usb: typec: qcom-pmic-typec: Only select DRM_AUX_HPD_BRIDGE with OF
[linux.git] / kernel / cpu.c
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/delay.h>
21 #include <linux/export.h>
22 #include <linux/bug.h>
23 #include <linux/kthread.h>
24 #include <linux/stop_machine.h>
25 #include <linux/mutex.h>
26 #include <linux/gfp.h>
27 #include <linux/suspend.h>
28 #include <linux/lockdep.h>
29 #include <linux/tick.h>
30 #include <linux/irq.h>
31 #include <linux/nmi.h>
32 #include <linux/smpboot.h>
33 #include <linux/relay.h>
34 #include <linux/slab.h>
35 #include <linux/scs.h>
36 #include <linux/percpu-rwsem.h>
37 #include <linux/cpuset.h>
38 #include <linux/random.h>
39 #include <linux/cc_platform.h>
40
41 #include <trace/events/power.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/cpuhp.h>
44
45 #include "smpboot.h"
46
47 /**
48  * struct cpuhp_cpu_state - Per cpu hotplug state storage
49  * @state:      The current cpu state
50  * @target:     The target state
51  * @fail:       Current CPU hotplug callback state
52  * @thread:     Pointer to the hotplug thread
53  * @should_run: Thread should execute
54  * @rollback:   Perform a rollback
55  * @single:     Single callback invocation
56  * @bringup:    Single callback bringup or teardown selector
57  * @cpu:        CPU number
58  * @node:       Remote CPU node; for multi-instance, do a
59  *              single entry callback for install/remove
60  * @last:       For multi-instance rollback, remember how far we got
61  * @cb_state:   The state for a single callback (install/uninstall)
62  * @result:     Result of the operation
63  * @ap_sync_state:      State for AP synchronization
64  * @done_up:    Signal completion to the issuer of the task for cpu-up
65  * @done_down:  Signal completion to the issuer of the task for cpu-down
66  */
67 struct cpuhp_cpu_state {
68         enum cpuhp_state        state;
69         enum cpuhp_state        target;
70         enum cpuhp_state        fail;
71 #ifdef CONFIG_SMP
72         struct task_struct      *thread;
73         bool                    should_run;
74         bool                    rollback;
75         bool                    single;
76         bool                    bringup;
77         struct hlist_node       *node;
78         struct hlist_node       *last;
79         enum cpuhp_state        cb_state;
80         int                     result;
81         atomic_t                ap_sync_state;
82         struct completion       done_up;
83         struct completion       done_down;
84 #endif
85 };
86
87 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
88         .fail = CPUHP_INVALID,
89 };
90
91 #ifdef CONFIG_SMP
92 cpumask_t cpus_booted_once_mask;
93 #endif
94
95 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
96 static struct lockdep_map cpuhp_state_up_map =
97         STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
98 static struct lockdep_map cpuhp_state_down_map =
99         STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
100
101
102 static inline void cpuhp_lock_acquire(bool bringup)
103 {
104         lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
105 }
106
107 static inline void cpuhp_lock_release(bool bringup)
108 {
109         lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
110 }
111 #else
112
113 static inline void cpuhp_lock_acquire(bool bringup) { }
114 static inline void cpuhp_lock_release(bool bringup) { }
115
116 #endif
117
118 /**
119  * struct cpuhp_step - Hotplug state machine step
120  * @name:       Name of the step
121  * @startup:    Startup function of the step
122  * @teardown:   Teardown function of the step
123  * @cant_stop:  Bringup/teardown can't be stopped at this step
124  * @multi_instance:     State has multiple instances which get added afterwards
125  */
126 struct cpuhp_step {
127         const char              *name;
128         union {
129                 int             (*single)(unsigned int cpu);
130                 int             (*multi)(unsigned int cpu,
131                                          struct hlist_node *node);
132         } startup;
133         union {
134                 int             (*single)(unsigned int cpu);
135                 int             (*multi)(unsigned int cpu,
136                                          struct hlist_node *node);
137         } teardown;
138         /* private: */
139         struct hlist_head       list;
140         /* public: */
141         bool                    cant_stop;
142         bool                    multi_instance;
143 };
144
145 static DEFINE_MUTEX(cpuhp_state_mutex);
146 static struct cpuhp_step cpuhp_hp_states[];
147
148 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
149 {
150         return cpuhp_hp_states + state;
151 }
152
153 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
154 {
155         return bringup ? !step->startup.single : !step->teardown.single;
156 }
157
158 /**
159  * cpuhp_invoke_callback - Invoke the callbacks for a given state
160  * @cpu:        The cpu for which the callback should be invoked
161  * @state:      The state to do callbacks for
162  * @bringup:    True if the bringup callback should be invoked
163  * @node:       For multi-instance, do a single entry callback for install/remove
164  * @lastp:      For multi-instance rollback, remember how far we got
165  *
166  * Called from cpu hotplug and from the state register machinery.
167  *
168  * Return: %0 on success or a negative errno code
169  */
170 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
171                                  bool bringup, struct hlist_node *node,
172                                  struct hlist_node **lastp)
173 {
174         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
175         struct cpuhp_step *step = cpuhp_get_step(state);
176         int (*cbm)(unsigned int cpu, struct hlist_node *node);
177         int (*cb)(unsigned int cpu);
178         int ret, cnt;
179
180         if (st->fail == state) {
181                 st->fail = CPUHP_INVALID;
182                 return -EAGAIN;
183         }
184
185         if (cpuhp_step_empty(bringup, step)) {
186                 WARN_ON_ONCE(1);
187                 return 0;
188         }
189
190         if (!step->multi_instance) {
191                 WARN_ON_ONCE(lastp && *lastp);
192                 cb = bringup ? step->startup.single : step->teardown.single;
193
194                 trace_cpuhp_enter(cpu, st->target, state, cb);
195                 ret = cb(cpu);
196                 trace_cpuhp_exit(cpu, st->state, state, ret);
197                 return ret;
198         }
199         cbm = bringup ? step->startup.multi : step->teardown.multi;
200
201         /* Single invocation for instance add/remove */
202         if (node) {
203                 WARN_ON_ONCE(lastp && *lastp);
204                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
205                 ret = cbm(cpu, node);
206                 trace_cpuhp_exit(cpu, st->state, state, ret);
207                 return ret;
208         }
209
210         /* State transition. Invoke on all instances */
211         cnt = 0;
212         hlist_for_each(node, &step->list) {
213                 if (lastp && node == *lastp)
214                         break;
215
216                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
217                 ret = cbm(cpu, node);
218                 trace_cpuhp_exit(cpu, st->state, state, ret);
219                 if (ret) {
220                         if (!lastp)
221                                 goto err;
222
223                         *lastp = node;
224                         return ret;
225                 }
226                 cnt++;
227         }
228         if (lastp)
229                 *lastp = NULL;
230         return 0;
231 err:
232         /* Rollback the instances if one failed */
233         cbm = !bringup ? step->startup.multi : step->teardown.multi;
234         if (!cbm)
235                 return ret;
236
237         hlist_for_each(node, &step->list) {
238                 if (!cnt--)
239                         break;
240
241                 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
242                 ret = cbm(cpu, node);
243                 trace_cpuhp_exit(cpu, st->state, state, ret);
244                 /*
245                  * Rollback must not fail,
246                  */
247                 WARN_ON_ONCE(ret);
248         }
249         return ret;
250 }
251
252 #ifdef CONFIG_SMP
253 static bool cpuhp_is_ap_state(enum cpuhp_state state)
254 {
255         /*
256          * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
257          * purposes as that state is handled explicitly in cpu_down.
258          */
259         return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
260 }
261
262 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
263 {
264         struct completion *done = bringup ? &st->done_up : &st->done_down;
265         wait_for_completion(done);
266 }
267
268 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
269 {
270         struct completion *done = bringup ? &st->done_up : &st->done_down;
271         complete(done);
272 }
273
274 /*
275  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
276  */
277 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
278 {
279         return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
280 }
281
282 /* Synchronization state management */
283 enum cpuhp_sync_state {
284         SYNC_STATE_DEAD,
285         SYNC_STATE_KICKED,
286         SYNC_STATE_SHOULD_DIE,
287         SYNC_STATE_ALIVE,
288         SYNC_STATE_SHOULD_ONLINE,
289         SYNC_STATE_ONLINE,
290 };
291
292 #ifdef CONFIG_HOTPLUG_CORE_SYNC
293 /**
294  * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown
295  * @state:      The synchronization state to set
296  *
297  * No synchronization point. Just update of the synchronization state, but implies
298  * a full barrier so that the AP changes are visible before the control CPU proceeds.
299  */
300 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state)
301 {
302         atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
303
304         (void)atomic_xchg(st, state);
305 }
306
307 void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); }
308
309 static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state,
310                                       enum cpuhp_sync_state next_state)
311 {
312         atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
313         ktime_t now, end, start = ktime_get();
314         int sync;
315
316         end = start + 10ULL * NSEC_PER_SEC;
317
318         sync = atomic_read(st);
319         while (1) {
320                 if (sync == state) {
321                         if (!atomic_try_cmpxchg(st, &sync, next_state))
322                                 continue;
323                         return true;
324                 }
325
326                 now = ktime_get();
327                 if (now > end) {
328                         /* Timeout. Leave the state unchanged */
329                         return false;
330                 } else if (now - start < NSEC_PER_MSEC) {
331                         /* Poll for one millisecond */
332                         arch_cpuhp_sync_state_poll();
333                 } else {
334                         usleep_range_state(USEC_PER_MSEC, 2 * USEC_PER_MSEC, TASK_UNINTERRUPTIBLE);
335                 }
336                 sync = atomic_read(st);
337         }
338         return true;
339 }
340 #else  /* CONFIG_HOTPLUG_CORE_SYNC */
341 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { }
342 #endif /* !CONFIG_HOTPLUG_CORE_SYNC */
343
344 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD
345 /**
346  * cpuhp_ap_report_dead - Update synchronization state to DEAD
347  *
348  * No synchronization point. Just update of the synchronization state.
349  */
350 void cpuhp_ap_report_dead(void)
351 {
352         cpuhp_ap_update_sync_state(SYNC_STATE_DEAD);
353 }
354
355 void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { }
356
357 /*
358  * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down
359  * because the AP cannot issue complete() at this stage.
360  */
361 static void cpuhp_bp_sync_dead(unsigned int cpu)
362 {
363         atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
364         int sync = atomic_read(st);
365
366         do {
367                 /* CPU can have reported dead already. Don't overwrite that! */
368                 if (sync == SYNC_STATE_DEAD)
369                         break;
370         } while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE));
371
372         if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) {
373                 /* CPU reached dead state. Invoke the cleanup function */
374                 arch_cpuhp_cleanup_dead_cpu(cpu);
375                 return;
376         }
377
378         /* No further action possible. Emit message and give up. */
379         pr_err("CPU%u failed to report dead state\n", cpu);
380 }
381 #else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */
382 static inline void cpuhp_bp_sync_dead(unsigned int cpu) { }
383 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */
384
385 #ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL
386 /**
387  * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive
388  *
389  * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits
390  * for the BP to release it.
391  */
392 void cpuhp_ap_sync_alive(void)
393 {
394         atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
395
396         cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE);
397
398         /* Wait for the control CPU to release it. */
399         while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE)
400                 cpu_relax();
401 }
402
403 static bool cpuhp_can_boot_ap(unsigned int cpu)
404 {
405         atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
406         int sync = atomic_read(st);
407
408 again:
409         switch (sync) {
410         case SYNC_STATE_DEAD:
411                 /* CPU is properly dead */
412                 break;
413         case SYNC_STATE_KICKED:
414                 /* CPU did not come up in previous attempt */
415                 break;
416         case SYNC_STATE_ALIVE:
417                 /* CPU is stuck cpuhp_ap_sync_alive(). */
418                 break;
419         default:
420                 /* CPU failed to report online or dead and is in limbo state. */
421                 return false;
422         }
423
424         /* Prepare for booting */
425         if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED))
426                 goto again;
427
428         return true;
429 }
430
431 void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { }
432
433 /*
434  * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up
435  * because the AP cannot issue complete() so early in the bringup.
