MFV r298178:
[freebsd.git] / sys / vm / vm_map.c
1 /*-
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60
61 /*
62  *      Virtual memory mapping module.
63  */
64
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/ktr.h>
72 #include <sys/lock.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/racct.h>
79 #include <sys/resourcevar.h>
80 #include <sys/rwlock.h>
81 #include <sys/file.h>
82 #include <sys/sysctl.h>
83 #include <sys/sysent.h>
84 #include <sys/shm.h>
85
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_pager.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vnode_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/uma.h>
98
99 /*
100  *      Virtual memory maps provide for the mapping, protection,
101  *      and sharing of virtual memory objects.  In addition,
102  *      this module provides for an efficient virtual copy of
103  *      memory from one map to another.
104  *
105  *      Synchronization is required prior to most operations.
106  *
107  *      Maps consist of an ordered doubly-linked list of simple
108  *      entries; a self-adjusting binary search tree of these
109  *      entries is used to speed up lookups.
110  *
111  *      Since portions of maps are specified by start/end addresses,
112  *      which may not align with existing map entries, all
113  *      routines merely "clip" entries to these start/end values.
114  *      [That is, an entry is split into two, bordering at a
115  *      start or end value.]  Note that these clippings may not
116  *      always be necessary (as the two resulting entries are then
117  *      not changed); however, the clipping is done for convenience.
118  *
119  *      As mentioned above, virtual copy operations are performed
120  *      by copying VM object references from one map to
121  *      another, and then marking both regions as copy-on-write.
122  */
123
124 static struct mtx map_sleep_mtx;
125 static uma_zone_t mapentzone;
126 static uma_zone_t kmapentzone;
127 static uma_zone_t mapzone;
128 static uma_zone_t vmspace_zone;
129 static int vmspace_zinit(void *mem, int size, int flags);
130 static int vm_map_zinit(void *mem, int ize, int flags);
131 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
132     vm_offset_t max);
133 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
134 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
135 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
136 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
137     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
138 #ifdef INVARIANTS
139 static void vm_map_zdtor(void *mem, int size, void *arg);
140 static void vmspace_zdtor(void *mem, int size, void *arg);
141 #endif
142 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
143     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
144     int cow);
145 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
146     vm_offset_t failed_addr);
147
148 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \
149     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
150      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
151
152 /* 
153  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
154  * stable.
155  */
156 #define PROC_VMSPACE_LOCK(p) do { } while (0)
157 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
158
159 /*
160  *      VM_MAP_RANGE_CHECK:     [ internal use only ]
161  *
162  *      Asserts that the starting and ending region
163  *      addresses fall within the valid range of the map.
164  */
165 #define VM_MAP_RANGE_CHECK(map, start, end)             \
166                 {                                       \
167                 if (start < vm_map_min(map))            \
168                         start = vm_map_min(map);        \
169                 if (end > vm_map_max(map))              \
170                         end = vm_map_max(map);          \
171                 if (start > end)                        \
172                         start = end;                    \
173                 }
174
175 /*
176  *      vm_map_startup:
177  *
178  *      Initialize the vm_map module.  Must be called before
179  *      any other vm_map routines.
180  *
181  *      Map and entry structures are allocated from the general
182  *      purpose memory pool with some exceptions:
183  *
184  *      - The kernel map and kmem submap are allocated statically.
185  *      - Kernel map entries are allocated out of a static pool.
186  *
187  *      These restrictions are necessary since malloc() uses the
188  *      maps and requires map entries.
189  */
190
191 void
192 vm_map_startup(void)
193 {
194         mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
195         mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
196 #ifdef INVARIANTS
197             vm_map_zdtor,
198 #else
199             NULL,
200 #endif
201             vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
202         uma_prealloc(mapzone, MAX_KMAP);
203         kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
204             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
205             UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
206         mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
207             NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
208         vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
209 #ifdef INVARIANTS
210             vmspace_zdtor,
211 #else
212             NULL,
213 #endif
214             vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
215 }
216
217 static int
218 vmspace_zinit(void *mem, int size, int flags)
219 {
220         struct vmspace *vm;
221
222         vm = (struct vmspace *)mem;
223
224         vm->vm_map.pmap = NULL;
225         (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
226         PMAP_LOCK_INIT(vmspace_pmap(vm));
227         return (0);
228 }
229
230 static int
231 vm_map_zinit(void *mem, int size, int flags)
232 {
233         vm_map_t map;
234
235         map = (vm_map_t)mem;
236         memset(map, 0, sizeof(*map));
237         mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
238         sx_init(&map->lock, "vm map (user)");
239         return (0);
240 }
241
242 #ifdef INVARIANTS
243 static void
244 vmspace_zdtor(void *mem, int size, void *arg)
245 {
246         struct vmspace *vm;
247
248         vm = (struct vmspace *)mem;
249
250         vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
251 }
252 static void
253 vm_map_zdtor(void *mem, int size, void *arg)
254 {
255         vm_map_t map;
256
257         map = (vm_map_t)mem;
258         KASSERT(map->nentries == 0,
259             ("map %p nentries == %d on free.",
260             map, map->nentries));
261         KASSERT(map->size == 0,
262             ("map %p size == %lu on free.",
263             map, (unsigned long)map->size));
264 }
265 #endif  /* INVARIANTS */
266
267 /*
268  * Allocate a vmspace structure, including a vm_map and pmap,
269  * and initialize those structures.  The refcnt is set to 1.
270  *
271  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
272  */
273 struct vmspace *
274 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
275 {
276         struct vmspace *vm;
277
278         vm = uma_zalloc(vmspace_zone, M_WAITOK);
279
280         KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
281
282         if (pinit == NULL)
283                 pinit = &pmap_pinit;
284
285         if (!pinit(vmspace_pmap(vm))) {
286                 uma_zfree(vmspace_zone, vm);
287                 return (NULL);
288         }
289         CTR1(KTR_VM, "vmspace_alloc: %p", vm);
290         _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
291         vm->vm_refcnt = 1;
292         vm->vm_shm = NULL;
293         vm->vm_swrss = 0;
294         vm->vm_tsize = 0;
295         vm->vm_dsize = 0;
296         vm->vm_ssize = 0;
297         vm->vm_taddr = 0;
298         vm->vm_daddr = 0;
299         vm->vm_maxsaddr = 0;
300         return (vm);
301 }
302
303 #ifdef RACCT
304 static void
305 vmspace_container_reset(struct proc *p)
306 {
307
308         PROC_LOCK(p);
309         racct_set(p, RACCT_DATA, 0);
310         racct_set(p, RACCT_STACK, 0);
311         racct_set(p, RACCT_RSS, 0);
312         racct_set(p, RACCT_MEMLOCK, 0);
313         racct_set(p, RACCT_VMEM, 0);
314         PROC_UNLOCK(p);
315 }
316 #endif
317
318 static inline void
319 vmspace_dofree(struct vmspace *vm)
320 {
321
322         CTR1(KTR_VM, "vmspace_free: %p", vm);
323
324         /*
325          * Make sure any SysV shm is freed, it might not have been in
326          * exit1().
327          */
328         shmexit(vm);
329
330         /*
331          * Lock the map, to wait out all other references to it.
332          * Delete all of the mappings and pages they hold, then call
333          * the pmap module to reclaim anything left.
334          */
335         (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
336             vm->vm_map.max_offset);
337
338         pmap_release(vmspace_pmap(vm));
339         vm->vm_map.pmap = NULL;
340         uma_zfree(vmspace_zone, vm);
341 }
342
343 void
344 vmspace_free(struct vmspace *vm)
345 {
346
347         WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
348             "vmspace_free() called with non-sleepable lock held");
349
350         if (vm->vm_refcnt == 0)
351                 panic("vmspace_free: attempt to free already freed vmspace");
352
353         if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
354                 vmspace_dofree(vm);
355 }
356
357 void
358 vmspace_exitfree(struct proc *p)
359 {
360         struct vmspace *vm;
361
362         PROC_VMSPACE_LOCK(p);
363         vm = p->p_vmspace;
364         p->p_vmspace = NULL;
365         PROC_VMSPACE_UNLOCK(p);
366         KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
367         vmspace_free(vm);
368 }
369
370 void
371 vmspace_exit(struct thread *td)
372 {
373         int refcnt;
374         struct vmspace *vm;
375         struct proc *p;
376
377         /*
378          * Release user portion of address space.
379          * This releases references to vnodes,
380          * which could cause I/O if the file has been unlinked.
381          * Need to do this early enough that we can still sleep.
382          *
383          * The last exiting process to reach this point releases as
384          * much of the environment as it can. vmspace_dofree() is the
385          * slower fallback in case another process had a temporary
386          * reference to the vmspace.
387          */
388
389         p = td->td_proc;
390         vm = p->p_vmspace;
391         atomic_add_int(&vmspace0.vm_refcnt, 1);
392         do {
393                 refcnt = vm->vm_refcnt;
394                 if (refcnt > 1 && p->p_vmspace != &vmspace0) {
395                         /* Switch now since other proc might free vmspace */
396                         PROC_VMSPACE_LOCK(p);
397                         p->p_vmspace = &vmspace0;
398                         PROC_VMSPACE_UNLOCK(p);
399                         pmap_activate(td);
400                 }
401         } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
402         if (refcnt == 1) {
403                 if (p->p_vmspace != vm) {
404                         /* vmspace not yet freed, switch back */
405                         PROC_VMSPACE_LOCK(p);
406                         p->p_vmspace = vm;
407                         PROC_VMSPACE_UNLOCK(p);
408                         pmap_activate(td);
409                 }
410                 pmap_remove_pages(vmspace_pmap(vm));
411                 /* Switch now since this proc will free vmspace */
412                 PROC_VMSPACE_LOCK(p);
413                 p->p_vmspace = &vmspace0;
414                 PROC_VMSPACE_UNLOCK(p);
415                 pmap_activate(td);
416                 vmspace_dofree(vm);
417         }
418 #ifdef RACCT
419         if (racct_enable)
420                 vmspace_container_reset(p);
421 #endif
422 }
423
424 /* Acquire reference to vmspace owned by another process. */
425
426 struct vmspace *
427 vmspace_acquire_ref(struct proc *p)
428 {
429         struct vmspace *vm;
430         int refcnt;
431
432         PROC_VMSPACE_LOCK(p);
433         vm = p->p_vmspace;
434         if (vm == NULL) {
435                 PROC_VMSPACE_UNLOCK(p);
436                 return (NULL);
437         }
438         do {
439                 refcnt = vm->vm_refcnt;
440                 if (refcnt <= 0) {      /* Avoid 0->1 transition */
441                         PROC_VMSPACE_UNLOCK(p);
442                         return (NULL);
443                 }
444         } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
445         if (vm != p->p_vmspace) {
446                 PROC_VMSPACE_UNLOCK(p);
447                 vmspace_free(vm);
448                 return (NULL);
449         }
450         PROC_VMSPACE_UNLOCK(p);
451         return (vm);
452 }
453
454 /*
455  * Switch between vmspaces in an AIO kernel process.
456  *
457  * The AIO kernel processes switch to and from a user process's
458  * vmspace while performing an I/O operation on behalf of a user
459  * process.  The new vmspace is either the vmspace of a user process
460  * obtained from an active AIO request or the initial vmspace of the
461  * AIO kernel process (when it is idling).  Because user processes
462  * will block to drain any active AIO requests before proceeding in
463  * exit() or execve(), the vmspace reference count for these vmspaces
464  * can never be 0.  This allows for a much simpler implementation than
465  * the loop in vmspace_acquire_ref() above.  Similarly, AIO kernel
466  * processes hold an extra reference on their initial vmspace for the
467  * life of the process so that this guarantee is true for any vmspace
468  * passed as 'newvm'.
469  */
470 void
471 vmspace_switch_aio(struct vmspace *newvm)
472 {
473         struct vmspace *oldvm;
474
475         /* XXX: Need some way to assert that this is an aio daemon. */
476
477         KASSERT(newvm->vm_refcnt > 0,
478             ("vmspace_switch_aio: newvm unreferenced"));
479
480         oldvm = curproc->p_vmspace;
481         if (oldvm == newvm)
482                 return;
483
484         /*
485          * Point to the new address space and refer to it.
486          */
487         curproc->p_vmspace = newvm;
488         atomic_add_int(&newvm->vm_refcnt, 1);
489
490         /* Activate the new mapping. */
491         pmap_activate(curthread);
492
493         /* Remove the daemon's reference to the old address space. */
494         KASSERT(oldvm->vm_refcnt > 1,
495             ("vmspace_switch_aio: oldvm dropping last reference"));
496         vmspace_free(oldvm);
497 }
498
499 void
500 _vm_map_lock(vm_map_t map, const char *file, int line)
501 {
502
503         if (map->system_map)
504                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
505         else
506                 sx_xlock_(&map->lock, file, line);
507         map->timestamp++;
508 }
509
510 static void
511 vm_map_process_deferred(void)
512 {
513         struct thread *td;
514         vm_map_entry_t entry, next;
515         vm_object_t object;
516
517         td = curthread;
518         entry = td->td_map_def_user;
519         td->td_map_def_user = NULL;
520         while (entry != NULL) {
521                 next = entry->next;
522                 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
523                         /*
524                          * Decrement the object's writemappings and
525                          * possibly the vnode's v_writecount.
526                          */
527                         KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
528                             ("Submap with writecount"));
529                         object = entry->object.vm_object;
530                         KASSERT(object != NULL, ("No object for writecount"));
531                         vnode_pager_release_writecount(object, entry->start,
532                             entry->end);
533                 }
534                 vm_map_entry_deallocate(entry, FALSE);
535                 entry = next;
536         }
537 }
538
539 void
540 _vm_map_unlock(vm_map_t map, const char *file, int line)
541 {
542
543         if (map->system_map)
544                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
545         else {
546                 sx_xunlock_(&map->lock, file, line);
547                 vm_map_process_deferred();
548         }
549 }
550
551 void
552 _vm_map_lock_read(vm_map_t map, const char *file, int line)
553 {
554
555         if (map->system_map)
556                 mtx_lock_flags_(&map->system_mtx, 0, file, line);
557         else
558                 sx_slock_(&map->lock, file, line);
559 }
560
561 void
562 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
563 {
564
565         if (map->system_map)
566                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
567         else {
568                 sx_sunlock_(&map->lock, file, line);
569                 vm_map_process_deferred();
570         }
571 }
572
573 int
574 _vm_map_trylock(vm_map_t map, const char *file, int line)
575 {
576         int error;
577
578         error = map->system_map ?
579             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
580             !sx_try_xlock_(&map->lock, file, line);
581         if (error == 0)
582                 map->timestamp++;
583         return (error == 0);
584 }
585
586 int
587 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
588 {
589         int error;
590
591         error = map->system_map ?
592             !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
593             !sx_try_slock_(&map->lock, file, line);
594         return (error == 0);
595 }
596
597 /*
598  *      _vm_map_lock_upgrade:   [ internal use only ]
599  *
600  *      Tries to upgrade a read (shared) lock on the specified map to a write
601  *      (exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
602  *      non-zero value if the upgrade fails.  If the upgrade fails, the map is
603  *      returned without a read or write lock held.
604  *
605  *      Requires that the map be read locked.
606  */
607 int
608 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
609 {
610         unsigned int last_timestamp;
611
612         if (map->system_map) {
613                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
614         } else {
615                 if (!sx_try_upgrade_(&map->lock, file, line)) {
616                         last_timestamp = map->timestamp;
617                         sx_sunlock_(&map->lock, file, line);
618                         vm_map_process_deferred();
619                         /*
620                          * If the map's timestamp does not change while the
621                          * map is unlocked, then the upgrade succeeds.
622                          */
623                         sx_xlock_(&map->lock, file, line);
624                         if (last_timestamp != map->timestamp) {
625                                 sx_xunlock_(&map->lock, file, line);
626                                 return (1);
627                         }
628                 }
629         }
630         map->timestamp++;
631         return (0);
632 }
633
634 void
635 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
636 {
637
638         if (map->system_map) {
639                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
640         } else
641                 sx_downgrade_(&map->lock, file, line);
642 }
643
644 /*
645  *      vm_map_locked:
646  *
647  *      Returns a non-zero value if the caller holds a write (exclusive) lock
648  *      on the specified map and the value "0" otherwise.
649  */
650 int
651 vm_map_locked(vm_map_t map)
652 {
653
654         if (map->system_map)
655                 return (mtx_owned(&map->system_mtx));
656         else
657                 return (sx_xlocked(&map->lock));
658 }
659
660 #ifdef INVARIANTS
661 static void
662 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
663 {
664
665         if (map->system_map)
666                 mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
667         else
668                 sx_assert_(&map->lock, SA_XLOCKED, file, line);
669 }
670
671 #define VM_MAP_ASSERT_LOCKED(map) \
672     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
673 #else
674 #define VM_MAP_ASSERT_LOCKED(map)
675 #endif
676
677 /*
678  *      _vm_map_unlock_and_wait:
679  *
680  *      Atomically releases the lock on the specified map and puts the calling
681  *      thread to sleep.  The calling thread will remain asleep until either
682  *      vm_map_wakeup() is performed on the map or the specified timeout is
683  *      exceeded.
