Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[linux.git] / net / core / filter.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *      Jay Schulist <jschlst@samba.org>
13  *      Alexei Starovoitov <ast@plumgrid.com>
14  *      Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19
20 #include <linux/module.h>
21 #include <linux/types.h>
22 #include <linux/mm.h>
23 #include <linux/fcntl.h>
24 #include <linux/socket.h>
25 #include <linux/sock_diag.h>
26 #include <linux/in.h>
27 #include <linux/inet.h>
28 #include <linux/netdevice.h>
29 #include <linux/if_packet.h>
30 #include <linux/if_arp.h>
31 #include <linux/gfp.h>
32 #include <net/inet_common.h>
33 #include <net/ip.h>
34 #include <net/protocol.h>
35 #include <net/netlink.h>
36 #include <linux/skbuff.h>
37 #include <linux/skmsg.h>
38 #include <net/sock.h>
39 #include <net/flow_dissector.h>
40 #include <linux/errno.h>
41 #include <linux/timer.h>
42 #include <linux/uaccess.h>
43 #include <asm/unaligned.h>
44 #include <asm/cmpxchg.h>
45 #include <linux/filter.h>
46 #include <linux/ratelimit.h>
47 #include <linux/seccomp.h>
48 #include <linux/if_vlan.h>
49 #include <linux/bpf.h>
50 #include <linux/btf.h>
51 #include <net/sch_generic.h>
52 #include <net/cls_cgroup.h>
53 #include <net/dst_metadata.h>
54 #include <net/dst.h>
55 #include <net/sock_reuseport.h>
56 #include <net/busy_poll.h>
57 #include <net/tcp.h>
58 #include <net/xfrm.h>
59 #include <net/udp.h>
60 #include <linux/bpf_trace.h>
61 #include <net/xdp_sock.h>
62 #include <linux/inetdevice.h>
63 #include <net/inet_hashtables.h>
64 #include <net/inet6_hashtables.h>
65 #include <net/ip_fib.h>
66 #include <net/nexthop.h>
67 #include <net/flow.h>
68 #include <net/arp.h>
69 #include <net/ipv6.h>
70 #include <net/net_namespace.h>
71 #include <linux/seg6_local.h>
72 #include <net/seg6.h>
73 #include <net/seg6_local.h>
74 #include <net/lwtunnel.h>
75 #include <net/ipv6_stubs.h>
76 #include <net/bpf_sk_storage.h>
77 #include <net/transp_v6.h>
78 #include <linux/btf_ids.h>
79 #include <net/tls.h>
80
81 static const struct bpf_func_proto *
82 bpf_sk_base_func_proto(enum bpf_func_id func_id);
83
84 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
85 {
86         if (in_compat_syscall()) {
87                 struct compat_sock_fprog f32;
88
89                 if (len != sizeof(f32))
90                         return -EINVAL;
91                 if (copy_from_sockptr(&f32, src, sizeof(f32)))
92                         return -EFAULT;
93                 memset(dst, 0, sizeof(*dst));
94                 dst->len = f32.len;
95                 dst->filter = compat_ptr(f32.filter);
96         } else {
97                 if (len != sizeof(*dst))
98                         return -EINVAL;
99                 if (copy_from_sockptr(dst, src, sizeof(*dst)))
100                         return -EFAULT;
101         }
102
103         return 0;
104 }
105 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
106
107 /**
108  *      sk_filter_trim_cap - run a packet through a socket filter
109  *      @sk: sock associated with &sk_buff
110  *      @skb: buffer to filter
111  *      @cap: limit on how short the eBPF program may trim the packet
112  *
113  * Run the eBPF program and then cut skb->data to correct size returned by
114  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
115  * than pkt_len we keep whole skb->data. This is the socket level
116  * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
117  * be accepted or -EPERM if the packet should be tossed.
118  *
119  */
120 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
121 {
122         int err;
123         struct sk_filter *filter;
124
125         /*
126          * If the skb was allocated from pfmemalloc reserves, only
127          * allow SOCK_MEMALLOC sockets to use it as this socket is
128          * helping free memory
129          */
130         if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
131                 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
132                 return -ENOMEM;
133         }
134         err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
135         if (err)
136                 return err;
137
138         err = security_sock_rcv_skb(sk, skb);
139         if (err)
140                 return err;
141
142         rcu_read_lock();
143         filter = rcu_dereference(sk->sk_filter);
144         if (filter) {
145                 struct sock *save_sk = skb->sk;
146                 unsigned int pkt_len;
147
148                 skb->sk = sk;
149                 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
150                 skb->sk = save_sk;
151                 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
152         }
153         rcu_read_unlock();
154
155         return err;
156 }
157 EXPORT_SYMBOL(sk_filter_trim_cap);
158
159 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
160 {
161         return skb_get_poff(skb);
162 }
163
164 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
165 {
166         struct nlattr *nla;
167
168         if (skb_is_nonlinear(skb))
169                 return 0;
170
171         if (skb->len < sizeof(struct nlattr))
172                 return 0;
173
174         if (a > skb->len - sizeof(struct nlattr))
175                 return 0;
176
177         nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
178         if (nla)
179                 return (void *) nla - (void *) skb->data;
180
181         return 0;
182 }
183
184 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
185 {
186         struct nlattr *nla;
187
188         if (skb_is_nonlinear(skb))
189                 return 0;
190
191         if (skb->len < sizeof(struct nlattr))
192                 return 0;
193
194         if (a > skb->len - sizeof(struct nlattr))
195                 return 0;
196
197         nla = (struct nlattr *) &skb->data[a];
198         if (nla->nla_len > skb->len - a)
199                 return 0;
200
201         nla = nla_find_nested(nla, x);
202         if (nla)
203                 return (void *) nla - (void *) skb->data;
204
205         return 0;
206 }
207
208 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
209            data, int, headlen, int, offset)
210 {
211         u8 tmp, *ptr;
212         const int len = sizeof(tmp);
213
214         if (offset >= 0) {
215                 if (headlen - offset >= len)
216                         return *(u8 *)(data + offset);
217                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
218                         return tmp;
219         } else {
220                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
221                 if (likely(ptr))
222                         return *(u8 *)ptr;
223         }
224
225         return -EFAULT;
226 }
227
228 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
229            int, offset)
230 {
231         return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
232                                          offset);
233 }
234
235 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
236            data, int, headlen, int, offset)
237 {
238         u16 tmp, *ptr;
239         const int len = sizeof(tmp);
240
241         if (offset >= 0) {
242                 if (headlen - offset >= len)
243                         return get_unaligned_be16(data + offset);
244                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
245                         return be16_to_cpu(tmp);
246         } else {
247                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
248                 if (likely(ptr))
249                         return get_unaligned_be16(ptr);
250         }
251
252         return -EFAULT;
253 }
254
255 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
256            int, offset)
257 {
258         return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
259                                           offset);
260 }
261
262 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
263            data, int, headlen, int, offset)
264 {
265         u32 tmp, *ptr;
266         const int len = sizeof(tmp);
267
268         if (likely(offset >= 0)) {
269                 if (headlen - offset >= len)
270                         return get_unaligned_be32(data + offset);
271                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
272                         return be32_to_cpu(tmp);
273         } else {
274                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
275                 if (likely(ptr))
276                         return get_unaligned_be32(ptr);
277         }
278
279         return -EFAULT;
280 }
281
282 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
283            int, offset)
284 {
285         return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
286                                           offset);
287 }
288
289 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
290                               struct bpf_insn *insn_buf)
291 {
292         struct bpf_insn *insn = insn_buf;
293
294         switch (skb_field) {
295         case SKF_AD_MARK:
296                 BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
297
298                 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
299                                       offsetof(struct sk_buff, mark));
300                 break;
301
302         case SKF_AD_PKTTYPE:
303                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
304                 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
305 #ifdef __BIG_ENDIAN_BITFIELD
306                 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
307 #endif
308                 break;
309
310         case SKF_AD_QUEUE:
311                 BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
312
313                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
314                                       offsetof(struct sk_buff, queue_mapping));
315                 break;
316
317         case SKF_AD_VLAN_TAG:
318                 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
319
320                 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
321                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
322                                       offsetof(struct sk_buff, vlan_tci));
323                 break;
324         case SKF_AD_VLAN_TAG_PRESENT:
325                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET());
326                 if (PKT_VLAN_PRESENT_BIT)
327                         *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
328                 if (PKT_VLAN_PRESENT_BIT < 7)
329                         *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
330                 break;
331         }
332
333         return insn - insn_buf;
334 }
335
336 static bool convert_bpf_extensions(struct sock_filter *fp,
337                                    struct bpf_insn **insnp)
338 {
339         struct bpf_insn *insn = *insnp;
340         u32 cnt;
341
342         switch (fp->k) {
343         case SKF_AD_OFF + SKF_AD_PROTOCOL:
344                 BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
345
346                 /* A = *(u16 *) (CTX + offsetof(protocol)) */
347                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
348                                       offsetof(struct sk_buff, protocol));
349                 /* A = ntohs(A) [emitting a nop or swap16] */
350                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
351                 break;
352
353         case SKF_AD_OFF + SKF_AD_PKTTYPE:
354                 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
355                 insn += cnt - 1;
356                 break;
357
358         case SKF_AD_OFF + SKF_AD_IFINDEX:
359         case SKF_AD_OFF + SKF_AD_HATYPE:
360                 BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
361                 BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
362
363                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
364                                       BPF_REG_TMP, BPF_REG_CTX,
365                                       offsetof(struct sk_buff, dev));
366                 /* if (tmp != 0) goto pc + 1 */
367                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
368                 *insn++ = BPF_EXIT_INSN();
369                 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
370                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
371                                             offsetof(struct net_device, ifindex));
372                 else
373                         *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
374                                             offsetof(struct net_device, type));
375                 break;
376
377         case SKF_AD_OFF + SKF_AD_MARK:
378                 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
379                 insn += cnt - 1;
380                 break;
381
382         case SKF_AD_OFF + SKF_AD_RXHASH:
383                 BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
384
385                 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
386                                     offsetof(struct sk_buff, hash));
387                 break;
388
389         case SKF_AD_OFF + SKF_AD_QUEUE:
390                 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
391                 insn += cnt - 1;
392                 break;
393
394         case SKF_AD_OFF + SKF_AD_VLAN_TAG:
395                 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
396                                          BPF_REG_A, BPF_REG_CTX, insn);
397                 insn += cnt - 1;
398                 break;
399
400         case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
401                 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
402                                          BPF_REG_A, BPF_REG_CTX, insn);
403                 insn += cnt - 1;
404                 break;
405
406         case SKF_AD_OFF + SKF_AD_VLAN_TPID:
407                 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
408
409                 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
410                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
411                                       offsetof(struct sk_buff, vlan_proto));
412                 /* A = ntohs(A) [emitting a nop or swap16] */
413                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
414                 break;
415
416         case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
417         case SKF_AD_OFF + SKF_AD_NLATTR:
418         case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
419         case SKF_AD_OFF + SKF_AD_CPU:
420         case SKF_AD_OFF + SKF_AD_RANDOM:
421                 /* arg1 = CTX */
422                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
423                 /* arg2 = A */
424                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
425                 /* arg3 = X */
426                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
427                 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
428                 switch (fp->k) {
429                 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
430                         *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
431                         break;
432                 case SKF_AD_OFF + SKF_AD_NLATTR:
433                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
434                         break;
435                 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
436                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
437                         break;
438                 case SKF_AD_OFF + SKF_AD_CPU:
439                         *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
440                         break;
441                 case SKF_AD_OFF + SKF_AD_RANDOM:
442                         *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
443                         bpf_user_rnd_init_once();
444                         break;
445                 }
446                 break;
447
448         case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
449                 /* A ^= X */
450                 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
451                 break;
452
453         default:
454                 /* This is just a dummy call to avoid letting the compiler
455                  * evict __bpf_call_base() as an optimization. Placed here
456                  * where no-one bothers.
457                  */
458                 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
459                 return false;
460         }
461
462         *insnp = insn;
463         return true;
464 }
465
466 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
467 {
468         const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
469         int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
470         bool endian = BPF_SIZE(fp->code) == BPF_H ||
471                       BPF_SIZE(fp->code) == BPF_W;
472         bool indirect = BPF_MODE(fp->code) == BPF_IND;
473         const int ip_align = NET_IP_ALIGN;
474         struct bpf_insn *insn = *insnp;
475         int offset = fp->k;
476
477         if (!indirect &&
478             ((unaligned_ok && offset >= 0) ||
479              (!unaligned_ok && offset >= 0 &&
480               offset + ip_align >= 0 &&
481               offset + ip_align % size == 0))) {
482                 bool ldx_off_ok = offset <= S16_MAX;
483
484                 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
485                 if (offset)
486                         *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
487                 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
488                                       size, 2 + endian + (!ldx_off_ok * 2));
489                 if (ldx_off_ok) {
490                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
491                                               BPF_REG_D, offset);
492                 } else {
493                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
494                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
495                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
496                                               BPF_REG_TMP, 0);
497                 }
498                 if (endian)
499                         *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
500                 *insn++ = BPF_JMP_A(8);
501         }
502
503         *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
504         *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
505         *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
506         if (!indirect) {
507                 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
508         } else {
509                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
510                 if (fp->k)
511                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
512         }
513
514         switch (BPF_SIZE(fp->code)) {
515         case BPF_B:
516                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
517                 break;
518         case BPF_H:
519                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
520                 break;
521         case BPF_W:
522                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
523                 break;
524         default:
525                 return false;
526         }
527
528         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
529         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
530         *insn   = BPF_EXIT_INSN();
531
532         *insnp = insn;
533         return true;
534 }
535
536 /**
537  *      bpf_convert_filter - convert filter program
538  *      @prog: the user passed filter program
539  *      @len: the length of the user passed filter program
540  *      @new_prog: allocated 'struct bpf_prog' or NULL
541  *      @new_len: pointer to store length of converted program
542  *      @seen_ld_abs: bool whether we've seen ld_abs/ind
543  *
544  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
545  * style extended BPF (eBPF).
546  * Conversion workflow:
547  *
548  * 1) First pass for calculating the new program length:
549  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
550  *
551  * 2) 2nd pass to remap in two passes: 1st pass finds new
552  *    jump offsets, 2nd pass remapping:
553  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
554  */
555 static int bpf_convert_filter(struct sock_filter *prog, int len,
556                               struct bpf_prog *new_prog, int *new_len,
557                               bool *seen_ld_abs)
558 {
559         int new_flen = 0, pass = 0, target, i, stack_off;
560         struct bpf_insn *new_insn, *first_insn = NULL;
561         struct sock_filter *fp;
562         int *addrs = NULL;
563         u8 bpf_src;
564
565         BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
566         BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
567
568         if (len <= 0 || len > BPF_MAXINSNS)
569                 return -EINVAL;
570
571         if (new_prog) {
572                 first_insn = new_prog->insnsi;
573                 addrs = kcalloc(len, sizeof(*addrs),
574                                 GFP_KERNEL | __GFP_NOWARN);
575                 if (!addrs)
576                         return -ENOMEM;
577         }
578
579 do_pass:
580         new_insn = first_insn;
581         fp = prog;
582
583         /* Classic BPF related prologue emission. */
584         if (new_prog) {
585                 /* Classic BPF expects A and X to be reset first. These need
586                  * to be guaranteed to be the first two instructions.
587                  */
588                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
589                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
590
591                 /* All programs must keep CTX in callee saved BPF_REG_CTX.
592                  * In eBPF case it's done by the compiler, here we need to
593                  * do this ourself. Initial CTX is present in BPF_REG_ARG1.
594                  */
595                 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
596                 if (*seen_ld_abs) {
597                         /* For packet access in classic BPF, cache skb->data
598                          * in callee-saved BPF R8 and skb->len - skb->data_len
599                          * (headlen) in BPF R9. Since classic BPF is read-only
600                          * on CTX, we only need to cache it once.
601                          */
602                         *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
603                                                   BPF_REG_D, BPF_REG_CTX,
604                                                   offsetof(struct sk_buff, data));
605                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
606                                                   offsetof(struct sk_buff, len));
607                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
608                                                   offsetof(struct sk_buff, data_len));
609                         *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
610                 }
611         } else {
612                 new_insn += 3;
613         }
614
615         for (i = 0; i < len; fp++, i++) {
616                 struct bpf_insn tmp_insns[32] = { };
617                 struct bpf_insn *insn = tmp_insns;
618
619                 if (addrs)
620                         addrs[i] = new_insn - first_insn;
621
622                 switch (fp->code) {
623                 /* All arithmetic insns and skb loads map as-is. */
624                 case BPF_ALU | BPF_ADD | BPF_X:
625                 case BPF_ALU | BPF_ADD | BPF_K:
626                 case BPF_ALU | BPF_SUB | BPF_X:
627                 case BPF_ALU | BPF_SUB | BPF_K:
628                 case BPF_ALU | BPF_AND | BPF_X:
629                 case BPF_ALU | BPF_AND | BPF_K:
630                 case BPF_ALU | BPF_OR | BPF_X:
631                 case BPF_ALU | BPF_OR | BPF_K:
632                 case BPF_ALU | BPF_LSH | BPF_X:
633                 case BPF_ALU | BPF_LSH | BPF_K:
634                 case BPF_ALU | BPF_RSH | BPF_X:
635                 case BPF_ALU | BPF_RSH | BPF_K:
636                 case BPF_ALU | BPF_XOR | BPF_X:
637                 case BPF_ALU | BPF_XOR | BPF_K:
638                 case BPF_ALU | BPF_MUL | BPF_X:
639                 case BPF_ALU | BPF_MUL | BPF_K:
640                 case BPF_ALU | BPF_DIV | BPF_X:
641                 case BPF_ALU | BPF_DIV | BPF_K:
642                 case BPF_ALU | BPF_MOD | BPF_X:
643                 case BPF_ALU | BPF_MOD | BPF_K:
644                 case BPF_ALU | BPF_NEG:
645                 case BPF_LD | BPF_ABS | BPF_W:
646                 case BPF_LD | BPF_ABS | BPF_H:
647                 case BPF_LD | BPF_ABS | BPF_B:
648                 case BPF_LD | BPF_IND | BPF_W:
649                 case BPF_LD | BPF_IND | BPF_H:
650                 case BPF_LD | BPF_IND | BPF_B:
651                         /* Check for overloaded BPF extension and
652                          * directly convert it if found, otherwise
653                          * just move on with mapping.
654                          */
655                         if (BPF_CLASS(fp->code) == BPF_LD &&
656                             BPF_MODE(fp->code) == BPF_ABS &&
657                             convert_bpf_extensions(fp, &insn))
658                                 break;
659                         if (BPF_CLASS(fp->code) == BPF_LD &&
660                             convert_bpf_ld_abs(fp, &insn)) {
661                                 *seen_ld_abs = true;
662                                 break;
663                         }
664
665                         if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
666                             fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
667                                 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
668                                 /* Error with exception code on div/mod by 0.
669                                  * For cBPF programs, this was always return 0.
670                                  */
671                                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
672                                 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
673                                 *insn++ = BPF_EXIT_INSN();
674                         }
675
676                         *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
677                         break;
678
679                 /* Jump transformation cannot use BPF block macros
680                  * everywhere as offset calculation and target updates
681                  * require a bit more work than the rest, i.e. jump
682                  * opcodes map as-is, but offsets need adjustment.
683                  */
684
685 #define BPF_EMIT_JMP                                                    \
686         do {                                                            \
687                 const s32 off_min = S16_MIN, off_max = S16_MAX;         \
688                 s32 off;                                                \
689                                                                         \
690                 if (target >= len || target < 0)                        \
691                         goto err;                                       \
692                 off = addrs ? addrs[target] - addrs[i] - 1 : 0;         \
693                 /* Adjust pc relative offset for 2nd or 3rd insn. */    \
694                 off -= insn - tmp_insns;                                \
695                 /* Reject anything not fitting into insn->off. */       \
696                 if (off < off_min || off > off_max)                     \
697                         goto err;                                       \
698                 insn->off = off;                                        \
699         } while (0)
700
701                 case BPF_JMP | BPF_JA:
702                         target = i + fp->k + 1;
703                         insn->code = fp->code;
704                         BPF_EMIT_JMP;
705                         break;
706
707                 case BPF_JMP | BPF_JEQ | BPF_K:
708                 case BPF_JMP | BPF_JEQ | BPF_X:
709                 case BPF_JMP | BPF_JSET | BPF_K:
710                 case BPF_JMP | BPF_JSET | BPF_X:
711                 case BPF_JMP | BPF_JGT | BPF_K:
712                 case BPF_JMP | BPF_JGT | BPF_X:
713                 case BPF_JMP | BPF_JGE | BPF_K:
714                 case BPF_JMP | BPF_JGE | BPF_X:
715                         if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
716                                 /* BPF immediates are signed, zero extend
717                                  * immediate into tmp register and use it
718                                  * in compare insn.
719                                  */
720                                 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
721
722                                 insn->dst_reg = BPF_REG_A;
723                                 insn->src_reg = BPF_REG_TMP;
724                                 bpf_src = BPF_X;
725                         } else {
726                                 insn->dst_reg = BPF_REG_A;
727                                 insn->imm = fp->k;
728                                 bpf_src = BPF_SRC(fp->code);
729                                 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
730                         }
731
732                         /* Common case where 'jump_false' is next insn. */
733                         if (fp->jf == 0) {
734                                 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
735                                 target = i + fp->jt + 1;
736                                 BPF_EMIT_JMP;
737                                 break;
738                         }
739
740                         /* Convert some jumps when 'jump_true' is next insn. */
741                         if (fp->jt == 0) {
742                                 switch (BPF_OP(fp->code)) {
743                                 case BPF_JEQ:
744                                         insn->code = BPF_JMP | BPF_JNE | bpf_src;
745                                         break;
746                                 case BPF_JGT:
747                                         insn->code = BPF_JMP | BPF_JLE | bpf_src;
748                                         break;
749                                 case BPF_JGE:
750                                         insn->code = BPF_JMP | BPF_JLT | bpf_src;
751                                         break;
752                                 default:
753                                         goto jmp_rest;
754                                 }
755
756                                 target = i + fp->jf + 1;
757                                 BPF_EMIT_JMP;
758                                 break;
759                         }
760 jmp_rest:
761                         /* Other jumps are mapped into two insns: Jxx and JA. */
762                         target = i + fp->jt + 1;
763                         insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
764                         BPF_EMIT_JMP;
765                         insn++;
766
767                         insn->code = BPF_JMP | BPF_JA;
768                         target = i + fp->jf + 1;
769                         BPF_EMIT_JMP;
770                         break;
771
772                 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
773                 case BPF_LDX | BPF_MSH | BPF_B: {
774                         struct sock_filter tmp = {
775                                 .code   = BPF_LD | BPF_ABS | BPF_B,
776                                 .k      = fp->k,
777                         };
778
779                         *seen_ld_abs = true;
780
781                         /* X = A */
782                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
783                         /* A = BPF_R0 = *(u8 *) (skb->data + K) */
784                         convert_bpf_ld_abs(&tmp, &insn);
785                         insn++;
786                         /* A &= 0xf */
787                         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
788                         /* A <<= 2 */
789                         *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
790                         /* tmp = X */
791                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
792                         /* X = A */
793                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
794                         /* A = tmp */
795                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
796                         break;
797                 }
798                 /* RET_K is remaped into 2 insns. RET_A case doesn't need an
799                  * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
800                  */
801                 case BPF_RET | BPF_A:
802                 case BPF_RET | BPF_K:
803                         if (BPF_RVAL(fp->code) == BPF_K)
804                                 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
805                                                         0, fp->k);
806                         *insn = BPF_EXIT_INSN();
807                         break;
808
809                 /* Store to stack. */
810                 case BPF_ST:
811                 case BPF_STX:
812                         stack_off = fp->k * 4  + 4;
813                         *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
814                                             BPF_ST ? BPF_REG_A : BPF_REG_X,
815                                             -stack_off);
816                         /* check_load_and_stores() verifies that classic BPF can
817                          * load from stack only after write, so tracking
818                          * stack_depth for ST|STX insns is enough
819                          */
820                         if (new_prog && new_prog->aux->stack_depth < stack_off)
821                                 new_prog->aux->stack_depth = stack_off;
822                         break;
823
824                 /* Load from stack. */
825                 case BPF_LD | BPF_MEM:
826                 case BPF_LDX | BPF_MEM:
827                         stack_off = fp->k * 4  + 4;
828                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
829                                             BPF_REG_A : BPF_REG_X, BPF_REG_FP,
830                                             -stack_off);
831                         break;
832
833                 /* A = K or X = K */
834                 case BPF_LD | BPF_IMM:
835                 case BPF_LDX | BPF_IMM:
836                         *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
837                                               BPF_REG_A : BPF_REG_X, fp->k);
838                         break;
839
840                 /* X = A */
841                 case BPF_MISC | BPF_TAX:
842                         *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
843                         break;
844
845                 /* A = X */
846                 case BPF_MISC | BPF_TXA:
847                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
848                         break;
849
850                 /* A = skb->len or X = skb->len */
851                 case BPF_LD | BPF_W | BPF_LEN:
852                 case BPF_LDX | BPF_W | BPF_LEN:
853                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
854                                             BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
855                                             offsetof(struct sk_buff, len));
856                         break;
857
858                 /* Access seccomp_data fields. */
859                 case BPF_LDX | BPF_ABS | BPF_W:
860                         /* A = *(u32 *) (ctx + K) */
861                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
862                         break;
863
864                 /* Unknown instruction. */
865                 default:
866                         goto err;
867                 }
868
869                 insn++;
870                 if (new_prog)
871                         memcpy(new_insn, tmp_insns,
872                                sizeof(*insn) * (insn - tmp_insns));
873                 new_insn += insn - tmp_insns;
874         }
875
876         if (!new_prog) {
877                 /* Only calculating new length. */
878                 *new_len = new_insn - first_insn;
879                 if (*seen_ld_abs)
880                         *new_len += 4; /* Prologue bits. */
881                 return 0;
882         }
883
884         pass++;
885         if (new_flen != new_insn - first_insn) {
886                 new_flen = new_insn - first_insn;
887                 if (pass > 2)
888                         goto err;
889                 goto do_pass;
890         }
891
892         kfree(addrs);
893         BUG_ON(*new_len != new_flen);
894         return 0;
895 err:
896         kfree(addrs);
897         return -EINVAL;
898 }
899
900 /* Security:
901  *
902  * As we dont want to clear mem[] array for each packet going through
903  * __bpf_prog_run(), we check that filter loaded by user never try to read
904  * a cell if not previously written, and we check all branches to be sure
905  * a malicious user doesn't try to abuse us.
906  */
907 static int check_load_and_stores(const struct sock_filter *filter, int flen)
908 {
909         u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
910         int pc, ret = 0;
911
912         BUILD_BUG_ON(BPF_MEMWORDS > 16);
913
914         masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
915         if (!masks)
916                 return -ENOMEM;
917
918         memset(masks, 0xff, flen * sizeof(*masks));
919
920         for (pc = 0; pc < flen; pc++) {
921                 memvalid &= masks[pc];
922
923                 switch (filter[pc].code) {
924                 case BPF_ST:
925                 case BPF_STX:
926                         memvalid |= (1 << filter[pc].k);
927                         break;
928                 case BPF_LD | BPF_MEM:
929                 case BPF_LDX | BPF_MEM:
930                         if (!(memvalid & (1 << filter[pc].k))) {
931                                 ret = -EINVAL;
932                                 goto error;
933                         }
934                         break;
935                 case BPF_JMP | BPF_JA:
936                         /* A jump must set masks on target */
937                         masks[pc + 1 + filter[pc].k] &= memvalid;
938                         memvalid = ~0;
939                         break;
940                 case BPF_JMP | BPF_JEQ | BPF_K:
941                 case BPF_JMP | BPF_JEQ | BPF_X:
942                 case BPF_JMP | BPF_JGE | BPF_K:
943                 case BPF_JMP | BPF_JGE | BPF_X:
944                 case BPF_JMP | BPF_JGT | BPF_K:
945                 case BPF_JMP | BPF_JGT | BPF_X:
946                 case BPF_JMP | BPF_JSET | BPF_K:
947                 case BPF_JMP | BPF_JSET | BPF_X:
948                         /* A jump must set masks on targets */
949                         masks[pc + 1 + filter[pc].jt] &= memvalid;
950                         masks[pc + 1 + filter[pc].jf] &= memvalid;
951                         memvalid = ~0;
952                         break;
953                 }
954         }
955 error:
956         kfree(masks);
957         return ret;
958 }
959
960 static bool chk_code_allowed(u16 code_to_probe)
961 {
962         static const bool codes[] = {
963                 /* 32 bit ALU operations */
964                 [BPF_ALU | BPF_ADD | BPF_K] = true,
965                 [BPF_ALU | BPF_ADD | BPF_X] = true,
966                 [BPF_ALU | BPF_SUB | BPF_K] = true,
967                 [BPF_ALU | BPF_SUB | BPF_X] = true,
968                 [BPF_ALU | BPF_MUL | BPF_K] = true,
969                 [BPF_ALU | BPF_MUL | BPF_X] = true,
970                 [BPF_ALU | BPF_DIV | BPF_K] = true,
971                 [BPF_ALU | BPF_DIV | BPF_X] = true,
972                 [BPF_ALU | BPF_MOD | BPF_K] = true,
973                 [BPF_ALU | BPF_MOD | BPF_X] = true,
974                 [BPF_ALU | BPF_AND | BPF_K] = true,
975                 [BPF_ALU | BPF_AND | BPF_X] = true,
976                 [BPF_ALU | BPF_OR | BPF_K] = true,
977                 [BPF_ALU | BPF_OR | BPF_X] = true,
978                 [BPF_ALU | BPF_XOR | BPF_K] = true,
979                 [BPF_ALU | BPF_XOR | BPF_X] = true,
980                 [BPF_ALU | BPF_LSH | BPF_K] = true,
981                 [BPF_ALU | BPF_LSH | BPF_X] = true,
982                 [BPF_ALU | BPF_RSH | BPF_K] = true,
983                 [BPF_ALU | BPF_RSH | BPF_X] = true,
984                 [BPF_ALU | BPF_NEG] = true,
985                 /* Load instructions */
986                 [BPF_LD | BPF_W | BPF_ABS] = true,
987                 [BPF_LD | BPF_H | BPF_ABS] = true,
988                 [BPF_LD | BPF_B | BPF_ABS] = true,
989                 [BPF_LD | BPF_W | BPF_LEN] = true,
990                 [BPF_LD | BPF_W | BPF_IND] = true,
991                 [BPF_LD | BPF_H | BPF_IND] = true,
992                 [BPF_LD | BPF_B | BPF_IND] = true,
993                 [BPF_LD | BPF_IMM] = true,
994                 [BPF_LD | BPF_MEM] = true,
995                 [BPF_LDX | BPF_W | BPF_LEN] = true,
996                 [BPF_LDX | BPF_B | BPF_MSH] = true,
997                 [BPF_LDX | BPF_IMM] = true,
998                 [BPF_LDX | BPF_MEM] = true,
999                 /* Store instructions */
1000                 [BPF_ST] = true,
1001                 [BPF_STX] = true,
1002                 /* Misc instructions */
1003                 [BPF_MISC | BPF_TAX] = true,
1004                 [BPF_MISC | BPF_TXA] = true,
1005                 /* Return instructions */
1006                 [BPF_RET | BPF_K] = true,
1007                 [BPF_RET | BPF_A] = true,
1008                 /* Jump instructions */
1009                 [BPF_JMP | BPF_JA] = true,
1010                 [BPF_JMP | BPF_JEQ | BPF_K] = true,
1011                 [BPF_JMP | BPF_JEQ | BPF_X] = true,
1012                 [BPF_JMP | BPF_JGE | BPF_K] = true,
1013                 [BPF_JMP | BPF_JGE | BPF_X] = true,
1014                 [BPF_JMP | BPF_JGT | BPF_K] = true,
1015                 [BPF_JMP | BPF_JGT | BPF_X] = true,
1016                 [BPF_JMP | BPF_JSET | BPF_K] = true,
1017                 [BPF_JMP | BPF_JSET | BPF_X] = true,
1018         };
1019
1020         if (code_to_probe >= ARRAY_SIZE(codes))
1021                 return false;
1022
1023         return codes[code_to_probe];
1024 }
1025
1026 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1027                                 unsigned int flen)
1028 {
1029         if (filter == NULL)
1030                 return false;
1031         if (flen == 0 || flen > BPF_MAXINSNS)
1032                 return false;
1033
1034         return true;
1035 }
1036
1037 /**
1038  *      bpf_check_classic - verify socket filter code
1039  *      @filter: filter to verify
1040  *      @flen: length of filter
1041  *
1042  * Check the user's filter code. If we let some ugly
1043  * filter code slip through kaboom! The filter must contain
1044  * no references or jumps that are out of range, no illegal
1045  * instructions, and must end with a RET instruction.
1046  *
1047  * All jumps are forward as they are not signed.
1048  *
1049  * Returns 0 if the rule set is legal or -EINVAL if not.
1050  */
1051 static int bpf_check_classic(const struct sock_filter *filter,
1052                              unsigned int flen)
1053 {
1054         bool anc_found;
1055         int pc;
1056
1057         /* Check the filter code now */
1058         for (pc = 0; pc < flen; pc++) {
1059                 const struct sock_filter *ftest = &filter[pc];
1060
1061                 /* May we actually operate on this code? */
1062                 if (!chk_code_allowed(ftest->code))
1063                         return -EINVAL;
1064
1065                 /* Some instructions need special checks */
1066                 switch (ftest->code) {
1067                 case BPF_ALU | BPF_DIV | BPF_K:
1068                 case BPF_ALU | BPF_MOD | BPF_K:
1069                         /* Check for division by zero */
1070                         if (ftest->k == 0)
1071                                 return -EINVAL;
1072                         break;
1073                 case BPF_ALU | BPF_LSH | BPF_K:
1074                 case BPF_ALU | BPF_RSH | BPF_K:
1075                         if (ftest->k >= 32)
1076                                 return -EINVAL;
1077                         break;
1078                 case BPF_LD | BPF_MEM:
1079                 case BPF_LDX | BPF_MEM:
1080                 case BPF_ST:
1081                 case BPF_STX:
1082                         /* Check for invalid memory addresses */
1083                         if (ftest->k >= BPF_MEMWORDS)
1084                                 return -EINVAL;
1085                         break;
1086                 case BPF_JMP | BPF_JA:
1087                         /* Note, the large ftest->k might cause loops.
1088                          * Compare this with conditional jumps below,
1089                          * where offsets are limited. --ANK (981016)
1090                          */
1091                         if (ftest->k >= (unsigned int)(flen - pc - 1))
1092                                 return -EINVAL;
1093                         break;
1094                 case BPF_JMP | BPF_JEQ | BPF_K:
1095                 case BPF_JMP | BPF_JEQ | BPF_X:
1096                 case BPF_JMP | BPF_JGE | BPF_K:
1097                 case BPF_JMP | BPF_JGE | BPF_X:
1098                 case BPF_JMP | BPF_JGT | BPF_K:
1099                 case BPF_JMP | BPF_JGT | BPF_X:
1100                 case BPF_JMP | BPF_JSET | BPF_K:
1101                 case BPF_JMP | BPF_JSET | BPF_X:
1102                         /* Both conditionals must be safe */
1103                         if (pc + ftest->jt + 1 >= flen ||
1104                             pc + ftest->jf + 1 >= flen)
1105                                 return -EINVAL;
1106                         break;
1107                 case BPF_LD | BPF_W | BPF_ABS:
1108                 case BPF_LD | BPF_H | BPF_ABS:
1109                 case BPF_LD | BPF_B | BPF_ABS:
1110                         anc_found = false;
1111                         if (bpf_anc_helper(ftest) & BPF_ANC)
1112                                 anc_found = true;
1113                         /* Ancillary operation unknown or unsupported */
1114                         if (anc_found == false && ftest->k >= SKF_AD_OFF)
1115                                 return -EINVAL;
1116                 }
1117         }
1118
1119         /* Last instruction must be a RET code */
1120         switch (filter[flen - 1].code) {
1121         case BPF_RET | BPF_K:
1122         case BPF_RET | BPF_A:
1123                 return check_load_and_stores(filter, flen);
1124         }
1125
1126         return -EINVAL;
1127 }
1128
1129 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1130                                       const struct sock_fprog *fprog)
1131 {
1132         unsigned int fsize = bpf_classic_proglen(fprog);
1133         struct sock_fprog_kern *fkprog;
1134
1135         fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1136         if (!fp->orig_prog)
1137                 return -ENOMEM;
1138
1139         fkprog = fp->orig_prog;
1140         fkprog->len = fprog->len;
1141
1142         fkprog->filter = kmemdup(fp->insns, fsize,
1143                                  GFP_KERNEL | __GFP_NOWARN);
1144         if (!fkprog->filter) {
1145                 kfree(fp->orig_prog);
1146                 return -ENOMEM;
1147         }
1148
1149         return 0;
1150 }
1151
1152 static void bpf_release_orig_filter(struct bpf_prog *fp)
1153 {
1154         struct sock_fprog_kern *fprog = fp->orig_prog;
1155
1156         if (fprog) {
1157                 kfree(fprog->filter);
1158                 kfree(fprog);
1159         }
1160 }
1161
1162 static void __bpf_prog_release(struct bpf_prog *prog)
1163 {
1164         if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1165                 bpf_prog_put(prog);
1166         } else {
1167                 bpf_release_orig_filter(prog);
1168                 bpf_prog_free(prog);
1169         }
1170 }
1171
1172 static void __sk_filter_release(struct sk_filter *fp)
1173 {
1174         __bpf_prog_release(fp->prog);
1175         kfree(fp);
1176 }
1177
1178 /**
1179  *      sk_filter_release_rcu - Release a socket filter by rcu_head
1180  *      @rcu: rcu_head that contains the sk_filter to free
1181  */
1182 static void sk_filter_release_rcu(struct rcu_head *rcu)
1183 {
1184         struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1185
1186         __sk_filter_release(fp);
1187 }
1188
1189 /**
1190  *      sk_filter_release - release a socket filter
1191  *      @fp: filter to remove
1192  *
1193  *      Remove a filter from a socket and release its resources.
1194  */
1195 static void sk_filter_release(struct sk_filter *fp)
1196 {
1197         if (refcount_dec_and_test(&fp->refcnt))
1198                 call_rcu(&fp->rcu, sk_filter_release_rcu);
1199 }
1200
1201 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1202 {
1203         u32 filter_size = bpf_prog_size(fp->prog->len);
1204
1205         atomic_sub(filter_size, &sk->sk_omem_alloc);
1206         sk_filter_release(fp);
1207 }
1208
1209 /* try to charge the socket memory if there is space available
1210  * return true on success
1211  */
1212 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1213 {
1214         u32 filter_size = bpf_prog_size(fp->prog->len);
1215
1216         /* same check as in sock_kmalloc() */
1217         if (filter_size <= sysctl_optmem_max &&
1218             atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1219                 atomic_add(filter_size, &sk->sk_omem_alloc);
1220                 return true;
1221         }
1222         return false;
1223 }
1224
1225 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1226 {
1227         if (!refcount_inc_not_zero(&fp->refcnt))
1228                 return false;
1229
1230         if (!__sk_filter_charge(sk, fp)) {
1231                 sk_filter_release(fp);
1232                 return false;
1233         }
1234         return true;
1235 }
1236
1237 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1238 {
1239         struct sock_filter *old_prog;
1240         struct bpf_prog *old_fp;
1241         int err, new_len, old_len = fp->len;
1242         bool seen_ld_abs = false;
1243
1244         /* We are free to overwrite insns et al right here as it
1245          * won't be used at this point in time anymore internally
1246          * after the migration to the internal BPF instruction
1247          * representation.
1248          */
1249         BUILD_BUG_ON(sizeof(struct sock_filter) !=
1250                      sizeof(struct bpf_insn));
1251
1252         /* Conversion cannot happen on overlapping memory areas,
1253          * so we need to keep the user BPF around until the 2nd
1254          * pass. At this time, the user BPF is stored in fp->insns.
1255          */
1256         old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1257                            GFP_KERNEL | __GFP_NOWARN);
1258         if (!old_prog) {
1259                 err = -ENOMEM;
1260                 goto out_err;
1261         }
1262
1263         /* 1st pass: calculate the new program length. */
1264         err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1265                                  &seen_ld_abs);
1266         if (err)
1267                 goto out_err_free;
1268
1269         /* Expand fp for appending the new filter representation. */
1270         old_fp = fp;
1271         fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1272         if (!fp) {
1273                 /* The old_fp is still around in case we couldn't
1274                  * allocate new memory, so uncharge on that one.
1275                  */
1276                 fp = old_fp;
1277                 err = -ENOMEM;
1278                 goto out_err_free;
1279         }
1280
1281         fp->len = new_len;
1282
1283         /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1284         err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1285                                  &seen_ld_abs);
1286         if (err)
1287                 /* 2nd bpf_convert_filter() can fail only if it fails
1288                  * to allocate memory, remapping must succeed. Note,
1289                  * that at this time old_fp has already been released
1290                  * by krealloc().
1291                  */
1292                 goto out_err_free;
1293
1294         fp = bpf_prog_select_runtime(fp, &err);
1295         if (err)
1296                 goto out_err_free;
1297
1298         kfree(old_prog);
1299         return fp;
1300
1301 out_err_free:
1302         kfree(old_prog);
1303 out_err:
1304         __bpf_prog_release(fp);
1305         return ERR_PTR(err);
1306 }
1307
1308 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1309                                            bpf_aux_classic_check_t trans)
1310 {
1311         int err;
1312
1313         fp->bpf_func = NULL;
1314         fp->jited = 0;
1315
1316         err = bpf_check_classic(fp->insns, fp->len);
1317         if (err) {
1318                 __bpf_prog_release(fp);
1319                 return ERR_PTR(err);
1320         }
1321
1322         /* There might be additional checks and transformations
1323          * needed on classic filters, f.e. in case of seccomp.
1324          */
1325         if (trans) {
1326                 err = trans(fp->insns, fp->len);
1327                 if (err) {
1328                         __bpf_prog_release(fp);
1329                         return ERR_PTR(err);
1330                 }
1331         }
1332
1333         /* Probe if we can JIT compile the filter and if so, do
1334          * the compilation of the filter.
1335          */
1336         bpf_jit_compile(fp);
1337
1338         /* JIT compiler couldn't process this filter, so do the
1339          * internal BPF translation for the optimized interpreter.
1340          */
1341         if (!fp->jited)
1342                 fp = bpf_migrate_filter(fp);
1343
1344         return fp;
1345 }
1346
1347 /**
1348  *      bpf_prog_create - create an unattached filter
1349  *      @pfp: the unattached filter that is created
1350  *      @fprog: the filter program
1351  *
1352  * Create a filter independent of any socket. We first run some
1353  * sanity checks on it to make sure it does not explode on us later.
