1 // SPDX-License-Identifier: GPL-2.0
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
26 * Targeted preemption latency for CPU-bound tasks:
28 * NOTE: this latency value is not the same as the concept of
29 * 'timeslice length' - timeslices in CFS are of variable length
30 * and have no persistent notion like in traditional, time-slice
31 * based scheduling concepts.
33 * (to see the precise effective timeslice length of your workload,
34 * run vmstat and monitor the context-switches (cs) field)
36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
38 unsigned int sysctl_sched_latency = 6000000ULL;
39 static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
42 * The initial- and re-scaling of tunables is configurable
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
50 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
52 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
55 * Minimal preemption granularity for CPU-bound tasks:
57 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
59 unsigned int sysctl_sched_min_granularity = 750000ULL;
60 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
63 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
65 static unsigned int sched_nr_latency = 8;
68 * After fork, child runs first. If set to 0 (default) then
69 * parent will (try to) run first.
71 unsigned int sysctl_sched_child_runs_first __read_mostly;
74 * SCHED_OTHER wake-up granularity.
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
80 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
82 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
83 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
85 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
87 int sched_thermal_decay_shift;
88 static int __init setup_sched_thermal_decay_shift(char *str)
92 if (kstrtoint(str, 0, &_shift))
93 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
95 sched_thermal_decay_shift = clamp(_shift, 0, 10);
98 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
102 * For asym packing, by default the lower numbered CPU has higher priority.
104 int __weak arch_asym_cpu_priority(int cpu)
110 * The margin used when comparing utilization with CPU capacity.
114 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
117 * The margin used when comparing CPU capacities.
118 * is 'cap1' noticeably greater than 'cap2'
122 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
125 #ifdef CONFIG_CFS_BANDWIDTH
127 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
128 * each time a cfs_rq requests quota.
130 * Note: in the case that the slice exceeds the runtime remaining (either due
131 * to consumption or the quota being specified to be smaller than the slice)
132 * we will always only issue the remaining available time.
134 * (default: 5 msec, units: microseconds)
136 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
139 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
145 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
151 static inline void update_load_set(struct load_weight *lw, unsigned long w)
158 * Increase the granularity value when there are more CPUs,
159 * because with more CPUs the 'effective latency' as visible
160 * to users decreases. But the relationship is not linear,
161 * so pick a second-best guess by going with the log2 of the
164 * This idea comes from the SD scheduler of Con Kolivas:
166 static unsigned int get_update_sysctl_factor(void)
168 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
171 switch (sysctl_sched_tunable_scaling) {
172 case SCHED_TUNABLESCALING_NONE:
175 case SCHED_TUNABLESCALING_LINEAR:
178 case SCHED_TUNABLESCALING_LOG:
180 factor = 1 + ilog2(cpus);
187 static void update_sysctl(void)
189 unsigned int factor = get_update_sysctl_factor();
191 #define SET_SYSCTL(name) \
192 (sysctl_##name = (factor) * normalized_sysctl_##name)
193 SET_SYSCTL(sched_min_granularity);
194 SET_SYSCTL(sched_latency);
195 SET_SYSCTL(sched_wakeup_granularity);
199 void __init sched_init_granularity(void)
204 #define WMULT_CONST (~0U)
205 #define WMULT_SHIFT 32
207 static void __update_inv_weight(struct load_weight *lw)
211 if (likely(lw->inv_weight))
214 w = scale_load_down(lw->weight);
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
221 lw->inv_weight = WMULT_CONST / w;
225 * delta_exec * weight / lw.weight
227 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
229 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
230 * we're guaranteed shift stays positive because inv_weight is guaranteed to
231 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
233 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
234 * weight/lw.weight <= 1, and therefore our shift will also be positive.
236 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
238 u64 fact = scale_load_down(weight);
239 u32 fact_hi = (u32)(fact >> 32);
240 int shift = WMULT_SHIFT;
243 __update_inv_weight(lw);
245 if (unlikely(fact_hi)) {
251 fact = mul_u32_u32(fact, lw->inv_weight);
253 fact_hi = (u32)(fact >> 32);
260 return mul_u64_u32_shr(delta_exec, fact, shift);
264 const struct sched_class fair_sched_class;
266 /**************************************************************
267 * CFS operations on generic schedulable entities:
270 #ifdef CONFIG_FAIR_GROUP_SCHED
272 /* Walk up scheduling entities hierarchy */
273 #define for_each_sched_entity(se) \
274 for (; se; se = se->parent)
276 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
281 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
282 autogroup_path(cfs_rq->tg, path, len);
283 else if (cfs_rq && cfs_rq->tg->css.cgroup)
284 cgroup_path(cfs_rq->tg->css.cgroup, path, len);
286 strlcpy(path, "(null)", len);
289 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
291 struct rq *rq = rq_of(cfs_rq);
292 int cpu = cpu_of(rq);
295 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
300 * Ensure we either appear before our parent (if already
301 * enqueued) or force our parent to appear after us when it is
302 * enqueued. The fact that we always enqueue bottom-up
303 * reduces this to two cases and a special case for the root
304 * cfs_rq. Furthermore, it also means that we will always reset
305 * tmp_alone_branch either when the branch is connected
306 * to a tree or when we reach the top of the tree
308 if (cfs_rq->tg->parent &&
309 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
311 * If parent is already on the list, we add the child
312 * just before. Thanks to circular linked property of
313 * the list, this means to put the child at the tail
314 * of the list that starts by parent.
316 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
317 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
319 * The branch is now connected to its tree so we can
320 * reset tmp_alone_branch to the beginning of the
323 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
327 if (!cfs_rq->tg->parent) {
329 * cfs rq without parent should be put
330 * at the tail of the list.
332 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
333 &rq->leaf_cfs_rq_list);
335 * We have reach the top of a tree so we can reset
336 * tmp_alone_branch to the beginning of the list.
338 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
343 * The parent has not already been added so we want to
344 * make sure that it will be put after us.
345 * tmp_alone_branch points to the begin of the branch
346 * where we will add parent.
348 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
350 * update tmp_alone_branch to points to the new begin
353 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
357 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
359 if (cfs_rq->on_list) {
360 struct rq *rq = rq_of(cfs_rq);
363 * With cfs_rq being unthrottled/throttled during an enqueue,
364 * it can happen the tmp_alone_branch points the a leaf that
365 * we finally want to del. In this case, tmp_alone_branch moves
366 * to the prev element but it will point to rq->leaf_cfs_rq_list
367 * at the end of the enqueue.
369 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
370 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
372 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
377 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
379 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
382 /* Iterate thr' all leaf cfs_rq's on a runqueue */
383 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
384 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
387 /* Do the two (enqueued) entities belong to the same group ? */
388 static inline struct cfs_rq *
389 is_same_group(struct sched_entity *se, struct sched_entity *pse)
391 if (se->cfs_rq == pse->cfs_rq)
397 static inline struct sched_entity *parent_entity(struct sched_entity *se)
403 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
405 int se_depth, pse_depth;
408 * preemption test can be made between sibling entities who are in the
409 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
410 * both tasks until we find their ancestors who are siblings of common
414 /* First walk up until both entities are at same depth */
415 se_depth = (*se)->depth;
416 pse_depth = (*pse)->depth;
418 while (se_depth > pse_depth) {
420 *se = parent_entity(*se);
423 while (pse_depth > se_depth) {
425 *pse = parent_entity(*pse);
428 while (!is_same_group(*se, *pse)) {
429 *se = parent_entity(*se);
430 *pse = parent_entity(*pse);
434 #else /* !CONFIG_FAIR_GROUP_SCHED */
436 #define for_each_sched_entity(se) \
437 for (; se; se = NULL)
439 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
442 strlcpy(path, "(null)", len);
445 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
450 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
454 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
458 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
459 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
461 static inline struct sched_entity *parent_entity(struct sched_entity *se)
467 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
471 #endif /* CONFIG_FAIR_GROUP_SCHED */
473 static __always_inline
474 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
476 /**************************************************************
477 * Scheduling class tree data structure manipulation methods:
480 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
482 s64 delta = (s64)(vruntime - max_vruntime);
484 max_vruntime = vruntime;
489 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
491 s64 delta = (s64)(vruntime - min_vruntime);
493 min_vruntime = vruntime;
498 static inline bool entity_before(struct sched_entity *a,
499 struct sched_entity *b)
501 return (s64)(a->vruntime - b->vruntime) < 0;
504 #define __node_2_se(node) \
505 rb_entry((node), struct sched_entity, run_node)
507 static void update_min_vruntime(struct cfs_rq *cfs_rq)
509 struct sched_entity *curr = cfs_rq->curr;
510 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
512 u64 vruntime = cfs_rq->min_vruntime;
516 vruntime = curr->vruntime;
521 if (leftmost) { /* non-empty tree */
522 struct sched_entity *se = __node_2_se(leftmost);
525 vruntime = se->vruntime;
527 vruntime = min_vruntime(vruntime, se->vruntime);
530 /* ensure we never gain time by being placed backwards. */
531 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
534 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
538 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
540 return entity_before(__node_2_se(a), __node_2_se(b));
544 * Enqueue an entity into the rb-tree:
546 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
548 rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less);
551 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
553 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
556 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
558 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
563 return __node_2_se(left);
566 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
568 struct rb_node *next = rb_next(&se->run_node);
573 return __node_2_se(next);
576 #ifdef CONFIG_SCHED_DEBUG
577 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
579 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
584 return __node_2_se(last);
587 /**************************************************************
588 * Scheduling class statistics methods:
591 int sched_update_scaling(void)
593 unsigned int factor = get_update_sysctl_factor();
595 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
596 sysctl_sched_min_granularity);
598 #define WRT_SYSCTL(name) \
599 (normalized_sysctl_##name = sysctl_##name / (factor))
600 WRT_SYSCTL(sched_min_granularity);
601 WRT_SYSCTL(sched_latency);
602 WRT_SYSCTL(sched_wakeup_granularity);
612 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
614 if (unlikely(se->load.weight != NICE_0_LOAD))
615 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
621 * The idea is to set a period in which each task runs once.
623 * When there are too many tasks (sched_nr_latency) we have to stretch
624 * this period because otherwise the slices get too small.
626 * p = (nr <= nl) ? l : l*nr/nl
628 static u64 __sched_period(unsigned long nr_running)
630 if (unlikely(nr_running > sched_nr_latency))
631 return nr_running * sysctl_sched_min_granularity;
633 return sysctl_sched_latency;
637 * We calculate the wall-time slice from the period by taking a part
638 * proportional to the weight.
642 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
644 unsigned int nr_running = cfs_rq->nr_running;
647 if (sched_feat(ALT_PERIOD))
648 nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
650 slice = __sched_period(nr_running + !se->on_rq);
652 for_each_sched_entity(se) {
653 struct load_weight *load;
654 struct load_weight lw;
656 cfs_rq = cfs_rq_of(se);
657 load = &cfs_rq->load;
659 if (unlikely(!se->on_rq)) {
662 update_load_add(&lw, se->load.weight);
665 slice = __calc_delta(slice, se->load.weight, load);
668 if (sched_feat(BASE_SLICE))
669 slice = max(slice, (u64)sysctl_sched_min_granularity);
675 * We calculate the vruntime slice of a to-be-inserted task.
679 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
681 return calc_delta_fair(sched_slice(cfs_rq, se), se);
687 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
688 static unsigned long task_h_load(struct task_struct *p);
689 static unsigned long capacity_of(int cpu);
691 /* Give new sched_entity start runnable values to heavy its load in infant time */
692 void init_entity_runnable_average(struct sched_entity *se)
694 struct sched_avg *sa = &se->avg;
696 memset(sa, 0, sizeof(*sa));
699 * Tasks are initialized with full load to be seen as heavy tasks until
700 * they get a chance to stabilize to their real load level.
701 * Group entities are initialized with zero load to reflect the fact that
702 * nothing has been attached to the task group yet.
704 if (entity_is_task(se))
705 sa->load_avg = scale_load_down(se->load.weight);
707 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
710 static void attach_entity_cfs_rq(struct sched_entity *se);
713 * With new tasks being created, their initial util_avgs are extrapolated
714 * based on the cfs_rq's current util_avg:
716 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
718 * However, in many cases, the above util_avg does not give a desired
719 * value. Moreover, the sum of the util_avgs may be divergent, such
720 * as when the series is a harmonic series.
722 * To solve this problem, we also cap the util_avg of successive tasks to
723 * only 1/2 of the left utilization budget:
725 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
727 * where n denotes the nth task and cpu_scale the CPU capacity.
729 * For example, for a CPU with 1024 of capacity, a simplest series from
730 * the beginning would be like:
732 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
733 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
735 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
736 * if util_avg > util_avg_cap.
738 void post_init_entity_util_avg(struct task_struct *p)
740 struct sched_entity *se = &p->se;
741 struct cfs_rq *cfs_rq = cfs_rq_of(se);
742 struct sched_avg *sa = &se->avg;
743 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
744 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
747 if (cfs_rq->avg.util_avg != 0) {
748 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
749 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
751 if (sa->util_avg > cap)
758 sa->runnable_avg = sa->util_avg;
760 if (p->sched_class != &fair_sched_class) {
762 * For !fair tasks do:
764 update_cfs_rq_load_avg(now, cfs_rq);
765 attach_entity_load_avg(cfs_rq, se);
766 switched_from_fair(rq, p);
768 * such that the next switched_to_fair() has the
771 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
775 attach_entity_cfs_rq(se);
778 #else /* !CONFIG_SMP */
779 void init_entity_runnable_average(struct sched_entity *se)
782 void post_init_entity_util_avg(struct task_struct *p)
785 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
788 #endif /* CONFIG_SMP */
791 * Update the current task's runtime statistics.
793 static void update_curr(struct cfs_rq *cfs_rq)
795 struct sched_entity *curr = cfs_rq->curr;
796 u64 now = rq_clock_task(rq_of(cfs_rq));
802 delta_exec = now - curr->exec_start;
803 if (unlikely((s64)delta_exec <= 0))
806 curr->exec_start = now;
808 schedstat_set(curr->statistics.exec_max,
809 max(delta_exec, curr->statistics.exec_max));
811 curr->sum_exec_runtime += delta_exec;
812 schedstat_add(cfs_rq->exec_clock, delta_exec);
814 curr->vruntime += calc_delta_fair(delta_exec, curr);
815 update_min_vruntime(cfs_rq);
817 if (entity_is_task(curr)) {
818 struct task_struct *curtask = task_of(curr);
820 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
821 cgroup_account_cputime(curtask, delta_exec);
822 account_group_exec_runtime(curtask, delta_exec);
825 account_cfs_rq_runtime(cfs_rq, delta_exec);
828 static void update_curr_fair(struct rq *rq)
830 update_curr(cfs_rq_of(&rq->curr->se));
834 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
836 u64 wait_start, prev_wait_start;
838 if (!schedstat_enabled())
841 wait_start = rq_clock(rq_of(cfs_rq));
842 prev_wait_start = schedstat_val(se->statistics.wait_start);
844 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
845 likely(wait_start > prev_wait_start))
846 wait_start -= prev_wait_start;
848 __schedstat_set(se->statistics.wait_start, wait_start);
852 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
854 struct task_struct *p;
857 if (!schedstat_enabled())
861 * When the sched_schedstat changes from 0 to 1, some sched se
862 * maybe already in the runqueue, the se->statistics.wait_start
863 * will be 0.So it will let the delta wrong. We need to avoid this
866 if (unlikely(!schedstat_val(se->statistics.wait_start)))
869 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
871 if (entity_is_task(se)) {
873 if (task_on_rq_migrating(p)) {
875 * Preserve migrating task's wait time so wait_start
876 * time stamp can be adjusted to accumulate wait time
877 * prior to migration.
879 __schedstat_set(se->statistics.wait_start, delta);
882 trace_sched_stat_wait(p, delta);
885 __schedstat_set(se->statistics.wait_max,
886 max(schedstat_val(se->statistics.wait_max), delta));
887 __schedstat_inc(se->statistics.wait_count);
888 __schedstat_add(se->statistics.wait_sum, delta);
889 __schedstat_set(se->statistics.wait_start, 0);
893 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
895 struct task_struct *tsk = NULL;
896 u64 sleep_start, block_start;
898 if (!schedstat_enabled())
901 sleep_start = schedstat_val(se->statistics.sleep_start);
902 block_start = schedstat_val(se->statistics.block_start);
904 if (entity_is_task(se))
908 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
913 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
914 __schedstat_set(se->statistics.sleep_max, delta);
916 __schedstat_set(se->statistics.sleep_start, 0);
917 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
920 account_scheduler_latency(tsk, delta >> 10, 1);
921 trace_sched_stat_sleep(tsk, delta);
925 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
930 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
931 __schedstat_set(se->statistics.block_max, delta);
933 __schedstat_set(se->statistics.block_start, 0);
934 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
937 if (tsk->in_iowait) {
938 __schedstat_add(se->statistics.iowait_sum, delta);
939 __schedstat_inc(se->statistics.iowait_count);
940 trace_sched_stat_iowait(tsk, delta);
943 trace_sched_stat_blocked(tsk, delta);
946 * Blocking time is in units of nanosecs, so shift by
947 * 20 to get a milliseconds-range estimation of the
948 * amount of time that the task spent sleeping:
950 if (unlikely(prof_on == SLEEP_PROFILING)) {
951 profile_hits(SLEEP_PROFILING,
952 (void *)get_wchan(tsk),
955 account_scheduler_latency(tsk, delta >> 10, 0);
961 * Task is being enqueued - update stats:
964 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
966 if (!schedstat_enabled())
970 * Are we enqueueing a waiting task? (for current tasks
971 * a dequeue/enqueue event is a NOP)
973 if (se != cfs_rq->curr)
974 update_stats_wait_start(cfs_rq, se);
976 if (flags & ENQUEUE_WAKEUP)
977 update_stats_enqueue_sleeper(cfs_rq, se);
981 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
984 if (!schedstat_enabled())
988 * Mark the end of the wait period if dequeueing a
991 if (se != cfs_rq->curr)
992 update_stats_wait_end(cfs_rq, se);
994 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
995 struct task_struct *tsk = task_of(se);
998 /* XXX racy against TTWU */
999 state = READ_ONCE(tsk->__state);
1000 if (state & TASK_INTERRUPTIBLE)
1001 __schedstat_set(se->statistics.sleep_start,
1002 rq_clock(rq_of(cfs_rq)));
1003 if (state & TASK_UNINTERRUPTIBLE)
1004 __schedstat_set(se->statistics.block_start,
1005 rq_clock(rq_of(cfs_rq)));
1010 * We are picking a new current task - update its stats:
1013 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1016 * We are starting a new run period:
1018 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1021 /**************************************************
1022 * Scheduling class queueing methods:
1025 #ifdef CONFIG_NUMA_BALANCING
1027 * Approximate time to scan a full NUMA task in ms. The task scan period is
1028 * calculated based on the tasks virtual memory size and
1029 * numa_balancing_scan_size.
1031 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1032 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1034 /* Portion of address space to scan in MB */
1035 unsigned int sysctl_numa_balancing_scan_size = 256;
1037 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1038 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1041 refcount_t refcount;
1043 spinlock_t lock; /* nr_tasks, tasks */
1048 struct rcu_head rcu;
1049 unsigned long total_faults;
1050 unsigned long max_faults_cpu;
1052 * Faults_cpu is used to decide whether memory should move
1053 * towards the CPU. As a consequence, these stats are weighted
1054 * more by CPU use than by memory faults.
1056 unsigned long *faults_cpu;
1057 unsigned long faults[];
1061 * For functions that can be called in multiple contexts that permit reading
1062 * ->numa_group (see struct task_struct for locking rules).