436  */
437 static int cpuhp_bp_sync_alive(unsigned int cpu)
438 {
439         int ret = 0;
440
441         if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL))
442                 return 0;
443
444         if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) {
445                 pr_err("CPU%u failed to report alive state\n", cpu);
446                 ret = -EIO;
447         }
448
449         /* Let the architecture cleanup the kick alive mechanics. */
450         arch_cpuhp_cleanup_kick_cpu(cpu);
451         return ret;
452 }
453 #else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */
454 static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; }
455 static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; }
456 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */
457
458 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
459 static DEFINE_MUTEX(cpu_add_remove_lock);
460 bool cpuhp_tasks_frozen;
461 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
462
463 /*
464  * The following two APIs (cpu_maps_update_begin/done) must be used when
465  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
466  */
467 void cpu_maps_update_begin(void)
468 {
469         mutex_lock(&cpu_add_remove_lock);
470 }
471
472 void cpu_maps_update_done(void)
473 {
474         mutex_unlock(&cpu_add_remove_lock);
475 }
476
477 /*
478  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
479  * Should always be manipulated under cpu_add_remove_lock
480  */
481 static int cpu_hotplug_disabled;
482
483 #ifdef CONFIG_HOTPLUG_CPU
484
485 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
486
487 void cpus_read_lock(void)
488 {
489         percpu_down_read(&cpu_hotplug_lock);
490 }
491 EXPORT_SYMBOL_GPL(cpus_read_lock);
492
493 int cpus_read_trylock(void)
494 {
495         return percpu_down_read_trylock(&cpu_hotplug_lock);
496 }
497 EXPORT_SYMBOL_GPL(cpus_read_trylock);
498
499 void cpus_read_unlock(void)
500 {
501         percpu_up_read(&cpu_hotplug_lock);
502 }
503 EXPORT_SYMBOL_GPL(cpus_read_unlock);
504
505 void cpus_write_lock(void)
506 {
507         percpu_down_write(&cpu_hotplug_lock);
508 }
509
510 void cpus_write_unlock(void)
511 {
512         percpu_up_write(&cpu_hotplug_lock);
513 }
514
515 void lockdep_assert_cpus_held(void)
516 {
517         /*
518          * We can't have hotplug operations before userspace starts running,
519          * and some init codepaths will knowingly not take the hotplug lock.
520          * This is all valid, so mute lockdep until it makes sense to report
521          * unheld locks.
522          */
523         if (system_state < SYSTEM_RUNNING)
524                 return;
525
526         percpu_rwsem_assert_held(&cpu_hotplug_lock);
527 }
528
529 #ifdef CONFIG_LOCKDEP
530 int lockdep_is_cpus_held(void)
531 {
532         return percpu_rwsem_is_held(&cpu_hotplug_lock);
533 }
534 #endif
535
536 static void lockdep_acquire_cpus_lock(void)
537 {
538         rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
539 }
540
541 static void lockdep_release_cpus_lock(void)
542 {
543         rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
544 }
545
546 /*
547  * Wait for currently running CPU hotplug operations to complete (if any) and
548  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
549  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
550  * hotplug path before performing hotplug operations. So acquiring that lock
551  * guarantees mutual exclusion from any currently running hotplug operations.
552  */
553 void cpu_hotplug_disable(void)
554 {
555         cpu_maps_update_begin();
556         cpu_hotplug_disabled++;
557         cpu_maps_update_done();
558 }
559 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
560
561 static void __cpu_hotplug_enable(void)
562 {
563         if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
564                 return;
565         cpu_hotplug_disabled--;
566 }
567
568 void cpu_hotplug_enable(void)
569 {
570         cpu_maps_update_begin();
571         __cpu_hotplug_enable();
572         cpu_maps_update_done();
573 }
574 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
575
576 #else
577
578 static void lockdep_acquire_cpus_lock(void)
579 {
580 }
581
582 static void lockdep_release_cpus_lock(void)
583 {
584 }
585
586 #endif  /* CONFIG_HOTPLUG_CPU */
587
588 /*
589  * Architectures that need SMT-specific errata handling during SMT hotplug
590  * should override this.
591  */
592 void __weak arch_smt_update(void) { }
593
594 #ifdef CONFIG_HOTPLUG_SMT
595
596 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
597 static unsigned int cpu_smt_max_threads __ro_after_init;
598 unsigned int cpu_smt_num_threads __read_mostly = UINT_MAX;
599
600 void __init cpu_smt_disable(bool force)
601 {
602         if (!cpu_smt_possible())
603                 return;
604
605         if (force) {
606                 pr_info("SMT: Force disabled\n");
607                 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
608         } else {
609                 pr_info("SMT: disabled\n");
610                 cpu_smt_control = CPU_SMT_DISABLED;
611         }
612         cpu_smt_num_threads = 1;
613 }
614
615 /*
616  * The decision whether SMT is supported can only be done after the full
617  * CPU identification. Called from architecture code.
618  */
619 void __init cpu_smt_set_num_threads(unsigned int num_threads,
620                                     unsigned int max_threads)
621 {
622         WARN_ON(!num_threads || (num_threads > max_threads));
623
624         if (max_threads == 1)
625                 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
626
627         cpu_smt_max_threads = max_threads;
628
629         /*
630          * If SMT has been disabled via the kernel command line or SMT is
631          * not supported, set cpu_smt_num_threads to 1 for consistency.
632          * If enabled, take the architecture requested number of threads
633          * to bring up into account.
634          */
635         if (cpu_smt_control != CPU_SMT_ENABLED)
636                 cpu_smt_num_threads = 1;
637         else if (num_threads < cpu_smt_num_threads)
638                 cpu_smt_num_threads = num_threads;
639 }
640
641 static int __init smt_cmdline_disable(char *str)
642 {
643         cpu_smt_disable(str && !strcmp(str, "force"));
644         return 0;
645 }
646 early_param("nosmt", smt_cmdline_disable);
647
648 /*
649  * For Archicture supporting partial SMT states check if the thread is allowed.
650  * Otherwise this has already been checked through cpu_smt_max_threads when
651  * setting the SMT level.
652  */
653 static inline bool cpu_smt_thread_allowed(unsigned int cpu)
654 {
655 #ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC
656         return topology_smt_thread_allowed(cpu);
657 #else
658         return true;
659 #endif
660 }
661
662 static inline bool cpu_bootable(unsigned int cpu)
663 {
664         if (cpu_smt_control == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
665                 return true;
666
667         /* All CPUs are bootable if controls are not configured */
668         if (cpu_smt_control == CPU_SMT_NOT_IMPLEMENTED)
669                 return true;
670
671         /* All CPUs are bootable if CPU is not SMT capable */
672         if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
673                 return true;
674
675         if (topology_is_primary_thread(cpu))
676                 return true;
677
678         /*
679          * On x86 it's required to boot all logical CPUs at least once so
680          * that the init code can get a chance to set CR4.MCE on each
681          * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
682          * core will shutdown the machine.
683          */
684         return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
685 }
686
687 /* Returns true if SMT is supported and not forcefully (irreversibly) disabled */
688 bool cpu_smt_possible(void)
689 {
690         return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
691                 cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
692 }
693 EXPORT_SYMBOL_GPL(cpu_smt_possible);
694
695 #else
696 static inline bool cpu_bootable(unsigned int cpu) { return true; }
697 #endif
698
699 static inline enum cpuhp_state
700 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target)
701 {
702         enum cpuhp_state prev_state = st->state;
703         bool bringup = st->state < target;
704
705         st->rollback = false;
706         st->last = NULL;
707
708         st->target = target;
709         st->single = false;
710         st->bringup = bringup;
711         if (cpu_dying(cpu) != !bringup)
712                 set_cpu_dying(cpu, !bringup);
713
714         return prev_state;
715 }
716
717 static inline void
718 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st,
719                   enum cpuhp_state prev_state)
720 {
721         bool bringup = !st->bringup;
722
723         st->target = prev_state;
724
725         /*
726          * Already rolling back. No need invert the bringup value or to change
727          * the current state.
728          */
729         if (st->rollback)
730                 return;
731
732         st->rollback = true;
733
734         /*
735          * If we have st->last we need to undo partial multi_instance of this
736          * state first. Otherwise start undo at the previous state.
737          */
738         if (!st->last) {
739                 if (st->bringup)
740                         st->state--;
741                 else
742                         st->state++;
743         }
744
745         st->bringup = bringup;
746         if (cpu_dying(cpu) != !bringup)
747                 set_cpu_dying(cpu, !bringup);
748 }
749
750 /* Regular hotplug invocation of the AP hotplug thread */
751 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
752 {
753         if (!st->single && st->state == st->target)
754                 return;
755
756         st->result = 0;
757         /*
758          * Make sure the above stores are visible before should_run becomes
759          * true. Paired with the mb() above in cpuhp_thread_fun()
760          */
761         smp_mb();
762         st->should_run = true;
763         wake_up_process(st->thread);
764         wait_for_ap_thread(st, st->bringup);
765 }
766
767 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st,
768                          enum cpuhp_state target)
769 {
770         enum cpuhp_state prev_state;
771         int ret;
772
773         prev_state = cpuhp_set_state(cpu, st, target);
774         __cpuhp_kick_ap(st);
775         if ((ret = st->result)) {
776                 cpuhp_reset_state(cpu, st, prev_state);
777                 __cpuhp_kick_ap(st);
778         }
779
780         return ret;
781 }
782
783 static int bringup_wait_for_ap_online(unsigned int cpu)
784 {
785         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
786
787         /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
788         wait_for_ap_thread(st, true);
789         if (WARN_ON_ONCE((!cpu_online(cpu))))
790                 return -ECANCELED;
791
792         /* Unpark the hotplug thread of the target cpu */
793         kthread_unpark(st->thread);
794
795         /*
796          * SMT soft disabling on X86 requires to bring the CPU out of the
797          * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
798          * CPU marked itself as booted_once in notify_cpu_starting() so the
799          * cpu_bootable() check will now return false if this is not the
800          * primary sibling.
801          */
802         if (!cpu_bootable(cpu))
803                 return -ECANCELED;
804         return 0;
805 }
806
807 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
808 static int cpuhp_kick_ap_alive(unsigned int cpu)
809 {
810         if (!cpuhp_can_boot_ap(cpu))
811                 return -EAGAIN;
812
813         return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu));
814 }
815
816 static int cpuhp_bringup_ap(unsigned int cpu)
817 {
818         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
819         int ret;
820
821         /*
822          * Some architectures have to walk the irq descriptors to
823          * setup the vector space for the cpu which comes online.
824          * Prevent irq alloc/free across the bringup.
825          */
826         irq_lock_sparse();
827
828         ret = cpuhp_bp_sync_alive(cpu);
829         if (ret)
830                 goto out_unlock;
831
832         ret = bringup_wait_for_ap_online(cpu);
833         if (ret)
834                 goto out_unlock;
835
836         irq_unlock_sparse();
837
838         if (st->target <= CPUHP_AP_ONLINE_IDLE)
839                 return 0;
840
841         return cpuhp_kick_ap(cpu, st, st->target);
842
843 out_unlock:
844         irq_unlock_sparse();
845         return ret;
846 }
847 #else
848 static int bringup_cpu(unsigned int cpu)
849 {
850         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
851         struct task_struct *idle = idle_thread_get(cpu);
852         int ret;
853
854         if (!cpuhp_can_boot_ap(cpu))
855                 return -EAGAIN;
856
857         /*
858          * Some architectures have to walk the irq descriptors to
859          * setup the vector space for the cpu which comes online.
860          *
861          * Prevent irq alloc/free across the bringup by acquiring the
862          * sparse irq lock. Hold it until the upcoming CPU completes the
863          * startup in cpuhp_online_idle() which allows to avoid
864          * intermediate synchronization points in the architecture code.
865          */
866         irq_lock_sparse();
867
868         ret = __cpu_up(cpu, idle);
869         if (ret)
870                 goto out_unlock;
871
872         ret = cpuhp_bp_sync_alive(cpu);
873         if (ret)
874                 goto out_unlock;
875
876         ret = bringup_wait_for_ap_online(cpu);
877         if (ret)
878                 goto out_unlock;
879
880         irq_unlock_sparse();
881
882         if (st->target <= CPUHP_AP_ONLINE_IDLE)
883                 return 0;
884
885         return cpuhp_kick_ap(cpu, st, st->target);
886
887 out_unlock:
888         irq_unlock_sparse();
889         return ret;
890 }
891 #endif
892
893 static int finish_cpu(unsigned int cpu)
894 {
895         struct task_struct *idle = idle_thread_get(cpu);
896         struct mm_struct *mm = idle->active_mm;
897
898         /*
899          * idle_task_exit() will have switched to &init_mm, now
900          * clean up any remaining active_mm state.