1354  * If an error occurs or there is insufficient memory for the filter
1355  * a negative errno code is returned. On success the return is zero.
1356  */
1357 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1358 {
1359         unsigned int fsize = bpf_classic_proglen(fprog);
1360         struct bpf_prog *fp;
1361
1362         /* Make sure new filter is there and in the right amounts. */
1363         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1364                 return -EINVAL;
1365
1366         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1367         if (!fp)
1368                 return -ENOMEM;
1369
1370         memcpy(fp->insns, fprog->filter, fsize);
1371
1372         fp->len = fprog->len;
1373         /* Since unattached filters are not copied back to user
1374          * space through sk_get_filter(), we do not need to hold
1375          * a copy here, and can spare us the work.
1376          */
1377         fp->orig_prog = NULL;
1378
1379         /* bpf_prepare_filter() already takes care of freeing
1380          * memory in case something goes wrong.
1381          */
1382         fp = bpf_prepare_filter(fp, NULL);
1383         if (IS_ERR(fp))
1384                 return PTR_ERR(fp);
1385
1386         *pfp = fp;
1387         return 0;
1388 }
1389 EXPORT_SYMBOL_GPL(bpf_prog_create);
1390
1391 /**
1392  *      bpf_prog_create_from_user - create an unattached filter from user buffer
1393  *      @pfp: the unattached filter that is created
1394  *      @fprog: the filter program
1395  *      @trans: post-classic verifier transformation handler
1396  *      @save_orig: save classic BPF program
1397  *
1398  * This function effectively does the same as bpf_prog_create(), only
1399  * that it builds up its insns buffer from user space provided buffer.
1400  * It also allows for passing a bpf_aux_classic_check_t handler.
1401  */
1402 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1403                               bpf_aux_classic_check_t trans, bool save_orig)
1404 {
1405         unsigned int fsize = bpf_classic_proglen(fprog);
1406         struct bpf_prog *fp;
1407         int err;
1408
1409         /* Make sure new filter is there and in the right amounts. */
1410         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1411                 return -EINVAL;
1412
1413         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1414         if (!fp)
1415                 return -ENOMEM;
1416
1417         if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1418                 __bpf_prog_free(fp);
1419                 return -EFAULT;
1420         }
1421
1422         fp->len = fprog->len;
1423         fp->orig_prog = NULL;
1424
1425         if (save_orig) {
1426                 err = bpf_prog_store_orig_filter(fp, fprog);
1427                 if (err) {
1428                         __bpf_prog_free(fp);
1429                         return -ENOMEM;
1430                 }
1431         }
1432
1433         /* bpf_prepare_filter() already takes care of freeing
1434          * memory in case something goes wrong.
1435          */
1436         fp = bpf_prepare_filter(fp, trans);
1437         if (IS_ERR(fp))
1438                 return PTR_ERR(fp);
1439
1440         *pfp = fp;
1441         return 0;
1442 }
1443 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1444
1445 void bpf_prog_destroy(struct bpf_prog *fp)
1446 {
1447         __bpf_prog_release(fp);
1448 }
1449 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1450
1451 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1452 {
1453         struct sk_filter *fp, *old_fp;
1454
1455         fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1456         if (!fp)
1457                 return -ENOMEM;
1458
1459         fp->prog = prog;
1460
1461         if (!__sk_filter_charge(sk, fp)) {
1462                 kfree(fp);
1463                 return -ENOMEM;
1464         }
1465         refcount_set(&fp->refcnt, 1);
1466
1467         old_fp = rcu_dereference_protected(sk->sk_filter,
1468                                            lockdep_sock_is_held(sk));
1469         rcu_assign_pointer(sk->sk_filter, fp);
1470
1471         if (old_fp)
1472                 sk_filter_uncharge(sk, old_fp);
1473
1474         return 0;
1475 }
1476
1477 static
1478 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1479 {
1480         unsigned int fsize = bpf_classic_proglen(fprog);
1481         struct bpf_prog *prog;
1482         int err;
1483
1484         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1485                 return ERR_PTR(-EPERM);
1486
1487         /* Make sure new filter is there and in the right amounts. */
1488         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1489                 return ERR_PTR(-EINVAL);
1490
1491         prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1492         if (!prog)
1493                 return ERR_PTR(-ENOMEM);
1494
1495         if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1496                 __bpf_prog_free(prog);
1497                 return ERR_PTR(-EFAULT);
1498         }
1499
1500         prog->len = fprog->len;
1501
1502         err = bpf_prog_store_orig_filter(prog, fprog);
1503         if (err) {
1504                 __bpf_prog_free(prog);
1505                 return ERR_PTR(-ENOMEM);
1506         }
1507
1508         /* bpf_prepare_filter() already takes care of freeing
1509          * memory in case something goes wrong.
1510          */
1511         return bpf_prepare_filter(prog, NULL);
1512 }
1513
1514 /**
1515  *      sk_attach_filter - attach a socket filter
1516  *      @fprog: the filter program
1517  *      @sk: the socket to use
1518  *
1519  * Attach the user's filter code. We first run some sanity checks on
1520  * it to make sure it does not explode on us later. If an error
1521  * occurs or there is insufficient memory for the filter a negative
1522  * errno code is returned. On success the return is zero.
1523  */
1524 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1525 {
1526         struct bpf_prog *prog = __get_filter(fprog, sk);
1527         int err;
1528
1529         if (IS_ERR(prog))
1530                 return PTR_ERR(prog);
1531
1532         err = __sk_attach_prog(prog, sk);
1533         if (err < 0) {
1534                 __bpf_prog_release(prog);
1535                 return err;
1536         }
1537
1538         return 0;
1539 }
1540 EXPORT_SYMBOL_GPL(sk_attach_filter);
1541
1542 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1543 {
1544         struct bpf_prog *prog = __get_filter(fprog, sk);
1545         int err;
1546
1547         if (IS_ERR(prog))
1548                 return PTR_ERR(prog);
1549
1550         if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1551                 err = -ENOMEM;
1552         else
1553                 err = reuseport_attach_prog(sk, prog);
1554
1555         if (err)
1556                 __bpf_prog_release(prog);
1557
1558         return err;
1559 }
1560
1561 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1562 {
1563         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1564                 return ERR_PTR(-EPERM);
1565
1566         return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1567 }
1568
1569 int sk_attach_bpf(u32 ufd, struct sock *sk)
1570 {
1571         struct bpf_prog *prog = __get_bpf(ufd, sk);
1572         int err;
1573
1574         if (IS_ERR(prog))
1575                 return PTR_ERR(prog);
1576
1577         err = __sk_attach_prog(prog, sk);
1578         if (err < 0) {
1579                 bpf_prog_put(prog);
1580                 return err;
1581         }
1582
1583         return 0;
1584 }
1585
1586 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1587 {
1588         struct bpf_prog *prog;
1589         int err;
1590
1591         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1592                 return -EPERM;
1593
1594         prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1595         if (PTR_ERR(prog) == -EINVAL)
1596                 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1597         if (IS_ERR(prog))
1598                 return PTR_ERR(prog);
1599
1600         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1601                 /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1602                  * bpf prog (e.g. sockmap).  It depends on the
1603                  * limitation imposed by bpf_prog_load().
1604                  * Hence, sysctl_optmem_max is not checked.
1605                  */
1606                 if ((sk->sk_type != SOCK_STREAM &&
1607                      sk->sk_type != SOCK_DGRAM) ||
1608                     (sk->sk_protocol != IPPROTO_UDP &&
1609                      sk->sk_protocol != IPPROTO_TCP) ||
1610                     (sk->sk_family != AF_INET &&
1611                      sk->sk_family != AF_INET6)) {
1612                         err = -ENOTSUPP;
1613                         goto err_prog_put;
1614                 }
1615         } else {
1616                 /* BPF_PROG_TYPE_SOCKET_FILTER */
1617                 if (bpf_prog_size(prog->len) > sysctl_optmem_max) {
1618                         err = -ENOMEM;
1619                         goto err_prog_put;
1620                 }
1621         }
1622
1623         err = reuseport_attach_prog(sk, prog);
1624 err_prog_put:
1625         if (err)
1626                 bpf_prog_put(prog);
1627
1628         return err;
1629 }
1630
1631 void sk_reuseport_prog_free(struct bpf_prog *prog)
1632 {
1633         if (!prog)
1634                 return;
1635
1636         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1637                 bpf_prog_put(prog);
1638         else
1639                 bpf_prog_destroy(prog);
1640 }
1641
1642 struct bpf_scratchpad {
1643         union {
1644                 __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1645                 u8     buff[MAX_BPF_STACK];
1646         };
1647 };
1648
1649 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1650
1651 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1652                                           unsigned int write_len)
1653 {
1654         return skb_ensure_writable(skb, write_len);
1655 }
1656
1657 static inline int bpf_try_make_writable(struct sk_buff *skb,
1658                                         unsigned int write_len)
1659 {
1660         int err = __bpf_try_make_writable(skb, write_len);
1661
1662         bpf_compute_data_pointers(skb);
1663         return err;
1664 }
1665
1666 static int bpf_try_make_head_writable(struct sk_buff *skb)
1667 {
1668         return bpf_try_make_writable(skb, skb_headlen(skb));
1669 }
1670
1671 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1672 {
1673         if (skb_at_tc_ingress(skb))
1674                 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1675 }
1676
1677 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1678 {
1679         if (skb_at_tc_ingress(skb))
1680                 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1681 }
1682
1683 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1684            const void *, from, u32, len, u64, flags)
1685 {
1686         void *ptr;
1687
1688         if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1689                 return -EINVAL;
1690         if (unlikely(offset > 0xffff))
1691                 return -EFAULT;
1692         if (unlikely(bpf_try_make_writable(skb, offset + len)))
1693                 return -EFAULT;
1694
1695         ptr = skb->data + offset;
1696         if (flags & BPF_F_RECOMPUTE_CSUM)
1697                 __skb_postpull_rcsum(skb, ptr, len, offset);
1698
1699         memcpy(ptr, from, len);
1700
1701         if (flags & BPF_F_RECOMPUTE_CSUM)
1702                 __skb_postpush_rcsum(skb, ptr, len, offset);
1703         if (flags & BPF_F_INVALIDATE_HASH)
1704                 skb_clear_hash(skb);
1705
1706         return 0;
1707 }
1708
1709 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1710         .func           = bpf_skb_store_bytes,
1711         .gpl_only       = false,
1712         .ret_type       = RET_INTEGER,
1713         .arg1_type      = ARG_PTR_TO_CTX,
1714         .arg2_type      = ARG_ANYTHING,
1715         .arg3_type      = ARG_PTR_TO_MEM,
1716         .arg4_type      = ARG_CONST_SIZE,
1717         .arg5_type      = ARG_ANYTHING,
1718 };
1719
1720 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1721            void *, to, u32, len)
1722 {
1723         void *ptr;
1724
1725         if (unlikely(offset > 0xffff))
1726                 goto err_clear;
1727
1728         ptr = skb_header_pointer(skb, offset, len, to);
1729         if (unlikely(!ptr))
1730                 goto err_clear;
1731         if (ptr != to)
1732                 memcpy(to, ptr, len);
1733
1734         return 0;
1735 err_clear:
1736         memset(to, 0, len);
1737         return -EFAULT;
1738 }
1739
1740 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1741         .func           = bpf_skb_load_bytes,
1742         .gpl_only       = false,
1743         .ret_type       = RET_INTEGER,
1744         .arg1_type      = ARG_PTR_TO_CTX,
1745         .arg2_type      = ARG_ANYTHING,
1746         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1747         .arg4_type      = ARG_CONST_SIZE,
1748 };
1749
1750 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1751            const struct bpf_flow_dissector *, ctx, u32, offset,
1752            void *, to, u32, len)
1753 {
1754         void *ptr;
1755
1756         if (unlikely(offset > 0xffff))
1757                 goto err_clear;
1758
1759         if (unlikely(!ctx->skb))
1760                 goto err_clear;
1761
1762         ptr = skb_header_pointer(ctx->skb, offset, len, to);
1763         if (unlikely(!ptr))
1764                 goto err_clear;
1765         if (ptr != to)
1766                 memcpy(to, ptr, len);
1767
1768         return 0;
1769 err_clear:
1770         memset(to, 0, len);
1771         return -EFAULT;
1772 }
1773
1774 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1775         .func           = bpf_flow_dissector_load_bytes,
1776         .gpl_only       = false,
1777         .ret_type       = RET_INTEGER,
1778         .arg1_type      = ARG_PTR_TO_CTX,
1779         .arg2_type      = ARG_ANYTHING,
1780         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1781         .arg4_type      = ARG_CONST_SIZE,
1782 };
1783
1784 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1785            u32, offset, void *, to, u32, len, u32, start_header)
1786 {
1787         u8 *end = skb_tail_pointer(skb);
1788         u8 *start, *ptr;
1789
1790         if (unlikely(offset > 0xffff))
1791                 goto err_clear;
1792
1793         switch (start_header) {
1794         case BPF_HDR_START_MAC:
1795                 if (unlikely(!skb_mac_header_was_set(skb)))
1796                         goto err_clear;
1797                 start = skb_mac_header(skb);
1798                 break;
1799         case BPF_HDR_START_NET:
1800                 start = skb_network_header(skb);
1801                 break;
1802         default:
1803                 goto err_clear;
1804         }
1805
1806         ptr = start + offset;
1807
1808         if (likely(ptr + len <= end)) {
1809                 memcpy(to, ptr, len);
1810                 return 0;
1811         }
1812
1813 err_clear:
1814         memset(to, 0, len);
1815         return -EFAULT;
1816 }
1817
1818 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1819         .func           = bpf_skb_load_bytes_relative,
1820         .gpl_only       = false,
1821         .ret_type       = RET_INTEGER,
1822         .arg1_type      = ARG_PTR_TO_CTX,
1823         .arg2_type      = ARG_ANYTHING,
1824         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1825         .arg4_type      = ARG_CONST_SIZE,
1826         .arg5_type      = ARG_ANYTHING,
1827 };
1828
1829 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1830 {
1831         /* Idea is the following: should the needed direct read/write
1832          * test fail during runtime, we can pull in more data and redo
1833          * again, since implicitly, we invalidate previous checks here.
1834          *
1835          * Or, since we know how much we need to make read/writeable,
1836          * this can be done once at the program beginning for direct
1837          * access case. By this we overcome limitations of only current
1838          * headroom being accessible.
1839          */
1840         return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1841 }
1842
1843 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1844         .func           = bpf_skb_pull_data,
1845         .gpl_only       = false,
1846         .ret_type       = RET_INTEGER,
1847         .arg1_type      = ARG_PTR_TO_CTX,
1848         .arg2_type      = ARG_ANYTHING,
1849 };
1850
1851 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1852 {
1853         return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1854 }
1855
1856 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1857         .func           = bpf_sk_fullsock,
1858         .gpl_only       = false,
1859         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
1860         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
1861 };
1862
1863 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1864                                            unsigned int write_len)
1865 {
1866         int err = __bpf_try_make_writable(skb, write_len);
1867
1868         bpf_compute_data_end_sk_skb(skb);
1869         return err;
1870 }
1871
1872 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1873 {
1874         /* Idea is the following: should the needed direct read/write
1875          * test fail during runtime, we can pull in more data and redo
1876          * again, since implicitly, we invalidate previous checks here.
1877          *
1878          * Or, since we know how much we need to make read/writeable,
1879          * this can be done once at the program beginning for direct
1880          * access case. By this we overcome limitations of only current
1881          * headroom being accessible.
1882          */
1883         return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1884 }
1885
1886 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1887         .func           = sk_skb_pull_data,
1888         .gpl_only       = false,
1889         .ret_type       = RET_INTEGER,
1890         .arg1_type      = ARG_PTR_TO_CTX,
1891         .arg2_type      = ARG_ANYTHING,
1892 };
1893
1894 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1895            u64, from, u64, to, u64, flags)
1896 {
1897         __sum16 *ptr;
1898
1899         if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1900                 return -EINVAL;
1901         if (unlikely(offset > 0xffff || offset & 1))
1902                 return -EFAULT;
1903         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1904                 return -EFAULT;
1905
1906         ptr = (__sum16 *)(skb->data + offset);
1907         switch (flags & BPF_F_HDR_FIELD_MASK) {
1908         case 0:
1909                 if (unlikely(from != 0))
1910                         return -EINVAL;
1911
1912                 csum_replace_by_diff(ptr, to);
1913                 break;
1914         case 2:
1915                 csum_replace2(ptr, from, to);
1916                 break;
1917         case 4:
1918                 csum_replace4(ptr, from, to);
1919                 break;
1920         default:
1921                 return -EINVAL;
1922         }
1923
1924         return 0;
1925 }
1926
1927 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1928         .func           = bpf_l3_csum_replace,
1929         .gpl_only       = false,
1930         .ret_type       = RET_INTEGER,
1931         .arg1_type      = ARG_PTR_TO_CTX,
1932         .arg2_type      = ARG_ANYTHING,
1933         .arg3_type      = ARG_ANYTHING,
1934         .arg4_type      = ARG_ANYTHING,
1935         .arg5_type      = ARG_ANYTHING,
1936 };
1937
1938 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1939            u64, from, u64, to, u64, flags)
1940 {
1941         bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1942         bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1943         bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1944         __sum16 *ptr;
1945
1946         if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1947                                BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1948                 return -EINVAL;
1949         if (unlikely(offset > 0xffff || offset & 1))
1950                 return -EFAULT;
1951         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1952                 return -EFAULT;
1953
1954         ptr = (__sum16 *)(skb->data + offset);
1955         if (is_mmzero && !do_mforce && !*ptr)
1956                 return 0;
1957
1958         switch (flags & BPF_F_HDR_FIELD_MASK) {
1959         case 0:
1960                 if (unlikely(from != 0))
1961                         return -EINVAL;
1962
1963                 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1964                 break;
1965         case 2:
1966                 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1967                 break;
1968         case 4:
1969                 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1970                 break;
1971         default:
1972                 return -EINVAL;
1973         }
1974
1975         if (is_mmzero && !*ptr)
1976                 *ptr = CSUM_MANGLED_0;
1977         return 0;
1978 }
1979
1980 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1981         .func           = bpf_l4_csum_replace,
1982         .gpl_only       = false,
1983         .ret_type       = RET_INTEGER,
1984         .arg1_type      = ARG_PTR_TO_CTX,
1985         .arg2_type      = ARG_ANYTHING,
1986         .arg3_type      = ARG_ANYTHING,
1987         .arg4_type      = ARG_ANYTHING,
1988         .arg5_type      = ARG_ANYTHING,
1989 };
1990
1991 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1992            __be32 *, to, u32, to_size, __wsum, seed)
1993 {
1994         struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1995         u32 diff_size = from_size + to_size;
1996         int i, j = 0;
1997
1998         /* This is quite flexible, some examples:
1999          *
2000          * from_size == 0, to_size > 0,  seed := csum --> pushing data
2001          * from_size > 0,  to_size == 0, seed := csum --> pulling data
2002          * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2003          *
2004          * Even for diffing, from_size and to_size don't need to be equal.
2005          */
2006         if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2007                      diff_size > sizeof(sp->diff)))
2008                 return -EINVAL;
2009
2010         for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2011                 sp->diff[j] = ~from[i];
2012         for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2013                 sp->diff[j] = to[i];
2014
2015         return csum_partial(sp->diff, diff_size, seed);
2016 }
2017
2018 static const struct bpf_func_proto bpf_csum_diff_proto = {
2019         .func           = bpf_csum_diff,
2020         .gpl_only       = false,
2021         .pkt_access     = true,
2022         .ret_type       = RET_INTEGER,
2023         .arg1_type      = ARG_PTR_TO_MEM_OR_NULL,
2024         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
2025         .arg3_type      = ARG_PTR_TO_MEM_OR_NULL,
2026         .arg4_type      = ARG_CONST_SIZE_OR_ZERO,
2027         .arg5_type      = ARG_ANYTHING,
2028 };
2029
2030 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2031 {
2032         /* The interface is to be used in combination with bpf_csum_diff()
2033          * for direct packet writes. csum rotation for alignment as well
2034          * as emulating csum_sub() can be done from the eBPF program.
2035          */
2036         if (skb->ip_summed == CHECKSUM_COMPLETE)
2037                 return (skb->csum = csum_add(skb->csum, csum));
2038
2039         return -ENOTSUPP;
2040 }
2041
2042 static const struct bpf_func_proto bpf_csum_update_proto = {
2043         .func           = bpf_csum_update,
2044         .gpl_only       = false,
2045         .ret_type       = RET_INTEGER,
2046         .arg1_type      = ARG_PTR_TO_CTX,
2047         .arg2_type      = ARG_ANYTHING,
2048 };
2049
2050 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2051 {
2052         /* The interface is to be used in combination with bpf_skb_adjust_room()
2053          * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2054          * is passed as flags, for example.
2055          */
2056         switch (level) {
2057         case BPF_CSUM_LEVEL_INC:
2058                 __skb_incr_checksum_unnecessary(skb);
2059                 break;
2060         case BPF_CSUM_LEVEL_DEC:
2061                 __skb_decr_checksum_unnecessary(skb);
2062                 break;
2063         case BPF_CSUM_LEVEL_RESET:
2064                 __skb_reset_checksum_unnecessary(skb);
2065                 break;
2066         case BPF_CSUM_LEVEL_QUERY:
2067                 return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2068                        skb->csum_level : -EACCES;
2069         default:
2070                 return -EINVAL;
2071         }
2072
2073         return 0;
2074 }
2075
2076 static const struct bpf_func_proto bpf_csum_level_proto = {
2077         .func           = bpf_csum_level,
2078         .gpl_only       = false,
2079         .ret_type       = RET_INTEGER,
2080         .arg1_type      = ARG_PTR_TO_CTX,
2081         .arg2_type      = ARG_ANYTHING,
2082 };
2083
2084 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2085 {
2086         return dev_forward_skb(dev, skb);
2087 }
2088
2089 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2090                                       struct sk_buff *skb)
2091 {
2092         int ret = ____dev_forward_skb(dev, skb);
2093
2094         if (likely(!ret)) {
2095                 skb->dev = dev;
2096                 ret = netif_rx(skb);
2097         }
2098
2099         return ret;
2100 }
2101
2102 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2103 {
2104         int ret;
2105
2106         if (dev_xmit_recursion()) {
2107                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2108                 kfree_skb(skb);
2109                 return -ENETDOWN;
2110         }
2111
2112         skb->dev = dev;
2113         skb->tstamp = 0;
2114
2115         dev_xmit_recursion_inc();
2116         ret = dev_queue_xmit(skb);
2117         dev_xmit_recursion_dec();
2118
2119         return ret;
2120 }
2121
2122 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2123                                  u32 flags)
2124 {
2125         unsigned int mlen = skb_network_offset(skb);
2126
2127         if (mlen) {
2128                 __skb_pull(skb, mlen);
2129
2130                 /* At ingress, the mac header has already been pulled once.
2131                  * At egress, skb_pospull_rcsum has to be done in case that
2132                  * the skb is originated from ingress (i.e. a forwarded skb)
2133                  * to ensure that rcsum starts at net header.
2134                  */
2135                 if (!skb_at_tc_ingress(skb))
2136                         skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2137         }
2138         skb_pop_mac_header(skb);
2139         skb_reset_mac_len(skb);
2140         return flags & BPF_F_INGRESS ?
2141                __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2142 }
2143
2144 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2145                                  u32 flags)
2146 {
2147         /* Verify that a link layer header is carried */
2148         if (unlikely(skb->mac_header >= skb->network_header)) {
2149                 kfree_skb(skb);
2150                 return -ERANGE;
2151         }
2152
2153         bpf_push_mac_rcsum(skb);
2154         return flags & BPF_F_INGRESS ?
2155                __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2156 }
2157
2158 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2159                           u32 flags)
2160 {
2161         if (dev_is_mac_header_xmit(dev))
2162                 return __bpf_redirect_common(skb, dev, flags);
2163         else
2164                 return __bpf_redirect_no_mac(skb, dev, flags);
2165 }
2166
2167 #if IS_ENABLED(CONFIG_IPV6)
2168 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb)
2169 {
2170         struct dst_entry *dst = skb_dst(skb);
2171         struct net_device *dev = dst->dev;
2172         u32 hh_len = LL_RESERVED_SPACE(dev);
2173         const struct in6_addr *nexthop;
2174         struct neighbour *neigh;
2175
2176         if (dev_xmit_recursion()) {
2177                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2178                 goto out_drop;
2179         }
2180
2181         skb->dev = dev;
2182         skb->tstamp = 0;
2183
2184         if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2185                 struct sk_buff *skb2;
2186
2187                 skb2 = skb_realloc_headroom(skb, hh_len);
2188                 if (unlikely(!skb2)) {
2189                         kfree_skb(skb);
2190                         return -ENOMEM;
2191                 }
2192                 if (skb->sk)
2193                         skb_set_owner_w(skb2, skb->sk);
2194                 consume_skb(skb);
2195                 skb = skb2;
2196         }
2197
2198         rcu_read_lock_bh();
2199         nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2200                               &ipv6_hdr(skb)->daddr);
2201         neigh = ip_neigh_gw6(dev, nexthop);
2202         if (likely(!IS_ERR(neigh))) {
2203                 int ret;
2204
2205                 sock_confirm_neigh(skb, neigh);
2206                 dev_xmit_recursion_inc();
2207                 ret = neigh_output(neigh, skb, false);
2208                 dev_xmit_recursion_dec();
2209                 rcu_read_unlock_bh();
2210                 return ret;
2211         }
2212         rcu_read_unlock_bh();
2213         IP6_INC_STATS(dev_net(dst->dev),
2214                       ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2215 out_drop:
2216         kfree_skb(skb);
2217         return -ENETDOWN;
2218 }
2219
2220 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev)
2221 {
2222         const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2223         struct net *net = dev_net(dev);
2224         int err, ret = NET_XMIT_DROP;
2225         struct dst_entry *dst;
2226         struct flowi6 fl6 = {
2227                 .flowi6_flags   = FLOWI_FLAG_ANYSRC,
2228                 .flowi6_mark    = skb->mark,
2229                 .flowlabel      = ip6_flowinfo(ip6h),
2230                 .flowi6_oif     = dev->ifindex,
2231                 .flowi6_proto   = ip6h->nexthdr,
2232                 .daddr          = ip6h->daddr,
2233                 .saddr          = ip6h->saddr,
2234         };
2235
2236         dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2237         if (IS_ERR(dst))
2238                 goto out_drop;
2239
2240         skb_dst_set(skb, dst);
2241
2242         err = bpf_out_neigh_v6(net, skb);
2243         if (unlikely(net_xmit_eval(err)))
2244                 dev->stats.tx_errors++;
2245         else
2246                 ret = NET_XMIT_SUCCESS;
2247         goto out_xmit;
2248 out_drop:
2249         dev->stats.tx_errors++;
2250         kfree_skb(skb);
2251 out_xmit:
2252         return ret;
2253 }
2254 #else
2255 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev)
2256 {
2257         kfree_skb(skb);
2258         return NET_XMIT_DROP;
2259 }
2260 #endif /* CONFIG_IPV6 */
2261
2262 #if IS_ENABLED(CONFIG_INET)
2263 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb)
2264 {
2265         struct dst_entry *dst = skb_dst(skb);
2266         struct rtable *rt = container_of(dst, struct rtable, dst);
2267         struct net_device *dev = dst->dev;
2268         u32 hh_len = LL_RESERVED_SPACE(dev);
2269         struct neighbour *neigh;
2270         bool is_v6gw = false;
2271
2272         if (dev_xmit_recursion()) {
2273                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2274                 goto out_drop;
2275         }
2276
2277         skb->dev = dev;
2278         skb->tstamp = 0;
2279
2280         if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2281                 struct sk_buff *skb2;
2282
2283                 skb2 = skb_realloc_headroom(skb, hh_len);
2284                 if (unlikely(!skb2)) {
2285                         kfree_skb(skb);
2286                         return -ENOMEM;
2287                 }
2288                 if (skb->sk)
2289                         skb_set_owner_w(skb2, skb->sk);
2290                 consume_skb(skb);
2291                 skb = skb2;
2292         }
2293
2294         rcu_read_lock_bh();
2295         neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2296         if (likely(!IS_ERR(neigh))) {
2297                 int ret;
2298
2299                 sock_confirm_neigh(skb, neigh);
2300                 dev_xmit_recursion_inc();
2301                 ret = neigh_output(neigh, skb, is_v6gw);
2302                 dev_xmit_recursion_dec();
2303                 rcu_read_unlock_bh();
2304                 return ret;
2305         }
2306         rcu_read_unlock_bh();
2307 out_drop:
2308         kfree_skb(skb);
2309         return -ENETDOWN;
2310 }
2311
2312 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev)
2313 {
2314         const struct iphdr *ip4h = ip_hdr(skb);
2315         struct net *net = dev_net(dev);
2316         int err, ret = NET_XMIT_DROP;
2317         struct rtable *rt;
2318         struct flowi4 fl4 = {
2319                 .flowi4_flags   = FLOWI_FLAG_ANYSRC,
2320                 .flowi4_mark    = skb->mark,
2321                 .flowi4_tos     = RT_TOS(ip4h->tos),
2322                 .flowi4_oif     = dev->ifindex,
2323                 .flowi4_proto   = ip4h->protocol,
2324                 .daddr          = ip4h->daddr,
2325                 .saddr          = ip4h->saddr,
2326         };
2327
2328         rt = ip_route_output_flow(net, &fl4, NULL);
2329         if (IS_ERR(rt))
2330                 goto out_drop;
2331         if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2332                 ip_rt_put(rt);
2333                 goto out_drop;
2334         }
2335
2336         skb_dst_set(skb, &rt->dst);
2337
2338         err = bpf_out_neigh_v4(net, skb);
2339         if (unlikely(net_xmit_eval(err)))
2340                 dev->stats.tx_errors++;
2341         else
2342                 ret = NET_XMIT_SUCCESS;
2343         goto out_xmit;
2344 out_drop:
2345         dev->stats.tx_errors++;
2346         kfree_skb(skb);
2347 out_xmit:
2348         return ret;
2349 }
2350 #else
2351 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev)
2352 {
2353         kfree_skb(skb);
2354         return NET_XMIT_DROP;
2355 }
2356 #endif /* CONFIG_INET */
2357
2358 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev)
2359 {
2360         struct ethhdr *ethh = eth_hdr(skb);
2361
2362         if (unlikely(skb->mac_header >= skb->network_header))
2363                 goto out;
2364         bpf_push_mac_rcsum(skb);
2365         if (is_multicast_ether_addr(ethh->h_dest))
2366                 goto out;
2367
2368         skb_pull(skb, sizeof(*ethh));
2369         skb_unset_mac_header(skb);
2370         skb_reset_network_header(skb);
2371
2372         if (skb->protocol == htons(ETH_P_IP))
2373                 return __bpf_redirect_neigh_v4(skb, dev);
2374         else if (skb->protocol == htons(ETH_P_IPV6))
2375                 return __bpf_redirect_neigh_v6(skb, dev);
2376 out:
2377         kfree_skb(skb);
2378         return -ENOTSUPP;
2379 }
2380
2381 /* Internal, non-exposed redirect flags. */
2382 enum {
2383         BPF_F_NEIGH     = (1ULL << 1),
2384         BPF_F_PEER      = (1ULL << 2),
2385 #define BPF_F_REDIRECT_INTERNAL (BPF_F_NEIGH | BPF_F_PEER)
2386 };
2387
2388 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2389 {
2390         struct net_device *dev;
2391         struct sk_buff *clone;
2392         int ret;
2393
2394         if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2395                 return -EINVAL;
2396
2397         dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2398         if (unlikely(!dev))
2399                 return -EINVAL;
2400
2401         clone = skb_clone(skb, GFP_ATOMIC);
2402         if (unlikely(!clone))
2403                 return -ENOMEM;
2404
2405         /* For direct write, we need to keep the invariant that the skbs
2406          * we're dealing with need to be uncloned. Should uncloning fail
2407          * here, we need to free the just generated clone to unclone once
2408          * again.
2409          */
2410         ret = bpf_try_make_head_writable(skb);
2411         if (unlikely(ret)) {
2412                 kfree_skb(clone);
2413                 return -ENOMEM;
2414         }
2415
2416         return __bpf_redirect(clone, dev, flags);
2417 }
2418
2419 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2420         .func           = bpf_clone_redirect,
2421         .gpl_only       = false,
2422         .ret_type       = RET_INTEGER,
2423         .arg1_type      = ARG_PTR_TO_CTX,
2424         .arg2_type      = ARG_ANYTHING,
2425         .arg3_type      = ARG_ANYTHING,
2426 };
2427
2428 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2429 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2430
2431 int skb_do_redirect(struct sk_buff *skb)
2432 {
2433         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2434         struct net *net = dev_net(skb->dev);
2435         struct net_device *dev;
2436         u32 flags = ri->flags;
2437
2438         dev = dev_get_by_index_rcu(net, ri->tgt_index);
2439         ri->tgt_index = 0;
2440         ri->flags = 0;
2441         if (unlikely(!dev))
2442                 goto out_drop;
2443         if (flags & BPF_F_PEER) {
2444                 const struct net_device_ops *ops = dev->netdev_ops;
2445
2446                 if (unlikely(!ops->ndo_get_peer_dev ||
2447                              !skb_at_tc_ingress(skb)))
2448                         goto out_drop;
2449                 dev = ops->ndo_get_peer_dev(dev);
2450                 if (unlikely(!dev ||
2451                              !is_skb_forwardable(dev, skb) ||
2452                              net_eq(net, dev_net(dev))))
2453                         goto out_drop;
2454                 skb->dev = dev;
2455                 return -EAGAIN;
2456         }
2457         return flags & BPF_F_NEIGH ?
2458                __bpf_redirect_neigh(skb, dev) :
2459                __bpf_redirect(skb, dev, flags);
2460 out_drop:
2461         kfree_skb(skb);
2462         return -EINVAL;
2463 }
2464
2465 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2466 {
2467         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2468
2469         if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2470                 return TC_ACT_SHOT;
2471
2472         ri->flags = flags;
2473         ri->tgt_index = ifindex;
2474
2475         return TC_ACT_REDIRECT;
2476 }
2477
2478 static const struct bpf_func_proto bpf_redirect_proto = {
2479         .func           = bpf_redirect,
2480         .gpl_only       = false,
2481         .ret_type       = RET_INTEGER,
2482         .arg1_type      = ARG_ANYTHING,
2483         .arg2_type      = ARG_ANYTHING,
2484 };
2485
2486 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2487 {
2488         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2489
2490         if (unlikely(flags))
2491                 return TC_ACT_SHOT;
2492
2493         ri->flags = BPF_F_PEER;
2494         ri->tgt_index = ifindex;
2495
2496         return TC_ACT_REDIRECT;
2497 }
2498
2499 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2500         .func           = bpf_redirect_peer,
2501         .gpl_only       = false,
2502         .ret_type       = RET_INTEGER,
2503         .arg1_type      = ARG_ANYTHING,
2504         .arg2_type      = ARG_ANYTHING,
2505 };
2506
2507 BPF_CALL_2(bpf_redirect_neigh, u32, ifindex, u64, flags)
2508 {
2509         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2510
2511         if (unlikely(flags))
2512                 return TC_ACT_SHOT;
2513
2514         ri->flags = BPF_F_NEIGH;
2515         ri->tgt_index = ifindex;
2516
2517         return TC_ACT_REDIRECT;
2518 }
2519
2520 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2521         .func           = bpf_redirect_neigh,
2522         .gpl_only       = false,
2523         .ret_type       = RET_INTEGER,
2524         .arg1_type      = ARG_ANYTHING,
2525         .arg2_type      = ARG_ANYTHING,
2526 };
2527
2528 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2529 {
2530         msg->apply_bytes = bytes;
2531         return 0;
2532 }
2533
2534 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2535         .func           = bpf_msg_apply_bytes,
2536         .gpl_only       = false,
2537         .ret_type       = RET_INTEGER,
2538         .arg1_type      = ARG_PTR_TO_CTX,
2539         .arg2_type      = ARG_ANYTHING,
2540 };
2541
2542 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2543 {
2544         msg->cork_bytes = bytes;
2545         return 0;
2546 }
2547
2548 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2549         .func           = bpf_msg_cork_bytes,
2550         .gpl_only       = false,
2551         .ret_type       = RET_INTEGER,
2552         .arg1_type      = ARG_PTR_TO_CTX,
2553         .arg2_type      = ARG_ANYTHING,
2554 };
2555
2556 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2557            u32, end, u64, flags)
2558 {
2559         u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2560         u32 first_sge, last_sge, i, shift, bytes_sg_total;
2561         struct scatterlist *sge;
2562         u8 *raw, *to, *from;
2563         struct page *page;
2564
2565         if (unlikely(flags || end <= start))
2566                 return -EINVAL;
2567
2568         /* First find the starting scatterlist element */
2569         i = msg->sg.start;
2570         do {
2571                 offset += len;
2572                 len = sk_msg_elem(msg, i)->length;
2573                 if (start < offset + len)
2574                         break;
2575                 sk_msg_iter_var_next(i);
2576         } while (i != msg->sg.end);
2577
2578         if (unlikely(start >= offset + len))
2579                 return -EINVAL;
2580
2581         first_sge = i;
2582         /* The start may point into the sg element so we need to also
2583          * account for the headroom.
2584          */
2585         bytes_sg_total = start - offset + bytes;
2586         if (!test_bit(i, &msg->sg.copy) && bytes_sg_total <= len)
2587                 goto out;
2588
2589         /* At this point we need to linearize multiple scatterlist
2590          * elements or a single shared page. Either way we need to
2591          * copy into a linear buffer exclusively owned by BPF. Then
2592          * place the buffer in the scatterlist and fixup the original
2593          * entries by removing the entries now in the linear buffer
2594          * and shifting the remaining entries. For now we do not try
2595          * to copy partial entries to avoid complexity of running out
2596          * of sg_entry slots. The downside is reading a single byte
2597          * will copy the entire sg entry.
2598          */
2599         do {
2600                 copy += sk_msg_elem(msg, i)->length;
2601                 sk_msg_iter_var_next(i);
2602                 if (bytes_sg_total <= copy)
2603                         break;
2604         } while (i != msg->sg.end);
2605         last_sge = i;
2606
2607         if (unlikely(bytes_sg_total > copy))
2608                 return -EINVAL;
2609
2610         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2611                            get_order(copy));
2612         if (unlikely(!page))
2613                 return -ENOMEM;
2614
2615         raw = page_address(page);
2616         i = first_sge;
2617         do {
2618                 sge = sk_msg_elem(msg, i);
2619                 from = sg_virt(sge);
2620                 len = sge->length;
2621                 to = raw + poffset;
2622
2623                 memcpy(to, from, len);
2624                 poffset += len;
2625                 sge->length = 0;
2626                 put_page(sg_page(sge));
2627
2628                 sk_msg_iter_var_next(i);
2629         } while (i != last_sge);
2630
2631         sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2632
2633         /* To repair sg ring we need to shift entries. If we only
2634          * had a single entry though we can just replace it and
2635          * be done. Otherwise walk the ring and shift the entries.
2636          */
2637         WARN_ON_ONCE(last_sge == first_sge);
2638         shift = last_sge > first_sge ?
2639                 last_sge - first_sge - 1 :
2640                 NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2641         if (!shift)
2642                 goto out;
2643
2644         i = first_sge;
2645         sk_msg_iter_var_next(i);
2646         do {
2647                 u32 move_from;
2648
2649                 if (i + shift >= NR_MSG_FRAG_IDS)
2650                         move_from = i + shift - NR_MSG_FRAG_IDS;
2651                 else
2652                         move_from = i + shift;
2653                 if (move_from == msg->sg.end)
2654                         break;
2655
2656                 msg->sg.data[i] = msg->sg.data[move_from];
2657                 msg->sg.data[move_from].length = 0;
2658                 msg->sg.data[move_from].page_link = 0;
2659                 msg->sg.data[move_from].offset = 0;
2660                 sk_msg_iter_var_next(i);
2661         } while (1);
2662
2663         msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2664                       msg->sg.end - shift + NR_MSG_FRAG_IDS :
2665                       msg->sg.end - shift;
2666 out:
2667         msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2668         msg->data_end = msg->data + bytes;
2669         return 0;
2670 }
2671
2672 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2673         .func           = bpf_msg_pull_data,
2674         .gpl_only       = false,
2675         .ret_type       = RET_INTEGER,
2676         .arg1_type      = ARG_PTR_TO_CTX,
2677         .arg2_type      = ARG_ANYTHING,
2678         .arg3_type      = ARG_ANYTHING,
2679         .arg4_type      = ARG_ANYTHING,
2680 };
2681
2682 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2683            u32, len, u64, flags)
2684 {
2685         struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2686         u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2687         u8 *raw, *to, *from;
2688         struct page *page;
2689
2690         if (unlikely(flags))
2691                 return -EINVAL;
2692
2693         /* First find the starting scatterlist element */
2694         i = msg->sg.start;
2695         do {
2696                 offset += l;
2697                 l = sk_msg_elem(msg, i)->length;
2698
2699                 if (start < offset + l)
2700                         break;
2701                 sk_msg_iter_var_next(i);
2702         } while (i != msg->sg.end);
2703
2704         if (start >= offset + l)
2705                 return -EINVAL;
2706
2707         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2708
2709         /* If no space available will fallback to copy, we need at
2710          * least one scatterlist elem available to push data into
2711          * when start aligns to the beginning of an element or two
2712          * when it falls inside an element. We handle the start equals
2713          * offset case because its the common case for inserting a
2714          * header.
