/* * Copyright (c) 2001 Orion Hodson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHERIN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THEPOSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD: src/sys/dev/sound/pci/als4000.c,v 1.2.2.5 2002/04/22 15:49:31 cg Exp $ * $DragonFly: src/sys/dev/sound/pci/als4000.c,v 1.2 2003/06/17 04:28:30 dillon Exp $ */ /* * als4000.c - driver for the Avance Logic ALS 4000 chipset. * * The ALS4000 is a effectively an SB16 with a PCI interface. * * This driver derives from ALS4000a.PDF, Bart Hartgers alsa driver, and * SB16 register descriptions. */ #include #include #include #include #include #include "mixer_if.h" SND_DECLARE_FILE("$DragonFly: src/sys/dev/sound/pci/als4000.c,v 1.2 2003/06/17 04:28:30 dillon Exp $"); /* Debugging macro's */ #undef DEB #ifndef DEB #define DEB(x) /* x */ #endif /* DEB */ #define ALS_DEFAULT_BUFSZ 16384 /* ------------------------------------------------------------------------- */ /* Structures */ struct sc_info; struct sc_chinfo { struct sc_info *parent; struct pcm_channel *channel; struct snd_dbuf *buffer; u_int32_t format, speed, phys_buf, bps; u_int32_t dma_active:1, dma_was_active:1; u_int8_t gcr_fifo_status; int dir; }; struct sc_info { device_t dev; bus_space_tag_t st; bus_space_handle_t sh; bus_dma_tag_t parent_dmat; struct resource *reg, *irq; int regid, irqid; void *ih; unsigned int bufsz; struct sc_chinfo pch, rch; }; /* Channel caps */ static u_int32_t als_format[] = { AFMT_U8, AFMT_STEREO | AFMT_U8, AFMT_S16_LE, AFMT_STEREO | AFMT_S16_LE, 0 }; static struct pcmchan_caps als_caps = { 4000, 48000, als_format, 0 }; /* ------------------------------------------------------------------------- */ /* Register Utilities */ static u_int32_t als_gcr_rd(struct sc_info *sc, int index) { bus_space_write_1(sc->st, sc->sh, ALS_GCR_INDEX, index); return bus_space_read_4(sc->st, sc->sh, ALS_GCR_DATA); } static void als_gcr_wr(struct sc_info *sc, int index, int data) { bus_space_write_1(sc->st, sc->sh, ALS_GCR_INDEX, index); bus_space_write_4(sc->st, sc->sh, ALS_GCR_DATA, data); } static u_int8_t als_intr_rd(struct sc_info *sc) { return bus_space_read_1(sc->st, sc->sh, ALS_SB_MPU_IRQ); } static void als_intr_wr(struct sc_info *sc, u_int8_t data) { bus_space_write_1(sc->st, sc->sh, ALS_SB_MPU_IRQ, data); } static u_int8_t als_mix_rd(struct sc_info *sc, u_int8_t index) { bus_space_write_1(sc->st, sc->sh, ALS_MIXER_INDEX, index); return bus_space_read_1(sc->st, sc->sh, ALS_MIXER_DATA); } static void als_mix_wr(struct sc_info *sc, u_int8_t index, u_int8_t data) { bus_space_write_1(sc->st, sc->sh, ALS_MIXER_INDEX, index); bus_space_write_1(sc->st, sc->sh, ALS_MIXER_DATA, data); } static void als_esp_wr(struct sc_info *sc, u_int8_t data) { u_int32_t tries, v; tries = 1000; do { v = bus_space_read_1(sc->st, sc->sh, ALS_ESP_WR_STATUS); if (~v & 0x80) break; DELAY(20); } while (--tries != 0); if (tries == 0) device_printf(sc->dev, "als_esp_wr timeout"); bus_space_write_1(sc->st, sc->sh, ALS_ESP_WR_DATA, data); } static int als_esp_reset(struct sc_info *sc) { u_int32_t tries, u, v; bus_space_write_1(sc->st, sc->sh, ALS_ESP_RST, 1); DELAY(10); bus_space_write_1(sc->st, sc->sh, ALS_ESP_RST, 0); DELAY(30); tries = 1000; do { u = bus_space_read_1(sc->st, sc->sh, ALS_ESP_RD_STATUS8); if (u & 0x80) { v = bus_space_read_1(sc->st, sc->sh, ALS_ESP_RD_DATA); if (v == 0xaa) return 0; else break; } DELAY(20); } while (--tries != 0); if (tries == 0) device_printf(sc->dev, "als_esp_reset timeout"); return 1; } static u_int8_t als_ack_read(struct sc_info *sc, u_int8_t addr) { u_int8_t r = bus_space_read_1(sc->st, sc->sh, addr); return r; } /* ------------------------------------------------------------------------- */ /* Common pcm channel implementation */ static void * alschan_init(kobj_t obj, void *devinfo, struct snd_dbuf *b, struct pcm_channel *c, int dir) { struct sc_info *sc = devinfo; struct sc_chinfo *ch; if (dir == PCMDIR_PLAY) { ch = &sc->pch; ch->gcr_fifo_status = ALS_GCR_FIFO0_STATUS; } else { ch = &sc->rch; ch->gcr_fifo_status = ALS_GCR_FIFO1_STATUS; } ch->dir = dir; ch->parent = sc; ch->channel = c; ch->bps = 1; ch->format = AFMT_U8; ch->speed = DSP_DEFAULT_SPEED; ch->buffer = b; if (sndbuf_alloc(ch->buffer, sc->parent_dmat, sc->bufsz) != 0) { return NULL; } return ch; } static int alschan_setformat(kobj_t obj, void *data, u_int32_t format) { struct sc_chinfo *ch = data; ch->format = format; return 0; } static int alschan_setspeed(kobj_t obj, void *data, u_int32_t speed) { struct sc_chinfo *ch = data, *other; struct sc_info *sc = ch->parent; other = (ch->dir == PCMDIR_PLAY) ? &sc->rch : &sc->pch; /* Deny request if other dma channel is active */ if (other->dma_active) { ch->speed = other->speed; return other->speed; } ch->speed = speed; return speed; } static int alschan_setblocksize(kobj_t obj, void *data, u_int32_t blocksize) { struct sc_chinfo *ch = data; struct sc_info *sc = ch->parent; if (blocksize > sc->bufsz / 2) { blocksize = sc->bufsz / 2; } sndbuf_resize(ch->buffer, 2, blocksize); return blocksize; } static int alschan_getptr(kobj_t obj, void *data) { struct sc_chinfo *ch = data; int32_t pos, sz; pos = als_gcr_rd(ch->parent, ch->gcr_fifo_status) & 0xffff; sz = sndbuf_getsize(ch->buffer); return (2 * sz - pos - 1) % sz; } static struct pcmchan_caps* alschan_getcaps(kobj_t obj, void *data) { return &als_caps; } static void als_set_speed(struct sc_chinfo *ch) { struct sc_info *sc = ch->parent; struct sc_chinfo *other; other = (ch->dir == PCMDIR_PLAY) ? &sc->rch : &sc->pch; if (other->dma_active == 0) { als_esp_wr(sc, ALS_ESP_SAMPLE_RATE); als_esp_wr(sc, ch->speed >> 8); als_esp_wr(sc, ch->speed & 0xff); } else { DEB(printf("speed locked at %d (tried %d)\n", other->speed, ch->speed)); } } /* ------------------------------------------------------------------------- */ /* Playback channel implementation */ #define ALS_8BIT_CMD(x, y) { (x), (y), DSP_DMA8, DSP_CMD_DMAPAUSE_8 } #define ALS_16BIT_CMD(x, y) { (x), (y), DSP_DMA16, DSP_CMD_DMAPAUSE_16 } struct playback_command { u_int32_t pcm_format; /* newpcm format */ u_int8_t format_val; /* sb16 format value */ u_int8_t dma_prog; /* sb16 dma program */ u_int8_t dma_stop; /* sb16 stop register */ } static const playback_cmds[] = { ALS_8BIT_CMD(AFMT_U8, DSP_MODE_U8MONO), ALS_8BIT_CMD(AFMT_U8 | AFMT_STEREO, DSP_MODE_U8STEREO), ALS_16BIT_CMD(AFMT_S16_LE, DSP_MODE_S16MONO), ALS_16BIT_CMD(AFMT_S16_LE | AFMT_STEREO, DSP_MODE_S16STEREO), }; static const struct playback_command* als_get_playback_command(u_int32_t format) { u_int32_t i, n; n = sizeof(playback_cmds) / sizeof(playback_cmds[0]); for (i = 0; i < n; i++) { if (playback_cmds[i].pcm_format == format) { return &playback_cmds[i]; } } DEB(printf("als_get_playback_command: invalid format 0x%08x\n", format)); return &playback_cmds[0]; } static void als_playback_start(struct sc_chinfo *ch) { const struct playback_command *p; struct sc_info *sc = ch->parent; u_int32_t buf, bufsz, count, dma_prog; buf = vtophys(sndbuf_getbuf(ch->buffer)); bufsz = sndbuf_getsize(ch->buffer); count = bufsz / 2; if (ch->format & AFMT_16BIT) count /= 2; count--; als_esp_wr(sc, DSP_CMD_SPKON); als_set_speed(ch); als_gcr_wr(sc, ALS_GCR_DMA0_START, buf); als_gcr_wr(sc, ALS_GCR_DMA0_MODE, (bufsz - 1) | 0x180000); p = als_get_playback_command(ch->format); dma_prog = p->dma_prog | DSP_F16_DAC | DSP_F16_AUTO | DSP_F16_FIFO_ON; als_esp_wr(sc, dma_prog); als_esp_wr(sc, p->format_val); als_esp_wr(sc, count & 0xff); als_esp_wr(sc, count >> 8); ch->dma_active = 1; } static int als_playback_stop(struct sc_chinfo *ch) { const struct playback_command *p; struct sc_info *sc = ch->parent; u_int32_t active; active = ch->dma_active; if (active) { p = als_get_playback_command(ch->format); als_esp_wr(sc, p->dma_stop); } ch->dma_active = 0; return active; } static int alspchan_trigger(kobj_t obj, void *data, int go) { struct sc_chinfo *ch = data; switch(go) { case PCMTRIG_START: als_playback_start(ch); break; case PCMTRIG_ABORT: als_playback_stop(ch); break; } return 0; } static kobj_method_t alspchan_methods[] = { KOBJMETHOD(channel_init, alschan_init), KOBJMETHOD(channel_setformat, alschan_setformat), KOBJMETHOD(channel_setspeed, alschan_setspeed), KOBJMETHOD(channel_setblocksize, alschan_setblocksize), KOBJMETHOD(channel_trigger, alspchan_trigger), KOBJMETHOD(channel_getptr, alschan_getptr), KOBJMETHOD(channel_getcaps, alschan_getcaps), { 0, 0 } }; CHANNEL_DECLARE(alspchan); /* ------------------------------------------------------------------------- */ /* Capture channel implementation */ static u_int8_t als_get_fifo_format(struct sc_info *sc, u_int32_t format) { switch (format) { case AFMT_U8: return ALS_FIFO1_8BIT; case AFMT_U8 | AFMT_STEREO: return ALS_FIFO1_8BIT | ALS_FIFO1_STEREO; case AFMT_S16_LE: return ALS_FIFO1_SIGNED; case AFMT_S16_LE | AFMT_STEREO: return ALS_FIFO1_SIGNED | ALS_FIFO1_STEREO; } device_printf(sc->dev, "format not found: 0x%08x\n", format); return ALS_FIFO1_8BIT; } static void als_capture_start(struct sc_chinfo *ch) { struct sc_info *sc = ch->parent; u_int32_t buf, bufsz, count, dma_prog; buf = vtophys(sndbuf_getbuf(ch->buffer)); bufsz = sndbuf_getsize(ch->buffer); count = bufsz / 2; if (ch->format & AFMT_16BIT) count /= 2; count--; als_esp_wr(sc, DSP_CMD_SPKON); als_set_speed(ch); als_gcr_wr(sc, ALS_GCR_FIFO1_START, buf); als_gcr_wr(sc, ALS_GCR_FIFO1_COUNT, (bufsz - 1)); als_mix_wr(sc, ALS_FIFO1_LENGTH_LO, count & 0xff); als_mix_wr(sc, ALS_FIFO1_LENGTH_HI, count >> 8); dma_prog = ALS_FIFO1_RUN | als_get_fifo_format(sc, ch->format); als_mix_wr(sc, ALS_FIFO1_CONTROL, dma_prog); ch->dma_active = 1; } static int als_capture_stop(struct sc_chinfo *ch) { struct sc_info *sc = ch->parent; u_int32_t active; active = ch->dma_active; if (active) { als_mix_wr(sc, ALS_FIFO1_CONTROL, ALS_FIFO1_STOP); } ch->dma_active = 0; return active; } static int alsrchan_trigger(kobj_t