684  *
685  *      WARNING!  This function does not perform deferred deallocations of
686  *      objects and map entries.  Therefore, the calling thread is expected to
687  *      reacquire the map lock after reawakening and later perform an ordinary
688  *      unlock operation, such as vm_map_unlock(), before completing its
689  *      operation on the map.
690  */
691 int
692 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
693 {
694
695         mtx_lock(&map_sleep_mtx);
696         if (map->system_map)
697                 mtx_unlock_flags_(&map->system_mtx, 0, file, line);
698         else
699                 sx_xunlock_(&map->lock, file, line);
700         return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
701             timo));
702 }
703
704 /*
705  *      vm_map_wakeup:
706  *
707  *      Awaken any threads that have slept on the map using
708  *      vm_map_unlock_and_wait().
709  */
710 void
711 vm_map_wakeup(vm_map_t map)
712 {
713
714         /*
715          * Acquire and release map_sleep_mtx to prevent a wakeup()
716          * from being performed (and lost) between the map unlock
717          * and the msleep() in _vm_map_unlock_and_wait().
718          */
719         mtx_lock(&map_sleep_mtx);
720         mtx_unlock(&map_sleep_mtx);
721         wakeup(&map->root);
722 }
723
724 void
725 vm_map_busy(vm_map_t map)
726 {
727
728         VM_MAP_ASSERT_LOCKED(map);
729         map->busy++;
730 }
731
732 void
733 vm_map_unbusy(vm_map_t map)
734 {
735
736         VM_MAP_ASSERT_LOCKED(map);
737         KASSERT(map->busy, ("vm_map_unbusy: not busy"));
738         if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
739                 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
740                 wakeup(&map->busy);
741         }
742 }
743
744 void 
745 vm_map_wait_busy(vm_map_t map)
746 {
747
748         VM_MAP_ASSERT_LOCKED(map);
749         while (map->busy) {
750                 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
751                 if (map->system_map)
752                         msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
753                 else
754                         sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
755         }
756         map->timestamp++;
757 }
758
759 long
760 vmspace_resident_count(struct vmspace *vmspace)
761 {
762         return pmap_resident_count(vmspace_pmap(vmspace));
763 }
764
765 /*
766  *      vm_map_create:
767  *
768  *      Creates and returns a new empty VM map with
769  *      the given physical map structure, and having
770  *      the given lower and upper address bounds.
771  */
772 vm_map_t
773 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
774 {
775         vm_map_t result;
776
777         result = uma_zalloc(mapzone, M_WAITOK);
778         CTR1(KTR_VM, "vm_map_create: %p", result);
779         _vm_map_init(result, pmap, min, max);
780         return (result);
781 }
782
783 /*
784  * Initialize an existing vm_map structure
785  * such as that in the vmspace structure.
786  */
787 static void
788 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
789 {
790
791         map->header.next = map->header.prev = &map->header;
792         map->needs_wakeup = FALSE;
793         map->system_map = 0;
794         map->pmap = pmap;
795         map->min_offset = min;
796         map->max_offset = max;
797         map->flags = 0;
798         map->root = NULL;
799         map->timestamp = 0;
800         map->busy = 0;
801 }
802
803 void
804 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
805 {
806
807         _vm_map_init(map, pmap, min, max);
808         mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
809         sx_init(&map->lock, "user map");
810 }
811
812 /*
813  *      vm_map_entry_dispose:   [ internal use only ]
814  *
815  *      Inverse of vm_map_entry_create.
816  */
817 static void
818 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
819 {
820         uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
821 }
822
823 /*
824  *      vm_map_entry_create:    [ internal use only ]
825  *
826  *      Allocates a VM map entry for insertion.
827  *      No entry fields are filled in.
828  */
829 static vm_map_entry_t
830 vm_map_entry_create(vm_map_t map)
831 {
832         vm_map_entry_t new_entry;
833
834         if (map->system_map)
835                 new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
836         else
837                 new_entry = uma_zalloc(mapentzone, M_WAITOK);
838         if (new_entry == NULL)
839                 panic("vm_map_entry_create: kernel resources exhausted");
840         return (new_entry);
841 }
842
843 /*
844  *      vm_map_entry_set_behavior:
845  *
846  *      Set the expected access behavior, either normal, random, or
847  *      sequential.
848  */
849 static inline void
850 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
851 {
852         entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
853             (behavior & MAP_ENTRY_BEHAV_MASK);
854 }
855
856 /*
857  *      vm_map_entry_set_max_free:
858  *
859  *      Set the max_free field in a vm_map_entry.
860  */
861 static inline void
862 vm_map_entry_set_max_free(vm_map_entry_t entry)
863 {
864
865         entry->max_free = entry->adj_free;
866         if (entry->left != NULL && entry->left->max_free > entry->max_free)
867                 entry->max_free = entry->left->max_free;
868         if (entry->right != NULL && entry->right->max_free > entry->max_free)
869                 entry->max_free = entry->right->max_free;
870 }
871
872 /*
873  *      vm_map_entry_splay:
874  *
875  *      The Sleator and Tarjan top-down splay algorithm with the
876  *      following variation.  Max_free must be computed bottom-up, so
877  *      on the downward pass, maintain the left and right spines in
878  *      reverse order.  Then, make a second pass up each side to fix
879  *      the pointers and compute max_free.  The time bound is O(log n)
880  *      amortized.
881  *
882  *      The new root is the vm_map_entry containing "addr", or else an
883  *      adjacent entry (lower or higher) if addr is not in the tree.
884  *
885  *      The map must be locked, and leaves it so.
886  *
887  *      Returns: the new root.
888  */
889 static vm_map_entry_t
890 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
891 {
892         vm_map_entry_t llist, rlist;
893         vm_map_entry_t ltree, rtree;
894         vm_map_entry_t y;
895
896         /* Special case of empty tree. */
897         if (root == NULL)
898                 return (root);
899
900         /*
901          * Pass One: Splay down the tree until we find addr or a NULL
902          * pointer where addr would go.  llist and rlist are the two
903          * sides in reverse order (bottom-up), with llist linked by
904          * the right pointer and rlist linked by the left pointer in
905          * the vm_map_entry.  Wait until Pass Two to set max_free on
906          * the two spines.
907          */
908         llist = NULL;
909         rlist = NULL;
910         for (;;) {
911                 /* root is never NULL in here. */
912                 if (addr < root->start) {
913                         y = root->left;
914                         if (y == NULL)
915                                 break;
916                         if (addr < y->start && y->left != NULL) {
917                                 /* Rotate right and put y on rlist. */
918                                 root->left = y->right;
919                                 y->right = root;
920                                 vm_map_entry_set_max_free(root);
921                                 root = y->left;
922                                 y->left = rlist;
923                                 rlist = y;
924                         } else {
925                                 /* Put root on rlist. */
926                                 root->left = rlist;
927                                 rlist = root;
928                                 root = y;
929                         }
930                 } else if (addr >= root->end) {
931                         y = root->right;
932                         if (y == NULL)
933                                 break;
934                         if (addr >= y->end && y->right != NULL) {
935                                 /* Rotate left and put y on llist. */
936                                 root->right = y->left;
937                                 y->left = root;
938                                 vm_map_entry_set_max_free(root);
939                                 root = y->right;
940                                 y->right = llist;
941                                 llist = y;
942                         } else {
943                                 /* Put root on llist. */
944                                 root->right = llist;
945                                 llist = root;
946                                 root = y;
947                         }
948                 } else
949                         break;
950         }
951
952         /*
953          * Pass Two: Walk back up the two spines, flip the pointers
954          * and set max_free.  The subtrees of the root go at the
955          * bottom of llist and rlist.
956          */
957         ltree = root->left;
958         while (llist != NULL) {
959                 y = llist->right;
960                 llist->right = ltree;
961                 vm_map_entry_set_max_free(llist);
962                 ltree = llist;
963                 llist = y;
964         }
965         rtree = root->right;
966         while (rlist != NULL) {
967                 y = rlist->left;
968                 rlist->left = rtree;
969                 vm_map_entry_set_max_free(rlist);
970                 rtree = rlist;
971                 rlist = y;
972         }
973
974         /*
975          * Final assembly: add ltree and rtree as subtrees of root.
976          */
977         root->left = ltree;
978         root->right = rtree;
979         vm_map_entry_set_max_free(root);
980
981         return (root);
982 }
983
984 /*
985  *      vm_map_entry_{un,}link:
986  *
987  *      Insert/remove entries from maps.
988  */
989 static void
990 vm_map_entry_link(vm_map_t map,
991                   vm_map_entry_t after_where,
992                   vm_map_entry_t entry)
993 {
994
995         CTR4(KTR_VM,
996             "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
997             map->nentries, entry, after_where);
998         VM_MAP_ASSERT_LOCKED(map);
999         KASSERT(after_where == &map->header ||
1000             after_where->end <= entry->start,
1001             ("vm_map_entry_link: prev end %jx new start %jx overlap",
1002             (uintmax_t)after_where->end, (uintmax_t)entry->start));
1003         KASSERT(after_where->next == &map->header ||
1004             entry->end <= after_where->next->start,
1005             ("vm_map_entry_link: new end %jx next start %jx overlap",
1006             (uintmax_t)entry->end, (uintmax_t)after_where->next->start));
1007
1008         map->nentries++;
1009         entry->prev = after_where;
1010         entry->next = after_where->next;
1011         entry->next->prev = entry;
1012         after_where->next = entry;
1013
1014         if (after_where != &map->header) {
1015                 if (after_where != map->root)
1016                         vm_map_entry_splay(after_where->start, map->root);
1017                 entry->right = after_where->right;
1018                 entry->left = after_where;
1019                 after_where->right = NULL;
1020                 after_where->adj_free = entry->start - after_where->end;
1021                 vm_map_entry_set_max_free(after_where);
1022         } else {
1023                 entry->right = map->root;
1024                 entry->left = NULL;
1025         }
1026         entry->adj_free = (entry->next == &map->header ? map->max_offset :
1027             entry->next->start) - entry->end;
1028         vm_map_entry_set_max_free(entry);
1029         map->root = entry;
1030 }
1031
1032 static void
1033 vm_map_entry_unlink(vm_map_t map,
1034                     vm_map_entry_t entry)
1035 {
1036         vm_map_entry_t next, prev, root;
1037
1038         VM_MAP_ASSERT_LOCKED(map);
1039         if (entry != map->root)
1040                 vm_map_entry_splay(entry->start, map->root);
1041         if (entry->left == NULL)
1042                 root = entry->right;
1043         else {
1044                 root = vm_map_entry_splay(entry->start, entry->left);
1045                 root->right = entry->right;
1046                 root->adj_free = (entry->next == &map->header ? map->max_offset :
1047                     entry->next->start) - root->end;
1048                 vm_map_entry_set_max_free(root);
1049         }
1050         map->root = root;
1051
1052         prev = entry->prev;
1053         next = entry->next;
1054         next->prev = prev;
1055         prev->next = next;
1056         map->nentries--;
1057         CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1058             map->nentries, entry);
1059 }
1060
1061 /*
1062  *      vm_map_entry_resize_free:
1063  *
1064  *      Recompute the amount of free space following a vm_map_entry
1065  *      and propagate that value up the tree.  Call this function after
1066  *      resizing a map entry in-place, that is, without a call to
1067  *      vm_map_entry_link() or _unlink().
1068  *
1069  *      The map must be locked, and leaves it so.
1070  */
1071 static void
1072 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1073 {
1074
1075         /*
1076          * Using splay trees without parent pointers, propagating
1077          * max_free up the tree is done by moving the entry to the
1078          * root and making the change there.
1079          */
1080         if (entry != map->root)
1081                 map->root = vm_map_entry_splay(entry->start, map->root);
1082
1083         entry->adj_free = (entry->next == &map->header ? map->max_offset :
1084             entry->next->start) - entry->end;
1085         vm_map_entry_set_max_free(entry);
1086 }
1087
1088 /*
1089  *      vm_map_lookup_entry:    [ internal use only ]
1090  *
1091  *      Finds the map entry containing (or
1092  *      immediately preceding) the specified address
1093  *      in the given map; the entry is returned
1094  *      in the "entry" parameter.  The boolean
1095  *      result indicates whether the address is
1096  *      actually contained in the map.
1097  */
1098 boolean_t
1099 vm_map_lookup_entry(
1100         vm_map_t map,
1101         vm_offset_t address,
1102         vm_map_entry_t *entry)  /* OUT */
1103 {
1104         vm_map_entry_t cur;
1105         boolean_t locked;
1106
1107         /*
1108          * If the map is empty, then the map entry immediately preceding
1109          * "address" is the map's header.
1110          */
1111         cur = map->root;
1112         if (cur == NULL)
1113                 *entry = &map->header;
1114         else if (address >= cur->start && cur->end > address) {
1115                 *entry = cur;
1116                 return (TRUE);
1117         } else if ((locked = vm_map_locked(map)) ||
1118             sx_try_upgrade(&map->lock)) {
1119                 /*
1120                  * Splay requires a write lock on the map.  However, it only
1121                  * restructures the binary search tree; it does not otherwise
1122                  * change the map.  Thus, the map's timestamp need not change
1123                  * on a temporary upgrade.
1124                  */
1125                 map->root = cur = vm_map_entry_splay(address, cur);
1126                 if (!locked)
1127                         sx_downgrade(&map->lock);
1128
1129                 /*
1130                  * If "address" is contained within a map entry, the new root
1131                  * is that map entry.  Otherwise, the new root is a map entry
1132                  * immediately before or after "address".
1133                  */
1134                 if (address >= cur->start) {
1135                         *entry = cur;
1136                         if (cur->end > address)
1137                                 return (TRUE);
1138                 } else
1139                         *entry = cur->prev;
1140         } else
1141                 /*
1142                  * Since the map is only locked for read access, perform a
1143                  * standard binary search tree lookup for "address".
1144                  */
1145                 for (;;) {
1146                         if (address < cur->start) {
1147                                 if (cur->left == NULL) {
1148                                         *entry = cur->prev;
1149                                         break;
1150                                 }
1151                                 cur = cur->left;
1152                         } else if (cur->end > address) {
1153                                 *entry = cur;
1154                                 return (TRUE);
1155                         } else {
1156                                 if (cur->right == NULL) {
1157                                         *entry = cur;
1158                                         break;
1159                                 }
1160                                 cur = cur->right;
1161                         }
1162                 }
1163         return (FALSE);
1164 }
1165
1166 /*
1167  *      vm_map_insert:
1168  *
1169  *      Inserts the given whole VM object into the target
1170  *      map at the specified address range.  The object's
1171  *      size should match that of the address range.
1172  *
1173  *      Requires that the map be locked, and leaves it so.
1174  *
1175  *      If object is non-NULL, ref count must be bumped by caller
1176  *      prior to making call to account for the new entry.
1177  */
1178 int
1179 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1180     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1181 {
1182         vm_map_entry_t new_entry, prev_entry, temp_entry;
1183         vm_eflags_t protoeflags;
1184         struct ucred *cred;
1185         vm_inherit_t inheritance;
1186
1187         VM_MAP_ASSERT_LOCKED(map);
1188         KASSERT((object != kmem_object && object != kernel_object) ||
1189             (cow & MAP_COPY_ON_WRITE) == 0,
1190             ("vm_map_insert: kmem or kernel object and COW"));
1191         KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1192             ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1193
1194         /*
1195          * Check that the start and end points are not bogus.
1196          */
1197         if ((start < map->min_offset) || (end > map->max_offset) ||
1198             (start >= end))
1199                 return (KERN_INVALID_ADDRESS);
1200
1201         /*
1202          * Find the entry prior to the proposed starting address; if it's part
1203          * of an existing entry, this range is bogus.
1204          */
1205         if (vm_map_lookup_entry(map, start, &temp_entry))
1206                 return (KERN_NO_SPACE);
1207
1208         prev_entry = temp_entry;
1209
1210         /*
1211          * Assert that the next entry doesn't overlap the end point.
1212          */
1213         if ((prev_entry->next != &map->header) &&
1214             (prev_entry->next->start < end))
1215                 return (KERN_NO_SPACE);
1216
1217         protoeflags = 0;
1218         if (cow & MAP_COPY_ON_WRITE)
1219                 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1220         if (cow & MAP_NOFAULT)
1221                 protoeflags |= MAP_ENTRY_NOFAULT;
1222         if (cow & MAP_DISABLE_SYNCER)
1223                 protoeflags |= MAP_ENTRY_NOSYNC;
1224         if (cow & MAP_DISABLE_COREDUMP)
1225                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1226         if (cow & MAP_STACK_GROWS_DOWN)
1227                 protoeflags |= MAP_ENTRY_GROWS_DOWN;
1228         if (cow & MAP_STACK_GROWS_UP)
1229                 protoeflags |= MAP_ENTRY_GROWS_UP;
1230         if (cow & MAP_VN_WRITECOUNT)
1231                 protoeflags |= MAP_ENTRY_VN_WRITECNT;
1232         if (cow & MAP_INHERIT_SHARE)
1233                 inheritance = VM_INHERIT_SHARE;
1234         else
1235                 inheritance = VM_INHERIT_DEFAULT;
1236
1237         cred = NULL;
1238         if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
1239                 goto charged;
1240         if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1241             ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1242                 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1243                         return (KERN_RESOURCE_SHORTAGE);
1244                 KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) ||
1245                     object->cred == NULL,
1246                     ("OVERCOMMIT: vm_map_insert o %p", object));
1247                 cred = curthread->td_ucred;
1248         }
1249
1250 charged:
1251         /* Expand the kernel pmap, if necessary. */
1252         if (map == kernel_map && end > kernel_vm_end)
1253                 pmap_growkernel(end);
1254         if (object != NULL) {
1255                 /*
1256                  * OBJ_ONEMAPPING must be cleared unless this mapping
1257                  * is trivially proven to be the only mapping for any
1258                  * of the object's pages.  (Object granularity
1259                  * reference counting is insufficient to recognize
1260                  * aliases with precision.)