2715          */
2716         if (!space || (space == 1 && start != offset))
2717                 copy = msg->sg.data[i].length;
2718
2719         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2720                            get_order(copy + len));
2721         if (unlikely(!page))
2722                 return -ENOMEM;
2723
2724         if (copy) {
2725                 int front, back;
2726
2727                 raw = page_address(page);
2728
2729                 psge = sk_msg_elem(msg, i);
2730                 front = start - offset;
2731                 back = psge->length - front;
2732                 from = sg_virt(psge);
2733
2734                 if (front)
2735                         memcpy(raw, from, front);
2736
2737                 if (back) {
2738                         from += front;
2739                         to = raw + front + len;
2740
2741                         memcpy(to, from, back);
2742                 }
2743
2744                 put_page(sg_page(psge));
2745         } else if (start - offset) {
2746                 psge = sk_msg_elem(msg, i);
2747                 rsge = sk_msg_elem_cpy(msg, i);
2748
2749                 psge->length = start - offset;
2750                 rsge.length -= psge->length;
2751                 rsge.offset += start;
2752
2753                 sk_msg_iter_var_next(i);
2754                 sg_unmark_end(psge);
2755                 sg_unmark_end(&rsge);
2756                 sk_msg_iter_next(msg, end);
2757         }
2758
2759         /* Slot(s) to place newly allocated data */
2760         new = i;
2761
2762         /* Shift one or two slots as needed */
2763         if (!copy) {
2764                 sge = sk_msg_elem_cpy(msg, i);
2765
2766                 sk_msg_iter_var_next(i);
2767                 sg_unmark_end(&sge);
2768                 sk_msg_iter_next(msg, end);
2769
2770                 nsge = sk_msg_elem_cpy(msg, i);
2771                 if (rsge.length) {
2772                         sk_msg_iter_var_next(i);
2773                         nnsge = sk_msg_elem_cpy(msg, i);
2774                 }
2775
2776                 while (i != msg->sg.end) {
2777                         msg->sg.data[i] = sge;
2778                         sge = nsge;
2779                         sk_msg_iter_var_next(i);
2780                         if (rsge.length) {
2781                                 nsge = nnsge;
2782                                 nnsge = sk_msg_elem_cpy(msg, i);
2783                         } else {
2784                                 nsge = sk_msg_elem_cpy(msg, i);
2785                         }
2786                 }
2787         }
2788
2789         /* Place newly allocated data buffer */
2790         sk_mem_charge(msg->sk, len);
2791         msg->sg.size += len;
2792         __clear_bit(new, &msg->sg.copy);
2793         sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2794         if (rsge.length) {
2795                 get_page(sg_page(&rsge));
2796                 sk_msg_iter_var_next(new);
2797                 msg->sg.data[new] = rsge;
2798         }
2799
2800         sk_msg_compute_data_pointers(msg);
2801         return 0;
2802 }
2803
2804 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2805         .func           = bpf_msg_push_data,
2806         .gpl_only       = false,
2807         .ret_type       = RET_INTEGER,
2808         .arg1_type      = ARG_PTR_TO_CTX,
2809         .arg2_type      = ARG_ANYTHING,
2810         .arg3_type      = ARG_ANYTHING,
2811         .arg4_type      = ARG_ANYTHING,
2812 };
2813
2814 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2815 {
2816         int prev;
2817
2818         do {
2819                 prev = i;
2820                 sk_msg_iter_var_next(i);
2821                 msg->sg.data[prev] = msg->sg.data[i];
2822         } while (i != msg->sg.end);
2823
2824         sk_msg_iter_prev(msg, end);
2825 }
2826
2827 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2828 {
2829         struct scatterlist tmp, sge;
2830
2831         sk_msg_iter_next(msg, end);
2832         sge = sk_msg_elem_cpy(msg, i);
2833         sk_msg_iter_var_next(i);
2834         tmp = sk_msg_elem_cpy(msg, i);
2835
2836         while (i != msg->sg.end) {
2837                 msg->sg.data[i] = sge;
2838                 sk_msg_iter_var_next(i);
2839                 sge = tmp;
2840                 tmp = sk_msg_elem_cpy(msg, i);
2841         }
2842 }
2843
2844 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2845            u32, len, u64, flags)
2846 {
2847         u32 i = 0, l = 0, space, offset = 0;
2848         u64 last = start + len;
2849         int pop;
2850
2851         if (unlikely(flags))
2852                 return -EINVAL;
2853
2854         /* First find the starting scatterlist element */
2855         i = msg->sg.start;
2856         do {
2857                 offset += l;
2858                 l = sk_msg_elem(msg, i)->length;
2859
2860                 if (start < offset + l)
2861                         break;
2862                 sk_msg_iter_var_next(i);
2863         } while (i != msg->sg.end);
2864
2865         /* Bounds checks: start and pop must be inside message */
2866         if (start >= offset + l || last >= msg->sg.size)
2867                 return -EINVAL;
2868
2869         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2870
2871         pop = len;
2872         /* --------------| offset
2873          * -| start      |-------- len -------|
2874          *
2875          *  |----- a ----|-------- pop -------|----- b ----|
2876          *  |______________________________________________| length
2877          *
2878          *
2879          * a:   region at front of scatter element to save
2880          * b:   region at back of scatter element to save when length > A + pop
2881          * pop: region to pop from element, same as input 'pop' here will be
2882          *      decremented below per iteration.
2883          *
2884          * Two top-level cases to handle when start != offset, first B is non
2885          * zero and second B is zero corresponding to when a pop includes more
2886          * than one element.
2887          *
2888          * Then if B is non-zero AND there is no space allocate space and
2889          * compact A, B regions into page. If there is space shift ring to
2890          * the rigth free'ing the next element in ring to place B, leaving
2891          * A untouched except to reduce length.
2892          */
2893         if (start != offset) {
2894                 struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2895                 int a = start;
2896                 int b = sge->length - pop - a;
2897
2898                 sk_msg_iter_var_next(i);
2899
2900                 if (pop < sge->length - a) {
2901                         if (space) {
2902                                 sge->length = a;
2903                                 sk_msg_shift_right(msg, i);
2904                                 nsge = sk_msg_elem(msg, i);
2905                                 get_page(sg_page(sge));
2906                                 sg_set_page(nsge,
2907                                             sg_page(sge),
2908                                             b, sge->offset + pop + a);
2909                         } else {
2910                                 struct page *page, *orig;
2911                                 u8 *to, *from;
2912
2913                                 page = alloc_pages(__GFP_NOWARN |
2914                                                    __GFP_COMP   | GFP_ATOMIC,
2915                                                    get_order(a + b));
2916                                 if (unlikely(!page))
2917                                         return -ENOMEM;
2918
2919                                 sge->length = a;
2920                                 orig = sg_page(sge);
2921                                 from = sg_virt(sge);
2922                                 to = page_address(page);
2923                                 memcpy(to, from, a);
2924                                 memcpy(to + a, from + a + pop, b);
2925                                 sg_set_page(sge, page, a + b, 0);
2926                                 put_page(orig);
2927                         }
2928                         pop = 0;
2929                 } else if (pop >= sge->length - a) {
2930                         pop -= (sge->length - a);
2931                         sge->length = a;
2932                 }
2933         }
2934
2935         /* From above the current layout _must_ be as follows,
2936          *
2937          * -| offset
2938          * -| start
2939          *
2940          *  |---- pop ---|---------------- b ------------|
2941          *  |____________________________________________| length
2942          *
2943          * Offset and start of the current msg elem are equal because in the
2944          * previous case we handled offset != start and either consumed the
2945          * entire element and advanced to the next element OR pop == 0.
2946          *
2947          * Two cases to handle here are first pop is less than the length
2948          * leaving some remainder b above. Simply adjust the element's layout
2949          * in this case. Or pop >= length of the element so that b = 0. In this
2950          * case advance to next element decrementing pop.
2951          */
2952         while (pop) {
2953                 struct scatterlist *sge = sk_msg_elem(msg, i);
2954
2955                 if (pop < sge->length) {
2956                         sge->length -= pop;
2957                         sge->offset += pop;
2958                         pop = 0;
2959                 } else {
2960                         pop -= sge->length;
2961                         sk_msg_shift_left(msg, i);
2962                 }
2963                 sk_msg_iter_var_next(i);
2964         }
2965
2966         sk_mem_uncharge(msg->sk, len - pop);
2967         msg->sg.size -= (len - pop);
2968         sk_msg_compute_data_pointers(msg);
2969         return 0;
2970 }
2971
2972 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
2973         .func           = bpf_msg_pop_data,
2974         .gpl_only       = false,
2975         .ret_type       = RET_INTEGER,
2976         .arg1_type      = ARG_PTR_TO_CTX,
2977         .arg2_type      = ARG_ANYTHING,
2978         .arg3_type      = ARG_ANYTHING,
2979         .arg4_type      = ARG_ANYTHING,
2980 };
2981
2982 #ifdef CONFIG_CGROUP_NET_CLASSID
2983 BPF_CALL_0(bpf_get_cgroup_classid_curr)
2984 {
2985         return __task_get_classid(current);
2986 }
2987
2988 static const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
2989         .func           = bpf_get_cgroup_classid_curr,
2990         .gpl_only       = false,
2991         .ret_type       = RET_INTEGER,
2992 };
2993
2994 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
2995 {
2996         struct sock *sk = skb_to_full_sk(skb);
2997
2998         if (!sk || !sk_fullsock(sk))
2999                 return 0;
3000
3001         return sock_cgroup_classid(&sk->sk_cgrp_data);
3002 }
3003
3004 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3005         .func           = bpf_skb_cgroup_classid,
3006         .gpl_only       = false,
3007         .ret_type       = RET_INTEGER,
3008         .arg1_type      = ARG_PTR_TO_CTX,
3009 };
3010 #endif
3011
3012 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3013 {
3014         return task_get_classid(skb);
3015 }
3016
3017 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3018         .func           = bpf_get_cgroup_classid,
3019         .gpl_only       = false,
3020         .ret_type       = RET_INTEGER,
3021         .arg1_type      = ARG_PTR_TO_CTX,
3022 };
3023
3024 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3025 {
3026         return dst_tclassid(skb);
3027 }
3028
3029 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3030         .func           = bpf_get_route_realm,
3031         .gpl_only       = false,
3032         .ret_type       = RET_INTEGER,
3033         .arg1_type      = ARG_PTR_TO_CTX,
3034 };
3035
3036 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3037 {
3038         /* If skb_clear_hash() was called due to mangling, we can
3039          * trigger SW recalculation here. Later access to hash
3040          * can then use the inline skb->hash via context directly
3041          * instead of calling this helper again.
3042          */
3043         return skb_get_hash(skb);
3044 }
3045
3046 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3047         .func           = bpf_get_hash_recalc,
3048         .gpl_only       = false,
3049         .ret_type       = RET_INTEGER,
3050         .arg1_type      = ARG_PTR_TO_CTX,
3051 };
3052
3053 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3054 {
3055         /* After all direct packet write, this can be used once for
3056          * triggering a lazy recalc on next skb_get_hash() invocation.
3057          */
3058         skb_clear_hash(skb);
3059         return 0;
3060 }
3061
3062 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3063         .func           = bpf_set_hash_invalid,
3064         .gpl_only       = false,
3065         .ret_type       = RET_INTEGER,
3066         .arg1_type      = ARG_PTR_TO_CTX,
3067 };
3068
3069 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3070 {
3071         /* Set user specified hash as L4(+), so that it gets returned
3072          * on skb_get_hash() call unless BPF prog later on triggers a
3073          * skb_clear_hash().
3074          */
3075         __skb_set_sw_hash(skb, hash, true);
3076         return 0;
3077 }
3078
3079 static const struct bpf_func_proto bpf_set_hash_proto = {
3080         .func           = bpf_set_hash,
3081         .gpl_only       = false,
3082         .ret_type       = RET_INTEGER,
3083         .arg1_type      = ARG_PTR_TO_CTX,
3084         .arg2_type      = ARG_ANYTHING,
3085 };
3086
3087 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3088            u16, vlan_tci)
3089 {
3090         int ret;
3091
3092         if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3093                      vlan_proto != htons(ETH_P_8021AD)))
3094                 vlan_proto = htons(ETH_P_8021Q);
3095
3096         bpf_push_mac_rcsum(skb);
3097         ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3098         bpf_pull_mac_rcsum(skb);
3099
3100         bpf_compute_data_pointers(skb);
3101         return ret;
3102 }
3103
3104 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3105         .func           = bpf_skb_vlan_push,
3106         .gpl_only       = false,
3107         .ret_type       = RET_INTEGER,
3108         .arg1_type      = ARG_PTR_TO_CTX,
3109         .arg2_type      = ARG_ANYTHING,
3110         .arg3_type      = ARG_ANYTHING,
3111 };
3112
3113 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3114 {
3115         int ret;
3116
3117         bpf_push_mac_rcsum(skb);
3118         ret = skb_vlan_pop(skb);
3119         bpf_pull_mac_rcsum(skb);
3120
3121         bpf_compute_data_pointers(skb);
3122         return ret;
3123 }
3124
3125 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3126         .func           = bpf_skb_vlan_pop,
3127         .gpl_only       = false,
3128         .ret_type       = RET_INTEGER,
3129         .arg1_type      = ARG_PTR_TO_CTX,
3130 };
3131
3132 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3133 {
3134         /* Caller already did skb_cow() with len as headroom,
3135          * so no need to do it here.
3136          */
3137         skb_push(skb, len);
3138         memmove(skb->data, skb->data + len, off);
3139         memset(skb->data + off, 0, len);
3140
3141         /* No skb_postpush_rcsum(skb, skb->data + off, len)
3142          * needed here as it does not change the skb->csum
3143          * result for checksum complete when summing over
3144          * zeroed blocks.
3145          */
3146         return 0;
3147 }
3148
3149 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3150 {
3151         /* skb_ensure_writable() is not needed here, as we're
3152          * already working on an uncloned skb.
3153          */
3154         if (unlikely(!pskb_may_pull(skb, off + len)))
3155                 return -ENOMEM;
3156
3157         skb_postpull_rcsum(skb, skb->data + off, len);
3158         memmove(skb->data + len, skb->data, off);
3159         __skb_pull(skb, len);
3160
3161         return 0;
3162 }
3163
3164 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3165 {
3166         bool trans_same = skb->transport_header == skb->network_header;
3167         int ret;
3168
3169         /* There's no need for __skb_push()/__skb_pull() pair to
3170          * get to the start of the mac header as we're guaranteed
3171          * to always start from here under eBPF.
3172          */
3173         ret = bpf_skb_generic_push(skb, off, len);
3174         if (likely(!ret)) {
3175                 skb->mac_header -= len;
3176                 skb->network_header -= len;
3177                 if (trans_same)
3178                         skb->transport_header = skb->network_header;
3179         }
3180
3181         return ret;
3182 }
3183
3184 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3185 {
3186         bool trans_same = skb->transport_header == skb->network_header;
3187         int ret;
3188
3189         /* Same here, __skb_push()/__skb_pull() pair not needed. */
3190         ret = bpf_skb_generic_pop(skb, off, len);
3191         if (likely(!ret)) {
3192                 skb->mac_header += len;
3193                 skb->network_header += len;
3194                 if (trans_same)
3195                         skb->transport_header = skb->network_header;
3196         }
3197
3198         return ret;
3199 }
3200
3201 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3202 {
3203         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3204         u32 off = skb_mac_header_len(skb);
3205         int ret;
3206
3207         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
3208                 return -ENOTSUPP;
3209
3210         ret = skb_cow(skb, len_diff);
3211         if (unlikely(ret < 0))
3212                 return ret;
3213
3214         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3215         if (unlikely(ret < 0))
3216                 return ret;
3217
3218         if (skb_is_gso(skb)) {
3219                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3220
3221                 /* SKB_GSO_TCPV4 needs to be changed into
3222                  * SKB_GSO_TCPV6.
3223                  */
3224                 if (shinfo->gso_type & SKB_GSO_TCPV4) {
3225                         shinfo->gso_type &= ~SKB_GSO_TCPV4;
3226                         shinfo->gso_type |=  SKB_GSO_TCPV6;
3227                 }
3228
3229                 /* Due to IPv6 header, MSS needs to be downgraded. */
3230                 skb_decrease_gso_size(shinfo, len_diff);
3231                 /* Header must be checked, and gso_segs recomputed. */
3232                 shinfo->gso_type |= SKB_GSO_DODGY;
3233                 shinfo->gso_segs = 0;
3234         }
3235
3236         skb->protocol = htons(ETH_P_IPV6);
3237         skb_clear_hash(skb);
3238
3239         return 0;
3240 }
3241
3242 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3243 {
3244         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3245         u32 off = skb_mac_header_len(skb);
3246         int ret;
3247
3248         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
3249                 return -ENOTSUPP;
3250
3251         ret = skb_unclone(skb, GFP_ATOMIC);
3252         if (unlikely(ret < 0))
3253                 return ret;
3254
3255         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3256         if (unlikely(ret < 0))
3257                 return ret;
3258
3259         if (skb_is_gso(skb)) {
3260                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3261
3262                 /* SKB_GSO_TCPV6 needs to be changed into
3263                  * SKB_GSO_TCPV4.
3264                  */
3265                 if (shinfo->gso_type & SKB_GSO_TCPV6) {
3266                         shinfo->gso_type &= ~SKB_GSO_TCPV6;
3267                         shinfo->gso_type |=  SKB_GSO_TCPV4;
3268                 }
3269
3270                 /* Due to IPv4 header, MSS can be upgraded. */
3271                 skb_increase_gso_size(shinfo, len_diff);
3272                 /* Header must be checked, and gso_segs recomputed. */
3273                 shinfo->gso_type |= SKB_GSO_DODGY;
3274                 shinfo->gso_segs = 0;
3275         }
3276
3277         skb->protocol = htons(ETH_P_IP);
3278         skb_clear_hash(skb);
3279
3280         return 0;
3281 }
3282
3283 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3284 {
3285         __be16 from_proto = skb->protocol;
3286
3287         if (from_proto == htons(ETH_P_IP) &&
3288               to_proto == htons(ETH_P_IPV6))
3289                 return bpf_skb_proto_4_to_6(skb);
3290
3291         if (from_proto == htons(ETH_P_IPV6) &&
3292               to_proto == htons(ETH_P_IP))
3293                 return bpf_skb_proto_6_to_4(skb);
3294
3295         return -ENOTSUPP;
3296 }
3297
3298 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3299            u64, flags)
3300 {
3301         int ret;
3302
3303         if (unlikely(flags))
3304                 return -EINVAL;
3305
3306         /* General idea is that this helper does the basic groundwork
3307          * needed for changing the protocol, and eBPF program fills the
3308          * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3309          * and other helpers, rather than passing a raw buffer here.
3310          *
3311          * The rationale is to keep this minimal and without a need to
3312          * deal with raw packet data. F.e. even if we would pass buffers
3313          * here, the program still needs to call the bpf_lX_csum_replace()
3314          * helpers anyway. Plus, this way we keep also separation of
3315          * concerns, since f.e. bpf_skb_store_bytes() should only take
3316          * care of stores.
3317          *
3318          * Currently, additional options and extension header space are
3319          * not supported, but flags register is reserved so we can adapt
3320          * that. For offloads, we mark packet as dodgy, so that headers
3321          * need to be verified first.
3322          */
3323         ret = bpf_skb_proto_xlat(skb, proto);
3324         bpf_compute_data_pointers(skb);
3325         return ret;
3326 }
3327
3328 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3329         .func           = bpf_skb_change_proto,
3330         .gpl_only       = false,
3331         .ret_type       = RET_INTEGER,
3332         .arg1_type      = ARG_PTR_TO_CTX,
3333         .arg2_type      = ARG_ANYTHING,
3334         .arg3_type      = ARG_ANYTHING,
3335 };
3336
3337 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3338 {
3339         /* We only allow a restricted subset to be changed for now. */
3340         if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3341                      !skb_pkt_type_ok(pkt_type)))
3342                 return -EINVAL;
3343
3344         skb->pkt_type = pkt_type;
3345         return 0;
3346 }
3347
3348 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3349         .func           = bpf_skb_change_type,
3350         .gpl_only       = false,
3351         .ret_type       = RET_INTEGER,
3352         .arg1_type      = ARG_PTR_TO_CTX,
3353         .arg2_type      = ARG_ANYTHING,
3354 };
3355
3356 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3357 {
3358         switch (skb->protocol) {
3359         case htons(ETH_P_IP):
3360                 return sizeof(struct iphdr);
3361         case htons(ETH_P_IPV6):
3362                 return sizeof(struct ipv6hdr);
3363         default:
3364                 return ~0U;
3365         }
3366 }
3367
3368 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK    (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3369                                          BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3370
3371 #define BPF_F_ADJ_ROOM_MASK             (BPF_F_ADJ_ROOM_FIXED_GSO | \
3372                                          BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3373                                          BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3374                                          BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3375                                          BPF_F_ADJ_ROOM_ENCAP_L2( \
3376                                           BPF_ADJ_ROOM_ENCAP_L2_MASK))
3377
3378 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3379                             u64 flags)
3380 {
3381         u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3382         bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3383         u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3384         unsigned int gso_type = SKB_GSO_DODGY;
3385         int ret;
3386
3387         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3388                 /* udp gso_size delineates datagrams, only allow if fixed */
3389                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3390                     !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3391                         return -ENOTSUPP;
3392         }
3393
3394         ret = skb_cow_head(skb, len_diff);
3395         if (unlikely(ret < 0))
3396                 return ret;
3397
3398         if (encap) {
3399                 if (skb->protocol != htons(ETH_P_IP) &&
3400                     skb->protocol != htons(ETH_P_IPV6))
3401                         return -ENOTSUPP;
3402
3403                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3404                     flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3405                         return -EINVAL;
3406
3407                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3408                     flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3409                         return -EINVAL;
3410
3411                 if (skb->encapsulation)
3412                         return -EALREADY;
3413
3414                 mac_len = skb->network_header - skb->mac_header;
3415                 inner_net = skb->network_header;
3416                 if (inner_mac_len > len_diff)
3417                         return -EINVAL;
3418                 inner_trans = skb->transport_header;
3419         }
3420
3421         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3422         if (unlikely(ret < 0))
3423                 return ret;
3424
3425         if (encap) {
3426                 skb->inner_mac_header = inner_net - inner_mac_len;
3427                 skb->inner_network_header = inner_net;
3428                 skb->inner_transport_header = inner_trans;
3429                 skb_set_inner_protocol(skb, skb->protocol);
3430
3431                 skb->encapsulation = 1;
3432                 skb_set_network_header(skb, mac_len);
3433
3434                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3435                         gso_type |= SKB_GSO_UDP_TUNNEL;
3436                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3437                         gso_type |= SKB_GSO_GRE;
3438                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3439                         gso_type |= SKB_GSO_IPXIP6;
3440                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3441                         gso_type |= SKB_GSO_IPXIP4;
3442
3443                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3444                     flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3445                         int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3446                                         sizeof(struct ipv6hdr) :
3447                                         sizeof(struct iphdr);
3448
3449                         skb_set_transport_header(skb, mac_len + nh_len);
3450                 }
3451
3452                 /* Match skb->protocol to new outer l3 protocol */
3453                 if (skb->protocol == htons(ETH_P_IP) &&
3454                     flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3455                         skb->protocol = htons(ETH_P_IPV6);
3456                 else if (skb->protocol == htons(ETH_P_IPV6) &&
3457                          flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3458                         skb->protocol = htons(ETH_P_IP);
3459         }
3460
3461         if (skb_is_gso(skb)) {
3462                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3463
3464                 /* Due to header grow, MSS needs to be downgraded. */
3465                 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3466                         skb_decrease_gso_size(shinfo, len_diff);
3467
3468                 /* Header must be checked, and gso_segs recomputed. */
3469                 shinfo->gso_type |= gso_type;
3470                 shinfo->gso_segs = 0;
3471         }
3472
3473         return 0;
3474 }
3475
3476 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3477                               u64 flags)
3478 {
3479         int ret;
3480
3481         if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3482                                BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3483                 return -EINVAL;
3484
3485         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3486                 /* udp gso_size delineates datagrams, only allow if fixed */
3487                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3488                     !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3489                         return -ENOTSUPP;
3490         }
3491
3492         ret = skb_unclone(skb, GFP_ATOMIC);
3493         if (unlikely(ret < 0))
3494                 return ret;
3495
3496         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3497         if (unlikely(ret < 0))
3498                 return ret;
3499
3500         if (skb_is_gso(skb)) {
3501                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3502
3503                 /* Due to header shrink, MSS can be upgraded. */
3504                 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3505                         skb_increase_gso_size(shinfo, len_diff);
3506
3507                 /* Header must be checked, and gso_segs recomputed. */
3508                 shinfo->gso_type |= SKB_GSO_DODGY;
3509                 shinfo->gso_segs = 0;
3510         }
3511
3512         return 0;
3513 }
3514
3515 static u32 __bpf_skb_max_len(const struct sk_buff *skb)
3516 {
3517         return skb->dev ? skb->dev->mtu + skb->dev->hard_header_len :
3518                           SKB_MAX_ALLOC;
3519 }
3520
3521 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3522            u32, mode, u64, flags)
3523 {
3524         u32 len_diff_abs = abs(len_diff);
3525         bool shrink = len_diff < 0;
3526         int ret = 0;
3527
3528         if (unlikely(flags || mode))
3529                 return -EINVAL;
3530         if (unlikely(len_diff_abs > 0xfffU))
3531                 return -EFAULT;
3532
3533         if (!shrink) {
3534                 ret = skb_cow(skb, len_diff);
3535                 if (unlikely(ret < 0))
3536                         return ret;
3537                 __skb_push(skb, len_diff_abs);
3538                 memset(skb->data, 0, len_diff_abs);
3539         } else {
3540                 if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3541                         return -ENOMEM;
3542                 __skb_pull(skb, len_diff_abs);
3543         }
3544         bpf_compute_data_end_sk_skb(skb);
3545         if (tls_sw_has_ctx_rx(skb->sk)) {
3546                 struct strp_msg *rxm = strp_msg(skb);
3547
3548                 rxm->full_len += len_diff;
3549         }
3550         return ret;
3551 }
3552
3553 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3554         .func           = sk_skb_adjust_room,
3555         .gpl_only       = false,
3556         .ret_type       = RET_INTEGER,
3557         .arg1_type      = ARG_PTR_TO_CTX,
3558         .arg2_type      = ARG_ANYTHING,
3559         .arg3_type      = ARG_ANYTHING,
3560         .arg4_type      = ARG_ANYTHING,
3561 };
3562
3563 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3564            u32, mode, u64, flags)
3565 {
3566         u32 len_cur, len_diff_abs = abs(len_diff);
3567         u32 len_min = bpf_skb_net_base_len(skb);
3568         u32 len_max = __bpf_skb_max_len(skb);
3569         __be16 proto = skb->protocol;
3570         bool shrink = len_diff < 0;
3571         u32 off;
3572         int ret;
3573
3574         if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3575                                BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3576                 return -EINVAL;
3577         if (unlikely(len_diff_abs > 0xfffU))
3578                 return -EFAULT;
3579         if (unlikely(proto != htons(ETH_P_IP) &&
3580                      proto != htons(ETH_P_IPV6)))
3581                 return -ENOTSUPP;
3582
3583         off = skb_mac_header_len(skb);
3584         switch (mode) {
3585         case BPF_ADJ_ROOM_NET:
3586                 off += bpf_skb_net_base_len(skb);
3587                 break;
3588         case BPF_ADJ_ROOM_MAC:
3589                 break;
3590         default:
3591                 return -ENOTSUPP;
3592         }
3593
3594         len_cur = skb->len - skb_network_offset(skb);
3595         if ((shrink && (len_diff_abs >= len_cur ||
3596                         len_cur - len_diff_abs < len_min)) ||
3597             (!shrink && (skb->len + len_diff_abs > len_max &&
3598                          !skb_is_gso(skb))))
3599                 return -ENOTSUPP;
3600
3601         ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3602                        bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3603         if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3604                 __skb_reset_checksum_unnecessary(skb);
3605
3606         bpf_compute_data_pointers(skb);
3607         return ret;
3608 }
3609
3610 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3611         .func           = bpf_skb_adjust_room,
3612         .gpl_only       = false,
3613         .ret_type       = RET_INTEGER,
3614         .arg1_type      = ARG_PTR_TO_CTX,
3615         .arg2_type      = ARG_ANYTHING,
3616         .arg3_type      = ARG_ANYTHING,
3617         .arg4_type      = ARG_ANYTHING,
3618 };
3619
3620 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3621 {
3622         u32 min_len = skb_network_offset(skb);
3623
3624         if (skb_transport_header_was_set(skb))
3625                 min_len = skb_transport_offset(skb);
3626         if (skb->ip_summed == CHECKSUM_PARTIAL)
3627                 min_len = skb_checksum_start_offset(skb) +
3628                           skb->csum_offset + sizeof(__sum16);
3629         return min_len;
3630 }
3631
3632 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3633 {
3634         unsigned int old_len = skb->len;
3635         int ret;
3636
3637         ret = __skb_grow_rcsum(skb, new_len);
3638         if (!ret)
3639                 memset(skb->data + old_len, 0, new_len - old_len);
3640         return ret;
3641 }
3642
3643 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3644 {
3645         return __skb_trim_rcsum(skb, new_len);
3646 }
3647
3648 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3649                                         u64 flags)
3650 {
3651         u32 max_len = __bpf_skb_max_len(skb);
3652         u32 min_len = __bpf_skb_min_len(skb);
3653         int ret;
3654
3655         if (unlikely(flags || new_len > max_len || new_len < min_len))
3656                 return -EINVAL;
3657         if (skb->encapsulation)
3658                 return -ENOTSUPP;
3659
3660         /* The basic idea of this helper is that it's performing the
3661          * needed work to either grow or trim an skb, and eBPF program
3662          * rewrites the rest via helpers like bpf_skb_store_bytes(),
3663          * bpf_lX_csum_replace() and others rather than passing a raw
3664          * buffer here. This one is a slow path helper and intended
3665          * for replies with control messages.
3666          *
3667          * Like in bpf_skb_change_proto(), we want to keep this rather
3668          * minimal and without protocol specifics so that we are able
3669          * to separate concerns as in bpf_skb_store_bytes() should only
3670          * be the one responsible for writing buffers.
3671          *
3672          * It's really expected to be a slow path operation here for
3673          * control message replies, so we're implicitly linearizing,
3674          * uncloning and drop offloads from the skb by this.
3675          */
3676         ret = __bpf_try_make_writable(skb, skb->len);
3677         if (!ret) {
3678                 if (new_len > skb->len)
3679                         ret = bpf_skb_grow_rcsum(skb, new_len);
3680                 else if (new_len < skb->len)
3681                         ret = bpf_skb_trim_rcsum(skb, new_len);
3682                 if (!ret && skb_is_gso(skb))
3683                         skb_gso_reset(skb);
3684         }
3685         return ret;
3686 }
3687
3688 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3689            u64, flags)
3690 {
3691         int ret = __bpf_skb_change_tail(skb, new_len, flags);
3692
3693         bpf_compute_data_pointers(skb);
3694         return ret;
3695 }
3696
3697 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3698         .func           = bpf_skb_change_tail,
3699         .gpl_only       = false,
3700         .ret_type       = RET_INTEGER,
3701         .arg1_type      = ARG_PTR_TO_CTX,
3702         .arg2_type      = ARG_ANYTHING,
3703         .arg3_type      = ARG_ANYTHING,
3704 };
3705
3706 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3707            u64, flags)
3708 {
3709         int ret = __bpf_skb_change_tail(skb, new_len, flags);
3710
3711         bpf_compute_data_end_sk_skb(skb);
3712         return ret;
3713 }
3714
3715 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3716         .func           = sk_skb_change_tail,
3717         .gpl_only       = false,
3718         .ret_type       = RET_INTEGER,
3719         .arg1_type      = ARG_PTR_TO_CTX,
3720         .arg2_type      = ARG_ANYTHING,
3721         .arg3_type      = ARG_ANYTHING,
3722 };
3723
3724 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3725                                         u64 flags)
3726 {
3727         u32 max_len = __bpf_skb_max_len(skb);
3728         u32 new_len = skb->len + head_room;
3729         int ret;
3730
3731         if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3732                      new_len < skb->len))
3733                 return -EINVAL;
3734
3735         ret = skb_cow(skb, head_room);
3736         if (likely(!ret)) {
3737                 /* Idea for this helper is that we currently only
3738                  * allow to expand on mac header. This means that
3739                  * skb->protocol network header, etc, stay as is.
3740                  * Compared to bpf_skb_change_tail(), we're more
3741                  * flexible due to not needing to linearize or
3742                  * reset GSO. Intention for this helper is to be
3743                  * used by an L3 skb that needs to push mac header
3744                  * for redirection into L2 device.
3745                  */
3746                 __skb_push(skb, head_room);
3747                 memset(skb->data, 0, head_room);
3748                 skb_reset_mac_header(skb);
3749         }
3750
3751         return ret;
3752 }
3753
3754 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3755            u64, flags)
3756 {
3757         int ret = __bpf_skb_change_head(skb, head_room, flags);
3758
3759         bpf_compute_data_pointers(skb);
3760         return ret;
3761 }
3762
3763 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3764         .func           = bpf_skb_change_head,
3765         .gpl_only       = false,
3766         .ret_type       = RET_INTEGER,
3767         .arg1_type      = ARG_PTR_TO_CTX,
3768         .arg2_type      = ARG_ANYTHING,
3769         .arg3_type      = ARG_ANYTHING,
3770 };
3771
3772 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3773            u64, flags)
3774 {
3775         int ret = __bpf_skb_change_head(skb, head_room, flags);
3776
3777         bpf_compute_data_end_sk_skb(skb);
3778         return ret;
3779 }
3780
3781 static const struct bpf_func_proto sk_skb_change_head_proto = {
3782         .func           = sk_skb_change_head,
3783         .gpl_only       = false,
3784         .ret_type       = RET_INTEGER,
3785         .arg1_type      = ARG_PTR_TO_CTX,
3786         .arg2_type      = ARG_ANYTHING,
3787         .arg3_type      = ARG_ANYTHING,
3788 };
3789 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3790 {
3791         return xdp_data_meta_unsupported(xdp) ? 0 :
3792                xdp->data - xdp->data_meta;
3793 }
3794
3795 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3796 {
3797         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3798         unsigned long metalen = xdp_get_metalen(xdp);
3799         void *data_start = xdp_frame_end + metalen;
3800         void *data = xdp->data + offset;
3801
3802         if (unlikely(data < data_start ||
3803                      data > xdp->data_end - ETH_HLEN))
3804                 return -EINVAL;
3805
3806         if (metalen)
3807                 memmove(xdp->data_meta + offset,
3808                         xdp->data_meta, metalen);
3809         xdp->data_meta += offset;
3810         xdp->data = data;
3811
3812         return 0;
3813 }
3814
3815 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3816         .func           = bpf_xdp_adjust_head,
3817         .gpl_only       = false,
3818         .ret_type       = RET_INTEGER,
3819         .arg1_type      = ARG_PTR_TO_CTX,
3820         .arg2_type      = ARG_ANYTHING,
3821 };
3822
3823 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
3824 {
3825         void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
3826         void *data_end = xdp->data_end + offset;
3827
3828         /* Notice that xdp_data_hard_end have reserved some tailroom */
3829         if (unlikely(data_end > data_hard_end))
3830                 return -EINVAL;
3831
3832         /* ALL drivers MUST init xdp->frame_sz, chicken check below */
3833         if (unlikely(xdp->frame_sz > PAGE_SIZE)) {
3834                 WARN_ONCE(1, "Too BIG xdp->frame_sz = %d\n", xdp->frame_sz);
3835                 return -EINVAL;
3836         }
3837
3838         if (unlikely(data_end < xdp->data + ETH_HLEN))
3839                 return -EINVAL;
3840
3841         /* Clear memory area on grow, can contain uninit kernel memory */
3842         if (offset > 0)
3843                 memset(xdp->data_end, 0, offset);
3844
3845         xdp->data_end = data_end;
3846
3847         return 0;
3848 }
3849
3850 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3851         .func           = bpf_xdp_adjust_tail,
3852         .gpl_only       = false,
3853         .ret_type       = RET_INTEGER,
3854         .arg1_type      = ARG_PTR_TO_CTX,
3855         .arg2_type      = ARG_ANYTHING,
3856 };
3857
3858 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3859 {
3860         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3861         void *meta = xdp->data_meta + offset;
3862         unsigned long metalen = xdp->data - meta;
3863
3864         if (xdp_data_meta_unsupported(xdp))
3865                 return -ENOTSUPP;
3866         if (unlikely(meta < xdp_frame_end ||
3867                      meta > xdp->data))
3868                 return -EINVAL;
3869         if (unlikely((metalen & (sizeof(__u32) - 1)) ||
3870                      (metalen > 32)))
3871                 return -EACCES;
3872
3873         xdp->data_meta = meta;
3874
3875         return 0;
3876 }
3877
3878 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3879         .func           = bpf_xdp_adjust_meta,
3880         .gpl_only       = false,
3881         .ret_type       = RET_INTEGER,
3882         .arg1_type      = ARG_PTR_TO_CTX,
3883         .arg2_type      = ARG_ANYTHING,
3884 };
3885
3886 static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
3887                             struct bpf_map *map, struct xdp_buff *xdp)
3888 {
3889         switch (map->map_type) {
3890         case BPF_MAP_TYPE_DEVMAP:
3891         case BPF_MAP_TYPE_DEVMAP_HASH:
3892                 return dev_map_enqueue(fwd, xdp, dev_rx);
3893         case BPF_MAP_TYPE_CPUMAP:
3894                 return cpu_map_enqueue(fwd, xdp, dev_rx);
3895         case BPF_MAP_TYPE_XSKMAP:
3896                 return __xsk_map_redirect(fwd, xdp);
3897         default:
3898                 return -EBADRQC;
3899         }
3900         return 0;
3901 }
3902
3903 void xdp_do_flush(void)
3904 {
3905         __dev_flush();
3906         __cpu_map_flush();
3907         __xsk_map_flush();
3908 }
3909 EXPORT_SYMBOL_GPL(xdp_do_flush);
3910
3911 static inline void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
3912 {
3913         switch (map->map_type) {
3914         case BPF_MAP_TYPE_DEVMAP:
3915                 return __dev_map_lookup_elem(map, index);
3916         case BPF_MAP_TYPE_DEVMAP_HASH:
3917                 return __dev_map_hash_lookup_elem(map, index);
3918         case BPF_MAP_TYPE_CPUMAP:
3919                 return __cpu_map_lookup_elem(map, index);
3920         case BPF_MAP_TYPE_XSKMAP:
3921                 return __xsk_map_lookup_elem(map, index);
3922         default:
3923                 return NULL;
3924         }
3925 }
3926
3927 void bpf_clear_redirect_map(struct bpf_map *map)
3928 {
3929         struct bpf_redirect_info *ri;
3930         int cpu;
3931
3932         for_each_possible_cpu(cpu) {
3933                 ri = per_cpu_ptr(&bpf_redirect_info, cpu);
3934                 /* Avoid polluting remote cacheline due to writes if
3935                  * not needed. Once we pass this test, we need the
3936                  * cmpxchg() to make sure it hasn't been changed in
3937                  * the meantime by remote CPU.
3938                  */
3939                 if (unlikely(READ_ONCE(ri->map) == map))
3940                         cmpxchg(&ri->map, map, NULL);
3941         }
3942 }
3943
3944 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3945                     struct bpf_prog *xdp_prog)
3946 {
3947         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3948         struct bpf_map *map = READ_ONCE(ri->map);
3949         u32 index = ri->tgt_index;
3950         void *fwd = ri->tgt_value;
3951         int err;
3952
3953         ri->tgt_index = 0;
3954         ri->tgt_value = NULL;
3955         WRITE_ONCE(ri->map, NULL);
3956
3957         if (unlikely(!map)) {
3958                 fwd = dev_get_by_index_rcu(dev_net(dev), index);
3959                 if (unlikely(!fwd)) {
3960                         err = -EINVAL;
3961                         goto err;
3962                 }
3963
3964                 err = dev_xdp_enqueue(fwd, xdp, dev);
3965         } else {
3966                 err = __bpf_tx_xdp_map(dev, fwd, map, xdp);
3967         }
3968
3969         if (unlikely(err))
3970                 goto err;
3971
3972         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3973         return 0;
3974 err:
3975         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3976         return err;
3977 }
3978 EXPORT_SYMBOL_GPL(xdp_do_redirect);
3979
3980 static int xdp_do_generic_redirect_map(struct net_device *dev,
3981                                        struct sk_buff *skb,
3982                                        struct xdp_buff *xdp,
3983                                        struct bpf_prog *xdp_prog,
3984                                        struct bpf_map *map)
3985 {
3986         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3987         u32 index = ri->tgt_index;
3988         void *fwd = ri->tgt_value;
3989         int err = 0;
3990
3991         ri->tgt_index = 0;
3992         ri->tgt_value = NULL;
3993         WRITE_ONCE(ri->map, NULL);
3994
3995         if (map->map_type == BPF_MAP_TYPE_DEVMAP ||
3996             map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
3997                 struct bpf_dtab_netdev *dst = fwd;
3998
3999                 err = dev_map_generic_redirect(dst, skb, xdp_prog);
4000                 if (unlikely(err))
4001                         goto err;
4002         } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
4003                 struct xdp_sock *xs = fwd;
4004
4005                 err = xsk_generic_rcv(xs, xdp);
4006                 if (err)
4007                         goto err;
4008                 consume_skb(skb);
4009         } else {
4010                 /* TODO: Handle BPF_MAP_TYPE_CPUMAP */
4011                 err = -EBADRQC;
4012                 goto err;
4013         }
4014
4015         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
4016         return 0;
4017 err:
4018         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
4019         return err;
4020 }
4021
4022 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4023                             struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4024 {
4025         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4026         struct bpf_map *map = READ_ONCE(ri->map);
4027         u32 index = ri->tgt_index;
4028         struct net_device *fwd;
4029         int err = 0;
4030
4031         if (map)
4032                 return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog,
4033                                                    map);
4034         ri->tgt_index = 0;
4035         fwd = dev_get_by_index_rcu(dev_net(dev), index);
4036         if (unlikely(!fwd)) {
4037                 err = -EINVAL;
4038                 goto err;
4039         }
4040
4041         err = xdp_ok_fwd_dev(fwd, skb->len);
4042         if (unlikely(err))
4043                 goto err;
4044
4045         skb->dev = fwd;
4046         _trace_xdp_redirect(dev, xdp_prog, index);
4047         generic_xdp_tx(skb, xdp_prog);
4048         return 0;
4049 err:
4050         _trace_xdp_redirect_err(dev, xdp_prog, index, err);
4051         return err;
4052 }
4053
4054 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4055 {
4056         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4057
4058         if (unlikely(flags))
4059                 return XDP_ABORTED;
4060
4061         ri->flags = flags;
4062         ri->tgt_index = ifindex;
4063         ri->tgt_value = NULL;
4064         WRITE_ONCE(ri->map, NULL);
4065
4066         return XDP_REDIRECT;
4067 }
4068
4069 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4070         .func           = bpf_xdp_redirect,
4071         .gpl_only       = false,
4072         .ret_type       = RET_INTEGER,
4073         .arg1_type      = ARG_ANYTHING,
4074         .arg2_type      = ARG_ANYTHING,
4075 };
4076
4077 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
4078            u64, flags)
4079 {
4080         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4081
4082         /* Lower bits of the flags are used as return code on lookup failure */
4083         if (unlikely(flags > XDP_TX))
4084                 return XDP_ABORTED;
4085
4086         ri->tgt_value = __xdp_map_lookup_elem(map, ifindex);
4087         if (unlikely(!ri->tgt_value)) {
4088                 /* If the lookup fails we want to clear out the state in the
4089                  * redirect_info struct completely, so that if an eBPF program
4090                  * performs multiple lookups, the last one always takes
4091                  * precedence.