obj, void *data, int go) { struct sc_chinfo *ch = data; switch(go) { case PCMTRIG_START: als_capture_start(ch); break; case PCMTRIG_ABORT: als_capture_stop(ch); break; } return 0; } static kobj_method_t alsrchan_methods[] = { KOBJMETHOD(channel_init, alschan_init), KOBJMETHOD(channel_setformat, alschan_setformat), KOBJMETHOD(channel_setspeed, alschan_setspeed), KOBJMETHOD(channel_setblocksize, alschan_setblocksize), KOBJMETHOD(channel_trigger, alsrchan_trigger), KOBJMETHOD(channel_getptr, alschan_getptr), KOBJMETHOD(channel_getcaps, alschan_getcaps), { 0, 0 } }; CHANNEL_DECLARE(alsrchan); /* ------------------------------------------------------------------------- */ /* Mixer related */ /* * ALS4000 has an sb16 mixer, with some additional controls that we do * not yet a means to support. */ struct sb16props { u_int8_t lreg; u_int8_t rreg; u_int8_t bits; u_int8_t oselect; u_int8_t iselect; /* left input mask */ } static const amt[SOUND_MIXER_NRDEVICES] = { [SOUND_MIXER_VOLUME] = { 0x30, 0x31, 5, 0x00, 0x00 }, [SOUND_MIXER_PCM] = { 0x32, 0x33, 5, 0x00, 0x00 }, [SOUND_MIXER_SYNTH] = { 0x34, 0x35, 5, 0x60, 0x40 }, [SOUND_MIXER_CD] = { 0x36, 0x37, 5, 0x06, 0x04 }, [SOUND_MIXER_LINE] = { 0x38, 0x39, 5, 0x18, 0x10 }, [SOUND_MIXER_MIC] = { 0x3a, 0x00, 5, 0x01, 0x01 }, [SOUND_MIXER_SPEAKER] = { 0x3b, 0x00, 2, 0x00, 0x00 }, [SOUND_MIXER_IGAIN] = { 0x3f, 0x40, 2, 0x00, 0x00 }, [SOUND_MIXER_OGAIN] = { 0x41, 0x42, 2, 0x00, 0x00 }, /* The following have register values but no h/w implementation */ [SOUND_MIXER_TREBLE] = { 0x44, 0x45, 4, 0x00, 0x00 }, [SOUND_MIXER_BASS] = { 0x46, 0x47, 4, 0x00, 0x00 } }; static int alsmix_init(struct snd_mixer *m) { u_int32_t i, v; for (i = v = 0; i < SOUND_MIXER_NRDEVICES; i++) { if (amt[i].bits) v |= 1 << i; } mix_setdevs(m, v); for (i = v = 0; i < SOUND_MIXER_NRDEVICES; i++) { if (amt[i].iselect) v |= 1 << i; } mix_setrecdevs(m, v); return 0; } static int alsmix_set(struct snd_mixer *m, unsigned dev, unsigned left, unsigned right) { struct sc_info *sc = mix_getdevinfo(m); u_int32_t r, l, v, mask; /* Fill upper n bits in mask with 1's */ mask = ((1 << amt[dev].bits) - 1) << (8 - amt[dev].bits); l = (left * mask / 100) & mask; v = als_mix_rd(sc, amt[dev].lreg) & ~mask; als_mix_wr(sc, amt[dev].lreg, l | v); if (amt[dev].rreg) { r = (right * mask / 100) & mask; v = als_mix_rd(sc, amt[dev].rreg) & ~mask; als_mix_wr(sc, amt[dev].rreg, r | v); } else { r = 0; } /* Zero gain does not mute channel from output, but this does. */ v = als_mix_rd(sc, SB16_OMASK); if (l == 0 && r == 0) { v &= ~amt[dev].oselect; } else { v |= amt[dev].oselect; } als_mix_wr(sc, SB16_OMASK, v); return 0; } static int alsmix_setrecsrc(struct snd_mixer *m, u_int32_t src) { struct sc_info *sc = mix_getdevinfo(m); u_int32_t i, l, r; for (i = l = r = 0; i < SOUND_MIXER_NRDEVICES; i++) { if (src & (1 << i)) { l |= amt[i].iselect; r |= amt[i].iselect << 1; } } als_mix_wr(sc, SB16_IMASK_L, l); als_mix_wr(sc, SB16_IMASK_R, r); return src; } static kobj_method_t als_mixer_methods[] = { KOBJMETHOD(mixer_init, alsmix_init), KOBJMETHOD(mixer_set, alsmix_set), KOBJMETHOD(mixer_setrecsrc, alsmix_setrecsrc), { 0, 0 } }; MIXER_DECLARE(als_mixer); /* ------------------------------------------------------------------------- */ /* Interrupt Handler */ static void