1261                  */
1262                 VM_OBJECT_WLOCK(object);
1263                 if (object->ref_count > 1 || object->shadow_count != 0)
1264                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
1265                 VM_OBJECT_WUNLOCK(object);
1266         }
1267         else if ((prev_entry != &map->header) &&
1268                  (prev_entry->eflags == protoeflags) &&
1269                  (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 &&
1270                  (prev_entry->end == start) &&
1271                  (prev_entry->wired_count == 0) &&
1272                  (prev_entry->cred == cred ||
1273                   (prev_entry->object.vm_object != NULL &&
1274                    (prev_entry->object.vm_object->cred == cred))) &&
1275                    vm_object_coalesce(prev_entry->object.vm_object,
1276                        prev_entry->offset,
1277                        (vm_size_t)(prev_entry->end - prev_entry->start),
1278                        (vm_size_t)(end - prev_entry->end), cred != NULL &&
1279                        (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1280                 /*
1281                  * We were able to extend the object.  Determine if we
1282                  * can extend the previous map entry to include the
1283                  * new range as well.
1284                  */
1285                 if ((prev_entry->inheritance == inheritance) &&
1286                     (prev_entry->protection == prot) &&
1287                     (prev_entry->max_protection == max)) {
1288                         map->size += (end - prev_entry->end);
1289                         prev_entry->end = end;
1290                         vm_map_entry_resize_free(map, prev_entry);
1291                         vm_map_simplify_entry(map, prev_entry);
1292                         return (KERN_SUCCESS);
1293                 }
1294
1295                 /*
1296                  * If we can extend the object but cannot extend the
1297                  * map entry, we have to create a new map entry.  We
1298                  * must bump the ref count on the extended object to
1299                  * account for it.  object may be NULL.
1300                  */
1301                 object = prev_entry->object.vm_object;
1302                 offset = prev_entry->offset +
1303                         (prev_entry->end - prev_entry->start);
1304                 vm_object_reference(object);
1305                 if (cred != NULL && object != NULL && object->cred != NULL &&
1306                     !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1307                         /* Object already accounts for this uid. */
1308                         cred = NULL;
1309                 }
1310         }
1311         if (cred != NULL)
1312                 crhold(cred);
1313
1314         /*
1315          * Create a new entry
1316          */
1317         new_entry = vm_map_entry_create(map);
1318         new_entry->start = start;
1319         new_entry->end = end;
1320         new_entry->cred = NULL;
1321
1322         new_entry->eflags = protoeflags;
1323         new_entry->object.vm_object = object;
1324         new_entry->offset = offset;
1325         new_entry->avail_ssize = 0;
1326
1327         new_entry->inheritance = inheritance;
1328         new_entry->protection = prot;
1329         new_entry->max_protection = max;
1330         new_entry->wired_count = 0;
1331         new_entry->wiring_thread = NULL;
1332         new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1333         new_entry->next_read = OFF_TO_IDX(offset);
1334
1335         KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1336             ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry));
1337         new_entry->cred = cred;
1338
1339         /*
1340          * Insert the new entry into the list
1341          */
1342         vm_map_entry_link(map, prev_entry, new_entry);
1343         map->size += new_entry->end - new_entry->start;
1344
1345         /*
1346          * Try to coalesce the new entry with both the previous and next
1347          * entries in the list.  Previously, we only attempted to coalesce
1348          * with the previous entry when object is NULL.  Here, we handle the
1349          * other cases, which are less common.
1350          */
1351         vm_map_simplify_entry(map, new_entry);
1352
1353         if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1354                 vm_map_pmap_enter(map, start, prot,
1355                                     object, OFF_TO_IDX(offset), end - start,
1356                                     cow & MAP_PREFAULT_PARTIAL);
1357         }
1358
1359         return (KERN_SUCCESS);
1360 }
1361
1362 /*
1363  *      vm_map_findspace:
1364  *
1365  *      Find the first fit (lowest VM address) for "length" free bytes
1366  *      beginning at address >= start in the given map.
1367  *
1368  *      In a vm_map_entry, "adj_free" is the amount of free space
1369  *      adjacent (higher address) to this entry, and "max_free" is the
1370  *      maximum amount of contiguous free space in its subtree.  This
1371  *      allows finding a free region in one path down the tree, so
1372  *      O(log n) amortized with splay trees.
1373  *
1374  *      The map must be locked, and leaves it so.
1375  *
1376  *      Returns: 0 on success, and starting address in *addr,
1377  *               1 if insufficient space.
1378  */
1379 int
1380 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1381     vm_offset_t *addr)  /* OUT */
1382 {
1383         vm_map_entry_t entry;
1384         vm_offset_t st;
1385
1386         /*
1387          * Request must fit within min/max VM address and must avoid
1388          * address wrap.
1389          */
1390         if (start < map->min_offset)
1391                 start = map->min_offset;
1392         if (start + length > map->max_offset || start + length < start)
1393                 return (1);
1394
1395         /* Empty tree means wide open address space. */
1396         if (map->root == NULL) {
1397                 *addr = start;
1398                 return (0);
1399         }
1400
1401         /*
1402          * After splay, if start comes before root node, then there
1403          * must be a gap from start to the root.
1404          */
1405         map->root = vm_map_entry_splay(start, map->root);
1406         if (start + length <= map->root->start) {
1407                 *addr = start;
1408                 return (0);
1409         }
1410
1411         /*
1412          * Root is the last node that might begin its gap before
1413          * start, and this is the last comparison where address
1414          * wrap might be a problem.
1415          */
1416         st = (start > map->root->end) ? start : map->root->end;
1417         if (length <= map->root->end + map->root->adj_free - st) {
1418                 *addr = st;
1419                 return (0);
1420         }
1421
1422         /* With max_free, can immediately tell if no solution. */
1423         entry = map->root->right;
1424         if (entry == NULL || length > entry->max_free)
1425                 return (1);
1426
1427         /*
1428          * Search the right subtree in the order: left subtree, root,
1429          * right subtree (first fit).  The previous splay implies that
1430          * all regions in the right subtree have addresses > start.
1431          */
1432         while (entry != NULL) {
1433                 if (entry->left != NULL && entry->left->max_free >= length)
1434                         entry = entry->left;
1435                 else if (entry->adj_free >= length) {
1436                         *addr = entry->end;
1437                         return (0);
1438                 } else
1439                         entry = entry->right;
1440         }
1441
1442         /* Can't get here, so panic if we do. */
1443         panic("vm_map_findspace: max_free corrupt");
1444 }
1445
1446 int
1447 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1448     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1449     vm_prot_t max, int cow)
1450 {
1451         vm_offset_t end;
1452         int result;
1453
1454         end = start + length;
1455         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1456             object == NULL,
1457             ("vm_map_fixed: non-NULL backing object for stack"));
1458         vm_map_lock(map);
1459         VM_MAP_RANGE_CHECK(map, start, end);
1460         if ((cow & MAP_CHECK_EXCL) == 0)
1461                 vm_map_delete(map, start, end);
1462         if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1463                 result = vm_map_stack_locked(map, start, length, sgrowsiz,
1464                     prot, max, cow);
1465         } else {
1466                 result = vm_map_insert(map, object, offset, start, end,
1467                     prot, max, cow);
1468         }
1469         vm_map_unlock(map);
1470         return (result);
1471 }
1472
1473 /*
1474  *      vm_map_find finds an unallocated region in the target address
1475  *      map with the given length.  The search is defined to be
1476  *      first-fit from the specified address; the region found is
1477  *      returned in the same parameter.
1478  *
1479  *      If object is non-NULL, ref count must be bumped by caller
1480  *      prior to making call to account for the new entry.
1481  */
1482 int
1483 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1484             vm_offset_t *addr,  /* IN/OUT */
1485             vm_size_t length, vm_offset_t max_addr, int find_space,
1486             vm_prot_t prot, vm_prot_t max, int cow)
1487 {
1488         vm_offset_t alignment, initial_addr, start;
1489         int result;
1490
1491         KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1492             object == NULL,
1493             ("vm_map_find: non-NULL backing object for stack"));
1494         if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1495             (object->flags & OBJ_COLORED) == 0))
1496                 find_space = VMFS_ANY_SPACE;
1497         if (find_space >> 8 != 0) {
1498                 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1499                 alignment = (vm_offset_t)1 << (find_space >> 8);
1500         } else
1501                 alignment = 0;
1502         initial_addr = *addr;
1503 again:
1504         start = initial_addr;
1505         vm_map_lock(map);
1506         do {
1507                 if (find_space != VMFS_NO_SPACE) {
1508                         if (vm_map_findspace(map, start, length, addr) ||
1509                             (max_addr != 0 && *addr + length > max_addr)) {
1510                                 vm_map_unlock(map);
1511                                 if (find_space == VMFS_OPTIMAL_SPACE) {
1512                                         find_space = VMFS_ANY_SPACE;
1513                                         goto again;
1514                                 }
1515                                 return (KERN_NO_SPACE);
1516                         }
1517                         switch (find_space) {
1518                         case VMFS_SUPER_SPACE:
1519                         case VMFS_OPTIMAL_SPACE:
1520                                 pmap_align_superpage(object, offset, addr,
1521                                     length);
1522                                 break;
1523                         case VMFS_ANY_SPACE:
1524                                 break;
1525                         default:
1526                                 if ((*addr & (alignment - 1)) != 0) {
1527                                         *addr &= ~(alignment - 1);
1528                                         *addr += alignment;
1529                                 }
1530                                 break;
1531                         }
1532
1533                         start = *addr;
1534                 }
1535                 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1536                         result = vm_map_stack_locked(map, start, length,
1537                             sgrowsiz, prot, max, cow);
1538                 } else {
1539                         result = vm_map_insert(map, object, offset, start,
1540                             start + length, prot, max, cow);
1541                 }
1542         } while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE &&
1543             find_space != VMFS_ANY_SPACE);
1544         vm_map_unlock(map);
1545         return (result);
1546 }
1547
1548 /*
1549  *      vm_map_simplify_entry:
1550  *
1551  *      Simplify the given map entry by merging with either neighbor.  This
1552  *      routine also has the ability to merge with both neighbors.
1553  *
1554  *      The map must be locked.
1555  *
1556  *      This routine guarantees that the passed entry remains valid (though
1557  *      possibly extended).  When merging, this routine may delete one or
1558  *      both neighbors.
1559  */
1560 void
1561 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1562 {
1563         vm_map_entry_t next, prev;
1564         vm_size_t prevsize, esize;
1565
1566         if ((entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP |
1567             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) != 0)
1568                 return;
1569
1570         prev = entry->prev;
1571         if (prev != &map->header) {
1572                 prevsize = prev->end - prev->start;
1573                 if ( (prev->end == entry->start) &&
1574                      (prev->object.vm_object == entry->object.vm_object) &&
1575                      (!prev->object.vm_object ||
1576                         (prev->offset + prevsize == entry->offset)) &&
1577                      (prev->eflags == entry->eflags) &&
1578                      (prev->protection == entry->protection) &&
1579                      (prev->max_protection == entry->max_protection) &&
1580                      (prev->inheritance == entry->inheritance) &&
1581                      (prev->wired_count == entry->wired_count) &&
1582                      (prev->cred == entry->cred)) {
1583                         vm_map_entry_unlink(map, prev);
1584                         entry->start = prev->start;
1585                         entry->offset = prev->offset;
1586                         if (entry->prev != &map->header)
1587                                 vm_map_entry_resize_free(map, entry->prev);
1588
1589                         /*
1590                          * If the backing object is a vnode object,
1591                          * vm_object_deallocate() calls vrele().
1592                          * However, vrele() does not lock the vnode
1593                          * because the vnode has additional
1594                          * references.  Thus, the map lock can be kept
1595                          * without causing a lock-order reversal with
1596                          * the vnode lock.
1597                          *
1598                          * Since we count the number of virtual page
1599                          * mappings in object->un_pager.vnp.writemappings,
1600                          * the writemappings value should not be adjusted
1601                          * when the entry is disposed of.
1602                          */
1603                         if (prev->object.vm_object)
1604                                 vm_object_deallocate(prev->object.vm_object);
1605                         if (prev->cred != NULL)
1606                                 crfree(prev->cred);
1607                         vm_map_entry_dispose(map, prev);
1608                 }
1609         }
1610
1611         next = entry->next;
1612         if (next != &map->header) {
1613                 esize = entry->end - entry->start;
1614                 if ((entry->end == next->start) &&
1615                     (next->object.vm_object == entry->object.vm_object) &&
1616                      (!entry->object.vm_object ||
1617                         (entry->offset + esize == next->offset)) &&
1618                     (next->eflags == entry->eflags) &&
1619                     (next->protection == entry->protection) &&
1620                     (next->max_protection == entry->max_protection) &&
1621                     (next->inheritance == entry->inheritance) &&
1622                     (next->wired_count == entry->wired_count) &&
1623                     (next->cred == entry->cred)) {
1624                         vm_map_entry_unlink(map, next);
1625                         entry->end = next->end;
1626                         vm_map_entry_resize_free(map, entry);
1627
1628                         /*
1629                          * See comment above.
1630                          */
1631                         if (next->object.vm_object)
1632                                 vm_object_deallocate(next->object.vm_object);
1633                         if (next->cred != NULL)
1634                                 crfree(next->cred);
1635                         vm_map_entry_dispose(map, next);
1636                 }
1637         }
1638 }
1639 /*
1640  *      vm_map_clip_start:      [ internal use only ]
1641  *
1642  *      Asserts that the given entry begins at or after
1643  *      the specified address; if necessary,
1644  *      it splits the entry into two.
1645  */
1646 #define vm_map_clip_start(map, entry, startaddr) \
1647 { \
1648         if (startaddr > entry->start) \
1649                 _vm_map_clip_start(map, entry, startaddr); \
1650 }
1651
1652 /*
1653  *      This routine is called only when it is known that
1654  *      the entry must be split.
1655  */
1656 static void
1657 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1658 {
1659         vm_map_entry_t new_entry;
1660
1661         VM_MAP_ASSERT_LOCKED(map);
1662
1663         /*
1664          * Split off the front portion -- note that we must insert the new
1665          * entry BEFORE this one, so that this entry has the specified
1666          * starting address.
1667          */
1668         vm_map_simplify_entry(map, entry);
1669
1670         /*
1671          * If there is no object backing this entry, we might as well create
1672          * one now.  If we defer it, an object can get created after the map
1673          * is clipped, and individual objects will be created for the split-up
1674          * map.  This is a bit of a hack, but is also about the best place to
1675          * put this improvement.
1676          */
1677         if (entry->object.vm_object == NULL && !map->system_map) {
1678                 vm_object_t object;
1679                 object = vm_object_allocate(OBJT_DEFAULT,
1680                                 atop(entry->end - entry->start));
1681                 entry->object.vm_object = object;
1682                 entry->offset = 0;
1683                 if (entry->cred != NULL) {
1684                         object->cred = entry->cred;
1685                         object->charge = entry->end - entry->start;
1686                         entry->cred = NULL;
1687                 }
1688         } else if (entry->object.vm_object != NULL &&
1689                    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1690                    entry->cred != NULL) {
1691                 VM_OBJECT_WLOCK(entry->object.vm_object);
1692                 KASSERT(entry->object.vm_object->cred == NULL,
1693                     ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1694                 entry->object.vm_object->cred = entry->cred;
1695                 entry->object.vm_object->charge = entry->end - entry->start;
1696                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
1697                 entry->cred = NULL;
1698         }
1699
1700         new_entry = vm_map_entry_create(map);
1701         *new_entry = *entry;
1702
1703         new_entry->end = start;
1704         entry->offset += (start - entry->start);
1705         entry->start = start;
1706         if (new_entry->cred != NULL)
1707                 crhold(entry->cred);
1708
1709         vm_map_entry_link(map, entry->prev, new_entry);
1710
1711         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1712                 vm_object_reference(new_entry->object.vm_object);
1713                 /*
1714                  * The object->un_pager.vnp.writemappings for the
1715                  * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1716                  * kept as is here.  The virtual pages are
1717                  * re-distributed among the clipped entries, so the sum is
1718                  * left the same.
1719                  */
1720         }
1721 }
1722
1723 /*
1724  *      vm_map_clip_end:        [ internal use only ]
1725  *
1726  *      Asserts that the given entry ends at or before
1727  *      the specified address; if necessary,
1728  *      it splits the entry into two.
1729  */
1730 #define vm_map_clip_end(map, entry, endaddr) \
1731 { \
1732         if ((endaddr) < (entry->end)) \
1733                 _vm_map_clip_end((map), (entry), (endaddr)); \
1734 }
1735
1736 /*
1737  *      This routine is called only when it is known that
1738  *      the entry must be split.