4092                  */
4093                 WRITE_ONCE(ri->map, NULL);
4094                 return flags;
4095         }
4096
4097         ri->flags = flags;
4098         ri->tgt_index = ifindex;
4099         WRITE_ONCE(ri->map, map);
4100
4101         return XDP_REDIRECT;
4102 }
4103
4104 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4105         .func           = bpf_xdp_redirect_map,
4106         .gpl_only       = false,
4107         .ret_type       = RET_INTEGER,
4108         .arg1_type      = ARG_CONST_MAP_PTR,
4109         .arg2_type      = ARG_ANYTHING,
4110         .arg3_type      = ARG_ANYTHING,
4111 };
4112
4113 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4114                                   unsigned long off, unsigned long len)
4115 {
4116         void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4117
4118         if (unlikely(!ptr))
4119                 return len;
4120         if (ptr != dst_buff)
4121                 memcpy(dst_buff, ptr, len);
4122
4123         return 0;
4124 }
4125
4126 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4127            u64, flags, void *, meta, u64, meta_size)
4128 {
4129         u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4130
4131         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4132                 return -EINVAL;
4133         if (unlikely(!skb || skb_size > skb->len))
4134                 return -EFAULT;
4135
4136         return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4137                                 bpf_skb_copy);
4138 }
4139
4140 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4141         .func           = bpf_skb_event_output,
4142         .gpl_only       = true,
4143         .ret_type       = RET_INTEGER,
4144         .arg1_type      = ARG_PTR_TO_CTX,
4145         .arg2_type      = ARG_CONST_MAP_PTR,
4146         .arg3_type      = ARG_ANYTHING,
4147         .arg4_type      = ARG_PTR_TO_MEM,
4148         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4149 };
4150
4151 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4152
4153 const struct bpf_func_proto bpf_skb_output_proto = {
4154         .func           = bpf_skb_event_output,
4155         .gpl_only       = true,
4156         .ret_type       = RET_INTEGER,
4157         .arg1_type      = ARG_PTR_TO_BTF_ID,
4158         .arg1_btf_id    = &bpf_skb_output_btf_ids[0],
4159         .arg2_type      = ARG_CONST_MAP_PTR,
4160         .arg3_type      = ARG_ANYTHING,
4161         .arg4_type      = ARG_PTR_TO_MEM,
4162         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4163 };
4164
4165 static unsigned short bpf_tunnel_key_af(u64 flags)
4166 {
4167         return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4168 }
4169
4170 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4171            u32, size, u64, flags)
4172 {
4173         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4174         u8 compat[sizeof(struct bpf_tunnel_key)];
4175         void *to_orig = to;
4176         int err;
4177
4178         if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
4179                 err = -EINVAL;
4180                 goto err_clear;
4181         }
4182         if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4183                 err = -EPROTO;
4184                 goto err_clear;
4185         }
4186         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4187                 err = -EINVAL;
4188                 switch (size) {
4189                 case offsetof(struct bpf_tunnel_key, tunnel_label):
4190                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4191                         goto set_compat;
4192                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4193                         /* Fixup deprecated structure layouts here, so we have
4194                          * a common path later on.
4195                          */
4196                         if (ip_tunnel_info_af(info) != AF_INET)
4197                                 goto err_clear;
4198 set_compat:
4199                         to = (struct bpf_tunnel_key *)compat;
4200                         break;
4201                 default:
4202                         goto err_clear;
4203                 }
4204         }
4205
4206         to->tunnel_id = be64_to_cpu(info->key.tun_id);
4207         to->tunnel_tos = info->key.tos;
4208         to->tunnel_ttl = info->key.ttl;
4209         to->tunnel_ext = 0;
4210
4211         if (flags & BPF_F_TUNINFO_IPV6) {
4212                 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4213                        sizeof(to->remote_ipv6));
4214                 to->tunnel_label = be32_to_cpu(info->key.label);
4215         } else {
4216                 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4217                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4218                 to->tunnel_label = 0;
4219         }
4220
4221         if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4222                 memcpy(to_orig, to, size);
4223
4224         return 0;
4225 err_clear:
4226         memset(to_orig, 0, size);
4227         return err;
4228 }
4229
4230 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4231         .func           = bpf_skb_get_tunnel_key,
4232         .gpl_only       = false,
4233         .ret_type       = RET_INTEGER,
4234         .arg1_type      = ARG_PTR_TO_CTX,
4235         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
4236         .arg3_type      = ARG_CONST_SIZE,
4237         .arg4_type      = ARG_ANYTHING,
4238 };
4239
4240 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4241 {
4242         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4243         int err;
4244
4245         if (unlikely(!info ||
4246                      !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4247                 err = -ENOENT;
4248                 goto err_clear;
4249         }
4250         if (unlikely(size < info->options_len)) {
4251                 err = -ENOMEM;
4252                 goto err_clear;
4253         }
4254
4255         ip_tunnel_info_opts_get(to, info);
4256         if (size > info->options_len)
4257                 memset(to + info->options_len, 0, size - info->options_len);
4258
4259         return info->options_len;
4260 err_clear:
4261         memset(to, 0, size);
4262         return err;
4263 }
4264
4265 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4266         .func           = bpf_skb_get_tunnel_opt,
4267         .gpl_only       = false,
4268         .ret_type       = RET_INTEGER,
4269         .arg1_type      = ARG_PTR_TO_CTX,
4270         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
4271         .arg3_type      = ARG_CONST_SIZE,
4272 };
4273
4274 static struct metadata_dst __percpu *md_dst;
4275
4276 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4277            const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4278 {
4279         struct metadata_dst *md = this_cpu_ptr(md_dst);
4280         u8 compat[sizeof(struct bpf_tunnel_key)];
4281         struct ip_tunnel_info *info;
4282
4283         if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4284                                BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
4285                 return -EINVAL;
4286         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4287                 switch (size) {
4288                 case offsetof(struct bpf_tunnel_key, tunnel_label):
4289                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4290                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4291                         /* Fixup deprecated structure layouts here, so we have
4292                          * a common path later on.
4293                          */
4294                         memcpy(compat, from, size);
4295                         memset(compat + size, 0, sizeof(compat) - size);
4296                         from = (const struct bpf_tunnel_key *) compat;
4297                         break;
4298                 default:
4299                         return -EINVAL;
4300                 }
4301         }
4302         if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4303                      from->tunnel_ext))
4304                 return -EINVAL;
4305
4306         skb_dst_drop(skb);
4307         dst_hold((struct dst_entry *) md);
4308         skb_dst_set(skb, (struct dst_entry *) md);
4309
4310         info = &md->u.tun_info;
4311         memset(info, 0, sizeof(*info));
4312         info->mode = IP_TUNNEL_INFO_TX;
4313
4314         info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4315         if (flags & BPF_F_DONT_FRAGMENT)
4316                 info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4317         if (flags & BPF_F_ZERO_CSUM_TX)
4318                 info->key.tun_flags &= ~TUNNEL_CSUM;
4319         if (flags & BPF_F_SEQ_NUMBER)
4320                 info->key.tun_flags |= TUNNEL_SEQ;
4321
4322         info->key.tun_id = cpu_to_be64(from->tunnel_id);
4323         info->key.tos = from->tunnel_tos;
4324         info->key.ttl = from->tunnel_ttl;
4325
4326         if (flags & BPF_F_TUNINFO_IPV6) {
4327                 info->mode |= IP_TUNNEL_INFO_IPV6;
4328                 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4329                        sizeof(from->remote_ipv6));
4330                 info->key.label = cpu_to_be32(from->tunnel_label) &
4331                                   IPV6_FLOWLABEL_MASK;
4332         } else {
4333                 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4334         }
4335
4336         return 0;
4337 }
4338
4339 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4340         .func           = bpf_skb_set_tunnel_key,
4341         .gpl_only       = false,
4342         .ret_type       = RET_INTEGER,
4343         .arg1_type      = ARG_PTR_TO_CTX,
4344         .arg2_type      = ARG_PTR_TO_MEM,
4345         .arg3_type      = ARG_CONST_SIZE,
4346         .arg4_type      = ARG_ANYTHING,
4347 };
4348
4349 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4350            const u8 *, from, u32, size)
4351 {
4352         struct ip_tunnel_info *info = skb_tunnel_info(skb);
4353         const struct metadata_dst *md = this_cpu_ptr(md_dst);
4354
4355         if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4356                 return -EINVAL;
4357         if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4358                 return -ENOMEM;
4359
4360         ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4361
4362         return 0;
4363 }
4364
4365 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4366         .func           = bpf_skb_set_tunnel_opt,
4367         .gpl_only       = false,
4368         .ret_type       = RET_INTEGER,
4369         .arg1_type      = ARG_PTR_TO_CTX,
4370         .arg2_type      = ARG_PTR_TO_MEM,
4371         .arg3_type      = ARG_CONST_SIZE,
4372 };
4373
4374 static const struct bpf_func_proto *
4375 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4376 {
4377         if (!md_dst) {
4378                 struct metadata_dst __percpu *tmp;
4379
4380                 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4381                                                 METADATA_IP_TUNNEL,
4382                                                 GFP_KERNEL);
4383                 if (!tmp)
4384                         return NULL;
4385                 if (cmpxchg(&md_dst, NULL, tmp))
4386                         metadata_dst_free_percpu(tmp);
4387         }
4388
4389         switch (which) {
4390         case BPF_FUNC_skb_set_tunnel_key:
4391                 return &bpf_skb_set_tunnel_key_proto;
4392         case BPF_FUNC_skb_set_tunnel_opt:
4393                 return &bpf_skb_set_tunnel_opt_proto;
4394         default:
4395                 return NULL;
4396         }
4397 }
4398
4399 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4400            u32, idx)
4401 {
4402         struct bpf_array *array = container_of(map, struct bpf_array, map);
4403         struct cgroup *cgrp;
4404         struct sock *sk;
4405
4406         sk = skb_to_full_sk(skb);
4407         if (!sk || !sk_fullsock(sk))
4408                 return -ENOENT;
4409         if (unlikely(idx >= array->map.max_entries))
4410                 return -E2BIG;
4411
4412         cgrp = READ_ONCE(array->ptrs[idx]);
4413         if (unlikely(!cgrp))
4414                 return -EAGAIN;
4415
4416         return sk_under_cgroup_hierarchy(sk, cgrp);
4417 }
4418
4419 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4420         .func           = bpf_skb_under_cgroup,
4421         .gpl_only       = false,
4422         .ret_type       = RET_INTEGER,
4423         .arg1_type      = ARG_PTR_TO_CTX,
4424         .arg2_type      = ARG_CONST_MAP_PTR,
4425         .arg3_type      = ARG_ANYTHING,
4426 };
4427
4428 #ifdef CONFIG_SOCK_CGROUP_DATA
4429 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4430 {
4431         struct cgroup *cgrp;
4432
4433         sk = sk_to_full_sk(sk);
4434         if (!sk || !sk_fullsock(sk))
4435                 return 0;
4436
4437         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4438         return cgroup_id(cgrp);
4439 }
4440
4441 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4442 {
4443         return __bpf_sk_cgroup_id(skb->sk);
4444 }
4445
4446 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4447         .func           = bpf_skb_cgroup_id,
4448         .gpl_only       = false,
4449         .ret_type       = RET_INTEGER,
4450         .arg1_type      = ARG_PTR_TO_CTX,
4451 };
4452
4453 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4454                                               int ancestor_level)
4455 {
4456         struct cgroup *ancestor;
4457         struct cgroup *cgrp;
4458
4459         sk = sk_to_full_sk(sk);
4460         if (!sk || !sk_fullsock(sk))
4461                 return 0;
4462
4463         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4464         ancestor = cgroup_ancestor(cgrp, ancestor_level);
4465         if (!ancestor)
4466                 return 0;
4467
4468         return cgroup_id(ancestor);
4469 }
4470
4471 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4472            ancestor_level)
4473 {
4474         return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4475 }
4476
4477 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4478         .func           = bpf_skb_ancestor_cgroup_id,
4479         .gpl_only       = false,
4480         .ret_type       = RET_INTEGER,
4481         .arg1_type      = ARG_PTR_TO_CTX,
4482         .arg2_type      = ARG_ANYTHING,
4483 };
4484
4485 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4486 {
4487         return __bpf_sk_cgroup_id(sk);
4488 }
4489
4490 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4491         .func           = bpf_sk_cgroup_id,
4492         .gpl_only       = false,
4493         .ret_type       = RET_INTEGER,
4494         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4495 };
4496
4497 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4498 {
4499         return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4500 }
4501
4502 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4503         .func           = bpf_sk_ancestor_cgroup_id,
4504         .gpl_only       = false,
4505         .ret_type       = RET_INTEGER,
4506         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4507         .arg2_type      = ARG_ANYTHING,
4508 };
4509 #endif
4510
4511 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
4512                                   unsigned long off, unsigned long len)
4513 {
4514         memcpy(dst_buff, src_buff + off, len);
4515         return 0;
4516 }
4517
4518 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4519            u64, flags, void *, meta, u64, meta_size)
4520 {
4521         u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4522
4523         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4524                 return -EINVAL;
4525         if (unlikely(!xdp ||
4526                      xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
4527                 return -EFAULT;
4528
4529         return bpf_event_output(map, flags, meta, meta_size, xdp->data,
4530                                 xdp_size, bpf_xdp_copy);
4531 }
4532
4533 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4534         .func           = bpf_xdp_event_output,
4535         .gpl_only       = true,
4536         .ret_type       = RET_INTEGER,
4537         .arg1_type      = ARG_PTR_TO_CTX,
4538         .arg2_type      = ARG_CONST_MAP_PTR,
4539         .arg3_type      = ARG_ANYTHING,
4540         .arg4_type      = ARG_PTR_TO_MEM,
4541         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4542 };
4543
4544 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4545
4546 const struct bpf_func_proto bpf_xdp_output_proto = {
4547         .func           = bpf_xdp_event_output,
4548         .gpl_only       = true,
4549         .ret_type       = RET_INTEGER,
4550         .arg1_type      = ARG_PTR_TO_BTF_ID,
4551         .arg1_btf_id    = &bpf_xdp_output_btf_ids[0],
4552         .arg2_type      = ARG_CONST_MAP_PTR,
4553         .arg3_type      = ARG_ANYTHING,
4554         .arg4_type      = ARG_PTR_TO_MEM,
4555         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4556 };
4557
4558 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4559 {
4560         return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4561 }
4562
4563 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4564         .func           = bpf_get_socket_cookie,
4565         .gpl_only       = false,
4566         .ret_type       = RET_INTEGER,
4567         .arg1_type      = ARG_PTR_TO_CTX,
4568 };
4569
4570 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4571 {
4572         return __sock_gen_cookie(ctx->sk);
4573 }
4574
4575 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4576         .func           = bpf_get_socket_cookie_sock_addr,
4577         .gpl_only       = false,
4578         .ret_type       = RET_INTEGER,
4579         .arg1_type      = ARG_PTR_TO_CTX,
4580 };
4581
4582 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4583 {
4584         return __sock_gen_cookie(ctx);
4585 }
4586
4587 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4588         .func           = bpf_get_socket_cookie_sock,
4589         .gpl_only       = false,
4590         .ret_type       = RET_INTEGER,
4591         .arg1_type      = ARG_PTR_TO_CTX,
4592 };
4593
4594 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4595 {
4596         return __sock_gen_cookie(ctx->sk);
4597 }
4598
4599 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4600         .func           = bpf_get_socket_cookie_sock_ops,
4601         .gpl_only       = false,
4602         .ret_type       = RET_INTEGER,
4603         .arg1_type      = ARG_PTR_TO_CTX,
4604 };
4605
4606 static u64 __bpf_get_netns_cookie(struct sock *sk)
4607 {
4608 #ifdef CONFIG_NET_NS
4609         return __net_gen_cookie(sk ? sk->sk_net.net : &init_net);
4610 #else
4611         return 0;
4612 #endif
4613 }
4614
4615 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4616 {
4617         return __bpf_get_netns_cookie(ctx);
4618 }
4619
4620 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4621         .func           = bpf_get_netns_cookie_sock,
4622         .gpl_only       = false,
4623         .ret_type       = RET_INTEGER,
4624         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4625 };
4626
4627 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4628 {
4629         return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4630 }
4631
4632 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
4633         .func           = bpf_get_netns_cookie_sock_addr,
4634         .gpl_only       = false,
4635         .ret_type       = RET_INTEGER,
4636         .arg1_type      = ARG_PTR_TO_CTX_OR_NULL,
4637 };
4638
4639 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
4640 {
4641         struct sock *sk = sk_to_full_sk(skb->sk);
4642         kuid_t kuid;
4643
4644         if (!sk || !sk_fullsock(sk))
4645                 return overflowuid;
4646         kuid = sock_net_uid(sock_net(sk), sk);
4647         return from_kuid_munged(sock_net(sk)->user_ns, kuid);
4648 }
4649
4650 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
4651         .func           = bpf_get_socket_uid,
4652         .gpl_only       = false,
4653         .ret_type       = RET_INTEGER,
4654         .arg1_type      = ARG_PTR_TO_CTX,
4655 };
4656
4657 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
4658                            char *optval, int optlen)
4659 {
4660         char devname[IFNAMSIZ];
4661         int val, valbool;
4662         struct net *net;
4663         int ifindex;
4664         int ret = 0;
4665
4666         if (!sk_fullsock(sk))
4667                 return -EINVAL;
4668
4669         sock_owned_by_me(sk);
4670
4671         if (level == SOL_SOCKET) {
4672                 if (optlen != sizeof(int) && optname != SO_BINDTODEVICE)
4673                         return -EINVAL;
4674                 val = *((int *)optval);
4675                 valbool = val ? 1 : 0;
4676
4677                 /* Only some socketops are supported */
4678                 switch (optname) {
4679                 case SO_RCVBUF:
4680                         val = min_t(u32, val, sysctl_rmem_max);
4681                         sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
4682                         WRITE_ONCE(sk->sk_rcvbuf,
4683                                    max_t(int, val * 2, SOCK_MIN_RCVBUF));
4684                         break;
4685                 case SO_SNDBUF:
4686                         val = min_t(u32, val, sysctl_wmem_max);
4687                         sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
4688                         WRITE_ONCE(sk->sk_sndbuf,
4689                                    max_t(int, val * 2, SOCK_MIN_SNDBUF));
4690                         break;
4691                 case SO_MAX_PACING_RATE: /* 32bit version */
4692                         if (val != ~0U)
4693                                 cmpxchg(&sk->sk_pacing_status,
4694                                         SK_PACING_NONE,
4695                                         SK_PACING_NEEDED);
4696                         sk->sk_max_pacing_rate = (val == ~0U) ? ~0UL : val;
4697                         sk->sk_pacing_rate = min(sk->sk_pacing_rate,
4698                                                  sk->sk_max_pacing_rate);
4699                         break;
4700                 case SO_PRIORITY:
4701                         sk->sk_priority = val;
4702                         break;
4703                 case SO_RCVLOWAT:
4704                         if (val < 0)
4705                                 val = INT_MAX;
4706                         WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
4707                         break;
4708                 case SO_MARK:
4709                         if (sk->sk_mark != val) {
4710                                 sk->sk_mark = val;
4711                                 sk_dst_reset(sk);
4712                         }
4713                         break;
4714                 case SO_BINDTODEVICE:
4715                         optlen = min_t(long, optlen, IFNAMSIZ - 1);
4716                         strncpy(devname, optval, optlen);
4717                         devname[optlen] = 0;
4718
4719                         ifindex = 0;
4720                         if (devname[0] != '\0') {
4721                                 struct net_device *dev;
4722
4723                                 ret = -ENODEV;
4724
4725                                 net = sock_net(sk);
4726                                 dev = dev_get_by_name(net, devname);
4727                                 if (!dev)
4728                                         break;
4729                                 ifindex = dev->ifindex;
4730                                 dev_put(dev);
4731                         }
4732                         ret = sock_bindtoindex(sk, ifindex, false);
4733                         break;
4734                 case SO_KEEPALIVE:
4735                         if (sk->sk_prot->keepalive)
4736                                 sk->sk_prot->keepalive(sk, valbool);
4737                         sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
4738                         break;
4739                 default:
4740                         ret = -EINVAL;
4741                 }
4742 #ifdef CONFIG_INET
4743         } else if (level == SOL_IP) {
4744                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4745                         return -EINVAL;
4746
4747                 val = *((int *)optval);
4748                 /* Only some options are supported */
4749                 switch (optname) {
4750                 case IP_TOS:
4751                         if (val < -1 || val > 0xff) {
4752                                 ret = -EINVAL;
4753                         } else {
4754                                 struct inet_sock *inet = inet_sk(sk);
4755
4756                                 if (val == -1)
4757                                         val = 0;
4758                                 inet->tos = val;
4759                         }
4760                         break;
4761                 default:
4762                         ret = -EINVAL;
4763                 }
4764 #if IS_ENABLED(CONFIG_IPV6)
4765         } else if (level == SOL_IPV6) {
4766                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4767                         return -EINVAL;
4768
4769                 val = *((int *)optval);
4770                 /* Only some options are supported */
4771                 switch (optname) {
4772                 case IPV6_TCLASS:
4773                         if (val < -1 || val > 0xff) {
4774                                 ret = -EINVAL;
4775                         } else {
4776                                 struct ipv6_pinfo *np = inet6_sk(sk);
4777
4778                                 if (val == -1)
4779                                         val = 0;
4780                                 np->tclass = val;
4781                         }
4782                         break;
4783                 default:
4784                         ret = -EINVAL;
4785                 }
4786 #endif
4787         } else if (level == SOL_TCP &&
4788                    sk->sk_prot->setsockopt == tcp_setsockopt) {
4789                 if (optname == TCP_CONGESTION) {
4790                         char name[TCP_CA_NAME_MAX];
4791
4792                         strncpy(name, optval, min_t(long, optlen,
4793                                                     TCP_CA_NAME_MAX-1));
4794                         name[TCP_CA_NAME_MAX-1] = 0;
4795                         ret = tcp_set_congestion_control(sk, name, false, true);
4796                 } else {
4797                         struct inet_connection_sock *icsk = inet_csk(sk);
4798                         struct tcp_sock *tp = tcp_sk(sk);
4799                         unsigned long timeout;
4800
4801                         if (optlen != sizeof(int))
4802                                 return -EINVAL;
4803
4804                         val = *((int *)optval);
4805                         /* Only some options are supported */
4806                         switch (optname) {
4807                         case TCP_BPF_IW:
4808                                 if (val <= 0 || tp->data_segs_out > tp->syn_data)
4809                                         ret = -EINVAL;
4810                                 else
4811                                         tp->snd_cwnd = val;
4812                                 break;
4813                         case TCP_BPF_SNDCWND_CLAMP:
4814                                 if (val <= 0) {
4815                                         ret = -EINVAL;
4816                                 } else {
4817                                         tp->snd_cwnd_clamp = val;
4818                                         tp->snd_ssthresh = val;
4819                                 }
4820                                 break;
4821                         case TCP_BPF_DELACK_MAX:
4822                                 timeout = usecs_to_jiffies(val);
4823                                 if (timeout > TCP_DELACK_MAX ||
4824                                     timeout < TCP_TIMEOUT_MIN)
4825                                         return -EINVAL;
4826                                 inet_csk(sk)->icsk_delack_max = timeout;
4827                                 break;
4828                         case TCP_BPF_RTO_MIN:
4829                                 timeout = usecs_to_jiffies(val);
4830                                 if (timeout > TCP_RTO_MIN ||
4831                                     timeout < TCP_TIMEOUT_MIN)
4832                                         return -EINVAL;
4833                                 inet_csk(sk)->icsk_rto_min = timeout;
4834                                 break;
4835                         case TCP_SAVE_SYN:
4836                                 if (val < 0 || val > 1)
4837                                         ret = -EINVAL;
4838                                 else
4839                                         tp->save_syn = val;
4840                                 break;
4841                         case TCP_KEEPIDLE:
4842                                 ret = tcp_sock_set_keepidle_locked(sk, val);
4843                                 break;
4844                         case TCP_KEEPINTVL:
4845                                 if (val < 1 || val > MAX_TCP_KEEPINTVL)
4846                                         ret = -EINVAL;
4847                                 else
4848                                         tp->keepalive_intvl = val * HZ;
4849                                 break;
4850                         case TCP_KEEPCNT:
4851                                 if (val < 1 || val > MAX_TCP_KEEPCNT)
4852                                         ret = -EINVAL;
4853                                 else
4854                                         tp->keepalive_probes = val;
4855                                 break;
4856                         case TCP_SYNCNT:
4857                                 if (val < 1 || val > MAX_TCP_SYNCNT)
4858                                         ret = -EINVAL;
4859                                 else
4860                                         icsk->icsk_syn_retries = val;
4861                                 break;
4862                         case TCP_USER_TIMEOUT:
4863                                 if (val < 0)
4864                                         ret = -EINVAL;
4865                                 else
4866                                         icsk->icsk_user_timeout = val;
4867                                 break;
4868                         case TCP_NOTSENT_LOWAT:
4869                                 tp->notsent_lowat = val;
4870                                 sk->sk_write_space(sk);
4871                                 break;
4872                         default:
4873                                 ret = -EINVAL;
4874                         }
4875                 }
4876 #endif
4877         } else {
4878                 ret = -EINVAL;
4879         }
4880         return ret;
4881 }
4882
4883 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
4884                            char *optval, int optlen)
4885 {
4886         if (!sk_fullsock(sk))
4887                 goto err_clear;
4888
4889         sock_owned_by_me(sk);
4890
4891 #ifdef CONFIG_INET
4892         if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
4893                 struct inet_connection_sock *icsk;
4894                 struct tcp_sock *tp;
4895
4896                 switch (optname) {
4897                 case TCP_CONGESTION:
4898                         icsk = inet_csk(sk);
4899
4900                         if (!icsk->icsk_ca_ops || optlen <= 1)
4901                                 goto err_clear;
4902                         strncpy(optval, icsk->icsk_ca_ops->name, optlen);
4903                         optval[optlen - 1] = 0;
4904                         break;
4905                 case TCP_SAVED_SYN:
4906                         tp = tcp_sk(sk);
4907
4908                         if (optlen <= 0 || !tp->saved_syn ||
4909                             optlen > tcp_saved_syn_len(tp->saved_syn))
4910                                 goto err_clear;
4911                         memcpy(optval, tp->saved_syn->data, optlen);
4912                         break;
4913                 default:
4914                         goto err_clear;
4915                 }
4916         } else if (level == SOL_IP) {
4917                 struct inet_sock *inet = inet_sk(sk);
4918
4919                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4920                         goto err_clear;
4921
4922                 /* Only some options are supported */
4923                 switch (optname) {
4924                 case IP_TOS:
4925                         *((int *)optval) = (int)inet->tos;
4926                         break;
4927                 default:
4928                         goto err_clear;
4929                 }
4930 #if IS_ENABLED(CONFIG_IPV6)
4931         } else if (level == SOL_IPV6) {
4932                 struct ipv6_pinfo *np = inet6_sk(sk);
4933
4934                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4935                         goto err_clear;
4936
4937                 /* Only some options are supported */
4938                 switch (optname) {
4939                 case IPV6_TCLASS:
4940                         *((int *)optval) = (int)np->tclass;
4941                         break;
4942                 default:
4943                         goto err_clear;
4944                 }
4945 #endif
4946         } else {
4947                 goto err_clear;
4948         }
4949         return 0;
4950 #endif
4951 err_clear:
4952         memset(optval, 0, optlen);
4953         return -EINVAL;
4954 }
4955
4956 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
4957            int, level, int, optname, char *, optval, int, optlen)
4958 {
4959         return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
4960 }
4961
4962 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
4963         .func           = bpf_sock_addr_setsockopt,
4964         .gpl_only       = false,
4965         .ret_type       = RET_INTEGER,
4966         .arg1_type      = ARG_PTR_TO_CTX,
4967         .arg2_type      = ARG_ANYTHING,
4968         .arg3_type      = ARG_ANYTHING,
4969         .arg4_type      = ARG_PTR_TO_MEM,
4970         .arg5_type      = ARG_CONST_SIZE,
4971 };
4972
4973 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
4974            int, level, int, optname, char *, optval, int, optlen)
4975 {
4976         return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
4977 }
4978
4979 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
4980         .func           = bpf_sock_addr_getsockopt,
4981         .gpl_only       = false,
4982         .ret_type       = RET_INTEGER,
4983         .arg1_type      = ARG_PTR_TO_CTX,
4984         .arg2_type      = ARG_ANYTHING,
4985         .arg3_type      = ARG_ANYTHING,
4986         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
4987         .arg5_type      = ARG_CONST_SIZE,
4988 };
4989
4990 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
4991            int, level, int, optname, char *, optval, int, optlen)
4992 {
4993         return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
4994 }
4995
4996 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
4997         .func           = bpf_sock_ops_setsockopt,
4998         .gpl_only       = false,
4999         .ret_type       = RET_INTEGER,
5000         .arg1_type      = ARG_PTR_TO_CTX,
5001         .arg2_type      = ARG_ANYTHING,
5002         .arg3_type      = ARG_ANYTHING,
5003         .arg4_type      = ARG_PTR_TO_MEM,
5004         .arg5_type      = ARG_CONST_SIZE,
5005 };
5006
5007 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5008                                 int optname, const u8 **start)
5009 {
5010         struct sk_buff *syn_skb = bpf_sock->syn_skb;
5011         const u8 *hdr_start;
5012         int ret;
5013
5014         if (syn_skb) {
5015                 /* sk is a request_sock here */
5016
5017                 if (optname == TCP_BPF_SYN) {
5018                         hdr_start = syn_skb->data;
5019                         ret = tcp_hdrlen(syn_skb);
5020                 } else if (optname == TCP_BPF_SYN_IP) {
5021                         hdr_start = skb_network_header(syn_skb);
5022                         ret = skb_network_header_len(syn_skb) +
5023                                 tcp_hdrlen(syn_skb);
5024                 } else {
5025                         /* optname == TCP_BPF_SYN_MAC */
5026                         hdr_start = skb_mac_header(syn_skb);
5027                         ret = skb_mac_header_len(syn_skb) +
5028                                 skb_network_header_len(syn_skb) +
5029                                 tcp_hdrlen(syn_skb);
5030                 }
5031         } else {
5032                 struct sock *sk = bpf_sock->sk;
5033                 struct saved_syn *saved_syn;
5034
5035                 if (sk->sk_state == TCP_NEW_SYN_RECV)
5036                         /* synack retransmit. bpf_sock->syn_skb will
5037                          * not be available.  It has to resort to
5038                          * saved_syn (if it is saved).
5039                          */
5040                         saved_syn = inet_reqsk(sk)->saved_syn;
5041                 else
5042                         saved_syn = tcp_sk(sk)->saved_syn;
5043
5044                 if (!saved_syn)
5045                         return -ENOENT;
5046
5047                 if (optname == TCP_BPF_SYN) {
5048                         hdr_start = saved_syn->data +
5049                                 saved_syn->mac_hdrlen +
5050                                 saved_syn->network_hdrlen;
5051                         ret = saved_syn->tcp_hdrlen;
5052                 } else if (optname == TCP_BPF_SYN_IP) {
5053                         hdr_start = saved_syn->data +
5054                                 saved_syn->mac_hdrlen;
5055                         ret = saved_syn->network_hdrlen +
5056                                 saved_syn->tcp_hdrlen;
5057                 } else {
5058                         /* optname == TCP_BPF_SYN_MAC */
5059
5060                         /* TCP_SAVE_SYN may not have saved the mac hdr */
5061                         if (!saved_syn->mac_hdrlen)
5062                                 return -ENOENT;
5063
5064                         hdr_start = saved_syn->data;
5065                         ret = saved_syn->mac_hdrlen +
5066                                 saved_syn->network_hdrlen +
5067                                 saved_syn->tcp_hdrlen;
5068                 }
5069         }
5070
5071         *start = hdr_start;
5072         return ret;
5073 }
5074
5075 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5076            int, level, int, optname, char *, optval, int, optlen)
5077 {
5078         if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5079             optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5080                 int ret, copy_len = 0;
5081                 const u8 *start;
5082
5083                 ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5084                 if (ret > 0) {
5085                         copy_len = ret;
5086                         if (optlen < copy_len) {
5087                                 copy_len = optlen;
5088                                 ret = -ENOSPC;
5089                         }
5090
5091                         memcpy(optval, start, copy_len);
5092                 }
5093
5094                 /* Zero out unused buffer at the end */
5095                 memset(optval + copy_len, 0, optlen - copy_len);
5096
5097                 return ret;
5098         }
5099
5100         return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5101 }
5102
5103 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5104         .func           = bpf_sock_ops_getsockopt,
5105         .gpl_only       = false,
5106         .ret_type       = RET_INTEGER,
5107         .arg1_type      = ARG_PTR_TO_CTX,
5108         .arg2_type      = ARG_ANYTHING,
5109         .arg3_type      = ARG_ANYTHING,
5110         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
5111         .arg5_type      = ARG_CONST_SIZE,
5112 };
5113
5114 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5115            int, argval)
5116 {
5117         struct sock *sk = bpf_sock->sk;
5118         int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5119
5120         if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5121                 return -EINVAL;
5122
5123         tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5124
5125         return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5126 }
5127
5128 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5129         .func           = bpf_sock_ops_cb_flags_set,
5130         .gpl_only       = false,
5131         .ret_type       = RET_INTEGER,
5132         .arg1_type      = ARG_PTR_TO_CTX,
5133         .arg2_type      = ARG_ANYTHING,
5134 };
5135
5136 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5137 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5138
5139 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5140            int, addr_len)
5141 {
5142 #ifdef CONFIG_INET
5143         struct sock *sk = ctx->sk;
5144         u32 flags = BIND_FROM_BPF;
5145         int err;
5146
5147         err = -EINVAL;
5148         if (addr_len < offsetofend(struct sockaddr, sa_family))
5149                 return err;
5150         if (addr->sa_family == AF_INET) {
5151                 if (addr_len < sizeof(struct sockaddr_in))
5152                         return err;
5153                 if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5154                         flags |= BIND_FORCE_ADDRESS_NO_PORT;
5155                 return __inet_bind(sk, addr, addr_len, flags);
5156 #if IS_ENABLED(CONFIG_IPV6)
5157         } else if (addr->sa_family == AF_INET6) {
5158                 if (addr_len < SIN6_LEN_RFC2133)
5159                         return err;
5160                 if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5161                         flags |= BIND_FORCE_ADDRESS_NO_PORT;
5162                 /* ipv6_bpf_stub cannot be NULL, since it's called from
5163                  * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5164                  */
5165                 return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5166 #endif /* CONFIG_IPV6 */
5167         }
5168 #endif /* CONFIG_INET */
5169
5170         return -EAFNOSUPPORT;
5171 }
5172
5173 static const struct bpf_func_proto bpf_bind_proto = {
5174         .func           = bpf_bind,
5175         .gpl_only       = false,
5176         .ret_type       = RET_INTEGER,
5177         .arg1_type      = ARG_PTR_TO_CTX,
5178         .arg2_type      = ARG_PTR_TO_MEM,
5179         .arg3_type      = ARG_CONST_SIZE,
5180 };
5181
5182 #ifdef CONFIG_XFRM
5183 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5184            struct bpf_xfrm_state *, to, u32, size, u64, flags)
5185 {
5186         const struct sec_path *sp = skb_sec_path(skb);
5187         const struct xfrm_state *x;
5188
5189         if (!sp || unlikely(index >= sp->len || flags))
5190                 goto err_clear;
5191
5192         x = sp->xvec[index];
5193
5194         if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5195                 goto err_clear;
5196
5197         to->reqid = x->props.reqid;
5198         to->spi = x->id.spi;
5199         to->family = x->props.family;
5200         to->ext = 0;
5201
5202         if (to->family == AF_INET6) {
5203                 memcpy(to->remote_ipv6, x->props.saddr.a6,
5204                        sizeof(to->remote_ipv6));
5205         } else {
5206                 to->remote_ipv4 = x->props.saddr.a4;
5207                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5208         }
5209
5210         return 0;
5211 err_clear:
5212         memset(to, 0, size);
5213         return -EINVAL;
5214 }
5215
5216 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5217         .func           = bpf_skb_get_xfrm_state,
5218         .gpl_only       = false,
5219         .ret_type       = RET_INTEGER,
5220         .arg1_type      = ARG_PTR_TO_CTX,
5221         .arg2_type      = ARG_ANYTHING,
5222         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
5223         .arg4_type      = ARG_CONST_SIZE,
5224         .arg5_type      = ARG_ANYTHING,
5225 };
5226 #endif
5227
5228 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
5229 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
5230                                   const struct neighbour *neigh,
5231                                   const struct net_device *dev)
5232 {
5233         memcpy(params->dmac, neigh->ha, ETH_ALEN);
5234         memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5235         params->h_vlan_TCI = 0;
5236         params->h_vlan_proto = 0;
5237
5238         return 0;
5239 }
5240 #endif
5241
5242 #if IS_ENABLED(CONFIG_INET)
5243 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5244                                u32 flags, bool check_mtu)
5245 {
5246         struct fib_nh_common *nhc;
5247         struct in_device *in_dev;
5248         struct neighbour *neigh;
5249         struct net_device *dev;
5250         struct fib_result res;
5251         struct flowi4 fl4;
5252         int err;
5253         u32 mtu;
5254
5255         dev = dev_get_by_index_rcu(net, params->ifindex);
5256         if (unlikely(!dev))
5257                 return -ENODEV;
5258
5259         /* verify forwarding is enabled on this interface */
5260         in_dev = __in_dev_get_rcu(dev);
5261         if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5262                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5263
5264         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5265                 fl4.flowi4_iif = 1;
5266                 fl4.flowi4_oif = params->ifindex;
5267         } else {
5268                 fl4.flowi4_iif = params->ifindex;
5269                 fl4.flowi4_oif = 0;
5270         }
5271         fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5272         fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5273         fl4.flowi4_flags = 0;
5274
5275         fl4.flowi4_proto = params->l4_protocol;
5276         fl4.daddr = params->ipv4_dst;
5277         fl4.saddr = params->ipv4_src;
5278         fl4.fl4_sport = params->sport;
5279         fl4.fl4_dport = params->dport;
5280         fl4.flowi4_multipath_hash = 0;
5281
5282         if (flags & BPF_FIB_LOOKUP_DIRECT) {
5283                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5284                 struct fib_table *tb;
5285
5286                 tb = fib_get_table(net, tbid);
5287                 if (unlikely(!tb))
5288                         return BPF_FIB_LKUP_RET_NOT_FWDED;
5289
5290                 err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5291         } else {
5292                 fl4.flowi4_mark = 0;
5293                 fl4.flowi4_secid = 0;
5294                 fl4.flowi4_tun_key.tun_id = 0;
5295                 fl4.flowi4_uid = sock_net_uid(net, NULL);
5296
5297                 err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5298         }
5299
5300         if (err) {
5301                 /* map fib lookup errors to RTN_ type */
5302                 if (err == -EINVAL)
5303                         return BPF_FIB_LKUP_RET_BLACKHOLE;
5304                 if (err == -EHOSTUNREACH)
5305                         return BPF_FIB_LKUP_RET_UNREACHABLE;
5306                 if (err == -EACCES)
5307                         return BPF_FIB_LKUP_RET_PROHIBIT;
5308
5309                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5310         }
5311
5312         if (res.type != RTN_UNICAST)
5313                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5314
5315         if (fib_info_num_path(res.fi) > 1)
5316                 fib_select_path(net, &res, &fl4, NULL);
5317
5318         if (check_mtu) {
5319                 mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5320                 if (params->tot_len > mtu)
5321                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5322         }
5323
5324         nhc = res.nhc;
5325
5326         /* do not handle lwt encaps right now */
5327         if (nhc->nhc_lwtstate)
5328                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5329
5330         dev = nhc->nhc_dev;
5331
5332         params->rt_metric = res.fi->fib_priority;
5333         params->ifindex = dev->ifindex;
5334
5335         /* xdp and cls_bpf programs are run in RCU-bh so
5336          * rcu_read_lock_bh is not needed here
5337          */
5338         if (likely(nhc->nhc_gw_family != AF_INET6)) {
5339                 if (nhc->nhc_gw_family)
5340                         params->ipv4_dst = nhc->nhc_gw.ipv4;
5341
5342                 neigh = __ipv4_neigh_lookup_noref(dev,
5343                                                  (__force u32)params->ipv4_dst);
5344         } else {
5345                 struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5346
5347                 params->family = AF_INET6;
5348                 *dst = nhc->nhc_gw.ipv6;
5349                 neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5350         }
5351
5352         if (!neigh)
5353                 return BPF_FIB_LKUP_RET_NO_NEIGH;
5354
5355         return bpf_fib_set_fwd_params(params, neigh, dev);
5356 }
5357 #endif
5358
5359 #if IS_ENABLED(CONFIG_IPV6)
5360 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5361                                u32 flags, bool check_mtu)
5362 {
5363         struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5364         struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5365         struct fib6_result res = {};
5366         struct neighbour *neigh;
5367         struct net_device *dev;
5368         struct inet6_dev *idev;
5369         struct flowi6 fl6;
5370         int strict = 0;
5371         int oif, err;
5372         u32 mtu;
5373
5374         /* link local addresses are never forwarded */
5375         if (rt6_need_strict(dst) || rt6_need_strict(src))
5376                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5377
5378         dev = dev_get_by_index_rcu(net, params->ifindex);
5379         if (unlikely(!dev))
5380                 return -ENODEV;
5381
5382         idev = __in6_dev_get_safely(dev);
5383         if (unlikely(!idev || !idev->cnf.forwarding))
5384                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5385
5386         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5387                 fl6.flowi6_iif = 1;
5388                 oif = fl6.flowi6_oif = params->ifindex;
5389         } else {
5390                 oif = fl6.flowi6_iif = params->ifindex;
5391                 fl6.flowi6_oif = 0;
5392                 strict = RT6_LOOKUP_F_HAS_SADDR;
5393         }
5394         fl6.flowlabel = params->flowinfo;
5395         fl6.flowi6_scope = 0;
5396         fl6.flowi6_flags = 0;
5397         fl6.mp_hash = 0;
5398
5399         fl6.flowi6_proto = params->l4_protocol;
5400         fl6.daddr = *dst;
5401         fl6.saddr = *src;
5402         fl6.fl6_sport = params->sport;
5403         fl6.fl6_dport = params->dport;
5404
5405         if (flags & BPF_FIB_LOOKUP_DIRECT) {
5406                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5407                 struct fib6_table *tb;
5408
5409                 tb = ipv6_stub->fib6_get_table(net, tbid);
5410                 if (unlikely(!tb))
5411                         return BPF_FIB_LKUP_RET_NOT_FWDED;
5412
5413                 err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5414                                                    strict);
5415         } else {
5416                 fl6.flowi6_mark = 0;
5417                 fl6.flowi6_secid = 0;
5418                 fl6.flowi6_tun_key.tun_id = 0;
5419                 fl6.flowi6_uid = sock_net_uid(net, NULL);
5420
5421                 err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5422         }
5423
5424         if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5425                      res.f6i == net->ipv6.fib6_null_entry))
5426                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5427
5428         switch (res.fib6_type) {
5429         /* only unicast is forwarded */
5430         case RTN_UNICAST:
5431                 break;
5432         case RTN_BLACKHOLE:
5433                 return BPF_FIB_LKUP_RET_BLACKHOLE;
5434         case RTN_UNREACHABLE:
5435                 return BPF_FIB_LKUP_RET_UNREACHABLE;
5436         case RTN_PROHIBIT:
5437                 return BPF_FIB_LKUP_RET_PROHIBIT;
5438         default:
5439                 return BPF_FIB_LKUP_RET_NOT_FWDED;
5440         }
5441
5442         ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5443                                     fl6.flowi6_oif != 0, NULL, strict);
5444
5445         if (check_mtu) {
5446                 mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5447                 if (params->tot_len > mtu)
5448                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5449         }
5450
5451         if (res.nh->fib_nh_lws)
5452                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5453
5454         if (res.nh->fib_nh_gw_family)
5455                 *dst = res.nh->fib_nh_gw6;
5456
5457         dev = res.nh->fib_nh_dev;
5458         params->rt_metric = res.f6i->fib6_metric;
5459         params->ifindex = dev->ifindex;
5460
5461         /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5462          * not needed here.