1064 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1066 return rcu_dereference_check(p->numa_group, p == current ||
1067 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1070 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1072 return rcu_dereference_protected(p->numa_group, p == current);
1075 static inline unsigned long group_faults_priv(struct numa_group *ng);
1076 static inline unsigned long group_faults_shared(struct numa_group *ng);
1078 static unsigned int task_nr_scan_windows(struct task_struct *p)
1080 unsigned long rss = 0;
1081 unsigned long nr_scan_pages;
1084 * Calculations based on RSS as non-present and empty pages are skipped
1085 * by the PTE scanner and NUMA hinting faults should be trapped based
1088 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1089 rss = get_mm_rss(p->mm);
1091 rss = nr_scan_pages;
1093 rss = round_up(rss, nr_scan_pages);
1094 return rss / nr_scan_pages;
1097 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1098 #define MAX_SCAN_WINDOW 2560
1100 static unsigned int task_scan_min(struct task_struct *p)
1102 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1103 unsigned int scan, floor;
1104 unsigned int windows = 1;
1106 if (scan_size < MAX_SCAN_WINDOW)
1107 windows = MAX_SCAN_WINDOW / scan_size;
1108 floor = 1000 / windows;
1110 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1111 return max_t(unsigned int, floor, scan);
1114 static unsigned int task_scan_start(struct task_struct *p)
1116 unsigned long smin = task_scan_min(p);
1117 unsigned long period = smin;
1118 struct numa_group *ng;
1120 /* Scale the maximum scan period with the amount of shared memory. */
1122 ng = rcu_dereference(p->numa_group);
1124 unsigned long shared = group_faults_shared(ng);
1125 unsigned long private = group_faults_priv(ng);
1127 period *= refcount_read(&ng->refcount);
1128 period *= shared + 1;
1129 period /= private + shared + 1;
1133 return max(smin, period);
1136 static unsigned int task_scan_max(struct task_struct *p)
1138 unsigned long smin = task_scan_min(p);
1140 struct numa_group *ng;
1142 /* Watch for min being lower than max due to floor calculations */
1143 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1145 /* Scale the maximum scan period with the amount of shared memory. */
1146 ng = deref_curr_numa_group(p);
1148 unsigned long shared = group_faults_shared(ng);
1149 unsigned long private = group_faults_priv(ng);
1150 unsigned long period = smax;
1152 period *= refcount_read(&ng->refcount);
1153 period *= shared + 1;
1154 period /= private + shared + 1;
1156 smax = max(smax, period);
1159 return max(smin, smax);
1162 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1164 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1165 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1168 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1170 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1171 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1174 /* Shared or private faults. */
1175 #define NR_NUMA_HINT_FAULT_TYPES 2
1177 /* Memory and CPU locality */
1178 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1180 /* Averaged statistics, and temporary buffers. */
1181 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1183 pid_t task_numa_group_id(struct task_struct *p)
1185 struct numa_group *ng;
1189 ng = rcu_dereference(p->numa_group);
1198 * The averaged statistics, shared & private, memory & CPU,
1199 * occupy the first half of the array. The second half of the
1200 * array is for current counters, which are averaged into the
1201 * first set by task_numa_placement.
1203 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1205 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1208 static inline unsigned long task_faults(struct task_struct *p, int nid)
1210 if (!p->numa_faults)
1213 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1214 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1217 static inline unsigned long group_faults(struct task_struct *p, int nid)
1219 struct numa_group *ng = deref_task_numa_group(p);
1224 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1225 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1228 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1230 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1231 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1234 static inline unsigned long group_faults_priv(struct numa_group *ng)
1236 unsigned long faults = 0;
1239 for_each_online_node(node) {
1240 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1246 static inline unsigned long group_faults_shared(struct numa_group *ng)
1248 unsigned long faults = 0;
1251 for_each_online_node(node) {
1252 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1259 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1260 * considered part of a numa group's pseudo-interleaving set. Migrations
1261 * between these nodes are slowed down, to allow things to settle down.
1263 #define ACTIVE_NODE_FRACTION 3
1265 static bool numa_is_active_node(int nid, struct numa_group *ng)
1267 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1270 /* Handle placement on systems where not all nodes are directly connected. */
1271 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1272 int maxdist, bool task)
1274 unsigned long score = 0;
1278 * All nodes are directly connected, and the same distance
1279 * from each other. No need for fancy placement algorithms.
1281 if (sched_numa_topology_type == NUMA_DIRECT)
1285 * This code is called for each node, introducing N^2 complexity,
1286 * which should be ok given the number of nodes rarely exceeds 8.
1288 for_each_online_node(node) {
1289 unsigned long faults;
1290 int dist = node_distance(nid, node);
1293 * The furthest away nodes in the system are not interesting
1294 * for placement; nid was already counted.
1296 if (dist == sched_max_numa_distance || node == nid)
1300 * On systems with a backplane NUMA topology, compare groups
1301 * of nodes, and move tasks towards the group with the most
1302 * memory accesses. When comparing two nodes at distance
1303 * "hoplimit", only nodes closer by than "hoplimit" are part
1304 * of each group. Skip other nodes.
1306 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1310 /* Add up the faults from nearby nodes. */
1312 faults = task_faults(p, node);
1314 faults = group_faults(p, node);
1317 * On systems with a glueless mesh NUMA topology, there are
1318 * no fixed "groups of nodes". Instead, nodes that are not
1319 * directly connected bounce traffic through intermediate
1320 * nodes; a numa_group can occupy any set of nodes.
1321 * The further away a node is, the less the faults count.
1322 * This seems to result in good task placement.
1324 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1325 faults *= (sched_max_numa_distance - dist);
1326 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1336 * These return the fraction of accesses done by a particular task, or
1337 * task group, on a particular numa node. The group weight is given a
1338 * larger multiplier, in order to group tasks together that are almost
1339 * evenly spread out between numa nodes.
1341 static inline unsigned long task_weight(struct task_struct *p, int nid,
1344 unsigned long faults, total_faults;
1346 if (!p->numa_faults)
1349 total_faults = p->total_numa_faults;
1354 faults = task_faults(p, nid);
1355 faults += score_nearby_nodes(p, nid, dist, true);
1357 return 1000 * faults / total_faults;
1360 static inline unsigned long group_weight(struct task_struct *p, int nid,
1363 struct numa_group *ng = deref_task_numa_group(p);
1364 unsigned long faults, total_faults;
1369 total_faults = ng->total_faults;
1374 faults = group_faults(p, nid);
1375 faults += score_nearby_nodes(p, nid, dist, false);
1377 return 1000 * faults / total_faults;
1380 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1381 int src_nid, int dst_cpu)
1383 struct numa_group *ng = deref_curr_numa_group(p);
1384 int dst_nid = cpu_to_node(dst_cpu);
1385 int last_cpupid, this_cpupid;
1387 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1388 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1391 * Allow first faults or private faults to migrate immediately early in
1392 * the lifetime of a task. The magic number 4 is based on waiting for
1393 * two full passes of the "multi-stage node selection" test that is
1396 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1397 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1401 * Multi-stage node selection is used in conjunction with a periodic
1402 * migration fault to build a temporal task<->page relation. By using
1403 * a two-stage filter we remove short/unlikely relations.
1405 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1406 * a task's usage of a particular page (n_p) per total usage of this
1407 * page (n_t) (in a given time-span) to a probability.
1409 * Our periodic faults will sample this probability and getting the
1410 * same result twice in a row, given these samples are fully
1411 * independent, is then given by P(n)^2, provided our sample period
1412 * is sufficiently short compared to the usage pattern.
1414 * This quadric squishes small probabilities, making it less likely we
1415 * act on an unlikely task<->page relation.
1417 if (!cpupid_pid_unset(last_cpupid) &&
1418 cpupid_to_nid(last_cpupid) != dst_nid)
1421 /* Always allow migrate on private faults */
1422 if (cpupid_match_pid(p, last_cpupid))
1425 /* A shared fault, but p->numa_group has not been set up yet. */
1430 * Destination node is much more heavily used than the source
1431 * node? Allow migration.
1433 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1434 ACTIVE_NODE_FRACTION)
1438 * Distribute memory according to CPU & memory use on each node,
1439 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1441 * faults_cpu(dst) 3 faults_cpu(src)
1442 * --------------- * - > ---------------
1443 * faults_mem(dst) 4 faults_mem(src)
1445 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1446 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1450 * 'numa_type' describes the node at the moment of load balancing.
1453 /* The node has spare capacity that can be used to run more tasks. */
1456 * The node is fully used and the tasks don't compete for more CPU
1457 * cycles. Nevertheless, some tasks might wait before running.
1461 * The node is overloaded and can't provide expected CPU cycles to all
1467 /* Cached statistics for all CPUs within a node */
1470 unsigned long runnable;
1472 /* Total compute capacity of CPUs on a node */
1473 unsigned long compute_capacity;
1474 unsigned int nr_running;
1475 unsigned int weight;
1476 enum numa_type node_type;
1480 static inline bool is_core_idle(int cpu)
1482 #ifdef CONFIG_SCHED_SMT
1485 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1497 struct task_numa_env {
1498 struct task_struct *p;
1500 int src_cpu, src_nid;
1501 int dst_cpu, dst_nid;
1503 struct numa_stats src_stats, dst_stats;
1508 struct task_struct *best_task;
1513 static unsigned long cpu_load(struct rq *rq);
1514 static unsigned long cpu_runnable(struct rq *rq);
1515 static unsigned long cpu_util(int cpu);
1516 static inline long adjust_numa_imbalance(int imbalance,
1517 int dst_running, int dst_weight);
1520 numa_type numa_classify(unsigned int imbalance_pct,
1521 struct numa_stats *ns)
1523 if ((ns->nr_running > ns->weight) &&
1524 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1525 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1526 return node_overloaded;
1528 if ((ns->nr_running < ns->weight) ||
1529 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1530 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1531 return node_has_spare;
1533 return node_fully_busy;
1536 #ifdef CONFIG_SCHED_SMT
1537 /* Forward declarations of select_idle_sibling helpers */
1538 static inline bool test_idle_cores(int cpu, bool def);
1539 static inline int numa_idle_core(int idle_core, int cpu)
1541 if (!static_branch_likely(&sched_smt_present) ||
1542 idle_core >= 0 || !test_idle_cores(cpu, false))
1546 * Prefer cores instead of packing HT siblings
1547 * and triggering future load balancing.
1549 if (is_core_idle(cpu))
1555 static inline int numa_idle_core(int idle_core, int cpu)
1562 * Gather all necessary information to make NUMA balancing placement
1563 * decisions that are compatible with standard load balancer. This
1564 * borrows code and logic from update_sg_lb_stats but sharing a
1565 * common implementation is impractical.
1567 static void update_numa_stats(struct task_numa_env *env,
1568 struct numa_stats *ns, int nid,
1571 int cpu, idle_core = -1;
1573 memset(ns, 0, sizeof(*ns));
1577 for_each_cpu(cpu, cpumask_of_node(nid)) {
1578 struct rq *rq = cpu_rq(cpu);
1580 ns->load += cpu_load(rq);
1581 ns->runnable += cpu_runnable(rq);
1582 ns->util += cpu_util(cpu);
1583 ns->nr_running += rq->cfs.h_nr_running;
1584 ns->compute_capacity += capacity_of(cpu);
1586 if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1587 if (READ_ONCE(rq->numa_migrate_on) ||
1588 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1591 if (ns->idle_cpu == -1)
1594 idle_core = numa_idle_core(idle_core, cpu);
1599 ns->weight = cpumask_weight(cpumask_of_node(nid));
1601 ns->node_type = numa_classify(env->imbalance_pct, ns);
1604 ns->idle_cpu = idle_core;
1607 static void task_numa_assign(struct task_numa_env *env,
1608 struct task_struct *p, long imp)
1610 struct rq *rq = cpu_rq(env->dst_cpu);
1612 /* Check if run-queue part of active NUMA balance. */
1613 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1615 int start = env->dst_cpu;
1617 /* Find alternative idle CPU. */
1618 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1619 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1620 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1625 rq = cpu_rq(env->dst_cpu);
1626 if (!xchg(&rq->numa_migrate_on, 1))
1630 /* Failed to find an alternative idle CPU */
1636 * Clear previous best_cpu/rq numa-migrate flag, since task now
1637 * found a better CPU to move/swap.
1639 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1640 rq = cpu_rq(env->best_cpu);
1641 WRITE_ONCE(rq->numa_migrate_on, 0);
1645 put_task_struct(env->best_task);
1650 env->best_imp = imp;
1651 env->best_cpu = env->dst_cpu;
1654 static bool load_too_imbalanced(long src_load, long dst_load,
1655 struct task_numa_env *env)
1658 long orig_src_load, orig_dst_load;
1659 long src_capacity, dst_capacity;
1662 * The load is corrected for the CPU capacity available on each node.
1665 * ------------ vs ---------
1666 * src_capacity dst_capacity
1668 src_capacity = env->src_stats.compute_capacity;
1669 dst_capacity = env->dst_stats.compute_capacity;
1671 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1673 orig_src_load = env->src_stats.load;
1674 orig_dst_load = env->dst_stats.load;
1676 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1678 /* Would this change make things worse? */
1679 return (imb > old_imb);
1683 * Maximum NUMA importance can be 1998 (2*999);
1684 * SMALLIMP @ 30 would be close to 1998/64.
1685 * Used to deter task migration.
1690 * This checks if the overall compute and NUMA accesses of the system would
1691 * be improved if the source tasks was migrated to the target dst_cpu taking
1692 * into account that it might be best if task running on the dst_cpu should
1693 * be exchanged with the source task
1695 static bool task_numa_compare(struct task_numa_env *env,
1696 long taskimp, long groupimp, bool maymove)
1698 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1699 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1700 long imp = p_ng ? groupimp : taskimp;
1701 struct task_struct *cur;
1702 long src_load, dst_load;
1703 int dist = env->dist;
1706 bool stopsearch = false;
1708 if (READ_ONCE(dst_rq->numa_migrate_on))
1712 cur = rcu_dereference(dst_rq->curr);
1713 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1717 * Because we have preemption enabled we can get migrated around and
1718 * end try selecting ourselves (current == env->p) as a swap candidate.
1720 if (cur == env->p) {
1726 if (maymove && moveimp >= env->best_imp)
1732 /* Skip this swap candidate if cannot move to the source cpu. */
1733 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1737 * Skip this swap candidate if it is not moving to its preferred
1738 * node and the best task is.
1740 if (env->best_task &&
1741 env->best_task->numa_preferred_nid == env->src_nid &&
1742 cur->numa_preferred_nid != env->src_nid) {
1747 * "imp" is the fault differential for the source task between the
1748 * source and destination node. Calculate the total differential for
1749 * the source task and potential destination task. The more negative
1750 * the value is, the more remote accesses that would be expected to
1751 * be incurred if the tasks were swapped.
1753 * If dst and source tasks are in the same NUMA group, or not
1754 * in any group then look only at task weights.
1756 cur_ng = rcu_dereference(cur->numa_group);
1757 if (cur_ng == p_ng) {
1758 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1759 task_weight(cur, env->dst_nid, dist);
1761 * Add some hysteresis to prevent swapping the
1762 * tasks within a group over tiny differences.
1768 * Compare the group weights. If a task is all by itself
1769 * (not part of a group), use the task weight instead.
1772 imp += group_weight(cur, env->src_nid, dist) -
1773 group_weight(cur, env->dst_nid, dist);
1775 imp += task_weight(cur, env->src_nid, dist) -
1776 task_weight(cur, env->dst_nid, dist);
1779 /* Discourage picking a task already on its preferred node */
1780 if (cur->numa_preferred_nid == env->dst_nid)
1784 * Encourage picking a task that moves to its preferred node.
1785 * This potentially makes imp larger than it's maximum of
1786 * 1998 (see SMALLIMP and task_weight for why) but in this
1787 * case, it does not matter.
1789 if (cur->numa_preferred_nid == env->src_nid)
1792 if (maymove && moveimp > imp && moveimp > env->best_imp) {
1799 * Prefer swapping with a task moving to its preferred node over a
1802 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1803 env->best_task->numa_preferred_nid != env->src_nid) {
1808 * If the NUMA importance is less than SMALLIMP,
1809 * task migration might only result in ping pong
1810 * of tasks and also hurt performance due to cache
1813 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1817 * In the overloaded case, try and keep the load balanced.
1819 load = task_h_load(env->p) - task_h_load(cur);
1823 dst_load = env->dst_stats.load + load;
1824 src_load = env->src_stats.load - load;
1826 if (load_too_imbalanced(src_load, dst_load, env))
1830 /* Evaluate an idle CPU for a task numa move. */
1832 int cpu = env->dst_stats.idle_cpu;
1834 /* Nothing cached so current CPU went idle since the search. */
1839 * If the CPU is no longer truly idle and the previous best CPU
1840 * is, keep using it.
1842 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1843 idle_cpu(env->best_cpu)) {
1844 cpu = env->best_cpu;
1850 task_numa_assign(env, cur, imp);
1853 * If a move to idle is allowed because there is capacity or load
1854 * balance improves then stop the search. While a better swap
1855 * candidate may exist, a search is not free.
1857 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1861 * If a swap candidate must be identified and the current best task
1862 * moves its preferred node then stop the search.
1864 if (!maymove && env->best_task &&
1865 env->best_task->numa_preferred_nid == env->src_nid) {
1874 static void task_numa_find_cpu(struct task_numa_env *env,
1875 long taskimp, long groupimp)
1877 bool maymove = false;
1881 * If dst node has spare capacity, then check if there is an
1882 * imbalance that would be overruled by the load balancer.
1884 if (env->dst_stats.node_type == node_has_spare) {
1885 unsigned int imbalance;
1886 int src_running, dst_running;
1889 * Would movement cause an imbalance? Note that if src has
1890 * more running tasks that the imbalance is ignored as the
1891 * move improves the imbalance from the perspective of the
1892 * CPU load balancer.
1894 src_running = env->src_stats.nr_running - 1;
1895 dst_running = env->dst_stats.nr_running + 1;
1896 imbalance = max(0, dst_running - src_running);
1897 imbalance = adjust_numa_imbalance(imbalance, dst_running,
1898 env->dst_stats.weight);
1900 /* Use idle CPU if there is no imbalance */
1903 if (env->dst_stats.idle_cpu >= 0) {
1904 env->dst_cpu = env->dst_stats.idle_cpu;
1905 task_numa_assign(env, NULL, 0);
1910 long src_load, dst_load, load;
1912 * If the improvement from just moving env->p direction is better
1913 * than swapping tasks around, check if a move is possible.
1915 load = task_h_load(env->p);
1916 dst_load = env->dst_stats.load + load;
1917 src_load = env->src_stats.load - load;
1918 maymove = !load_too_imbalanced(src_load, dst_load, env);
1921 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1922 /* Skip this CPU if the source task cannot migrate */
1923 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1927 if (task_numa_compare(env, taskimp, groupimp, maymove))
1932 static int task_numa_migrate(struct task_struct *p)
1934 struct task_numa_env env = {
1937 .src_cpu = task_cpu(p),
1938 .src_nid = task_node(p),
1940 .imbalance_pct = 112,
1946 unsigned long taskweight, groupweight;
1947 struct sched_domain *sd;
1948 long taskimp, groupimp;
1949 struct numa_group *ng;
1954 * Pick the lowest SD_NUMA domain, as that would have the smallest
1955 * imbalance and would be the first to start moving tasks about.
1957 * And we want to avoid any moving of tasks about, as that would create
1958 * random movement of tasks -- counter the numa conditions we're trying
1962 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1964 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1968 * Cpusets can break the scheduler domain tree into smaller
1969 * balance domains, some of which do not cross NUMA boundaries.
1970 * Tasks that are "trapped" in such domains cannot be migrated
1971 * elsewhere, so there is no point in (re)trying.
1973 if (unlikely(!sd)) {
1974 sched_setnuma(p, task_node(p));
1978 env.dst_nid = p->numa_preferred_nid;
1979 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1980 taskweight = task_weight(p, env.src_nid, dist);
1981 groupweight = group_weight(p, env.src_nid, dist);
1982 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
1983 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1984 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1985 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
1987 /* Try to find a spot on the preferred nid. */
1988 task_numa_find_cpu(&env, taskimp, groupimp);
1991 * Look at other nodes in these cases:
1992 * - there is no space available on the preferred_nid
1993 * - the task is part of a numa_group that is interleaved across
1994 * multiple NUMA nodes; in order to better consolidate the group,
1995 * we need to check other locations.
1997 ng = deref_curr_numa_group(p);
1998 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
1999 for_each_online_node(nid) {
2000 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2003 dist = node_distance(env.src_nid, env.dst_nid);
2004 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2006 taskweight = task_weight(p, env.src_nid, dist);
2007 groupweight = group_weight(p, env.src_nid, dist);
2010 /* Only consider nodes where both task and groups benefit */
2011 taskimp = task_weight(p, nid, dist) - taskweight;
2012 groupimp = group_weight(p, nid, dist) - groupweight;
2013 if (taskimp < 0 && groupimp < 0)
2018 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2019 task_numa_find_cpu(&env, taskimp, groupimp);
2024 * If the task is part of a workload that spans multiple NUMA nodes,
2025 * and is migrating into one of the workload's active nodes, remember
2026 * this node as the task's preferred numa node, so the workload can
2028 * A task that migrated to a second choice node will be better off
2029 * trying for a better one later. Do not set the preferred node here.