901          */
902         if (mm != &init_mm)
903                 idle->active_mm = &init_mm;
904         mmdrop_lazy_tlb(mm);
905         return 0;
906 }
907
908 /*
909  * Hotplug state machine related functions
910  */
911
912 /*
913  * Get the next state to run. Empty ones will be skipped. Returns true if a
914  * state must be run.
915  *
916  * st->state will be modified ahead of time, to match state_to_run, as if it
917  * has already ran.
918  */
919 static bool cpuhp_next_state(bool bringup,
920                              enum cpuhp_state *state_to_run,
921                              struct cpuhp_cpu_state *st,
922                              enum cpuhp_state target)
923 {
924         do {
925                 if (bringup) {
926                         if (st->state >= target)
927                                 return false;
928
929                         *state_to_run = ++st->state;
930                 } else {
931                         if (st->state <= target)
932                                 return false;
933
934                         *state_to_run = st->state--;
935                 }
936
937                 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
938                         break;
939         } while (true);
940
941         return true;
942 }
943
944 static int __cpuhp_invoke_callback_range(bool bringup,
945                                          unsigned int cpu,
946                                          struct cpuhp_cpu_state *st,
947                                          enum cpuhp_state target,
948                                          bool nofail)
949 {
950         enum cpuhp_state state;
951         int ret = 0;
952
953         while (cpuhp_next_state(bringup, &state, st, target)) {
954                 int err;
955
956                 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
957                 if (!err)
958                         continue;
959
960                 if (nofail) {
961                         pr_warn("CPU %u %s state %s (%d) failed (%d)\n",
962                                 cpu, bringup ? "UP" : "DOWN",
963                                 cpuhp_get_step(st->state)->name,
964                                 st->state, err);
965                         ret = -1;
966                 } else {
967                         ret = err;
968                         break;
969                 }
970         }
971
972         return ret;
973 }
974
975 static inline int cpuhp_invoke_callback_range(bool bringup,
976                                               unsigned int cpu,
977                                               struct cpuhp_cpu_state *st,
978                                               enum cpuhp_state target)
979 {
980         return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false);
981 }
982
983 static inline void cpuhp_invoke_callback_range_nofail(bool bringup,
984                                                       unsigned int cpu,
985                                                       struct cpuhp_cpu_state *st,
986                                                       enum cpuhp_state target)
987 {
988         __cpuhp_invoke_callback_range(bringup, cpu, st, target, true);
989 }
990
991 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
992 {
993         if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
994                 return true;
995         /*
996          * When CPU hotplug is disabled, then taking the CPU down is not
997          * possible because takedown_cpu() and the architecture and
998          * subsystem specific mechanisms are not available. So the CPU
999          * which would be completely unplugged again needs to stay around
1000          * in the current state.
1001          */
1002         return st->state <= CPUHP_BRINGUP_CPU;
1003 }
1004
1005 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1006                               enum cpuhp_state target)
1007 {
1008         enum cpuhp_state prev_state = st->state;
1009         int ret = 0;
1010
1011         ret = cpuhp_invoke_callback_range(true, cpu, st, target);
1012         if (ret) {
1013                 pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
1014                          ret, cpu, cpuhp_get_step(st->state)->name,
1015                          st->state);
1016
1017                 cpuhp_reset_state(cpu, st, prev_state);
1018                 if (can_rollback_cpu(st))
1019                         WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
1020                                                             prev_state));
1021         }
1022         return ret;
1023 }
1024
1025 /*
1026  * The cpu hotplug threads manage the bringup and teardown of the cpus
1027  */
1028 static int cpuhp_should_run(unsigned int cpu)
1029 {
1030         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1031
1032         return st->should_run;
1033 }
1034
1035 /*
1036  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
1037  * callbacks when a state gets [un]installed at runtime.
1038  *
1039  * Each invocation of this function by the smpboot thread does a single AP
1040  * state callback.
1041  *
1042  * It has 3 modes of operation:
1043  *  - single: runs st->cb_state
1044  *  - up:     runs ++st->state, while st->state < st->target
1045  *  - down:   runs st->state--, while st->state > st->target
1046  *
1047  * When complete or on error, should_run is cleared and the completion is fired.
1048  */
1049 static void cpuhp_thread_fun(unsigned int cpu)
1050 {
1051         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1052         bool bringup = st->bringup;
1053         enum cpuhp_state state;
1054
1055         if (WARN_ON_ONCE(!st->should_run))
1056                 return;
1057
1058         /*
1059          * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
1060          * that if we see ->should_run we also see the rest of the state.
1061          */
1062         smp_mb();
1063
1064         /*
1065          * The BP holds the hotplug lock, but we're now running on the AP,
1066          * ensure that anybody asserting the lock is held, will actually find
1067          * it so.
1068          */
1069         lockdep_acquire_cpus_lock();
1070         cpuhp_lock_acquire(bringup);
1071
1072         if (st->single) {
1073                 state = st->cb_state;
1074                 st->should_run = false;
1075         } else {
1076                 st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
1077                 if (!st->should_run)
1078                         goto end;
1079         }
1080
1081         WARN_ON_ONCE(!cpuhp_is_ap_state(state));
1082
1083         if (cpuhp_is_atomic_state(state)) {
1084                 local_irq_disable();
1085                 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1086                 local_irq_enable();
1087
1088                 /*
1089                  * STARTING/DYING must not fail!
1090                  */
1091                 WARN_ON_ONCE(st->result);
1092         } else {
1093                 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1094         }
1095
1096         if (st->result) {
1097                 /*
1098                  * If we fail on a rollback, we're up a creek without no
1099                  * paddle, no way forward, no way back. We loose, thanks for
1100                  * playing.
1101                  */
1102                 WARN_ON_ONCE(st->rollback);
1103                 st->should_run = false;
1104         }
1105
1106 end:
1107         cpuhp_lock_release(bringup);
1108         lockdep_release_cpus_lock();
1109
1110         if (!st->should_run)
1111                 complete_ap_thread(st, bringup);
1112 }
1113
1114 /* Invoke a single callback on a remote cpu */
1115 static int
1116 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
1117                          struct hlist_node *node)
1118 {
1119         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1120         int ret;
1121
1122         if (!cpu_online(cpu))
1123                 return 0;
1124
1125         cpuhp_lock_acquire(false);
1126         cpuhp_lock_release(false);
1127
1128         cpuhp_lock_acquire(true);
1129         cpuhp_lock_release(true);
1130
1131         /*
1132          * If we are up and running, use the hotplug thread. For early calls
1133          * we invoke the thread function directly.
1134          */
1135         if (!st->thread)
1136                 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1137
1138         st->rollback = false;
1139         st->last = NULL;
1140
1141         st->node = node;
1142         st->bringup = bringup;
1143         st->cb_state = state;
1144         st->single = true;
1145
1146         __cpuhp_kick_ap(st);
1147
1148         /*
1149          * If we failed and did a partial, do a rollback.
1150          */
1151         if ((ret = st->result) && st->last) {
1152                 st->rollback = true;
1153                 st->bringup = !bringup;
1154
1155                 __cpuhp_kick_ap(st);
1156         }
1157
1158         /*
1159          * Clean up the leftovers so the next hotplug operation wont use stale
1160          * data.
1161          */
1162         st->node = st->last = NULL;
1163         return ret;
1164 }
1165
1166 static int cpuhp_kick_ap_work(unsigned int cpu)
1167 {
1168         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1169         enum cpuhp_state prev_state = st->state;
1170         int ret;
1171
1172         cpuhp_lock_acquire(false);
1173         cpuhp_lock_release(false);
1174
1175         cpuhp_lock_acquire(true);
1176         cpuhp_lock_release(true);
1177
1178         trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
1179         ret = cpuhp_kick_ap(cpu, st, st->target);
1180         trace_cpuhp_exit(cpu, st->state, prev_state, ret);
1181
1182         return ret;
1183 }
1184
1185 static struct smp_hotplug_thread cpuhp_threads = {
1186         .store                  = &cpuhp_state.thread,
1187         .thread_should_run      = cpuhp_should_run,
1188         .thread_fn              = cpuhp_thread_fun,
1189         .thread_comm            = "cpuhp/%u",
1190         .selfparking            = true,
1191 };
1192
1193 static __init void cpuhp_init_state(void)
1194 {
1195         struct cpuhp_cpu_state *st;
1196         int cpu;
1197
1198         for_each_possible_cpu(cpu) {
1199                 st = per_cpu_ptr(&cpuhp_state, cpu);
1200                 init_completion(&st->done_up);
1201                 init_completion(&st->done_down);
1202         }
1203 }
1204
1205 void __init cpuhp_threads_init(void)
1206 {
1207         cpuhp_init_state();
1208         BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
1209         kthread_unpark(this_cpu_read(cpuhp_state.thread));
1210 }
1211
1212 /*
1213  *
1214  * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
1215  * protected region.
1216  *
1217  * The operation is still serialized against concurrent CPU hotplug via
1218  * cpu_add_remove_lock, i.e. CPU map protection.  But it is _not_
1219  * serialized against other hotplug related activity like adding or
1220  * removing of state callbacks and state instances, which invoke either the
1221  * startup or the teardown callback of the affected state.
1222  *
1223  * This is required for subsystems which are unfixable vs. CPU hotplug and
1224  * evade lock inversion problems by scheduling work which has to be
1225  * completed _before_ cpu_up()/_cpu_down() returns.
1226  *
1227  * Don't even think about adding anything to this for any new code or even
1228  * drivers. It's only purpose is to keep existing lock order trainwrecks
1229  * working.
1230  *
1231  * For cpu_down() there might be valid reasons to finish cleanups which are
1232  * not required to be done under cpu_hotplug_lock, but that's a different
1233  * story and would be not invoked via this.
1234  */
1235 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
1236 {
1237         /*
1238          * cpusets delegate hotplug operations to a worker to "solve" the
1239          * lock order problems. Wait for the worker, but only if tasks are
1240          * _not_ frozen (suspend, hibernate) as that would wait forever.
1241          *
1242          * The wait is required because otherwise the hotplug operation
1243          * returns with inconsistent state, which could even be observed in
1244          * user space when a new CPU is brought up. The CPU plug uevent
1245          * would be delivered and user space reacting on it would fail to
1246          * move tasks to the newly plugged CPU up to the point where the
1247          * work has finished because up to that point the newly plugged CPU
1248          * is not assignable in cpusets/cgroups. On unplug that's not
1249          * necessarily a visible issue, but it is still inconsistent state,
1250          * which is the real problem which needs to be "fixed". This can't
1251          * prevent the transient state between scheduling the work and
1252          * returning from waiting for it.
1253          */
1254         if (!tasks_frozen)
1255                 cpuset_wait_for_hotplug();
1256 }
1257
1258 #ifdef CONFIG_HOTPLUG_CPU
1259 #ifndef arch_clear_mm_cpumask_cpu
1260 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
1261 #endif
1262
1263 /**
1264  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
1265  * @cpu: a CPU id
1266  *
1267  * This function walks all processes, finds a valid mm struct for each one and
1268  * then clears a corresponding bit in mm's cpumask.  While this all sounds
1269  * trivial, there are various non-obvious corner cases, which this function
1270  * tries to solve in a safe manner.
1271  *
1272  * Also note that the function uses a somewhat relaxed locking scheme, so it may
1273  * be called only for an already offlined CPU.
1274  */
1275 void clear_tasks_mm_cpumask(int cpu)
1276 {
1277         struct task_struct *p;
1278
1279         /*
1280          * This function is called after the cpu is taken down and marked
1281          * offline, so its not like new tasks will ever get this cpu set in
1282          * their mm mask. -- Peter Zijlstra
1283          * Thus, we may use rcu_read_lock() here, instead of grabbing
1284          * full-fledged tasklist_lock.
1285          */
1286         WARN_ON(cpu_online(cpu));
1287         rcu_read_lock();
1288         for_each_process(p) {
1289                 struct task_struct *t;
1290
1291                 /*
1292                  * Main thread might exit, but other threads may still have
1293                  * a valid mm. Find one.
1294                  */
1295                 t = find_lock_task_mm(p);
1296                 if (!t)
1297                         continue;
1298                 arch_clear_mm_cpumask_cpu(cpu, t->mm);
1299                 task_unlock(t);
1300         }
1301         rcu_read_unlock();
1302 }
1303
1304 /* Take this CPU down. */
1305 static int take_cpu_down(void *_param)
1306 {
1307         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1308         enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
1309         int err, cpu = smp_processor_id();
1310
1311         /* Ensure this CPU doesn't handle any more interrupts. */
1312         err = __cpu_disable();
1313         if (err < 0)
1314                 return err;
1315
1316         /*
1317          * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
1318          * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
1319          */
1320         WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
1321
1322         /*
1323          * Invoke the former CPU_DYING callbacks. DYING must not fail!