5463          */
5464         neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5465         if (!neigh)
5466                 return BPF_FIB_LKUP_RET_NO_NEIGH;
5467
5468         return bpf_fib_set_fwd_params(params, neigh, dev);
5469 }
5470 #endif
5471
5472 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
5473            struct bpf_fib_lookup *, params, int, plen, u32, flags)
5474 {
5475         if (plen < sizeof(*params))
5476                 return -EINVAL;
5477
5478         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5479                 return -EINVAL;
5480
5481         switch (params->family) {
5482 #if IS_ENABLED(CONFIG_INET)
5483         case AF_INET:
5484                 return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
5485                                            flags, true);
5486 #endif
5487 #if IS_ENABLED(CONFIG_IPV6)
5488         case AF_INET6:
5489                 return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
5490                                            flags, true);
5491 #endif
5492         }
5493         return -EAFNOSUPPORT;
5494 }
5495
5496 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
5497         .func           = bpf_xdp_fib_lookup,
5498         .gpl_only       = true,
5499         .ret_type       = RET_INTEGER,
5500         .arg1_type      = ARG_PTR_TO_CTX,
5501         .arg2_type      = ARG_PTR_TO_MEM,
5502         .arg3_type      = ARG_CONST_SIZE,
5503         .arg4_type      = ARG_ANYTHING,
5504 };
5505
5506 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
5507            struct bpf_fib_lookup *, params, int, plen, u32, flags)
5508 {
5509         struct net *net = dev_net(skb->dev);
5510         int rc = -EAFNOSUPPORT;
5511
5512         if (plen < sizeof(*params))
5513                 return -EINVAL;
5514
5515         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5516                 return -EINVAL;
5517
5518         switch (params->family) {
5519 #if IS_ENABLED(CONFIG_INET)
5520         case AF_INET:
5521                 rc = bpf_ipv4_fib_lookup(net, params, flags, false);
5522                 break;
5523 #endif
5524 #if IS_ENABLED(CONFIG_IPV6)
5525         case AF_INET6:
5526                 rc = bpf_ipv6_fib_lookup(net, params, flags, false);
5527                 break;
5528 #endif
5529         }
5530
5531         if (!rc) {
5532                 struct net_device *dev;
5533
5534                 dev = dev_get_by_index_rcu(net, params->ifindex);
5535                 if (!is_skb_forwardable(dev, skb))
5536                         rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
5537         }
5538
5539         return rc;
5540 }
5541
5542 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
5543         .func           = bpf_skb_fib_lookup,
5544         .gpl_only       = true,
5545         .ret_type       = RET_INTEGER,
5546         .arg1_type      = ARG_PTR_TO_CTX,
5547         .arg2_type      = ARG_PTR_TO_MEM,
5548         .arg3_type      = ARG_CONST_SIZE,
5549         .arg4_type      = ARG_ANYTHING,
5550 };
5551
5552 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5553 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
5554 {
5555         int err;
5556         struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
5557
5558         if (!seg6_validate_srh(srh, len, false))
5559                 return -EINVAL;
5560
5561         switch (type) {
5562         case BPF_LWT_ENCAP_SEG6_INLINE:
5563                 if (skb->protocol != htons(ETH_P_IPV6))
5564                         return -EBADMSG;
5565
5566                 err = seg6_do_srh_inline(skb, srh);
5567                 break;
5568         case BPF_LWT_ENCAP_SEG6:
5569                 skb_reset_inner_headers(skb);
5570                 skb->encapsulation = 1;
5571                 err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
5572                 break;
5573         default:
5574                 return -EINVAL;
5575         }
5576
5577         bpf_compute_data_pointers(skb);
5578         if (err)
5579                 return err;
5580
5581         ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
5582         skb_set_transport_header(skb, sizeof(struct ipv6hdr));
5583
5584         return seg6_lookup_nexthop(skb, NULL, 0);
5585 }
5586 #endif /* CONFIG_IPV6_SEG6_BPF */
5587
5588 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5589 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
5590                              bool ingress)
5591 {
5592         return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
5593 }
5594 #endif
5595
5596 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
5597            u32, len)
5598 {
5599         switch (type) {
5600 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5601         case BPF_LWT_ENCAP_SEG6:
5602         case BPF_LWT_ENCAP_SEG6_INLINE:
5603                 return bpf_push_seg6_encap(skb, type, hdr, len);
5604 #endif
5605 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5606         case BPF_LWT_ENCAP_IP:
5607                 return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
5608 #endif
5609         default:
5610                 return -EINVAL;
5611         }
5612 }
5613
5614 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
5615            void *, hdr, u32, len)
5616 {
5617         switch (type) {
5618 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
5619         case BPF_LWT_ENCAP_IP:
5620                 return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
5621 #endif
5622         default:
5623                 return -EINVAL;
5624         }
5625 }
5626
5627 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
5628         .func           = bpf_lwt_in_push_encap,
5629         .gpl_only       = false,
5630         .ret_type       = RET_INTEGER,
5631         .arg1_type      = ARG_PTR_TO_CTX,
5632         .arg2_type      = ARG_ANYTHING,
5633         .arg3_type      = ARG_PTR_TO_MEM,
5634         .arg4_type      = ARG_CONST_SIZE
5635 };
5636
5637 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
5638         .func           = bpf_lwt_xmit_push_encap,
5639         .gpl_only       = false,
5640         .ret_type       = RET_INTEGER,
5641         .arg1_type      = ARG_PTR_TO_CTX,
5642         .arg2_type      = ARG_ANYTHING,
5643         .arg3_type      = ARG_PTR_TO_MEM,
5644         .arg4_type      = ARG_CONST_SIZE
5645 };
5646
5647 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5648 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
5649            const void *, from, u32, len)
5650 {
5651         struct seg6_bpf_srh_state *srh_state =
5652                 this_cpu_ptr(&seg6_bpf_srh_states);
5653         struct ipv6_sr_hdr *srh = srh_state->srh;
5654         void *srh_tlvs, *srh_end, *ptr;
5655         int srhoff = 0;
5656
5657         if (srh == NULL)
5658                 return -EINVAL;
5659
5660         srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
5661         srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
5662
5663         ptr = skb->data + offset;
5664         if (ptr >= srh_tlvs && ptr + len <= srh_end)
5665                 srh_state->valid = false;
5666         else if (ptr < (void *)&srh->flags ||
5667                  ptr + len > (void *)&srh->segments)
5668                 return -EFAULT;
5669
5670         if (unlikely(bpf_try_make_writable(skb, offset + len)))
5671                 return -EFAULT;
5672         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5673                 return -EINVAL;
5674         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5675
5676         memcpy(skb->data + offset, from, len);
5677         return 0;
5678 }
5679
5680 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
5681         .func           = bpf_lwt_seg6_store_bytes,
5682         .gpl_only       = false,
5683         .ret_type       = RET_INTEGER,
5684         .arg1_type      = ARG_PTR_TO_CTX,
5685         .arg2_type      = ARG_ANYTHING,
5686         .arg3_type      = ARG_PTR_TO_MEM,
5687         .arg4_type      = ARG_CONST_SIZE
5688 };
5689
5690 static void bpf_update_srh_state(struct sk_buff *skb)
5691 {
5692         struct seg6_bpf_srh_state *srh_state =
5693                 this_cpu_ptr(&seg6_bpf_srh_states);
5694         int srhoff = 0;
5695
5696         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
5697                 srh_state->srh = NULL;
5698         } else {
5699                 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5700                 srh_state->hdrlen = srh_state->srh->hdrlen << 3;
5701                 srh_state->valid = true;
5702         }
5703 }
5704
5705 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
5706            u32, action, void *, param, u32, param_len)
5707 {
5708         struct seg6_bpf_srh_state *srh_state =
5709                 this_cpu_ptr(&seg6_bpf_srh_states);
5710         int hdroff = 0;
5711         int err;
5712
5713         switch (action) {
5714         case SEG6_LOCAL_ACTION_END_X:
5715                 if (!seg6_bpf_has_valid_srh(skb))
5716                         return -EBADMSG;
5717                 if (param_len != sizeof(struct in6_addr))
5718                         return -EINVAL;
5719                 return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
5720         case SEG6_LOCAL_ACTION_END_T:
5721                 if (!seg6_bpf_has_valid_srh(skb))
5722                         return -EBADMSG;
5723                 if (param_len != sizeof(int))
5724                         return -EINVAL;
5725                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5726         case SEG6_LOCAL_ACTION_END_DT6:
5727                 if (!seg6_bpf_has_valid_srh(skb))
5728                         return -EBADMSG;
5729                 if (param_len != sizeof(int))
5730                         return -EINVAL;
5731
5732                 if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
5733                         return -EBADMSG;
5734                 if (!pskb_pull(skb, hdroff))
5735                         return -EBADMSG;
5736
5737                 skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
5738                 skb_reset_network_header(skb);
5739                 skb_reset_transport_header(skb);
5740                 skb->encapsulation = 0;
5741
5742                 bpf_compute_data_pointers(skb);
5743                 bpf_update_srh_state(skb);
5744                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5745         case SEG6_LOCAL_ACTION_END_B6:
5746                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5747                         return -EBADMSG;
5748                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
5749                                           param, param_len);
5750                 if (!err)
5751                         bpf_update_srh_state(skb);
5752
5753                 return err;
5754         case SEG6_LOCAL_ACTION_END_B6_ENCAP:
5755                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5756                         return -EBADMSG;
5757                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
5758                                           param, param_len);
5759                 if (!err)
5760                         bpf_update_srh_state(skb);
5761
5762                 return err;
5763         default:
5764                 return -EINVAL;
5765         }
5766 }
5767
5768 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
5769         .func           = bpf_lwt_seg6_action,
5770         .gpl_only       = false,
5771         .ret_type       = RET_INTEGER,
5772         .arg1_type      = ARG_PTR_TO_CTX,
5773         .arg2_type      = ARG_ANYTHING,
5774         .arg3_type      = ARG_PTR_TO_MEM,
5775         .arg4_type      = ARG_CONST_SIZE
5776 };
5777
5778 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
5779            s32, len)
5780 {
5781         struct seg6_bpf_srh_state *srh_state =
5782                 this_cpu_ptr(&seg6_bpf_srh_states);
5783         struct ipv6_sr_hdr *srh = srh_state->srh;
5784         void *srh_end, *srh_tlvs, *ptr;
5785         struct ipv6hdr *hdr;
5786         int srhoff = 0;
5787         int ret;
5788
5789         if (unlikely(srh == NULL))
5790                 return -EINVAL;
5791
5792         srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
5793                         ((srh->first_segment + 1) << 4));
5794         srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
5795                         srh_state->hdrlen);
5796         ptr = skb->data + offset;
5797
5798         if (unlikely(ptr < srh_tlvs || ptr > srh_end))
5799                 return -EFAULT;
5800         if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
5801                 return -EFAULT;
5802
5803         if (len > 0) {
5804                 ret = skb_cow_head(skb, len);
5805                 if (unlikely(ret < 0))
5806                         return ret;
5807
5808                 ret = bpf_skb_net_hdr_push(skb, offset, len);
5809         } else {
5810                 ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
5811         }
5812
5813         bpf_compute_data_pointers(skb);
5814         if (unlikely(ret < 0))
5815                 return ret;
5816
5817         hdr = (struct ipv6hdr *)skb->data;
5818         hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
5819
5820         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5821                 return -EINVAL;
5822         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5823         srh_state->hdrlen += len;
5824         srh_state->valid = false;
5825         return 0;
5826 }
5827
5828 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
5829         .func           = bpf_lwt_seg6_adjust_srh,
5830         .gpl_only       = false,
5831         .ret_type       = RET_INTEGER,
5832         .arg1_type      = ARG_PTR_TO_CTX,
5833         .arg2_type      = ARG_ANYTHING,
5834         .arg3_type      = ARG_ANYTHING,
5835 };
5836 #endif /* CONFIG_IPV6_SEG6_BPF */
5837
5838 #ifdef CONFIG_INET
5839 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
5840                               int dif, int sdif, u8 family, u8 proto)
5841 {
5842         bool refcounted = false;
5843         struct sock *sk = NULL;
5844
5845         if (family == AF_INET) {
5846                 __be32 src4 = tuple->ipv4.saddr;
5847                 __be32 dst4 = tuple->ipv4.daddr;
5848
5849                 if (proto == IPPROTO_TCP)
5850                         sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
5851                                            src4, tuple->ipv4.sport,
5852                                            dst4, tuple->ipv4.dport,
5853                                            dif, sdif, &refcounted);
5854                 else
5855                         sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
5856                                                dst4, tuple->ipv4.dport,
5857                                                dif, sdif, &udp_table, NULL);
5858 #if IS_ENABLED(CONFIG_IPV6)
5859         } else {
5860                 struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
5861                 struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
5862
5863                 if (proto == IPPROTO_TCP)
5864                         sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
5865                                             src6, tuple->ipv6.sport,
5866                                             dst6, ntohs(tuple->ipv6.dport),
5867                                             dif, sdif, &refcounted);
5868                 else if (likely(ipv6_bpf_stub))
5869                         sk = ipv6_bpf_stub->udp6_lib_lookup(net,
5870                                                             src6, tuple->ipv6.sport,
5871                                                             dst6, tuple->ipv6.dport,
5872                                                             dif, sdif,
5873                                                             &udp_table, NULL);
5874 #endif
5875         }
5876
5877         if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
5878                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
5879                 sk = NULL;
5880         }
5881         return sk;
5882 }
5883
5884 /* bpf_skc_lookup performs the core lookup for different types of sockets,
5885  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
5886  * Returns the socket as an 'unsigned long' to simplify the casting in the
5887  * callers to satisfy BPF_CALL declarations.
5888  */
5889 static struct sock *
5890 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5891                  struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5892                  u64 flags)
5893 {
5894         struct sock *sk = NULL;
5895         u8 family = AF_UNSPEC;
5896         struct net *net;
5897         int sdif;
5898
5899         if (len == sizeof(tuple->ipv4))
5900                 family = AF_INET;
5901         else if (len == sizeof(tuple->ipv6))
5902                 family = AF_INET6;
5903         else
5904                 return NULL;
5905
5906         if (unlikely(family == AF_UNSPEC || flags ||
5907                      !((s32)netns_id < 0 || netns_id <= S32_MAX)))
5908                 goto out;
5909
5910         if (family == AF_INET)
5911                 sdif = inet_sdif(skb);
5912         else
5913                 sdif = inet6_sdif(skb);
5914
5915         if ((s32)netns_id < 0) {
5916                 net = caller_net;
5917                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5918         } else {
5919                 net = get_net_ns_by_id(caller_net, netns_id);
5920                 if (unlikely(!net))
5921                         goto out;
5922                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5923                 put_net(net);
5924         }
5925
5926 out:
5927         return sk;
5928 }
5929
5930 static struct sock *
5931 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5932                 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5933                 u64 flags)
5934 {
5935         struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
5936                                            ifindex, proto, netns_id, flags);
5937
5938         if (sk) {
5939                 sk = sk_to_full_sk(sk);
5940                 if (!sk_fullsock(sk)) {
5941                         sock_gen_put(sk);
5942                         return NULL;
5943                 }
5944         }
5945
5946         return sk;
5947 }
5948
5949 static struct sock *
5950 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5951                u8 proto, u64 netns_id, u64 flags)
5952 {
5953         struct net *caller_net;
5954         int ifindex;
5955
5956         if (skb->dev) {
5957                 caller_net = dev_net(skb->dev);
5958                 ifindex = skb->dev->ifindex;
5959         } else {
5960                 caller_net = sock_net(skb->sk);
5961                 ifindex = 0;
5962         }
5963
5964         return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
5965                                 netns_id, flags);
5966 }
5967
5968 static struct sock *
5969 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5970               u8 proto, u64 netns_id, u64 flags)
5971 {
5972         struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
5973                                          flags);
5974
5975         if (sk) {
5976                 sk = sk_to_full_sk(sk);
5977                 if (!sk_fullsock(sk)) {
5978                         sock_gen_put(sk);
5979                         return NULL;
5980                 }
5981         }
5982
5983         return sk;
5984 }
5985
5986 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
5987            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5988 {
5989         return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
5990                                              netns_id, flags);
5991 }
5992
5993 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
5994         .func           = bpf_skc_lookup_tcp,
5995         .gpl_only       = false,
5996         .pkt_access     = true,
5997         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
5998         .arg1_type      = ARG_PTR_TO_CTX,
5999         .arg2_type      = ARG_PTR_TO_MEM,
6000         .arg3_type      = ARG_CONST_SIZE,
6001         .arg4_type      = ARG_ANYTHING,
6002         .arg5_type      = ARG_ANYTHING,
6003 };
6004
6005 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6006            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6007 {
6008         return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6009                                             netns_id, flags);
6010 }
6011
6012 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6013         .func           = bpf_sk_lookup_tcp,
6014         .gpl_only       = false,
6015         .pkt_access     = true,
6016         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6017         .arg1_type      = ARG_PTR_TO_CTX,
6018         .arg2_type      = ARG_PTR_TO_MEM,
6019         .arg3_type      = ARG_CONST_SIZE,
6020         .arg4_type      = ARG_ANYTHING,
6021         .arg5_type      = ARG_ANYTHING,
6022 };
6023
6024 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6025            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6026 {
6027         return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6028                                             netns_id, flags);
6029 }
6030
6031 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6032         .func           = bpf_sk_lookup_udp,
6033         .gpl_only       = false,
6034         .pkt_access     = true,
6035         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6036         .arg1_type      = ARG_PTR_TO_CTX,
6037         .arg2_type      = ARG_PTR_TO_MEM,
6038         .arg3_type      = ARG_CONST_SIZE,
6039         .arg4_type      = ARG_ANYTHING,
6040         .arg5_type      = ARG_ANYTHING,
6041 };
6042
6043 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6044 {
6045         if (sk && sk_is_refcounted(sk))
6046                 sock_gen_put(sk);
6047         return 0;
6048 }
6049
6050 static const struct bpf_func_proto bpf_sk_release_proto = {
6051         .func           = bpf_sk_release,
6052         .gpl_only       = false,
6053         .ret_type       = RET_INTEGER,
6054         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6055 };
6056
6057 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6058            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6059 {
6060         struct net *caller_net = dev_net(ctx->rxq->dev);
6061         int ifindex = ctx->rxq->dev->ifindex;
6062
6063         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6064                                               ifindex, IPPROTO_UDP, netns_id,
6065                                               flags);
6066 }
6067
6068 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6069         .func           = bpf_xdp_sk_lookup_udp,
6070         .gpl_only       = false,
6071         .pkt_access     = true,
6072         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6073         .arg1_type      = ARG_PTR_TO_CTX,
6074         .arg2_type      = ARG_PTR_TO_MEM,
6075         .arg3_type      = ARG_CONST_SIZE,
6076         .arg4_type      = ARG_ANYTHING,
6077         .arg5_type      = ARG_ANYTHING,
6078 };
6079
6080 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6081            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6082 {
6083         struct net *caller_net = dev_net(ctx->rxq->dev);
6084         int ifindex = ctx->rxq->dev->ifindex;
6085
6086         return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6087                                                ifindex, IPPROTO_TCP, netns_id,
6088                                                flags);
6089 }
6090
6091 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6092         .func           = bpf_xdp_skc_lookup_tcp,
6093         .gpl_only       = false,
6094         .pkt_access     = true,
6095         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6096         .arg1_type      = ARG_PTR_TO_CTX,
6097         .arg2_type      = ARG_PTR_TO_MEM,
6098         .arg3_type      = ARG_CONST_SIZE,
6099         .arg4_type      = ARG_ANYTHING,
6100         .arg5_type      = ARG_ANYTHING,
6101 };
6102
6103 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6104            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6105 {
6106         struct net *caller_net = dev_net(ctx->rxq->dev);
6107         int ifindex = ctx->rxq->dev->ifindex;
6108
6109         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6110                                               ifindex, IPPROTO_TCP, netns_id,
6111                                               flags);
6112 }
6113
6114 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6115         .func           = bpf_xdp_sk_lookup_tcp,
6116         .gpl_only       = false,
6117         .pkt_access     = true,
6118         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6119         .arg1_type      = ARG_PTR_TO_CTX,
6120         .arg2_type      = ARG_PTR_TO_MEM,
6121         .arg3_type      = ARG_CONST_SIZE,
6122         .arg4_type      = ARG_ANYTHING,
6123         .arg5_type      = ARG_ANYTHING,
6124 };
6125
6126 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6127            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6128 {
6129         return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6130                                                sock_net(ctx->sk), 0,
6131                                                IPPROTO_TCP, netns_id, flags);
6132 }
6133
6134 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6135         .func           = bpf_sock_addr_skc_lookup_tcp,
6136         .gpl_only       = false,
6137         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6138         .arg1_type      = ARG_PTR_TO_CTX,
6139         .arg2_type      = ARG_PTR_TO_MEM,
6140         .arg3_type      = ARG_CONST_SIZE,
6141         .arg4_type      = ARG_ANYTHING,
6142         .arg5_type      = ARG_ANYTHING,
6143 };
6144
6145 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6146            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6147 {
6148         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6149                                               sock_net(ctx->sk), 0, IPPROTO_TCP,
6150                                               netns_id, flags);
6151 }
6152
6153 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6154         .func           = bpf_sock_addr_sk_lookup_tcp,
6155         .gpl_only       = false,
6156         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6157         .arg1_type      = ARG_PTR_TO_CTX,
6158         .arg2_type      = ARG_PTR_TO_MEM,
6159         .arg3_type      = ARG_CONST_SIZE,
6160         .arg4_type      = ARG_ANYTHING,
6161         .arg5_type      = ARG_ANYTHING,
6162 };
6163
6164 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6165            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6166 {
6167         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6168                                               sock_net(ctx->sk), 0, IPPROTO_UDP,
6169                                               netns_id, flags);
6170 }
6171
6172 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6173         .func           = bpf_sock_addr_sk_lookup_udp,
6174         .gpl_only       = false,
6175         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6176         .arg1_type      = ARG_PTR_TO_CTX,
6177         .arg2_type      = ARG_PTR_TO_MEM,
6178         .arg3_type      = ARG_CONST_SIZE,
6179         .arg4_type      = ARG_ANYTHING,
6180         .arg5_type      = ARG_ANYTHING,
6181 };
6182
6183 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6184                                   struct bpf_insn_access_aux *info)
6185 {
6186         if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6187                                           icsk_retransmits))
6188                 return false;
6189
6190         if (off % size != 0)
6191                 return false;
6192
6193         switch (off) {
6194         case offsetof(struct bpf_tcp_sock, bytes_received):
6195         case offsetof(struct bpf_tcp_sock, bytes_acked):
6196                 return size == sizeof(__u64);
6197         default:
6198                 return size == sizeof(__u32);
6199         }
6200 }
6201
6202 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6203                                     const struct bpf_insn *si,
6204                                     struct bpf_insn *insn_buf,
6205                                     struct bpf_prog *prog, u32 *target_size)
6206 {
6207         struct bpf_insn *insn = insn_buf;
6208
6209 #define BPF_TCP_SOCK_GET_COMMON(FIELD)                                  \
6210         do {                                                            \
6211                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >     \
6212                              sizeof_field(struct bpf_tcp_sock, FIELD)); \
6213                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6214                                       si->dst_reg, si->src_reg,         \
6215                                       offsetof(struct tcp_sock, FIELD)); \
6216         } while (0)
6217
6218 #define BPF_INET_SOCK_GET_COMMON(FIELD)                                 \
6219         do {                                                            \
6220                 BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,  \
6221                                           FIELD) >                      \
6222                              sizeof_field(struct bpf_tcp_sock, FIELD)); \
6223                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                 \
6224                                         struct inet_connection_sock,    \
6225                                         FIELD),                         \
6226                                       si->dst_reg, si->src_reg,         \
6227                                       offsetof(                         \
6228                                         struct inet_connection_sock,    \
6229                                         FIELD));                        \
6230         } while (0)
6231
6232         if (insn > insn_buf)
6233                 return insn - insn_buf;
6234
6235         switch (si->off) {
6236         case offsetof(struct bpf_tcp_sock, rtt_min):
6237                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
6238                              sizeof(struct minmax));
6239                 BUILD_BUG_ON(sizeof(struct minmax) <
6240                              sizeof(struct minmax_sample));
6241
6242                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6243                                       offsetof(struct tcp_sock, rtt_min) +
6244                                       offsetof(struct minmax_sample, v));
6245                 break;
6246         case offsetof(struct bpf_tcp_sock, snd_cwnd):
6247                 BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
6248                 break;
6249         case offsetof(struct bpf_tcp_sock, srtt_us):
6250                 BPF_TCP_SOCK_GET_COMMON(srtt_us);
6251                 break;
6252         case offsetof(struct bpf_tcp_sock, snd_ssthresh):
6253                 BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
6254                 break;
6255         case offsetof(struct bpf_tcp_sock, rcv_nxt):
6256                 BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
6257                 break;
6258         case offsetof(struct bpf_tcp_sock, snd_nxt):
6259                 BPF_TCP_SOCK_GET_COMMON(snd_nxt);
6260                 break;
6261         case offsetof(struct bpf_tcp_sock, snd_una):
6262                 BPF_TCP_SOCK_GET_COMMON(snd_una);
6263                 break;
6264         case offsetof(struct bpf_tcp_sock, mss_cache):
6265                 BPF_TCP_SOCK_GET_COMMON(mss_cache);
6266                 break;
6267         case offsetof(struct bpf_tcp_sock, ecn_flags):
6268                 BPF_TCP_SOCK_GET_COMMON(ecn_flags);
6269                 break;
6270         case offsetof(struct bpf_tcp_sock, rate_delivered):
6271                 BPF_TCP_SOCK_GET_COMMON(rate_delivered);
6272                 break;
6273         case offsetof(struct bpf_tcp_sock, rate_interval_us):
6274                 BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
6275                 break;
6276         case offsetof(struct bpf_tcp_sock, packets_out):
6277                 BPF_TCP_SOCK_GET_COMMON(packets_out);
6278                 break;
6279         case offsetof(struct bpf_tcp_sock, retrans_out):
6280                 BPF_TCP_SOCK_GET_COMMON(retrans_out);
6281                 break;
6282         case offsetof(struct bpf_tcp_sock, total_retrans):
6283                 BPF_TCP_SOCK_GET_COMMON(total_retrans);
6284                 break;
6285         case offsetof(struct bpf_tcp_sock, segs_in):
6286                 BPF_TCP_SOCK_GET_COMMON(segs_in);
6287                 break;
6288         case offsetof(struct bpf_tcp_sock, data_segs_in):
6289                 BPF_TCP_SOCK_GET_COMMON(data_segs_in);
6290                 break;
6291         case offsetof(struct bpf_tcp_sock, segs_out):
6292                 BPF_TCP_SOCK_GET_COMMON(segs_out);
6293                 break;
6294         case offsetof(struct bpf_tcp_sock, data_segs_out):
6295                 BPF_TCP_SOCK_GET_COMMON(data_segs_out);
6296                 break;
6297         case offsetof(struct bpf_tcp_sock, lost_out):
6298                 BPF_TCP_SOCK_GET_COMMON(lost_out);
6299                 break;
6300         case offsetof(struct bpf_tcp_sock, sacked_out):
6301                 BPF_TCP_SOCK_GET_COMMON(sacked_out);
6302                 break;
6303         case offsetof(struct bpf_tcp_sock, bytes_received):
6304                 BPF_TCP_SOCK_GET_COMMON(bytes_received);
6305                 break;
6306         case offsetof(struct bpf_tcp_sock, bytes_acked):
6307                 BPF_TCP_SOCK_GET_COMMON(bytes_acked);
6308                 break;
6309         case offsetof(struct bpf_tcp_sock, dsack_dups):
6310                 BPF_TCP_SOCK_GET_COMMON(dsack_dups);
6311                 break;
6312         case offsetof(struct bpf_tcp_sock, delivered):
6313                 BPF_TCP_SOCK_GET_COMMON(delivered);
6314                 break;
6315         case offsetof(struct bpf_tcp_sock, delivered_ce):
6316                 BPF_TCP_SOCK_GET_COMMON(delivered_ce);
6317                 break;
6318         case offsetof(struct bpf_tcp_sock, icsk_retransmits):
6319                 BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
6320                 break;
6321         }
6322
6323         return insn - insn_buf;
6324 }
6325
6326 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
6327 {
6328         if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
6329                 return (unsigned long)sk;
6330
6331         return (unsigned long)NULL;
6332 }
6333
6334 const struct bpf_func_proto bpf_tcp_sock_proto = {
6335         .func           = bpf_tcp_sock,
6336         .gpl_only       = false,
6337         .ret_type       = RET_PTR_TO_TCP_SOCK_OR_NULL,
6338         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
6339 };
6340
6341 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
6342 {
6343         sk = sk_to_full_sk(sk);
6344
6345         if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
6346                 return (unsigned long)sk;
6347
6348         return (unsigned long)NULL;
6349 }
6350
6351 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
6352         .func           = bpf_get_listener_sock,
6353         .gpl_only       = false,
6354         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6355         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
6356 };
6357
6358 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
6359 {
6360         unsigned int iphdr_len;
6361
6362         switch (skb_protocol(skb, true)) {
6363         case cpu_to_be16(ETH_P_IP):
6364                 iphdr_len = sizeof(struct iphdr);
6365                 break;
6366         case cpu_to_be16(ETH_P_IPV6):
6367                 iphdr_len = sizeof(struct ipv6hdr);
6368                 break;
6369         default:
6370                 return 0;
6371         }
6372
6373         if (skb_headlen(skb) < iphdr_len)
6374                 return 0;
6375
6376         if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
6377                 return 0;
6378
6379         return INET_ECN_set_ce(skb);
6380 }
6381
6382 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6383                                   struct bpf_insn_access_aux *info)
6384 {
6385         if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
6386                 return false;
6387
6388         if (off % size != 0)
6389                 return false;
6390
6391         switch (off) {
6392         default:
6393                 return size == sizeof(__u32);
6394         }
6395 }
6396
6397 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
6398                                     const struct bpf_insn *si,
6399                                     struct bpf_insn *insn_buf,
6400                                     struct bpf_prog *prog, u32 *target_size)
6401 {
6402         struct bpf_insn *insn = insn_buf;
6403
6404 #define BPF_XDP_SOCK_GET(FIELD)                                         \
6405         do {                                                            \
6406                 BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >     \
6407                              sizeof_field(struct bpf_xdp_sock, FIELD)); \
6408                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
6409                                       si->dst_reg, si->src_reg,         \
6410                                       offsetof(struct xdp_sock, FIELD)); \
6411         } while (0)
6412
6413         switch (si->off) {
6414         case offsetof(struct bpf_xdp_sock, queue_id):
6415                 BPF_XDP_SOCK_GET(queue_id);
6416                 break;
6417         }
6418
6419         return insn - insn_buf;
6420 }
6421
6422 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
6423         .func           = bpf_skb_ecn_set_ce,
6424         .gpl_only       = false,
6425         .ret_type       = RET_INTEGER,
6426         .arg1_type      = ARG_PTR_TO_CTX,
6427 };
6428
6429 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6430            struct tcphdr *, th, u32, th_len)
6431 {
6432 #ifdef CONFIG_SYN_COOKIES
6433         u32 cookie;
6434         int ret;
6435
6436         if (unlikely(!sk || th_len < sizeof(*th)))
6437                 return -EINVAL;
6438
6439         /* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
6440         if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6441                 return -EINVAL;
6442
6443         if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
6444                 return -EINVAL;
6445
6446         if (!th->ack || th->rst || th->syn)
6447                 return -ENOENT;
6448
6449         if (tcp_synq_no_recent_overflow(sk))
6450                 return -ENOENT;
6451
6452         cookie = ntohl(th->ack_seq) - 1;
6453
6454         switch (sk->sk_family) {
6455         case AF_INET:
6456                 if (unlikely(iph_len < sizeof(struct iphdr)))
6457                         return -EINVAL;
6458
6459                 ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
6460                 break;
6461
6462 #if IS_BUILTIN(CONFIG_IPV6)
6463         case AF_INET6:
6464                 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6465                         return -EINVAL;
6466
6467                 ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
6468                 break;
6469 #endif /* CONFIG_IPV6 */
6470
6471         default:
6472                 return -EPROTONOSUPPORT;
6473         }
6474
6475         if (ret > 0)
6476                 return 0;
6477
6478         return -ENOENT;
6479 #else
6480         return -ENOTSUPP;
6481 #endif
6482 }
6483
6484 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
6485         .func           = bpf_tcp_check_syncookie,
6486         .gpl_only       = true,
6487         .pkt_access     = true,
6488         .ret_type       = RET_INTEGER,
6489         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6490         .arg2_type      = ARG_PTR_TO_MEM,
6491         .arg3_type      = ARG_CONST_SIZE,
6492         .arg4_type      = ARG_PTR_TO_MEM,
6493         .arg5_type      = ARG_CONST_SIZE,
6494 };
6495
6496 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
6497            struct tcphdr *, th, u32, th_len)
6498 {
6499 #ifdef CONFIG_SYN_COOKIES
6500         u32 cookie;
6501         u16 mss;
6502
6503         if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
6504                 return -EINVAL;
6505
6506         if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
6507                 return -EINVAL;
6508
6509         if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
6510                 return -ENOENT;
6511
6512         if (!th->syn || th->ack || th->fin || th->rst)
6513                 return -EINVAL;
6514
6515         if (unlikely(iph_len < sizeof(struct iphdr)))
6516                 return -EINVAL;
6517
6518         /* Both struct iphdr and struct ipv6hdr have the version field at the
6519          * same offset so we can cast to the shorter header (struct iphdr).
6520          */
6521         switch (((struct iphdr *)iph)->version) {
6522         case 4:
6523                 if (sk->sk_family == AF_INET6 && sk->sk_ipv6only)
6524                         return -EINVAL;
6525
6526                 mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
6527                 break;
6528
6529 #if IS_BUILTIN(CONFIG_IPV6)
6530         case 6:
6531                 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
6532                         return -EINVAL;
6533
6534                 if (sk->sk_family != AF_INET6)
6535                         return -EINVAL;
6536
6537                 mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
6538                 break;
6539 #endif /* CONFIG_IPV6 */
6540
6541         default:
6542                 return -EPROTONOSUPPORT;
6543         }
6544         if (mss == 0)
6545                 return -ENOENT;
6546
6547         return cookie | ((u64)mss << 32);
6548 #else
6549         return -EOPNOTSUPP;
6550 #endif /* CONFIG_SYN_COOKIES */
6551 }
6552
6553 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
6554         .func           = bpf_tcp_gen_syncookie,
6555         .gpl_only       = true, /* __cookie_v*_init_sequence() is GPL */
6556         .pkt_access     = true,
6557         .ret_type       = RET_INTEGER,
6558         .arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6559         .arg2_type      = ARG_PTR_TO_MEM,
6560         .arg3_type      = ARG_CONST_SIZE,
6561         .arg4_type      = ARG_PTR_TO_MEM,
6562         .arg5_type      = ARG_CONST_SIZE,
6563 };
6564
6565 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
6566 {
6567         if (!sk || flags != 0)
6568                 return -EINVAL;
6569         if (!skb_at_tc_ingress(skb))
6570                 return -EOPNOTSUPP;
6571         if (unlikely(dev_net(skb->dev) != sock_net(sk)))
6572                 return -ENETUNREACH;
6573         if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
6574                 return -ESOCKTNOSUPPORT;
6575         if (sk_is_refcounted(sk) &&
6576             unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
6577                 return -ENOENT;
6578
6579         skb_orphan(skb);
6580         skb->sk = sk;
6581         skb->destructor = sock_pfree;
6582
6583         return 0;
6584 }
6585
6586 static const struct bpf_func_proto bpf_sk_assign_proto = {
6587         .func           = bpf_sk_assign,
6588         .gpl_only       = false,
6589         .ret_type       = RET_INTEGER,
6590         .arg1_type      = ARG_PTR_TO_CTX,
6591         .arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
6592         .arg3_type      = ARG_ANYTHING,
6593 };
6594
6595 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
6596                                     u8 search_kind, const u8 *magic,
6597                                     u8 magic_len, bool *eol)
6598 {
6599         u8 kind, kind_len;
6600
6601         *eol = false;
6602
6603         while (op < opend) {
6604                 kind = op[0];
6605
6606                 if (kind == TCPOPT_EOL) {
6607                         *eol = true;
6608                         return ERR_PTR(-ENOMSG);
6609                 } else if (kind == TCPOPT_NOP) {
6610                         op++;
6611                         continue;
6612                 }
6613
6614                 if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
6615                         /* Something is wrong in the received header.
6616                          * Follow the TCP stack's tcp_parse_options()
6617                          * and just bail here.
6618                          */
6619                         return ERR_PTR(-EFAULT);
6620
6621                 kind_len = op[1];
6622                 if (search_kind == kind) {
6623                         if (!magic_len)
6624                                 return op;
6625
6626                         if (magic_len > kind_len - 2)
6627                                 return ERR_PTR(-ENOMSG);
6628
6629                         if (!memcmp(&op[2], magic, magic_len))
6630                                 return op;
6631                 }
6632
6633                 op += kind_len;
6634         }
6635
6636         return ERR_PTR(-ENOMSG);
6637 }
6638
6639 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6640            void *, search_res, u32, len, u64, flags)
6641 {
6642         bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
6643         const u8 *op, *opend, *magic, *search = search_res;
6644         u8 search_kind, search_len, copy_len, magic_len;
6645         int ret;
6646
6647         /* 2 byte is the minimal option len except TCPOPT_NOP and
6648          * TCPOPT_EOL which are useless for the bpf prog to learn
6649          * and this helper disallow loading them also.
6650          */
6651         if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
6652                 return -EINVAL;
6653
6654         search_kind = search[0];
6655         search_len = search[1];
6656
6657         if (search_len > len || search_kind == TCPOPT_NOP ||
6658             search_kind == TCPOPT_EOL)
6659                 return -EINVAL;
6660
6661         if (search_kind == TCPOPT_EXP || search_kind == 253) {
6662                 /* 16 or 32 bit magic.  +2 for kind and kind length */
6663                 if (search_len != 4 && search_len != 6)
6664                         return -EINVAL;
6665                 magic = &search[2];
6666                 magic_len = search_len - 2;
6667         } else {
6668                 if (search_len)
6669                         return -EINVAL;
6670                 magic = NULL;
6671                 magic_len = 0;
6672         }
6673
6674         if (load_syn) {
6675                 ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
6676                 if (ret < 0)
6677                         return ret;
6678
6679                 opend = op + ret;
6680                 op += sizeof(struct tcphdr);
6681         } else {
6682                 if (!bpf_sock->skb ||
6683                     bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
6684                         /* This bpf_sock->op cannot call this helper */
6685                         return -EPERM;
6686
6687                 opend = bpf_sock->skb_data_end;
6688                 op = bpf_sock->skb->data + sizeof(struct tcphdr);
6689         }
6690
6691         op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
6692                                 &eol);
6693         if (IS_ERR(op))
6694                 return PTR_ERR(op);
6695
6696         copy_len = op[1];
6697         ret = copy_len;
6698         if (copy_len > len) {
6699                 ret = -ENOSPC;
6700                 copy_len = len;
6701         }
6702
6703         memcpy(search_res, op, copy_len);
6704         return ret;
6705 }
6706
6707 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
6708         .func           = bpf_sock_ops_load_hdr_opt,
6709         .gpl_only       = false,
6710         .ret_type       = RET_INTEGER,
6711         .arg1_type      = ARG_PTR_TO_CTX,
6712         .arg2_type      = ARG_PTR_TO_MEM,
6713         .arg3_type      = ARG_CONST_SIZE,
6714         .arg4_type      = ARG_ANYTHING,
6715 };
6716
6717 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6718            const void *, from, u32, len, u64, flags)
6719 {
6720         u8 new_kind, new_kind_len, magic_len = 0, *opend;
6721         const u8 *op, *new_op, *magic = NULL;
6722         struct sk_buff *skb;
6723         bool eol;
6724
6725         if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
6726                 return -EPERM;
6727
6728         if (len < 2 || flags)
6729                 return -EINVAL;
6730
6731         new_op = from;
6732         new_kind = new_op[0];
6733         new_kind_len = new_op[1];
6734
6735         if (new_kind_len > len || new_kind == TCPOPT_NOP ||
6736             new_kind == TCPOPT_EOL)
6737                 return -EINVAL;
6738
6739         if (new_kind_len > bpf_sock->remaining_opt_len)
6740                 return -ENOSPC;
6741
6742         /* 253 is another experimental kind */
6743         if (new_kind == TCPOPT_EXP || new_kind == 253)  {
6744                 if (new_kind_len < 4)
6745                         return -EINVAL;
6746                 /* Match for the 2 byte magic also.
6747                  * RFC 6994: the magic could be 2 or 4 bytes.
6748                  * Hence, matching by 2 byte only is on the
6749                  * conservative side but it is the right
6750                  * thing to do for the 'search-for-duplication'
6751                  * purpose.