2032 if (env.best_cpu == -1)
2035 nid = cpu_to_node(env.best_cpu);
2037 if (nid != p->numa_preferred_nid)
2038 sched_setnuma(p, nid);
2041 /* No better CPU than the current one was found. */
2042 if (env.best_cpu == -1) {
2043 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2047 best_rq = cpu_rq(env.best_cpu);
2048 if (env.best_task == NULL) {
2049 ret = migrate_task_to(p, env.best_cpu);
2050 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2052 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2056 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2057 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2060 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2061 put_task_struct(env.best_task);
2065 /* Attempt to migrate a task to a CPU on the preferred node. */
2066 static void numa_migrate_preferred(struct task_struct *p)
2068 unsigned long interval = HZ;
2070 /* This task has no NUMA fault statistics yet */
2071 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2074 /* Periodically retry migrating the task to the preferred node */
2075 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2076 p->numa_migrate_retry = jiffies + interval;
2078 /* Success if task is already running on preferred CPU */
2079 if (task_node(p) == p->numa_preferred_nid)
2082 /* Otherwise, try migrate to a CPU on the preferred node */
2083 task_numa_migrate(p);
2087 * Find out how many nodes on the workload is actively running on. Do this by
2088 * tracking the nodes from which NUMA hinting faults are triggered. This can
2089 * be different from the set of nodes where the workload's memory is currently
2092 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2094 unsigned long faults, max_faults = 0;
2095 int nid, active_nodes = 0;
2097 for_each_online_node(nid) {
2098 faults = group_faults_cpu(numa_group, nid);
2099 if (faults > max_faults)
2100 max_faults = faults;
2103 for_each_online_node(nid) {
2104 faults = group_faults_cpu(numa_group, nid);
2105 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2109 numa_group->max_faults_cpu = max_faults;
2110 numa_group->active_nodes = active_nodes;
2114 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2115 * increments. The more local the fault statistics are, the higher the scan
2116 * period will be for the next scan window. If local/(local+remote) ratio is
2117 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2118 * the scan period will decrease. Aim for 70% local accesses.
2120 #define NUMA_PERIOD_SLOTS 10
2121 #define NUMA_PERIOD_THRESHOLD 7
2124 * Increase the scan period (slow down scanning) if the majority of
2125 * our memory is already on our local node, or if the majority of
2126 * the page accesses are shared with other processes.
2127 * Otherwise, decrease the scan period.
2129 static void update_task_scan_period(struct task_struct *p,
2130 unsigned long shared, unsigned long private)
2132 unsigned int period_slot;
2133 int lr_ratio, ps_ratio;
2136 unsigned long remote = p->numa_faults_locality[0];
2137 unsigned long local = p->numa_faults_locality[1];
2140 * If there were no record hinting faults then either the task is
2141 * completely idle or all activity is areas that are not of interest
2142 * to automatic numa balancing. Related to that, if there were failed
2143 * migration then it implies we are migrating too quickly or the local
2144 * node is overloaded. In either case, scan slower
2146 if (local + shared == 0 || p->numa_faults_locality[2]) {
2147 p->numa_scan_period = min(p->numa_scan_period_max,
2148 p->numa_scan_period << 1);
2150 p->mm->numa_next_scan = jiffies +
2151 msecs_to_jiffies(p->numa_scan_period);
2157 * Prepare to scale scan period relative to the current period.
2158 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2159 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2160 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2162 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2163 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2164 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2166 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2168 * Most memory accesses are local. There is no need to
2169 * do fast NUMA scanning, since memory is already local.
2171 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2174 diff = slot * period_slot;
2175 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2177 * Most memory accesses are shared with other tasks.
2178 * There is no point in continuing fast NUMA scanning,
2179 * since other tasks may just move the memory elsewhere.
2181 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2184 diff = slot * period_slot;
2187 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2188 * yet they are not on the local NUMA node. Speed up
2189 * NUMA scanning to get the memory moved over.
2191 int ratio = max(lr_ratio, ps_ratio);
2192 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2195 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2196 task_scan_min(p), task_scan_max(p));
2197 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2201 * Get the fraction of time the task has been running since the last
2202 * NUMA placement cycle. The scheduler keeps similar statistics, but
2203 * decays those on a 32ms period, which is orders of magnitude off
2204 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2205 * stats only if the task is so new there are no NUMA statistics yet.
2207 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2209 u64 runtime, delta, now;
2210 /* Use the start of this time slice to avoid calculations. */
2211 now = p->se.exec_start;
2212 runtime = p->se.sum_exec_runtime;
2214 if (p->last_task_numa_placement) {
2215 delta = runtime - p->last_sum_exec_runtime;
2216 *period = now - p->last_task_numa_placement;
2218 /* Avoid time going backwards, prevent potential divide error: */
2219 if (unlikely((s64)*period < 0))
2222 delta = p->se.avg.load_sum;
2223 *period = LOAD_AVG_MAX;
2226 p->last_sum_exec_runtime = runtime;
2227 p->last_task_numa_placement = now;
2233 * Determine the preferred nid for a task in a numa_group. This needs to
2234 * be done in a way that produces consistent results with group_weight,
2235 * otherwise workloads might not converge.
2237 static int preferred_group_nid(struct task_struct *p, int nid)
2242 /* Direct connections between all NUMA nodes. */
2243 if (sched_numa_topology_type == NUMA_DIRECT)
2247 * On a system with glueless mesh NUMA topology, group_weight
2248 * scores nodes according to the number of NUMA hinting faults on
2249 * both the node itself, and on nearby nodes.
2251 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2252 unsigned long score, max_score = 0;
2253 int node, max_node = nid;
2255 dist = sched_max_numa_distance;
2257 for_each_online_node(node) {
2258 score = group_weight(p, node, dist);
2259 if (score > max_score) {
2268 * Finding the preferred nid in a system with NUMA backplane
2269 * interconnect topology is more involved. The goal is to locate
2270 * tasks from numa_groups near each other in the system, and
2271 * untangle workloads from different sides of the system. This requires
2272 * searching down the hierarchy of node groups, recursively searching
2273 * inside the highest scoring group of nodes. The nodemask tricks
2274 * keep the complexity of the search down.
2276 nodes = node_online_map;
2277 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2278 unsigned long max_faults = 0;
2279 nodemask_t max_group = NODE_MASK_NONE;
2282 /* Are there nodes at this distance from each other? */
2283 if (!find_numa_distance(dist))
2286 for_each_node_mask(a, nodes) {
2287 unsigned long faults = 0;
2288 nodemask_t this_group;
2289 nodes_clear(this_group);
2291 /* Sum group's NUMA faults; includes a==b case. */
2292 for_each_node_mask(b, nodes) {
2293 if (node_distance(a, b) < dist) {
2294 faults += group_faults(p, b);
2295 node_set(b, this_group);
2296 node_clear(b, nodes);
2300 /* Remember the top group. */
2301 if (faults > max_faults) {
2302 max_faults = faults;
2303 max_group = this_group;
2305 * subtle: at the smallest distance there is
2306 * just one node left in each "group", the
2307 * winner is the preferred nid.
2312 /* Next round, evaluate the nodes within max_group. */
2320 static void task_numa_placement(struct task_struct *p)
2322 int seq, nid, max_nid = NUMA_NO_NODE;
2323 unsigned long max_faults = 0;
2324 unsigned long fault_types[2] = { 0, 0 };
2325 unsigned long total_faults;
2326 u64 runtime, period;
2327 spinlock_t *group_lock = NULL;
2328 struct numa_group *ng;
2331 * The p->mm->numa_scan_seq field gets updated without
2332 * exclusive access. Use READ_ONCE() here to ensure
2333 * that the field is read in a single access:
2335 seq = READ_ONCE(p->mm->numa_scan_seq);
2336 if (p->numa_scan_seq == seq)
2338 p->numa_scan_seq = seq;
2339 p->numa_scan_period_max = task_scan_max(p);
2341 total_faults = p->numa_faults_locality[0] +
2342 p->numa_faults_locality[1];
2343 runtime = numa_get_avg_runtime(p, &period);
2345 /* If the task is part of a group prevent parallel updates to group stats */
2346 ng = deref_curr_numa_group(p);
2348 group_lock = &ng->lock;
2349 spin_lock_irq(group_lock);
2352 /* Find the node with the highest number of faults */
2353 for_each_online_node(nid) {
2354 /* Keep track of the offsets in numa_faults array */
2355 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2356 unsigned long faults = 0, group_faults = 0;
2359 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2360 long diff, f_diff, f_weight;
2362 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2363 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2364 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2365 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2367 /* Decay existing window, copy faults since last scan */
2368 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2369 fault_types[priv] += p->numa_faults[membuf_idx];
2370 p->numa_faults[membuf_idx] = 0;
2373 * Normalize the faults_from, so all tasks in a group
2374 * count according to CPU use, instead of by the raw
2375 * number of faults. Tasks with little runtime have
2376 * little over-all impact on throughput, and thus their
2377 * faults are less important.
2379 f_weight = div64_u64(runtime << 16, period + 1);
2380 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2382 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2383 p->numa_faults[cpubuf_idx] = 0;
2385 p->numa_faults[mem_idx] += diff;
2386 p->numa_faults[cpu_idx] += f_diff;
2387 faults += p->numa_faults[mem_idx];
2388 p->total_numa_faults += diff;
2391 * safe because we can only change our own group
2393 * mem_idx represents the offset for a given
2394 * nid and priv in a specific region because it
2395 * is at the beginning of the numa_faults array.
2397 ng->faults[mem_idx] += diff;
2398 ng->faults_cpu[mem_idx] += f_diff;
2399 ng->total_faults += diff;
2400 group_faults += ng->faults[mem_idx];
2405 if (faults > max_faults) {
2406 max_faults = faults;
2409 } else if (group_faults > max_faults) {
2410 max_faults = group_faults;
2416 numa_group_count_active_nodes(ng);
2417 spin_unlock_irq(group_lock);
2418 max_nid = preferred_group_nid(p, max_nid);
2422 /* Set the new preferred node */
2423 if (max_nid != p->numa_preferred_nid)
2424 sched_setnuma(p, max_nid);
2427 update_task_scan_period(p, fault_types[0], fault_types[1]);
2430 static inline int get_numa_group(struct numa_group *grp)
2432 return refcount_inc_not_zero(&grp->refcount);
2435 static inline void put_numa_group(struct numa_group *grp)
2437 if (refcount_dec_and_test(&grp->refcount))
2438 kfree_rcu(grp, rcu);
2441 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2444 struct numa_group *grp, *my_grp;
2445 struct task_struct *tsk;
2447 int cpu = cpupid_to_cpu(cpupid);
2450 if (unlikely(!deref_curr_numa_group(p))) {
2451 unsigned int size = sizeof(struct numa_group) +
2452 4*nr_node_ids*sizeof(unsigned long);
2454 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2458 refcount_set(&grp->refcount, 1);
2459 grp->active_nodes = 1;
2460 grp->max_faults_cpu = 0;
2461 spin_lock_init(&grp->lock);
2463 /* Second half of the array tracks nids where faults happen */
2464 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2467 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2468 grp->faults[i] = p->numa_faults[i];
2470 grp->total_faults = p->total_numa_faults;
2473 rcu_assign_pointer(p->numa_group, grp);
2477 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2479 if (!cpupid_match_pid(tsk, cpupid))
2482 grp = rcu_dereference(tsk->numa_group);
2486 my_grp = deref_curr_numa_group(p);
2491 * Only join the other group if its bigger; if we're the bigger group,
2492 * the other task will join us.
2494 if (my_grp->nr_tasks > grp->nr_tasks)
2498 * Tie-break on the grp address.
2500 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2503 /* Always join threads in the same process. */
2504 if (tsk->mm == current->mm)
2507 /* Simple filter to avoid false positives due to PID collisions */
2508 if (flags & TNF_SHARED)
2511 /* Update priv based on whether false sharing was detected */
2514 if (join && !get_numa_group(grp))
2522 BUG_ON(irqs_disabled());
2523 double_lock_irq(&my_grp->lock, &grp->lock);
2525 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2526 my_grp->faults[i] -= p->numa_faults[i];
2527 grp->faults[i] += p->numa_faults[i];
2529 my_grp->total_faults -= p->total_numa_faults;
2530 grp->total_faults += p->total_numa_faults;
2535 spin_unlock(&my_grp->lock);
2536 spin_unlock_irq(&grp->lock);
2538 rcu_assign_pointer(p->numa_group, grp);
2540 put_numa_group(my_grp);
2549 * Get rid of NUMA statistics associated with a task (either current or dead).
2550 * If @final is set, the task is dead and has reached refcount zero, so we can
2551 * safely free all relevant data structures. Otherwise, there might be
2552 * concurrent reads from places like load balancing and procfs, and we should
2553 * reset the data back to default state without freeing ->numa_faults.
2555 void task_numa_free(struct task_struct *p, bool final)
2557 /* safe: p either is current or is being freed by current */
2558 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2559 unsigned long *numa_faults = p->numa_faults;
2560 unsigned long flags;
2567 spin_lock_irqsave(&grp->lock, flags);
2568 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2569 grp->faults[i] -= p->numa_faults[i];
2570 grp->total_faults -= p->total_numa_faults;
2573 spin_unlock_irqrestore(&grp->lock, flags);
2574 RCU_INIT_POINTER(p->numa_group, NULL);
2575 put_numa_group(grp);
2579 p->numa_faults = NULL;
2582 p->total_numa_faults = 0;
2583 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2589 * Got a PROT_NONE fault for a page on @node.
2591 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2593 struct task_struct *p = current;
2594 bool migrated = flags & TNF_MIGRATED;
2595 int cpu_node = task_node(current);
2596 int local = !!(flags & TNF_FAULT_LOCAL);
2597 struct numa_group *ng;
2600 if (!static_branch_likely(&sched_numa_balancing))
2603 /* for example, ksmd faulting in a user's mm */
2607 /* Allocate buffer to track faults on a per-node basis */
2608 if (unlikely(!p->numa_faults)) {
2609 int size = sizeof(*p->numa_faults) *
2610 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2612 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2613 if (!p->numa_faults)
2616 p->total_numa_faults = 0;
2617 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2621 * First accesses are treated as private, otherwise consider accesses
2622 * to be private if the accessing pid has not changed
2624 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2627 priv = cpupid_match_pid(p, last_cpupid);
2628 if (!priv && !(flags & TNF_NO_GROUP))
2629 task_numa_group(p, last_cpupid, flags, &priv);
2633 * If a workload spans multiple NUMA nodes, a shared fault that
2634 * occurs wholly within the set of nodes that the workload is
2635 * actively using should be counted as local. This allows the
2636 * scan rate to slow down when a workload has settled down.
2638 ng = deref_curr_numa_group(p);
2639 if (!priv && !local && ng && ng->active_nodes > 1 &&
2640 numa_is_active_node(cpu_node, ng) &&
2641 numa_is_active_node(mem_node, ng))
2645 * Retry to migrate task to preferred node periodically, in case it
2646 * previously failed, or the scheduler moved us.
2648 if (time_after(jiffies, p->numa_migrate_retry)) {
2649 task_numa_placement(p);
2650 numa_migrate_preferred(p);
2654 p->numa_pages_migrated += pages;
2655 if (flags & TNF_MIGRATE_FAIL)
2656 p->numa_faults_locality[2] += pages;
2658 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2659 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2660 p->numa_faults_locality[local] += pages;
2663 static void reset_ptenuma_scan(struct task_struct *p)
2666 * We only did a read acquisition of the mmap sem, so
2667 * p->mm->numa_scan_seq is written to without exclusive access
2668 * and the update is not guaranteed to be atomic. That's not
2669 * much of an issue though, since this is just used for
2670 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2671 * expensive, to avoid any form of compiler optimizations:
2673 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2674 p->mm->numa_scan_offset = 0;
2678 * The expensive part of numa migration is done from task_work context.
2679 * Triggered from task_tick_numa().
2681 static void task_numa_work(struct callback_head *work)
2683 unsigned long migrate, next_scan, now = jiffies;
2684 struct task_struct *p = current;
2685 struct mm_struct *mm = p->mm;
2686 u64 runtime = p->se.sum_exec_runtime;
2687 struct vm_area_struct *vma;
2688 unsigned long start, end;
2689 unsigned long nr_pte_updates = 0;
2690 long pages, virtpages;
2692 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2696 * Who cares about NUMA placement when they're dying.
2698 * NOTE: make sure not to dereference p->mm before this check,
2699 * exit_task_work() happens _after_ exit_mm() so we could be called
2700 * without p->mm even though we still had it when we enqueued this
2703 if (p->flags & PF_EXITING)
2706 if (!mm->numa_next_scan) {
2707 mm->numa_next_scan = now +
2708 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2712 * Enforce maximal scan/migration frequency..
2714 migrate = mm->numa_next_scan;
2715 if (time_before(now, migrate))
2718 if (p->numa_scan_period == 0) {
2719 p->numa_scan_period_max = task_scan_max(p);
2720 p->numa_scan_period = task_scan_start(p);
2723 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2724 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2728 * Delay this task enough that another task of this mm will likely win
2729 * the next time around.
2731 p->node_stamp += 2 * TICK_NSEC;
2733 start = mm->numa_scan_offset;
2734 pages = sysctl_numa_balancing_scan_size;
2735 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2736 virtpages = pages * 8; /* Scan up to this much virtual space */
2741 if (!mmap_read_trylock(mm))
2743 vma = find_vma(mm, start);
2745 reset_ptenuma_scan(p);
2749 for (; vma; vma = vma->vm_next) {
2750 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2751 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2756 * Shared library pages mapped by multiple processes are not
2757 * migrated as it is expected they are cache replicated. Avoid
2758 * hinting faults in read-only file-backed mappings or the vdso
2759 * as migrating the pages will be of marginal benefit.
2762 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2766 * Skip inaccessible VMAs to avoid any confusion between
2767 * PROT_NONE and NUMA hinting ptes
2769 if (!vma_is_accessible(vma))
2773 start = max(start, vma->vm_start);
2774 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2775 end = min(end, vma->vm_end);
2776 nr_pte_updates = change_prot_numa(vma, start, end);
2779 * Try to scan sysctl_numa_balancing_size worth of
2780 * hpages that have at least one present PTE that
2781 * is not already pte-numa. If the VMA contains
2782 * areas that are unused or already full of prot_numa
2783 * PTEs, scan up to virtpages, to skip through those
2787 pages -= (end - start) >> PAGE_SHIFT;
2788 virtpages -= (end - start) >> PAGE_SHIFT;
2791 if (pages <= 0 || virtpages <= 0)
2795 } while (end != vma->vm_end);
2800 * It is possible to reach the end of the VMA list but the last few
2801 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2802 * would find the !migratable VMA on the next scan but not reset the
2803 * scanner to the start so check it now.
2806 mm->numa_scan_offset = start;
2808 reset_ptenuma_scan(p);
2809 mmap_read_unlock(mm);
2812 * Make sure tasks use at least 32x as much time to run other code
2813 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2814 * Usually update_task_scan_period slows down scanning enough; on an
2815 * overloaded system we need to limit overhead on a per task basis.
2817 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2818 u64 diff = p->se.sum_exec_runtime - runtime;
2819 p->node_stamp += 32 * diff;
2823 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2826 struct mm_struct *mm = p->mm;
2829 mm_users = atomic_read(&mm->mm_users);
2830 if (mm_users == 1) {
2831 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2832 mm->numa_scan_seq = 0;
2836 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
2837 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2838 /* Protect against double add, see task_tick_numa and task_numa_work */
2839 p->numa_work.next = &p->numa_work;
2840 p->numa_faults = NULL;
2841 RCU_INIT_POINTER(p->numa_group, NULL);
2842 p->last_task_numa_placement = 0;
2843 p->last_sum_exec_runtime = 0;
2845 init_task_work(&p->numa_work, task_numa_work);
2847 /* New address space, reset the preferred nid */
2848 if (!(clone_flags & CLONE_VM)) {
2849 p->numa_preferred_nid = NUMA_NO_NODE;
2854 * New thread, keep existing numa_preferred_nid which should be copied
2855 * already by arch_dup_task_struct but stagger when scans start.