1324          */
1325         cpuhp_invoke_callback_range_nofail(false, cpu, st, target);
1326
1327         /* Give up timekeeping duties */
1328         tick_handover_do_timer();
1329         /* Remove CPU from timer broadcasting */
1330         tick_offline_cpu(cpu);
1331         /* Park the stopper thread */
1332         stop_machine_park(cpu);
1333         return 0;
1334 }
1335
1336 static int takedown_cpu(unsigned int cpu)
1337 {
1338         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1339         int err;
1340
1341         /* Park the smpboot threads */
1342         kthread_park(st->thread);
1343
1344         /*
1345          * Prevent irq alloc/free while the dying cpu reorganizes the
1346          * interrupt affinities.
1347          */
1348         irq_lock_sparse();
1349
1350         /*
1351          * So now all preempt/rcu users must observe !cpu_active().
1352          */
1353         err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1354         if (err) {
1355                 /* CPU refused to die */
1356                 irq_unlock_sparse();
1357                 /* Unpark the hotplug thread so we can rollback there */
1358                 kthread_unpark(st->thread);
1359                 return err;
1360         }
1361         BUG_ON(cpu_online(cpu));
1362
1363         /*
1364          * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1365          * all runnable tasks from the CPU, there's only the idle task left now
1366          * that the migration thread is done doing the stop_machine thing.
1367          *
1368          * Wait for the stop thread to go away.
1369          */
1370         wait_for_ap_thread(st, false);
1371         BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1372
1373         /* Interrupts are moved away from the dying cpu, reenable alloc/free */
1374         irq_unlock_sparse();
1375
1376         hotplug_cpu__broadcast_tick_pull(cpu);
1377         /* This actually kills the CPU. */
1378         __cpu_die(cpu);
1379
1380         cpuhp_bp_sync_dead(cpu);
1381
1382         tick_cleanup_dead_cpu(cpu);
1383
1384         /*
1385          * Callbacks must be re-integrated right away to the RCU state machine.
1386          * Otherwise an RCU callback could block a further teardown function
1387          * waiting for its completion.
1388          */
1389         rcutree_migrate_callbacks(cpu);
1390
1391         return 0;
1392 }
1393
1394 static void cpuhp_complete_idle_dead(void *arg)
1395 {
1396         struct cpuhp_cpu_state *st = arg;
1397
1398         complete_ap_thread(st, false);
1399 }
1400
1401 void cpuhp_report_idle_dead(void)
1402 {
1403         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1404
1405         BUG_ON(st->state != CPUHP_AP_OFFLINE);
1406         rcutree_report_cpu_dead();
1407         st->state = CPUHP_AP_IDLE_DEAD;
1408         /*
1409          * We cannot call complete after rcutree_report_cpu_dead() so we delegate it
1410          * to an online cpu.
1411          */
1412         smp_call_function_single(cpumask_first(cpu_online_mask),
1413                                  cpuhp_complete_idle_dead, st, 0);
1414 }
1415
1416 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1417                                 enum cpuhp_state target)
1418 {
1419         enum cpuhp_state prev_state = st->state;
1420         int ret = 0;
1421
1422         ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1423         if (ret) {
1424                 pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1425                          ret, cpu, cpuhp_get_step(st->state)->name,
1426                          st->state);
1427
1428                 cpuhp_reset_state(cpu, st, prev_state);
1429
1430                 if (st->state < prev_state)
1431                         WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1432                                                             prev_state));
1433         }
1434
1435         return ret;
1436 }
1437
1438 /* Requires cpu_add_remove_lock to be held */
1439 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1440                            enum cpuhp_state target)
1441 {
1442         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1443         int prev_state, ret = 0;
1444
1445         if (num_online_cpus() == 1)
1446                 return -EBUSY;
1447
1448         if (!cpu_present(cpu))
1449                 return -EINVAL;
1450
1451         cpus_write_lock();
1452
1453         cpuhp_tasks_frozen = tasks_frozen;
1454
1455         prev_state = cpuhp_set_state(cpu, st, target);
1456         /*
1457          * If the current CPU state is in the range of the AP hotplug thread,
1458          * then we need to kick the thread.
1459          */
1460         if (st->state > CPUHP_TEARDOWN_CPU) {
1461                 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1462                 ret = cpuhp_kick_ap_work(cpu);
1463                 /*
1464                  * The AP side has done the error rollback already. Just
1465                  * return the error code..
1466                  */
1467                 if (ret)
1468                         goto out;
1469
1470                 /*
1471                  * We might have stopped still in the range of the AP hotplug
1472                  * thread. Nothing to do anymore.
1473                  */
1474                 if (st->state > CPUHP_TEARDOWN_CPU)
1475                         goto out;
1476
1477                 st->target = target;
1478         }
1479         /*
1480          * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1481          * to do the further cleanups.
1482          */
1483         ret = cpuhp_down_callbacks(cpu, st, target);
1484         if (ret && st->state < prev_state) {
1485                 if (st->state == CPUHP_TEARDOWN_CPU) {
1486                         cpuhp_reset_state(cpu, st, prev_state);
1487                         __cpuhp_kick_ap(st);
1488                 } else {
1489                         WARN(1, "DEAD callback error for CPU%d", cpu);
1490                 }
1491         }
1492
1493 out:
1494         cpus_write_unlock();
1495         /*
1496          * Do post unplug cleanup. This is still protected against
1497          * concurrent CPU hotplug via cpu_add_remove_lock.
1498          */
1499         lockup_detector_cleanup();
1500         arch_smt_update();
1501         cpu_up_down_serialize_trainwrecks(tasks_frozen);
1502         return ret;
1503 }
1504
1505 struct cpu_down_work {
1506         unsigned int            cpu;
1507         enum cpuhp_state        target;
1508 };
1509
1510 static long __cpu_down_maps_locked(void *arg)
1511 {
1512         struct cpu_down_work *work = arg;
1513
1514         return _cpu_down(work->cpu, 0, work->target);
1515 }
1516
1517 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1518 {
1519         struct cpu_down_work work = { .cpu = cpu, .target = target, };
1520
1521         /*
1522          * If the platform does not support hotplug, report it explicitly to
1523          * differentiate it from a transient offlining failure.
1524          */
1525         if (cc_platform_has(CC_ATTR_HOTPLUG_DISABLED))
1526                 return -EOPNOTSUPP;
1527         if (cpu_hotplug_disabled)
1528                 return -EBUSY;
1529
1530         /*
1531          * Ensure that the control task does not run on the to be offlined
1532          * CPU to prevent a deadlock against cfs_b->period_timer.
1533          * Also keep at least one housekeeping cpu onlined to avoid generating
1534          * an empty sched_domain span.
1535          */
1536         for_each_cpu_and(cpu, cpu_online_mask, housekeeping_cpumask(HK_TYPE_DOMAIN)) {
1537                 if (cpu != work.cpu)
1538                         return work_on_cpu(cpu, __cpu_down_maps_locked, &work);
1539         }
1540         return -EBUSY;
1541 }
1542
1543 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1544 {
1545         int err;
1546
1547         cpu_maps_update_begin();
1548         err = cpu_down_maps_locked(cpu, target);
1549         cpu_maps_update_done();
1550         return err;
1551 }
1552
1553 /**
1554  * cpu_device_down - Bring down a cpu device
1555  * @dev: Pointer to the cpu device to offline
1556  *
1557  * This function is meant to be used by device core cpu subsystem only.
1558  *
1559  * Other subsystems should use remove_cpu() instead.
1560  *
1561  * Return: %0 on success or a negative errno code
1562  */
1563 int cpu_device_down(struct device *dev)
1564 {
1565         return cpu_down(dev->id, CPUHP_OFFLINE);
1566 }
1567
1568 int remove_cpu(unsigned int cpu)
1569 {
1570         int ret;
1571
1572         lock_device_hotplug();
1573         ret = device_offline(get_cpu_device(cpu));
1574         unlock_device_hotplug();
1575
1576         return ret;
1577 }
1578 EXPORT_SYMBOL_GPL(remove_cpu);
1579
1580 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1581 {
1582         unsigned int cpu;
1583         int error;
1584
1585         cpu_maps_update_begin();
1586
1587         /*
1588          * Make certain the cpu I'm about to reboot on is online.
1589          *
1590          * This is inline to what migrate_to_reboot_cpu() already do.
1591          */
1592         if (!cpu_online(primary_cpu))
1593                 primary_cpu = cpumask_first(cpu_online_mask);
1594
1595         for_each_online_cpu(cpu) {
1596                 if (cpu == primary_cpu)
1597                         continue;
1598
1599                 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1600                 if (error) {
1601                         pr_err("Failed to offline CPU%d - error=%d",
1602                                 cpu, error);
1603                         break;
1604                 }
1605         }
1606
1607         /*
1608          * Ensure all but the reboot CPU are offline.
1609          */
1610         BUG_ON(num_online_cpus() > 1);
1611
1612         /*
1613          * Make sure the CPUs won't be enabled by someone else after this
1614          * point. Kexec will reboot to a new kernel shortly resetting
1615          * everything along the way.
1616          */
1617         cpu_hotplug_disabled++;
1618
1619         cpu_maps_update_done();
1620 }
1621
1622 #else
1623 #define takedown_cpu            NULL
1624 #endif /*CONFIG_HOTPLUG_CPU*/
1625
1626 /**
1627  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1628  * @cpu: cpu that just started
1629  *
1630  * It must be called by the arch code on the new cpu, before the new cpu
1631  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1632  */
1633 void notify_cpu_starting(unsigned int cpu)
1634 {
1635         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1636         enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1637
1638         rcutree_report_cpu_starting(cpu);       /* Enables RCU usage on this CPU. */
1639         cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1640
1641         /*
1642          * STARTING must not fail!
1643          */
1644         cpuhp_invoke_callback_range_nofail(true, cpu, st, target);
1645 }
1646
1647 /*
1648  * Called from the idle task. Wake up the controlling task which brings the
1649  * hotplug thread of the upcoming CPU up and then delegates the rest of the
1650  * online bringup to the hotplug thread.
1651  */
1652 void cpuhp_online_idle(enum cpuhp_state state)
1653 {
1654         struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1655
1656         /* Happens for the boot cpu */
1657         if (state != CPUHP_AP_ONLINE_IDLE)
1658                 return;
1659
1660         cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE);
1661
1662         /*
1663          * Unpark the stopper thread before we start the idle loop (and start
1664          * scheduling); this ensures the stopper task is always available.
1665          */
1666         stop_machine_unpark(smp_processor_id());
1667
1668         st->state = CPUHP_AP_ONLINE_IDLE;
1669         complete_ap_thread(st, true);
1670 }
1671
1672 /* Requires cpu_add_remove_lock to be held */
1673 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1674 {
1675         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1676         struct task_struct *idle;
1677         int ret = 0;
1678
1679         cpus_write_lock();
1680
1681         if (!cpu_present(cpu)) {
1682                 ret = -EINVAL;
1683                 goto out;
1684         }
1685
1686         /*
1687          * The caller of cpu_up() might have raced with another
1688          * caller. Nothing to do.
1689          */
1690         if (st->state >= target)
1691                 goto out;
1692
1693         if (st->state == CPUHP_OFFLINE) {
1694                 /* Let it fail before we try to bring the cpu up */
1695                 idle = idle_thread_get(cpu);
1696                 if (IS_ERR(idle)) {
1697                         ret = PTR_ERR(idle);
1698                         goto out;
1699                 }
1700
1701                 /*
1702                  * Reset stale stack state from the last time this CPU was online.
1703                  */
1704                 scs_task_reset(idle);
1705                 kasan_unpoison_task_stack(idle);
1706         }
1707
1708         cpuhp_tasks_frozen = tasks_frozen;
1709
1710         cpuhp_set_state(cpu, st, target);
1711         /*
1712          * If the current CPU state is in the range of the AP hotplug thread,
1713          * then we need to kick the thread once more.
1714          */
1715         if (st->state > CPUHP_BRINGUP_CPU) {
1716                 ret = cpuhp_kick_ap_work(cpu);
1717                 /*
1718                  * The AP side has done the error rollback already. Just
1719                  * return the error code..