als_intr(void *p) { struct sc_info *sc = (struct sc_info *)p; u_int8_t intr, sb_status; intr = als_intr_rd(sc); if (intr & 0x80) chn_intr(sc->pch.channel); if (intr & 0x40) chn_intr(sc->rch.channel); /* ACK interrupt in PCI core */ als_intr_wr(sc, intr); /* ACK interrupt in SB core */ sb_status = als_mix_rd(sc, IRQ_STAT); if (sb_status & ALS_IRQ_STATUS8) als_ack_read(sc, ALS_ESP_RD_STATUS8); if (sb_status & ALS_IRQ_STATUS16) als_ack_read(sc, ALS_ESP_RD_STATUS16); if (sb_status & ALS_IRQ_MPUIN) als_ack_read(sc, ALS_MIDI_DATA); if (sb_status & ALS_IRQ_CR1E) als_ack_read(sc, ALS_CR1E_ACK_PORT); return; } /* ------------------------------------------------------------------------- */ /* H/W initialization */ static int als_init(struct sc_info *sc) { u_int32_t i, v; /* Reset Chip */ if (als_esp_reset(sc)) { return 1; } /* Enable write on DMA_SETUP register */ v = als_mix_rd(sc, ALS_SB16_CONFIG); als_mix_wr(sc, ALS_SB16_CONFIG, v | 0x80); /* Select DMA0 */ als_mix_wr(sc, ALS_SB16_DMA_SETUP, 0x01); /* Disable write on DMA_SETUP register */ als_mix_wr(sc, ALS_SB16_CONFIG, v & 0x7f); /* Enable interrupts */ v = als_gcr_rd(sc, ALS_GCR_MISC); als_gcr_wr(sc, ALS_GCR_MISC, v | 0x28000); /* Black out GCR DMA registers */ for (i = 0x91; i <= 0x96; i++) { als_gcr_wr(sc, i, 0); } /* Emulation mode */ v = als_gcr_rd(sc, ALS_GCR_DMA_EMULATION); als_gcr_wr(sc, ALS_GCR_DMA_EMULATION, v); DEB(printf("GCR_DMA_EMULATION 0x%08x\n", v)); return 0; } static void als_uninit(struct sc_info *sc) { /* Disable interrupts */ als_gcr_wr(sc, ALS_GCR_MISC, 0); } /* ------------------------------------------------------------------------- */ /* Probe and attach card */ static int als_pci_probe(device_t dev) { if (pci_get_devid(dev) == ALS_PCI_ID0) { device_set_desc(dev, "Avance Logic ALS4000"); return 0; } return ENXIO; } static void als_resource_free(device_t dev, struct sc_info *sc) { if (sc->reg) { bus_release_resource(dev, SYS_RES_IOPORT, sc->regid, sc->reg); sc->reg = 0; } if (sc->ih) { bus_teardown_intr(dev, sc->irq, sc->ih); sc->ih = 0; } if (sc->irq) { bus_release_resource(dev, SYS_RES_IRQ, sc->irqid, sc->irq); sc->irq = 0; } if (sc->parent_dmat) { bus_dma_tag_destroy(sc->parent_dmat); sc->parent_dmat = 0; } } static int als_resource_grab(device_t dev, struct sc_info *sc) { sc->regid = PCIR_MAPS; sc->reg = bus_alloc_resource(dev, SYS_RES_IOPORT, &sc->regid, 0, ~0, ALS_CONFIG_SPACE_BYTES, RF_ACTIVE); if (sc->reg == 0) { device_printf(dev, "unable to allocate register space\n"); goto bad; } sc->st = rman_get_bustag(sc->reg); sc->sh = rman_get_bushandle(sc->reg); sc->irq = bus_alloc_resource(dev, SYS_RES_IRQ, &sc->irqid, 0, ~0, 1, RF_ACTIVE | RF_SHAREABLE); if (sc->irq == 0) { device_printf(dev, "unable to allocate interrupt\n"); goto bad; } if (bus_setup_intr(dev, sc->irq, INTR_TYPE_AV, als_intr, sc, &sc->ih)) { device_printf(dev, "unable to setup interrupt\n"); goto bad; } sc->bufsz = pcm_getbuffersize(dev, 4096, ALS_DEFAULT_BUFSZ, 65536); if (bus_dma_tag_create(/*parent*/NULL, /*alignment*/2, /*boundary*/0, /*lowaddr*/BUS_SPACE_MAXADDR_24BIT, /*highaddr*/BUS_SPACE_MAXADDR, /*filter*/NULL, /*filterarg*/NULL, /*maxsize*/sc->bufsz, /*nsegments*/1, /*maxsegz*/0x3ffff, /*flags*/0, &sc->parent_dmat) != 0) { device_printf(dev, "unable to create dma tag\n"); goto bad; } return 