1739  */
1740 static void
1741 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1742 {
1743         vm_map_entry_t new_entry;
1744
1745         VM_MAP_ASSERT_LOCKED(map);
1746
1747         /*
1748          * If there is no object backing this entry, we might as well create
1749          * one now.  If we defer it, an object can get created after the map
1750          * is clipped, and individual objects will be created for the split-up
1751          * map.  This is a bit of a hack, but is also about the best place to
1752          * put this improvement.
1753          */
1754         if (entry->object.vm_object == NULL && !map->system_map) {
1755                 vm_object_t object;
1756                 object = vm_object_allocate(OBJT_DEFAULT,
1757                                 atop(entry->end - entry->start));
1758                 entry->object.vm_object = object;
1759                 entry->offset = 0;
1760                 if (entry->cred != NULL) {
1761                         object->cred = entry->cred;
1762                         object->charge = entry->end - entry->start;
1763                         entry->cred = NULL;
1764                 }
1765         } else if (entry->object.vm_object != NULL &&
1766                    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1767                    entry->cred != NULL) {
1768                 VM_OBJECT_WLOCK(entry->object.vm_object);
1769                 KASSERT(entry->object.vm_object->cred == NULL,
1770                     ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1771                 entry->object.vm_object->cred = entry->cred;
1772                 entry->object.vm_object->charge = entry->end - entry->start;
1773                 VM_OBJECT_WUNLOCK(entry->object.vm_object);
1774                 entry->cred = NULL;
1775         }
1776
1777         /*
1778          * Create a new entry and insert it AFTER the specified entry
1779          */
1780         new_entry = vm_map_entry_create(map);
1781         *new_entry = *entry;
1782
1783         new_entry->start = entry->end = end;
1784         new_entry->offset += (end - entry->start);
1785         if (new_entry->cred != NULL)
1786                 crhold(entry->cred);
1787
1788         vm_map_entry_link(map, entry, new_entry);
1789
1790         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1791                 vm_object_reference(new_entry->object.vm_object);
1792         }
1793 }
1794
1795 /*
1796  *      vm_map_submap:          [ kernel use only ]
1797  *
1798  *      Mark the given range as handled by a subordinate map.
1799  *
1800  *      This range must have been created with vm_map_find,
1801  *      and no other operations may have been performed on this
1802  *      range prior to calling vm_map_submap.
1803  *
1804  *      Only a limited number of operations can be performed
1805  *      within this rage after calling vm_map_submap:
1806  *              vm_fault
1807  *      [Don't try vm_map_copy!]
1808  *
1809  *      To remove a submapping, one must first remove the
1810  *      range from the superior map, and then destroy the
1811  *      submap (if desired).  [Better yet, don't try it.]
1812  */
1813 int
1814 vm_map_submap(
1815         vm_map_t map,
1816         vm_offset_t start,
1817         vm_offset_t end,
1818         vm_map_t submap)
1819 {
1820         vm_map_entry_t entry;
1821         int result = KERN_INVALID_ARGUMENT;
1822
1823         vm_map_lock(map);
1824
1825         VM_MAP_RANGE_CHECK(map, start, end);
1826
1827         if (vm_map_lookup_entry(map, start, &entry)) {
1828                 vm_map_clip_start(map, entry, start);
1829         } else
1830                 entry = entry->next;
1831
1832         vm_map_clip_end(map, entry, end);
1833
1834         if ((entry->start == start) && (entry->end == end) &&
1835             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1836             (entry->object.vm_object == NULL)) {
1837                 entry->object.sub_map = submap;
1838                 entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1839                 result = KERN_SUCCESS;
1840         }
1841         vm_map_unlock(map);
1842
1843         return (result);
1844 }
1845
1846 /*
1847  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
1848  */
1849 #define MAX_INIT_PT     96
1850
1851 /*
1852  *      vm_map_pmap_enter:
1853  *
1854  *      Preload the specified map's pmap with mappings to the specified
1855  *      object's memory-resident pages.  No further physical pages are
1856  *      allocated, and no further virtual pages are retrieved from secondary
1857  *      storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
1858  *      limited number of page mappings are created at the low-end of the
1859  *      specified address range.  (For this purpose, a superpage mapping
1860  *      counts as one page mapping.)  Otherwise, all resident pages within
1861  *      the specified address range are mapped.  Because these mappings are
1862  *      being created speculatively, cached pages are not reactivated and
1863  *      mapped.
1864  */
1865 static void
1866 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1867     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1868 {
1869         vm_offset_t start;
1870         vm_page_t p, p_start;
1871         vm_pindex_t mask, psize, threshold, tmpidx;
1872
1873         if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1874                 return;
1875         VM_OBJECT_RLOCK(object);
1876         if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1877                 VM_OBJECT_RUNLOCK(object);
1878                 VM_OBJECT_WLOCK(object);
1879                 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1880                         pmap_object_init_pt(map->pmap, addr, object, pindex,
1881                             size);
1882                         VM_OBJECT_WUNLOCK(object);
1883                         return;
1884                 }
1885                 VM_OBJECT_LOCK_DOWNGRADE(object);
1886         }
1887
1888         psize = atop(size);
1889         if (psize + pindex > object->size) {
1890                 if (object->size < pindex) {
1891                         VM_OBJECT_RUNLOCK(object);
1892                         return;
1893                 }
1894                 psize = object->size - pindex;
1895         }
1896
1897         start = 0;
1898         p_start = NULL;
1899         threshold = MAX_INIT_PT;
1900
1901         p = vm_page_find_least(object, pindex);
1902         /*
1903          * Assert: the variable p is either (1) the page with the
1904          * least pindex greater than or equal to the parameter pindex
1905          * or (2) NULL.
1906          */
1907         for (;
1908              p != NULL && (tmpidx = p->pindex - pindex) < psize;
1909              p = TAILQ_NEXT(p, listq)) {
1910                 /*
1911                  * don't allow an madvise to blow away our really
1912                  * free pages allocating pv entries.
1913                  */
1914                 if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
1915                     vm_cnt.v_free_count < vm_cnt.v_free_reserved) ||
1916                     ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
1917                     tmpidx >= threshold)) {
1918                         psize = tmpidx;
1919                         break;
1920                 }
1921                 if (p->valid == VM_PAGE_BITS_ALL) {
1922                         if (p_start == NULL) {
1923                                 start = addr + ptoa(tmpidx);
1924                                 p_start = p;
1925                         }
1926                         /* Jump ahead if a superpage mapping is possible. */
1927                         if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
1928                             (pagesizes[p->psind] - 1)) == 0) {
1929                                 mask = atop(pagesizes[p->psind]) - 1;
1930                                 if (tmpidx + mask < psize &&
1931                                     vm_page_ps_is_valid(p)) {
1932                                         p += mask;
1933                                         threshold += mask;
1934                                 }
1935                         }
1936                 } else if (p_start != NULL) {
1937                         pmap_enter_object(map->pmap, start, addr +
1938                             ptoa(tmpidx), p_start, prot);
1939                         p_start = NULL;
1940                 }
1941         }
1942         if (p_start != NULL)
1943                 pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1944                     p_start, prot);
1945         VM_OBJECT_RUNLOCK(object);
1946 }
1947
1948 /*
1949  *      vm_map_protect:
1950  *
1951  *      Sets the protection of the specified address
1952  *      region in the target map.  If "set_max" is
1953  *      specified, the maximum protection is to be set;
1954  *      otherwise, only the current protection is affected.
1955  */
1956 int
1957 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1958                vm_prot_t new_prot, boolean_t set_max)
1959 {
1960         vm_map_entry_t current, entry;
1961         vm_object_t obj;
1962         struct ucred *cred;
1963         vm_prot_t old_prot;
1964
1965         if (start == end)
1966                 return (KERN_SUCCESS);
1967
1968         vm_map_lock(map);
1969
1970         VM_MAP_RANGE_CHECK(map, start, end);
1971
1972         if (vm_map_lookup_entry(map, start, &entry)) {
1973                 vm_map_clip_start(map, entry, start);
1974         } else {
1975                 entry = entry->next;
1976         }
1977
1978         /*
1979          * Make a first pass to check for protection violations.
1980          */
1981         current = entry;
1982         while ((current != &map->header) && (current->start < end)) {
1983                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1984                         vm_map_unlock(map);
1985                         return (KERN_INVALID_ARGUMENT);
1986                 }
1987                 if ((new_prot & current->max_protection) != new_prot) {
1988                         vm_map_unlock(map);
1989                         return (KERN_PROTECTION_FAILURE);
1990                 }
1991                 current = current->next;
1992         }
1993
1994
1995         /*
1996          * Do an accounting pass for private read-only mappings that
1997          * now will do cow due to allowed write (e.g. debugger sets
1998          * breakpoint on text segment)
1999          */
2000         for (current = entry; (current != &map->header) &&
2001              (current->start < end); current = current->next) {
2002
2003                 vm_map_clip_end(map, current, end);
2004
2005                 if (set_max ||
2006                     ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
2007                     ENTRY_CHARGED(current)) {
2008                         continue;
2009                 }
2010
2011                 cred = curthread->td_ucred;
2012                 obj = current->object.vm_object;
2013
2014                 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
2015                         if (!swap_reserve(current->end - current->start)) {
2016                                 vm_map_unlock(map);
2017                                 return (KERN_RESOURCE_SHORTAGE);
2018                         }
2019                         crhold(cred);
2020                         current->cred = cred;
2021                         continue;
2022                 }
2023
2024                 VM_OBJECT_WLOCK(obj);
2025                 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2026                         VM_OBJECT_WUNLOCK(obj);
2027                         continue;
2028                 }
2029
2030                 /*
2031                  * Charge for the whole object allocation now, since
2032                  * we cannot distinguish between non-charged and
2033                  * charged clipped mapping of the same object later.
2034                  */
2035                 KASSERT(obj->charge == 0,
2036                     ("vm_map_protect: object %p overcharged (entry %p)",
2037                     obj, current));
2038                 if (!swap_reserve(ptoa(obj->size))) {
2039                         VM_OBJECT_WUNLOCK(obj);
2040                         vm_map_unlock(map);
2041                         return (KERN_RESOURCE_SHORTAGE);
2042                 }
2043
2044                 crhold(cred);
2045                 obj->cred = cred;
2046                 obj->charge = ptoa(obj->size);
2047                 VM_OBJECT_WUNLOCK(obj);
2048         }
2049
2050         /*
2051          * Go back and fix up protections. [Note that clipping is not
2052          * necessary the second time.]
2053          */
2054         current = entry;
2055         while ((current != &map->header) && (current->start < end)) {
2056                 old_prot = current->protection;
2057
2058                 if (set_max)
2059                         current->protection =
2060                             (current->max_protection = new_prot) &
2061                             old_prot;
2062                 else
2063                         current->protection = new_prot;
2064
2065                 /*
2066                  * For user wired map entries, the normal lazy evaluation of
2067                  * write access upgrades through soft page faults is
2068                  * undesirable.  Instead, immediately copy any pages that are
2069                  * copy-on-write and enable write access in the physical map.
2070                  */
2071                 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2072                     (current->protection & VM_PROT_WRITE) != 0 &&
2073                     (old_prot & VM_PROT_WRITE) == 0)
2074                         vm_fault_copy_entry(map, map, current, current, NULL);
2075
2076                 /*
2077                  * When restricting access, update the physical map.  Worry
2078                  * about copy-on-write here.
2079                  */
2080                 if ((old_prot & ~current->protection) != 0) {
2081 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2082                                                         VM_PROT_ALL)
2083                         pmap_protect(map->pmap, current->start,
2084                             current->end,
2085                             current->protection & MASK(current));
2086 #undef  MASK
2087                 }
2088                 vm_map_simplify_entry(map, current);
2089                 current = current->next;
2090         }
2091         vm_map_unlock(map);
2092         return (KERN_SUCCESS);
2093 }
2094
2095 /*
2096  *      vm_map_madvise:
2097  *
2098  *      This routine traverses a processes map handling the madvise
2099  *      system call.  Advisories are classified as either those effecting
2100  *      the vm_map_entry structure, or those effecting the underlying
2101  *      objects.
2102  */
2103 int
2104 vm_map_madvise(
2105         vm_map_t map,
2106         vm_offset_t start,
2107         vm_offset_t end,
2108         int behav)
2109 {
2110         vm_map_entry_t current, entry;
2111         int modify_map = 0;
2112
2113         /*
2114          * Some madvise calls directly modify the vm_map_entry, in which case
2115          * we need to use an exclusive lock on the map and we need to perform
2116          * various clipping operations.  Otherwise we only need a read-lock
2117          * on the map.
2118          */
2119         switch(behav) {
2120         case MADV_NORMAL:
2121         case MADV_SEQUENTIAL:
2122         case MADV_RANDOM:
2123         case MADV_NOSYNC:
2124         case MADV_AUTOSYNC:
2125         case MADV_NOCORE:
2126         case MADV_CORE:
2127                 if (start == end)
2128                         return (KERN_SUCCESS);
2129                 modify_map = 1;
2130                 vm_map_lock(map);
2131                 break;
2132         case MADV_WILLNEED:
2133         case MADV_DONTNEED:
2134         case MADV_FREE:
2135                 if (start == end)
2136                         return (KERN_SUCCESS);
2137                 vm_map_lock_read(map);
2138                 break;
2139         default:
2140                 return (KERN_INVALID_ARGUMENT);
2141         }
2142
2143         /*
2144          * Locate starting entry and clip if necessary.
2145          */
2146         VM_MAP_RANGE_CHECK(map, start, end);
2147
2148         if (vm_map_lookup_entry(map, start, &entry)) {
2149                 if (modify_map)
2150                         vm_map_clip_start(map, entry, start);
2151         } else {
2152                 entry = entry->next;
2153         }
2154
2155         if (modify_map) {
2156                 /*
2157                  * madvise behaviors that are implemented in the vm_map_entry.
2158                  *
2159                  * We clip the vm_map_entry so that behavioral changes are
2160                  * limited to the specified address range.
2161                  */
2162                 for (current = entry;
2163                      (current != &map->header) && (current->start < end);
2164                      current = current->next
2165                 ) {
2166                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2167                                 continue;
2168
2169                         vm_map_clip_end(map, current, end);
2170
2171                         switch (behav) {
2172                         case MADV_NORMAL:
2173                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2174                                 break;
2175                         case MADV_SEQUENTIAL:
2176                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2177                                 break;
2178                         case MADV_RANDOM:
2179                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2180                                 break;
2181                         case MADV_NOSYNC:
2182                                 current->eflags |= MAP_ENTRY_NOSYNC;
2183                                 break;
2184                         case MADV_AUTOSYNC:
2185                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
2186                                 break;
2187                         case MADV_NOCORE:
2188                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
2189                                 break;
2190                         case MADV_CORE:
2191                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2192                                 break;
2193                         default:
2194                                 break;
2195                         }
2196                         vm_map_simplify_entry(map, current);
2197                 }
2198                 vm_map_unlock(map);
2199         } else {
2200                 vm_pindex_t pstart, pend;
2201
2202                 /*
2203                  * madvise behaviors that are implemented in the underlying
2204                  * vm_object.
2205                  *
2206                  * Since we don't clip the vm_map_entry, we have to clip
2207                  * the vm_object pindex and count.
2208                  */
2209                 for (current = entry;
2210                      (current != &map->header) && (current->start < end);
2211                      current = current->next
2212                 ) {
2213                         vm_offset_t useEnd, useStart;
2214
2215                         if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2216                                 continue;
2217
2218                         pstart = OFF_TO_IDX(current->offset);
2219                         pend = pstart + atop(current->end - current->start);
2220                         useStart = current->start;
2221                         useEnd = current->end;
2222
2223                         if (current->start < start) {
2224                                 pstart += atop(start - current->start);
2225                                 useStart = start;
2226                         }
2227                         if (current->end > end) {
2228                                 pend -= atop(current->end - end);
2229                                 useEnd = end;
2230                         }
2231
2232                         if (pstart >= pend)
2233                                 continue;
2234
2235                         /*
2236                          * Perform the pmap_advise() before clearing
2237                          * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2238                          * concurrent pmap operation, such as pmap_remove(),
2239                          * could clear a reference in the pmap and set
2240                          * PGA_REFERENCED on the page before the pmap_advise()
2241                          * had completed.  Consequently, the page would appear
2242                          * referenced based upon an old reference that
2243                          * occurred before this pmap_advise() ran.
2244                          */
2245                         if (behav == MADV_DONTNEED || behav == MADV_FREE)
2246                                 pmap_advise(map->pmap, useStart, useEnd,
2247                                     behav);
2248
2249                         vm_object_madvise(current->object.vm_object, pstart,
2250                             pend, behav);
2251
2252                         /*
2253                          * Pre-populate paging structures in the
2254                          * WILLNEED case.  For wired entries, the
2255                          * paging structures are already populated.
2256                          */
2257                         if (behav == MADV_WILLNEED &&
2258                             current->wired_count == 0) {
2259                                 vm_map_pmap_enter(map,
2260                                     useStart,
2261                                     current->protection,
2262                                     current->object.vm_object,
2263                                     pstart,
2264                                     ptoa(pend - pstart),
2265                                     MAP_PREFAULT_MADVISE
2266                                 );
2267                         }
2268                 }
2269                 vm_map_unlock_read(map);
2270         }
2271         return (0);
2272 }
2273
2274
2275 /*
2276  *      vm_map_inherit:
2277  *
2278  *      Sets the inheritance of the specified address
2279  *      range in the target map.  Inheritance
2280  *      affects how the map will be shared with
2281  *      child maps at the time of vmspace_fork.