2860 delay = min_t(unsigned int, task_scan_max(current),
2861 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2862 delay += 2 * TICK_NSEC;
2863 p->node_stamp = delay;
2868 * Drive the periodic memory faults..
2870 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2872 struct callback_head *work = &curr->numa_work;
2876 * We don't care about NUMA placement if we don't have memory.
2878 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
2882 * Using runtime rather than walltime has the dual advantage that
2883 * we (mostly) drive the selection from busy threads and that the
2884 * task needs to have done some actual work before we bother with
2887 now = curr->se.sum_exec_runtime;
2888 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2890 if (now > curr->node_stamp + period) {
2891 if (!curr->node_stamp)
2892 curr->numa_scan_period = task_scan_start(curr);
2893 curr->node_stamp += period;
2895 if (!time_before(jiffies, curr->mm->numa_next_scan))
2896 task_work_add(curr, work, TWA_RESUME);
2900 static void update_scan_period(struct task_struct *p, int new_cpu)
2902 int src_nid = cpu_to_node(task_cpu(p));
2903 int dst_nid = cpu_to_node(new_cpu);
2905 if (!static_branch_likely(&sched_numa_balancing))
2908 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2911 if (src_nid == dst_nid)
2915 * Allow resets if faults have been trapped before one scan
2916 * has completed. This is most likely due to a new task that
2917 * is pulled cross-node due to wakeups or load balancing.
2919 if (p->numa_scan_seq) {
2921 * Avoid scan adjustments if moving to the preferred
2922 * node or if the task was not previously running on
2923 * the preferred node.
2925 if (dst_nid == p->numa_preferred_nid ||
2926 (p->numa_preferred_nid != NUMA_NO_NODE &&
2927 src_nid != p->numa_preferred_nid))
2931 p->numa_scan_period = task_scan_start(p);
2935 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2939 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2943 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2947 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2951 #endif /* CONFIG_NUMA_BALANCING */
2954 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2956 update_load_add(&cfs_rq->load, se->load.weight);
2958 if (entity_is_task(se)) {
2959 struct rq *rq = rq_of(cfs_rq);
2961 account_numa_enqueue(rq, task_of(se));
2962 list_add(&se->group_node, &rq->cfs_tasks);
2965 cfs_rq->nr_running++;
2969 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2971 update_load_sub(&cfs_rq->load, se->load.weight);
2973 if (entity_is_task(se)) {
2974 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2975 list_del_init(&se->group_node);
2978 cfs_rq->nr_running--;
2982 * Signed add and clamp on underflow.
2984 * Explicitly do a load-store to ensure the intermediate value never hits
2985 * memory. This allows lockless observations without ever seeing the negative
2988 #define add_positive(_ptr, _val) do { \
2989 typeof(_ptr) ptr = (_ptr); \
2990 typeof(_val) val = (_val); \
2991 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2995 if (val < 0 && res > var) \
2998 WRITE_ONCE(*ptr, res); \
3002 * Unsigned subtract and clamp on underflow.
3004 * Explicitly do a load-store to ensure the intermediate value never hits
3005 * memory. This allows lockless observations without ever seeing the negative
3008 #define sub_positive(_ptr, _val) do { \
3009 typeof(_ptr) ptr = (_ptr); \
3010 typeof(*ptr) val = (_val); \
3011 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3015 WRITE_ONCE(*ptr, res); \
3019 * Remove and clamp on negative, from a local variable.
3021 * A variant of sub_positive(), which does not use explicit load-store
3022 * and is thus optimized for local variable updates.
3024 #define lsub_positive(_ptr, _val) do { \
3025 typeof(_ptr) ptr = (_ptr); \
3026 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3031 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3033 cfs_rq->avg.load_avg += se->avg.load_avg;
3034 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3038 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3040 u32 divider = get_pelt_divider(&se->avg);
3041 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3042 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider;
3046 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3048 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3051 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3052 unsigned long weight)
3055 /* commit outstanding execution time */
3056 if (cfs_rq->curr == se)
3057 update_curr(cfs_rq);
3058 update_load_sub(&cfs_rq->load, se->load.weight);
3060 dequeue_load_avg(cfs_rq, se);
3062 update_load_set(&se->load, weight);
3066 u32 divider = get_pelt_divider(&se->avg);
3068 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3072 enqueue_load_avg(cfs_rq, se);
3074 update_load_add(&cfs_rq->load, se->load.weight);
3078 void reweight_task(struct task_struct *p, int prio)
3080 struct sched_entity *se = &p->se;
3081 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3082 struct load_weight *load = &se->load;
3083 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3085 reweight_entity(cfs_rq, se, weight);
3086 load->inv_weight = sched_prio_to_wmult[prio];
3089 #ifdef CONFIG_FAIR_GROUP_SCHED
3092 * All this does is approximate the hierarchical proportion which includes that
3093 * global sum we all love to hate.
3095 * That is, the weight of a group entity, is the proportional share of the
3096 * group weight based on the group runqueue weights. That is:
3098 * tg->weight * grq->load.weight
3099 * ge->load.weight = ----------------------------- (1)
3100 * \Sum grq->load.weight
3102 * Now, because computing that sum is prohibitively expensive to compute (been
3103 * there, done that) we approximate it with this average stuff. The average
3104 * moves slower and therefore the approximation is cheaper and more stable.
3106 * So instead of the above, we substitute:
3108 * grq->load.weight -> grq->avg.load_avg (2)
3110 * which yields the following:
3112 * tg->weight * grq->avg.load_avg
3113 * ge->load.weight = ------------------------------ (3)
3116 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3118 * That is shares_avg, and it is right (given the approximation (2)).
3120 * The problem with it is that because the average is slow -- it was designed
3121 * to be exactly that of course -- this leads to transients in boundary
3122 * conditions. In specific, the case where the group was idle and we start the
3123 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3124 * yielding bad latency etc..
3126 * Now, in that special case (1) reduces to:
3128 * tg->weight * grq->load.weight
3129 * ge->load.weight = ----------------------------- = tg->weight (4)
3132 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3134 * So what we do is modify our approximation (3) to approach (4) in the (near)
3139 * tg->weight * grq->load.weight
3140 * --------------------------------------------------- (5)
3141 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3143 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3144 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3147 * tg->weight * grq->load.weight
3148 * ge->load.weight = ----------------------------- (6)
3153 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3154 * max(grq->load.weight, grq->avg.load_avg)
3156 * And that is shares_weight and is icky. In the (near) UP case it approaches
3157 * (4) while in the normal case it approaches (3). It consistently
3158 * overestimates the ge->load.weight and therefore:
3160 * \Sum ge->load.weight >= tg->weight
3164 static long calc_group_shares(struct cfs_rq *cfs_rq)
3166 long tg_weight, tg_shares, load, shares;
3167 struct task_group *tg = cfs_rq->tg;
3169 tg_shares = READ_ONCE(tg->shares);
3171 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3173 tg_weight = atomic_long_read(&tg->load_avg);
3175 /* Ensure tg_weight >= load */
3176 tg_weight -= cfs_rq->tg_load_avg_contrib;
3179 shares = (tg_shares * load);
3181 shares /= tg_weight;
3184 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3185 * of a group with small tg->shares value. It is a floor value which is
3186 * assigned as a minimum load.weight to the sched_entity representing
3187 * the group on a CPU.
3189 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3190 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3191 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3192 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3195 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3197 #endif /* CONFIG_SMP */
3199 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3202 * Recomputes the group entity based on the current state of its group
3205 static void update_cfs_group(struct sched_entity *se)
3207 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3213 if (throttled_hierarchy(gcfs_rq))
3217 shares = READ_ONCE(gcfs_rq->tg->shares);
3219 if (likely(se->load.weight == shares))
3222 shares = calc_group_shares(gcfs_rq);
3225 reweight_entity(cfs_rq_of(se), se, shares);
3228 #else /* CONFIG_FAIR_GROUP_SCHED */
3229 static inline void update_cfs_group(struct sched_entity *se)
3232 #endif /* CONFIG_FAIR_GROUP_SCHED */
3234 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3236 struct rq *rq = rq_of(cfs_rq);
3238 if (&rq->cfs == cfs_rq) {
3240 * There are a few boundary cases this might miss but it should
3241 * get called often enough that that should (hopefully) not be
3244 * It will not get called when we go idle, because the idle
3245 * thread is a different class (!fair), nor will the utilization
3246 * number include things like RT tasks.
3248 * As is, the util number is not freq-invariant (we'd have to
3249 * implement arch_scale_freq_capacity() for that).
3253 cpufreq_update_util(rq, flags);
3258 #ifdef CONFIG_FAIR_GROUP_SCHED
3260 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
3261 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
3262 * bottom-up, we only have to test whether the cfs_rq before us on the list
3264 * If cfs_rq is not on the list, test whether a child needs its to be added to
3265 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details).
3267 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
3269 struct cfs_rq *prev_cfs_rq;
3270 struct list_head *prev;
3272 if (cfs_rq->on_list) {
3273 prev = cfs_rq->leaf_cfs_rq_list.prev;
3275 struct rq *rq = rq_of(cfs_rq);
3277 prev = rq->tmp_alone_branch;
3280 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
3282 return (prev_cfs_rq->tg->parent == cfs_rq->tg);
3285 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
3287 if (cfs_rq->load.weight)
3290 if (cfs_rq->avg.load_sum)
3293 if (cfs_rq->avg.util_sum)
3296 if (cfs_rq->avg.runnable_sum)
3299 if (child_cfs_rq_on_list(cfs_rq))
3303 * _avg must be null when _sum are null because _avg = _sum / divider
3304 * Make sure that rounding and/or propagation of PELT values never
3307 SCHED_WARN_ON(cfs_rq->avg.load_avg ||
3308 cfs_rq->avg.util_avg ||
3309 cfs_rq->avg.runnable_avg);
3315 * update_tg_load_avg - update the tg's load avg
3316 * @cfs_rq: the cfs_rq whose avg changed
3318 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3319 * However, because tg->load_avg is a global value there are performance
3322 * In order to avoid having to look at the other cfs_rq's, we use a
3323 * differential update where we store the last value we propagated. This in
3324 * turn allows skipping updates if the differential is 'small'.
3326 * Updating tg's load_avg is necessary before update_cfs_share().
3328 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3330 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3333 * No need to update load_avg for root_task_group as it is not used.
3335 if (cfs_rq->tg == &root_task_group)
3338 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3339 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3340 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3345 * Called within set_task_rq() right before setting a task's CPU. The
3346 * caller only guarantees p->pi_lock is held; no other assumptions,
3347 * including the state of rq->lock, should be made.
3349 void set_task_rq_fair(struct sched_entity *se,
3350 struct cfs_rq *prev, struct cfs_rq *next)
3352 u64 p_last_update_time;
3353 u64 n_last_update_time;
3355 if (!sched_feat(ATTACH_AGE_LOAD))
3359 * We are supposed to update the task to "current" time, then its up to
3360 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3361 * getting what current time is, so simply throw away the out-of-date
3362 * time. This will result in the wakee task is less decayed, but giving
3363 * the wakee more load sounds not bad.
3365 if (!(se->avg.last_update_time && prev))
3368 #ifndef CONFIG_64BIT
3370 u64 p_last_update_time_copy;
3371 u64 n_last_update_time_copy;
3374 p_last_update_time_copy = prev->load_last_update_time_copy;
3375 n_last_update_time_copy = next->load_last_update_time_copy;
3379 p_last_update_time = prev->avg.last_update_time;
3380 n_last_update_time = next->avg.last_update_time;
3382 } while (p_last_update_time != p_last_update_time_copy ||
3383 n_last_update_time != n_last_update_time_copy);
3386 p_last_update_time = prev->avg.last_update_time;
3387 n_last_update_time = next->avg.last_update_time;
3389 __update_load_avg_blocked_se(p_last_update_time, se);
3390 se->avg.last_update_time = n_last_update_time;
3395 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3396 * propagate its contribution. The key to this propagation is the invariant
3397 * that for each group:
3399 * ge->avg == grq->avg (1)
3401 * _IFF_ we look at the pure running and runnable sums. Because they
3402 * represent the very same entity, just at different points in the hierarchy.
3404 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3405 * and simply copies the running/runnable sum over (but still wrong, because
3406 * the group entity and group rq do not have their PELT windows aligned).
3408 * However, update_tg_cfs_load() is more complex. So we have:
3410 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3412 * And since, like util, the runnable part should be directly transferable,
3413 * the following would _appear_ to be the straight forward approach:
3415 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
3417 * And per (1) we have:
3419 * ge->avg.runnable_avg == grq->avg.runnable_avg
3423 * ge->load.weight * grq->avg.load_avg
3424 * ge->avg.load_avg = ----------------------------------- (4)
3427 * Except that is wrong!
3429 * Because while for entities historical weight is not important and we
3430 * really only care about our future and therefore can consider a pure
3431 * runnable sum, runqueues can NOT do this.
3433 * We specifically want runqueues to have a load_avg that includes
3434 * historical weights. Those represent the blocked load, the load we expect
3435 * to (shortly) return to us. This only works by keeping the weights as
3436 * integral part of the sum. We therefore cannot decompose as per (3).
3438 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3439 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3440 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3441 * runnable section of these tasks overlap (or not). If they were to perfectly
3442 * align the rq as a whole would be runnable 2/3 of the time. If however we
3443 * always have at least 1 runnable task, the rq as a whole is always runnable.
3445 * So we'll have to approximate.. :/
3447 * Given the constraint:
3449 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3451 * We can construct a rule that adds runnable to a rq by assuming minimal
3454 * On removal, we'll assume each task is equally runnable; which yields:
3456 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3458 * XXX: only do this for the part of runnable > running ?
3463 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3465 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3468 /* Nothing to update */
3473 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3474 * See ___update_load_avg() for details.
3476 divider = get_pelt_divider(&cfs_rq->avg);
3478 /* Set new sched_entity's utilization */
3479 se->avg.util_avg = gcfs_rq->avg.util_avg;
3480 se->avg.util_sum = se->avg.util_avg * divider;
3482 /* Update parent cfs_rq utilization */
3483 add_positive(&cfs_rq->avg.util_avg, delta);
3484 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3488 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3490 long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3493 /* Nothing to update */
3498 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3499 * See ___update_load_avg() for details.
3501 divider = get_pelt_divider(&cfs_rq->avg);
3503 /* Set new sched_entity's runnable */
3504 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3505 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3507 /* Update parent cfs_rq runnable */
3508 add_positive(&cfs_rq->avg.runnable_avg, delta);
3509 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3513 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3515 long delta, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3516 unsigned long load_avg;
3523 gcfs_rq->prop_runnable_sum = 0;
3526 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3527 * See ___update_load_avg() for details.
3529 divider = get_pelt_divider(&cfs_rq->avg);
3531 if (runnable_sum >= 0) {
3533 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3534 * the CPU is saturated running == runnable.
3536 runnable_sum += se->avg.load_sum;
3537 runnable_sum = min_t(long, runnable_sum, divider);
3540 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3541 * assuming all tasks are equally runnable.
3543 if (scale_load_down(gcfs_rq->load.weight)) {
3544 load_sum = div_s64(gcfs_rq->avg.load_sum,
3545 scale_load_down(gcfs_rq->load.weight));
3548 /* But make sure to not inflate se's runnable */
3549 runnable_sum = min(se->avg.load_sum, load_sum);
3553 * runnable_sum can't be lower than running_sum
3554 * Rescale running sum to be in the same range as runnable sum
3555 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3556 * runnable_sum is in [0 : LOAD_AVG_MAX]
3558 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3559 runnable_sum = max(runnable_sum, running_sum);
3561 load_sum = (s64)se_weight(se) * runnable_sum;
3562 load_avg = div_s64(load_sum, divider);
3564 se->avg.load_sum = runnable_sum;
3566 delta = load_avg - se->avg.load_avg;
3570 se->avg.load_avg = load_avg;
3572 add_positive(&cfs_rq->avg.load_avg, delta);
3573 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider;
3576 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3578 cfs_rq->propagate = 1;
3579 cfs_rq->prop_runnable_sum += runnable_sum;
3582 /* Update task and its cfs_rq load average */
3583 static inline int propagate_entity_load_avg(struct sched_entity *se)
3585 struct cfs_rq *cfs_rq, *gcfs_rq;
3587 if (entity_is_task(se))
3590 gcfs_rq = group_cfs_rq(se);
3591 if (!gcfs_rq->propagate)
3594 gcfs_rq->propagate = 0;
3596 cfs_rq = cfs_rq_of(se);
3598 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3600 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3601 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3602 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3604 trace_pelt_cfs_tp(cfs_rq);
3605 trace_pelt_se_tp(se);
3611 * Check if we need to update the load and the utilization of a blocked
3614 static inline bool skip_blocked_update(struct sched_entity *se)
3616 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3619 * If sched_entity still have not zero load or utilization, we have to
3622 if (se->avg.load_avg || se->avg.util_avg)
3626 * If there is a pending propagation, we have to update the load and
3627 * the utilization of the sched_entity:
3629 if (gcfs_rq->propagate)
3633 * Otherwise, the load and the utilization of the sched_entity is
3634 * already zero and there is no pending propagation, so it will be a
3635 * waste of time to try to decay it:
3640 #else /* CONFIG_FAIR_GROUP_SCHED */
3642 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
3644 static inline int propagate_entity_load_avg(struct sched_entity *se)
3649 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3651 #endif /* CONFIG_FAIR_GROUP_SCHED */
3654 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3655 * @now: current time, as per cfs_rq_clock_pelt()
3656 * @cfs_rq: cfs_rq to update
3658 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3659 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3660 * post_init_entity_util_avg().
3662 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3664 * Returns true if the load decayed or we removed load.
3666 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3667 * call update_tg_load_avg() when this function returns true.
3670 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3672 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
3673 struct sched_avg *sa = &cfs_rq->avg;
3676 if (cfs_rq->removed.nr) {
3678 u32 divider = get_pelt_divider(&cfs_rq->avg);
3680 raw_spin_lock(&cfs_rq->removed.lock);
3681 swap(cfs_rq->removed.util_avg, removed_util);
3682 swap(cfs_rq->removed.load_avg, removed_load);
3683 swap(cfs_rq->removed.runnable_avg, removed_runnable);
3684 cfs_rq->removed.nr = 0;
3685 raw_spin_unlock(&cfs_rq->removed.lock);
3688 sub_positive(&sa->load_avg, r);
3689 sa->load_sum = sa->load_avg * divider;
3692 sub_positive(&sa->util_avg, r);
3693 sa->util_sum = sa->util_avg * divider;
3695 r = removed_runnable;
3696 sub_positive(&sa->runnable_avg, r);
3697 sa->runnable_sum = sa->runnable_avg * divider;
3700 * removed_runnable is the unweighted version of removed_load so we
3701 * can use it to estimate removed_load_sum.
3703 add_tg_cfs_propagate(cfs_rq,
3704 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
3709 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3711 #ifndef CONFIG_64BIT
3713 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3720 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3721 * @cfs_rq: cfs_rq to attach to
3722 * @se: sched_entity to attach
3724 * Must call update_cfs_rq_load_avg() before this, since we rely on
3725 * cfs_rq->avg.last_update_time being current.
3727 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3730 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3731 * See ___update_load_avg() for details.
3733 u32 divider = get_pelt_divider(&cfs_rq->avg);
3736 * When we attach the @se to the @cfs_rq, we must align the decay
3737 * window because without that, really weird and wonderful things can
3742 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3743 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3746 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3747 * period_contrib. This isn't strictly correct, but since we're
3748 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3751 se->avg.util_sum = se->avg.util_avg * divider;
3753 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3755 se->avg.load_sum = divider;
3756 if (se_weight(se)) {
3758 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3761 enqueue_load_avg(cfs_rq, se);
3762 cfs_rq->avg.util_avg += se->avg.util_avg;
3763 cfs_rq->avg.util_sum += se->avg.util_sum;
3764 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3765 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
3767 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3769 cfs_rq_util_change(cfs_rq, 0);
3771 trace_pelt_cfs_tp(cfs_rq);
3775 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3776 * @cfs_rq: cfs_rq to detach from
3777 * @se: sched_entity to detach
3779 * Must call update_cfs_rq_load_avg() before this, since we rely on
3780 * cfs_rq->avg.last_update_time being current.
3782 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3785 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3786 * See ___update_load_avg() for details.