1720                  */
1721                 if (ret)
1722                         goto out;
1723         }
1724
1725         /*
1726          * Try to reach the target state. We max out on the BP at
1727          * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1728          * responsible for bringing it up to the target state.
1729          */
1730         target = min((int)target, CPUHP_BRINGUP_CPU);
1731         ret = cpuhp_up_callbacks(cpu, st, target);
1732 out:
1733         cpus_write_unlock();
1734         arch_smt_update();
1735         cpu_up_down_serialize_trainwrecks(tasks_frozen);
1736         return ret;
1737 }
1738
1739 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1740 {
1741         int err = 0;
1742
1743         if (!cpu_possible(cpu)) {
1744                 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1745                        cpu);
1746                 return -EINVAL;
1747         }
1748
1749         err = try_online_node(cpu_to_node(cpu));
1750         if (err)
1751                 return err;
1752
1753         cpu_maps_update_begin();
1754
1755         if (cpu_hotplug_disabled) {
1756                 err = -EBUSY;
1757                 goto out;
1758         }
1759         if (!cpu_bootable(cpu)) {
1760                 err = -EPERM;
1761                 goto out;
1762         }
1763
1764         err = _cpu_up(cpu, 0, target);
1765 out:
1766         cpu_maps_update_done();
1767         return err;
1768 }
1769
1770 /**
1771  * cpu_device_up - Bring up a cpu device
1772  * @dev: Pointer to the cpu device to online
1773  *
1774  * This function is meant to be used by device core cpu subsystem only.
1775  *
1776  * Other subsystems should use add_cpu() instead.
1777  *
1778  * Return: %0 on success or a negative errno code
1779  */
1780 int cpu_device_up(struct device *dev)
1781 {
1782         return cpu_up(dev->id, CPUHP_ONLINE);
1783 }
1784
1785 int add_cpu(unsigned int cpu)
1786 {
1787         int ret;
1788
1789         lock_device_hotplug();
1790         ret = device_online(get_cpu_device(cpu));
1791         unlock_device_hotplug();
1792
1793         return ret;
1794 }
1795 EXPORT_SYMBOL_GPL(add_cpu);
1796
1797 /**
1798  * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1799  * @sleep_cpu: The cpu we hibernated on and should be brought up.
1800  *
1801  * On some architectures like arm64, we can hibernate on any CPU, but on
1802  * wake up the CPU we hibernated on might be offline as a side effect of
1803  * using maxcpus= for example.
1804  *
1805  * Return: %0 on success or a negative errno code
1806  */
1807 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1808 {
1809         int ret;
1810
1811         if (!cpu_online(sleep_cpu)) {
1812                 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1813                 ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1814                 if (ret) {
1815                         pr_err("Failed to bring hibernate-CPU up!\n");
1816                         return ret;
1817                 }
1818         }
1819         return 0;
1820 }
1821
1822 static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus,
1823                                       enum cpuhp_state target)
1824 {
1825         unsigned int cpu;
1826
1827         for_each_cpu(cpu, mask) {
1828                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1829
1830                 if (cpu_up(cpu, target) && can_rollback_cpu(st)) {
1831                         /*
1832                          * If this failed then cpu_up() might have only
1833                          * rolled back to CPUHP_BP_KICK_AP for the final
1834                          * online. Clean it up. NOOP if already rolled back.
1835                          */
1836                         WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE));
1837                 }
1838
1839                 if (!--ncpus)
1840                         break;
1841         }
1842 }
1843
1844 #ifdef CONFIG_HOTPLUG_PARALLEL
1845 static bool __cpuhp_parallel_bringup __ro_after_init = true;
1846
1847 static int __init parallel_bringup_parse_param(char *arg)
1848 {
1849         return kstrtobool(arg, &__cpuhp_parallel_bringup);
1850 }
1851 early_param("cpuhp.parallel", parallel_bringup_parse_param);
1852
1853 static inline bool cpuhp_smt_aware(void)
1854 {
1855         return cpu_smt_max_threads > 1;
1856 }
1857
1858 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void)
1859 {
1860         return cpu_primary_thread_mask;
1861 }
1862
1863 /*
1864  * On architectures which have enabled parallel bringup this invokes all BP
1865  * prepare states for each of the to be onlined APs first. The last state
1866  * sends the startup IPI to the APs. The APs proceed through the low level
1867  * bringup code in parallel and then wait for the control CPU to release
1868  * them one by one for the final onlining procedure.
1869  *
1870  * This avoids waiting for each AP to respond to the startup IPI in
1871  * CPUHP_BRINGUP_CPU.
1872  */
1873 static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus)
1874 {
1875         const struct cpumask *mask = cpu_present_mask;
1876
1877         if (__cpuhp_parallel_bringup)
1878                 __cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup();
1879         if (!__cpuhp_parallel_bringup)
1880                 return false;
1881
1882         if (cpuhp_smt_aware()) {
1883                 const struct cpumask *pmask = cpuhp_get_primary_thread_mask();
1884                 static struct cpumask tmp_mask __initdata;
1885
1886                 /*
1887                  * X86 requires to prevent that SMT siblings stopped while
1888                  * the primary thread does a microcode update for various
1889                  * reasons. Bring the primary threads up first.
1890                  */
1891                 cpumask_and(&tmp_mask, mask, pmask);
1892                 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP);
1893                 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE);
1894                 /* Account for the online CPUs */
1895                 ncpus -= num_online_cpus();
1896                 if (!ncpus)
1897                         return true;
1898                 /* Create the mask for secondary CPUs */
1899                 cpumask_andnot(&tmp_mask, mask, pmask);
1900                 mask = &tmp_mask;
1901         }
1902
1903         /* Bring the not-yet started CPUs up */
1904         cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP);
1905         cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE);
1906         return true;
1907 }
1908 #else
1909 static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; }
1910 #endif /* CONFIG_HOTPLUG_PARALLEL */
1911
1912 void __init bringup_nonboot_cpus(unsigned int setup_max_cpus)
1913 {
1914         /* Try parallel bringup optimization if enabled */
1915         if (cpuhp_bringup_cpus_parallel(setup_max_cpus))
1916                 return;
1917
1918         /* Full per CPU serialized bringup */
1919         cpuhp_bringup_mask(cpu_present_mask, setup_max_cpus, CPUHP_ONLINE);
1920 }
1921
1922 #ifdef CONFIG_PM_SLEEP_SMP
1923 static cpumask_var_t frozen_cpus;
1924
1925 int freeze_secondary_cpus(int primary)
1926 {
1927         int cpu, error = 0;
1928
1929         cpu_maps_update_begin();
1930         if (primary == -1) {
1931                 primary = cpumask_first(cpu_online_mask);
1932                 if (!housekeeping_cpu(primary, HK_TYPE_TIMER))
1933                         primary = housekeeping_any_cpu(HK_TYPE_TIMER);
1934         } else {
1935                 if (!cpu_online(primary))
1936                         primary = cpumask_first(cpu_online_mask);
1937         }
1938
1939         /*
1940          * We take down all of the non-boot CPUs in one shot to avoid races
1941          * with the userspace trying to use the CPU hotplug at the same time
1942          */
1943         cpumask_clear(frozen_cpus);
1944
1945         pr_info("Disabling non-boot CPUs ...\n");
1946         for_each_online_cpu(cpu) {
1947                 if (cpu == primary)
1948                         continue;
1949
1950                 if (pm_wakeup_pending()) {
1951                         pr_info("Wakeup pending. Abort CPU freeze\n");
1952                         error = -EBUSY;
1953                         break;
1954                 }
1955
1956                 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1957                 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1958                 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1959                 if (!error)
1960                         cpumask_set_cpu(cpu, frozen_cpus);
1961                 else {
1962                         pr_err("Error taking CPU%d down: %d\n", cpu, error);
1963                         break;
1964                 }
1965         }
1966
1967         if (!error)
1968                 BUG_ON(num_online_cpus() > 1);
1969         else
1970                 pr_err("Non-boot CPUs are not disabled\n");
1971
1972         /*
1973          * Make sure the CPUs won't be enabled by someone else. We need to do
1974          * this even in case of failure as all freeze_secondary_cpus() users are
1975          * supposed to do thaw_secondary_cpus() on the failure path.
1976          */
1977         cpu_hotplug_disabled++;
1978
1979         cpu_maps_update_done();
1980         return error;
1981 }
1982
1983 void __weak arch_thaw_secondary_cpus_begin(void)
1984 {
1985 }
1986
1987 void __weak arch_thaw_secondary_cpus_end(void)
1988 {
1989 }
1990
1991 void thaw_secondary_cpus(void)
1992 {
1993         int cpu, error;
1994
1995         /* Allow everyone to use the CPU hotplug again */
1996         cpu_maps_update_begin();
1997         __cpu_hotplug_enable();
1998         if (cpumask_empty(frozen_cpus))
1999                 goto out;
2000
2001         pr_info("Enabling non-boot CPUs ...\n");
2002
2003         arch_thaw_secondary_cpus_begin();
2004
2005         for_each_cpu(cpu, frozen_cpus) {
2006                 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
2007                 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
2008                 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
2009                 if (!error) {
2010                         pr_info("CPU%d is up\n", cpu);
2011                         continue;
2012                 }
2013                 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
2014         }
2015
2016         arch_thaw_secondary_cpus_end();
2017
2018         cpumask_clear(frozen_cpus);
2019 out:
2020         cpu_maps_update_done();
2021 }
2022
2023 static int __init alloc_frozen_cpus(void)
2024 {
2025         if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
2026                 return -ENOMEM;
2027         return 0;
2028 }
2029 core_initcall(alloc_frozen_cpus);
2030
2031 /*
2032  * When callbacks for CPU hotplug notifications are being executed, we must
2033  * ensure that the state of the system with respect to the tasks being frozen
2034  * or not, as reported by the notification, remains unchanged *throughout the
2035  * duration* of the execution of the callbacks.
2036  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
2037  *
2038  * This synchronization is implemented by mutually excluding regular CPU
2039  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
2040  * Hibernate notifications.
2041  */
2042 static int
2043 cpu_hotplug_pm_callback(struct notifier_block *nb,
2044                         unsigned long action, void *ptr)
2045 {
2046         switch (action) {
2047
2048         case PM_SUSPEND_PREPARE:
2049         case PM_HIBERNATION_PREPARE:
2050                 cpu_hotplug_disable();
2051                 break;
2052
2053         case PM_POST_SUSPEND:
2054         case PM_POST_HIBERNATION:
2055                 cpu_hotplug_enable();
2056                 break;
2057
2058         default:
2059                 return NOTIFY_DONE;
2060         }
2061
2062         return NOTIFY_OK;
2063 }
2064
2065
2066 static int __init cpu_hotplug_pm_sync_init(void)
2067 {
2068         /*
2069          * cpu_hotplug_pm_callback has higher priority than x86
2070          * bsp_pm_callback which depends on cpu_hotplug_pm_callback
2071          * to disable cpu hotplug to avoid cpu hotplug race.
2072          */
2073         pm_notifier(cpu_hotplug_pm_callback, 0);
2074         return 0;
2075 }
2076 core_initcall(cpu_hotplug_pm_sync_init);
2077
2078 #endif /* CONFIG_PM_SLEEP_SMP */
2079
2080 int __boot_cpu_id;
2081
2082 #endif /* CONFIG_SMP */
2083
2084 /* Boot processor state steps */
2085 static struct cpuhp_step cpuhp_hp_states[] = {
2086         [CPUHP_OFFLINE] = {
2087                 .name                   = "offline",
2088                 .startup.single         = NULL,
2089                 .teardown.single        = NULL,
2090         },
2091 #ifdef CONFIG_SMP
2092         [CPUHP_CREATE_THREADS]= {
2093                 .name                   = "threads:prepare",
2094                 .startup.single         = smpboot_create_threads,
2095                 .teardown.single        = NULL,
2096                 .cant_stop              = true,
2097         },
2098         [CPUHP_PERF_PREPARE] = {
2099                 .name                   = "perf:prepare",
2100                 .startup.single         = perf_event_init_cpu,
2101                 .teardown.single        = perf_event_exit_cpu,
2102         },
2103         [CPUHP_RANDOM_PREPARE] = {
2104                 .name                   = "random:prepare",
2105                 .startup.single         = random_prepare_cpu,
2106                 .teardown.single        = NULL,
2107         },
2108         [CPUHP_WORKQUEUE_PREP] = {
2109                 .name                   = "workqueue:prepare",
2110                 .startup.single         = workqueue_prepare_cpu,
2111                 .teardown.single        = NULL,
2112         },
2113         [CPUHP_HRTIMERS_PREPARE] = {
2114                 .name                   = "hrtimers:prepare",
2115                 .startup.single         = hrtimers_prepare_cpu,
2116                 .teardown.single        = NULL,
2117         },
2118         [CPUHP_SMPCFD_PREPARE] = {
2119                 .name                   = "smpcfd:prepare",
2120                 .startup.single         = smpcfd_prepare_cpu,
2121                 .teardown.single        = smpcfd_dead_cpu,
2122         },
2123         [CPUHP_RELAY_PREPARE] = {
2124                 .name                   = "relay:prepare",
2125                 .startup.single         = relay_prepare_cpu,
2126                 .teardown.single        = NULL,
2127         },
2128         [CPUHP_SLAB_PREPARE] = {
2129                 .name                   = "slab:prepare",
2130                 .startup.single         = slab_prepare_cpu,
2131                 .teardown.single        = slab_dead_cpu,
2132         },
2133         [CPUHP_RCUTREE_PREP] = {
2134                 .name                   = "RCU/tree:prepare",
2135                 .startup.single         = rcutree_prepare_cpu,
2136                 .teardown.single        = rcutree_dead_cpu,
2137         },
2138         /*
2139          * On the tear-down path, timers_dead_cpu() must be invoked
2140          * before blk_mq_queue_reinit_notify() from notify_dead(),
2141          * otherwise a RCU stall occurs.