2282  */
2283 int
2284 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2285                vm_inherit_t new_inheritance)
2286 {
2287         vm_map_entry_t entry;
2288         vm_map_entry_t temp_entry;
2289
2290         switch (new_inheritance) {
2291         case VM_INHERIT_NONE:
2292         case VM_INHERIT_COPY:
2293         case VM_INHERIT_SHARE:
2294                 break;
2295         default:
2296                 return (KERN_INVALID_ARGUMENT);
2297         }
2298         if (start == end)
2299                 return (KERN_SUCCESS);
2300         vm_map_lock(map);
2301         VM_MAP_RANGE_CHECK(map, start, end);
2302         if (vm_map_lookup_entry(map, start, &temp_entry)) {
2303                 entry = temp_entry;
2304                 vm_map_clip_start(map, entry, start);
2305         } else
2306                 entry = temp_entry->next;
2307         while ((entry != &map->header) && (entry->start < end)) {
2308                 vm_map_clip_end(map, entry, end);
2309                 entry->inheritance = new_inheritance;
2310                 vm_map_simplify_entry(map, entry);
2311                 entry = entry->next;
2312         }
2313         vm_map_unlock(map);
2314         return (KERN_SUCCESS);
2315 }
2316
2317 /*
2318  *      vm_map_unwire:
2319  *
2320  *      Implements both kernel and user unwiring.
2321  */
2322 int
2323 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2324     int flags)
2325 {
2326         vm_map_entry_t entry, first_entry, tmp_entry;
2327         vm_offset_t saved_start;
2328         unsigned int last_timestamp;
2329         int rv;
2330         boolean_t need_wakeup, result, user_unwire;
2331
2332         if (start == end)
2333                 return (KERN_SUCCESS);
2334         user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2335         vm_map_lock(map);
2336         VM_MAP_RANGE_CHECK(map, start, end);
2337         if (!vm_map_lookup_entry(map, start, &first_entry)) {
2338                 if (flags & VM_MAP_WIRE_HOLESOK)
2339                         first_entry = first_entry->next;
2340                 else {
2341                         vm_map_unlock(map);
2342                         return (KERN_INVALID_ADDRESS);
2343                 }
2344         }
2345         last_timestamp = map->timestamp;
2346         entry = first_entry;
2347         while (entry != &map->header && entry->start < end) {
2348                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2349                         /*
2350                          * We have not yet clipped the entry.
2351                          */
2352                         saved_start = (start >= entry->start) ? start :
2353                             entry->start;
2354                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2355                         if (vm_map_unlock_and_wait(map, 0)) {
2356                                 /*
2357                                  * Allow interruption of user unwiring?
2358                                  */
2359                         }
2360                         vm_map_lock(map);
2361                         if (last_timestamp+1 != map->timestamp) {
2362                                 /*
2363                                  * Look again for the entry because the map was
2364                                  * modified while it was unlocked.
2365                                  * Specifically, the entry may have been
2366                                  * clipped, merged, or deleted.
2367                                  */
2368                                 if (!vm_map_lookup_entry(map, saved_start,
2369                                     &tmp_entry)) {
2370                                         if (flags & VM_MAP_WIRE_HOLESOK)
2371                                                 tmp_entry = tmp_entry->next;
2372                                         else {
2373                                                 if (saved_start == start) {
2374                                                         /*
2375                                                          * First_entry has been deleted.
2376                                                          */
2377                                                         vm_map_unlock(map);
2378                                                         return (KERN_INVALID_ADDRESS);
2379                                                 }
2380                                                 end = saved_start;
2381                                                 rv = KERN_INVALID_ADDRESS;
2382                                                 goto done;
2383                                         }
2384                                 }
2385                                 if (entry == first_entry)
2386                                         first_entry = tmp_entry;
2387                                 else
2388                                         first_entry = NULL;
2389                                 entry = tmp_entry;
2390                         }
2391                         last_timestamp = map->timestamp;
2392                         continue;
2393                 }
2394                 vm_map_clip_start(map, entry, start);
2395                 vm_map_clip_end(map, entry, end);
2396                 /*
2397                  * Mark the entry in case the map lock is released.  (See
2398                  * above.)
2399                  */
2400                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2401                     entry->wiring_thread == NULL,
2402                     ("owned map entry %p", entry));
2403                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2404                 entry->wiring_thread = curthread;
2405                 /*
2406                  * Check the map for holes in the specified region.
2407                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2408                  */
2409                 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2410                     (entry->end < end && (entry->next == &map->header ||
2411                     entry->next->start > entry->end))) {
2412                         end = entry->end;
2413                         rv = KERN_INVALID_ADDRESS;
2414                         goto done;
2415                 }
2416                 /*
2417                  * If system unwiring, require that the entry is system wired.
2418                  */
2419                 if (!user_unwire &&
2420                     vm_map_entry_system_wired_count(entry) == 0) {
2421                         end = entry->end;
2422                         rv = KERN_INVALID_ARGUMENT;
2423                         goto done;
2424                 }
2425                 entry = entry->next;
2426         }
2427         rv = KERN_SUCCESS;
2428 done:
2429         need_wakeup = FALSE;
2430         if (first_entry == NULL) {
2431                 result = vm_map_lookup_entry(map, start, &first_entry);
2432                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2433                         first_entry = first_entry->next;
2434                 else
2435                         KASSERT(result, ("vm_map_unwire: lookup failed"));
2436         }
2437         for (entry = first_entry; entry != &map->header && entry->start < end;
2438             entry = entry->next) {
2439                 /*
2440                  * If VM_MAP_WIRE_HOLESOK was specified, an empty
2441                  * space in the unwired region could have been mapped
2442                  * while the map lock was dropped for draining
2443                  * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2444                  * could be simultaneously wiring this new mapping
2445                  * entry.  Detect these cases and skip any entries
2446                  * marked as in transition by us.
2447                  */
2448                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2449                     entry->wiring_thread != curthread) {
2450                         KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2451                             ("vm_map_unwire: !HOLESOK and new/changed entry"));
2452                         continue;
2453                 }
2454
2455                 if (rv == KERN_SUCCESS && (!user_unwire ||
2456                     (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2457                         if (user_unwire)
2458                                 entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2459                         if (entry->wired_count == 1)
2460                                 vm_map_entry_unwire(map, entry);
2461                         else
2462                                 entry->wired_count--;
2463                 }
2464                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2465                     ("vm_map_unwire: in-transition flag missing %p", entry));
2466                 KASSERT(entry->wiring_thread == curthread,
2467                     ("vm_map_unwire: alien wire %p", entry));
2468                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2469                 entry->wiring_thread = NULL;
2470                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2471                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2472                         need_wakeup = TRUE;
2473                 }
2474                 vm_map_simplify_entry(map, entry);
2475         }
2476         vm_map_unlock(map);
2477         if (need_wakeup)
2478                 vm_map_wakeup(map);
2479         return (rv);
2480 }
2481
2482 /*
2483  *      vm_map_wire_entry_failure:
2484  *
2485  *      Handle a wiring failure on the given entry.
2486  *
2487  *      The map should be locked.
2488  */
2489 static void
2490 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
2491     vm_offset_t failed_addr)
2492 {
2493
2494         VM_MAP_ASSERT_LOCKED(map);
2495         KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
2496             entry->wired_count == 1,
2497             ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
2498         KASSERT(failed_addr < entry->end,
2499             ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
2500
2501         /*
2502          * If any pages at the start of this entry were successfully wired,
2503          * then unwire them.
2504          */
2505         if (failed_addr > entry->start) {
2506                 pmap_unwire(map->pmap, entry->start, failed_addr);
2507                 vm_object_unwire(entry->object.vm_object, entry->offset,
2508                     failed_addr - entry->start, PQ_ACTIVE);
2509         }
2510
2511         /*
2512          * Assign an out-of-range value to represent the failure to wire this
2513          * entry.
2514          */
2515         entry->wired_count = -1;
2516 }
2517
2518 /*
2519  *      vm_map_wire:
2520  *
2521  *      Implements both kernel and user wiring.
2522  */
2523 int
2524 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2525     int flags)
2526 {
2527         vm_map_entry_t entry, first_entry, tmp_entry;
2528         vm_offset_t faddr, saved_end, saved_start;
2529         unsigned int last_timestamp;
2530         int rv;
2531         boolean_t need_wakeup, result, user_wire;
2532         vm_prot_t prot;
2533
2534         if (start == end)
2535                 return (KERN_SUCCESS);
2536         prot = 0;
2537         if (flags & VM_MAP_WIRE_WRITE)
2538                 prot |= VM_PROT_WRITE;
2539         user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2540         vm_map_lock(map);
2541         VM_MAP_RANGE_CHECK(map, start, end);
2542         if (!vm_map_lookup_entry(map, start, &first_entry)) {
2543                 if (flags & VM_MAP_WIRE_HOLESOK)
2544                         first_entry = first_entry->next;
2545                 else {
2546                         vm_map_unlock(map);
2547                         return (KERN_INVALID_ADDRESS);
2548                 }
2549         }
2550         last_timestamp = map->timestamp;
2551         entry = first_entry;
2552         while (entry != &map->header && entry->start < end) {
2553                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2554                         /*
2555                          * We have not yet clipped the entry.
2556                          */
2557                         saved_start = (start >= entry->start) ? start :
2558                             entry->start;
2559                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2560                         if (vm_map_unlock_and_wait(map, 0)) {
2561                                 /*
2562                                  * Allow interruption of user wiring?
2563                                  */
2564                         }
2565                         vm_map_lock(map);
2566                         if (last_timestamp + 1 != map->timestamp) {
2567                                 /*
2568                                  * Look again for the entry because the map was
2569                                  * modified while it was unlocked.
2570                                  * Specifically, the entry may have been
2571                                  * clipped, merged, or deleted.
2572                                  */
2573                                 if (!vm_map_lookup_entry(map, saved_start,
2574                                     &tmp_entry)) {
2575                                         if (flags & VM_MAP_WIRE_HOLESOK)
2576                                                 tmp_entry = tmp_entry->next;
2577                                         else {
2578                                                 if (saved_start == start) {
2579                                                         /*
2580                                                          * first_entry has been deleted.
2581                                                          */
2582                                                         vm_map_unlock(map);
2583                                                         return (KERN_INVALID_ADDRESS);
2584                                                 }
2585                                                 end = saved_start;
2586                                                 rv = KERN_INVALID_ADDRESS;
2587                                                 goto done;
2588                                         }
2589                                 }
2590                                 if (entry == first_entry)
2591                                         first_entry = tmp_entry;
2592                                 else
2593                                         first_entry = NULL;
2594                                 entry = tmp_entry;
2595                         }
2596                         last_timestamp = map->timestamp;
2597                         continue;
2598                 }
2599                 vm_map_clip_start(map, entry, start);
2600                 vm_map_clip_end(map, entry, end);
2601                 /*
2602                  * Mark the entry in case the map lock is released.  (See
2603                  * above.)
2604                  */
2605                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2606                     entry->wiring_thread == NULL,
2607                     ("owned map entry %p", entry));
2608                 entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2609                 entry->wiring_thread = curthread;
2610                 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2611                     || (entry->protection & prot) != prot) {
2612                         entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2613                         if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2614                                 end = entry->end;
2615                                 rv = KERN_INVALID_ADDRESS;
2616                                 goto done;
2617                         }
2618                         goto next_entry;
2619                 }
2620                 if (entry->wired_count == 0) {
2621                         entry->wired_count++;
2622                         saved_start = entry->start;
2623                         saved_end = entry->end;
2624
2625                         /*
2626                          * Release the map lock, relying on the in-transition
2627                          * mark.  Mark the map busy for fork.
2628                          */
2629                         vm_map_busy(map);
2630                         vm_map_unlock(map);
2631
2632                         faddr = saved_start;
2633                         do {
2634                                 /*
2635                                  * Simulate a fault to get the page and enter
2636                                  * it into the physical map.
2637                                  */
2638                                 if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
2639                                     VM_FAULT_WIRE)) != KERN_SUCCESS)
2640                                         break;
2641                         } while ((faddr += PAGE_SIZE) < saved_end);
2642                         vm_map_lock(map);
2643                         vm_map_unbusy(map);
2644                         if (last_timestamp + 1 != map->timestamp) {
2645                                 /*
2646                                  * Look again for the entry because the map was
2647                                  * modified while it was unlocked.  The entry
2648                                  * may have been clipped, but NOT merged or
2649                                  * deleted.
2650                                  */
2651                                 result = vm_map_lookup_entry(map, saved_start,
2652                                     &tmp_entry);
2653                                 KASSERT(result, ("vm_map_wire: lookup failed"));
2654                                 if (entry == first_entry)
2655                                         first_entry = tmp_entry;
2656                                 else
2657                                         first_entry = NULL;
2658                                 entry = tmp_entry;
2659                                 while (entry->end < saved_end) {
2660                                         /*
2661                                          * In case of failure, handle entries
2662                                          * that were not fully wired here;
2663                                          * fully wired entries are handled
2664                                          * later.
2665                                          */
2666                                         if (rv != KERN_SUCCESS &&
2667                                             faddr < entry->end)
2668                                                 vm_map_wire_entry_failure(map,
2669                                                     entry, faddr);
2670                                         entry = entry->next;
2671                                 }
2672                         }
2673                         last_timestamp = map->timestamp;
2674                         if (rv != KERN_SUCCESS) {
2675                                 vm_map_wire_entry_failure(map, entry, faddr);
2676                                 end = entry->end;
2677                                 goto done;
2678                         }
2679                 } else if (!user_wire ||
2680                            (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2681                         entry->wired_count++;
2682                 }
2683                 /*
2684                  * Check the map for holes in the specified region.
2685                  * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2686                  */
2687         next_entry:
2688                 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2689                     (entry->end < end && (entry->next == &map->header ||
2690                     entry->next->start > entry->end))) {
2691                         end = entry->end;
2692                         rv = KERN_INVALID_ADDRESS;
2693                         goto done;
2694                 }
2695                 entry = entry->next;
2696         }
2697         rv = KERN_SUCCESS;
2698 done:
2699         need_wakeup = FALSE;
2700         if (first_entry == NULL) {
2701                 result = vm_map_lookup_entry(map, start, &first_entry);
2702                 if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2703                         first_entry = first_entry->next;
2704                 else
2705                         KASSERT(result, ("vm_map_wire: lookup failed"));
2706         }
2707         for (entry = first_entry; entry != &map->header && entry->start < end;
2708             entry = entry->next) {
2709                 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2710                         goto next_entry_done;
2711
2712                 /*
2713                  * If VM_MAP_WIRE_HOLESOK was specified, an empty
2714                  * space in the unwired region could have been mapped
2715                  * while the map lock was dropped for faulting in the
2716                  * pages or draining MAP_ENTRY_IN_TRANSITION.
2717                  * Moreover, another thread could be simultaneously
2718                  * wiring this new mapping entry.  Detect these cases
2719                  * and skip any entries marked as in transition by us.
2720                  */
2721                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2722                     entry->wiring_thread != curthread) {
2723                         KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2724                             ("vm_map_wire: !HOLESOK and new/changed entry"));
2725                         continue;
2726                 }
2727
2728                 if (rv == KERN_SUCCESS) {
2729                         if (user_wire)
2730                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
2731                 } else if (entry->wired_count == -1) {
2732                         /*
2733                          * Wiring failed on this entry.  Thus, unwiring is
2734                          * unnecessary.
2735                          */
2736                         entry->wired_count = 0;
2737                 } else if (!user_wire ||
2738                     (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2739                         /*
2740                          * Undo the wiring.  Wiring succeeded on this entry
2741                          * but failed on a later entry.  
2742                          */
2743                         if (entry->wired_count == 1)
2744                                 vm_map_entry_unwire(map, entry);
2745                         else
2746                                 entry->wired_count--;
2747                 }
2748         next_entry_done:
2749                 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2750                     ("vm_map_wire: in-transition flag missing %p", entry));
2751                 KASSERT(entry->wiring_thread == curthread,
2752                     ("vm_map_wire: alien wire %p", entry));
2753                 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2754                     MAP_ENTRY_WIRE_SKIPPED);
2755                 entry->wiring_thread = NULL;
2756                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2757                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2758                         need_wakeup = TRUE;
2759                 }
2760                 vm_map_simplify_entry(map, entry);
2761         }
2762         vm_map_unlock(map);
2763         if (need_wakeup)
2764                 vm_map_wakeup(map);
2765         return (rv);
2766 }
2767
2768 /*
2769  * vm_map_sync
2770  *
2771  * Push any dirty cached pages in the address range to their pager.
2772  * If syncio is TRUE, dirty pages are written synchronously.
2773  * If invalidate is TRUE, any cached pages are freed as well.
2774  *
2775  * If the size of the region from start to end is zero, we are
2776  * supposed to flush all modified pages within the region containing
2777  * start.  Unfortunately, a region can be split or coalesced with
2778  * neighboring regions, making it difficult to determine what the
2779  * original region was.  Therefore, we approximate this requirement by
2780  * flushing the current region containing start.
2781  *
2782  * Returns an error if any part of the specified range is not mapped.