3788 u32 divider = get_pelt_divider(&cfs_rq->avg);
3790 dequeue_load_avg(cfs_rq, se);
3791 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3792 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3793 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3794 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3796 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3798 cfs_rq_util_change(cfs_rq, 0);
3800 trace_pelt_cfs_tp(cfs_rq);
3804 * Optional action to be done while updating the load average
3806 #define UPDATE_TG 0x1
3807 #define SKIP_AGE_LOAD 0x2
3808 #define DO_ATTACH 0x4
3810 /* Update task and its cfs_rq load average */
3811 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3813 u64 now = cfs_rq_clock_pelt(cfs_rq);
3817 * Track task load average for carrying it to new CPU after migrated, and
3818 * track group sched_entity load average for task_h_load calc in migration
3820 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3821 __update_load_avg_se(now, cfs_rq, se);
3823 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3824 decayed |= propagate_entity_load_avg(se);
3826 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3829 * DO_ATTACH means we're here from enqueue_entity().
3830 * !last_update_time means we've passed through
3831 * migrate_task_rq_fair() indicating we migrated.
3833 * IOW we're enqueueing a task on a new CPU.
3835 attach_entity_load_avg(cfs_rq, se);
3836 update_tg_load_avg(cfs_rq);
3838 } else if (decayed) {
3839 cfs_rq_util_change(cfs_rq, 0);
3841 if (flags & UPDATE_TG)
3842 update_tg_load_avg(cfs_rq);
3846 #ifndef CONFIG_64BIT
3847 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3849 u64 last_update_time_copy;
3850 u64 last_update_time;
3853 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3855 last_update_time = cfs_rq->avg.last_update_time;
3856 } while (last_update_time != last_update_time_copy);
3858 return last_update_time;
3861 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3863 return cfs_rq->avg.last_update_time;
3868 * Synchronize entity load avg of dequeued entity without locking
3871 static void sync_entity_load_avg(struct sched_entity *se)
3873 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3874 u64 last_update_time;
3876 last_update_time = cfs_rq_last_update_time(cfs_rq);
3877 __update_load_avg_blocked_se(last_update_time, se);
3881 * Task first catches up with cfs_rq, and then subtract
3882 * itself from the cfs_rq (task must be off the queue now).
3884 static void remove_entity_load_avg(struct sched_entity *se)
3886 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3887 unsigned long flags;
3890 * tasks cannot exit without having gone through wake_up_new_task() ->
3891 * post_init_entity_util_avg() which will have added things to the
3892 * cfs_rq, so we can remove unconditionally.
3895 sync_entity_load_avg(se);
3897 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3898 ++cfs_rq->removed.nr;
3899 cfs_rq->removed.util_avg += se->avg.util_avg;
3900 cfs_rq->removed.load_avg += se->avg.load_avg;
3901 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
3902 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3905 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3907 return cfs_rq->avg.runnable_avg;
3910 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3912 return cfs_rq->avg.load_avg;
3915 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3917 static inline unsigned long task_util(struct task_struct *p)
3919 return READ_ONCE(p->se.avg.util_avg);
3922 static inline unsigned long _task_util_est(struct task_struct *p)
3924 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3926 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
3929 static inline unsigned long task_util_est(struct task_struct *p)
3931 return max(task_util(p), _task_util_est(p));
3934 #ifdef CONFIG_UCLAMP_TASK
3935 static inline unsigned long uclamp_task_util(struct task_struct *p)
3937 return clamp(task_util_est(p),
3938 uclamp_eff_value(p, UCLAMP_MIN),
3939 uclamp_eff_value(p, UCLAMP_MAX));
3942 static inline unsigned long uclamp_task_util(struct task_struct *p)
3944 return task_util_est(p);
3948 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3949 struct task_struct *p)
3951 unsigned int enqueued;
3953 if (!sched_feat(UTIL_EST))
3956 /* Update root cfs_rq's estimated utilization */
3957 enqueued = cfs_rq->avg.util_est.enqueued;
3958 enqueued += _task_util_est(p);
3959 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3961 trace_sched_util_est_cfs_tp(cfs_rq);
3964 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
3965 struct task_struct *p)
3967 unsigned int enqueued;
3969 if (!sched_feat(UTIL_EST))
3972 /* Update root cfs_rq's estimated utilization */
3973 enqueued = cfs_rq->avg.util_est.enqueued;
3974 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
3975 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3977 trace_sched_util_est_cfs_tp(cfs_rq);
3980 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
3983 * Check if a (signed) value is within a specified (unsigned) margin,
3984 * based on the observation that:
3986 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3988 * NOTE: this only works when value + margin < INT_MAX.
3990 static inline bool within_margin(int value, int margin)
3992 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3995 static inline void util_est_update(struct cfs_rq *cfs_rq,
3996 struct task_struct *p,
3999 long last_ewma_diff, last_enqueued_diff;
4002 if (!sched_feat(UTIL_EST))
4006 * Skip update of task's estimated utilization when the task has not
4007 * yet completed an activation, e.g. being migrated.
4013 * If the PELT values haven't changed since enqueue time,
4014 * skip the util_est update.
4016 ue = p->se.avg.util_est;
4017 if (ue.enqueued & UTIL_AVG_UNCHANGED)
4020 last_enqueued_diff = ue.enqueued;
4023 * Reset EWMA on utilization increases, the moving average is used only
4024 * to smooth utilization decreases.
4026 ue.enqueued = task_util(p);
4027 if (sched_feat(UTIL_EST_FASTUP)) {
4028 if (ue.ewma < ue.enqueued) {
4029 ue.ewma = ue.enqueued;
4035 * Skip update of task's estimated utilization when its members are
4036 * already ~1% close to its last activation value.
4038 last_ewma_diff = ue.enqueued - ue.ewma;
4039 last_enqueued_diff -= ue.enqueued;
4040 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4041 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4048 * To avoid overestimation of actual task utilization, skip updates if
4049 * we cannot grant there is idle time in this CPU.
4051 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4055 * Update Task's estimated utilization
4057 * When *p completes an activation we can consolidate another sample
4058 * of the task size. This is done by storing the current PELT value
4059 * as ue.enqueued and by using this value to update the Exponential
4060 * Weighted Moving Average (EWMA):
4062 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4063 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4064 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4065 * = w * ( last_ewma_diff ) + ewma(t-1)
4066 * = w * (last_ewma_diff + ewma(t-1) / w)
4068 * Where 'w' is the weight of new samples, which is configured to be
4069 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4071 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4072 ue.ewma += last_ewma_diff;
4073 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4075 ue.enqueued |= UTIL_AVG_UNCHANGED;
4076 WRITE_ONCE(p->se.avg.util_est, ue);
4078 trace_sched_util_est_se_tp(&p->se);
4081 static inline int task_fits_capacity(struct task_struct *p, long capacity)
4083 return fits_capacity(uclamp_task_util(p), capacity);
4086 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4088 if (!static_branch_unlikely(&sched_asym_cpucapacity))
4091 if (!p || p->nr_cpus_allowed == 1) {
4092 rq->misfit_task_load = 0;
4096 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4097 rq->misfit_task_load = 0;
4102 * Make sure that misfit_task_load will not be null even if
4103 * task_h_load() returns 0.
4105 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4108 #else /* CONFIG_SMP */
4110 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4115 #define UPDATE_TG 0x0
4116 #define SKIP_AGE_LOAD 0x0
4117 #define DO_ATTACH 0x0
4119 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4121 cfs_rq_util_change(cfs_rq, 0);
4124 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4127 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4129 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4131 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4137 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4140 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4143 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4145 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4147 #endif /* CONFIG_SMP */
4149 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4151 #ifdef CONFIG_SCHED_DEBUG
4152 s64 d = se->vruntime - cfs_rq->min_vruntime;
4157 if (d > 3*sysctl_sched_latency)
4158 schedstat_inc(cfs_rq->nr_spread_over);
4163 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4165 u64 vruntime = cfs_rq->min_vruntime;
4168 * The 'current' period is already promised to the current tasks,
4169 * however the extra weight of the new task will slow them down a
4170 * little, place the new task so that it fits in the slot that
4171 * stays open at the end.
4173 if (initial && sched_feat(START_DEBIT))
4174 vruntime += sched_vslice(cfs_rq, se);
4176 /* sleeps up to a single latency don't count. */
4178 unsigned long thresh = sysctl_sched_latency;
4181 * Halve their sleep time's effect, to allow
4182 * for a gentler effect of sleepers:
4184 if (sched_feat(GENTLE_FAIR_SLEEPERS))
4190 /* ensure we never gain time by being placed backwards. */
4191 se->vruntime = max_vruntime(se->vruntime, vruntime);
4194 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4196 static inline void check_schedstat_required(void)
4198 #ifdef CONFIG_SCHEDSTATS
4199 if (schedstat_enabled())
4202 /* Force schedstat enabled if a dependent tracepoint is active */
4203 if (trace_sched_stat_wait_enabled() ||
4204 trace_sched_stat_sleep_enabled() ||
4205 trace_sched_stat_iowait_enabled() ||
4206 trace_sched_stat_blocked_enabled() ||
4207 trace_sched_stat_runtime_enabled()) {
4208 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
4209 "stat_blocked and stat_runtime require the "
4210 "kernel parameter schedstats=enable or "
4211 "kernel.sched_schedstats=1\n");
4216 static inline bool cfs_bandwidth_used(void);
4223 * update_min_vruntime()
4224 * vruntime -= min_vruntime
4228 * update_min_vruntime()
4229 * vruntime += min_vruntime
4231 * this way the vruntime transition between RQs is done when both
4232 * min_vruntime are up-to-date.
4236 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
4237 * vruntime -= min_vruntime
4241 * update_min_vruntime()
4242 * vruntime += min_vruntime
4244 * this way we don't have the most up-to-date min_vruntime on the originating
4245 * CPU and an up-to-date min_vruntime on the destination CPU.
4249 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4251 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4252 bool curr = cfs_rq->curr == se;
4255 * If we're the current task, we must renormalise before calling
4259 se->vruntime += cfs_rq->min_vruntime;
4261 update_curr(cfs_rq);
4264 * Otherwise, renormalise after, such that we're placed at the current
4265 * moment in time, instead of some random moment in the past. Being
4266 * placed in the past could significantly boost this task to the
4267 * fairness detriment of existing tasks.
4269 if (renorm && !curr)
4270 se->vruntime += cfs_rq->min_vruntime;
4273 * When enqueuing a sched_entity, we must:
4274 * - Update loads to have both entity and cfs_rq synced with now.
4275 * - Add its load to cfs_rq->runnable_avg
4276 * - For group_entity, update its weight to reflect the new share of
4278 * - Add its new weight to cfs_rq->load.weight
4280 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4281 se_update_runnable(se);
4282 update_cfs_group(se);
4283 account_entity_enqueue(cfs_rq, se);
4285 if (flags & ENQUEUE_WAKEUP)
4286 place_entity(cfs_rq, se, 0);
4288 check_schedstat_required();
4289 update_stats_enqueue(cfs_rq, se, flags);
4290 check_spread(cfs_rq, se);
4292 __enqueue_entity(cfs_rq, se);
4296 * When bandwidth control is enabled, cfs might have been removed
4297 * because of a parent been throttled but cfs->nr_running > 1. Try to
4298 * add it unconditionally.
4300 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
4301 list_add_leaf_cfs_rq(cfs_rq);
4303 if (cfs_rq->nr_running == 1)
4304 check_enqueue_throttle(cfs_rq);
4307 static void __clear_buddies_last(struct sched_entity *se)
4309 for_each_sched_entity(se) {
4310 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4311 if (cfs_rq->last != se)
4314 cfs_rq->last = NULL;
4318 static void __clear_buddies_next(struct sched_entity *se)
4320 for_each_sched_entity(se) {
4321 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4322 if (cfs_rq->next != se)
4325 cfs_rq->next = NULL;
4329 static void __clear_buddies_skip(struct sched_entity *se)
4331 for_each_sched_entity(se) {
4332 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4333 if (cfs_rq->skip != se)
4336 cfs_rq->skip = NULL;
4340 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4342 if (cfs_rq->last == se)
4343 __clear_buddies_last(se);
4345 if (cfs_rq->next == se)
4346 __clear_buddies_next(se);
4348 if (cfs_rq->skip == se)
4349 __clear_buddies_skip(se);
4352 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4355 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4358 * Update run-time statistics of the 'current'.
4360 update_curr(cfs_rq);
4363 * When dequeuing a sched_entity, we must:
4364 * - Update loads to have both entity and cfs_rq synced with now.
4365 * - Subtract its load from the cfs_rq->runnable_avg.
4366 * - Subtract its previous weight from cfs_rq->load.weight.
4367 * - For group entity, update its weight to reflect the new share
4368 * of its group cfs_rq.
4370 update_load_avg(cfs_rq, se, UPDATE_TG);
4371 se_update_runnable(se);
4373 update_stats_dequeue(cfs_rq, se, flags);
4375 clear_buddies(cfs_rq, se);
4377 if (se != cfs_rq->curr)
4378 __dequeue_entity(cfs_rq, se);
4380 account_entity_dequeue(cfs_rq, se);
4383 * Normalize after update_curr(); which will also have moved
4384 * min_vruntime if @se is the one holding it back. But before doing
4385 * update_min_vruntime() again, which will discount @se's position and
4386 * can move min_vruntime forward still more.
4388 if (!(flags & DEQUEUE_SLEEP))
4389 se->vruntime -= cfs_rq->min_vruntime;
4391 /* return excess runtime on last dequeue */
4392 return_cfs_rq_runtime(cfs_rq);
4394 update_cfs_group(se);
4397 * Now advance min_vruntime if @se was the entity holding it back,
4398 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4399 * put back on, and if we advance min_vruntime, we'll be placed back
4400 * further than we started -- ie. we'll be penalized.
4402 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4403 update_min_vruntime(cfs_rq);
4407 * Preempt the current task with a newly woken task if needed:
4410 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4412 unsigned long ideal_runtime, delta_exec;
4413 struct sched_entity *se;
4416 ideal_runtime = sched_slice(cfs_rq, curr);
4417 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4418 if (delta_exec > ideal_runtime) {
4419 resched_curr(rq_of(cfs_rq));
4421 * The current task ran long enough, ensure it doesn't get
4422 * re-elected due to buddy favours.
4424 clear_buddies(cfs_rq, curr);
4429 * Ensure that a task that missed wakeup preemption by a
4430 * narrow margin doesn't have to wait for a full slice.
4431 * This also mitigates buddy induced latencies under load.
4433 if (delta_exec < sysctl_sched_min_granularity)
4436 se = __pick_first_entity(cfs_rq);
4437 delta = curr->vruntime - se->vruntime;
4442 if (delta > ideal_runtime)
4443 resched_curr(rq_of(cfs_rq));
4447 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4449 clear_buddies(cfs_rq, se);
4451 /* 'current' is not kept within the tree. */
4454 * Any task has to be enqueued before it get to execute on
4455 * a CPU. So account for the time it spent waiting on the
4458 update_stats_wait_end(cfs_rq, se);
4459 __dequeue_entity(cfs_rq, se);
4460 update_load_avg(cfs_rq, se, UPDATE_TG);
4463 update_stats_curr_start(cfs_rq, se);
4467 * Track our maximum slice length, if the CPU's load is at
4468 * least twice that of our own weight (i.e. dont track it
4469 * when there are only lesser-weight tasks around):
4471 if (schedstat_enabled() &&
4472 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4473 schedstat_set(se->statistics.slice_max,
4474 max((u64)schedstat_val(se->statistics.slice_max),
4475 se->sum_exec_runtime - se->prev_sum_exec_runtime));
4478 se->prev_sum_exec_runtime = se->sum_exec_runtime;
4482 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4485 * Pick the next process, keeping these things in mind, in this order:
4486 * 1) keep things fair between processes/task groups
4487 * 2) pick the "next" process, since someone really wants that to run
4488 * 3) pick the "last" process, for cache locality
4489 * 4) do not run the "skip" process, if something else is available
4491 static struct sched_entity *
4492 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4494 struct sched_entity *left = __pick_first_entity(cfs_rq);
4495 struct sched_entity *se;
4498 * If curr is set we have to see if its left of the leftmost entity
4499 * still in the tree, provided there was anything in the tree at all.
4501 if (!left || (curr && entity_before(curr, left)))
4504 se = left; /* ideally we run the leftmost entity */
4507 * Avoid running the skip buddy, if running something else can
4508 * be done without getting too unfair.
4510 if (cfs_rq->skip && cfs_rq->skip == se) {
4511 struct sched_entity *second;
4514 second = __pick_first_entity(cfs_rq);
4516 second = __pick_next_entity(se);
4517 if (!second || (curr && entity_before(curr, second)))
4521 if (second && wakeup_preempt_entity(second, left) < 1)
4525 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4527 * Someone really wants this to run. If it's not unfair, run it.
4530 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4532 * Prefer last buddy, try to return the CPU to a preempted task.
4540 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4542 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4545 * If still on the runqueue then deactivate_task()
4546 * was not called and update_curr() has to be done:
4549 update_curr(cfs_rq);
4551 /* throttle cfs_rqs exceeding runtime */
4552 check_cfs_rq_runtime(cfs_rq);
4554 check_spread(cfs_rq, prev);
4557 update_stats_wait_start(cfs_rq, prev);
4558 /* Put 'current' back into the tree. */
4559 __enqueue_entity(cfs_rq, prev);
4560 /* in !on_rq case, update occurred at dequeue */
4561 update_load_avg(cfs_rq, prev, 0);
4563 cfs_rq->curr = NULL;
4567 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4570 * Update run-time statistics of the 'current'.
4572 update_curr(cfs_rq);
4575 * Ensure that runnable average is periodically updated.
4577 update_load_avg(cfs_rq, curr, UPDATE_TG);
4578 update_cfs_group(curr);
4580 #ifdef CONFIG_SCHED_HRTICK
4582 * queued ticks are scheduled to match the slice, so don't bother
4583 * validating it and just reschedule.
4586 resched_curr(rq_of(cfs_rq));
4590 * don't let the period tick interfere with the hrtick preemption
4592 if (!sched_feat(DOUBLE_TICK) &&
4593 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4597 if (cfs_rq->nr_running > 1)
4598 check_preempt_tick(cfs_rq, curr);
4602 /**************************************************
4603 * CFS bandwidth control machinery
4606 #ifdef CONFIG_CFS_BANDWIDTH
4608 #ifdef CONFIG_JUMP_LABEL
4609 static struct static_key __cfs_bandwidth_used;
4611 static inline bool cfs_bandwidth_used(void)
4613 return static_key_false(&__cfs_bandwidth_used);
4616 void cfs_bandwidth_usage_inc(void)
4618 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4621 void cfs_bandwidth_usage_dec(void)
4623 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4625 #else /* CONFIG_JUMP_LABEL */
4626 static bool cfs_bandwidth_used(void)
4631 void cfs_bandwidth_usage_inc(void) {}
4632 void cfs_bandwidth_usage_dec(void) {}
4633 #endif /* CONFIG_JUMP_LABEL */
4636 * default period for cfs group bandwidth.
4637 * default: 0.1s, units: nanoseconds
4639 static inline u64 default_cfs_period(void)
4641 return 100000000ULL;
4644 static inline u64 sched_cfs_bandwidth_slice(void)
4646 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4650 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4651 * directly instead of rq->clock to avoid adding additional synchronization
4654 * requires cfs_b->lock
4656 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4658 if (unlikely(cfs_b->quota == RUNTIME_INF))
4661 cfs_b->runtime += cfs_b->quota;
4662 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
4665 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4667 return &tg->cfs_bandwidth;
4670 /* returns 0 on failure to allocate runtime */
4671 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4672 struct cfs_rq *cfs_rq, u64 target_runtime)
4674 u64 min_amount, amount = 0;
4676 lockdep_assert_held(&cfs_b->lock);
4678 /* note: this is a positive sum as runtime_remaining <= 0 */
4679 min_amount = target_runtime - cfs_rq->runtime_remaining;
4681 if (cfs_b->quota == RUNTIME_INF)
4682 amount = min_amount;
4684 start_cfs_bandwidth(cfs_b);
4686 if (cfs_b->runtime > 0) {
4687 amount = min(cfs_b->runtime, min_amount);
4688 cfs_b->runtime -= amount;
4693 cfs_rq->runtime_remaining += amount;
4695 return cfs_rq->runtime_remaining > 0;
4698 /* returns 0 on failure to allocate runtime */
4699 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4701 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4704 raw_spin_lock(&cfs_b->lock);
4705 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4706 raw_spin_unlock(&cfs_b->lock);
4711 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4713 /* dock delta_exec before expiring quota (as it could span periods) */
4714 cfs_rq->runtime_remaining -= delta_exec;
4716 if (likely(cfs_rq->runtime_remaining > 0))
4719 if (cfs_rq->throttled)
4722 * if we're unable to extend our runtime we resched so that the active
4723 * hierarchy can be throttled
4725 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4726 resched_curr(rq_of(cfs_rq));
4729 static __always_inline
4730 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4732 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4735 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4738 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4740 return cfs_bandwidth_used() && cfs_rq->throttled;
4743 /* check whether cfs_rq, or any parent, is throttled */
4744 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4746 return cfs_bandwidth_used() && cfs_rq->throttle_count;
4750 * Ensure that neither of the group entities corresponding to src_cpu or
4751 * dest_cpu are members of a throttled hierarchy when performing group
4752 * load-balance operations.