6752                  */
6753                 magic = &new_op[2];
6754                 magic_len = 2;
6755         }
6756
6757         /* Check for duplication */
6758         skb = bpf_sock->skb;
6759         op = skb->data + sizeof(struct tcphdr);
6760         opend = bpf_sock->skb_data_end;
6761
6762         op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
6763                                 &eol);
6764         if (!IS_ERR(op))
6765                 return -EEXIST;
6766
6767         if (PTR_ERR(op) != -ENOMSG)
6768                 return PTR_ERR(op);
6769
6770         if (eol)
6771                 /* The option has been ended.  Treat it as no more
6772                  * header option can be written.
6773                  */
6774                 return -ENOSPC;
6775
6776         /* No duplication found.  Store the header option. */
6777         memcpy(opend, from, new_kind_len);
6778
6779         bpf_sock->remaining_opt_len -= new_kind_len;
6780         bpf_sock->skb_data_end += new_kind_len;
6781
6782         return 0;
6783 }
6784
6785 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
6786         .func           = bpf_sock_ops_store_hdr_opt,
6787         .gpl_only       = false,
6788         .ret_type       = RET_INTEGER,
6789         .arg1_type      = ARG_PTR_TO_CTX,
6790         .arg2_type      = ARG_PTR_TO_MEM,
6791         .arg3_type      = ARG_CONST_SIZE,
6792         .arg4_type      = ARG_ANYTHING,
6793 };
6794
6795 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
6796            u32, len, u64, flags)
6797 {
6798         if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
6799                 return -EPERM;
6800
6801         if (flags || len < 2)
6802                 return -EINVAL;
6803
6804         if (len > bpf_sock->remaining_opt_len)
6805                 return -ENOSPC;
6806
6807         bpf_sock->remaining_opt_len -= len;
6808
6809         return 0;
6810 }
6811
6812 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
6813         .func           = bpf_sock_ops_reserve_hdr_opt,
6814         .gpl_only       = false,
6815         .ret_type       = RET_INTEGER,
6816         .arg1_type      = ARG_PTR_TO_CTX,
6817         .arg2_type      = ARG_ANYTHING,
6818         .arg3_type      = ARG_ANYTHING,
6819 };
6820
6821 #endif /* CONFIG_INET */
6822
6823 bool bpf_helper_changes_pkt_data(void *func)
6824 {
6825         if (func == bpf_skb_vlan_push ||
6826             func == bpf_skb_vlan_pop ||
6827             func == bpf_skb_store_bytes ||
6828             func == bpf_skb_change_proto ||
6829             func == bpf_skb_change_head ||
6830             func == sk_skb_change_head ||
6831             func == bpf_skb_change_tail ||
6832             func == sk_skb_change_tail ||
6833             func == bpf_skb_adjust_room ||
6834             func == sk_skb_adjust_room ||
6835             func == bpf_skb_pull_data ||
6836             func == sk_skb_pull_data ||
6837             func == bpf_clone_redirect ||
6838             func == bpf_l3_csum_replace ||
6839             func == bpf_l4_csum_replace ||
6840             func == bpf_xdp_adjust_head ||
6841             func == bpf_xdp_adjust_meta ||
6842             func == bpf_msg_pull_data ||
6843             func == bpf_msg_push_data ||
6844             func == bpf_msg_pop_data ||
6845             func == bpf_xdp_adjust_tail ||
6846 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6847             func == bpf_lwt_seg6_store_bytes ||
6848             func == bpf_lwt_seg6_adjust_srh ||
6849             func == bpf_lwt_seg6_action ||
6850 #endif
6851 #ifdef CONFIG_INET
6852             func == bpf_sock_ops_store_hdr_opt ||
6853 #endif
6854             func == bpf_lwt_in_push_encap ||
6855             func == bpf_lwt_xmit_push_encap)
6856                 return true;
6857
6858         return false;
6859 }
6860
6861 const struct bpf_func_proto bpf_event_output_data_proto __weak;
6862 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
6863
6864 static const struct bpf_func_proto *
6865 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6866 {
6867         switch (func_id) {
6868         /* inet and inet6 sockets are created in a process
6869          * context so there is always a valid uid/gid
6870          */
6871         case BPF_FUNC_get_current_uid_gid:
6872                 return &bpf_get_current_uid_gid_proto;
6873         case BPF_FUNC_get_local_storage:
6874                 return &bpf_get_local_storage_proto;
6875         case BPF_FUNC_get_socket_cookie:
6876                 return &bpf_get_socket_cookie_sock_proto;
6877         case BPF_FUNC_get_netns_cookie:
6878                 return &bpf_get_netns_cookie_sock_proto;
6879         case BPF_FUNC_perf_event_output:
6880                 return &bpf_event_output_data_proto;
6881         case BPF_FUNC_get_current_pid_tgid:
6882                 return &bpf_get_current_pid_tgid_proto;
6883         case BPF_FUNC_get_current_comm:
6884                 return &bpf_get_current_comm_proto;
6885 #ifdef CONFIG_CGROUPS
6886         case BPF_FUNC_get_current_cgroup_id:
6887                 return &bpf_get_current_cgroup_id_proto;
6888         case BPF_FUNC_get_current_ancestor_cgroup_id:
6889                 return &bpf_get_current_ancestor_cgroup_id_proto;
6890 #endif
6891 #ifdef CONFIG_CGROUP_NET_CLASSID
6892         case BPF_FUNC_get_cgroup_classid:
6893                 return &bpf_get_cgroup_classid_curr_proto;
6894 #endif
6895         case BPF_FUNC_sk_storage_get:
6896                 return &bpf_sk_storage_get_cg_sock_proto;
6897         default:
6898                 return bpf_base_func_proto(func_id);
6899         }
6900 }
6901
6902 static const struct bpf_func_proto *
6903 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6904 {
6905         switch (func_id) {
6906         /* inet and inet6 sockets are created in a process
6907          * context so there is always a valid uid/gid
6908          */
6909         case BPF_FUNC_get_current_uid_gid:
6910                 return &bpf_get_current_uid_gid_proto;
6911         case BPF_FUNC_bind:
6912                 switch (prog->expected_attach_type) {
6913                 case BPF_CGROUP_INET4_CONNECT:
6914                 case BPF_CGROUP_INET6_CONNECT:
6915                         return &bpf_bind_proto;
6916                 default:
6917                         return NULL;
6918                 }
6919         case BPF_FUNC_get_socket_cookie:
6920                 return &bpf_get_socket_cookie_sock_addr_proto;
6921         case BPF_FUNC_get_netns_cookie:
6922                 return &bpf_get_netns_cookie_sock_addr_proto;
6923         case BPF_FUNC_get_local_storage:
6924                 return &bpf_get_local_storage_proto;
6925         case BPF_FUNC_perf_event_output:
6926                 return &bpf_event_output_data_proto;
6927         case BPF_FUNC_get_current_pid_tgid:
6928                 return &bpf_get_current_pid_tgid_proto;
6929         case BPF_FUNC_get_current_comm:
6930                 return &bpf_get_current_comm_proto;
6931 #ifdef CONFIG_CGROUPS
6932         case BPF_FUNC_get_current_cgroup_id:
6933                 return &bpf_get_current_cgroup_id_proto;
6934         case BPF_FUNC_get_current_ancestor_cgroup_id:
6935                 return &bpf_get_current_ancestor_cgroup_id_proto;
6936 #endif
6937 #ifdef CONFIG_CGROUP_NET_CLASSID
6938         case BPF_FUNC_get_cgroup_classid:
6939                 return &bpf_get_cgroup_classid_curr_proto;
6940 #endif
6941 #ifdef CONFIG_INET
6942         case BPF_FUNC_sk_lookup_tcp:
6943                 return &bpf_sock_addr_sk_lookup_tcp_proto;
6944         case BPF_FUNC_sk_lookup_udp:
6945                 return &bpf_sock_addr_sk_lookup_udp_proto;
6946         case BPF_FUNC_sk_release:
6947                 return &bpf_sk_release_proto;
6948         case BPF_FUNC_skc_lookup_tcp:
6949                 return &bpf_sock_addr_skc_lookup_tcp_proto;
6950 #endif /* CONFIG_INET */
6951         case BPF_FUNC_sk_storage_get:
6952                 return &bpf_sk_storage_get_proto;
6953         case BPF_FUNC_sk_storage_delete:
6954                 return &bpf_sk_storage_delete_proto;
6955         case BPF_FUNC_setsockopt:
6956                 switch (prog->expected_attach_type) {
6957                 case BPF_CGROUP_INET4_CONNECT:
6958                 case BPF_CGROUP_INET6_CONNECT:
6959                         return &bpf_sock_addr_setsockopt_proto;
6960                 default:
6961                         return NULL;
6962                 }
6963         case BPF_FUNC_getsockopt:
6964                 switch (prog->expected_attach_type) {
6965                 case BPF_CGROUP_INET4_CONNECT:
6966                 case BPF_CGROUP_INET6_CONNECT:
6967                         return &bpf_sock_addr_getsockopt_proto;
6968                 default:
6969                         return NULL;
6970                 }
6971         default:
6972                 return bpf_sk_base_func_proto(func_id);
6973         }
6974 }
6975
6976 static const struct bpf_func_proto *
6977 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6978 {
6979         switch (func_id) {
6980         case BPF_FUNC_skb_load_bytes:
6981                 return &bpf_skb_load_bytes_proto;
6982         case BPF_FUNC_skb_load_bytes_relative:
6983                 return &bpf_skb_load_bytes_relative_proto;
6984         case BPF_FUNC_get_socket_cookie:
6985                 return &bpf_get_socket_cookie_proto;
6986         case BPF_FUNC_get_socket_uid:
6987                 return &bpf_get_socket_uid_proto;
6988         case BPF_FUNC_perf_event_output:
6989                 return &bpf_skb_event_output_proto;
6990         default:
6991                 return bpf_sk_base_func_proto(func_id);
6992         }
6993 }
6994
6995 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
6996 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
6997
6998 static const struct bpf_func_proto *
6999 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7000 {
7001         switch (func_id) {
7002         case BPF_FUNC_get_local_storage:
7003                 return &bpf_get_local_storage_proto;
7004         case BPF_FUNC_sk_fullsock:
7005                 return &bpf_sk_fullsock_proto;
7006         case BPF_FUNC_sk_storage_get:
7007                 return &bpf_sk_storage_get_proto;
7008         case BPF_FUNC_sk_storage_delete:
7009                 return &bpf_sk_storage_delete_proto;
7010         case BPF_FUNC_perf_event_output:
7011                 return &bpf_skb_event_output_proto;
7012 #ifdef CONFIG_SOCK_CGROUP_DATA
7013         case BPF_FUNC_skb_cgroup_id:
7014                 return &bpf_skb_cgroup_id_proto;
7015         case BPF_FUNC_skb_ancestor_cgroup_id:
7016                 return &bpf_skb_ancestor_cgroup_id_proto;
7017         case BPF_FUNC_sk_cgroup_id:
7018                 return &bpf_sk_cgroup_id_proto;
7019         case BPF_FUNC_sk_ancestor_cgroup_id:
7020                 return &bpf_sk_ancestor_cgroup_id_proto;
7021 #endif
7022 #ifdef CONFIG_INET
7023         case BPF_FUNC_sk_lookup_tcp:
7024                 return &bpf_sk_lookup_tcp_proto;
7025         case BPF_FUNC_sk_lookup_udp:
7026                 return &bpf_sk_lookup_udp_proto;
7027         case BPF_FUNC_sk_release:
7028                 return &bpf_sk_release_proto;
7029         case BPF_FUNC_skc_lookup_tcp:
7030                 return &bpf_skc_lookup_tcp_proto;
7031         case BPF_FUNC_tcp_sock:
7032                 return &bpf_tcp_sock_proto;
7033         case BPF_FUNC_get_listener_sock:
7034                 return &bpf_get_listener_sock_proto;
7035         case BPF_FUNC_skb_ecn_set_ce:
7036                 return &bpf_skb_ecn_set_ce_proto;
7037 #endif
7038         default:
7039                 return sk_filter_func_proto(func_id, prog);
7040         }
7041 }
7042
7043 static const struct bpf_func_proto *
7044 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7045 {
7046         switch (func_id) {
7047         case BPF_FUNC_skb_store_bytes:
7048                 return &bpf_skb_store_bytes_proto;
7049         case BPF_FUNC_skb_load_bytes:
7050                 return &bpf_skb_load_bytes_proto;
7051         case BPF_FUNC_skb_load_bytes_relative:
7052                 return &bpf_skb_load_bytes_relative_proto;
7053         case BPF_FUNC_skb_pull_data:
7054                 return &bpf_skb_pull_data_proto;
7055         case BPF_FUNC_csum_diff:
7056                 return &bpf_csum_diff_proto;
7057         case BPF_FUNC_csum_update:
7058                 return &bpf_csum_update_proto;
7059         case BPF_FUNC_csum_level:
7060                 return &bpf_csum_level_proto;
7061         case BPF_FUNC_l3_csum_replace:
7062                 return &bpf_l3_csum_replace_proto;
7063         case BPF_FUNC_l4_csum_replace:
7064                 return &bpf_l4_csum_replace_proto;
7065         case BPF_FUNC_clone_redirect:
7066                 return &bpf_clone_redirect_proto;
7067         case BPF_FUNC_get_cgroup_classid:
7068                 return &bpf_get_cgroup_classid_proto;
7069         case BPF_FUNC_skb_vlan_push:
7070                 return &bpf_skb_vlan_push_proto;
7071         case BPF_FUNC_skb_vlan_pop:
7072                 return &bpf_skb_vlan_pop_proto;
7073         case BPF_FUNC_skb_change_proto:
7074                 return &bpf_skb_change_proto_proto;
7075         case BPF_FUNC_skb_change_type:
7076                 return &bpf_skb_change_type_proto;
7077         case BPF_FUNC_skb_adjust_room:
7078                 return &bpf_skb_adjust_room_proto;
7079         case BPF_FUNC_skb_change_tail:
7080                 return &bpf_skb_change_tail_proto;
7081         case BPF_FUNC_skb_change_head:
7082                 return &bpf_skb_change_head_proto;
7083         case BPF_FUNC_skb_get_tunnel_key:
7084                 return &bpf_skb_get_tunnel_key_proto;
7085         case BPF_FUNC_skb_set_tunnel_key:
7086                 return bpf_get_skb_set_tunnel_proto(func_id);
7087         case BPF_FUNC_skb_get_tunnel_opt:
7088                 return &bpf_skb_get_tunnel_opt_proto;
7089         case BPF_FUNC_skb_set_tunnel_opt:
7090                 return bpf_get_skb_set_tunnel_proto(func_id);
7091         case BPF_FUNC_redirect:
7092                 return &bpf_redirect_proto;
7093         case BPF_FUNC_redirect_neigh:
7094                 return &bpf_redirect_neigh_proto;
7095         case BPF_FUNC_redirect_peer:
7096                 return &bpf_redirect_peer_proto;
7097         case BPF_FUNC_get_route_realm:
7098                 return &bpf_get_route_realm_proto;
7099         case BPF_FUNC_get_hash_recalc:
7100                 return &bpf_get_hash_recalc_proto;
7101         case BPF_FUNC_set_hash_invalid:
7102                 return &bpf_set_hash_invalid_proto;
7103         case BPF_FUNC_set_hash:
7104                 return &bpf_set_hash_proto;
7105         case BPF_FUNC_perf_event_output:
7106                 return &bpf_skb_event_output_proto;
7107         case BPF_FUNC_get_smp_processor_id:
7108                 return &bpf_get_smp_processor_id_proto;
7109         case BPF_FUNC_skb_under_cgroup:
7110                 return &bpf_skb_under_cgroup_proto;
7111         case BPF_FUNC_get_socket_cookie:
7112                 return &bpf_get_socket_cookie_proto;
7113         case BPF_FUNC_get_socket_uid:
7114                 return &bpf_get_socket_uid_proto;
7115         case BPF_FUNC_fib_lookup:
7116                 return &bpf_skb_fib_lookup_proto;
7117         case BPF_FUNC_sk_fullsock:
7118                 return &bpf_sk_fullsock_proto;
7119         case BPF_FUNC_sk_storage_get:
7120                 return &bpf_sk_storage_get_proto;
7121         case BPF_FUNC_sk_storage_delete:
7122                 return &bpf_sk_storage_delete_proto;
7123 #ifdef CONFIG_XFRM
7124         case BPF_FUNC_skb_get_xfrm_state:
7125                 return &bpf_skb_get_xfrm_state_proto;
7126 #endif
7127 #ifdef CONFIG_CGROUP_NET_CLASSID
7128         case BPF_FUNC_skb_cgroup_classid:
7129                 return &bpf_skb_cgroup_classid_proto;
7130 #endif
7131 #ifdef CONFIG_SOCK_CGROUP_DATA
7132         case BPF_FUNC_skb_cgroup_id:
7133                 return &bpf_skb_cgroup_id_proto;
7134         case BPF_FUNC_skb_ancestor_cgroup_id:
7135                 return &bpf_skb_ancestor_cgroup_id_proto;
7136 #endif
7137 #ifdef CONFIG_INET
7138         case BPF_FUNC_sk_lookup_tcp:
7139                 return &bpf_sk_lookup_tcp_proto;
7140         case BPF_FUNC_sk_lookup_udp:
7141                 return &bpf_sk_lookup_udp_proto;
7142         case BPF_FUNC_sk_release:
7143                 return &bpf_sk_release_proto;
7144         case BPF_FUNC_tcp_sock:
7145                 return &bpf_tcp_sock_proto;
7146         case BPF_FUNC_get_listener_sock:
7147                 return &bpf_get_listener_sock_proto;
7148         case BPF_FUNC_skc_lookup_tcp:
7149                 return &bpf_skc_lookup_tcp_proto;
7150         case BPF_FUNC_tcp_check_syncookie:
7151                 return &bpf_tcp_check_syncookie_proto;
7152         case BPF_FUNC_skb_ecn_set_ce:
7153                 return &bpf_skb_ecn_set_ce_proto;
7154         case BPF_FUNC_tcp_gen_syncookie:
7155                 return &bpf_tcp_gen_syncookie_proto;
7156         case BPF_FUNC_sk_assign:
7157                 return &bpf_sk_assign_proto;
7158 #endif
7159         default:
7160                 return bpf_sk_base_func_proto(func_id);
7161         }
7162 }
7163
7164 static const struct bpf_func_proto *
7165 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7166 {
7167         switch (func_id) {
7168         case BPF_FUNC_perf_event_output:
7169                 return &bpf_xdp_event_output_proto;
7170         case BPF_FUNC_get_smp_processor_id:
7171                 return &bpf_get_smp_processor_id_proto;
7172         case BPF_FUNC_csum_diff:
7173                 return &bpf_csum_diff_proto;
7174         case BPF_FUNC_xdp_adjust_head:
7175                 return &bpf_xdp_adjust_head_proto;
7176         case BPF_FUNC_xdp_adjust_meta:
7177                 return &bpf_xdp_adjust_meta_proto;
7178         case BPF_FUNC_redirect:
7179                 return &bpf_xdp_redirect_proto;
7180         case BPF_FUNC_redirect_map:
7181                 return &bpf_xdp_redirect_map_proto;
7182         case BPF_FUNC_xdp_adjust_tail:
7183                 return &bpf_xdp_adjust_tail_proto;
7184         case BPF_FUNC_fib_lookup:
7185                 return &bpf_xdp_fib_lookup_proto;
7186 #ifdef CONFIG_INET
7187         case BPF_FUNC_sk_lookup_udp:
7188                 return &bpf_xdp_sk_lookup_udp_proto;
7189         case BPF_FUNC_sk_lookup_tcp:
7190                 return &bpf_xdp_sk_lookup_tcp_proto;
7191         case BPF_FUNC_sk_release:
7192                 return &bpf_sk_release_proto;
7193         case BPF_FUNC_skc_lookup_tcp:
7194                 return &bpf_xdp_skc_lookup_tcp_proto;
7195         case BPF_FUNC_tcp_check_syncookie:
7196                 return &bpf_tcp_check_syncookie_proto;
7197         case BPF_FUNC_tcp_gen_syncookie:
7198                 return &bpf_tcp_gen_syncookie_proto;
7199 #endif
7200         default:
7201                 return bpf_sk_base_func_proto(func_id);
7202         }
7203 }
7204
7205 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
7206 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
7207
7208 static const struct bpf_func_proto *
7209 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7210 {
7211         switch (func_id) {
7212         case BPF_FUNC_setsockopt:
7213                 return &bpf_sock_ops_setsockopt_proto;
7214         case BPF_FUNC_getsockopt:
7215                 return &bpf_sock_ops_getsockopt_proto;
7216         case BPF_FUNC_sock_ops_cb_flags_set:
7217                 return &bpf_sock_ops_cb_flags_set_proto;
7218         case BPF_FUNC_sock_map_update:
7219                 return &bpf_sock_map_update_proto;
7220         case BPF_FUNC_sock_hash_update:
7221                 return &bpf_sock_hash_update_proto;
7222         case BPF_FUNC_get_socket_cookie:
7223                 return &bpf_get_socket_cookie_sock_ops_proto;
7224         case BPF_FUNC_get_local_storage:
7225                 return &bpf_get_local_storage_proto;
7226         case BPF_FUNC_perf_event_output:
7227                 return &bpf_event_output_data_proto;
7228         case BPF_FUNC_sk_storage_get:
7229                 return &bpf_sk_storage_get_proto;
7230         case BPF_FUNC_sk_storage_delete:
7231                 return &bpf_sk_storage_delete_proto;
7232 #ifdef CONFIG_INET
7233         case BPF_FUNC_load_hdr_opt:
7234                 return &bpf_sock_ops_load_hdr_opt_proto;
7235         case BPF_FUNC_store_hdr_opt:
7236                 return &bpf_sock_ops_store_hdr_opt_proto;
7237         case BPF_FUNC_reserve_hdr_opt:
7238                 return &bpf_sock_ops_reserve_hdr_opt_proto;
7239         case BPF_FUNC_tcp_sock:
7240                 return &bpf_tcp_sock_proto;
7241 #endif /* CONFIG_INET */
7242         default:
7243                 return bpf_sk_base_func_proto(func_id);
7244         }
7245 }
7246
7247 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
7248 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
7249
7250 static const struct bpf_func_proto *
7251 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7252 {
7253         switch (func_id) {
7254         case BPF_FUNC_msg_redirect_map:
7255                 return &bpf_msg_redirect_map_proto;
7256         case BPF_FUNC_msg_redirect_hash:
7257                 return &bpf_msg_redirect_hash_proto;
7258         case BPF_FUNC_msg_apply_bytes:
7259                 return &bpf_msg_apply_bytes_proto;
7260         case BPF_FUNC_msg_cork_bytes:
7261                 return &bpf_msg_cork_bytes_proto;
7262         case BPF_FUNC_msg_pull_data:
7263                 return &bpf_msg_pull_data_proto;
7264         case BPF_FUNC_msg_push_data:
7265                 return &bpf_msg_push_data_proto;
7266         case BPF_FUNC_msg_pop_data:
7267                 return &bpf_msg_pop_data_proto;
7268         case BPF_FUNC_perf_event_output:
7269                 return &bpf_event_output_data_proto;
7270         case BPF_FUNC_get_current_uid_gid:
7271                 return &bpf_get_current_uid_gid_proto;
7272         case BPF_FUNC_get_current_pid_tgid:
7273                 return &bpf_get_current_pid_tgid_proto;
7274         case BPF_FUNC_sk_storage_get:
7275                 return &bpf_sk_storage_get_proto;
7276         case BPF_FUNC_sk_storage_delete:
7277                 return &bpf_sk_storage_delete_proto;
7278 #ifdef CONFIG_CGROUPS
7279         case BPF_FUNC_get_current_cgroup_id:
7280                 return &bpf_get_current_cgroup_id_proto;
7281         case BPF_FUNC_get_current_ancestor_cgroup_id:
7282                 return &bpf_get_current_ancestor_cgroup_id_proto;
7283 #endif
7284 #ifdef CONFIG_CGROUP_NET_CLASSID
7285         case BPF_FUNC_get_cgroup_classid:
7286                 return &bpf_get_cgroup_classid_curr_proto;
7287 #endif
7288         default:
7289                 return bpf_sk_base_func_proto(func_id);
7290         }
7291 }
7292
7293 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
7294 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
7295
7296 static const struct bpf_func_proto *
7297 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7298 {
7299         switch (func_id) {
7300         case BPF_FUNC_skb_store_bytes:
7301                 return &bpf_skb_store_bytes_proto;
7302         case BPF_FUNC_skb_load_bytes:
7303                 return &bpf_skb_load_bytes_proto;
7304         case BPF_FUNC_skb_pull_data:
7305                 return &sk_skb_pull_data_proto;
7306         case BPF_FUNC_skb_change_tail:
7307                 return &sk_skb_change_tail_proto;
7308         case BPF_FUNC_skb_change_head:
7309                 return &sk_skb_change_head_proto;
7310         case BPF_FUNC_skb_adjust_room:
7311                 return &sk_skb_adjust_room_proto;
7312         case BPF_FUNC_get_socket_cookie:
7313                 return &bpf_get_socket_cookie_proto;
7314         case BPF_FUNC_get_socket_uid:
7315                 return &bpf_get_socket_uid_proto;
7316         case BPF_FUNC_sk_redirect_map:
7317                 return &bpf_sk_redirect_map_proto;
7318         case BPF_FUNC_sk_redirect_hash:
7319                 return &bpf_sk_redirect_hash_proto;
7320         case BPF_FUNC_perf_event_output:
7321                 return &bpf_skb_event_output_proto;
7322 #ifdef CONFIG_INET
7323         case BPF_FUNC_sk_lookup_tcp:
7324                 return &bpf_sk_lookup_tcp_proto;
7325         case BPF_FUNC_sk_lookup_udp:
7326                 return &bpf_sk_lookup_udp_proto;
7327         case BPF_FUNC_sk_release:
7328                 return &bpf_sk_release_proto;
7329         case BPF_FUNC_skc_lookup_tcp:
7330                 return &bpf_skc_lookup_tcp_proto;
7331 #endif
7332         default:
7333                 return bpf_sk_base_func_proto(func_id);
7334         }
7335 }
7336
7337 static const struct bpf_func_proto *
7338 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7339 {
7340         switch (func_id) {
7341         case BPF_FUNC_skb_load_bytes:
7342                 return &bpf_flow_dissector_load_bytes_proto;
7343         default:
7344                 return bpf_sk_base_func_proto(func_id);
7345         }
7346 }
7347
7348 static const struct bpf_func_proto *
7349 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7350 {
7351         switch (func_id) {
7352         case BPF_FUNC_skb_load_bytes:
7353                 return &bpf_skb_load_bytes_proto;
7354         case BPF_FUNC_skb_pull_data:
7355                 return &bpf_skb_pull_data_proto;
7356         case BPF_FUNC_csum_diff:
7357                 return &bpf_csum_diff_proto;
7358         case BPF_FUNC_get_cgroup_classid:
7359                 return &bpf_get_cgroup_classid_proto;
7360         case BPF_FUNC_get_route_realm:
7361                 return &bpf_get_route_realm_proto;
7362         case BPF_FUNC_get_hash_recalc:
7363                 return &bpf_get_hash_recalc_proto;
7364         case BPF_FUNC_perf_event_output:
7365                 return &bpf_skb_event_output_proto;
7366         case BPF_FUNC_get_smp_processor_id:
7367                 return &bpf_get_smp_processor_id_proto;
7368         case BPF_FUNC_skb_under_cgroup:
7369                 return &bpf_skb_under_cgroup_proto;
7370         default:
7371                 return bpf_sk_base_func_proto(func_id);
7372         }
7373 }
7374
7375 static const struct bpf_func_proto *
7376 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7377 {
7378         switch (func_id) {
7379         case BPF_FUNC_lwt_push_encap:
7380                 return &bpf_lwt_in_push_encap_proto;
7381         default:
7382                 return lwt_out_func_proto(func_id, prog);
7383         }
7384 }
7385
7386 static const struct bpf_func_proto *
7387 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7388 {
7389         switch (func_id) {
7390         case BPF_FUNC_skb_get_tunnel_key:
7391                 return &bpf_skb_get_tunnel_key_proto;
7392         case BPF_FUNC_skb_set_tunnel_key:
7393                 return bpf_get_skb_set_tunnel_proto(func_id);
7394         case BPF_FUNC_skb_get_tunnel_opt:
7395                 return &bpf_skb_get_tunnel_opt_proto;
7396         case BPF_FUNC_skb_set_tunnel_opt:
7397                 return bpf_get_skb_set_tunnel_proto(func_id);
7398         case BPF_FUNC_redirect:
7399                 return &bpf_redirect_proto;
7400         case BPF_FUNC_clone_redirect:
7401                 return &bpf_clone_redirect_proto;
7402         case BPF_FUNC_skb_change_tail:
7403                 return &bpf_skb_change_tail_proto;
7404         case BPF_FUNC_skb_change_head:
7405                 return &bpf_skb_change_head_proto;
7406         case BPF_FUNC_skb_store_bytes:
7407                 return &bpf_skb_store_bytes_proto;
7408         case BPF_FUNC_csum_update:
7409                 return &bpf_csum_update_proto;
7410         case BPF_FUNC_csum_level:
7411                 return &bpf_csum_level_proto;
7412         case BPF_FUNC_l3_csum_replace:
7413                 return &bpf_l3_csum_replace_proto;
7414         case BPF_FUNC_l4_csum_replace:
7415                 return &bpf_l4_csum_replace_proto;
7416         case BPF_FUNC_set_hash_invalid:
7417                 return &bpf_set_hash_invalid_proto;
7418         case BPF_FUNC_lwt_push_encap:
7419                 return &bpf_lwt_xmit_push_encap_proto;
7420         default:
7421                 return lwt_out_func_proto(func_id, prog);
7422         }
7423 }
7424
7425 static const struct bpf_func_proto *
7426 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7427 {
7428         switch (func_id) {
7429 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7430         case BPF_FUNC_lwt_seg6_store_bytes:
7431                 return &bpf_lwt_seg6_store_bytes_proto;
7432         case BPF_FUNC_lwt_seg6_action:
7433                 return &bpf_lwt_seg6_action_proto;
7434         case BPF_FUNC_lwt_seg6_adjust_srh:
7435                 return &bpf_lwt_seg6_adjust_srh_proto;
7436 #endif
7437         default:
7438                 return lwt_out_func_proto(func_id, prog);
7439         }
7440 }
7441
7442 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
7443                                     const struct bpf_prog *prog,
7444                                     struct bpf_insn_access_aux *info)
7445 {
7446         const int size_default = sizeof(__u32);
7447
7448         if (off < 0 || off >= sizeof(struct __sk_buff))
7449                 return false;
7450
7451         /* The verifier guarantees that size > 0. */
7452         if (off % size != 0)
7453                 return false;
7454
7455         switch (off) {
7456         case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7457                 if (off + size > offsetofend(struct __sk_buff, cb[4]))
7458                         return false;
7459                 break;
7460         case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
7461         case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
7462         case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
7463         case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
7464         case bpf_ctx_range(struct __sk_buff, data):
7465         case bpf_ctx_range(struct __sk_buff, data_meta):
7466         case bpf_ctx_range(struct __sk_buff, data_end):
7467                 if (size != size_default)
7468                         return false;
7469                 break;
7470         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
7471                 return false;
7472         case bpf_ctx_range(struct __sk_buff, tstamp):
7473                 if (size != sizeof(__u64))
7474                         return false;
7475                 break;
7476         case offsetof(struct __sk_buff, sk):
7477                 if (type == BPF_WRITE || size != sizeof(__u64))
7478                         return false;
7479                 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
7480                 break;
7481         default:
7482                 /* Only narrow read access allowed for now. */
7483                 if (type == BPF_WRITE) {
7484                         if (size != size_default)
7485                                 return false;
7486                 } else {
7487                         bpf_ctx_record_field_size(info, size_default);
7488                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
7489                                 return false;
7490                 }
7491         }
7492
7493         return true;
7494 }
7495
7496 static bool sk_filter_is_valid_access(int off, int size,
7497                                       enum bpf_access_type type,
7498                                       const struct bpf_prog *prog,
7499                                       struct bpf_insn_access_aux *info)
7500 {
7501         switch (off) {
7502         case bpf_ctx_range(struct __sk_buff, tc_classid):
7503         case bpf_ctx_range(struct __sk_buff, data):
7504         case bpf_ctx_range(struct __sk_buff, data_meta):
7505         case bpf_ctx_range(struct __sk_buff, data_end):
7506         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7507         case bpf_ctx_range(struct __sk_buff, tstamp):
7508         case bpf_ctx_range(struct __sk_buff, wire_len):
7509                 return false;
7510         }
7511
7512         if (type == BPF_WRITE) {
7513                 switch (off) {
7514                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7515                         break;
7516                 default:
7517                         return false;
7518                 }
7519         }
7520
7521         return bpf_skb_is_valid_access(off, size, type, prog, info);
7522 }
7523
7524 static bool cg_skb_is_valid_access(int off, int size,
7525                                    enum bpf_access_type type,
7526                                    const struct bpf_prog *prog,
7527                                    struct bpf_insn_access_aux *info)
7528 {
7529         switch (off) {
7530         case bpf_ctx_range(struct __sk_buff, tc_classid):
7531         case bpf_ctx_range(struct __sk_buff, data_meta):
7532         case bpf_ctx_range(struct __sk_buff, wire_len):
7533                 return false;
7534         case bpf_ctx_range(struct __sk_buff, data):
7535         case bpf_ctx_range(struct __sk_buff, data_end):
7536                 if (!bpf_capable())
7537                         return false;
7538                 break;
7539         }
7540
7541         if (type == BPF_WRITE) {
7542                 switch (off) {
7543                 case bpf_ctx_range(struct __sk_buff, mark):
7544                 case bpf_ctx_range(struct __sk_buff, priority):
7545                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7546                         break;
7547                 case bpf_ctx_range(struct __sk_buff, tstamp):
7548                         if (!bpf_capable())
7549                                 return false;
7550                         break;
7551                 default:
7552                         return false;
7553                 }
7554         }
7555
7556         switch (off) {
7557         case bpf_ctx_range(struct __sk_buff, data):
7558                 info->reg_type = PTR_TO_PACKET;
7559                 break;
7560         case bpf_ctx_range(struct __sk_buff, data_end):
7561                 info->reg_type = PTR_TO_PACKET_END;
7562                 break;
7563         }
7564
7565         return bpf_skb_is_valid_access(off, size, type, prog, info);
7566 }
7567
7568 static bool lwt_is_valid_access(int off, int size,
7569                                 enum bpf_access_type type,
7570                                 const struct bpf_prog *prog,
7571                                 struct bpf_insn_access_aux *info)
7572 {
7573         switch (off) {
7574         case bpf_ctx_range(struct __sk_buff, tc_classid):
7575         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7576         case bpf_ctx_range(struct __sk_buff, data_meta):
7577         case bpf_ctx_range(struct __sk_buff, tstamp):
7578         case bpf_ctx_range(struct __sk_buff, wire_len):
7579                 return false;
7580         }
7581
7582         if (type == BPF_WRITE) {
7583                 switch (off) {
7584                 case bpf_ctx_range(struct __sk_buff, mark):
7585                 case bpf_ctx_range(struct __sk_buff, priority):
7586                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7587                         break;
7588                 default:
7589                         return false;
7590                 }
7591         }
7592
7593         switch (off) {
7594         case bpf_ctx_range(struct __sk_buff, data):
7595                 info->reg_type = PTR_TO_PACKET;
7596                 break;
7597         case bpf_ctx_range(struct __sk_buff, data_end):
7598                 info->reg_type = PTR_TO_PACKET_END;
7599                 break;
7600         }
7601
7602         return bpf_skb_is_valid_access(off, size, type, prog, info);
7603 }
7604
7605 /* Attach type specific accesses */
7606 static bool __sock_filter_check_attach_type(int off,
7607                                             enum bpf_access_type access_type,
7608                                             enum bpf_attach_type attach_type)
7609 {
7610         switch (off) {
7611         case offsetof(struct bpf_sock, bound_dev_if):
7612         case offsetof(struct bpf_sock, mark):
7613         case offsetof(struct bpf_sock, priority):
7614                 switch (attach_type) {
7615                 case BPF_CGROUP_INET_SOCK_CREATE:
7616                 case BPF_CGROUP_INET_SOCK_RELEASE:
7617                         goto full_access;
7618                 default:
7619                         return false;
7620                 }
7621         case bpf_ctx_range(struct bpf_sock, src_ip4):
7622                 switch (attach_type) {
7623                 case BPF_CGROUP_INET4_POST_BIND:
7624                         goto read_only;
7625                 default:
7626                         return false;
7627                 }
7628         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7629                 switch (attach_type) {
7630                 case BPF_CGROUP_INET6_POST_BIND:
7631                         goto read_only;
7632                 default:
7633                         return false;
7634                 }
7635         case bpf_ctx_range(struct bpf_sock, src_port):
7636                 switch (attach_type) {
7637                 case BPF_CGROUP_INET4_POST_BIND:
7638                 case BPF_CGROUP_INET6_POST_BIND:
7639                         goto read_only;
7640                 default:
7641                         return false;
7642                 }
7643         }
7644 read_only:
7645         return access_type == BPF_READ;
7646 full_access:
7647         return true;
7648 }
7649
7650 bool bpf_sock_common_is_valid_access(int off, int size,
7651                                      enum bpf_access_type type,
7652                                      struct bpf_insn_access_aux *info)
7653 {
7654         switch (off) {
7655         case bpf_ctx_range_till(struct bpf_sock, type, priority):
7656                 return false;
7657         default:
7658                 return bpf_sock_is_valid_access(off, size, type, info);
7659         }
7660 }
7661
7662 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7663                               struct bpf_insn_access_aux *info)
7664 {
7665         const int size_default = sizeof(__u32);
7666
7667         if (off < 0 || off >= sizeof(struct bpf_sock))
7668                 return false;
7669         if (off % size != 0)
7670                 return false;
7671
7672         switch (off) {
7673         case offsetof(struct bpf_sock, state):
7674         case offsetof(struct bpf_sock, family):
7675         case offsetof(struct bpf_sock, type):
7676         case offsetof(struct bpf_sock, protocol):
7677         case offsetof(struct bpf_sock, dst_port):
7678         case offsetof(struct bpf_sock, src_port):
7679         case offsetof(struct bpf_sock, rx_queue_mapping):
7680         case bpf_ctx_range(struct bpf_sock, src_ip4):
7681         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7682         case bpf_ctx_range(struct bpf_sock, dst_ip4):
7683         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
7684                 bpf_ctx_record_field_size(info, size_default);
7685                 return bpf_ctx_narrow_access_ok(off, size, size_default);
7686         }
7687
7688         return size == size_default;
7689 }
7690
7691 static bool sock_filter_is_valid_access(int off, int size,
7692                                         enum bpf_access_type type,
7693                                         const struct bpf_prog *prog,
7694                                         struct bpf_insn_access_aux *info)
7695 {
7696         if (!bpf_sock_is_valid_access(off, size, type, info))
7697                 return false;
7698         return __sock_filter_check_attach_type(off, type,
7699                                                prog->expected_attach_type);
7700 }
7701
7702 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
7703                              const struct bpf_prog *prog)
7704 {
7705         /* Neither direct read nor direct write requires any preliminary
7706          * action.
7707          */
7708         return 0;
7709 }
7710
7711 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
7712                                 const struct bpf_prog *prog, int drop_verdict)
7713 {
7714         struct bpf_insn *insn = insn_buf;
7715
7716         if (!direct_write)
7717                 return 0;
7718
7719         /* if (!skb->cloned)
7720          *       goto start;
7721          *
7722          * (Fast-path, otherwise approximation that we might be
7723          *  a clone, do the rest in helper.)
7724          */
7725         *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
7726         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
7727         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
7728
7729         /* ret = bpf_skb_pull_data(skb, 0); */
7730         *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
7731         *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
7732         *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
7733                                BPF_FUNC_skb_pull_data);
7734         /* if (!ret)
7735          *      goto restore;
7736          * return TC_ACT_SHOT;
7737          */
7738         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
7739         *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
7740         *insn++ = BPF_EXIT_INSN();
7741
7742         /* restore: */
7743         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
7744         /* start: */
7745         *insn++ = prog->insnsi[0];
7746
7747         return insn - insn_buf;
7748 }
7749
7750 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
7751                           struct bpf_insn *insn_buf)
7752 {
7753         bool indirect = BPF_MODE(orig->code) == BPF_IND;
7754         struct bpf_insn *insn = insn_buf;
7755
7756         if (!indirect) {
7757                 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
7758         } else {
7759                 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
7760                 if (orig->imm)
7761                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
7762         }
7763         /* We're guaranteed here that CTX is in R6. */
7764         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
7765
7766         switch (BPF_SIZE(orig->code)) {
7767         case BPF_B:
7768                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
7769                 break;
7770         case BPF_H:
7771                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
7772                 break;
7773         case BPF_W:
7774                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
7775                 break;
7776         }
7777
7778         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
7779         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
7780         *insn++ = BPF_EXIT_INSN();
7781
7782         return insn - insn_buf;
7783 }
7784
7785 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
7786                                const struct bpf_prog *prog)
7787 {
7788         return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
7789 }
7790
7791 static bool tc_cls_act_is_valid_access(int off, int size,
7792                                        enum bpf_access_type type,
7793                                        const struct bpf_prog *prog,
7794                                        struct bpf_insn_access_aux *info)
7795 {
7796         if (type == BPF_WRITE) {
7797                 switch (off) {
7798                 case bpf_ctx_range(struct __sk_buff, mark):
7799                 case bpf_ctx_range(struct __sk_buff, tc_index):
7800                 case bpf_ctx_range(struct __sk_buff, priority):
7801                 case bpf_ctx_range(struct __sk_buff, tc_classid):
7802                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
7803                 case bpf_ctx_range(struct __sk_buff, tstamp):
7804                 case bpf_ctx_range(struct __sk_buff, queue_mapping):
7805                         break;
7806                 default:
7807                         return false;
7808                 }
7809         }
7810
7811         switch (off) {
7812         case bpf_ctx_range(struct __sk_buff, data):
7813                 info->reg_type = PTR_TO_PACKET;
7814                 break;
7815         case bpf_ctx_range(struct __sk_buff, data_meta):
7816                 info->reg_type = PTR_TO_PACKET_META;
7817                 break;
7818         case bpf_ctx_range(struct __sk_buff, data_end):
7819                 info->reg_type = PTR_TO_PACKET_END;
7820                 break;
7821         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
7822                 return false;
7823         }
7824
7825         return bpf_skb_is_valid_access(off, size, type, prog, info);
7826 }
7827
7828 static bool __is_valid_xdp_access(int off, int size)
7829 {
7830         if (off < 0 || off >= sizeof(struct xdp_md))
7831                 return false;
7832         if (off % size != 0)
7833                 return false;
7834         if (size != sizeof(__u32))
7835                 return false;
7836
7837         return true;
7838 }
7839
7840 static bool xdp_is_valid_access(int off, int size,
7841                                 enum bpf_access_type type,
7842                                 const struct bpf_prog *prog,
7843                                 struct bpf_insn_access_aux *info)
7844 {
7845         if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
7846                 switch (off) {
7847                 case offsetof(struct xdp_md, egress_ifindex):
7848                         return false;
7849                 }
7850         }
7851
7852         if (type == BPF_WRITE) {
7853                 if (bpf_prog_is_dev_bound(prog->aux)) {
7854                         switch (off) {
7855                         case offsetof(struct xdp_md, rx_queue_index):
7856                                 return __is_valid_xdp_access(off, size);
7857                         }
7858                 }
7859                 return false;
7860         }
7861
7862         switch (off) {
7863         case offsetof(struct xdp_md, data):
7864                 info->reg_type = PTR_TO_PACKET;
7865                 break;
7866         case offsetof(struct xdp_md, data_meta):
7867                 info->reg_type = PTR_TO_PACKET_META;
7868                 break;
7869         case offsetof(struct xdp_md, data_end):
7870                 info->reg_type = PTR_TO_PACKET_END;
7871                 break;
7872         }
7873
7874         return __is_valid_xdp_access(off, size);
7875 }
7876
7877 void bpf_warn_invalid_xdp_action(u32 act)
7878 {
7879         const u32 act_max = XDP_REDIRECT;
7880
7881         WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
7882                   act > act_max ? "Illegal" : "Driver unsupported",
7883                   act);
7884 }
7885 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
7886
7887 static bool sock_addr_is_valid_access(int off, int size,
7888                                       enum bpf_access_type type,
7889                                       const struct bpf_prog *prog,
7890                                       struct bpf_insn_access_aux *info)
7891 {
7892         const int size_default = sizeof(__u32);
7893
7894         if (off < 0 || off >= sizeof(struct bpf_sock_addr))
7895                 return false;
7896         if (off % size != 0)
7897                 return false;
7898
7899         /* Disallow access to IPv6 fields from IPv4 contex and vise
7900          * versa.