2783  */
2784 int
2785 vm_map_sync(
2786         vm_map_t map,
2787         vm_offset_t start,
2788         vm_offset_t end,
2789         boolean_t syncio,
2790         boolean_t invalidate)
2791 {
2792         vm_map_entry_t current;
2793         vm_map_entry_t entry;
2794         vm_size_t size;
2795         vm_object_t object;
2796         vm_ooffset_t offset;
2797         unsigned int last_timestamp;
2798         boolean_t failed;
2799
2800         vm_map_lock_read(map);
2801         VM_MAP_RANGE_CHECK(map, start, end);
2802         if (!vm_map_lookup_entry(map, start, &entry)) {
2803                 vm_map_unlock_read(map);
2804                 return (KERN_INVALID_ADDRESS);
2805         } else if (start == end) {
2806                 start = entry->start;
2807                 end = entry->end;
2808         }
2809         /*
2810          * Make a first pass to check for user-wired memory and holes.
2811          */
2812         for (current = entry; current != &map->header && current->start < end;
2813             current = current->next) {
2814                 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2815                         vm_map_unlock_read(map);
2816                         return (KERN_INVALID_ARGUMENT);
2817                 }
2818                 if (end > current->end &&
2819                     (current->next == &map->header ||
2820                         current->end != current->next->start)) {
2821                         vm_map_unlock_read(map);
2822                         return (KERN_INVALID_ADDRESS);
2823                 }
2824         }
2825
2826         if (invalidate)
2827                 pmap_remove(map->pmap, start, end);
2828         failed = FALSE;
2829
2830         /*
2831          * Make a second pass, cleaning/uncaching pages from the indicated
2832          * objects as we go.
2833          */
2834         for (current = entry; current != &map->header && current->start < end;) {
2835                 offset = current->offset + (start - current->start);
2836                 size = (end <= current->end ? end : current->end) - start;
2837                 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2838                         vm_map_t smap;
2839                         vm_map_entry_t tentry;
2840                         vm_size_t tsize;
2841
2842                         smap = current->object.sub_map;
2843                         vm_map_lock_read(smap);
2844                         (void) vm_map_lookup_entry(smap, offset, &tentry);
2845                         tsize = tentry->end - offset;
2846                         if (tsize < size)
2847                                 size = tsize;
2848                         object = tentry->object.vm_object;
2849                         offset = tentry->offset + (offset - tentry->start);
2850                         vm_map_unlock_read(smap);
2851                 } else {
2852                         object = current->object.vm_object;
2853                 }
2854                 vm_object_reference(object);
2855                 last_timestamp = map->timestamp;
2856                 vm_map_unlock_read(map);
2857                 if (!vm_object_sync(object, offset, size, syncio, invalidate))
2858                         failed = TRUE;
2859                 start += size;
2860                 vm_object_deallocate(object);
2861                 vm_map_lock_read(map);
2862                 if (last_timestamp == map->timestamp ||
2863                     !vm_map_lookup_entry(map, start, &current))
2864                         current = current->next;
2865         }
2866
2867         vm_map_unlock_read(map);
2868         return (failed ? KERN_FAILURE : KERN_SUCCESS);
2869 }
2870
2871 /*
2872  *      vm_map_entry_unwire:    [ internal use only ]
2873  *
2874  *      Make the region specified by this entry pageable.
2875  *
2876  *      The map in question should be locked.
2877  *      [This is the reason for this routine's existence.]
2878  */
2879 static void
2880 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2881 {
2882
2883         VM_MAP_ASSERT_LOCKED(map);
2884         KASSERT(entry->wired_count > 0,
2885             ("vm_map_entry_unwire: entry %p isn't wired", entry));
2886         pmap_unwire(map->pmap, entry->start, entry->end);
2887         vm_object_unwire(entry->object.vm_object, entry->offset, entry->end -
2888             entry->start, PQ_ACTIVE);
2889         entry->wired_count = 0;
2890 }
2891
2892 static void
2893 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2894 {
2895
2896         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2897                 vm_object_deallocate(entry->object.vm_object);
2898         uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2899 }
2900
2901 /*
2902  *      vm_map_entry_delete:    [ internal use only ]
2903  *
2904  *      Deallocate the given entry from the target map.
2905  */
2906 static void
2907 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2908 {
2909         vm_object_t object;
2910         vm_pindex_t offidxstart, offidxend, count, size1;
2911         vm_ooffset_t size;
2912
2913         vm_map_entry_unlink(map, entry);
2914         object = entry->object.vm_object;
2915         size = entry->end - entry->start;
2916         map->size -= size;
2917
2918         if (entry->cred != NULL) {
2919                 swap_release_by_cred(size, entry->cred);
2920                 crfree(entry->cred);
2921         }
2922
2923         if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2924             (object != NULL)) {
2925                 KASSERT(entry->cred == NULL || object->cred == NULL ||
2926                     (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2927                     ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2928                 count = OFF_TO_IDX(size);
2929                 offidxstart = OFF_TO_IDX(entry->offset);
2930                 offidxend = offidxstart + count;
2931                 VM_OBJECT_WLOCK(object);
2932                 if (object->ref_count != 1 &&
2933                     ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2934                     object == kernel_object || object == kmem_object)) {
2935                         vm_object_collapse(object);
2936
2937                         /*
2938                          * The option OBJPR_NOTMAPPED can be passed here
2939                          * because vm_map_delete() already performed
2940                          * pmap_remove() on the only mapping to this range
2941                          * of pages. 
2942                          */
2943                         vm_object_page_remove(object, offidxstart, offidxend,
2944                             OBJPR_NOTMAPPED);
2945                         if (object->type == OBJT_SWAP)
2946                                 swap_pager_freespace(object, offidxstart, count);
2947                         if (offidxend >= object->size &&
2948                             offidxstart < object->size) {
2949                                 size1 = object->size;
2950                                 object->size = offidxstart;
2951                                 if (object->cred != NULL) {
2952                                         size1 -= object->size;
2953                                         KASSERT(object->charge >= ptoa(size1),
2954                                             ("vm_map_entry_delete: object->charge < 0"));
2955                                         swap_release_by_cred(ptoa(size1), object->cred);
2956                                         object->charge -= ptoa(size1);
2957                                 }
2958                         }
2959                 }
2960                 VM_OBJECT_WUNLOCK(object);
2961         } else
2962                 entry->object.vm_object = NULL;
2963         if (map->system_map)
2964                 vm_map_entry_deallocate(entry, TRUE);
2965         else {
2966                 entry->next = curthread->td_map_def_user;
2967                 curthread->td_map_def_user = entry;
2968         }
2969 }
2970
2971 /*
2972  *      vm_map_delete:  [ internal use only ]
2973  *
2974  *      Deallocates the given address range from the target
2975  *      map.
2976  */
2977 int
2978 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2979 {
2980         vm_map_entry_t entry;
2981         vm_map_entry_t first_entry;
2982
2983         VM_MAP_ASSERT_LOCKED(map);
2984         if (start == end)
2985                 return (KERN_SUCCESS);
2986
2987         /*
2988          * Find the start of the region, and clip it
2989          */
2990         if (!vm_map_lookup_entry(map, start, &first_entry))
2991                 entry = first_entry->next;
2992         else {
2993                 entry = first_entry;
2994                 vm_map_clip_start(map, entry, start);
2995         }
2996
2997         /*
2998          * Step through all entries in this region
2999          */
3000         while ((entry != &map->header) && (entry->start < end)) {
3001                 vm_map_entry_t next;
3002
3003                 /*
3004                  * Wait for wiring or unwiring of an entry to complete.
3005                  * Also wait for any system wirings to disappear on
3006                  * user maps.
3007                  */
3008                 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3009                     (vm_map_pmap(map) != kernel_pmap &&
3010                     vm_map_entry_system_wired_count(entry) != 0)) {
3011                         unsigned int last_timestamp;
3012                         vm_offset_t saved_start;
3013                         vm_map_entry_t tmp_entry;
3014
3015                         saved_start = entry->start;
3016                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3017                         last_timestamp = map->timestamp;
3018                         (void) vm_map_unlock_and_wait(map, 0);
3019                         vm_map_lock(map);
3020                         if (last_timestamp + 1 != map->timestamp) {
3021                                 /*
3022                                  * Look again for the entry because the map was
3023                                  * modified while it was unlocked.
3024                                  * Specifically, the entry may have been
3025                                  * clipped, merged, or deleted.
3026                                  */
3027                                 if (!vm_map_lookup_entry(map, saved_start,
3028                                                          &tmp_entry))
3029                                         entry = tmp_entry->next;
3030                                 else {
3031                                         entry = tmp_entry;
3032                                         vm_map_clip_start(map, entry,
3033                                                           saved_start);
3034                                 }
3035                         }
3036                         continue;
3037                 }
3038                 vm_map_clip_end(map, entry, end);
3039
3040                 next = entry->next;
3041
3042                 /*
3043                  * Unwire before removing addresses from the pmap; otherwise,
3044                  * unwiring will put the entries back in the pmap.
3045                  */
3046                 if (entry->wired_count != 0) {
3047                         vm_map_entry_unwire(map, entry);
3048                 }
3049
3050                 pmap_remove(map->pmap, entry->start, entry->end);
3051
3052                 /*
3053                  * Delete the entry only after removing all pmap
3054                  * entries pointing to its pages.  (Otherwise, its
3055                  * page frames may be reallocated, and any modify bits
3056                  * will be set in the wrong object!)
3057                  */
3058                 vm_map_entry_delete(map, entry);
3059                 entry = next;
3060         }
3061         return (KERN_SUCCESS);
3062 }
3063
3064 /*
3065  *      vm_map_remove:
3066  *
3067  *      Remove the given address range from the target map.
3068  *      This is the exported form of vm_map_delete.
3069  */
3070 int
3071 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3072 {
3073         int result;
3074
3075         vm_map_lock(map);
3076         VM_MAP_RANGE_CHECK(map, start, end);
3077         result = vm_map_delete(map, start, end);
3078         vm_map_unlock(map);
3079         return (result);
3080 }
3081
3082 /*
3083  *      vm_map_check_protection:
3084  *
3085  *      Assert that the target map allows the specified privilege on the
3086  *      entire address region given.  The entire region must be allocated.
3087  *
3088  *      WARNING!  This code does not and should not check whether the
3089  *      contents of the region is accessible.  For example a smaller file
3090  *      might be mapped into a larger address space.
3091  *
3092  *      NOTE!  This code is also called by munmap().
3093  *
3094  *      The map must be locked.  A read lock is sufficient.
3095  */
3096 boolean_t
3097 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3098                         vm_prot_t protection)
3099 {
3100         vm_map_entry_t entry;
3101         vm_map_entry_t tmp_entry;
3102
3103         if (!vm_map_lookup_entry(map, start, &tmp_entry))
3104                 return (FALSE);
3105         entry = tmp_entry;
3106
3107         while (start < end) {
3108                 if (entry == &map->header)
3109                         return (FALSE);
3110                 /*
3111                  * No holes allowed!
3112                  */
3113                 if (start < entry->start)
3114                         return (FALSE);
3115                 /*
3116                  * Check protection associated with entry.
3117                  */
3118                 if ((entry->protection & protection) != protection)
3119                         return (FALSE);
3120                 /* go to next entry */
3121                 start = entry->end;
3122                 entry = entry->next;
3123         }
3124         return (TRUE);
3125 }
3126
3127 /*
3128  *      vm_map_copy_entry:
3129  *
3130  *      Copies the contents of the source entry to the destination
3131  *      entry.  The entries *must* be aligned properly.
3132  */
3133 static void
3134 vm_map_copy_entry(
3135         vm_map_t src_map,
3136         vm_map_t dst_map,
3137         vm_map_entry_t src_entry,
3138         vm_map_entry_t dst_entry,
3139         vm_ooffset_t *fork_charge)
3140 {
3141         vm_object_t src_object;
3142         vm_map_entry_t fake_entry;
3143         vm_offset_t size;
3144         struct ucred *cred;
3145         int charged;
3146
3147         VM_MAP_ASSERT_LOCKED(dst_map);
3148
3149         if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3150                 return;
3151
3152         if (src_entry->wired_count == 0 ||
3153             (src_entry->protection & VM_PROT_WRITE) == 0) {
3154                 /*
3155                  * If the source entry is marked needs_copy, it is already
3156                  * write-protected.
3157                  */
3158                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3159                     (src_entry->protection & VM_PROT_WRITE) != 0) {
3160                         pmap_protect(src_map->pmap,
3161                             src_entry->start,
3162                             src_entry->end,
3163                             src_entry->protection & ~VM_PROT_WRITE);
3164                 }
3165
3166                 /*
3167                  * Make a copy of the object.
3168                  */
3169                 size = src_entry->end - src_entry->start;
3170                 if ((src_object = src_entry->object.vm_object) != NULL) {
3171                         VM_OBJECT_WLOCK(src_object);
3172                         charged = ENTRY_CHARGED(src_entry);
3173                         if ((src_object->handle == NULL) &&
3174                                 (src_object->type == OBJT_DEFAULT ||
3175                                  src_object->type == OBJT_SWAP)) {
3176                                 vm_object_collapse(src_object);
3177                                 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3178                                         vm_object_split(src_entry);
3179                                         src_object = src_entry->object.vm_object;
3180                                 }
3181                         }
3182                         vm_object_reference_locked(src_object);
3183                         vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3184                         if (src_entry->cred != NULL &&
3185                             !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3186                                 KASSERT(src_object->cred == NULL,
3187                                     ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3188                                      src_object));
3189                                 src_object->cred = src_entry->cred;
3190                                 src_object->charge = size;
3191                         }
3192                         VM_OBJECT_WUNLOCK(src_object);
3193                         dst_entry->object.vm_object = src_object;
3194                         if (charged) {
3195                                 cred = curthread->td_ucred;
3196                                 crhold(cred);
3197                                 dst_entry->cred = cred;
3198                                 *fork_charge += size;
3199                                 if (!(src_entry->eflags &
3200                                       MAP_ENTRY_NEEDS_COPY)) {
3201                                         crhold(cred);
3202                                         src_entry->cred = cred;
3203                                         *fork_charge += size;
3204                                 }
3205                         }
3206                         src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3207                         dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3208                         dst_entry->offset = src_entry->offset;
3209                         if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3210                                 /*
3211                                  * MAP_ENTRY_VN_WRITECNT cannot
3212                                  * indicate write reference from
3213                                  * src_entry, since the entry is
3214                                  * marked as needs copy.  Allocate a
3215                                  * fake entry that is used to
3216                                  * decrement object->un_pager.vnp.writecount
3217                                  * at the appropriate time.  Attach
3218                                  * fake_entry to the deferred list.
3219                                  */
3220                                 fake_entry = vm_map_entry_create(dst_map);
3221                                 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3222                                 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3223                                 vm_object_reference(src_object);
3224                                 fake_entry->object.vm_object = src_object;
3225                                 fake_entry->start = src_entry->start;
3226                                 fake_entry->end = src_entry->end;
3227                                 fake_entry->next = curthread->td_map_def_user;
3228                                 curthread->td_map_def_user = fake_entry;
3229                         }
3230                 } else {
3231                         dst_entry->object.vm_object = NULL;
3232                         dst_entry->offset = 0;
3233                         if (src_entry->cred != NULL) {
3234                                 dst_entry->cred = curthread->td_ucred;
3235                                 crhold(dst_entry->cred);
3236                                 *fork_charge += size;
3237                         }
3238                 }
3239
3240                 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3241                     dst_entry->end - dst_entry->start, src_entry->start);
3242         } else {
3243                 /*
3244                  * We don't want to make writeable wired pages copy-on-write.
3245                  * Immediately copy these pages into the new map by simulating
3246                  * page faults.  The new pages are pageable.
3247                  */
3248                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3249                     fork_charge);
3250         }
3251 }
3252
3253 /*
3254  * vmspace_map_entry_forked:
3255  * Update the newly-forked vmspace each time a map entry is inherited
3256  * or copied.  The values for vm_dsize and vm_tsize are approximate
3257  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3258  */
3259 static void
3260 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3261     vm_map_entry_t entry)
3262 {
3263         vm_size_t entrysize;
3264         vm_offset_t newend;
3265
3266         entrysize = entry->end - entry->start;
3267         vm2->vm_map.size += entrysize;
3268         if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3269                 vm2->vm_ssize += btoc(entrysize);
3270         } else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3271             entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3272                 newend = MIN(entry->end,
3273                     (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3274                 vm2->vm_dsize += btoc(newend - entry->start);
3275         } else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3276             entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3277                 newend = MIN(entry->end,
3278                     (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3279                 vm2->vm_tsize += btoc(newend - entry->start);
3280         }
3281 }
3282
3283 /*
3284  * vmspace_fork:
3285  * Create a new process vmspace structure and vm_map
3286  * based on those of an existing process.  The new map
3287  * is based on the old map, according to the inheritance
3288  * values on the regions in that map.
3289  *
3290  * XXX It might be worth coalescing the entries added to the new vmspace.
3291  *
3292  * The source map must not be locked.