4754 static inline int throttled_lb_pair(struct task_group *tg,
4755 int src_cpu, int dest_cpu)
4757 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4759 src_cfs_rq = tg->cfs_rq[src_cpu];
4760 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4762 return throttled_hierarchy(src_cfs_rq) ||
4763 throttled_hierarchy(dest_cfs_rq);
4766 static int tg_unthrottle_up(struct task_group *tg, void *data)
4768 struct rq *rq = data;
4769 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4771 cfs_rq->throttle_count--;
4772 if (!cfs_rq->throttle_count) {
4773 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4774 cfs_rq->throttled_clock_task;
4776 /* Add cfs_rq with load or one or more already running entities to the list */
4777 if (!cfs_rq_is_decayed(cfs_rq) || cfs_rq->nr_running)
4778 list_add_leaf_cfs_rq(cfs_rq);
4784 static int tg_throttle_down(struct task_group *tg, void *data)
4786 struct rq *rq = data;
4787 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4789 /* group is entering throttled state, stop time */
4790 if (!cfs_rq->throttle_count) {
4791 cfs_rq->throttled_clock_task = rq_clock_task(rq);
4792 list_del_leaf_cfs_rq(cfs_rq);
4794 cfs_rq->throttle_count++;
4799 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
4801 struct rq *rq = rq_of(cfs_rq);
4802 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4803 struct sched_entity *se;
4804 long task_delta, idle_task_delta, dequeue = 1;
4806 raw_spin_lock(&cfs_b->lock);
4807 /* This will start the period timer if necessary */
4808 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4810 * We have raced with bandwidth becoming available, and if we
4811 * actually throttled the timer might not unthrottle us for an
4812 * entire period. We additionally needed to make sure that any
4813 * subsequent check_cfs_rq_runtime calls agree not to throttle
4814 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4815 * for 1ns of runtime rather than just check cfs_b.
4819 list_add_tail_rcu(&cfs_rq->throttled_list,
4820 &cfs_b->throttled_cfs_rq);
4822 raw_spin_unlock(&cfs_b->lock);
4825 return false; /* Throttle no longer required. */
4827 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4829 /* freeze hierarchy runnable averages while throttled */
4831 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4834 task_delta = cfs_rq->h_nr_running;
4835 idle_task_delta = cfs_rq->idle_h_nr_running;
4836 for_each_sched_entity(se) {
4837 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4838 /* throttled entity or throttle-on-deactivate */
4842 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4844 qcfs_rq->h_nr_running -= task_delta;
4845 qcfs_rq->idle_h_nr_running -= idle_task_delta;
4847 if (qcfs_rq->load.weight) {
4848 /* Avoid re-evaluating load for this entity: */
4849 se = parent_entity(se);
4854 for_each_sched_entity(se) {
4855 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4856 /* throttled entity or throttle-on-deactivate */
4860 update_load_avg(qcfs_rq, se, 0);
4861 se_update_runnable(se);
4863 qcfs_rq->h_nr_running -= task_delta;
4864 qcfs_rq->idle_h_nr_running -= idle_task_delta;
4867 /* At this point se is NULL and we are at root level*/
4868 sub_nr_running(rq, task_delta);
4872 * Note: distribution will already see us throttled via the
4873 * throttled-list. rq->lock protects completion.
4875 cfs_rq->throttled = 1;
4876 cfs_rq->throttled_clock = rq_clock(rq);
4880 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4882 struct rq *rq = rq_of(cfs_rq);
4883 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4884 struct sched_entity *se;
4885 long task_delta, idle_task_delta;
4887 se = cfs_rq->tg->se[cpu_of(rq)];
4889 cfs_rq->throttled = 0;
4891 update_rq_clock(rq);
4893 raw_spin_lock(&cfs_b->lock);
4894 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4895 list_del_rcu(&cfs_rq->throttled_list);
4896 raw_spin_unlock(&cfs_b->lock);
4898 /* update hierarchical throttle state */
4899 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4901 if (!cfs_rq->load.weight)
4904 task_delta = cfs_rq->h_nr_running;
4905 idle_task_delta = cfs_rq->idle_h_nr_running;
4906 for_each_sched_entity(se) {
4909 cfs_rq = cfs_rq_of(se);
4910 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4912 cfs_rq->h_nr_running += task_delta;
4913 cfs_rq->idle_h_nr_running += idle_task_delta;
4915 /* end evaluation on encountering a throttled cfs_rq */
4916 if (cfs_rq_throttled(cfs_rq))
4917 goto unthrottle_throttle;
4920 for_each_sched_entity(se) {
4921 cfs_rq = cfs_rq_of(se);
4923 update_load_avg(cfs_rq, se, UPDATE_TG);
4924 se_update_runnable(se);
4926 cfs_rq->h_nr_running += task_delta;
4927 cfs_rq->idle_h_nr_running += idle_task_delta;
4930 /* end evaluation on encountering a throttled cfs_rq */
4931 if (cfs_rq_throttled(cfs_rq))
4932 goto unthrottle_throttle;
4935 * One parent has been throttled and cfs_rq removed from the
4936 * list. Add it back to not break the leaf list.
4938 if (throttled_hierarchy(cfs_rq))
4939 list_add_leaf_cfs_rq(cfs_rq);
4942 /* At this point se is NULL and we are at root level*/
4943 add_nr_running(rq, task_delta);
4945 unthrottle_throttle:
4947 * The cfs_rq_throttled() breaks in the above iteration can result in
4948 * incomplete leaf list maintenance, resulting in triggering the
4951 for_each_sched_entity(se) {
4952 cfs_rq = cfs_rq_of(se);
4954 if (list_add_leaf_cfs_rq(cfs_rq))
4958 assert_list_leaf_cfs_rq(rq);
4960 /* Determine whether we need to wake up potentially idle CPU: */
4961 if (rq->curr == rq->idle && rq->cfs.nr_running)
4965 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
4967 struct cfs_rq *cfs_rq;
4968 u64 runtime, remaining = 1;
4971 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4973 struct rq *rq = rq_of(cfs_rq);
4976 rq_lock_irqsave(rq, &rf);
4977 if (!cfs_rq_throttled(cfs_rq))
4980 /* By the above check, this should never be true */
4981 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4983 raw_spin_lock(&cfs_b->lock);
4984 runtime = -cfs_rq->runtime_remaining + 1;
4985 if (runtime > cfs_b->runtime)
4986 runtime = cfs_b->runtime;
4987 cfs_b->runtime -= runtime;
4988 remaining = cfs_b->runtime;
4989 raw_spin_unlock(&cfs_b->lock);
4991 cfs_rq->runtime_remaining += runtime;
4993 /* we check whether we're throttled above */
4994 if (cfs_rq->runtime_remaining > 0)
4995 unthrottle_cfs_rq(cfs_rq);
4998 rq_unlock_irqrestore(rq, &rf);
5007 * Responsible for refilling a task_group's bandwidth and unthrottling its
5008 * cfs_rqs as appropriate. If there has been no activity within the last
5009 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
5010 * used to track this state.
5012 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
5016 /* no need to continue the timer with no bandwidth constraint */
5017 if (cfs_b->quota == RUNTIME_INF)
5018 goto out_deactivate;
5020 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5021 cfs_b->nr_periods += overrun;
5023 /* Refill extra burst quota even if cfs_b->idle */
5024 __refill_cfs_bandwidth_runtime(cfs_b);
5027 * idle depends on !throttled (for the case of a large deficit), and if
5028 * we're going inactive then everything else can be deferred
5030 if (cfs_b->idle && !throttled)
5031 goto out_deactivate;
5034 /* mark as potentially idle for the upcoming period */
5039 /* account preceding periods in which throttling occurred */
5040 cfs_b->nr_throttled += overrun;
5043 * This check is repeated as we release cfs_b->lock while we unthrottle.
5045 while (throttled && cfs_b->runtime > 0) {
5046 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5047 /* we can't nest cfs_b->lock while distributing bandwidth */
5048 distribute_cfs_runtime(cfs_b);
5049 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5051 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5055 * While we are ensured activity in the period following an
5056 * unthrottle, this also covers the case in which the new bandwidth is
5057 * insufficient to cover the existing bandwidth deficit. (Forcing the
5058 * timer to remain active while there are any throttled entities.)
5068 /* a cfs_rq won't donate quota below this amount */
5069 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5070 /* minimum remaining period time to redistribute slack quota */
5071 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5072 /* how long we wait to gather additional slack before distributing */
5073 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5076 * Are we near the end of the current quota period?
5078 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5079 * hrtimer base being cleared by hrtimer_start. In the case of
5080 * migrate_hrtimers, base is never cleared, so we are fine.
5082 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5084 struct hrtimer *refresh_timer = &cfs_b->period_timer;
5087 /* if the call-back is running a quota refresh is already occurring */
5088 if (hrtimer_callback_running(refresh_timer))
5091 /* is a quota refresh about to occur? */
5092 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5093 if (remaining < (s64)min_expire)
5099 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5101 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5103 /* if there's a quota refresh soon don't bother with slack */
5104 if (runtime_refresh_within(cfs_b, min_left))
5107 /* don't push forwards an existing deferred unthrottle */
5108 if (cfs_b->slack_started)
5110 cfs_b->slack_started = true;
5112 hrtimer_start(&cfs_b->slack_timer,
5113 ns_to_ktime(cfs_bandwidth_slack_period),
5117 /* we know any runtime found here is valid as update_curr() precedes return */
5118 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5120 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5121 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5123 if (slack_runtime <= 0)
5126 raw_spin_lock(&cfs_b->lock);
5127 if (cfs_b->quota != RUNTIME_INF) {
5128 cfs_b->runtime += slack_runtime;
5130 /* we are under rq->lock, defer unthrottling using a timer */
5131 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5132 !list_empty(&cfs_b->throttled_cfs_rq))
5133 start_cfs_slack_bandwidth(cfs_b);
5135 raw_spin_unlock(&cfs_b->lock);
5137 /* even if it's not valid for return we don't want to try again */
5138 cfs_rq->runtime_remaining -= slack_runtime;
5141 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5143 if (!cfs_bandwidth_used())
5146 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5149 __return_cfs_rq_runtime(cfs_rq);
5153 * This is done with a timer (instead of inline with bandwidth return) since
5154 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5156 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5158 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5159 unsigned long flags;
5161 /* confirm we're still not at a refresh boundary */
5162 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5163 cfs_b->slack_started = false;
5165 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5166 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5170 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5171 runtime = cfs_b->runtime;
5173 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5178 distribute_cfs_runtime(cfs_b);
5182 * When a group wakes up we want to make sure that its quota is not already
5183 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5184 * runtime as update_curr() throttling can not trigger until it's on-rq.
5186 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5188 if (!cfs_bandwidth_used())
5191 /* an active group must be handled by the update_curr()->put() path */
5192 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5195 /* ensure the group is not already throttled */
5196 if (cfs_rq_throttled(cfs_rq))
5199 /* update runtime allocation */
5200 account_cfs_rq_runtime(cfs_rq, 0);
5201 if (cfs_rq->runtime_remaining <= 0)
5202 throttle_cfs_rq(cfs_rq);
5205 static void sync_throttle(struct task_group *tg, int cpu)
5207 struct cfs_rq *pcfs_rq, *cfs_rq;
5209 if (!cfs_bandwidth_used())
5215 cfs_rq = tg->cfs_rq[cpu];
5216 pcfs_rq = tg->parent->cfs_rq[cpu];
5218 cfs_rq->throttle_count = pcfs_rq->throttle_count;
5219 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
5222 /* conditionally throttle active cfs_rq's from put_prev_entity() */
5223 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5225 if (!cfs_bandwidth_used())
5228 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5232 * it's possible for a throttled entity to be forced into a running
5233 * state (e.g. set_curr_task), in this case we're finished.
5235 if (cfs_rq_throttled(cfs_rq))
5238 return throttle_cfs_rq(cfs_rq);
5241 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5243 struct cfs_bandwidth *cfs_b =
5244 container_of(timer, struct cfs_bandwidth, slack_timer);
5246 do_sched_cfs_slack_timer(cfs_b);
5248 return HRTIMER_NORESTART;
5251 extern const u64 max_cfs_quota_period;
5253 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5255 struct cfs_bandwidth *cfs_b =
5256 container_of(timer, struct cfs_bandwidth, period_timer);
5257 unsigned long flags;
5262 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5264 overrun = hrtimer_forward_now(timer, cfs_b->period);
5268 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5271 u64 new, old = ktime_to_ns(cfs_b->period);
5274 * Grow period by a factor of 2 to avoid losing precision.
5275 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5279 if (new < max_cfs_quota_period) {
5280 cfs_b->period = ns_to_ktime(new);
5284 pr_warn_ratelimited(
5285 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5287 div_u64(new, NSEC_PER_USEC),
5288 div_u64(cfs_b->quota, NSEC_PER_USEC));
5290 pr_warn_ratelimited(
5291 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5293 div_u64(old, NSEC_PER_USEC),
5294 div_u64(cfs_b->quota, NSEC_PER_USEC));
5297 /* reset count so we don't come right back in here */
5302 cfs_b->period_active = 0;
5303 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5305 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5308 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5310 raw_spin_lock_init(&cfs_b->lock);
5312 cfs_b->quota = RUNTIME_INF;
5313 cfs_b->period = ns_to_ktime(default_cfs_period());
5316 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5317 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5318 cfs_b->period_timer.function = sched_cfs_period_timer;
5319 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5320 cfs_b->slack_timer.function = sched_cfs_slack_timer;
5321 cfs_b->slack_started = false;
5324 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5326 cfs_rq->runtime_enabled = 0;
5327 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5330 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5332 lockdep_assert_held(&cfs_b->lock);
5334 if (cfs_b->period_active)
5337 cfs_b->period_active = 1;
5338 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5339 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5342 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5344 /* init_cfs_bandwidth() was not called */
5345 if (!cfs_b->throttled_cfs_rq.next)
5348 hrtimer_cancel(&cfs_b->period_timer);
5349 hrtimer_cancel(&cfs_b->slack_timer);
5353 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5355 * The race is harmless, since modifying bandwidth settings of unhooked group
5356 * bits doesn't do much.
5359 /* cpu online callback */
5360 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5362 struct task_group *tg;
5364 lockdep_assert_rq_held(rq);
5367 list_for_each_entry_rcu(tg, &task_groups, list) {
5368 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5369 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5371 raw_spin_lock(&cfs_b->lock);
5372 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5373 raw_spin_unlock(&cfs_b->lock);
5378 /* cpu offline callback */
5379 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5381 struct task_group *tg;
5383 lockdep_assert_rq_held(rq);
5386 list_for_each_entry_rcu(tg, &task_groups, list) {
5387 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5389 if (!cfs_rq->runtime_enabled)
5393 * clock_task is not advancing so we just need to make sure
5394 * there's some valid quota amount
5396 cfs_rq->runtime_remaining = 1;
5398 * Offline rq is schedulable till CPU is completely disabled
5399 * in take_cpu_down(), so we prevent new cfs throttling here.
5401 cfs_rq->runtime_enabled = 0;
5403 if (cfs_rq_throttled(cfs_rq))
5404 unthrottle_cfs_rq(cfs_rq);
5409 #else /* CONFIG_CFS_BANDWIDTH */
5411 static inline bool cfs_bandwidth_used(void)
5416 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5417 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5418 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5419 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5420 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5422 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5427 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5432 static inline int throttled_lb_pair(struct task_group *tg,
5433 int src_cpu, int dest_cpu)
5438 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5440 #ifdef CONFIG_FAIR_GROUP_SCHED
5441 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5444 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5448 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5449 static inline void update_runtime_enabled(struct rq *rq) {}
5450 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5452 #endif /* CONFIG_CFS_BANDWIDTH */
5454 /**************************************************
5455 * CFS operations on tasks:
5458 #ifdef CONFIG_SCHED_HRTICK
5459 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5461 struct sched_entity *se = &p->se;
5462 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5464 SCHED_WARN_ON(task_rq(p) != rq);
5466 if (rq->cfs.h_nr_running > 1) {
5467 u64 slice = sched_slice(cfs_rq, se);
5468 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5469 s64 delta = slice - ran;
5472 if (task_current(rq, p))
5476 hrtick_start(rq, delta);
5481 * called from enqueue/dequeue and updates the hrtick when the
5482 * current task is from our class and nr_running is low enough
5485 static void hrtick_update(struct rq *rq)
5487 struct task_struct *curr = rq->curr;
5489 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
5492 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5493 hrtick_start_fair(rq, curr);
5495 #else /* !CONFIG_SCHED_HRTICK */
5497 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5501 static inline void hrtick_update(struct rq *rq)
5507 static inline unsigned long cpu_util(int cpu);
5509 static inline bool cpu_overutilized(int cpu)
5511 return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
5514 static inline void update_overutilized_status(struct rq *rq)
5516 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5517 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5518 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5522 static inline void update_overutilized_status(struct rq *rq) { }
5525 /* Runqueue only has SCHED_IDLE tasks enqueued */
5526 static int sched_idle_rq(struct rq *rq)
5528 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5533 static int sched_idle_cpu(int cpu)
5535 return sched_idle_rq(cpu_rq(cpu));
5540 * The enqueue_task method is called before nr_running is
5541 * increased. Here we update the fair scheduling stats and
5542 * then put the task into the rbtree:
5545 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5547 struct cfs_rq *cfs_rq;
5548 struct sched_entity *se = &p->se;
5549 int idle_h_nr_running = task_has_idle_policy(p);
5550 int task_new = !(flags & ENQUEUE_WAKEUP);
5553 * The code below (indirectly) updates schedutil which looks at
5554 * the cfs_rq utilization to select a frequency.
5555 * Let's add the task's estimated utilization to the cfs_rq's
5556 * estimated utilization, before we update schedutil.
5558 util_est_enqueue(&rq->cfs, p);
5561 * If in_iowait is set, the code below may not trigger any cpufreq
5562 * utilization updates, so do it here explicitly with the IOWAIT flag
5566 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5568 for_each_sched_entity(se) {
5571 cfs_rq = cfs_rq_of(se);
5572 enqueue_entity(cfs_rq, se, flags);
5574 cfs_rq->h_nr_running++;
5575 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5577 /* end evaluation on encountering a throttled cfs_rq */
5578 if (cfs_rq_throttled(cfs_rq))
5579 goto enqueue_throttle;
5581 flags = ENQUEUE_WAKEUP;
5584 for_each_sched_entity(se) {
5585 cfs_rq = cfs_rq_of(se);
5587 update_load_avg(cfs_rq, se, UPDATE_TG);
5588 se_update_runnable(se);
5589 update_cfs_group(se);
5591 cfs_rq->h_nr_running++;
5592 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5594 /* end evaluation on encountering a throttled cfs_rq */
5595 if (cfs_rq_throttled(cfs_rq))
5596 goto enqueue_throttle;
5599 * One parent has been throttled and cfs_rq removed from the
5600 * list. Add it back to not break the leaf list.
5602 if (throttled_hierarchy(cfs_rq))
5603 list_add_leaf_cfs_rq(cfs_rq);
5606 /* At this point se is NULL and we are at root level*/
5607 add_nr_running(rq, 1);
5610 * Since new tasks are assigned an initial util_avg equal to
5611 * half of the spare capacity of their CPU, tiny tasks have the
5612 * ability to cross the overutilized threshold, which will
5613 * result in the load balancer ruining all the task placement
5614 * done by EAS. As a way to mitigate that effect, do not account
5615 * for the first enqueue operation of new tasks during the
5616 * overutilized flag detection.
