBUG_PRINT ((ACPI_DB_IO, "Wrote: %8.8X width %2d to %8.8X%8.8X (%s)\n", Value, Width, ACPI_FORMAT_UINT64 (ACPI_GET_ADDRESS (Reg->Address)), AcpiUtGetRegionName (Reg->AddressSpaceId))); return (Status); }