3293  */
3294 struct vmspace *
3295 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3296 {
3297         struct vmspace *vm2;
3298         vm_map_t new_map, old_map;
3299         vm_map_entry_t new_entry, old_entry;
3300         vm_object_t object;
3301         int locked;
3302
3303         old_map = &vm1->vm_map;
3304         /* Copy immutable fields of vm1 to vm2. */
3305         vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL);
3306         if (vm2 == NULL)
3307                 return (NULL);
3308         vm2->vm_taddr = vm1->vm_taddr;
3309         vm2->vm_daddr = vm1->vm_daddr;
3310         vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3311         vm_map_lock(old_map);
3312         if (old_map->busy)
3313                 vm_map_wait_busy(old_map);
3314         new_map = &vm2->vm_map;
3315         locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3316         KASSERT(locked, ("vmspace_fork: lock failed"));
3317
3318         old_entry = old_map->header.next;
3319
3320         while (old_entry != &old_map->header) {
3321                 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3322                         panic("vm_map_fork: encountered a submap");
3323
3324                 switch (old_entry->inheritance) {
3325                 case VM_INHERIT_NONE:
3326                         break;
3327
3328                 case VM_INHERIT_SHARE:
3329                         /*
3330                          * Clone the entry, creating the shared object if necessary.
3331                          */
3332                         object = old_entry->object.vm_object;
3333                         if (object == NULL) {
3334                                 object = vm_object_allocate(OBJT_DEFAULT,
3335                                         atop(old_entry->end - old_entry->start));
3336                                 old_entry->object.vm_object = object;
3337                                 old_entry->offset = 0;
3338                                 if (old_entry->cred != NULL) {
3339                                         object->cred = old_entry->cred;
3340                                         object->charge = old_entry->end -
3341                                             old_entry->start;
3342                                         old_entry->cred = NULL;
3343                                 }
3344                         }
3345
3346                         /*
3347                          * Add the reference before calling vm_object_shadow
3348                          * to insure that a shadow object is created.
3349                          */
3350                         vm_object_reference(object);
3351                         if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3352                                 vm_object_shadow(&old_entry->object.vm_object,
3353                                     &old_entry->offset,
3354                                     old_entry->end - old_entry->start);
3355                                 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3356                                 /* Transfer the second reference too. */
3357                                 vm_object_reference(
3358                                     old_entry->object.vm_object);
3359
3360                                 /*
3361                                  * As in vm_map_simplify_entry(), the
3362                                  * vnode lock will not be acquired in
3363                                  * this call to vm_object_deallocate().
3364                                  */
3365                                 vm_object_deallocate(object);
3366                                 object = old_entry->object.vm_object;
3367                         }
3368                         VM_OBJECT_WLOCK(object);
3369                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
3370                         if (old_entry->cred != NULL) {
3371                                 KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3372                                 object->cred = old_entry->cred;
3373                                 object->charge = old_entry->end - old_entry->start;
3374                                 old_entry->cred = NULL;
3375                         }
3376
3377                         /*
3378                          * Assert the correct state of the vnode
3379                          * v_writecount while the object is locked, to
3380                          * not relock it later for the assertion
3381                          * correctness.
3382                          */
3383                         if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3384                             object->type == OBJT_VNODE) {
3385                                 KASSERT(((struct vnode *)object->handle)->
3386                                     v_writecount > 0,
3387                                     ("vmspace_fork: v_writecount %p", object));
3388                                 KASSERT(object->un_pager.vnp.writemappings > 0,
3389                                     ("vmspace_fork: vnp.writecount %p",
3390                                     object));
3391                         }
3392                         VM_OBJECT_WUNLOCK(object);
3393
3394                         /*
3395                          * Clone the entry, referencing the shared object.
3396                          */
3397                         new_entry = vm_map_entry_create(new_map);
3398                         *new_entry = *old_entry;
3399                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3400                             MAP_ENTRY_IN_TRANSITION);
3401                         new_entry->wiring_thread = NULL;
3402                         new_entry->wired_count = 0;
3403                         if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3404                                 vnode_pager_update_writecount(object,
3405                                     new_entry->start, new_entry->end);
3406                         }
3407
3408                         /*
3409                          * Insert the entry into the new map -- we know we're
3410                          * inserting at the end of the new map.
3411                          */
3412                         vm_map_entry_link(new_map, new_map->header.prev,
3413                             new_entry);
3414                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3415
3416                         /*
3417                          * Update the physical map
3418                          */
3419                         pmap_copy(new_map->pmap, old_map->pmap,
3420                             new_entry->start,
3421                             (old_entry->end - old_entry->start),
3422                             old_entry->start);
3423                         break;
3424
3425                 case VM_INHERIT_COPY:
3426                         /*
3427                          * Clone the entry and link into the map.
3428                          */
3429                         new_entry = vm_map_entry_create(new_map);
3430                         *new_entry = *old_entry;
3431                         /*
3432                          * Copied entry is COW over the old object.
3433                          */
3434                         new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3435                             MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3436                         new_entry->wiring_thread = NULL;
3437                         new_entry->wired_count = 0;
3438                         new_entry->object.vm_object = NULL;
3439                         new_entry->cred = NULL;
3440                         vm_map_entry_link(new_map, new_map->header.prev,
3441                             new_entry);
3442                         vmspace_map_entry_forked(vm1, vm2, new_entry);
3443                         vm_map_copy_entry(old_map, new_map, old_entry,
3444                             new_entry, fork_charge);
3445                         break;
3446                 }
3447                 old_entry = old_entry->next;
3448         }
3449         /*
3450          * Use inlined vm_map_unlock() to postpone handling the deferred
3451          * map entries, which cannot be done until both old_map and
3452          * new_map locks are released.
3453          */
3454         sx_xunlock(&old_map->lock);
3455         sx_xunlock(&new_map->lock);
3456         vm_map_process_deferred();
3457
3458         return (vm2);
3459 }
3460
3461 int
3462 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3463     vm_prot_t prot, vm_prot_t max, int cow)
3464 {
3465         vm_size_t growsize, init_ssize;
3466         rlim_t lmemlim, vmemlim;
3467         int rv;
3468
3469         growsize = sgrowsiz;
3470         init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3471         vm_map_lock(map);
3472         lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
3473         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3474         if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3475                 if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) {
3476                         rv = KERN_NO_SPACE;
3477                         goto out;
3478                 }
3479         }
3480         /* If we would blow our VMEM resource limit, no go */
3481         if (map->size + init_ssize > vmemlim) {
3482                 rv = KERN_NO_SPACE;
3483                 goto out;
3484         }
3485         rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
3486             max, cow);
3487 out:
3488         vm_map_unlock(map);
3489         return (rv);
3490 }
3491
3492 static int
3493 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3494     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
3495 {
3496         vm_map_entry_t new_entry, prev_entry;
3497         vm_offset_t bot, top;
3498         vm_size_t init_ssize;
3499         int orient, rv;
3500
3501         /*
3502          * The stack orientation is piggybacked with the cow argument.
3503          * Extract it into orient and mask the cow argument so that we
3504          * don't pass it around further.
3505          * NOTE: We explicitly allow bi-directional stacks.
3506          */
3507         orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
3508         KASSERT(orient != 0, ("No stack grow direction"));
3509
3510         if (addrbos < vm_map_min(map) ||
3511             addrbos > vm_map_max(map) ||
3512             addrbos + max_ssize < addrbos)
3513                 return (KERN_NO_SPACE);
3514
3515         init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3516
3517         /* If addr is already mapped, no go */
3518         if (vm_map_lookup_entry(map, addrbos, &prev_entry))
3519                 return (KERN_NO_SPACE);
3520
3521         /*
3522          * If we can't accomodate max_ssize in the current mapping, no go.
3523          * However, we need to be aware that subsequent user mappings might
3524          * map into the space we have reserved for stack, and currently this
3525          * space is not protected.
3526          *
3527          * Hopefully we will at least detect this condition when we try to
3528          * grow the stack.
3529          */
3530         if ((prev_entry->next != &map->header) &&
3531             (prev_entry->next->start < addrbos + max_ssize))
3532                 return (KERN_NO_SPACE);
3533
3534         /*
3535          * We initially map a stack of only init_ssize.  We will grow as
3536          * needed later.  Depending on the orientation of the stack (i.e.
3537          * the grow direction) we either map at the top of the range, the
3538          * bottom of the range or in the middle.
3539          *
3540          * Note: we would normally expect prot and max to be VM_PROT_ALL,
3541          * and cow to be 0.  Possibly we should eliminate these as input
3542          * parameters, and just pass these values here in the insert call.
3543          */
3544         if (orient == MAP_STACK_GROWS_DOWN)
3545                 bot = addrbos + max_ssize - init_ssize;
3546         else if (orient == MAP_STACK_GROWS_UP)
3547                 bot = addrbos;
3548         else
3549                 bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
3550         top = bot + init_ssize;
3551         rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3552
3553         /* Now set the avail_ssize amount. */
3554         if (rv == KERN_SUCCESS) {
3555                 new_entry = prev_entry->next;
3556                 if (new_entry->end != top || new_entry->start != bot)
3557                         panic("Bad entry start/end for new stack entry");
3558
3559                 new_entry->avail_ssize = max_ssize - init_ssize;
3560                 KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
3561                     (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
3562                     ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3563                 KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
3564                     (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
3565                     ("new entry lacks MAP_ENTRY_GROWS_UP"));
3566         }
3567
3568         return (rv);
3569 }
3570
3571 static int stack_guard_page = 0;
3572 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
3573     &stack_guard_page, 0,
3574     "Insert stack guard page ahead of the growable segments.");
3575
3576 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3577  * desired address is already mapped, or if we successfully grow
3578  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3579  * stack range (this is strange, but preserves compatibility with
3580  * the grow function in vm_machdep.c).
3581  */
3582 int
3583 vm_map_growstack(struct proc *p, vm_offset_t addr)
3584 {
3585         vm_map_entry_t next_entry, prev_entry;
3586         vm_map_entry_t new_entry, stack_entry;
3587         struct vmspace *vm = p->p_vmspace;
3588         vm_map_t map = &vm->vm_map;
3589         vm_offset_t end;
3590         vm_size_t growsize;
3591         size_t grow_amount, max_grow;
3592         rlim_t lmemlim, stacklim, vmemlim;
3593         int is_procstack, rv;
3594         struct ucred *cred;
3595 #ifdef notyet
3596         uint64_t limit;
3597 #endif
3598 #ifdef RACCT
3599         int error;
3600 #endif
3601
3602         lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
3603         stacklim = lim_cur(curthread, RLIMIT_STACK);
3604         vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3605 Retry:
3606
3607         vm_map_lock_read(map);
3608
3609         /* If addr is already in the entry range, no need to grow.*/
3610         if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3611                 vm_map_unlock_read(map);
3612                 return (KERN_SUCCESS);
3613         }
3614
3615         next_entry = prev_entry->next;
3616         if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3617                 /*
3618                  * This entry does not grow upwards. Since the address lies
3619                  * beyond this entry, the next entry (if one exists) has to
3620                  * be a downward growable entry. The entry list header is
3621                  * never a growable entry, so it suffices to check the flags.
3622                  */
3623                 if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3624                         vm_map_unlock_read(map);
3625                         return (KERN_SUCCESS);
3626                 }
3627                 stack_entry = next_entry;
3628         } else {
3629                 /*
3630                  * This entry grows upward. If the next entry does not at
3631                  * least grow downwards, this is the entry we need to grow.
3632                  * otherwise we have two possible choices and we have to
3633                  * select one.
3634                  */
3635                 if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3636                         /*
3637                          * We have two choices; grow the entry closest to
3638                          * the address to minimize the amount of growth.
3639                          */
3640                         if (addr - prev_entry->end <= next_entry->start - addr)
3641                                 stack_entry = prev_entry;
3642                         else
3643                                 stack_entry = next_entry;
3644                 } else
3645                         stack_entry = prev_entry;
3646         }
3647
3648         if (stack_entry == next_entry) {
3649                 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3650                 KASSERT(addr < stack_entry->start, ("foo"));
3651                 end = (prev_entry != &map->header) ? prev_entry->end :
3652                     stack_entry->start - stack_entry->avail_ssize;
3653                 grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3654                 max_grow = stack_entry->start - end;
3655         } else {
3656                 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3657                 KASSERT(addr >= stack_entry->end, ("foo"));
3658                 end = (next_entry != &map->header) ? next_entry->start :
3659                     stack_entry->end + stack_entry->avail_ssize;
3660                 grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3661                 max_grow = end - stack_entry->end;
3662         }
3663
3664         if (grow_amount > stack_entry->avail_ssize) {
3665                 vm_map_unlock_read(map);
3666                 return (KERN_NO_SPACE);
3667         }
3668
3669         /*
3670          * If there is no longer enough space between the entries nogo, and
3671          * adjust the available space.  Note: this  should only happen if the
3672          * user has mapped into the stack area after the stack was created,
3673          * and is probably an error.
3674          *
3675          * This also effectively destroys any guard page the user might have
3676          * intended by limiting the stack size.
3677          */
3678         if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
3679                 if (vm_map_lock_upgrade(map))
3680                         goto Retry;
3681
3682                 stack_entry->avail_ssize = max_grow;
3683
3684                 vm_map_unlock(map);
3685                 return (KERN_NO_SPACE);
3686         }
3687
3688         is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr &&
3689             addr < (vm_offset_t)p->p_sysent->sv_usrstack) ? 1 : 0;
3690
3691         /*
3692          * If this is the main process stack, see if we're over the stack
3693          * limit.
3694          */
3695         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3696                 vm_map_unlock_read(map);
3697                 return (KERN_NO_SPACE);
3698         }
3699 #ifdef RACCT
3700         if (racct_enable) {
3701                 PROC_LOCK(p);
3702                 if (is_procstack && racct_set(p, RACCT_STACK,
3703                     ctob(vm->vm_ssize) + grow_amount)) {
3704                         PROC_UNLOCK(p);
3705                         vm_map_unlock_read(map);
3706                         return (KERN_NO_SPACE);
3707                 }
3708                 PROC_UNLOCK(p);
3709         }
3710 #endif
3711
3712         /* Round up the grow amount modulo sgrowsiz */
3713         growsize = sgrowsiz;
3714         grow_amount = roundup(grow_amount, growsize);
3715         if (grow_amount > stack_entry->avail_ssize)
3716                 grow_amount = stack_entry->avail_ssize;
3717         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3718                 grow_amount = trunc_page((vm_size_t)stacklim) -
3719                     ctob(vm->vm_ssize);
3720         }
3721 #ifdef notyet
3722         PROC_LOCK(p);
3723         limit = racct_get_available(p, RACCT_STACK);
3724         PROC_UNLOCK(p);
3725         if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3726                 grow_amount = limit - ctob(vm->vm_ssize);
3727 #endif
3728         if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3729                 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3730                         vm_map_unlock_read(map);
3731                         rv = KERN_NO_SPACE;
3732                         goto out;
3733                 }
3734 #ifdef RACCT
3735                 if (racct_enable) {
3736                         PROC_LOCK(p);
3737                         if (racct_set(p, RACCT_MEMLOCK,
3738                             ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3739                                 PROC_UNLOCK(p);
3740                                 vm_map_unlock_read(map);
3741                                 rv = KERN_NO_SPACE;
3742                                 goto out;
3743                         }
3744                         PROC_UNLOCK(p);
3745                 }
3746 #endif
3747         }
3748         /* If we would blow our VMEM resource limit, no go */
3749         if (map->size + grow_amount > vmemlim) {
3750                 vm_map_unlock_read(map);
3751                 rv = KERN_NO_SPACE;
3752                 goto out;
3753         }
3754 #ifdef RACCT
3755         if (racct_enable) {
3756                 PROC_LOCK(p);
3757                 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3758                         PROC_UNLOCK(p);
3759                         vm_map_unlock_read(map);
3760                         rv = KERN_NO_SPACE;
3761                         goto out;
3762                 }
3763                 PROC_UNLOCK(p);
3764         }
3765 #endif
3766
3767         if (vm_map_lock_upgrade(map))
3768                 goto Retry;
3769
3770         if (stack_entry == next_entry) {
3771                 /*
3772                  * Growing downward.
3773                  */
3774                 /* Get the preliminary new entry start value */
3775                 addr = stack_entry->start - grow_amount;
3776
3777                 /*
3778                  * If this puts us into the previous entry, cut back our
3779                  * growth to the available space. Also, see the note above.
3780                  */
3781                 if (addr < end) {
3782                         stack_entry->avail_ssize = max_grow;
3783                         addr = end;
3784                         if (stack_guard_page)
3785                                 addr += PAGE_SIZE;
3786                 }
3787
3788                 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3789                     next_entry->protection, next_entry->max_protection,
3790                     MAP_STACK_GROWS_DOWN);
3791
3792                 /* Adjust the available stack space by the amount we grew. */
3793                 if (rv == KERN_SUCCESS) {
3794                         new_entry = prev_entry->next;
3795                         KASSERT(new_entry == stack_entry->prev, ("foo"));
3796                         KASSERT(new_entry->end == stack_entry->start, ("foo"));
3797                         KASSERT(new_entry->start == addr, ("foo"));
3798                         KASSERT((new_entry->eflags & MAP_ENTRY_GROWS_DOWN) !=
3799                             0, ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3800                         grow_amount = new_entry->end - new_entry->start;
3801                         new_entry->avail_ssize = stack_entry->avail_ssize -
3802                             grow_amount;
3803                         stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3804                 }
3805         } else {
3806                 /*
3807                  * Growing upward.