2142          */
2143         [CPUHP_TIMERS_PREPARE] = {
2144                 .name                   = "timers:prepare",
2145                 .startup.single         = timers_prepare_cpu,
2146                 .teardown.single        = timers_dead_cpu,
2147         },
2148
2149 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
2150         /*
2151          * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until
2152          * the next step will release it.
2153          */
2154         [CPUHP_BP_KICK_AP] = {
2155                 .name                   = "cpu:kick_ap",
2156                 .startup.single         = cpuhp_kick_ap_alive,
2157         },
2158
2159         /*
2160          * Waits for the AP to reach cpuhp_ap_sync_alive() and then
2161          * releases it for the complete bringup.
2162          */
2163         [CPUHP_BRINGUP_CPU] = {
2164                 .name                   = "cpu:bringup",
2165                 .startup.single         = cpuhp_bringup_ap,
2166                 .teardown.single        = finish_cpu,
2167                 .cant_stop              = true,
2168         },
2169 #else
2170         /*
2171          * All-in-one CPU bringup state which includes the kick alive.
2172          */
2173         [CPUHP_BRINGUP_CPU] = {
2174                 .name                   = "cpu:bringup",
2175                 .startup.single         = bringup_cpu,
2176                 .teardown.single        = finish_cpu,
2177                 .cant_stop              = true,
2178         },
2179 #endif
2180         /* Final state before CPU kills itself */
2181         [CPUHP_AP_IDLE_DEAD] = {
2182                 .name                   = "idle:dead",
2183         },
2184         /*
2185          * Last state before CPU enters the idle loop to die. Transient state
2186          * for synchronization.
2187          */
2188         [CPUHP_AP_OFFLINE] = {
2189                 .name                   = "ap:offline",
2190                 .cant_stop              = true,
2191         },
2192         /* First state is scheduler control. Interrupts are disabled */
2193         [CPUHP_AP_SCHED_STARTING] = {
2194                 .name                   = "sched:starting",
2195                 .startup.single         = sched_cpu_starting,
2196                 .teardown.single        = sched_cpu_dying,
2197         },
2198         [CPUHP_AP_RCUTREE_DYING] = {
2199                 .name                   = "RCU/tree:dying",
2200                 .startup.single         = NULL,
2201                 .teardown.single        = rcutree_dying_cpu,
2202         },
2203         [CPUHP_AP_SMPCFD_DYING] = {
2204                 .name                   = "smpcfd:dying",
2205                 .startup.single         = NULL,
2206                 .teardown.single        = smpcfd_dying_cpu,
2207         },
2208         [CPUHP_AP_HRTIMERS_DYING] = {
2209                 .name                   = "hrtimers:dying",
2210                 .startup.single         = NULL,
2211                 .teardown.single        = hrtimers_cpu_dying,
2212         },
2213
2214         /* Entry state on starting. Interrupts enabled from here on. Transient
2215          * state for synchronsization */
2216         [CPUHP_AP_ONLINE] = {
2217                 .name                   = "ap:online",
2218         },
2219         /*
2220          * Handled on control processor until the plugged processor manages
2221          * this itself.
2222          */
2223         [CPUHP_TEARDOWN_CPU] = {
2224                 .name                   = "cpu:teardown",
2225                 .startup.single         = NULL,
2226                 .teardown.single        = takedown_cpu,
2227                 .cant_stop              = true,
2228         },
2229
2230         [CPUHP_AP_SCHED_WAIT_EMPTY] = {
2231                 .name                   = "sched:waitempty",
2232                 .startup.single         = NULL,
2233                 .teardown.single        = sched_cpu_wait_empty,
2234         },
2235
2236         /* Handle smpboot threads park/unpark */
2237         [CPUHP_AP_SMPBOOT_THREADS] = {
2238                 .name                   = "smpboot/threads:online",
2239                 .startup.single         = smpboot_unpark_threads,
2240                 .teardown.single        = smpboot_park_threads,
2241         },
2242         [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
2243                 .name                   = "irq/affinity:online",
2244                 .startup.single         = irq_affinity_online_cpu,
2245                 .teardown.single        = NULL,
2246         },
2247         [CPUHP_AP_PERF_ONLINE] = {
2248                 .name                   = "perf:online",
2249                 .startup.single         = perf_event_init_cpu,
2250                 .teardown.single        = perf_event_exit_cpu,
2251         },
2252         [CPUHP_AP_WATCHDOG_ONLINE] = {
2253                 .name                   = "lockup_detector:online",
2254                 .startup.single         = lockup_detector_online_cpu,
2255                 .teardown.single        = lockup_detector_offline_cpu,
2256         },
2257         [CPUHP_AP_WORKQUEUE_ONLINE] = {
2258                 .name                   = "workqueue:online",
2259                 .startup.single         = workqueue_online_cpu,
2260                 .teardown.single        = workqueue_offline_cpu,
2261         },
2262         [CPUHP_AP_RANDOM_ONLINE] = {
2263                 .name                   = "random:online",
2264                 .startup.single         = random_online_cpu,
2265                 .teardown.single        = NULL,
2266         },
2267         [CPUHP_AP_RCUTREE_ONLINE] = {
2268                 .name                   = "RCU/tree:online",
2269                 .startup.single         = rcutree_online_cpu,
2270                 .teardown.single        = rcutree_offline_cpu,
2271         },
2272 #endif
2273         /*
2274          * The dynamically registered state space is here
2275          */
2276
2277 #ifdef CONFIG_SMP
2278         /* Last state is scheduler control setting the cpu active */
2279         [CPUHP_AP_ACTIVE] = {
2280                 .name                   = "sched:active",
2281                 .startup.single         = sched_cpu_activate,
2282                 .teardown.single        = sched_cpu_deactivate,
2283         },
2284 #endif
2285
2286         /* CPU is fully up and running. */
2287         [CPUHP_ONLINE] = {
2288                 .name                   = "online",
2289                 .startup.single         = NULL,
2290                 .teardown.single        = NULL,
2291         },
2292 };
2293
2294 /* Sanity check for callbacks */
2295 static int cpuhp_cb_check(enum cpuhp_state state)
2296 {
2297         if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
2298                 return -EINVAL;
2299         return 0;
2300 }
2301
2302 /*
2303  * Returns a free for dynamic slot assignment of the Online state. The states
2304  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
2305  * by having no name assigned.
2306  */
2307 static int cpuhp_reserve_state(enum cpuhp_state state)
2308 {
2309         enum cpuhp_state i, end;
2310         struct cpuhp_step *step;
2311
2312         switch (state) {
2313         case CPUHP_AP_ONLINE_DYN:
2314                 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
2315                 end = CPUHP_AP_ONLINE_DYN_END;
2316                 break;
2317         case CPUHP_BP_PREPARE_DYN:
2318                 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
2319                 end = CPUHP_BP_PREPARE_DYN_END;
2320                 break;
2321         default:
2322                 return -EINVAL;
2323         }
2324
2325         for (i = state; i <= end; i++, step++) {
2326                 if (!step->name)
2327                         return i;
2328         }
2329         WARN(1, "No more dynamic states available for CPU hotplug\n");
2330         return -ENOSPC;
2331 }
2332
2333 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
2334                                  int (*startup)(unsigned int cpu),
2335                                  int (*teardown)(unsigned int cpu),
2336                                  bool multi_instance)
2337 {
2338         /* (Un)Install the callbacks for further cpu hotplug operations */
2339         struct cpuhp_step *sp;
2340         int ret = 0;
2341
2342         /*
2343          * If name is NULL, then the state gets removed.
2344          *
2345          * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
2346          * the first allocation from these dynamic ranges, so the removal
2347          * would trigger a new allocation and clear the wrong (already
2348          * empty) state, leaving the callbacks of the to be cleared state
2349          * dangling, which causes wreckage on the next hotplug operation.
2350          */
2351         if (name && (state == CPUHP_AP_ONLINE_DYN ||
2352                      state == CPUHP_BP_PREPARE_DYN)) {
2353                 ret = cpuhp_reserve_state(state);
2354                 if (ret < 0)
2355                         return ret;
2356                 state = ret;
2357         }
2358         sp = cpuhp_get_step(state);
2359         if (name && sp->name)
2360                 return -EBUSY;
2361
2362         sp->startup.single = startup;
2363         sp->teardown.single = teardown;
2364         sp->name = name;
2365         sp->multi_instance = multi_instance;
2366         INIT_HLIST_HEAD(&sp->list);
2367         return ret;
2368 }
2369
2370 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
2371 {
2372         return cpuhp_get_step(state)->teardown.single;
2373 }
2374
2375 /*
2376  * Call the startup/teardown function for a step either on the AP or
2377  * on the current CPU.
2378  */
2379 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
2380                             struct hlist_node *node)
2381 {
2382         struct cpuhp_step *sp = cpuhp_get_step(state);
2383         int ret;
2384
2385         /*
2386          * If there's nothing to do, we done.
2387          * Relies on the union for multi_instance.
2388          */
2389         if (cpuhp_step_empty(bringup, sp))
2390                 return 0;
2391         /*
2392          * The non AP bound callbacks can fail on bringup. On teardown
2393          * e.g. module removal we crash for now.
2394          */
2395 #ifdef CONFIG_SMP
2396         if (cpuhp_is_ap_state(state))
2397                 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
2398         else
2399                 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2400 #else
2401         ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2402 #endif
2403         BUG_ON(ret && !bringup);
2404         return ret;
2405 }
2406
2407 /*
2408  * Called from __cpuhp_setup_state on a recoverable failure.
2409  *
2410  * Note: The teardown callbacks for rollback are not allowed to fail!
2411  */
2412 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
2413                                    struct hlist_node *node)
2414 {
2415         int cpu;
2416
2417         /* Roll back the already executed steps on the other cpus */
2418         for_each_present_cpu(cpu) {
2419                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2420                 int cpustate = st->state;
2421
2422                 if (cpu >= failedcpu)
2423                         break;
2424
2425                 /* Did we invoke the startup call on that cpu ? */
2426                 if (cpustate >= state)
2427                         cpuhp_issue_call(cpu, state, false, node);
2428         }
2429 }
2430
2431 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
2432                                           struct hlist_node *node,
2433                                           bool invoke)
2434 {
2435         struct cpuhp_step *sp;
2436         int cpu;
2437         int ret;
2438
2439         lockdep_assert_cpus_held();
2440
2441         sp = cpuhp_get_step(state);
2442         if (sp->multi_instance == false)
2443                 return -EINVAL;
2444
2445         mutex_lock(&cpuhp_state_mutex);
2446
2447         if (!invoke || !sp->startup.multi)
2448                 goto add_node;
2449
2450         /*
2451          * Try to call the startup callback for each present cpu
2452          * depending on the hotplug state of the cpu.