0; bad: als_resource_free(dev, sc); return ENXIO; } static int als_pci_attach(device_t dev) { struct sc_info *sc; u_int32_t data; char status[SND_STATUSLEN]; if ((sc = malloc(sizeof(*sc), M_DEVBUF, M_NOWAIT | M_ZERO)) == NULL) { device_printf(dev, "cannot allocate softc\n"); return ENXIO; } sc->dev = dev; data = pci_read_config(dev, PCIR_COMMAND, 2); data |= (PCIM_CMD_PORTEN | PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN); pci_write_config(dev, PCIR_COMMAND, data, 2); /* * By default the power to the various components on the * ALS4000 is entirely controlled by the pci powerstate. We * could attempt finer grained control by setting GCR6.31. */ #if __FreeBSD_version > 500000 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) { /* Reset the power state. */ device_printf(dev, "chip is in D%d power mode " "-- setting to D0\n", pci_get_powerstate(dev)); pci_set_powerstate(dev, PCI_POWERSTATE_D0); } #else data = pci_read_config(dev, ALS_PCI_POWERREG, 2); if ((data & 0x03) != 0) { device_printf(dev, "chip is in D%d power mode " "-- setting to D0\n", data & 0x03); data &= ~0x03; pci_write_config(dev, ALS_PCI_POWERREG, data, 2); } #endif if (als_resource_grab(dev, sc)) { device_printf(dev, "failed to allocate resources\n"); goto bad_attach; } if (als_init(sc)) { device_printf(dev, "failed to initialize hardware\n"); goto bad_attach; } if (mixer_init(dev, &als_mixer_class, sc)) { device_printf(dev, "failed to initialize mixer\n"); goto bad_attach; } if (pcm_register(dev, sc, 1, 1)) { device_printf(dev, "failed to register pcm entries\n"); goto bad_attach; } pcm_addchan(dev, PCMDIR_PLAY, &alspchan_class, sc); pcm_addchan(dev, PCMDIR_REC, &alsrchan_class, sc); snprintf(status, SND_STATUSLEN, "at io 0x%lx irq %ld", rman_get_start(sc->reg), rman_get_start(sc->irq)); pcm_setstatus(dev, status); return 0; bad_attach: als_resource_free(dev, sc); free(sc, M_DEVBUF); return ENXIO; } static int als_pci_detach(device_t dev) { struct sc_info *sc; int r; r = pcm_unregister(dev); if (r) return r; sc = pcm_getdevinfo(dev); als_uninit(sc); als_resource_free(dev, sc); free(sc, M_DEVBUF); return 0; } static int als_pci_suspend(device_t dev) { struct sc_info *sc = pcm_getdevinfo(dev); sc->pch.dma_was_active = als_playback_stop(&sc->pch); sc->rch.dma_was_active = als_capture_stop(&sc->rch); als_uninit(sc); return 0; } static int als_pci_resume(device_t dev) { struct sc_info *sc = pcm_getdevinfo(dev); if (als_init(sc) != 0) { device_printf(dev, "unable to reinitialize the card\n"); return ENXIO; } if (mixer_reinit(dev) != 0) { device_printf(dev, "unable to reinitialize the mixer\n"); return ENXIO; } if (sc->pch.dma_was_active) { als_playback_start(&sc->pch); } if (sc->rch.dma_was_active) { als_capture_start(&sc->rch); } return 0; } static device_method_t als_methods[] = { /* Device interface */ DEVMETHOD(device_probe, als_pci_probe), DEVMETHOD(device_attach, als_pci_attach), DEVMETHOD(device_detach, als_pci_detach), DEVMETHOD(device_suspend, als_pci_suspend), DEVMETHOD(device_resume, als_pci_resume), { 0, 0 } }; static driver_t als_driver = { "pcm", als_methods, PCM_SOFTC_SIZE, }; DRIVER_MODULE(snd_als4000, pci, als_driver, pcm_devclass, 0, 0); MODULE_DEPEND(snd_als4000, snd_pcm, PCM_MINVER, PCM_PREFVER, PCM_MAXVER); MODULE_VERSION(snd_als4000, 1);