3808                  */
3809                 addr = stack_entry->end + grow_amount;
3810
3811                 /*
3812                  * If this puts us into the next entry, cut back our growth
3813                  * to the available space. Also, see the note above.
3814                  */
3815                 if (addr > end) {
3816                         stack_entry->avail_ssize = end - stack_entry->end;
3817                         addr = end;
3818                         if (stack_guard_page)
3819                                 addr -= PAGE_SIZE;
3820                 }
3821
3822                 grow_amount = addr - stack_entry->end;
3823                 cred = stack_entry->cred;
3824                 if (cred == NULL && stack_entry->object.vm_object != NULL)
3825                         cred = stack_entry->object.vm_object->cred;
3826                 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3827                         rv = KERN_NO_SPACE;
3828                 /* Grow the underlying object if applicable. */
3829                 else if (stack_entry->object.vm_object == NULL ||
3830                          vm_object_coalesce(stack_entry->object.vm_object,
3831                          stack_entry->offset,
3832                          (vm_size_t)(stack_entry->end - stack_entry->start),
3833                          (vm_size_t)grow_amount, cred != NULL)) {
3834                         map->size += (addr - stack_entry->end);
3835                         /* Update the current entry. */
3836                         stack_entry->end = addr;
3837                         stack_entry->avail_ssize -= grow_amount;
3838                         vm_map_entry_resize_free(map, stack_entry);
3839                         rv = KERN_SUCCESS;
3840                 } else
3841                         rv = KERN_FAILURE;
3842         }
3843
3844         if (rv == KERN_SUCCESS && is_procstack)
3845                 vm->vm_ssize += btoc(grow_amount);
3846
3847         vm_map_unlock(map);
3848
3849         /*
3850          * Heed the MAP_WIREFUTURE flag if it was set for this process.
3851          */
3852         if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3853                 vm_map_wire(map,
3854                     (stack_entry == next_entry) ? addr : addr - grow_amount,
3855                     (stack_entry == next_entry) ? stack_entry->start : addr,
3856                     (p->p_flag & P_SYSTEM)
3857                     ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3858                     : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3859         }
3860
3861 out:
3862 #ifdef RACCT
3863         if (racct_enable && rv != KERN_SUCCESS) {
3864                 PROC_LOCK(p);
3865                 error = racct_set(p, RACCT_VMEM, map->size);
3866                 KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3867                 if (!old_mlock) {
3868                         error = racct_set(p, RACCT_MEMLOCK,
3869                             ptoa(pmap_wired_count(map->pmap)));
3870                         KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3871                 }
3872                 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3873                 KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3874                 PROC_UNLOCK(p);
3875         }
3876 #endif
3877
3878         return (rv);
3879 }
3880
3881 /*
3882  * Unshare the specified VM space for exec.  If other processes are
3883  * mapped to it, then create a new one.  The new vmspace is null.
3884  */
3885 int
3886 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3887 {
3888         struct vmspace *oldvmspace = p->p_vmspace;
3889         struct vmspace *newvmspace;
3890
3891         KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
3892             ("vmspace_exec recursed"));
3893         newvmspace = vmspace_alloc(minuser, maxuser, NULL);
3894         if (newvmspace == NULL)
3895                 return (ENOMEM);
3896         newvmspace->vm_swrss = oldvmspace->vm_swrss;
3897         /*
3898          * This code is written like this for prototype purposes.  The
3899          * goal is to avoid running down the vmspace here, but let the
3900          * other process's that are still using the vmspace to finally
3901          * run it down.  Even though there is little or no chance of blocking
3902          * here, it is a good idea to keep this form for future mods.
3903          */
3904         PROC_VMSPACE_LOCK(p);
3905         p->p_vmspace = newvmspace;
3906         PROC_VMSPACE_UNLOCK(p);
3907         if (p == curthread->td_proc)
3908                 pmap_activate(curthread);
3909         curthread->td_pflags |= TDP_EXECVMSPC;
3910         return (0);
3911 }
3912
3913 /*
3914  * Unshare the specified VM space for forcing COW.  This
3915  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3916  */
3917 int
3918 vmspace_unshare(struct proc *p)
3919 {
3920         struct vmspace *oldvmspace = p->p_vmspace;
3921         struct vmspace *newvmspace;
3922         vm_ooffset_t fork_charge;
3923
3924         if (oldvmspace->vm_refcnt == 1)
3925                 return (0);
3926         fork_charge = 0;
3927         newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3928         if (newvmspace == NULL)
3929                 return (ENOMEM);
3930         if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3931                 vmspace_free(newvmspace);
3932                 return (ENOMEM);
3933         }
3934         PROC_VMSPACE_LOCK(p);
3935         p->p_vmspace = newvmspace;
3936         PROC_VMSPACE_UNLOCK(p);
3937         if (p == curthread->td_proc)
3938                 pmap_activate(curthread);
3939         vmspace_free(oldvmspace);
3940         return (0);
3941 }
3942
3943 /*
3944  *      vm_map_lookup:
3945  *
3946  *      Finds the VM object, offset, and
3947  *      protection for a given virtual address in the
3948  *      specified map, assuming a page fault of the
3949  *      type specified.
3950  *
3951  *      Leaves the map in question locked for read; return
3952  *      values are guaranteed until a vm_map_lookup_done
3953  *      call is performed.  Note that the map argument
3954  *      is in/out; the returned map must be used in
3955  *      the call to vm_map_lookup_done.
3956  *
3957  *      A handle (out_entry) is returned for use in
3958  *      vm_map_lookup_done, to make that fast.
3959  *
3960  *      If a lookup is requested with "write protection"
3961  *      specified, the map may be changed to perform virtual
3962  *      copying operations, although the data referenced will
3963  *      remain the same.
3964  */
3965 int
3966 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
3967               vm_offset_t vaddr,
3968               vm_prot_t fault_typea,
3969               vm_map_entry_t *out_entry,        /* OUT */
3970               vm_object_t *object,              /* OUT */
3971               vm_pindex_t *pindex,              /* OUT */
3972               vm_prot_t *out_prot,              /* OUT */
3973               boolean_t *wired)                 /* OUT */
3974 {
3975         vm_map_entry_t entry;
3976         vm_map_t map = *var_map;
3977         vm_prot_t prot;
3978         vm_prot_t fault_type = fault_typea;
3979         vm_object_t eobject;
3980         vm_size_t size;
3981         struct ucred *cred;
3982
3983 RetryLookup:;
3984
3985         vm_map_lock_read(map);
3986
3987         /*
3988          * Lookup the faulting address.
3989          */
3990         if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3991                 vm_map_unlock_read(map);
3992                 return (KERN_INVALID_ADDRESS);
3993         }
3994
3995         entry = *out_entry;
3996
3997         /*
3998          * Handle submaps.
3999          */
4000         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4001                 vm_map_t old_map = map;
4002
4003                 *var_map = map = entry->object.sub_map;
4004                 vm_map_unlock_read(old_map);
4005                 goto RetryLookup;
4006         }
4007
4008         /*
4009          * Check whether this task is allowed to have this page.
4010          */
4011         prot = entry->protection;
4012         fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
4013         if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4014                 vm_map_unlock_read(map);
4015                 return (KERN_PROTECTION_FAILURE);
4016         }
4017         KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4018             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4019             (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4020             ("entry %p flags %x", entry, entry->eflags));
4021         if ((fault_typea & VM_PROT_COPY) != 0 &&
4022             (entry->max_protection & VM_PROT_WRITE) == 0 &&
4023             (entry->eflags & MAP_ENTRY_COW) == 0) {
4024                 vm_map_unlock_read(map);
4025                 return (KERN_PROTECTION_FAILURE);
4026         }
4027
4028         /*
4029          * If this page is not pageable, we have to get it for all possible
4030          * accesses.
4031          */
4032         *wired = (entry->wired_count != 0);
4033         if (*wired)
4034                 fault_type = entry->protection;
4035         size = entry->end - entry->start;
4036         /*
4037          * If the entry was copy-on-write, we either ...
4038          */
4039         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4040                 /*
4041                  * If we want to write the page, we may as well handle that
4042                  * now since we've got the map locked.
4043                  *
4044                  * If we don't need to write the page, we just demote the
4045                  * permissions allowed.
4046                  */
4047                 if ((fault_type & VM_PROT_WRITE) != 0 ||
4048                     (fault_typea & VM_PROT_COPY) != 0) {
4049                         /*
4050                          * Make a new object, and place it in the object
4051                          * chain.  Note that no new references have appeared
4052                          * -- one just moved from the map to the new
4053                          * object.
4054                          */
4055                         if (vm_map_lock_upgrade(map))
4056                                 goto RetryLookup;
4057
4058                         if (entry->cred == NULL) {
4059                                 /*
4060                                  * The debugger owner is charged for
4061                                  * the memory.
4062                                  */
4063                                 cred = curthread->td_ucred;
4064                                 crhold(cred);
4065                                 if (!swap_reserve_by_cred(size, cred)) {
4066                                         crfree(cred);
4067                                         vm_map_unlock(map);
4068                                         return (KERN_RESOURCE_SHORTAGE);
4069                                 }
4070                                 entry->cred = cred;
4071                         }
4072                         vm_object_shadow(&entry->object.vm_object,
4073                             &entry->offset, size);
4074                         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4075                         eobject = entry->object.vm_object;
4076                         if (eobject->cred != NULL) {
4077                                 /*
4078                                  * The object was not shadowed.
4079                                  */
4080                                 swap_release_by_cred(size, entry->cred);
4081                                 crfree(entry->cred);
4082                                 entry->cred = NULL;
4083                         } else if (entry->cred != NULL) {
4084                                 VM_OBJECT_WLOCK(eobject);
4085                                 eobject->cred = entry->cred;
4086                                 eobject->charge = size;
4087                                 VM_OBJECT_WUNLOCK(eobject);
4088                                 entry->cred = NULL;
4089                         }
4090
4091                         vm_map_lock_downgrade(map);
4092                 } else {
4093                         /*
4094                          * We're attempting to read a copy-on-write page --
4095                          * don't allow writes.
4096                          */
4097                         prot &= ~VM_PROT_WRITE;
4098                 }
4099         }
4100
4101         /*
4102          * Create an object if necessary.
4103          */
4104         if (entry->object.vm_object == NULL &&
4105             !map->system_map) {
4106                 if (vm_map_lock_upgrade(map))
4107                         goto RetryLookup;
4108                 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4109                     atop(size));
4110                 entry->offset = 0;
4111                 if (entry->cred != NULL) {
4112                         VM_OBJECT_WLOCK(entry->object.vm_object);
4113                         entry->object.vm_object->cred = entry->cred;
4114                         entry->object.vm_object->charge = size;
4115                         VM_OBJECT_WUNLOCK(entry->object.vm_object);
4116                         entry->cred = NULL;
4117                 }
4118                 vm_map_lock_downgrade(map);
4119         }
4120
4121         /*
4122          * Return the object/offset from this entry.  If the entry was
4123          * copy-on-write or empty, it has been fixed up.
4124          */
4125         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4126         *object = entry->object.vm_object;
4127
4128         *out_prot = prot;
4129         return (KERN_SUCCESS);
4130 }
4131
4132 /*
4133  *      vm_map_lookup_locked:
4134  *
4135  *      Lookup the faulting address.  A version of vm_map_lookup that returns 
4136  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4137  */
4138 int
4139 vm_map_lookup_locked(vm_map_t *var_map,         /* IN/OUT */
4140                      vm_offset_t vaddr,
4141                      vm_prot_t fault_typea,
4142                      vm_map_entry_t *out_entry, /* OUT */
4143                      vm_object_t *object,       /* OUT */
4144                      vm_pindex_t *pindex,       /* OUT */
4145                      vm_prot_t *out_prot,       /* OUT */
4146                      boolean_t *wired)          /* OUT */
4147 {
4148         vm_map_entry_t entry;
4149         vm_map_t map = *var_map;
4150         vm_prot_t prot;
4151         vm_prot_t fault_type = fault_typea;
4152
4153         /*
4154          * Lookup the faulting address.
4155          */
4156         if (!vm_map_lookup_entry(map, vaddr, out_entry))
4157                 return (KERN_INVALID_ADDRESS);
4158
4159         entry = *out_entry;
4160
4161         /*
4162          * Fail if the entry refers to a submap.
4163          */
4164         if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4165                 return (KERN_FAILURE);
4166
4167         /*
4168          * Check whether this task is allowed to have this page.
4169          */
4170         prot = entry->protection;
4171         fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4172         if ((fault_type & prot) != fault_type)
4173                 return (KERN_PROTECTION_FAILURE);
4174
4175         /*
4176          * If this page is not pageable, we have to get it for all possible
4177          * accesses.
4178          */
4179         *wired = (entry->wired_count != 0);
4180         if (*wired)
4181                 fault_type = entry->protection;
4182
4183         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4184                 /*
4185                  * Fail if the entry was copy-on-write for a write fault.
4186                  */
4187                 if (fault_type & VM_PROT_WRITE)
4188                         return (KERN_FAILURE);
4189                 /*
4190                  * We're attempting to read a copy-on-write page --
4191                  * don't allow writes.
4192                  */
4193                 prot &= ~VM_PROT_WRITE;
4194         }
4195
4196         /*
4197          * Fail if an object should be created.
4198          */
4199         if (entry->object.vm_object == NULL && !map->system_map)
4200                 return (KERN_FAILURE);
4201
4202         /*
4203          * Return the object/offset from this entry.  If the entry was
4204          * copy-on-write or empty, it has been fixed up.
4205          */
4206         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4207         *object = entry->object.vm_object;
4208
4209         *out_prot = prot;
4210         return (KERN_SUCCESS);
4211 }
4212
4213 /*
4214  *      vm_map_lookup_done:
4215  *
4216  *      Releases locks acquired by a vm_map_lookup
4217  *      (according to the handle returned by that lookup).
4218  */
4219 void
4220 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4221 {
4222         /*
4223          * Unlock the main-level map
4224          */
4225         vm_map_unlock_read(map);
4226 }
4227
4228 #include "opt_ddb.h"
4229 #ifdef DDB
4230 #include <sys/kernel.h>
4231
4232 #include <ddb/ddb.h>
4233
4234 static void
4235 vm_map_print(vm_map_t map)
4236 {
4237         vm_map_entry_t entry;
4238
4239         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4240             (void *)map,
4241             (void *)map->pmap, map->nentries, map->timestamp);
4242
4243         db_indent += 2;
4244         for (entry = map->header.next; entry != &map->header;
4245             entry = entry->next) {
4246                 db_iprintf("map entry %p: start=%p, end=%p\n",
4247                     (void *)entry, (void *)entry->start, (void *)entry->end);
4248                 {
4249                         static char *inheritance_name[4] =
4250                         {"share", "copy", "none", "donate_copy"};
4251
4252                         db_iprintf(" prot=%x/%x/%s",
4253                             entry->protection,
4254                             entry->max_protection,
4255                             inheritance_name[(int)(unsigned char)entry->inheritance]);
4256                         if (entry->wired_count != 0)
4257                                 db_printf(", wired");
4258                 }
4259                 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4260                         db_printf(", share=%p, offset=0x%jx\n",
4261                             (void *)entry->object.sub_map,
4262                             (uintmax_t)entry->offset);
4263                         if ((entry->prev == &map->header) ||
4264                             (entry->prev->object.sub_map !=
4265                                 entry->object.sub_map)) {
4266                                 db_indent += 2;
4267                                 vm_map_print((vm_map_t)entry->object.sub_map);
4268                                 db_indent -= 2;
4269                         }
4270                 } else {
4271                         if (entry->cred != NULL)
4272                                 db_printf(", ruid %d", entry->cred->cr_ruid);
4273                         db_printf(", object=%p, offset=0x%jx",
4274                             (void *)entry->object.vm_object,
4275                             (uintmax_t)entry->offset);
4276                         if (entry->object.vm_object && entry->object.vm_object->cred)
4277                                 db_printf(", obj ruid %d charge %jx",
4278                                     entry->object.vm_object->cred->cr_ruid,
4279                                     (uintmax_t)entry->object.vm_object->charge);
4280                         if (entry->eflags & MAP_ENTRY_COW)
4281                                 db_printf(", copy (%s)",
4282                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4283                         db_printf("\n");
4284
4285                         if ((entry->prev == &map->header) ||
4286                             (entry->prev->object.vm_object !=
4287                                 entry->object.vm_object)) {
4288                                 db_indent += 2;
4289                                 vm_object_print((db_expr_t)(intptr_t)
4290                                                 entry->object.vm_object,
4291                                                 0, 0, (char *)0);
4292                                 db_indent -= 2;
4293                         }
4294                 }
4295         }
4296         db_indent -= 2;
4297 }
4298
4299 DB_SHOW_COMMAND(map, map)
4300 {
4301
4302         if (!have_addr) {
4303                 db_printf("usage: show map <addr>\n");
4304                 return;
4305         }
4306         vm_map_print((vm_map_t)addr);
4307 }
4308
4309 DB_SHOW_COMMAND(procvm, procvm)
4310 {
4311         struct proc *p;
4312
4313         if (have_addr) {
4314                 p = (struct proc *) addr;
4315         } else {
4316                 p = curproc;
4317         }
4318
4319         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4320             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4321             (void *)vmspace_pmap(p->p_vmspace));
4322
4323         vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4324 }
4325
4326 #endif /* DDB */