2453          */
2454         for_each_present_cpu(cpu) {
2455                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2456                 int cpustate = st->state;
2457
2458                 if (cpustate < state)
2459                         continue;
2460
2461                 ret = cpuhp_issue_call(cpu, state, true, node);
2462                 if (ret) {
2463                         if (sp->teardown.multi)
2464                                 cpuhp_rollback_install(cpu, state, node);
2465                         goto unlock;
2466                 }
2467         }
2468 add_node:
2469         ret = 0;
2470         hlist_add_head(node, &sp->list);
2471 unlock:
2472         mutex_unlock(&cpuhp_state_mutex);
2473         return ret;
2474 }
2475
2476 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
2477                                bool invoke)
2478 {
2479         int ret;
2480
2481         cpus_read_lock();
2482         ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
2483         cpus_read_unlock();
2484         return ret;
2485 }
2486 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2487
2488 /**
2489  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2490  * @state:              The state to setup
2491  * @name:               Name of the step
2492  * @invoke:             If true, the startup function is invoked for cpus where
2493  *                      cpu state >= @state
2494  * @startup:            startup callback function
2495  * @teardown:           teardown callback function
2496  * @multi_instance:     State is set up for multiple instances which get
2497  *                      added afterwards.
2498  *
2499  * The caller needs to hold cpus read locked while calling this function.
2500  * Return:
2501  *   On success:
2502  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN;
2503  *      0 for all other states
2504  *   On failure: proper (negative) error code
2505  */
2506 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2507                                    const char *name, bool invoke,
2508                                    int (*startup)(unsigned int cpu),
2509                                    int (*teardown)(unsigned int cpu),
2510                                    bool multi_instance)
2511 {
2512         int cpu, ret = 0;
2513         bool dynstate;
2514
2515         lockdep_assert_cpus_held();
2516
2517         if (cpuhp_cb_check(state) || !name)
2518                 return -EINVAL;
2519
2520         mutex_lock(&cpuhp_state_mutex);
2521
2522         ret = cpuhp_store_callbacks(state, name, startup, teardown,
2523                                     multi_instance);
2524
2525         dynstate = state == CPUHP_AP_ONLINE_DYN;
2526         if (ret > 0 && dynstate) {
2527                 state = ret;
2528                 ret = 0;
2529         }
2530
2531         if (ret || !invoke || !startup)
2532                 goto out;
2533
2534         /*
2535          * Try to call the startup callback for each present cpu
2536          * depending on the hotplug state of the cpu.
2537          */
2538         for_each_present_cpu(cpu) {
2539                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2540                 int cpustate = st->state;
2541
2542                 if (cpustate < state)
2543                         continue;
2544
2545                 ret = cpuhp_issue_call(cpu, state, true, NULL);
2546                 if (ret) {
2547                         if (teardown)
2548                                 cpuhp_rollback_install(cpu, state, NULL);
2549                         cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2550                         goto out;
2551                 }
2552         }
2553 out:
2554         mutex_unlock(&cpuhp_state_mutex);
2555         /*
2556          * If the requested state is CPUHP_AP_ONLINE_DYN, return the
2557          * dynamically allocated state in case of success.
2558          */
2559         if (!ret && dynstate)
2560                 return state;
2561         return ret;
2562 }
2563 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2564
2565 int __cpuhp_setup_state(enum cpuhp_state state,
2566                         const char *name, bool invoke,
2567                         int (*startup)(unsigned int cpu),
2568                         int (*teardown)(unsigned int cpu),
2569                         bool multi_instance)
2570 {
2571         int ret;
2572
2573         cpus_read_lock();
2574         ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2575                                              teardown, multi_instance);
2576         cpus_read_unlock();
2577         return ret;
2578 }
2579 EXPORT_SYMBOL(__cpuhp_setup_state);
2580
2581 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2582                                   struct hlist_node *node, bool invoke)
2583 {
2584         struct cpuhp_step *sp = cpuhp_get_step(state);
2585         int cpu;
2586
2587         BUG_ON(cpuhp_cb_check(state));
2588
2589         if (!sp->multi_instance)
2590                 return -EINVAL;
2591
2592         cpus_read_lock();
2593         mutex_lock(&cpuhp_state_mutex);
2594
2595         if (!invoke || !cpuhp_get_teardown_cb(state))
2596                 goto remove;
2597         /*
2598          * Call the teardown callback for each present cpu depending
2599          * on the hotplug state of the cpu. This function is not
2600          * allowed to fail currently!
2601          */
2602         for_each_present_cpu(cpu) {
2603                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2604                 int cpustate = st->state;
2605
2606                 if (cpustate >= state)
2607                         cpuhp_issue_call(cpu, state, false, node);
2608         }
2609
2610 remove:
2611         hlist_del(node);
2612         mutex_unlock(&cpuhp_state_mutex);
2613         cpus_read_unlock();
2614
2615         return 0;
2616 }
2617 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2618
2619 /**
2620  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2621  * @state:      The state to remove
2622  * @invoke:     If true, the teardown function is invoked for cpus where
2623  *              cpu state >= @state
2624  *
2625  * The caller needs to hold cpus read locked while calling this function.
2626  * The teardown callback is currently not allowed to fail. Think
2627  * about module removal!
2628  */
2629 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2630 {
2631         struct cpuhp_step *sp = cpuhp_get_step(state);
2632         int cpu;
2633
2634         BUG_ON(cpuhp_cb_check(state));
2635
2636         lockdep_assert_cpus_held();
2637
2638         mutex_lock(&cpuhp_state_mutex);
2639         if (sp->multi_instance) {
2640                 WARN(!hlist_empty(&sp->list),
2641                      "Error: Removing state %d which has instances left.\n",
2642                      state);
2643                 goto remove;
2644         }
2645
2646         if (!invoke || !cpuhp_get_teardown_cb(state))
2647                 goto remove;
2648
2649         /*
2650          * Call the teardown callback for each present cpu depending
2651          * on the hotplug state of the cpu. This function is not
2652          * allowed to fail currently!
2653          */
2654         for_each_present_cpu(cpu) {
2655                 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2656                 int cpustate = st->state;
2657
2658                 if (cpustate >= state)
2659                         cpuhp_issue_call(cpu, state, false, NULL);
2660         }
2661 remove:
2662         cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2663         mutex_unlock(&cpuhp_state_mutex);
2664 }
2665 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2666
2667 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2668 {
2669         cpus_read_lock();
2670         __cpuhp_remove_state_cpuslocked(state, invoke);
2671         cpus_read_unlock();
2672 }
2673 EXPORT_SYMBOL(__cpuhp_remove_state);
2674
2675 #ifdef CONFIG_HOTPLUG_SMT
2676 static void cpuhp_offline_cpu_device(unsigned int cpu)
2677 {
2678         struct device *dev = get_cpu_device(cpu);
2679
2680         dev->offline = true;
2681         /* Tell user space about the state change */
2682         kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2683 }
2684
2685 static void cpuhp_online_cpu_device(unsigned int cpu)
2686 {
2687         struct device *dev = get_cpu_device(cpu);
2688
2689         dev->offline = false;
2690         /* Tell user space about the state change */
2691         kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2692 }
2693
2694 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2695 {
2696         int cpu, ret = 0;
2697
2698         cpu_maps_update_begin();
2699         for_each_online_cpu(cpu) {
2700                 if (topology_is_primary_thread(cpu))
2701                         continue;
2702                 /*
2703                  * Disable can be called with CPU_SMT_ENABLED when changing
2704                  * from a higher to lower number of SMT threads per core.
2705                  */
2706                 if (ctrlval == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
2707                         continue;
2708                 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2709                 if (ret)
2710                         break;
2711                 /*
2712                  * As this needs to hold the cpu maps lock it's impossible
2713                  * to call device_offline() because that ends up calling
2714                  * cpu_down() which takes cpu maps lock. cpu maps lock
2715                  * needs to be held as this might race against in kernel
2716                  * abusers of the hotplug machinery (thermal management).
2717                  *
2718                  * So nothing would update device:offline state. That would
2719                  * leave the sysfs entry stale and prevent onlining after
2720                  * smt control has been changed to 'off' again. This is
2721                  * called under the sysfs hotplug lock, so it is properly
2722                  * serialized against the regular offline usage.
2723                  */
2724                 cpuhp_offline_cpu_device(cpu);
2725         }
2726         if (!ret)
2727                 cpu_smt_control = ctrlval;
2728         cpu_maps_update_done();
2729         return ret;
2730 }
2731
2732 int cpuhp_smt_enable(void)
2733 {
2734         int cpu, ret = 0;
2735
2736         cpu_maps_update_begin();
2737         cpu_smt_control = CPU_SMT_ENABLED;
2738         for_each_present_cpu(cpu) {
2739                 /* Skip online CPUs and CPUs on offline nodes */
2740                 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2741                         continue;
2742                 if (!cpu_smt_thread_allowed(cpu))
2743                         continue;
2744                 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2745                 if (ret)
2746                         break;
2747                 /* See comment in cpuhp_smt_disable() */
2748                 cpuhp_online_cpu_device(cpu);
2749         }
2750         cpu_maps_update_done();
2751         return ret;
2752 }
2753 #endif
2754
2755 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2756 static ssize_t state_show(struct device *dev,
2757                           struct device_attribute *attr, char *buf)
2758 {
2759         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2760
2761         return sprintf(buf, "%d\n", st->state);
2762 }
2763 static DEVICE_ATTR_RO(state);
2764
2765 static ssize_t target_store(struct device *dev, struct device_attribute *attr,
2766                             const char *buf, size_t count)
2767 {
2768         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2769         struct cpuhp_step *sp;
2770         int target, ret;
2771
2772         ret = kstrtoint(buf, 10, &target);
2773         if (ret)
2774                 return ret;
2775
2776 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2777         if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2778                 return -EINVAL;
2779 #else
2780         if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2781                 return -EINVAL;
2782 #endif
2783
2784         ret = lock_device_hotplug_sysfs();
2785         if (ret)
2786                 return ret;
2787
2788         mutex_lock(&cpuhp_state_mutex);
2789         sp = cpuhp_get_step(target);
2790         ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2791         mutex_unlock(&cpuhp_state_mutex);
2792         if (ret)
2793                 goto out;
2794
2795         if (st->state < target)
2796                 ret = cpu_up(dev->id, target);
2797         else if (st->state > target)
2798                 ret = cpu_down(dev->id, target);
2799         else if (WARN_ON(st->target != target))
2800                 st->target = target;
2801 out:
2802         unlock_device_hotplug();
2803         return ret ? ret : count;
2804 }
2805
2806 static ssize_t target_show(struct device *dev,
2807                            struct device_attribute *attr, char *buf)
2808 {
2809         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2810
2811         return sprintf(buf, "%d\n", st->target);
2812 }
2813 static DEVICE_ATTR_RW(target);
2814
2815 static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
2816                           const char *buf, size_t count)
2817 {
2818         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2819         struct cpuhp_step *sp;
2820         int fail, ret;
2821
2822         ret = kstrtoint(buf, 10, &fail);
2823         if (ret)
2824                 return ret;
2825
2826         if (fail == CPUHP_INVALID) {
2827                 st->fail = fail;
2828                 return count;
2829         }
2830
2831         if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2832                 return -EINVAL;
2833
2834         /*
2835          * Cannot fail STARTING/DYING callbacks.
2836          */
2837         if (cpuhp_is_atomic_state(fail))
2838                 return -EINVAL;
2839
2840         /*
2841          * DEAD callbacks cannot fail...
2842          * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2843          * triggering STARTING callbacks, a failure in this state would
2844          * hinder rollback.
2845          */
2846         if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2847                 return -EINVAL;
2848
2849         /*
2850          * Cannot fail anything that doesn't have callbacks.
