/* * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved. * * This code is derived from software contributed to The DragonFly Project * by Matthew Dillon * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name of The DragonFly Project nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific, prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * ---------------------------------------------------------------------------- * "THE BEER-WARE LICENSE" (Revision 42): * wrote this file. As long as you retain this notice you * can do whatever you want with this stuff. If we meet some day, and you think * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp * ---------------------------------------------------------------------------- * * Copyright (c) 1982, 1986, 1988, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ufs_disksubr.c 8.5 (Berkeley) 1/21/94 * $FreeBSD: src/sys/kern/subr_disk.c,v 1.20.2.6 2001/10/05 07:14:57 peter Exp $ * $FreeBSD: src/sys/ufs/ufs/ufs_disksubr.c,v 1.44.2.3 2001/03/05 05:42:19 obrien Exp $ * $DragonFly: src/sys/kern/subr_disk.c,v 1.14 2004/09/15 02:56:35 dillon Exp $ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static MALLOC_DEFINE(M_DISK, "disk", "disk data"); static d_strategy_t diskstrategy; static d_open_t diskopen; static d_close_t diskclose; static d_ioctl_t diskioctl; static d_psize_t diskpsize; static d_clone_t diskclone; static int disk_putport(lwkt_port_t port, lwkt_msg_t msg); static LIST_HEAD(, disk) disklist = LIST_HEAD_INITIALIZER(&disklist); /* * Create a slice and unit managed disk. * * Our port layer will be responsible for assigning pblkno and handling * high level partition operations, then forwarding the requests to the * raw device. * * The raw device (based on rawsw) is returned to the caller, NOT the * slice and unit managed cdev. The caller typically sets various * driver parameters and IO limits on the returned rawdev which we must * inherit when our managed device is opened. */ dev_t disk_create(int unit, struct disk *dp, int flags, struct cdevsw *rawsw) { dev_t rawdev; struct cdevsw *devsw; /* * Create the raw backing device */ compile_devsw(rawsw); rawdev = make_dev(rawsw, dkmakeminor(unit, WHOLE_DISK_SLICE, RAW_PART), UID_ROOT, GID_OPERATOR, 0640, "%s%d", rawsw->d_name, unit); /* * Initialize our intercept port */ bzero(dp, sizeof(*dp)); lwkt_initport(&dp->d_port, NULL); dp->d_port.mp_putport = disk_putport; dp->d_rawsw = rawsw; /* * We install a custom cdevsw rather then the passed cdevsw, * and save our disk structure in d_data so we can get at it easily * without any complex cloning code. */ devsw = cdevsw_add_override(rawdev, dkunitmask(), dkmakeunit(unit)); devsw->d_port = &dp->d_port; devsw->d_data = dp; devsw->d_clone = diskclone; dp->d_devsw = devsw; dp->d_rawdev = rawdev; dp->d_cdev = make_dev(devsw, dkmakeminor(unit, WHOLE_DISK_SLICE, RAW_PART), UID_ROOT, GID_OPERATOR, 0640, "%s%d", devsw->d_name, unit); dp->d_dsflags = flags; LIST_INSERT_HEAD(&disklist, dp, d_list); return (dp->d_rawdev); } /* * This routine is called when an adapter detaches. The higher level * managed disk device is destroyed while the lower level raw device is * released. */ void disk_destroy(struct disk *disk) { if (disk->d_devsw) { cdevsw_remove(disk->d_devsw, dkunitmask(), dkmakeunit(dkunit(disk->d_cdev))); LIST_REMOVE(disk, d_list); } if (disk->d_rawsw) { destroy_all_dev(disk->d_rawsw, dkunitmask(), dkmakeunit(dkunit(disk->d_rawdev))); } bzero(disk, sizeof(*disk)); } int disk_dumpcheck(dev_t dev, u_int *count, u_int *blkno, u_int *secsize) { struct disk *dp; struct disklabel *dl; u_int boff; dp = dev->si_disk; if (!dp) return (ENXIO); if (!dp->d_slice) return (ENXIO); dl = dsgetlabel(dev, dp->d_slice); if (!dl) return (ENXIO); *count = Maxmem * (PAGE_SIZE / dl->d_secsize); if (dumplo <= LABELSECTOR || (dumplo + *count > dl->d_partitions[dkpart(dev)].p_size)) return (EINVAL); boff = dl->d_partitions[dkpart(dev)].p_offset + dp->d_slice->dss_slices[dkslice(dev)].ds_offset; *blkno = boff + dumplo; *secsize = dl->d_secsize; return (0); } void disk_invalidate (struct disk *disk) { if (disk->d_slice) dsgone(&disk->d_slice); } struct disk * disk_enumerate(struct disk *disk) { if (!disk) return (LIST_FIRST(&disklist)); else return (LIST_NEXT(disk, d_list)); } static int sysctl_disks(SYSCTL_HANDLER_ARGS) { struct disk *disk; int error, first; disk = NULL; first = 1; while ((disk = disk_enumerate(disk))) { if (!first) { error = SYSCTL_OUT(req, " ", 1); if (error) return error; } else { first = 0; } error = SYSCTL_OUT(req, disk->d_rawdev->si_name, strlen(disk->d_rawdev->si_name)); if (error) return error; } error = SYSCTL_OUT(req, "", 1); return error; } SYSCTL_PROC(_kern, OID_AUTO, disks, CTLTYPE_STRING | CTLFLAG_RD, 0, NULL, sysctl_disks, "A", "names of available disks"); /* * The port intercept functions */ static int disk_putport(lwkt_port_t port, lwkt_msg_t lmsg) { struct disk *disk = (struct disk *)port; cdevallmsg_t msg = (cdevallmsg_t)lmsg; int error; switch(msg->am_lmsg.ms_cmd.cm_op) { case CDEV_CMD_OPEN: error = diskopen( msg->am_open.msg.dev, msg->am_open.oflags, msg->am_open.devtype, msg->am_open.td); break; case CDEV_CMD_CLOSE: error = diskclose( msg->am_close.msg.dev, msg->am_close.fflag, msg->am_close.devtype, msg->am_close.td); break; case CDEV_CMD_IOCTL: error = diskioctl( msg->am_ioctl.msg.dev, msg->am_ioctl.cmd, msg->am_ioctl.data, msg->am_ioctl.fflag, msg->am_ioctl.td); break; case CDEV_CMD_STRATEGY: diskstrategy(msg->am_strategy.bp); error = 0; break; case CDEV_CMD_PSIZE: msg->am_psize.result = diskpsize(msg->am_psize.msg.dev); error = 0; /* XXX */ break; case CDEV_CMD_READ: error = physio(msg->am_read.msg.dev, msg->am_read.uio, msg->am_read.ioflag); break; case CDEV_CMD_WRITE: error = physio(msg->am_write.msg.dev, msg->am_write.uio, msg->am_write.ioflag); break; case CDEV_CMD_POLL: case CDEV_CMD_KQFILTER: error = ENODEV; case CDEV_CMD_MMAP: error = -1; break; case CDEV_CMD_DUMP: error = disk_dumpcheck(msg->am_dump.msg.dev, &msg->am_dump.count, &msg->am_dump.blkno, &msg->am_dump.secsize); if (error == 0) { msg->am_dump.msg.dev = disk->d_rawdev; error = lwkt_forwardmsg(disk->d_rawdev->si_port, &msg->am_dump.msg.msg); printf("error2 %d\n", error); } break; default: error = ENOTSUP; break; } return(error); } /* * When new device entries are instantiated, make sure they inherit our * si_disk structure and block and iosize limits from the raw device. * * This routine is always called synchronously in the context of the * client. * * XXX The various io and block size constraints are not always initialized * properly by devices. */ static int diskclone(dev_t dev) { struct disk *dp; dp = dev->si_devsw->d_data; KKASSERT(dp != NULL); dev->si_disk = dp; dev->si_iosize_max = dp->d_rawdev->si_iosize_max; dev->si_bsize_phys = dp->d_rawdev->si_bsize_phys; dev->si_bsize_best = dp->d_rawdev->si_bsize_best; return(0); } /* * Open a disk device or partition. */ static int diskopen(dev_t dev, int oflags, int devtype, struct thread *td) { struct disk *dp; int error; /* * dp can't be NULL here XXX. */ error = 0; dp = dev->si_disk; if (dp == NULL) return (ENXIO); /* * Deal with open races */ while (dp->d_flags & DISKFLAG_LOCK) { dp->d_flags |= DISKFLAG_WANTED; error = tsleep(dp, PCATCH, "diskopen", hz); if (error) return (error); } dp->d_flags |= DISKFLAG_LOCK; /* * Open the underlying raw device. */ if (!dsisopen(dp->d_slice)) { #if 0 if (!pdev->si_iosize_max) pdev->si_iosize_max = dev->si_iosize_max; #endif error = dev_dopen(dp->d_rawdev, oflags, devtype, td); } /* * Inherit properties from the underlying device now that it is * open. */ diskclone(dev); if (error) goto out; error = dsopen(dev, devtype, dp->d_dsflags, &dp->d_slice, &dp->d_label); if (!dsisopen(dp->d_slice)) dev_dclose(dp->d_rawdev, oflags, devtype, td); out: dp->d_flags &= ~DISKFLAG_LOCK; if (dp->d_flags & DISKFLAG_WANTED) { dp->d_flags &= ~DISKFLAG_WANTED; wakeup(dp); } return(error); } /* * Close a disk device or partition */ static int diskclose(dev_t dev, int fflag, int devtype, struct thread *td) { struct disk *dp; int error; error = 0; dp = dev->si_disk; dsclose(dev, devtype, dp->d_slice); if (!dsisopen(dp->d_slice)) error = dev_dclose(dp->d_rawdev, fflag, devtype, td); return (error); } /* * Execute strategy routine */ static void diskstrategy(struct buf *bp) { struct disk *dp; dp = bp->b_dev->si_disk; if (dp == NULL) { bp->b_error = ENXIO; bp->b_flags |= B_ERROR; biodone(bp); return; } KKASSERT(bp->b_dev->si_disk == dp); if (dscheck(bp, dp->d_slice) <= 0) { biodone(bp); return; } bp->b_dev = dp->d_rawdev; dev_dstrategy(dp->d_rawdev, bp); } /* * First execute the ioctl on the disk device, and if it isn't supported * try running it on the backing device. */ static int diskioctl(dev_t dev, u_long cmd, caddr_t data, int fflag, struct thread *td) { struct disk *dp; int error; dp = dev->si_disk; if (dp == NULL) return (ENXIO); error = dsioctl(dev, cmd, data, fflag, &dp->d_slice); if (error == ENOIOCTL) error = dev_dioctl(dp->d_rawdev, cmd, data, fflag, td); return (error); } /* * */ static int diskpsize(dev_t dev) { struct disk *dp; dp = dev->si_disk; if (dp == NULL) return (-1); return(dssize(dev, &dp->d_slice)); #if 0 if (dp != dev->si_disk) { dev->si_drv1 = pdev->si_drv1; dev->si_drv2 = pdev->si_drv2; /* XXX: don't set bp->b_dev->si_disk (?) */ } #endif } SYSCTL_DECL(_debug_sizeof); SYSCTL_INT(_debug_sizeof, OID_AUTO, disklabel, CTLFLAG_RD, 0, sizeof(struct disklabel), "sizeof(struct disklabel)"); SYSCTL_INT(_debug_sizeof, OID_AUTO, diskslices, CTLFLAG_RD, 0, sizeof(struct diskslices), "sizeof(struct diskslices)"); SYSCTL_INT(_debug_sizeof, OID_AUTO, disk, CTLFLAG_RD, 0, sizeof(struct disk), "sizeof(struct disk)"); /* * Seek sort for disks. * * The buf_queue keep two queues, sorted in ascending block order. The first * queue holds those requests which are positioned after the current block * (in the first request); the second, which starts at queue->switch_point, * holds requests which came in after their block number was passed. Thus * we implement a one way scan, retracting after reaching the end of the drive * to the first request on the second queue, at which time it becomes the * first queue. * * A one-way scan is natural because of the way UNIX read-ahead blocks are * allocated. */ void bufqdisksort(struct buf_queue_head *bufq, struct buf *bp) { struct buf *bq; struct buf *bn; struct buf *be; be = TAILQ_LAST(&bufq->queue, buf_queue); /* * If the queue is empty or we are an * ordered transaction, then it's easy. */ if ((bq = bufq_first(bufq)) == NULL || (bp->b_flags & B_ORDERED) != 0) { bufq_insert_tail(bufq, bp); return; } else if (bufq->insert_point != NULL) { /* * A certain portion of the list is * "locked" to preserve ordering, so * we can only insert after the insert * point. */ bq = bufq->insert_point; } else { /* * If we lie before the last removed (currently active) * request, and are not inserting ourselves into the * "locked" portion of the list, then we must add ourselves * to the second request list. */ if (bp->b_pblkno < bufq->last_pblkno) { bq = bufq->switch_point; /* * If we are starting a new secondary list, * then it's easy. */ if (bq == NULL) { bufq->switch_point = bp; bufq_insert_tail(bufq, bp); return; } /* * If we lie ahead of the current switch point, * insert us before the switch point and move * the switch point. */ if (bp->b_pblkno < bq->b_pblkno) { bufq->switch_point = bp; TAILQ_INSERT_BEFORE(bq, bp, b_act); return; } } else { if (bufq->switch_point != NULL) be = TAILQ_PREV(bufq->switch_point, buf_queue, b_act); /* * If we lie between last_pblkno and bq, * insert before bq. */ if (bp->b_pblkno < bq->b_pblkno) { TAILQ_INSERT_BEFORE(bq, bp, b_act); return; } } } /* * Request is at/after our current position in the list. * Optimize for sequential I/O by seeing if we go at the tail. */ if (bp->b_pblkno > be->b_pblkno) { TAILQ_INSERT_AFTER(&bufq->queue, be, bp, b_act); return; } /* Otherwise, insertion sort */ while ((bn = TAILQ_NEXT(bq, b_act)) != NULL) { /* * We want to go after the current request if it is the end * of the first request list, or if the next request is a * larger cylinder than our request. */ if (bn == bufq->switch_point || bp->b_pblkno < bn->b_pblkno) break; bq = bn; } TAILQ_INSERT_AFTER(&bufq->queue, bq, bp, b_act); } /* * Attempt to read a disk label from a device using the indicated strategy * routine. The label must be partly set up before this: secpercyl, secsize * and anything required in the strategy routine (e.g., dummy bounds for the * partition containing the label) must be filled in before calling us. * Returns NULL on success and an error string on failure. */ char * readdisklabel(dev_t dev, struct disklabel *lp) { struct buf *bp; struct disklabel *dlp; char *msg = NULL; bp = geteblk((int)lp->d_secsize); bp->b_dev = dev; bp->b_blkno = LABELSECTOR * ((int)lp->d_secsize/DEV_BSIZE); bp->b_bcount = lp->d_secsize; bp->b_flags &= ~B_INVAL; bp->b_flags |= B_READ; BUF_STRATEGY(bp, 1); if (biowait(bp)) msg = "I/O error"; else for (dlp = (struct disklabel *)bp->b_data; dlp <= (struct disklabel *)((char *)bp->b_data + lp->d_secsize - sizeof(*dlp)); dlp = (struct disklabel *)((char *)dlp + sizeof(long))) { if (dlp->d_magic != DISKMAGIC || dlp->d_magic2 != DISKMAGIC) { if (msg == NULL) msg = "no disk label"; } else if (dlp->d_npartitions > MAXPARTITIONS || dkcksum(dlp) != 0) msg = "disk label corrupted"; else { *lp = *dlp; msg = NULL; break; } } bp->b_flags |= B_INVAL | B_AGE; brelse(bp); return (msg); } /* * Check new disk label for sensibility before setting it. */ int setdisklabel(struct disklabel *olp, struct disklabel *nlp, u_long openmask) { int i; struct partition *opp, *npp; /* * Check it is actually a disklabel we are looking at. */ if (nlp->d_magic != DISKMAGIC || nlp->d_magic2 != DISKMAGIC || dkcksum(nlp) != 0) return (EINVAL); /* * For each partition that we think is open, */ while ((i = ffs((long)openmask)) != 0) { i--; /* * Check it is not changing.... */ openmask &= ~(1 << i); if (nlp->d_npartitions <= i) return (EBUSY); opp = &olp->d_partitions[i]; npp = &nlp->d_partitions[i]; if (npp->p_offset != opp->p_offset || npp->p_size < opp->p_size) return (EBUSY); /* * Copy internally-set partition information * if new label doesn't include it. XXX * (If we are using it then we had better stay the same type) * This is possibly dubious, as someone else noted (XXX) */ if (npp->p_fstype == FS_UNUSED && opp->p_fstype != FS_UNUSED) { npp->p_fstype = opp->p_fstype; npp->p_fsize = opp->p_fsize; npp->p_frag = opp->p_frag; npp->p_cpg = opp->p_cpg; } } nlp->d_checksum = 0; nlp->d_checksum = dkcksum(nlp); *olp = *nlp; return (0); } /* * Write disk label back to device after modification. */ int writedisklabel(dev_t dev, struct disklabel *lp) { struct buf *bp; struct disklabel *dlp; int error = 0; if (lp->d_partitions[RAW_PART].p_offset != 0) return (EXDEV); /* not quite right */ bp = geteblk((int)lp->d_secsize); bp->b_dev = dkmodpart(dev, RAW_PART); bp->b_blkno = LABELSECTOR * ((int)lp->d_secsize/DEV_BSIZE); bp->b_bcount = lp->d_secsize; #if 1 /* * We read the label first to see if it's there, * in which case we will put ours at the same offset into the block.. * (I think this is stupid [Julian]) * Note that you can't write a label out over a corrupted label! * (also stupid.. how do you write the first one? by raw writes?) */ bp->b_flags &= ~B_INVAL; bp->b_flags |= B_READ; BUF_STRATEGY(bp, 1); error = biowait(bp); if (error) goto done; for (dlp = (struct disklabel *)bp->b_data; dlp <= (struct disklabel *) ((char *)bp->b_data + lp->d_secsize - sizeof(*dlp)); dlp = (struct disklabel *)((char *)dlp + sizeof(long))) { if (dlp->d_magic == DISKMAGIC && dlp->d_magic2 == DISKMAGIC && dkcksum(dlp) == 0) { *dlp = *lp; bp->b_flags &= ~(B_DONE | B_READ); bp->b_flags |= B_WRITE; bp->b_dev = dkmodpart(dev, RAW_PART); #ifdef __alpha__ alpha_fix_srm_checksum(bp); #endif BUF_STRATEGY(bp, 1); error = biowait(bp); goto done; } } error = ESRCH; done: #else bzero(bp->b_data, lp->d_secsize); dlp = (struct disklabel *)bp->b_data; *dlp = *lp; bp->b_flags &= ~B_INVAL; bp->b_flags |= B_WRITE; BUF_STRATEGY(bp, 1); error = biowait(bp); #endif bp->b_flags |= B_INVAL | B_AGE; brelse(bp); return (error); } /* * Disk error is the preface to plaintive error messages * about failing disk transfers. It prints messages of the form hp0g: hard error reading fsbn 12345 of 12344-12347 (hp0 bn %d cn %d tn %d sn %d) * if the offset of the error in the transfer and a disk label * are both available. blkdone should be -1 if the position of the error * is unknown; the disklabel pointer may be null from drivers that have not * been converted to use them. The message is printed with printf * if pri is LOG_PRINTF, otherwise it uses log at the specified priority. * The message should be completed (with at least a newline) with printf * or addlog, respectively. There is no trailing space. */ void diskerr(struct buf *bp, dev_t dev, char *what, int pri, int blkdone, struct disklabel *lp) { int unit = dkunit(dev); int slice = dkslice(dev); int part = dkpart(dev); char partname[2]; char *sname; daddr_t sn; sname = dsname(dev, unit, slice, part, partname); printf("%s%s: %s %sing fsbn ", sname, partname, what, bp->b_flags & B_READ ? "read" : "writ"); sn = bp->b_blkno; if (bp->b_bcount <= DEV_BSIZE) { printf("%ld", (long)sn); } else { if (blkdone >= 0) { sn += blkdone; printf("%ld of ", (long)sn); } printf("%ld-%ld", (long)bp->b_blkno, (long)(bp->b_blkno + (bp->b_bcount - 1) / DEV_BSIZE)); } if (lp && (blkdone >= 0 || bp->b_bcount <= lp->d_secsize)) { #ifdef tahoe sn *= DEV_BSIZE / lp->d_secsize; /* XXX */ #endif sn += lp->d_partitions[part].p_offset; /* * XXX should add slice offset and not print the slice, * but we don't know the slice pointer. * XXX should print bp->b_pblkno so that this will work * independent of slices, labels and bad sector remapping, * but some drivers don't set bp->b_pblkno. */ printf(" (%s bn %ld; cn %ld", sname, (long)sn, (long)(sn / lp->d_secpercyl)); sn %= (long)lp->d_secpercyl; printf(" tn %ld sn %ld)", (long)(sn / lp->d_nsectors), (long)(sn % lp->d_nsectors)); } }