7901          */
7902         switch (off) {
7903         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
7904                 switch (prog->expected_attach_type) {
7905                 case BPF_CGROUP_INET4_BIND:
7906                 case BPF_CGROUP_INET4_CONNECT:
7907                 case BPF_CGROUP_INET4_GETPEERNAME:
7908                 case BPF_CGROUP_INET4_GETSOCKNAME:
7909                 case BPF_CGROUP_UDP4_SENDMSG:
7910                 case BPF_CGROUP_UDP4_RECVMSG:
7911                         break;
7912                 default:
7913                         return false;
7914                 }
7915                 break;
7916         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
7917                 switch (prog->expected_attach_type) {
7918                 case BPF_CGROUP_INET6_BIND:
7919                 case BPF_CGROUP_INET6_CONNECT:
7920                 case BPF_CGROUP_INET6_GETPEERNAME:
7921                 case BPF_CGROUP_INET6_GETSOCKNAME:
7922                 case BPF_CGROUP_UDP6_SENDMSG:
7923                 case BPF_CGROUP_UDP6_RECVMSG:
7924                         break;
7925                 default:
7926                         return false;
7927                 }
7928                 break;
7929         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
7930                 switch (prog->expected_attach_type) {
7931                 case BPF_CGROUP_UDP4_SENDMSG:
7932                         break;
7933                 default:
7934                         return false;
7935                 }
7936                 break;
7937         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
7938                                 msg_src_ip6[3]):
7939                 switch (prog->expected_attach_type) {
7940                 case BPF_CGROUP_UDP6_SENDMSG:
7941                         break;
7942                 default:
7943                         return false;
7944                 }
7945                 break;
7946         }
7947
7948         switch (off) {
7949         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
7950         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
7951         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
7952         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
7953                                 msg_src_ip6[3]):
7954         case bpf_ctx_range(struct bpf_sock_addr, user_port):
7955                 if (type == BPF_READ) {
7956                         bpf_ctx_record_field_size(info, size_default);
7957
7958                         if (bpf_ctx_wide_access_ok(off, size,
7959                                                    struct bpf_sock_addr,
7960                                                    user_ip6))
7961                                 return true;
7962
7963                         if (bpf_ctx_wide_access_ok(off, size,
7964                                                    struct bpf_sock_addr,
7965                                                    msg_src_ip6))
7966                                 return true;
7967
7968                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
7969                                 return false;
7970                 } else {
7971                         if (bpf_ctx_wide_access_ok(off, size,
7972                                                    struct bpf_sock_addr,
7973                                                    user_ip6))
7974                                 return true;
7975
7976                         if (bpf_ctx_wide_access_ok(off, size,
7977                                                    struct bpf_sock_addr,
7978                                                    msg_src_ip6))
7979                                 return true;
7980
7981                         if (size != size_default)
7982                                 return false;
7983                 }
7984                 break;
7985         case offsetof(struct bpf_sock_addr, sk):
7986                 if (type != BPF_READ)
7987                         return false;
7988                 if (size != sizeof(__u64))
7989                         return false;
7990                 info->reg_type = PTR_TO_SOCKET;
7991                 break;
7992         default:
7993                 if (type == BPF_READ) {
7994                         if (size != size_default)
7995                                 return false;
7996                 } else {
7997                         return false;
7998                 }
7999         }
8000
8001         return true;
8002 }
8003
8004 static bool sock_ops_is_valid_access(int off, int size,
8005                                      enum bpf_access_type type,
8006                                      const struct bpf_prog *prog,
8007                                      struct bpf_insn_access_aux *info)
8008 {
8009         const int size_default = sizeof(__u32);
8010
8011         if (off < 0 || off >= sizeof(struct bpf_sock_ops))
8012                 return false;
8013
8014         /* The verifier guarantees that size > 0. */
8015         if (off % size != 0)
8016                 return false;
8017
8018         if (type == BPF_WRITE) {
8019                 switch (off) {
8020                 case offsetof(struct bpf_sock_ops, reply):
8021                 case offsetof(struct bpf_sock_ops, sk_txhash):
8022                         if (size != size_default)
8023                                 return false;
8024                         break;
8025                 default:
8026                         return false;
8027                 }
8028         } else {
8029                 switch (off) {
8030                 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
8031                                         bytes_acked):
8032                         if (size != sizeof(__u64))
8033                                 return false;
8034                         break;
8035                 case offsetof(struct bpf_sock_ops, sk):
8036                         if (size != sizeof(__u64))
8037                                 return false;
8038                         info->reg_type = PTR_TO_SOCKET_OR_NULL;
8039                         break;
8040                 case offsetof(struct bpf_sock_ops, skb_data):
8041                         if (size != sizeof(__u64))
8042                                 return false;
8043                         info->reg_type = PTR_TO_PACKET;
8044                         break;
8045                 case offsetof(struct bpf_sock_ops, skb_data_end):
8046                         if (size != sizeof(__u64))
8047                                 return false;
8048                         info->reg_type = PTR_TO_PACKET_END;
8049                         break;
8050                 case offsetof(struct bpf_sock_ops, skb_tcp_flags):
8051                         bpf_ctx_record_field_size(info, size_default);
8052                         return bpf_ctx_narrow_access_ok(off, size,
8053                                                         size_default);
8054                 default:
8055                         if (size != size_default)
8056                                 return false;
8057                         break;
8058                 }
8059         }
8060
8061         return true;
8062 }
8063
8064 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
8065                            const struct bpf_prog *prog)
8066 {
8067         return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
8068 }
8069
8070 static bool sk_skb_is_valid_access(int off, int size,
8071                                    enum bpf_access_type type,
8072                                    const struct bpf_prog *prog,
8073                                    struct bpf_insn_access_aux *info)
8074 {
8075         switch (off) {
8076         case bpf_ctx_range(struct __sk_buff, tc_classid):
8077         case bpf_ctx_range(struct __sk_buff, data_meta):
8078         case bpf_ctx_range(struct __sk_buff, tstamp):
8079         case bpf_ctx_range(struct __sk_buff, wire_len):
8080                 return false;
8081         }
8082
8083         if (type == BPF_WRITE) {
8084                 switch (off) {
8085                 case bpf_ctx_range(struct __sk_buff, tc_index):
8086                 case bpf_ctx_range(struct __sk_buff, priority):
8087                         break;
8088                 default:
8089                         return false;
8090                 }
8091         }
8092
8093         switch (off) {
8094         case bpf_ctx_range(struct __sk_buff, mark):
8095                 return false;
8096         case bpf_ctx_range(struct __sk_buff, data):
8097                 info->reg_type = PTR_TO_PACKET;
8098                 break;
8099         case bpf_ctx_range(struct __sk_buff, data_end):
8100                 info->reg_type = PTR_TO_PACKET_END;
8101                 break;
8102         }
8103
8104         return bpf_skb_is_valid_access(off, size, type, prog, info);
8105 }
8106
8107 static bool sk_msg_is_valid_access(int off, int size,
8108                                    enum bpf_access_type type,
8109                                    const struct bpf_prog *prog,
8110                                    struct bpf_insn_access_aux *info)
8111 {
8112         if (type == BPF_WRITE)
8113                 return false;
8114
8115         if (off % size != 0)
8116                 return false;
8117
8118         switch (off) {
8119         case offsetof(struct sk_msg_md, data):
8120                 info->reg_type = PTR_TO_PACKET;
8121                 if (size != sizeof(__u64))
8122                         return false;
8123                 break;
8124         case offsetof(struct sk_msg_md, data_end):
8125                 info->reg_type = PTR_TO_PACKET_END;
8126                 if (size != sizeof(__u64))
8127                         return false;
8128                 break;
8129         case offsetof(struct sk_msg_md, sk):
8130                 if (size != sizeof(__u64))
8131                         return false;
8132                 info->reg_type = PTR_TO_SOCKET;
8133                 break;
8134         case bpf_ctx_range(struct sk_msg_md, family):
8135         case bpf_ctx_range(struct sk_msg_md, remote_ip4):
8136         case bpf_ctx_range(struct sk_msg_md, local_ip4):
8137         case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
8138         case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
8139         case bpf_ctx_range(struct sk_msg_md, remote_port):
8140         case bpf_ctx_range(struct sk_msg_md, local_port):
8141         case bpf_ctx_range(struct sk_msg_md, size):
8142                 if (size != sizeof(__u32))
8143                         return false;
8144                 break;
8145         default:
8146                 return false;
8147         }
8148         return true;
8149 }
8150
8151 static bool flow_dissector_is_valid_access(int off, int size,
8152                                            enum bpf_access_type type,
8153                                            const struct bpf_prog *prog,
8154                                            struct bpf_insn_access_aux *info)
8155 {
8156         const int size_default = sizeof(__u32);
8157
8158         if (off < 0 || off >= sizeof(struct __sk_buff))
8159                 return false;
8160
8161         if (type == BPF_WRITE)
8162                 return false;
8163
8164         switch (off) {
8165         case bpf_ctx_range(struct __sk_buff, data):
8166                 if (size != size_default)
8167                         return false;
8168                 info->reg_type = PTR_TO_PACKET;
8169                 return true;
8170         case bpf_ctx_range(struct __sk_buff, data_end):
8171                 if (size != size_default)
8172                         return false;
8173                 info->reg_type = PTR_TO_PACKET_END;
8174                 return true;
8175         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8176                 if (size != sizeof(__u64))
8177                         return false;
8178                 info->reg_type = PTR_TO_FLOW_KEYS;
8179                 return true;
8180         default:
8181                 return false;
8182         }
8183 }
8184
8185 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
8186                                              const struct bpf_insn *si,
8187                                              struct bpf_insn *insn_buf,
8188                                              struct bpf_prog *prog,
8189                                              u32 *target_size)
8190
8191 {
8192         struct bpf_insn *insn = insn_buf;
8193
8194         switch (si->off) {
8195         case offsetof(struct __sk_buff, data):
8196                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
8197                                       si->dst_reg, si->src_reg,
8198                                       offsetof(struct bpf_flow_dissector, data));
8199                 break;
8200
8201         case offsetof(struct __sk_buff, data_end):
8202                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
8203                                       si->dst_reg, si->src_reg,
8204                                       offsetof(struct bpf_flow_dissector, data_end));
8205                 break;
8206
8207         case offsetof(struct __sk_buff, flow_keys):
8208                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
8209                                       si->dst_reg, si->src_reg,
8210                                       offsetof(struct bpf_flow_dissector, flow_keys));
8211                 break;
8212         }
8213
8214         return insn - insn_buf;
8215 }
8216
8217 static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
8218                                                   struct bpf_insn *insn)
8219 {
8220         /* si->dst_reg = skb_shinfo(SKB); */
8221 #ifdef NET_SKBUFF_DATA_USES_OFFSET
8222         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8223                               BPF_REG_AX, si->src_reg,
8224                               offsetof(struct sk_buff, end));
8225         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
8226                               si->dst_reg, si->src_reg,
8227                               offsetof(struct sk_buff, head));
8228         *insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
8229 #else
8230         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
8231                               si->dst_reg, si->src_reg,
8232                               offsetof(struct sk_buff, end));
8233 #endif
8234
8235         return insn;
8236 }
8237
8238 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
8239                                   const struct bpf_insn *si,
8240                                   struct bpf_insn *insn_buf,
8241                                   struct bpf_prog *prog, u32 *target_size)
8242 {
8243         struct bpf_insn *insn = insn_buf;
8244         int off;
8245
8246         switch (si->off) {
8247         case offsetof(struct __sk_buff, len):
8248                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8249                                       bpf_target_off(struct sk_buff, len, 4,
8250                                                      target_size));
8251                 break;
8252
8253         case offsetof(struct __sk_buff, protocol):
8254                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8255                                       bpf_target_off(struct sk_buff, protocol, 2,
8256                                                      target_size));
8257                 break;
8258
8259         case offsetof(struct __sk_buff, vlan_proto):
8260                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8261                                       bpf_target_off(struct sk_buff, vlan_proto, 2,
8262                                                      target_size));
8263                 break;
8264
8265         case offsetof(struct __sk_buff, priority):
8266                 if (type == BPF_WRITE)
8267                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8268                                               bpf_target_off(struct sk_buff, priority, 4,
8269                                                              target_size));
8270                 else
8271                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8272                                               bpf_target_off(struct sk_buff, priority, 4,
8273                                                              target_size));
8274                 break;
8275
8276         case offsetof(struct __sk_buff, ingress_ifindex):
8277                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8278                                       bpf_target_off(struct sk_buff, skb_iif, 4,
8279                                                      target_size));
8280                 break;
8281
8282         case offsetof(struct __sk_buff, ifindex):
8283                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
8284                                       si->dst_reg, si->src_reg,
8285                                       offsetof(struct sk_buff, dev));
8286                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
8287                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8288                                       bpf_target_off(struct net_device, ifindex, 4,
8289                                                      target_size));
8290                 break;
8291
8292         case offsetof(struct __sk_buff, hash):
8293                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8294                                       bpf_target_off(struct sk_buff, hash, 4,
8295                                                      target_size));
8296                 break;
8297
8298         case offsetof(struct __sk_buff, mark):
8299                 if (type == BPF_WRITE)
8300                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8301                                               bpf_target_off(struct sk_buff, mark, 4,
8302                                                              target_size));
8303                 else
8304                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8305                                               bpf_target_off(struct sk_buff, mark, 4,
8306                                                              target_size));
8307                 break;
8308
8309         case offsetof(struct __sk_buff, pkt_type):
8310                 *target_size = 1;
8311                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
8312                                       PKT_TYPE_OFFSET());
8313                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
8314 #ifdef __BIG_ENDIAN_BITFIELD
8315                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
8316 #endif
8317                 break;
8318
8319         case offsetof(struct __sk_buff, queue_mapping):
8320                 if (type == BPF_WRITE) {
8321                         *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
8322                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
8323                                               bpf_target_off(struct sk_buff,
8324                                                              queue_mapping,
8325                                                              2, target_size));
8326                 } else {
8327                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8328                                               bpf_target_off(struct sk_buff,
8329                                                              queue_mapping,
8330                                                              2, target_size));
8331                 }
8332                 break;
8333
8334         case offsetof(struct __sk_buff, vlan_present):
8335                 *target_size = 1;
8336                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
8337                                       PKT_VLAN_PRESENT_OFFSET());
8338                 if (PKT_VLAN_PRESENT_BIT)
8339                         *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
8340                 if (PKT_VLAN_PRESENT_BIT < 7)
8341                         *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
8342                 break;
8343
8344         case offsetof(struct __sk_buff, vlan_tci):
8345                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8346                                       bpf_target_off(struct sk_buff, vlan_tci, 2,
8347                                                      target_size));
8348                 break;
8349
8350         case offsetof(struct __sk_buff, cb[0]) ...
8351              offsetofend(struct __sk_buff, cb[4]) - 1:
8352                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
8353                 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
8354                               offsetof(struct qdisc_skb_cb, data)) %
8355                              sizeof(__u64));
8356
8357                 prog->cb_access = 1;
8358                 off  = si->off;
8359                 off -= offsetof(struct __sk_buff, cb[0]);
8360                 off += offsetof(struct sk_buff, cb);
8361                 off += offsetof(struct qdisc_skb_cb, data);
8362                 if (type == BPF_WRITE)
8363                         *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
8364                                               si->src_reg, off);
8365                 else
8366                         *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
8367                                               si->src_reg, off);
8368                 break;
8369
8370         case offsetof(struct __sk_buff, tc_classid):
8371                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
8372
8373                 off  = si->off;
8374                 off -= offsetof(struct __sk_buff, tc_classid);
8375                 off += offsetof(struct sk_buff, cb);
8376                 off += offsetof(struct qdisc_skb_cb, tc_classid);
8377                 *target_size = 2;
8378                 if (type == BPF_WRITE)
8379                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
8380                                               si->src_reg, off);
8381                 else
8382                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
8383                                               si->src_reg, off);
8384                 break;
8385
8386         case offsetof(struct __sk_buff, data):
8387                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
8388                                       si->dst_reg, si->src_reg,
8389                                       offsetof(struct sk_buff, data));
8390                 break;
8391
8392         case offsetof(struct __sk_buff, data_meta):
8393                 off  = si->off;
8394                 off -= offsetof(struct __sk_buff, data_meta);
8395                 off += offsetof(struct sk_buff, cb);
8396                 off += offsetof(struct bpf_skb_data_end, data_meta);
8397                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8398                                       si->src_reg, off);
8399                 break;
8400
8401         case offsetof(struct __sk_buff, data_end):
8402                 off  = si->off;
8403                 off -= offsetof(struct __sk_buff, data_end);
8404                 off += offsetof(struct sk_buff, cb);
8405                 off += offsetof(struct bpf_skb_data_end, data_end);
8406                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8407                                       si->src_reg, off);
8408                 break;
8409
8410         case offsetof(struct __sk_buff, tc_index):
8411 #ifdef CONFIG_NET_SCHED
8412                 if (type == BPF_WRITE)
8413                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
8414                                               bpf_target_off(struct sk_buff, tc_index, 2,
8415                                                              target_size));
8416                 else
8417                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
8418                                               bpf_target_off(struct sk_buff, tc_index, 2,
8419                                                              target_size));
8420 #else
8421                 *target_size = 2;
8422                 if (type == BPF_WRITE)
8423                         *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
8424                 else
8425                         *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8426 #endif
8427                 break;
8428
8429         case offsetof(struct __sk_buff, napi_id):
8430 #if defined(CONFIG_NET_RX_BUSY_POLL)
8431                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8432                                       bpf_target_off(struct sk_buff, napi_id, 4,
8433                                                      target_size));
8434                 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
8435                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8436 #else
8437                 *target_size = 4;
8438                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
8439 #endif
8440                 break;
8441         case offsetof(struct __sk_buff, family):
8442                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
8443
8444                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8445                                       si->dst_reg, si->src_reg,
8446                                       offsetof(struct sk_buff, sk));
8447                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8448                                       bpf_target_off(struct sock_common,
8449                                                      skc_family,
8450                                                      2, target_size));
8451                 break;
8452         case offsetof(struct __sk_buff, remote_ip4):
8453                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
8454
8455                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8456                                       si->dst_reg, si->src_reg,
8457                                       offsetof(struct sk_buff, sk));
8458                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8459                                       bpf_target_off(struct sock_common,
8460                                                      skc_daddr,
8461                                                      4, target_size));
8462                 break;
8463         case offsetof(struct __sk_buff, local_ip4):
8464                 BUILD_BUG_ON(sizeof_field(struct sock_common,
8465                                           skc_rcv_saddr) != 4);
8466
8467                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8468                                       si->dst_reg, si->src_reg,
8469                                       offsetof(struct sk_buff, sk));
8470                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8471                                       bpf_target_off(struct sock_common,
8472                                                      skc_rcv_saddr,
8473                                                      4, target_size));
8474                 break;
8475         case offsetof(struct __sk_buff, remote_ip6[0]) ...
8476              offsetof(struct __sk_buff, remote_ip6[3]):
8477 #if IS_ENABLED(CONFIG_IPV6)
8478                 BUILD_BUG_ON(sizeof_field(struct sock_common,
8479                                           skc_v6_daddr.s6_addr32[0]) != 4);
8480
8481                 off = si->off;
8482                 off -= offsetof(struct __sk_buff, remote_ip6[0]);
8483
8484                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8485                                       si->dst_reg, si->src_reg,
8486                                       offsetof(struct sk_buff, sk));
8487                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8488                                       offsetof(struct sock_common,
8489                                                skc_v6_daddr.s6_addr32[0]) +
8490                                       off);
8491 #else
8492                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8493 #endif
8494                 break;
8495         case offsetof(struct __sk_buff, local_ip6[0]) ...
8496              offsetof(struct __sk_buff, local_ip6[3]):
8497 #if IS_ENABLED(CONFIG_IPV6)
8498                 BUILD_BUG_ON(sizeof_field(struct sock_common,
8499                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8500
8501                 off = si->off;
8502                 off -= offsetof(struct __sk_buff, local_ip6[0]);
8503
8504                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8505                                       si->dst_reg, si->src_reg,
8506                                       offsetof(struct sk_buff, sk));
8507                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8508                                       offsetof(struct sock_common,
8509                                                skc_v6_rcv_saddr.s6_addr32[0]) +
8510                                       off);
8511 #else
8512                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8513 #endif
8514                 break;
8515
8516         case offsetof(struct __sk_buff, remote_port):
8517                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
8518
8519                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8520                                       si->dst_reg, si->src_reg,
8521                                       offsetof(struct sk_buff, sk));
8522                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8523                                       bpf_target_off(struct sock_common,
8524                                                      skc_dport,
8525                                                      2, target_size));
8526 #ifndef __BIG_ENDIAN_BITFIELD
8527                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8528 #endif
8529                 break;
8530
8531         case offsetof(struct __sk_buff, local_port):
8532                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
8533
8534                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8535                                       si->dst_reg, si->src_reg,
8536                                       offsetof(struct sk_buff, sk));
8537                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8538                                       bpf_target_off(struct sock_common,
8539                                                      skc_num, 2, target_size));
8540                 break;
8541
8542         case offsetof(struct __sk_buff, tstamp):
8543                 BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
8544
8545                 if (type == BPF_WRITE)
8546                         *insn++ = BPF_STX_MEM(BPF_DW,
8547                                               si->dst_reg, si->src_reg,
8548                                               bpf_target_off(struct sk_buff,
8549                                                              tstamp, 8,
8550                                                              target_size));
8551                 else
8552                         *insn++ = BPF_LDX_MEM(BPF_DW,
8553                                               si->dst_reg, si->src_reg,
8554                                               bpf_target_off(struct sk_buff,
8555                                                              tstamp, 8,
8556                                                              target_size));
8557                 break;
8558
8559         case offsetof(struct __sk_buff, gso_segs):
8560                 insn = bpf_convert_shinfo_access(si, insn);
8561                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
8562                                       si->dst_reg, si->dst_reg,
8563                                       bpf_target_off(struct skb_shared_info,
8564                                                      gso_segs, 2,
8565                                                      target_size));
8566                 break;
8567         case offsetof(struct __sk_buff, gso_size):
8568                 insn = bpf_convert_shinfo_access(si, insn);
8569                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
8570                                       si->dst_reg, si->dst_reg,
8571                                       bpf_target_off(struct skb_shared_info,
8572                                                      gso_size, 2,
8573                                                      target_size));
8574                 break;
8575         case offsetof(struct __sk_buff, wire_len):
8576                 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
8577
8578                 off = si->off;
8579                 off -= offsetof(struct __sk_buff, wire_len);
8580                 off += offsetof(struct sk_buff, cb);
8581                 off += offsetof(struct qdisc_skb_cb, pkt_len);
8582                 *target_size = 4;
8583                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
8584                 break;
8585
8586         case offsetof(struct __sk_buff, sk):
8587                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
8588                                       si->dst_reg, si->src_reg,
8589                                       offsetof(struct sk_buff, sk));
8590                 break;
8591         }
8592
8593         return insn - insn_buf;
8594 }
8595
8596 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
8597                                 const struct bpf_insn *si,
8598                                 struct bpf_insn *insn_buf,
8599                                 struct bpf_prog *prog, u32 *target_size)
8600 {
8601         struct bpf_insn *insn = insn_buf;
8602         int off;
8603
8604         switch (si->off) {
8605         case offsetof(struct bpf_sock, bound_dev_if):
8606                 BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
8607
8608                 if (type == BPF_WRITE)
8609                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8610                                         offsetof(struct sock, sk_bound_dev_if));
8611                 else
8612                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8613                                       offsetof(struct sock, sk_bound_dev_if));
8614                 break;
8615
8616         case offsetof(struct bpf_sock, mark):
8617                 BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
8618
8619                 if (type == BPF_WRITE)
8620                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8621                                         offsetof(struct sock, sk_mark));
8622                 else
8623                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8624                                       offsetof(struct sock, sk_mark));
8625                 break;
8626
8627         case offsetof(struct bpf_sock, priority):
8628                 BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
8629
8630                 if (type == BPF_WRITE)
8631                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8632                                         offsetof(struct sock, sk_priority));
8633                 else
8634                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8635                                       offsetof(struct sock, sk_priority));
8636                 break;
8637
8638         case offsetof(struct bpf_sock, family):
8639                 *insn++ = BPF_LDX_MEM(
8640                         BPF_FIELD_SIZEOF(struct sock_common, skc_family),
8641                         si->dst_reg, si->src_reg,
8642                         bpf_target_off(struct sock_common,
8643                                        skc_family,
8644                                        sizeof_field(struct sock_common,
8645                                                     skc_family),
8646                                        target_size));
8647                 break;
8648
8649         case offsetof(struct bpf_sock, type):
8650                 *insn++ = BPF_LDX_MEM(
8651                         BPF_FIELD_SIZEOF(struct sock, sk_type),
8652                         si->dst_reg, si->src_reg,
8653                         bpf_target_off(struct sock, sk_type,
8654                                        sizeof_field(struct sock, sk_type),
8655                                        target_size));
8656                 break;
8657
8658         case offsetof(struct bpf_sock, protocol):
8659                 *insn++ = BPF_LDX_MEM(
8660                         BPF_FIELD_SIZEOF(struct sock, sk_protocol),
8661                         si->dst_reg, si->src_reg,
8662                         bpf_target_off(struct sock, sk_protocol,
8663                                        sizeof_field(struct sock, sk_protocol),
8664                                        target_size));
8665                 break;
8666
8667         case offsetof(struct bpf_sock, src_ip4):
8668                 *insn++ = BPF_LDX_MEM(
8669                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8670                         bpf_target_off(struct sock_common, skc_rcv_saddr,
8671                                        sizeof_field(struct sock_common,
8672                                                     skc_rcv_saddr),
8673                                        target_size));
8674                 break;
8675
8676         case offsetof(struct bpf_sock, dst_ip4):
8677                 *insn++ = BPF_LDX_MEM(
8678                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8679                         bpf_target_off(struct sock_common, skc_daddr,
8680                                        sizeof_field(struct sock_common,
8681                                                     skc_daddr),
8682                                        target_size));
8683                 break;
8684
8685         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8686 #if IS_ENABLED(CONFIG_IPV6)
8687                 off = si->off;
8688                 off -= offsetof(struct bpf_sock, src_ip6[0]);
8689                 *insn++ = BPF_LDX_MEM(
8690                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8691                         bpf_target_off(
8692                                 struct sock_common,
8693                                 skc_v6_rcv_saddr.s6_addr32[0],
8694                                 sizeof_field(struct sock_common,
8695                                              skc_v6_rcv_saddr.s6_addr32[0]),
8696                                 target_size) + off);
8697 #else
8698                 (void)off;
8699                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8700 #endif
8701                 break;
8702
8703         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8704 #if IS_ENABLED(CONFIG_IPV6)
8705                 off = si->off;
8706                 off -= offsetof(struct bpf_sock, dst_ip6[0]);
8707                 *insn++ = BPF_LDX_MEM(
8708                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
8709                         bpf_target_off(struct sock_common,
8710                                        skc_v6_daddr.s6_addr32[0],
8711                                        sizeof_field(struct sock_common,
8712                                                     skc_v6_daddr.s6_addr32[0]),
8713                                        target_size) + off);
8714 #else
8715                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8716                 *target_size = 4;
8717 #endif
8718                 break;
8719
8720         case offsetof(struct bpf_sock, src_port):
8721                 *insn++ = BPF_LDX_MEM(
8722                         BPF_FIELD_SIZEOF(struct sock_common, skc_num),
8723                         si->dst_reg, si->src_reg,
8724                         bpf_target_off(struct sock_common, skc_num,
8725                                        sizeof_field(struct sock_common,
8726                                                     skc_num),
8727                                        target_size));
8728                 break;
8729
8730         case offsetof(struct bpf_sock, dst_port):
8731                 *insn++ = BPF_LDX_MEM(
8732                         BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
8733                         si->dst_reg, si->src_reg,
8734                         bpf_target_off(struct sock_common, skc_dport,
8735                                        sizeof_field(struct sock_common,
8736                                                     skc_dport),
8737                                        target_size));
8738                 break;
8739
8740         case offsetof(struct bpf_sock, state):
8741                 *insn++ = BPF_LDX_MEM(
8742                         BPF_FIELD_SIZEOF(struct sock_common, skc_state),
8743                         si->dst_reg, si->src_reg,
8744                         bpf_target_off(struct sock_common, skc_state,
8745                                        sizeof_field(struct sock_common,
8746                                                     skc_state),
8747                                        target_size));
8748                 break;
8749         case offsetof(struct bpf_sock, rx_queue_mapping):
8750 #ifdef CONFIG_XPS
8751                 *insn++ = BPF_LDX_MEM(
8752                         BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
8753                         si->dst_reg, si->src_reg,
8754                         bpf_target_off(struct sock, sk_rx_queue_mapping,
8755                                        sizeof_field(struct sock,
8756                                                     sk_rx_queue_mapping),
8757                                        target_size));
8758                 *insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
8759                                       1);
8760                 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
8761 #else
8762                 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
8763                 *target_size = 2;
8764 #endif
8765                 break;
8766         }
8767
8768         return insn - insn_buf;
8769 }
8770
8771 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
8772                                          const struct bpf_insn *si,
8773                                          struct bpf_insn *insn_buf,
8774                                          struct bpf_prog *prog, u32 *target_size)
8775 {
8776         struct bpf_insn *insn = insn_buf;
8777
8778         switch (si->off) {
8779         case offsetof(struct __sk_buff, ifindex):
8780                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
8781                                       si->dst_reg, si->src_reg,
8782                                       offsetof(struct sk_buff, dev));
8783                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8784                                       bpf_target_off(struct net_device, ifindex, 4,
8785                                                      target_size));
8786                 break;
8787         default:
8788                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
8789                                               target_size);
8790         }
8791
8792         return insn - insn_buf;
8793 }
8794
8795 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
8796                                   const struct bpf_insn *si,
8797                                   struct bpf_insn *insn_buf,
8798                                   struct bpf_prog *prog, u32 *target_size)
8799 {
8800         struct bpf_insn *insn = insn_buf;
8801
8802         switch (si->off) {
8803         case offsetof(struct xdp_md, data):
8804                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
8805                                       si->dst_reg, si->src_reg,
8806                                       offsetof(struct xdp_buff, data));
8807                 break;
8808         case offsetof(struct xdp_md, data_meta):
8809                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
8810                                       si->dst_reg, si->src_reg,
8811                                       offsetof(struct xdp_buff, data_meta));
8812                 break;
8813         case offsetof(struct xdp_md, data_end):
8814                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
8815                                       si->dst_reg, si->src_reg,
8816                                       offsetof(struct xdp_buff, data_end));
8817                 break;
8818         case offsetof(struct xdp_md, ingress_ifindex):
8819                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
8820                                       si->dst_reg, si->src_reg,
8821                                       offsetof(struct xdp_buff, rxq));
8822                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
8823                                       si->dst_reg, si->dst_reg,
8824                                       offsetof(struct xdp_rxq_info, dev));
8825                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8826                                       offsetof(struct net_device, ifindex));
8827                 break;
8828         case offsetof(struct xdp_md, rx_queue_index):
8829                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
8830                                       si->dst_reg, si->src_reg,
8831                                       offsetof(struct xdp_buff, rxq));
8832                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8833                                       offsetof(struct xdp_rxq_info,
8834                                                queue_index));
8835                 break;
8836         case offsetof(struct xdp_md, egress_ifindex):
8837                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
8838                                       si->dst_reg, si->src_reg,
8839                                       offsetof(struct xdp_buff, txq));
8840                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
8841                                       si->dst_reg, si->dst_reg,
8842                                       offsetof(struct xdp_txq_info, dev));
8843                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8844                                       offsetof(struct net_device, ifindex));
8845                 break;
8846         }
8847
8848         return insn - insn_buf;
8849 }
8850
8851 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
8852  * context Structure, F is Field in context structure that contains a pointer
8853  * to Nested Structure of type NS that has the field NF.
8854  *
8855  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
8856  * sure that SIZE is not greater than actual size of S.F.NF.
8857  *
8858  * If offset OFF is provided, the load happens from that offset relative to
8859  * offset of NF.
8860  */
8861 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)          \
8862         do {                                                                   \
8863                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
8864                                       si->src_reg, offsetof(S, F));            \
8865                 *insn++ = BPF_LDX_MEM(                                         \
8866                         SIZE, si->dst_reg, si->dst_reg,                        \
8867                         bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
8868                                        target_size)                            \
8869                                 + OFF);                                        \
8870         } while (0)
8871
8872 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)                              \
8873         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,                     \
8874                                              BPF_FIELD_SIZEOF(NS, NF), 0)
8875
8876 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
8877  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
8878  *
8879  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
8880  * "register" since two registers available in convert_ctx_access are not
8881  * enough: we can't override neither SRC, since it contains value to store, nor
8882  * DST since it contains pointer to context that may be used by later
8883  * instructions. But we need a temporary place to save pointer to nested
8884  * structure whose field we want to store to.
8885  */
8886 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)          \
8887         do {                                                                   \
8888                 int tmp_reg = BPF_REG_9;                                       \
8889                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
8890                         --tmp_reg;                                             \
8891                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
8892                         --tmp_reg;                                             \
8893                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,            \
8894                                       offsetof(S, TF));                        \
8895                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,         \
8896                                       si->dst_reg, offsetof(S, F));            \
8897                 *insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,              \
8898                         bpf_target_off(NS, NF, sizeof_field(NS, NF),           \
8899                                        target_size)                            \
8900                                 + OFF);                                        \
8901                 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,            \
8902                                       offsetof(S, TF));                        \
8903         } while (0)
8904
8905 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
8906                                                       TF)                      \
8907         do {                                                                   \
8908                 if (type == BPF_WRITE) {                                       \
8909                         SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
8910                                                          OFF, TF);             \
8911                 } else {                                                       \
8912                         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(                  \
8913                                 S, NS, F, NF, SIZE, OFF);  \
8914                 }                                                              \
8915         } while (0)
8916
8917 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)                 \
8918         SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(                         \
8919                 S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
8920
8921 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
8922                                         const struct bpf_insn *si,
8923                                         struct bpf_insn *insn_buf,
8924                                         struct bpf_prog *prog, u32 *target_size)
8925 {
8926         int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
8927         struct bpf_insn *insn = insn_buf;
8928
8929         switch (si->off) {
8930         case offsetof(struct bpf_sock_addr, user_family):
8931                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
8932                                             struct sockaddr, uaddr, sa_family);
8933                 break;
8934
8935         case offsetof(struct bpf_sock_addr, user_ip4):
8936                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
8937                         struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
8938                         sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
8939                 break;
8940
8941         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8942                 off = si->off;
8943                 off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
8944                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
8945                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
8946                         sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
8947                         tmp_reg);
8948                 break;
8949
8950         case offsetof(struct bpf_sock_addr, user_port):
8951                 /* To get port we need to know sa_family first and then treat
8952                  * sockaddr as either sockaddr_in or sockaddr_in6.
8953                  * Though we can simplify since port field has same offset and
8954                  * size in both structures.
8955                  * Here we check this invariant and use just one of the
8956                  * structures if it's true.
8957                  */
8958                 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
8959                              offsetof(struct sockaddr_in6, sin6_port));
8960                 BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
8961                              sizeof_field(struct sockaddr_in6, sin6_port));
8962                 /* Account for sin6_port being smaller than user_port. */
8963                 port_size = min(port_size, BPF_LDST_BYTES(si));
8964                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
8965                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
8966                         sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
8967                 break;
8968
8969         case offsetof(struct bpf_sock_addr, family):
8970                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
8971                                             struct sock, sk, sk_family);
8972                 break;
8973
8974         case offsetof(struct bpf_sock_addr, type):
8975                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
8976                                             struct sock, sk, sk_type);
8977                 break;
8978
8979         case offsetof(struct bpf_sock_addr, protocol):
8980                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
8981                                             struct sock, sk, sk_protocol);
8982                 break;
8983
8984         case offsetof(struct bpf_sock_addr, msg_src_ip4):
8985                 /* Treat t_ctx as struct in_addr for msg_src_ip4. */
8986                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
8987                         struct bpf_sock_addr_kern, struct in_addr, t_ctx,
8988                         s_addr, BPF_SIZE(si->code), 0, tmp_reg);
8989                 break;
8990
8991         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8992                                 msg_src_ip6[3]):
8993                 off = si->off;
8994                 off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
8995                 /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
8996                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
8997                         struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
8998                         s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
8999                 break;
9000         case offsetof(struct bpf_sock_addr, sk):
9001                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
9002                                       si->dst_reg, si->src_reg,
9003                                       offsetof(struct bpf_sock_addr_kern, sk));
9004                 break;
9005         }
9006
9007         return insn - insn_buf;
9008 }
9009
9010 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
9011                                        const struct bpf_insn *si,
9012                                        struct bpf_insn *insn_buf,
9013                                        struct bpf_prog *prog,
9014                                        u32 *target_size)
9015 {
9016         struct bpf_insn *insn = insn_buf;
9017         int off;
9018
9019 /* Helper macro for adding read access to tcp_sock or sock fields. */
9020 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
9021         do {                                                                  \
9022                 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
9023                 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
9024                              sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9025                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9026                         reg--;                                                \
9027                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9028                         reg--;                                                \
9029                 if (si->dst_reg == si->src_reg) {                             \
9030                         *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,       \
9031                                           offsetof(struct bpf_sock_ops_kern,  \
9032                                           temp));                             \
9033                         fullsock_reg = reg;                                   \
9034                         jmp += 2;                                             \
9035                 }                                                             \
9036                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9037                                                 struct bpf_sock_ops_kern,     \
9038                                                 is_fullsock),                 \
9039                                       fullsock_reg, si->src_reg,              \
9040                                       offsetof(struct bpf_sock_ops_kern,      \
9041                                                is_fullsock));                 \
9042                 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);         \
9043                 if (si->dst_reg == si->src_reg)                               \
9044                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9045                                       offsetof(struct bpf_sock_ops_kern,      \
9046                                       temp));                                 \
9047                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9048                                                 struct bpf_sock_ops_kern, sk),\
9049                                       si->dst_reg, si->src_reg,               \
9050                                       offsetof(struct bpf_sock_ops_kern, sk));\
9051                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,                   \
9052                                                        OBJ_FIELD),            \
9053                                       si->dst_reg, si->dst_reg,               \
9054                                       offsetof(OBJ, OBJ_FIELD));              \
9055                 if (si->dst_reg == si->src_reg) {                             \
9056                         *insn++ = BPF_JMP_A(1);                               \
9057                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9058                                       offsetof(struct bpf_sock_ops_kern,      \
9059                                       temp));                                 \
9060                 }                                                             \
9061         } while (0)
9062
9063 #define SOCK_OPS_GET_SK()                                                             \
9064         do {                                                                  \
9065                 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
9066                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9067                         reg--;                                                \
9068                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9069                         reg--;                                                \
9070                 if (si->dst_reg == si->src_reg) {                             \
9071                         *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,       \
9072                                           offsetof(struct bpf_sock_ops_kern,  \
9073                                           temp));                             \
9074                         fullsock_reg = reg;                                   \
9075                         jmp += 2;                                             \
9076                 }                                                             \
9077                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9078                                                 struct bpf_sock_ops_kern,     \
9079                                                 is_fullsock),                 \
9080                                       fullsock_reg, si->src_reg,              \
9081                                       offsetof(struct bpf_sock_ops_kern,      \
9082                                                is_fullsock));                 \
9083                 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);         \
9084                 if (si->dst_reg == si->src_reg)                               \
9085                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9086                                       offsetof(struct bpf_sock_ops_kern,      \
9087                                       temp));                                 \
9088                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9089                                                 struct bpf_sock_ops_kern, sk),\
9090                                       si->dst_reg, si->src_reg,               \
9091                                       offsetof(struct bpf_sock_ops_kern, sk));\
9092                 if (si->dst_reg == si->src_reg) {                             \
9093                         *insn++ = BPF_JMP_A(1);                               \
9094                         *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,       \
9095                                       offsetof(struct bpf_sock_ops_kern,      \
9096                                       temp));                                 \
9097                 }                                                             \
9098         } while (0)
9099
9100 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
9101                 SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
9102
9103 /* Helper macro for adding write access to tcp_sock or sock fields.
9104  * The macro is called with two registers, dst_reg which contains a pointer
9105  * to ctx (context) and src_reg which contains the value that should be
9106  * stored. However, we need an additional register since we cannot overwrite
9107  * dst_reg because it may be used later in the program.
9108  * Instead we "borrow" one of the other register. We first save its value
9109  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
9110  * it at the end of the macro.