5618 * A better way of solving this problem would be to wait for
5619 * the PELT signals of tasks to converge before taking them
5620 * into account, but that is not straightforward to implement,
5621 * and the following generally works well enough in practice.
5624 update_overutilized_status(rq);
5627 if (cfs_bandwidth_used()) {
5629 * When bandwidth control is enabled; the cfs_rq_throttled()
5630 * breaks in the above iteration can result in incomplete
5631 * leaf list maintenance, resulting in triggering the assertion
5634 for_each_sched_entity(se) {
5635 cfs_rq = cfs_rq_of(se);
5637 if (list_add_leaf_cfs_rq(cfs_rq))
5642 assert_list_leaf_cfs_rq(rq);
5647 static void set_next_buddy(struct sched_entity *se);
5650 * The dequeue_task method is called before nr_running is
5651 * decreased. We remove the task from the rbtree and
5652 * update the fair scheduling stats:
5654 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5656 struct cfs_rq *cfs_rq;
5657 struct sched_entity *se = &p->se;
5658 int task_sleep = flags & DEQUEUE_SLEEP;
5659 int idle_h_nr_running = task_has_idle_policy(p);
5660 bool was_sched_idle = sched_idle_rq(rq);
5662 util_est_dequeue(&rq->cfs, p);
5664 for_each_sched_entity(se) {
5665 cfs_rq = cfs_rq_of(se);
5666 dequeue_entity(cfs_rq, se, flags);
5668 cfs_rq->h_nr_running--;
5669 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5671 /* end evaluation on encountering a throttled cfs_rq */
5672 if (cfs_rq_throttled(cfs_rq))
5673 goto dequeue_throttle;
5675 /* Don't dequeue parent if it has other entities besides us */
5676 if (cfs_rq->load.weight) {
5677 /* Avoid re-evaluating load for this entity: */
5678 se = parent_entity(se);
5680 * Bias pick_next to pick a task from this cfs_rq, as
5681 * p is sleeping when it is within its sched_slice.
5683 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5687 flags |= DEQUEUE_SLEEP;
5690 for_each_sched_entity(se) {
5691 cfs_rq = cfs_rq_of(se);
5693 update_load_avg(cfs_rq, se, UPDATE_TG);
5694 se_update_runnable(se);
5695 update_cfs_group(se);
5697 cfs_rq->h_nr_running--;
5698 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5700 /* end evaluation on encountering a throttled cfs_rq */
5701 if (cfs_rq_throttled(cfs_rq))
5702 goto dequeue_throttle;
5706 /* At this point se is NULL and we are at root level*/
5707 sub_nr_running(rq, 1);
5709 /* balance early to pull high priority tasks */
5710 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5711 rq->next_balance = jiffies;
5714 util_est_update(&rq->cfs, p, task_sleep);
5720 /* Working cpumask for: load_balance, load_balance_newidle. */
5721 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5722 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5724 #ifdef CONFIG_NO_HZ_COMMON
5727 cpumask_var_t idle_cpus_mask;
5729 int has_blocked; /* Idle CPUS has blocked load */
5730 unsigned long next_balance; /* in jiffy units */
5731 unsigned long next_blocked; /* Next update of blocked load in jiffies */
5732 } nohz ____cacheline_aligned;
5734 #endif /* CONFIG_NO_HZ_COMMON */
5736 static unsigned long cpu_load(struct rq *rq)
5738 return cfs_rq_load_avg(&rq->cfs);
5742 * cpu_load_without - compute CPU load without any contributions from *p
5743 * @cpu: the CPU which load is requested
5744 * @p: the task which load should be discounted
5746 * The load of a CPU is defined by the load of tasks currently enqueued on that
5747 * CPU as well as tasks which are currently sleeping after an execution on that
5750 * This method returns the load of the specified CPU by discounting the load of
5751 * the specified task, whenever the task is currently contributing to the CPU
5754 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5756 struct cfs_rq *cfs_rq;
5759 /* Task has no contribution or is new */
5760 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5761 return cpu_load(rq);
5764 load = READ_ONCE(cfs_rq->avg.load_avg);
5766 /* Discount task's util from CPU's util */
5767 lsub_positive(&load, task_h_load(p));
5772 static unsigned long cpu_runnable(struct rq *rq)
5774 return cfs_rq_runnable_avg(&rq->cfs);
5777 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5779 struct cfs_rq *cfs_rq;
5780 unsigned int runnable;
5782 /* Task has no contribution or is new */
5783 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5784 return cpu_runnable(rq);
5787 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5789 /* Discount task's runnable from CPU's runnable */
5790 lsub_positive(&runnable, p->se.avg.runnable_avg);
5795 static unsigned long capacity_of(int cpu)
5797 return cpu_rq(cpu)->cpu_capacity;
5800 static void record_wakee(struct task_struct *p)
5803 * Only decay a single time; tasks that have less then 1 wakeup per
5804 * jiffy will not have built up many flips.
5806 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5807 current->wakee_flips >>= 1;
5808 current->wakee_flip_decay_ts = jiffies;
5811 if (current->last_wakee != p) {
5812 current->last_wakee = p;
5813 current->wakee_flips++;
5818 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5820 * A waker of many should wake a different task than the one last awakened
5821 * at a frequency roughly N times higher than one of its wakees.
5823 * In order to determine whether we should let the load spread vs consolidating
5824 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5825 * partner, and a factor of lls_size higher frequency in the other.
5827 * With both conditions met, we can be relatively sure that the relationship is
5828 * non-monogamous, with partner count exceeding socket size.
5830 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5831 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5834 static int wake_wide(struct task_struct *p)
5836 unsigned int master = current->wakee_flips;
5837 unsigned int slave = p->wakee_flips;
5838 int factor = __this_cpu_read(sd_llc_size);
5841 swap(master, slave);
5842 if (slave < factor || master < slave * factor)
5848 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5849 * soonest. For the purpose of speed we only consider the waking and previous
5852 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5853 * cache-affine and is (or will be) idle.
5855 * wake_affine_weight() - considers the weight to reflect the average
5856 * scheduling latency of the CPUs. This seems to work
5857 * for the overloaded case.
5860 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5863 * If this_cpu is idle, it implies the wakeup is from interrupt
5864 * context. Only allow the move if cache is shared. Otherwise an
5865 * interrupt intensive workload could force all tasks onto one
5866 * node depending on the IO topology or IRQ affinity settings.
5868 * If the prev_cpu is idle and cache affine then avoid a migration.
5869 * There is no guarantee that the cache hot data from an interrupt
5870 * is more important than cache hot data on the prev_cpu and from
5871 * a cpufreq perspective, it's better to have higher utilisation
5874 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5875 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5877 if (sync && cpu_rq(this_cpu)->nr_running == 1)
5880 if (available_idle_cpu(prev_cpu))
5883 return nr_cpumask_bits;
5887 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5888 int this_cpu, int prev_cpu, int sync)
5890 s64 this_eff_load, prev_eff_load;
5891 unsigned long task_load;
5893 this_eff_load = cpu_load(cpu_rq(this_cpu));
5896 unsigned long current_load = task_h_load(current);
5898 if (current_load > this_eff_load)
5901 this_eff_load -= current_load;
5904 task_load = task_h_load(p);
5906 this_eff_load += task_load;
5907 if (sched_feat(WA_BIAS))
5908 this_eff_load *= 100;
5909 this_eff_load *= capacity_of(prev_cpu);
5911 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
5912 prev_eff_load -= task_load;
5913 if (sched_feat(WA_BIAS))
5914 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5915 prev_eff_load *= capacity_of(this_cpu);
5918 * If sync, adjust the weight of prev_eff_load such that if
5919 * prev_eff == this_eff that select_idle_sibling() will consider
5920 * stacking the wakee on top of the waker if no other CPU is
5926 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5929 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5930 int this_cpu, int prev_cpu, int sync)
5932 int target = nr_cpumask_bits;
5934 if (sched_feat(WA_IDLE))
5935 target = wake_affine_idle(this_cpu, prev_cpu, sync);
5937 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5938 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5940 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5941 if (target == nr_cpumask_bits)
5944 schedstat_inc(sd->ttwu_move_affine);
5945 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5949 static struct sched_group *
5950 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
5953 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5956 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5958 unsigned long load, min_load = ULONG_MAX;
5959 unsigned int min_exit_latency = UINT_MAX;
5960 u64 latest_idle_timestamp = 0;
5961 int least_loaded_cpu = this_cpu;
5962 int shallowest_idle_cpu = -1;
5965 /* Check if we have any choice: */
5966 if (group->group_weight == 1)
5967 return cpumask_first(sched_group_span(group));
5969 /* Traverse only the allowed CPUs */
5970 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
5971 struct rq *rq = cpu_rq(i);
5973 if (!sched_core_cookie_match(rq, p))
5976 if (sched_idle_cpu(i))
5979 if (available_idle_cpu(i)) {
5980 struct cpuidle_state *idle = idle_get_state(rq);
5981 if (idle && idle->exit_latency < min_exit_latency) {
5983 * We give priority to a CPU whose idle state
5984 * has the smallest exit latency irrespective
5985 * of any idle timestamp.
5987 min_exit_latency = idle->exit_latency;
5988 latest_idle_timestamp = rq->idle_stamp;
5989 shallowest_idle_cpu = i;
5990 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5991 rq->idle_stamp > latest_idle_timestamp) {
5993 * If equal or no active idle state, then
5994 * the most recently idled CPU might have
5997 latest_idle_timestamp = rq->idle_stamp;
5998 shallowest_idle_cpu = i;
6000 } else if (shallowest_idle_cpu == -1) {
6001 load = cpu_load(cpu_rq(i));
6002 if (load < min_load) {
6004 least_loaded_cpu = i;
6009 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
6012 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6013 int cpu, int prev_cpu, int sd_flag)
6017 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6021 * We need task's util for cpu_util_without, sync it up to
6022 * prev_cpu's last_update_time.
6024 if (!(sd_flag & SD_BALANCE_FORK))
6025 sync_entity_load_avg(&p->se);
6028 struct sched_group *group;
6029 struct sched_domain *tmp;
6032 if (!(sd->flags & sd_flag)) {
6037 group = find_idlest_group(sd, p, cpu);
6043 new_cpu = find_idlest_group_cpu(group, p, cpu);
6044 if (new_cpu == cpu) {
6045 /* Now try balancing at a lower domain level of 'cpu': */
6050 /* Now try balancing at a lower domain level of 'new_cpu': */
6052 weight = sd->span_weight;
6054 for_each_domain(cpu, tmp) {
6055 if (weight <= tmp->span_weight)
6057 if (tmp->flags & sd_flag)
6065 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
6067 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
6068 sched_cpu_cookie_match(cpu_rq(cpu), p))
6074 #ifdef CONFIG_SCHED_SMT
6075 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6076 EXPORT_SYMBOL_GPL(sched_smt_present);
6078 static inline void set_idle_cores(int cpu, int val)
6080 struct sched_domain_shared *sds;
6082 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6084 WRITE_ONCE(sds->has_idle_cores, val);
6087 static inline bool test_idle_cores(int cpu, bool def)
6089 struct sched_domain_shared *sds;
6091 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6093 return READ_ONCE(sds->has_idle_cores);
6099 * Scans the local SMT mask to see if the entire core is idle, and records this
6100 * information in sd_llc_shared->has_idle_cores.
6102 * Since SMT siblings share all cache levels, inspecting this limited remote
6103 * state should be fairly cheap.
6105 void __update_idle_core(struct rq *rq)
6107 int core = cpu_of(rq);
6111 if (test_idle_cores(core, true))
6114 for_each_cpu(cpu, cpu_smt_mask(core)) {
6118 if (!available_idle_cpu(cpu))
6122 set_idle_cores(core, 1);
6128 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6129 * there are no idle cores left in the system; tracked through
6130 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6132 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6137 if (!static_branch_likely(&sched_smt_present))
6138 return __select_idle_cpu(core, p);
6140 for_each_cpu(cpu, cpu_smt_mask(core)) {
6141 if (!available_idle_cpu(cpu)) {
6143 if (*idle_cpu == -1) {
6144 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
6152 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
6159 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6164 * Scan the local SMT mask for idle CPUs.
6166 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6170 for_each_cpu(cpu, cpu_smt_mask(target)) {
6171 if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
6172 !cpumask_test_cpu(cpu, sched_domain_span(sd)))
6174 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6181 #else /* CONFIG_SCHED_SMT */
6183 static inline void set_idle_cores(int cpu, int val)
6187 static inline bool test_idle_cores(int cpu, bool def)
6192 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6194 return __select_idle_cpu(core, p);
6197 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6202 #endif /* CONFIG_SCHED_SMT */
6205 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6206 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6207 * average idle time for this rq (as found in rq->avg_idle).
6209 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
6211 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6212 int i, cpu, idle_cpu = -1, nr = INT_MAX;
6213 struct rq *this_rq = this_rq();
6214 int this = smp_processor_id();
6215 struct sched_domain *this_sd;
6218 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6222 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6224 if (sched_feat(SIS_PROP) && !has_idle_core) {
6225 u64 avg_cost, avg_idle, span_avg;
6226 unsigned long now = jiffies;
6229 * If we're busy, the assumption that the last idle period
6230 * predicts the future is flawed; age away the remaining
6231 * predicted idle time.
6233 if (unlikely(this_rq->wake_stamp < now)) {
6234 while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
6235 this_rq->wake_stamp++;
6236 this_rq->wake_avg_idle >>= 1;
6240 avg_idle = this_rq->wake_avg_idle;
6241 avg_cost = this_sd->avg_scan_cost + 1;
6243 span_avg = sd->span_weight * avg_idle;
6244 if (span_avg > 4*avg_cost)
6245 nr = div_u64(span_avg, avg_cost);
6249 time = cpu_clock(this);
6252 for_each_cpu_wrap(cpu, cpus, target) {
6253 if (has_idle_core) {
6254 i = select_idle_core(p, cpu, cpus, &idle_cpu);
6255 if ((unsigned int)i < nr_cpumask_bits)
6261 idle_cpu = __select_idle_cpu(cpu, p);
6262 if ((unsigned int)idle_cpu < nr_cpumask_bits)
6268 set_idle_cores(target, false);
6270 if (sched_feat(SIS_PROP) && !has_idle_core) {
6271 time = cpu_clock(this) - time;
6274 * Account for the scan cost of wakeups against the average
6277 this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
6279 update_avg(&this_sd->avg_scan_cost, time);
6286 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6287 * the task fits. If no CPU is big enough, but there are idle ones, try to
6288 * maximize capacity.
6291 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6293 unsigned long task_util, best_cap = 0;
6294 int cpu, best_cpu = -1;
6295 struct cpumask *cpus;
6297 cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6298 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6300 task_util = uclamp_task_util(p);
6302 for_each_cpu_wrap(cpu, cpus, target) {
6303 unsigned long cpu_cap = capacity_of(cpu);
6305 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6307 if (fits_capacity(task_util, cpu_cap))
6310 if (cpu_cap > best_cap) {
6319 static inline bool asym_fits_capacity(int task_util, int cpu)
6321 if (static_branch_unlikely(&sched_asym_cpucapacity))
6322 return fits_capacity(task_util, capacity_of(cpu));
6328 * Try and locate an idle core/thread in the LLC cache domain.
6330 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6332 bool has_idle_core = false;
6333 struct sched_domain *sd;
6334 unsigned long task_util;
6335 int i, recent_used_cpu;
6338 * On asymmetric system, update task utilization because we will check
6339 * that the task fits with cpu's capacity.
6341 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6342 sync_entity_load_avg(&p->se);
6343 task_util = uclamp_task_util(p);
6347 * per-cpu select_idle_mask usage
6349 lockdep_assert_irqs_disabled();
6351 if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6352 asym_fits_capacity(task_util, target))
6356 * If the previous CPU is cache affine and idle, don't be stupid:
6358 if (prev != target && cpus_share_cache(prev, target) &&
6359 (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6360 asym_fits_capacity(task_util, prev))
6364 * Allow a per-cpu kthread to stack with the wakee if the
6365 * kworker thread and the tasks previous CPUs are the same.
6366 * The assumption is that the wakee queued work for the
6367 * per-cpu kthread that is now complete and the wakeup is
6368 * essentially a sync wakeup. An obvious example of this
6369 * pattern is IO completions.
6371 if (is_per_cpu_kthread(current) &&
6372 prev == smp_processor_id() &&
6373 this_rq()->nr_running <= 1) {
6377 /* Check a recently used CPU as a potential idle candidate: */
6378 recent_used_cpu = p->recent_used_cpu;
6379 if (recent_used_cpu != prev &&
6380 recent_used_cpu != target &&
6381 cpus_share_cache(recent_used_cpu, target) &&
6382 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6383 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
6384 asym_fits_capacity(task_util, recent_used_cpu)) {
6386 * Replace recent_used_cpu with prev as it is a potential
6387 * candidate for the next wake:
6389 p->recent_used_cpu = prev;
6390 return recent_used_cpu;
6394 * For asymmetric CPU capacity systems, our domain of interest is
6395 * sd_asym_cpucapacity rather than sd_llc.
6397 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6398 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6400 * On an asymmetric CPU capacity system where an exclusive
6401 * cpuset defines a symmetric island (i.e. one unique
6402 * capacity_orig value through the cpuset), the key will be set
6403 * but the CPUs within that cpuset will not have a domain with
6404 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6408 i = select_idle_capacity(p, sd, target);
6409 return ((unsigned)i < nr_cpumask_bits) ? i : target;
6413 sd = rcu_dereference(per_cpu(sd_llc, target));
6417 if (sched_smt_active()) {
6418 has_idle_core = test_idle_cores(target, false);
6420 if (!has_idle_core && cpus_share_cache(prev, target)) {
6421 i = select_idle_smt(p, sd, prev);
6422 if ((unsigned int)i < nr_cpumask_bits)
6427 i = select_idle_cpu(p, sd, has_idle_core, target);
6428 if ((unsigned)i < nr_cpumask_bits)
6435 * cpu_util - Estimates the amount of capacity of a CPU used by CFS tasks.
6436 * @cpu: the CPU to get the utilization of
6438 * The unit of the return value must be the one of capacity so we can compare
6439 * the utilization with the capacity of the CPU that is available for CFS task
6440 * (ie cpu_capacity).
6442 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6443 * recent utilization of currently non-runnable tasks on a CPU. It represents
6444 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6445 * capacity_orig is the cpu_capacity available at the highest frequency
6446 * (arch_scale_freq_capacity()).
6447 * The utilization of a CPU converges towards a sum equal to or less than the
6448 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6449 * the running time on this CPU scaled by capacity_curr.
6451 * The estimated utilization of a CPU is defined to be the maximum between its
6452 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6453 * currently RUNNABLE on that CPU.
6454 * This allows to properly represent the expected utilization of a CPU which
6455 * has just got a big task running since a long sleep period. At the same time
6456 * however it preserves the benefits of the "blocked utilization" in
6457 * describing the potential for other tasks waking up on the same CPU.
6459 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6460 * higher than capacity_orig because of unfortunate rounding in
6461 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6462 * the average stabilizes with the new running time. We need to check that the
6463 * utilization stays within the range of [0..capacity_orig] and cap it if
6464 * necessary. Without utilization capping, a group could be seen as overloaded
6465 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6466 * available capacity. We allow utilization to overshoot capacity_curr (but not
6467 * capacity_orig) as it useful for predicting the capacity required after task
6468 * migrations (scheduler-driven DVFS).
6470 * Return: the (estimated) utilization for the specified CPU
6472 static inline unsigned long cpu_util(int cpu)
6474 struct cfs_rq *cfs_rq;
6477 cfs_rq = &cpu_rq(cpu)->cfs;
6478 util = READ_ONCE(cfs_rq->avg.util_avg);
6480 if (sched_feat(UTIL_EST))
6481 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6483 return min_t(unsigned long, util, capacity_orig_of(cpu));
6487 * cpu_util_without: compute cpu utilization without any contributions from *p
6488 * @cpu: the CPU which utilization is requested
6489 * @p: the task which utilization should be discounted
6491 * The utilization of a CPU is defined by the utilization of tasks currently
6492 * enqueued on that CPU as well as tasks which are currently sleeping after an
6493 * execution on that CPU.