2851          */
2852         mutex_lock(&cpuhp_state_mutex);
2853         sp = cpuhp_get_step(fail);
2854         if (!sp->startup.single && !sp->teardown.single)
2855                 ret = -EINVAL;
2856         mutex_unlock(&cpuhp_state_mutex);
2857         if (ret)
2858                 return ret;
2859
2860         st->fail = fail;
2861
2862         return count;
2863 }
2864
2865 static ssize_t fail_show(struct device *dev,
2866                          struct device_attribute *attr, char *buf)
2867 {
2868         struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2869
2870         return sprintf(buf, "%d\n", st->fail);
2871 }
2872
2873 static DEVICE_ATTR_RW(fail);
2874
2875 static struct attribute *cpuhp_cpu_attrs[] = {
2876         &dev_attr_state.attr,
2877         &dev_attr_target.attr,
2878         &dev_attr_fail.attr,
2879         NULL
2880 };
2881
2882 static const struct attribute_group cpuhp_cpu_attr_group = {
2883         .attrs = cpuhp_cpu_attrs,
2884         .name = "hotplug",
2885         NULL
2886 };
2887
2888 static ssize_t states_show(struct device *dev,
2889                                  struct device_attribute *attr, char *buf)
2890 {
2891         ssize_t cur, res = 0;
2892         int i;
2893
2894         mutex_lock(&cpuhp_state_mutex);
2895         for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2896                 struct cpuhp_step *sp = cpuhp_get_step(i);
2897
2898                 if (sp->name) {
2899                         cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2900                         buf += cur;
2901                         res += cur;
2902                 }
2903         }
2904         mutex_unlock(&cpuhp_state_mutex);
2905         return res;
2906 }
2907 static DEVICE_ATTR_RO(states);
2908
2909 static struct attribute *cpuhp_cpu_root_attrs[] = {
2910         &dev_attr_states.attr,
2911         NULL
2912 };
2913
2914 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2915         .attrs = cpuhp_cpu_root_attrs,
2916         .name = "hotplug",
2917         NULL
2918 };
2919
2920 #ifdef CONFIG_HOTPLUG_SMT
2921
2922 static bool cpu_smt_num_threads_valid(unsigned int threads)
2923 {
2924         if (IS_ENABLED(CONFIG_SMT_NUM_THREADS_DYNAMIC))
2925                 return threads >= 1 && threads <= cpu_smt_max_threads;
2926         return threads == 1 || threads == cpu_smt_max_threads;
2927 }
2928
2929 static ssize_t
2930 __store_smt_control(struct device *dev, struct device_attribute *attr,
2931                     const char *buf, size_t count)
2932 {
2933         int ctrlval, ret, num_threads, orig_threads;
2934         bool force_off;
2935
2936         if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2937                 return -EPERM;
2938
2939         if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2940                 return -ENODEV;
2941
2942         if (sysfs_streq(buf, "on")) {
2943                 ctrlval = CPU_SMT_ENABLED;
2944                 num_threads = cpu_smt_max_threads;
2945         } else if (sysfs_streq(buf, "off")) {
2946                 ctrlval = CPU_SMT_DISABLED;
2947                 num_threads = 1;
2948         } else if (sysfs_streq(buf, "forceoff")) {
2949                 ctrlval = CPU_SMT_FORCE_DISABLED;
2950                 num_threads = 1;
2951         } else if (kstrtoint(buf, 10, &num_threads) == 0) {
2952                 if (num_threads == 1)
2953                         ctrlval = CPU_SMT_DISABLED;
2954                 else if (cpu_smt_num_threads_valid(num_threads))
2955                         ctrlval = CPU_SMT_ENABLED;
2956                 else
2957                         return -EINVAL;
2958         } else {
2959                 return -EINVAL;
2960         }
2961
2962         ret = lock_device_hotplug_sysfs();
2963         if (ret)
2964                 return ret;
2965
2966         orig_threads = cpu_smt_num_threads;
2967         cpu_smt_num_threads = num_threads;
2968
2969         force_off = ctrlval != cpu_smt_control && ctrlval == CPU_SMT_FORCE_DISABLED;
2970
2971         if (num_threads > orig_threads)
2972                 ret = cpuhp_smt_enable();
2973         else if (num_threads < orig_threads || force_off)
2974                 ret = cpuhp_smt_disable(ctrlval);
2975
2976         unlock_device_hotplug();
2977         return ret ? ret : count;
2978 }
2979
2980 #else /* !CONFIG_HOTPLUG_SMT */
2981 static ssize_t
2982 __store_smt_control(struct device *dev, struct device_attribute *attr,
2983                     const char *buf, size_t count)
2984 {
2985         return -ENODEV;
2986 }
2987 #endif /* CONFIG_HOTPLUG_SMT */
2988
2989 static const char *smt_states[] = {
2990         [CPU_SMT_ENABLED]               = "on",
2991         [CPU_SMT_DISABLED]              = "off",
2992         [CPU_SMT_FORCE_DISABLED]        = "forceoff",
2993         [CPU_SMT_NOT_SUPPORTED]         = "notsupported",
2994         [CPU_SMT_NOT_IMPLEMENTED]       = "notimplemented",
2995 };
2996
2997 static ssize_t control_show(struct device *dev,
2998                             struct device_attribute *attr, char *buf)
2999 {
3000         const char *state = smt_states[cpu_smt_control];
3001
3002 #ifdef CONFIG_HOTPLUG_SMT
3003         /*
3004          * If SMT is enabled but not all threads are enabled then show the
3005          * number of threads. If all threads are enabled show "on". Otherwise
3006          * show the state name.
3007          */
3008         if (cpu_smt_control == CPU_SMT_ENABLED &&
3009             cpu_smt_num_threads != cpu_smt_max_threads)
3010                 return sysfs_emit(buf, "%d\n", cpu_smt_num_threads);
3011 #endif
3012
3013         return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
3014 }
3015
3016 static ssize_t control_store(struct device *dev, struct device_attribute *attr,
3017                              const char *buf, size_t count)
3018 {
3019         return __store_smt_control(dev, attr, buf, count);
3020 }
3021 static DEVICE_ATTR_RW(control);
3022
3023 static ssize_t active_show(struct device *dev,
3024                            struct device_attribute *attr, char *buf)
3025 {
3026         return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
3027 }
3028 static DEVICE_ATTR_RO(active);
3029
3030 static struct attribute *cpuhp_smt_attrs[] = {
3031         &dev_attr_control.attr,
3032         &dev_attr_active.attr,
3033         NULL
3034 };
3035
3036 static const struct attribute_group cpuhp_smt_attr_group = {
3037         .attrs = cpuhp_smt_attrs,
3038         .name = "smt",
3039         NULL
3040 };
3041
3042 static int __init cpu_smt_sysfs_init(void)
3043 {
3044         struct device *dev_root;
3045         int ret = -ENODEV;
3046
3047         dev_root = bus_get_dev_root(&cpu_subsys);
3048         if (dev_root) {
3049                 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group);
3050                 put_device(dev_root);
3051         }
3052         return ret;
3053 }
3054
3055 static int __init cpuhp_sysfs_init(void)
3056 {
3057         struct device *dev_root;
3058         int cpu, ret;
3059
3060         ret = cpu_smt_sysfs_init();
3061         if (ret)
3062                 return ret;
3063
3064         dev_root = bus_get_dev_root(&cpu_subsys);
3065         if (dev_root) {
3066                 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group);
3067                 put_device(dev_root);
3068                 if (ret)
3069                         return ret;
3070         }
3071
3072         for_each_possible_cpu(cpu) {
3073                 struct device *dev = get_cpu_device(cpu);
3074
3075                 if (!dev)
3076                         continue;
3077                 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
3078                 if (ret)
3079                         return ret;
3080         }
3081         return 0;
3082 }
3083 device_initcall(cpuhp_sysfs_init);
3084 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
3085
3086 /*
3087  * cpu_bit_bitmap[] is a special, "compressed" data structure that
3088  * represents all NR_CPUS bits binary values of 1<<nr.
3089  *
3090  * It is used by cpumask_of() to get a constant address to a CPU
3091  * mask value that has a single bit set only.
3092  */
3093
3094 /* cpu_bit_bitmap[0] is empty - so we can back into it */
3095 #define MASK_DECLARE_1(x)       [x+1][0] = (1UL << (x))
3096 #define MASK_DECLARE_2(x)       MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
3097 #define MASK_DECLARE_4(x)       MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
3098 #define MASK_DECLARE_8(x)       MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
3099
3100 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
3101
3102         MASK_DECLARE_8(0),      MASK_DECLARE_8(8),
3103         MASK_DECLARE_8(16),     MASK_DECLARE_8(24),
3104 #if BITS_PER_LONG > 32
3105         MASK_DECLARE_8(32),     MASK_DECLARE_8(40),
3106         MASK_DECLARE_8(48),     MASK_DECLARE_8(56),
3107 #endif
3108 };
3109 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
3110
3111 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
3112 EXPORT_SYMBOL(cpu_all_bits);
3113
3114 #ifdef CONFIG_INIT_ALL_POSSIBLE
3115 struct cpumask __cpu_possible_mask __read_mostly
3116         = {CPU_BITS_ALL};
3117 #else
3118 struct cpumask __cpu_possible_mask __read_mostly;
3119 #endif
3120 EXPORT_SYMBOL(__cpu_possible_mask);
3121
3122 struct cpumask __cpu_online_mask __read_mostly;
3123 EXPORT_SYMBOL(__cpu_online_mask);
3124
3125 struct cpumask __cpu_present_mask __read_mostly;
3126 EXPORT_SYMBOL(__cpu_present_mask);
3127
3128 struct cpumask __cpu_active_mask __read_mostly;
3129 EXPORT_SYMBOL(__cpu_active_mask);
3130
3131 struct cpumask __cpu_dying_mask __read_mostly;
3132 EXPORT_SYMBOL(__cpu_dying_mask);
3133
3134 atomic_t __num_online_cpus __read_mostly;
3135 EXPORT_SYMBOL(__num_online_cpus);
3136
3137 void init_cpu_present(const struct cpumask *src)
3138 {
3139         cpumask_copy(&__cpu_present_mask, src);
3140 }
3141
3142 void init_cpu_possible(const struct cpumask *src)
3143 {
3144         cpumask_copy(&__cpu_possible_mask, src);
3145 }
3146
3147 void init_cpu_online(const struct cpumask *src)
3148 {
3149         cpumask_copy(&__cpu_online_mask, src);
3150 }
3151
3152 void set_cpu_online(unsigned int cpu, bool online)
3153 {
3154         /*
3155          * atomic_inc/dec() is required to handle the horrid abuse of this
3156          * function by the reboot and kexec code which invoke it from
3157          * IPI/NMI broadcasts when shutting down CPUs. Invocation from
3158          * regular CPU hotplug is properly serialized.
3159          *
3160          * Note, that the fact that __num_online_cpus is of type atomic_t
3161          * does not protect readers which are not serialized against
3162          * concurrent hotplug operations.
3163          */
3164         if (online) {
3165                 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
3166                         atomic_inc(&__num_online_cpus);
3167         } else {
3168                 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
3169                         atomic_dec(&__num_online_cpus);
3170         }
3171 }
3172
3173 /*
3174  * Activate the first processor.
3175  */
3176 void __init boot_cpu_init(void)
3177 {
3178         int cpu = smp_processor_id();
3179
3180         /* Mark the boot cpu "present", "online" etc for SMP and UP case */
3181         set_cpu_online(cpu, true);
3182         set_cpu_active(cpu, true);
3183         set_cpu_present(cpu, true);
3184         set_cpu_possible(cpu, true);
3185
3186 #ifdef CONFIG_SMP
3187         __boot_cpu_id = cpu;
3188 #endif
3189 }
3190
3191 /*
3192  * Must be called _AFTER_ setting up the per_cpu areas
3193  */
3194 void __init boot_cpu_hotplug_init(void)
3195 {
3196 #ifdef CONFIG_SMP
3197         cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
3198         atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE);
3199 #endif
3200         this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
3201         this_cpu_write(cpuhp_state.target, CPUHP_ONLINE);
3202 }
3203
3204 /*
3205  * These are used for a global "mitigations=" cmdline option for toggling
3206  * optional CPU mitigations.
3207  */
3208 enum cpu_mitigations {
3209         CPU_MITIGATIONS_OFF,
3210         CPU_MITIGATIONS_AUTO,
3211         CPU_MITIGATIONS_AUTO_NOSMT,
3212 };
3213
3214 static enum cpu_mitigations cpu_mitigations __ro_after_init =
3215         CPU_MITIGATIONS_AUTO;
3216
3217 static int __init mitigations_parse_cmdline(char *arg)
3218 {
3219         if (!strcmp(arg, "off"))
3220                 cpu_mitigations = CPU_MITIGATIONS_OFF;
3221         else if (!strcmp(arg, "auto"))
3222                 cpu_mitigations = CPU_MITIGATIONS_AUTO;
3223         else if (!strcmp(arg, "auto,nosmt"))
3224                 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
3225         else
3226                 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
3227                         arg);
3228
3229         return 0;
3230 }
3231 early_param("mitigations", mitigations_parse_cmdline);
3232
3233 /* mitigations=off */
3234 bool cpu_mitigations_off(void)
3235 {
3236         return cpu_mitigations == CPU_MITIGATIONS_OFF;
3237 }
3238 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
3239
3240 /* mitigations=auto,nosmt */
3241 bool cpu_mitigations_auto_nosmt(void)
3242 {
3243         return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
3244 }
3245 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);