9111  */
9112 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
9113         do {                                                                  \
9114                 int reg = BPF_REG_9;                                          \
9115                 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >                   \
9116                              sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9117                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9118                         reg--;                                                \
9119                 if (si->dst_reg == reg || si->src_reg == reg)                 \
9120                         reg--;                                                \
9121                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,               \
9122                                       offsetof(struct bpf_sock_ops_kern,      \
9123                                                temp));                        \
9124                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9125                                                 struct bpf_sock_ops_kern,     \
9126                                                 is_fullsock),                 \
9127                                       reg, si->dst_reg,                       \
9128                                       offsetof(struct bpf_sock_ops_kern,      \
9129                                                is_fullsock));                 \
9130                 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);                    \
9131                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
9132                                                 struct bpf_sock_ops_kern, sk),\
9133                                       reg, si->dst_reg,                       \
9134                                       offsetof(struct bpf_sock_ops_kern, sk));\
9135                 *insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),       \
9136                                       reg, si->src_reg,                       \
9137                                       offsetof(OBJ, OBJ_FIELD));              \
9138                 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,               \
9139                                       offsetof(struct bpf_sock_ops_kern,      \
9140                                                temp));                        \
9141         } while (0)
9142
9143 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)            \
9144         do {                                                                  \
9145                 if (TYPE == BPF_WRITE)                                        \
9146                         SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
9147                 else                                                          \
9148                         SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
9149         } while (0)
9150
9151         if (insn > insn_buf)
9152                 return insn - insn_buf;
9153
9154         switch (si->off) {
9155         case offsetof(struct bpf_sock_ops, op):
9156                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9157                                                        op),
9158                                       si->dst_reg, si->src_reg,
9159                                       offsetof(struct bpf_sock_ops_kern, op));
9160                 break;
9161
9162         case offsetof(struct bpf_sock_ops, replylong[0]) ...
9163              offsetof(struct bpf_sock_ops, replylong[3]):
9164                 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
9165                              sizeof_field(struct bpf_sock_ops_kern, reply));
9166                 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
9167                              sizeof_field(struct bpf_sock_ops_kern, replylong));
9168                 off = si->off;
9169                 off -= offsetof(struct bpf_sock_ops, replylong[0]);
9170                 off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
9171                 if (type == BPF_WRITE)
9172                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9173                                               off);
9174                 else
9175                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9176                                               off);
9177                 break;
9178
9179         case offsetof(struct bpf_sock_ops, family):
9180                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9181
9182                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9183                                               struct bpf_sock_ops_kern, sk),
9184                                       si->dst_reg, si->src_reg,
9185                                       offsetof(struct bpf_sock_ops_kern, sk));
9186                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9187                                       offsetof(struct sock_common, skc_family));
9188                 break;
9189
9190         case offsetof(struct bpf_sock_ops, remote_ip4):
9191                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9192
9193                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9194                                                 struct bpf_sock_ops_kern, sk),
9195                                       si->dst_reg, si->src_reg,
9196                                       offsetof(struct bpf_sock_ops_kern, sk));
9197                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9198                                       offsetof(struct sock_common, skc_daddr));
9199                 break;
9200
9201         case offsetof(struct bpf_sock_ops, local_ip4):
9202                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9203                                           skc_rcv_saddr) != 4);
9204
9205                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9206                                               struct bpf_sock_ops_kern, sk),
9207                                       si->dst_reg, si->src_reg,
9208                                       offsetof(struct bpf_sock_ops_kern, sk));
9209                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9210                                       offsetof(struct sock_common,
9211                                                skc_rcv_saddr));
9212                 break;
9213
9214         case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
9215              offsetof(struct bpf_sock_ops, remote_ip6[3]):
9216 #if IS_ENABLED(CONFIG_IPV6)
9217                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9218                                           skc_v6_daddr.s6_addr32[0]) != 4);
9219
9220                 off = si->off;
9221                 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
9222                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9223                                                 struct bpf_sock_ops_kern, sk),
9224                                       si->dst_reg, si->src_reg,
9225                                       offsetof(struct bpf_sock_ops_kern, sk));
9226                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9227                                       offsetof(struct sock_common,
9228                                                skc_v6_daddr.s6_addr32[0]) +
9229                                       off);
9230 #else
9231                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9232 #endif
9233                 break;
9234
9235         case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
9236              offsetof(struct bpf_sock_ops, local_ip6[3]):
9237 #if IS_ENABLED(CONFIG_IPV6)
9238                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9239                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9240
9241                 off = si->off;
9242                 off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
9243                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9244                                                 struct bpf_sock_ops_kern, sk),
9245                                       si->dst_reg, si->src_reg,
9246                                       offsetof(struct bpf_sock_ops_kern, sk));
9247                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9248                                       offsetof(struct sock_common,
9249                                                skc_v6_rcv_saddr.s6_addr32[0]) +
9250                                       off);
9251 #else
9252                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9253 #endif
9254                 break;
9255
9256         case offsetof(struct bpf_sock_ops, remote_port):
9257                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9258
9259                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9260                                                 struct bpf_sock_ops_kern, sk),
9261                                       si->dst_reg, si->src_reg,
9262                                       offsetof(struct bpf_sock_ops_kern, sk));
9263                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9264                                       offsetof(struct sock_common, skc_dport));
9265 #ifndef __BIG_ENDIAN_BITFIELD
9266                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9267 #endif
9268                 break;
9269
9270         case offsetof(struct bpf_sock_ops, local_port):
9271                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9272
9273                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9274                                                 struct bpf_sock_ops_kern, sk),
9275                                       si->dst_reg, si->src_reg,
9276                                       offsetof(struct bpf_sock_ops_kern, sk));
9277                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9278                                       offsetof(struct sock_common, skc_num));
9279                 break;
9280
9281         case offsetof(struct bpf_sock_ops, is_fullsock):
9282                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9283                                                 struct bpf_sock_ops_kern,
9284                                                 is_fullsock),
9285                                       si->dst_reg, si->src_reg,
9286                                       offsetof(struct bpf_sock_ops_kern,
9287                                                is_fullsock));
9288                 break;
9289
9290         case offsetof(struct bpf_sock_ops, state):
9291                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
9292
9293                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9294                                                 struct bpf_sock_ops_kern, sk),
9295                                       si->dst_reg, si->src_reg,
9296                                       offsetof(struct bpf_sock_ops_kern, sk));
9297                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
9298                                       offsetof(struct sock_common, skc_state));
9299                 break;
9300
9301         case offsetof(struct bpf_sock_ops, rtt_min):
9302                 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
9303                              sizeof(struct minmax));
9304                 BUILD_BUG_ON(sizeof(struct minmax) <
9305                              sizeof(struct minmax_sample));
9306
9307                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9308                                                 struct bpf_sock_ops_kern, sk),
9309                                       si->dst_reg, si->src_reg,
9310                                       offsetof(struct bpf_sock_ops_kern, sk));
9311                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9312                                       offsetof(struct tcp_sock, rtt_min) +
9313                                       sizeof_field(struct minmax_sample, t));
9314                 break;
9315
9316         case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
9317                 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
9318                                    struct tcp_sock);
9319                 break;
9320
9321         case offsetof(struct bpf_sock_ops, sk_txhash):
9322                 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
9323                                           struct sock, type);
9324                 break;
9325         case offsetof(struct bpf_sock_ops, snd_cwnd):
9326                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
9327                 break;
9328         case offsetof(struct bpf_sock_ops, srtt_us):
9329                 SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
9330                 break;
9331         case offsetof(struct bpf_sock_ops, snd_ssthresh):
9332                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
9333                 break;
9334         case offsetof(struct bpf_sock_ops, rcv_nxt):
9335                 SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
9336                 break;
9337         case offsetof(struct bpf_sock_ops, snd_nxt):
9338                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
9339                 break;
9340         case offsetof(struct bpf_sock_ops, snd_una):
9341                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
9342                 break;
9343         case offsetof(struct bpf_sock_ops, mss_cache):
9344                 SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
9345                 break;
9346         case offsetof(struct bpf_sock_ops, ecn_flags):
9347                 SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
9348                 break;
9349         case offsetof(struct bpf_sock_ops, rate_delivered):
9350                 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
9351                 break;
9352         case offsetof(struct bpf_sock_ops, rate_interval_us):
9353                 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
9354                 break;
9355         case offsetof(struct bpf_sock_ops, packets_out):
9356                 SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
9357                 break;
9358         case offsetof(struct bpf_sock_ops, retrans_out):
9359                 SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
9360                 break;
9361         case offsetof(struct bpf_sock_ops, total_retrans):
9362                 SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
9363                 break;
9364         case offsetof(struct bpf_sock_ops, segs_in):
9365                 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
9366                 break;
9367         case offsetof(struct bpf_sock_ops, data_segs_in):
9368                 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
9369                 break;
9370         case offsetof(struct bpf_sock_ops, segs_out):
9371                 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
9372                 break;
9373         case offsetof(struct bpf_sock_ops, data_segs_out):
9374                 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
9375                 break;
9376         case offsetof(struct bpf_sock_ops, lost_out):
9377                 SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
9378                 break;
9379         case offsetof(struct bpf_sock_ops, sacked_out):
9380                 SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
9381                 break;
9382         case offsetof(struct bpf_sock_ops, bytes_received):
9383                 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
9384                 break;
9385         case offsetof(struct bpf_sock_ops, bytes_acked):
9386                 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
9387                 break;
9388         case offsetof(struct bpf_sock_ops, sk):
9389                 SOCK_OPS_GET_SK();
9390                 break;
9391         case offsetof(struct bpf_sock_ops, skb_data_end):
9392                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9393                                                        skb_data_end),
9394                                       si->dst_reg, si->src_reg,
9395                                       offsetof(struct bpf_sock_ops_kern,
9396                                                skb_data_end));
9397                 break;
9398         case offsetof(struct bpf_sock_ops, skb_data):
9399                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9400                                                        skb),
9401                                       si->dst_reg, si->src_reg,
9402                                       offsetof(struct bpf_sock_ops_kern,
9403                                                skb));
9404                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9405                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9406                                       si->dst_reg, si->dst_reg,
9407                                       offsetof(struct sk_buff, data));
9408                 break;
9409         case offsetof(struct bpf_sock_ops, skb_len):
9410                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9411                                                        skb),
9412                                       si->dst_reg, si->src_reg,
9413                                       offsetof(struct bpf_sock_ops_kern,
9414                                                skb));
9415                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9416                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
9417                                       si->dst_reg, si->dst_reg,
9418                                       offsetof(struct sk_buff, len));
9419                 break;
9420         case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9421                 off = offsetof(struct sk_buff, cb);
9422                 off += offsetof(struct tcp_skb_cb, tcp_flags);
9423                 *target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
9424                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
9425                                                        skb),
9426                                       si->dst_reg, si->src_reg,
9427                                       offsetof(struct bpf_sock_ops_kern,
9428                                                skb));
9429                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9430                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
9431                                                        tcp_flags),
9432                                       si->dst_reg, si->dst_reg, off);
9433                 break;
9434         }
9435         return insn - insn_buf;
9436 }
9437
9438 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
9439                                      const struct bpf_insn *si,
9440                                      struct bpf_insn *insn_buf,
9441                                      struct bpf_prog *prog, u32 *target_size)
9442 {
9443         struct bpf_insn *insn = insn_buf;
9444         int off;
9445
9446         switch (si->off) {
9447         case offsetof(struct __sk_buff, data_end):
9448                 off  = si->off;
9449                 off -= offsetof(struct __sk_buff, data_end);
9450                 off += offsetof(struct sk_buff, cb);
9451                 off += offsetof(struct tcp_skb_cb, bpf.data_end);
9452                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9453                                       si->src_reg, off);
9454                 break;
9455         default:
9456                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
9457                                               target_size);
9458         }
9459
9460         return insn - insn_buf;
9461 }
9462
9463 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
9464                                      const struct bpf_insn *si,
9465                                      struct bpf_insn *insn_buf,
9466                                      struct bpf_prog *prog, u32 *target_size)
9467 {
9468         struct bpf_insn *insn = insn_buf;
9469 #if IS_ENABLED(CONFIG_IPV6)
9470         int off;
9471 #endif
9472
9473         /* convert ctx uses the fact sg element is first in struct */
9474         BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
9475
9476         switch (si->off) {
9477         case offsetof(struct sk_msg_md, data):
9478                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
9479                                       si->dst_reg, si->src_reg,
9480                                       offsetof(struct sk_msg, data));
9481                 break;
9482         case offsetof(struct sk_msg_md, data_end):
9483                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
9484                                       si->dst_reg, si->src_reg,
9485                                       offsetof(struct sk_msg, data_end));
9486                 break;
9487         case offsetof(struct sk_msg_md, family):
9488                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9489
9490                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9491                                               struct sk_msg, sk),
9492                                       si->dst_reg, si->src_reg,
9493                                       offsetof(struct sk_msg, sk));
9494                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9495                                       offsetof(struct sock_common, skc_family));
9496                 break;
9497
9498         case offsetof(struct sk_msg_md, remote_ip4):
9499                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9500
9501                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9502                                                 struct sk_msg, sk),
9503                                       si->dst_reg, si->src_reg,
9504                                       offsetof(struct sk_msg, sk));
9505                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9506                                       offsetof(struct sock_common, skc_daddr));
9507                 break;
9508
9509         case offsetof(struct sk_msg_md, local_ip4):
9510                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9511                                           skc_rcv_saddr) != 4);
9512
9513                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9514                                               struct sk_msg, sk),
9515                                       si->dst_reg, si->src_reg,
9516                                       offsetof(struct sk_msg, sk));
9517                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9518                                       offsetof(struct sock_common,
9519                                                skc_rcv_saddr));
9520                 break;
9521
9522         case offsetof(struct sk_msg_md, remote_ip6[0]) ...
9523              offsetof(struct sk_msg_md, remote_ip6[3]):
9524 #if IS_ENABLED(CONFIG_IPV6)
9525                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9526                                           skc_v6_daddr.s6_addr32[0]) != 4);
9527
9528                 off = si->off;
9529                 off -= offsetof(struct sk_msg_md, remote_ip6[0]);
9530                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9531                                                 struct sk_msg, sk),
9532                                       si->dst_reg, si->src_reg,
9533                                       offsetof(struct sk_msg, sk));
9534                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9535                                       offsetof(struct sock_common,
9536                                                skc_v6_daddr.s6_addr32[0]) +
9537                                       off);
9538 #else
9539                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9540 #endif
9541                 break;
9542
9543         case offsetof(struct sk_msg_md, local_ip6[0]) ...
9544              offsetof(struct sk_msg_md, local_ip6[3]):
9545 #if IS_ENABLED(CONFIG_IPV6)
9546                 BUILD_BUG_ON(sizeof_field(struct sock_common,
9547                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9548
9549                 off = si->off;
9550                 off -= offsetof(struct sk_msg_md, local_ip6[0]);
9551                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9552                                                 struct sk_msg, sk),
9553                                       si->dst_reg, si->src_reg,
9554                                       offsetof(struct sk_msg, sk));
9555                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9556                                       offsetof(struct sock_common,
9557                                                skc_v6_rcv_saddr.s6_addr32[0]) +
9558                                       off);
9559 #else
9560                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9561 #endif
9562                 break;
9563
9564         case offsetof(struct sk_msg_md, remote_port):
9565                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9566
9567                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9568                                                 struct sk_msg, sk),
9569                                       si->dst_reg, si->src_reg,
9570                                       offsetof(struct sk_msg, sk));
9571                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9572                                       offsetof(struct sock_common, skc_dport));
9573 #ifndef __BIG_ENDIAN_BITFIELD
9574                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9575 #endif
9576                 break;
9577
9578         case offsetof(struct sk_msg_md, local_port):
9579                 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9580
9581                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
9582                                                 struct sk_msg, sk),
9583                                       si->dst_reg, si->src_reg,
9584                                       offsetof(struct sk_msg, sk));
9585                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9586                                       offsetof(struct sock_common, skc_num));
9587                 break;
9588
9589         case offsetof(struct sk_msg_md, size):
9590                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
9591                                       si->dst_reg, si->src_reg,
9592                                       offsetof(struct sk_msg_sg, size));
9593                 break;
9594
9595         case offsetof(struct sk_msg_md, sk):
9596                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
9597                                       si->dst_reg, si->src_reg,
9598                                       offsetof(struct sk_msg, sk));
9599                 break;
9600         }
9601
9602         return insn - insn_buf;
9603 }
9604
9605 const struct bpf_verifier_ops sk_filter_verifier_ops = {
9606         .get_func_proto         = sk_filter_func_proto,
9607         .is_valid_access        = sk_filter_is_valid_access,
9608         .convert_ctx_access     = bpf_convert_ctx_access,
9609         .gen_ld_abs             = bpf_gen_ld_abs,
9610 };
9611
9612 const struct bpf_prog_ops sk_filter_prog_ops = {
9613         .test_run               = bpf_prog_test_run_skb,
9614 };
9615
9616 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
9617         .get_func_proto         = tc_cls_act_func_proto,
9618         .is_valid_access        = tc_cls_act_is_valid_access,
9619         .convert_ctx_access     = tc_cls_act_convert_ctx_access,
9620         .gen_prologue           = tc_cls_act_prologue,
9621         .gen_ld_abs             = bpf_gen_ld_abs,
9622 };
9623
9624 const struct bpf_prog_ops tc_cls_act_prog_ops = {
9625         .test_run               = bpf_prog_test_run_skb,
9626 };
9627
9628 const struct bpf_verifier_ops xdp_verifier_ops = {
9629         .get_func_proto         = xdp_func_proto,
9630         .is_valid_access        = xdp_is_valid_access,
9631         .convert_ctx_access     = xdp_convert_ctx_access,
9632         .gen_prologue           = bpf_noop_prologue,
9633 };
9634
9635 const struct bpf_prog_ops xdp_prog_ops = {
9636         .test_run               = bpf_prog_test_run_xdp,
9637 };
9638
9639 const struct bpf_verifier_ops cg_skb_verifier_ops = {
9640         .get_func_proto         = cg_skb_func_proto,
9641         .is_valid_access        = cg_skb_is_valid_access,
9642         .convert_ctx_access     = bpf_convert_ctx_access,
9643 };
9644
9645 const struct bpf_prog_ops cg_skb_prog_ops = {
9646         .test_run               = bpf_prog_test_run_skb,
9647 };
9648
9649 const struct bpf_verifier_ops lwt_in_verifier_ops = {
9650         .get_func_proto         = lwt_in_func_proto,
9651         .is_valid_access        = lwt_is_valid_access,
9652         .convert_ctx_access     = bpf_convert_ctx_access,
9653 };
9654
9655 const struct bpf_prog_ops lwt_in_prog_ops = {
9656         .test_run               = bpf_prog_test_run_skb,
9657 };
9658
9659 const struct bpf_verifier_ops lwt_out_verifier_ops = {
9660         .get_func_proto         = lwt_out_func_proto,
9661         .is_valid_access        = lwt_is_valid_access,
9662         .convert_ctx_access     = bpf_convert_ctx_access,
9663 };
9664
9665 const struct bpf_prog_ops lwt_out_prog_ops = {
9666         .test_run               = bpf_prog_test_run_skb,
9667 };
9668
9669 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
9670         .get_func_proto         = lwt_xmit_func_proto,
9671         .is_valid_access        = lwt_is_valid_access,
9672         .convert_ctx_access     = bpf_convert_ctx_access,
9673         .gen_prologue           = tc_cls_act_prologue,
9674 };
9675
9676 const struct bpf_prog_ops lwt_xmit_prog_ops = {
9677         .test_run               = bpf_prog_test_run_skb,
9678 };
9679
9680 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
9681         .get_func_proto         = lwt_seg6local_func_proto,
9682         .is_valid_access        = lwt_is_valid_access,
9683         .convert_ctx_access     = bpf_convert_ctx_access,
9684 };
9685
9686 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
9687         .test_run               = bpf_prog_test_run_skb,
9688 };
9689
9690 const struct bpf_verifier_ops cg_sock_verifier_ops = {
9691         .get_func_proto         = sock_filter_func_proto,
9692         .is_valid_access        = sock_filter_is_valid_access,
9693         .convert_ctx_access     = bpf_sock_convert_ctx_access,
9694 };
9695
9696 const struct bpf_prog_ops cg_sock_prog_ops = {
9697 };
9698
9699 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
9700         .get_func_proto         = sock_addr_func_proto,
9701         .is_valid_access        = sock_addr_is_valid_access,
9702         .convert_ctx_access     = sock_addr_convert_ctx_access,
9703 };
9704
9705 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
9706 };
9707
9708 const struct bpf_verifier_ops sock_ops_verifier_ops = {
9709         .get_func_proto         = sock_ops_func_proto,
9710         .is_valid_access        = sock_ops_is_valid_access,
9711         .convert_ctx_access     = sock_ops_convert_ctx_access,
9712 };
9713
9714 const struct bpf_prog_ops sock_ops_prog_ops = {
9715 };
9716
9717 const struct bpf_verifier_ops sk_skb_verifier_ops = {
9718         .get_func_proto         = sk_skb_func_proto,
9719         .is_valid_access        = sk_skb_is_valid_access,
9720         .convert_ctx_access     = sk_skb_convert_ctx_access,
9721         .gen_prologue           = sk_skb_prologue,
9722 };
9723
9724 const struct bpf_prog_ops sk_skb_prog_ops = {
9725 };
9726
9727 const struct bpf_verifier_ops sk_msg_verifier_ops = {
9728         .get_func_proto         = sk_msg_func_proto,
9729         .is_valid_access        = sk_msg_is_valid_access,
9730         .convert_ctx_access     = sk_msg_convert_ctx_access,
9731         .gen_prologue           = bpf_noop_prologue,
9732 };
9733
9734 const struct bpf_prog_ops sk_msg_prog_ops = {
9735 };
9736
9737 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
9738         .get_func_proto         = flow_dissector_func_proto,
9739         .is_valid_access        = flow_dissector_is_valid_access,
9740         .convert_ctx_access     = flow_dissector_convert_ctx_access,
9741 };
9742
9743 const struct bpf_prog_ops flow_dissector_prog_ops = {
9744         .test_run               = bpf_prog_test_run_flow_dissector,
9745 };
9746
9747 int sk_detach_filter(struct sock *sk)
9748 {
9749         int ret = -ENOENT;
9750         struct sk_filter *filter;
9751
9752         if (sock_flag(sk, SOCK_FILTER_LOCKED))
9753                 return -EPERM;
9754
9755         filter = rcu_dereference_protected(sk->sk_filter,
9756                                            lockdep_sock_is_held(sk));
9757         if (filter) {
9758                 RCU_INIT_POINTER(sk->sk_filter, NULL);
9759                 sk_filter_uncharge(sk, filter);
9760                 ret = 0;
9761         }
9762
9763         return ret;
9764 }
9765 EXPORT_SYMBOL_GPL(sk_detach_filter);
9766
9767 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
9768                   unsigned int len)
9769 {
9770         struct sock_fprog_kern *fprog;
9771         struct sk_filter *filter;
9772         int ret = 0;
9773
9774         lock_sock(sk);
9775         filter = rcu_dereference_protected(sk->sk_filter,
9776                                            lockdep_sock_is_held(sk));
9777         if (!filter)
9778                 goto out;
9779
9780         /* We're copying the filter that has been originally attached,
9781          * so no conversion/decode needed anymore. eBPF programs that
9782          * have no original program cannot be dumped through this.
9783          */
9784         ret = -EACCES;
9785         fprog = filter->prog->orig_prog;
9786         if (!fprog)
9787                 goto out;
9788
9789         ret = fprog->len;
9790         if (!len)
9791                 /* User space only enquires number of filter blocks. */
9792                 goto out;
9793
9794         ret = -EINVAL;
9795         if (len < fprog->len)
9796                 goto out;
9797
9798         ret = -EFAULT;
9799         if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
9800                 goto out;
9801
9802         /* Instead of bytes, the API requests to return the number
9803          * of filter blocks.
9804          */
9805         ret = fprog->len;
9806 out:
9807         release_sock(sk);
9808         return ret;
9809 }
9810
9811 #ifdef CONFIG_INET
9812 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
9813                                     struct sock_reuseport *reuse,
9814                                     struct sock *sk, struct sk_buff *skb,
9815                                     u32 hash)
9816 {
9817         reuse_kern->skb = skb;
9818         reuse_kern->sk = sk;
9819         reuse_kern->selected_sk = NULL;
9820         reuse_kern->data_end = skb->data + skb_headlen(skb);
9821         reuse_kern->hash = hash;
9822         reuse_kern->reuseport_id = reuse->reuseport_id;
9823         reuse_kern->bind_inany = reuse->bind_inany;
9824 }
9825
9826 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
9827                                   struct bpf_prog *prog, struct sk_buff *skb,
9828                                   u32 hash)
9829 {
9830         struct sk_reuseport_kern reuse_kern;
9831         enum sk_action action;
9832
9833         bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, hash);
9834         action = BPF_PROG_RUN(prog, &reuse_kern);
9835
9836         if (action == SK_PASS)
9837                 return reuse_kern.selected_sk;
9838         else
9839                 return ERR_PTR(-ECONNREFUSED);
9840 }
9841
9842 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
9843            struct bpf_map *, map, void *, key, u32, flags)
9844 {
9845         bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
9846         struct sock_reuseport *reuse;
9847         struct sock *selected_sk;
9848
9849         selected_sk = map->ops->map_lookup_elem(map, key);
9850         if (!selected_sk)
9851                 return -ENOENT;
9852
9853         reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
9854         if (!reuse) {
9855                 /* Lookup in sock_map can return TCP ESTABLISHED sockets. */
9856                 if (sk_is_refcounted(selected_sk))
9857                         sock_put(selected_sk);
9858
9859                 /* reuseport_array has only sk with non NULL sk_reuseport_cb.
9860                  * The only (!reuse) case here is - the sk has already been
9861                  * unhashed (e.g. by close()), so treat it as -ENOENT.
9862                  *
9863                  * Other maps (e.g. sock_map) do not provide this guarantee and
9864                  * the sk may never be in the reuseport group to begin with.
9865                  */
9866                 return is_sockarray ? -ENOENT : -EINVAL;
9867         }
9868
9869         if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
9870                 struct sock *sk = reuse_kern->sk;
9871
9872                 if (sk->sk_protocol != selected_sk->sk_protocol)
9873                         return -EPROTOTYPE;
9874                 else if (sk->sk_family != selected_sk->sk_family)
9875                         return -EAFNOSUPPORT;
9876
9877                 /* Catch all. Likely bound to a different sockaddr. */
9878                 return -EBADFD;
9879         }
9880
9881         reuse_kern->selected_sk = selected_sk;
9882
9883         return 0;
9884 }
9885
9886 static const struct bpf_func_proto sk_select_reuseport_proto = {
9887         .func           = sk_select_reuseport,
9888         .gpl_only       = false,
9889         .ret_type       = RET_INTEGER,
9890         .arg1_type      = ARG_PTR_TO_CTX,
9891         .arg2_type      = ARG_CONST_MAP_PTR,
9892         .arg3_type      = ARG_PTR_TO_MAP_KEY,
9893         .arg4_type      = ARG_ANYTHING,
9894 };
9895
9896 BPF_CALL_4(sk_reuseport_load_bytes,
9897            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
9898            void *, to, u32, len)
9899 {
9900         return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
9901 }
9902
9903 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
9904         .func           = sk_reuseport_load_bytes,
9905         .gpl_only       = false,
9906         .ret_type       = RET_INTEGER,
9907         .arg1_type      = ARG_PTR_TO_CTX,
9908         .arg2_type      = ARG_ANYTHING,
9909         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
9910         .arg4_type      = ARG_CONST_SIZE,
9911 };
9912
9913 BPF_CALL_5(sk_reuseport_load_bytes_relative,
9914            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
9915            void *, to, u32, len, u32, start_header)
9916 {
9917         return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
9918                                                len, start_header);
9919 }
9920
9921 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
9922         .func           = sk_reuseport_load_bytes_relative,
9923         .gpl_only       = false,
9924         .ret_type       = RET_INTEGER,
9925         .arg1_type      = ARG_PTR_TO_CTX,
9926         .arg2_type      = ARG_ANYTHING,
9927         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
9928         .arg4_type      = ARG_CONST_SIZE,
9929         .arg5_type      = ARG_ANYTHING,
9930 };
9931
9932 static const struct bpf_func_proto *
9933 sk_reuseport_func_proto(enum bpf_func_id func_id,
9934                         const struct bpf_prog *prog)
9935 {
9936         switch (func_id) {
9937         case BPF_FUNC_sk_select_reuseport:
9938                 return &sk_select_reuseport_proto;
9939         case BPF_FUNC_skb_load_bytes:
9940                 return &sk_reuseport_load_bytes_proto;
9941         case BPF_FUNC_skb_load_bytes_relative:
9942                 return &sk_reuseport_load_bytes_relative_proto;
9943         default:
9944                 return bpf_base_func_proto(func_id);
9945         }
9946 }
9947
9948 static bool
9949 sk_reuseport_is_valid_access(int off, int size,
9950                              enum bpf_access_type type,
9951                              const struct bpf_prog *prog,
9952                              struct bpf_insn_access_aux *info)
9953 {
9954         const u32 size_default = sizeof(__u32);
9955
9956         if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
9957             off % size || type != BPF_READ)
9958                 return false;
9959
9960         switch (off) {
9961         case offsetof(struct sk_reuseport_md, data):
9962                 info->reg_type = PTR_TO_PACKET;
9963                 return size == sizeof(__u64);
9964
9965         case offsetof(struct sk_reuseport_md, data_end):
9966                 info->reg_type = PTR_TO_PACKET_END;
9967                 return size == sizeof(__u64);
9968
9969         case offsetof(struct sk_reuseport_md, hash):
9970                 return size == size_default;
9971
9972         /* Fields that allow narrowing */
9973         case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
9974                 if (size < sizeof_field(struct sk_buff, protocol))
9975                         return false;
9976                 fallthrough;
9977         case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
9978         case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
9979         case bpf_ctx_range(struct sk_reuseport_md, len):
9980                 bpf_ctx_record_field_size(info, size_default);
9981                 return bpf_ctx_narrow_access_ok(off, size, size_default);
9982
9983         default:
9984                 return false;
9985         }
9986 }
9987
9988 #define SK_REUSEPORT_LOAD_FIELD(F) ({                                   \
9989         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
9990                               si->dst_reg, si->src_reg,                 \
9991                               bpf_target_off(struct sk_reuseport_kern, F, \
9992                                              sizeof_field(struct sk_reuseport_kern, F), \
9993                                              target_size));             \
9994         })
9995
9996 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)                          \
9997         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
9998                                     struct sk_buff,                     \
9999                                     skb,                                \
10000                                     SKB_FIELD)
10001
10002 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)                            \
10003         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
10004                                     struct sock,                        \
10005                                     sk,                                 \
10006                                     SK_FIELD)
10007
10008 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
10009                                            const struct bpf_insn *si,
10010                                            struct bpf_insn *insn_buf,
10011                                            struct bpf_prog *prog,
10012                                            u32 *target_size)
10013 {
10014         struct bpf_insn *insn = insn_buf;
10015
10016         switch (si->off) {
10017         case offsetof(struct sk_reuseport_md, data):
10018                 SK_REUSEPORT_LOAD_SKB_FIELD(data);
10019                 break;
10020
10021         case offsetof(struct sk_reuseport_md, len):
10022                 SK_REUSEPORT_LOAD_SKB_FIELD(len);
10023                 break;
10024
10025         case offsetof(struct sk_reuseport_md, eth_protocol):
10026                 SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
10027                 break;
10028
10029         case offsetof(struct sk_reuseport_md, ip_protocol):
10030                 SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
10031                 break;
10032
10033         case offsetof(struct sk_reuseport_md, data_end):
10034                 SK_REUSEPORT_LOAD_FIELD(data_end);
10035                 break;
10036
10037         case offsetof(struct sk_reuseport_md, hash):
10038                 SK_REUSEPORT_LOAD_FIELD(hash);
10039                 break;
10040
10041         case offsetof(struct sk_reuseport_md, bind_inany):
10042                 SK_REUSEPORT_LOAD_FIELD(bind_inany);
10043                 break;
10044         }
10045
10046         return insn - insn_buf;
10047 }
10048
10049 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
10050         .get_func_proto         = sk_reuseport_func_proto,
10051         .is_valid_access        = sk_reuseport_is_valid_access,
10052         .convert_ctx_access     = sk_reuseport_convert_ctx_access,
10053 };
10054
10055 const struct bpf_prog_ops sk_reuseport_prog_ops = {
10056 };
10057
10058 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
10059 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
10060
10061 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
10062            struct sock *, sk, u64, flags)
10063 {
10064         if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
10065                                BPF_SK_LOOKUP_F_NO_REUSEPORT)))
10066                 return -EINVAL;
10067         if (unlikely(sk && sk_is_refcounted(sk)))
10068                 return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
10069         if (unlikely(sk && sk->sk_state == TCP_ESTABLISHED))
10070                 return -ESOCKTNOSUPPORT; /* reject connected sockets */
10071
10072         /* Check if socket is suitable for packet L3/L4 protocol */
10073         if (sk && sk->sk_protocol != ctx->protocol)
10074                 return -EPROTOTYPE;
10075         if (sk && sk->sk_family != ctx->family &&
10076             (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
10077                 return -EAFNOSUPPORT;
10078
10079         if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
10080                 return -EEXIST;
10081
10082         /* Select socket as lookup result */
10083         ctx->selected_sk = sk;
10084         ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
10085         return 0;
10086 }
10087
10088 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
10089         .func           = bpf_sk_lookup_assign,
10090         .gpl_only       = false,
10091         .ret_type       = RET_INTEGER,
10092         .arg1_type      = ARG_PTR_TO_CTX,
10093         .arg2_type      = ARG_PTR_TO_SOCKET_OR_NULL,
10094         .arg3_type      = ARG_ANYTHING,
10095 };
10096
10097 static const struct bpf_func_proto *
10098 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
10099 {
10100         switch (func_id) {
10101         case BPF_FUNC_perf_event_output:
10102                 return &bpf_event_output_data_proto;
10103         case BPF_FUNC_sk_assign:
10104                 return &bpf_sk_lookup_assign_proto;
10105         case BPF_FUNC_sk_release:
10106                 return &bpf_sk_release_proto;
10107         default:
10108                 return bpf_sk_base_func_proto(func_id);
10109         }
10110 }
10111
10112 static bool sk_lookup_is_valid_access(int off, int size,
10113                                       enum bpf_access_type type,
10114                                       const struct bpf_prog *prog,
10115                                       struct bpf_insn_access_aux *info)
10116 {
10117         if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
10118                 return false;
10119         if (off % size != 0)
10120                 return false;
10121         if (type != BPF_READ)
10122                 return false;
10123
10124         switch (off) {
10125         case offsetof(struct bpf_sk_lookup, sk):
10126                 info->reg_type = PTR_TO_SOCKET_OR_NULL;
10127                 return size == sizeof(__u64);
10128
10129         case bpf_ctx_range(struct bpf_sk_lookup, family):
10130         case bpf_ctx_range(struct bpf_sk_lookup, protocol):
10131         case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
10132         case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
10133         case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
10134         case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
10135         case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
10136         case bpf_ctx_range(struct bpf_sk_lookup, local_port):
10137                 bpf_ctx_record_field_size(info, sizeof(__u32));
10138                 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
10139
10140         default:
10141                 return false;
10142         }
10143 }
10144
10145 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
10146                                         const struct bpf_insn *si,
10147                                         struct bpf_insn *insn_buf,
10148                                         struct bpf_prog *prog,
10149                                         u32 *target_size)
10150 {
10151         struct bpf_insn *insn = insn_buf;
10152
10153         switch (si->off) {
10154         case offsetof(struct bpf_sk_lookup, sk):
10155                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10156                                       offsetof(struct bpf_sk_lookup_kern, selected_sk));
10157                 break;
10158
10159         case offsetof(struct bpf_sk_lookup, family):
10160                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10161                                       bpf_target_off(struct bpf_sk_lookup_kern,
10162                                                      family, 2, target_size));
10163                 break;
10164
10165         case offsetof(struct bpf_sk_lookup, protocol):
10166                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10167                                       bpf_target_off(struct bpf_sk_lookup_kern,
10168                                                      protocol, 2, target_size));
10169                 break;
10170
10171         case offsetof(struct bpf_sk_lookup, remote_ip4):
10172                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10173                                       bpf_target_off(struct bpf_sk_lookup_kern,
10174                                                      v4.saddr, 4, target_size));
10175                 break;
10176
10177         case offsetof(struct bpf_sk_lookup, local_ip4):
10178                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10179                                       bpf_target_off(struct bpf_sk_lookup_kern,
10180                                                      v4.daddr, 4, target_size));
10181                 break;
10182
10183         case bpf_ctx_range_till(struct bpf_sk_lookup,
10184                                 remote_ip6[0], remote_ip6[3]): {
10185 #if IS_ENABLED(CONFIG_IPV6)
10186                 int off = si->off;
10187
10188                 off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
10189                 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
10190                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10191                                       offsetof(struct bpf_sk_lookup_kern, v6.saddr));
10192                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10193                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
10194 #else
10195                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10196 #endif
10197                 break;
10198         }
10199         case bpf_ctx_range_till(struct bpf_sk_lookup,
10200                                 local_ip6[0], local_ip6[3]): {
10201 #if IS_ENABLED(CONFIG_IPV6)
10202                 int off = si->off;
10203
10204                 off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
10205                 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
10206                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
10207                                       offsetof(struct bpf_sk_lookup_kern, v6.daddr));
10208                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10209                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
10210 #else
10211                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10212 #endif
10213                 break;
10214         }
10215         case offsetof(struct bpf_sk_lookup, remote_port):
10216                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10217                                       bpf_target_off(struct bpf_sk_lookup_kern,
10218                                                      sport, 2, target_size));
10219                 break;
10220
10221         case offsetof(struct bpf_sk_lookup, local_port):
10222                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
10223                                       bpf_target_off(struct bpf_sk_lookup_kern,
10224                                                      dport, 2, target_size));
10225                 break;
10226         }
10227
10228         return insn - insn_buf;
10229 }
10230
10231 const struct bpf_prog_ops sk_lookup_prog_ops = {
10232 };
10233
10234 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
10235         .get_func_proto         = sk_lookup_func_proto,
10236         .is_valid_access        = sk_lookup_is_valid_access,
10237         .convert_ctx_access     = sk_lookup_convert_ctx_access,
10238 };
10239
10240 #endif /* CONFIG_INET */
10241
10242 DEFINE_BPF_DISPATCHER(xdp)
10243
10244 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
10245 {
10246         bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
10247 }
10248
10249 #ifdef CONFIG_DEBUG_INFO_BTF
10250 BTF_ID_LIST_GLOBAL(btf_sock_ids)
10251 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
10252 BTF_SOCK_TYPE_xxx
10253 #undef BTF_SOCK_TYPE
10254 #else
10255 u32 btf_sock_ids[MAX_BTF_SOCK_TYPE];
10256 #endif
10257
10258 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
10259 {
10260         /* tcp6_sock type is not generated in dwarf and hence btf,
10261          * trigger an explicit type generation here.
10262          */
10263         BTF_TYPE_EMIT(struct tcp6_sock);
10264         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
10265             sk->sk_family == AF_INET6)
10266                 return (unsigned long)sk;
10267
10268         return (unsigned long)NULL;
10269 }
10270
10271 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
10272         .func                   = bpf_skc_to_tcp6_sock,
10273         .gpl_only               = false,
10274         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10275         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10276         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
10277 };
10278
10279 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
10280 {
10281         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
10282                 return (unsigned long)sk;
10283
10284         return (unsigned long)NULL;
10285 }
10286
10287 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
10288         .func                   = bpf_skc_to_tcp_sock,
10289         .gpl_only               = false,
10290         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10291         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10292         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
10293 };
10294
10295 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
10296 {
10297         /* BTF types for tcp_timewait_sock and inet_timewait_sock are not
10298          * generated if CONFIG_INET=n. Trigger an explicit generation here.
10299          */
10300         BTF_TYPE_EMIT(struct inet_timewait_sock);
10301         BTF_TYPE_EMIT(struct tcp_timewait_sock);
10302
10303 #ifdef CONFIG_INET
10304         if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
10305                 return (unsigned long)sk;
10306 #endif
10307
10308 #if IS_BUILTIN(CONFIG_IPV6)
10309         if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
10310                 return (unsigned long)sk;
10311 #endif
10312
10313         return (unsigned long)NULL;
10314 }
10315
10316 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
10317         .func                   = bpf_skc_to_tcp_timewait_sock,
10318         .gpl_only               = false,
10319         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10320         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10321         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
10322 };
10323
10324 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
10325 {
10326 #ifdef CONFIG_INET
10327         if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
10328                 return (unsigned long)sk;
10329 #endif
10330
10331 #if IS_BUILTIN(CONFIG_IPV6)
10332         if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
10333                 return (unsigned long)sk;
10334 #endif
10335
10336         return (unsigned long)NULL;
10337 }
10338
10339 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
10340         .func                   = bpf_skc_to_tcp_request_sock,
10341         .gpl_only               = false,
10342         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10343         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10344         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
10345 };
10346
10347 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
10348 {
10349         /* udp6_sock type is not generated in dwarf and hence btf,
10350          * trigger an explicit type generation here.
10351          */
10352         BTF_TYPE_EMIT(struct udp6_sock);
10353         if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
10354             sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
10355                 return (unsigned long)sk;
10356
10357         return (unsigned long)NULL;
10358 }
10359
10360 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
10361         .func                   = bpf_skc_to_udp6_sock,
10362         .gpl_only               = false,
10363         .ret_type               = RET_PTR_TO_BTF_ID_OR_NULL,
10364         .arg1_type              = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
10365         .ret_btf_id             = &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
10366 };
10367
10368 static const struct bpf_func_proto *
10369 bpf_sk_base_func_proto(enum bpf_func_id func_id)
10370 {
10371         const struct bpf_func_proto *func;
10372
10373         switch (func_id) {
10374         case BPF_FUNC_skc_to_tcp6_sock:
10375                 func = &bpf_skc_to_tcp6_sock_proto;
10376                 break;
10377         case BPF_FUNC_skc_to_tcp_sock:
10378                 func = &bpf_skc_to_tcp_sock_proto;
10379                 break;
10380         case BPF_FUNC_skc_to_tcp_timewait_sock:
10381                 func = &bpf_skc_to_tcp_timewait_sock_proto;
10382                 break;
10383         case BPF_FUNC_skc_to_tcp_request_sock:
10384                 func = &bpf_skc_to_tcp_request_sock_proto;
10385                 break;
10386         case BPF_FUNC_skc_to_udp6_sock:
10387                 func = &bpf_skc_to_udp6_sock_proto;
10388                 break;
10389         default:
10390                 return bpf_base_func_proto(func_id);
10391         }
10392
10393         if (!perfmon_capable())
10394                 return NULL;
10395
10396         return func;
10397 }