6495 * This method returns the utilization of the specified CPU by discounting the
6496 * utilization of the specified task, whenever the task is currently
6497 * contributing to the CPU utilization.
6499 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6501 struct cfs_rq *cfs_rq;
6504 /* Task has no contribution or is new */
6505 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6506 return cpu_util(cpu);
6508 cfs_rq = &cpu_rq(cpu)->cfs;
6509 util = READ_ONCE(cfs_rq->avg.util_avg);
6511 /* Discount task's util from CPU's util */
6512 lsub_positive(&util, task_util(p));
6517 * a) if *p is the only task sleeping on this CPU, then:
6518 * cpu_util (== task_util) > util_est (== 0)
6519 * and thus we return:
6520 * cpu_util_without = (cpu_util - task_util) = 0
6522 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6524 * cpu_util >= task_util
6525 * cpu_util > util_est (== 0)
6526 * and thus we discount *p's blocked utilization to return:
6527 * cpu_util_without = (cpu_util - task_util) >= 0
6529 * c) if other tasks are RUNNABLE on that CPU and
6530 * util_est > cpu_util
6531 * then we use util_est since it returns a more restrictive
6532 * estimation of the spare capacity on that CPU, by just
6533 * considering the expected utilization of tasks already
6534 * runnable on that CPU.
6536 * Cases a) and b) are covered by the above code, while case c) is
6537 * covered by the following code when estimated utilization is
6540 if (sched_feat(UTIL_EST)) {
6541 unsigned int estimated =
6542 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6545 * Despite the following checks we still have a small window
6546 * for a possible race, when an execl's select_task_rq_fair()
6547 * races with LB's detach_task():
6550 * p->on_rq = TASK_ON_RQ_MIGRATING;
6551 * ---------------------------------- A
6552 * deactivate_task() \
6553 * dequeue_task() + RaceTime
6554 * util_est_dequeue() /
6555 * ---------------------------------- B
6557 * The additional check on "current == p" it's required to
6558 * properly fix the execl regression and it helps in further
6559 * reducing the chances for the above race.
6561 if (unlikely(task_on_rq_queued(p) || current == p))
6562 lsub_positive(&estimated, _task_util_est(p));
6564 util = max(util, estimated);
6568 * Utilization (estimated) can exceed the CPU capacity, thus let's
6569 * clamp to the maximum CPU capacity to ensure consistency with
6570 * the cpu_util call.
6572 return min_t(unsigned long, util, capacity_orig_of(cpu));
6576 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6579 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6581 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6582 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6585 * If @p migrates from @cpu to another, remove its contribution. Or,
6586 * if @p migrates from another CPU to @cpu, add its contribution. In
6587 * the other cases, @cpu is not impacted by the migration, so the
6588 * util_avg should already be correct.
6590 if (task_cpu(p) == cpu && dst_cpu != cpu)
6591 lsub_positive(&util, task_util(p));
6592 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6593 util += task_util(p);
6595 if (sched_feat(UTIL_EST)) {
6596 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6599 * During wake-up, the task isn't enqueued yet and doesn't
6600 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6601 * so just add it (if needed) to "simulate" what will be
6602 * cpu_util() after the task has been enqueued.
6605 util_est += _task_util_est(p);
6607 util = max(util, util_est);
6610 return min(util, capacity_orig_of(cpu));
6614 * compute_energy(): Estimates the energy that @pd would consume if @p was
6615 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6616 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6617 * to compute what would be the energy if we decided to actually migrate that
6621 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6623 struct cpumask *pd_mask = perf_domain_span(pd);
6624 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6625 unsigned long max_util = 0, sum_util = 0;
6626 unsigned long _cpu_cap = cpu_cap;
6629 _cpu_cap -= arch_scale_thermal_pressure(cpumask_first(pd_mask));
6632 * The capacity state of CPUs of the current rd can be driven by CPUs
6633 * of another rd if they belong to the same pd. So, account for the
6634 * utilization of these CPUs too by masking pd with cpu_online_mask
6635 * instead of the rd span.
6637 * If an entire pd is outside of the current rd, it will not appear in
6638 * its pd list and will not be accounted by compute_energy().
6640 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6641 unsigned long util_freq = cpu_util_next(cpu, p, dst_cpu);
6642 unsigned long cpu_util, util_running = util_freq;
6643 struct task_struct *tsk = NULL;
6646 * When @p is placed on @cpu:
6648 * util_running = max(cpu_util, cpu_util_est) +
6649 * max(task_util, _task_util_est)
6651 * while cpu_util_next is: max(cpu_util + task_util,
6652 * cpu_util_est + _task_util_est)
6654 if (cpu == dst_cpu) {
6657 cpu_util_next(cpu, p, -1) + task_util_est(p);
6661 * Busy time computation: utilization clamping is not
6662 * required since the ratio (sum_util / cpu_capacity)
6663 * is already enough to scale the EM reported power
6664 * consumption at the (eventually clamped) cpu_capacity.
6666 cpu_util = effective_cpu_util(cpu, util_running, cpu_cap,
6669 sum_util += min(cpu_util, _cpu_cap);
6672 * Performance domain frequency: utilization clamping
6673 * must be considered since it affects the selection
6674 * of the performance domain frequency.
6675 * NOTE: in case RT tasks are running, by default the
6676 * FREQUENCY_UTIL's utilization can be max OPP.
6678 cpu_util = effective_cpu_util(cpu, util_freq, cpu_cap,
6679 FREQUENCY_UTIL, tsk);
6680 max_util = max(max_util, min(cpu_util, _cpu_cap));
6683 return em_cpu_energy(pd->em_pd, max_util, sum_util, _cpu_cap);
6687 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6688 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6689 * spare capacity in each performance domain and uses it as a potential
6690 * candidate to execute the task. Then, it uses the Energy Model to figure
6691 * out which of the CPU candidates is the most energy-efficient.
6693 * The rationale for this heuristic is as follows. In a performance domain,
6694 * all the most energy efficient CPU candidates (according to the Energy
6695 * Model) are those for which we'll request a low frequency. When there are
6696 * several CPUs for which the frequency request will be the same, we don't
6697 * have enough data to break the tie between them, because the Energy Model
6698 * only includes active power costs. With this model, if we assume that
6699 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6700 * the maximum spare capacity in a performance domain is guaranteed to be among
6701 * the best candidates of the performance domain.
6703 * In practice, it could be preferable from an energy standpoint to pack
6704 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6705 * but that could also hurt our chances to go cluster idle, and we have no
6706 * ways to tell with the current Energy Model if this is actually a good
6707 * idea or not. So, find_energy_efficient_cpu() basically favors
6708 * cluster-packing, and spreading inside a cluster. That should at least be
6709 * a good thing for latency, and this is consistent with the idea that most
6710 * of the energy savings of EAS come from the asymmetry of the system, and
6711 * not so much from breaking the tie between identical CPUs. That's also the
6712 * reason why EAS is enabled in the topology code only for systems where
6713 * SD_ASYM_CPUCAPACITY is set.
6715 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6716 * they don't have any useful utilization data yet and it's not possible to
6717 * forecast their impact on energy consumption. Consequently, they will be
6718 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6719 * to be energy-inefficient in some use-cases. The alternative would be to
6720 * bias new tasks towards specific types of CPUs first, or to try to infer
6721 * their util_avg from the parent task, but those heuristics could hurt
6722 * other use-cases too. So, until someone finds a better way to solve this,
6723 * let's keep things simple by re-using the existing slow path.
6725 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6727 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6728 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6729 int cpu, best_energy_cpu = prev_cpu, target = -1;
6730 unsigned long cpu_cap, util, base_energy = 0;
6731 struct sched_domain *sd;
6732 struct perf_domain *pd;
6735 pd = rcu_dereference(rd->pd);
6736 if (!pd || READ_ONCE(rd->overutilized))
6740 * Energy-aware wake-up happens on the lowest sched_domain starting
6741 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6743 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6744 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6751 sync_entity_load_avg(&p->se);
6752 if (!task_util_est(p))
6755 for (; pd; pd = pd->next) {
6756 unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6757 bool compute_prev_delta = false;
6758 unsigned long base_energy_pd;
6759 int max_spare_cap_cpu = -1;
6761 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6762 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6765 util = cpu_util_next(cpu, p, cpu);
6766 cpu_cap = capacity_of(cpu);
6767 spare_cap = cpu_cap;
6768 lsub_positive(&spare_cap, util);
6771 * Skip CPUs that cannot satisfy the capacity request.
6772 * IOW, placing the task there would make the CPU
6773 * overutilized. Take uclamp into account to see how
6774 * much capacity we can get out of the CPU; this is
6775 * aligned with sched_cpu_util().
6777 util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
6778 if (!fits_capacity(util, cpu_cap))
6781 if (cpu == prev_cpu) {
6782 /* Always use prev_cpu as a candidate. */
6783 compute_prev_delta = true;
6784 } else if (spare_cap > max_spare_cap) {
6786 * Find the CPU with the maximum spare capacity
6787 * in the performance domain.
6789 max_spare_cap = spare_cap;
6790 max_spare_cap_cpu = cpu;
6794 if (max_spare_cap_cpu < 0 && !compute_prev_delta)
6797 /* Compute the 'base' energy of the pd, without @p */
6798 base_energy_pd = compute_energy(p, -1, pd);
6799 base_energy += base_energy_pd;
6801 /* Evaluate the energy impact of using prev_cpu. */
6802 if (compute_prev_delta) {
6803 prev_delta = compute_energy(p, prev_cpu, pd);
6804 if (prev_delta < base_energy_pd)
6806 prev_delta -= base_energy_pd;
6807 best_delta = min(best_delta, prev_delta);
6810 /* Evaluate the energy impact of using max_spare_cap_cpu. */
6811 if (max_spare_cap_cpu >= 0) {
6812 cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6813 if (cur_delta < base_energy_pd)
6815 cur_delta -= base_energy_pd;
6816 if (cur_delta < best_delta) {
6817 best_delta = cur_delta;
6818 best_energy_cpu = max_spare_cap_cpu;
6825 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6826 * least 6% of the energy used by prev_cpu.
6828 if ((prev_delta == ULONG_MAX) ||
6829 (prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6830 target = best_energy_cpu;
6841 * select_task_rq_fair: Select target runqueue for the waking task in domains
6842 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
6843 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6845 * Balances load by selecting the idlest CPU in the idlest group, or under
6846 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6848 * Returns the target CPU number.
6851 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
6853 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6854 struct sched_domain *tmp, *sd = NULL;
6855 int cpu = smp_processor_id();
6856 int new_cpu = prev_cpu;
6857 int want_affine = 0;
6858 /* SD_flags and WF_flags share the first nibble */
6859 int sd_flag = wake_flags & 0xF;
6862 * required for stable ->cpus_allowed
6864 lockdep_assert_held(&p->pi_lock);
6865 if (wake_flags & WF_TTWU) {
6868 if (sched_energy_enabled()) {
6869 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6875 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
6879 for_each_domain(cpu, tmp) {
6881 * If both 'cpu' and 'prev_cpu' are part of this domain,
6882 * cpu is a valid SD_WAKE_AFFINE target.
6884 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6885 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6886 if (cpu != prev_cpu)
6887 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6889 sd = NULL; /* Prefer wake_affine over balance flags */
6893 if (tmp->flags & sd_flag)
6895 else if (!want_affine)
6901 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6902 } else if (wake_flags & WF_TTWU) { /* XXX always ? */
6904 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6907 current->recent_used_cpu = cpu;
6914 static void detach_entity_cfs_rq(struct sched_entity *se);
6917 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6918 * cfs_rq_of(p) references at time of call are still valid and identify the
6919 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6921 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6924 * As blocked tasks retain absolute vruntime the migration needs to
6925 * deal with this by subtracting the old and adding the new
6926 * min_vruntime -- the latter is done by enqueue_entity() when placing
6927 * the task on the new runqueue.
6929 if (READ_ONCE(p->__state) == TASK_WAKING) {
6930 struct sched_entity *se = &p->se;
6931 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6934 #ifndef CONFIG_64BIT
6935 u64 min_vruntime_copy;
6938 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6940 min_vruntime = cfs_rq->min_vruntime;
6941 } while (min_vruntime != min_vruntime_copy);
6943 min_vruntime = cfs_rq->min_vruntime;
6946 se->vruntime -= min_vruntime;
6949 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6951 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6952 * rq->lock and can modify state directly.
6954 lockdep_assert_rq_held(task_rq(p));
6955 detach_entity_cfs_rq(&p->se);
6959 * We are supposed to update the task to "current" time, then
6960 * its up to date and ready to go to new CPU/cfs_rq. But we
6961 * have difficulty in getting what current time is, so simply
6962 * throw away the out-of-date time. This will result in the
6963 * wakee task is less decayed, but giving the wakee more load
6966 remove_entity_load_avg(&p->se);
6969 /* Tell new CPU we are migrated */
6970 p->se.avg.last_update_time = 0;
6972 /* We have migrated, no longer consider this task hot */
6973 p->se.exec_start = 0;
6975 update_scan_period(p, new_cpu);
6978 static void task_dead_fair(struct task_struct *p)
6980 remove_entity_load_avg(&p->se);
6984 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6989 return newidle_balance(rq, rf) != 0;
6991 #endif /* CONFIG_SMP */
6993 static unsigned long wakeup_gran(struct sched_entity *se)
6995 unsigned long gran = sysctl_sched_wakeup_granularity;
6998 * Since its curr running now, convert the gran from real-time
6999 * to virtual-time in his units.
7001 * By using 'se' instead of 'curr' we penalize light tasks, so
7002 * they get preempted easier. That is, if 'se' < 'curr' then
7003 * the resulting gran will be larger, therefore penalizing the
7004 * lighter, if otoh 'se' > 'curr' then the resulting gran will
7005 * be smaller, again penalizing the lighter task.
7007 * This is especially important for buddies when the leftmost
7008 * task is higher priority than the buddy.
7010 return calc_delta_fair(gran, se);
7014 * Should 'se' preempt 'curr'.
7028 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
7030 s64 gran, vdiff = curr->vruntime - se->vruntime;
7035 gran = wakeup_gran(se);
7042 static void set_last_buddy(struct sched_entity *se)
7044 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
7047 for_each_sched_entity(se) {
7048 if (SCHED_WARN_ON(!se->on_rq))
7050 cfs_rq_of(se)->last = se;
7054 static void set_next_buddy(struct sched_entity *se)
7056 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
7059 for_each_sched_entity(se) {
7060 if (SCHED_WARN_ON(!se->on_rq))
7062 cfs_rq_of(se)->next = se;
7066 static void set_skip_buddy(struct sched_entity *se)
7068 for_each_sched_entity(se)
7069 cfs_rq_of(se)->skip = se;
7073 * Preempt the current task with a newly woken task if needed:
7075 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
7077 struct task_struct *curr = rq->curr;
7078 struct sched_entity *se = &curr->se, *pse = &p->se;
7079 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7080 int scale = cfs_rq->nr_running >= sched_nr_latency;
7081 int next_buddy_marked = 0;
7083 if (unlikely(se == pse))
7087 * This is possible from callers such as attach_tasks(), in which we
7088 * unconditionally check_preempt_curr() after an enqueue (which may have
7089 * lead to a throttle). This both saves work and prevents false
7090 * next-buddy nomination below.
7092 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
7095 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
7096 set_next_buddy(pse);
7097 next_buddy_marked = 1;
7101 * We can come here with TIF_NEED_RESCHED already set from new task
7104 * Note: this also catches the edge-case of curr being in a throttled
7105 * group (e.g. via set_curr_task), since update_curr() (in the
7106 * enqueue of curr) will have resulted in resched being set. This
7107 * prevents us from potentially nominating it as a false LAST_BUDDY
7110 if (test_tsk_need_resched(curr))
7113 /* Idle tasks are by definition preempted by non-idle tasks. */
7114 if (unlikely(task_has_idle_policy(curr)) &&
7115 likely(!task_has_idle_policy(p)))
7119 * Batch and idle tasks do not preempt non-idle tasks (their preemption
7120 * is driven by the tick):
7122 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
7125 find_matching_se(&se, &pse);
7126 update_curr(cfs_rq_of(se));
7128 if (wakeup_preempt_entity(se, pse) == 1) {
7130 * Bias pick_next to pick the sched entity that is
7131 * triggering this preemption.
7133 if (!next_buddy_marked)
7134 set_next_buddy(pse);
7143 * Only set the backward buddy when the current task is still
7144 * on the rq. This can happen when a wakeup gets interleaved
7145 * with schedule on the ->pre_schedule() or idle_balance()
7146 * point, either of which can * drop the rq lock.
7148 * Also, during early boot the idle thread is in the fair class,
7149 * for obvious reasons its a bad idea to schedule back to it.
7151 if (unlikely(!se->on_rq || curr == rq->idle))
7154 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7159 static struct task_struct *pick_task_fair(struct rq *rq)
7161 struct sched_entity *se;
7162 struct cfs_rq *cfs_rq;
7166 if (!cfs_rq->nr_running)
7170 struct sched_entity *curr = cfs_rq->curr;
7172 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */
7175 update_curr(cfs_rq);
7179 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
7183 se = pick_next_entity(cfs_rq, curr);
7184 cfs_rq = group_cfs_rq(se);
7191 struct task_struct *
7192 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7194 struct cfs_rq *cfs_rq = &rq->cfs;
7195 struct sched_entity *se;
7196 struct task_struct *p;
7200 if (!sched_fair_runnable(rq))
7203 #ifdef CONFIG_FAIR_GROUP_SCHED
7204 if (!prev || prev->sched_class != &fair_sched_class)
7208 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7209 * likely that a next task is from the same cgroup as the current.
7211 * Therefore attempt to avoid putting and setting the entire cgroup
7212 * hierarchy, only change the part that actually changes.
7216 struct sched_entity *curr = cfs_rq->curr;
7219 * Since we got here without doing put_prev_entity() we also
7220 * have to consider cfs_rq->curr. If it is still a runnable
7221 * entity, update_curr() will update its vruntime, otherwise
7222 * forget we've ever seen it.
7226 update_curr(cfs_rq);
7231 * This call to check_cfs_rq_runtime() will do the
7232 * throttle and dequeue its entity in the parent(s).
7233 * Therefore the nr_running test will indeed
7236 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7239 if (!cfs_rq->nr_running)
7246 se = pick_next_entity(cfs_rq, curr);
7247 cfs_rq = group_cfs_rq(se);
7253 * Since we haven't yet done put_prev_entity and if the selected task
7254 * is a different task than we started out with, try and touch the
7255 * least amount of cfs_rqs.
7258 struct sched_entity *pse = &prev->se;
7260 while (!(cfs_rq = is_same_group(se, pse))) {
7261 int se_depth = se->depth;
7262 int pse_depth = pse->depth;
7264 if (se_depth <= pse_depth) {
7265 put_prev_entity(cfs_rq_of(pse), pse);
7266 pse = parent_entity(pse);
7268 if (se_depth >= pse_depth) {
7269 set_next_entity(cfs_rq_of(se), se);
7270 se = parent_entity(se);
7274 put_prev_entity(cfs_rq, pse);
7275 set_next_entity(cfs_rq, se);
7282 put_prev_task(rq, prev);
7285 se = pick_next_entity(cfs_rq, NULL);
7286 set_next_entity(cfs_rq, se);
7287 cfs_rq = group_cfs_rq(se);
7292 done: __maybe_unused;
7295 * Move the next running task to the front of
7296 * the list, so our cfs_tasks list becomes MRU
7299 list_move(&p->se.group_node, &rq->cfs_tasks);
7302 if (hrtick_enabled_fair(rq))
7303 hrtick_start_fair(rq, p);
7305 update_misfit_status(p, rq);
7313 new_tasks = newidle_balance(rq, rf);
7316 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7317 * possible for any higher priority task to appear. In that case we
7318 * must re-start the pick_next_entity() loop.
7327 * rq is about to be idle, check if we need to update the
7328 * lost_idle_time of clock_pelt
7330 update_idle_rq_clock_pelt(rq);
7335 static struct task_struct *__pick_next_task_fair(struct rq *rq)
7337 return pick_next_task_fair(rq, NULL, NULL);
7341 * Account for a descheduled task:
7343 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7345 struct sched_entity *se = &prev->se;
7346 struct cfs_rq *cfs_rq;
7348 for_each_sched_entity(se) {
7349 cfs_rq = cfs_rq_of(se);
7350 put_prev_entity(cfs_rq, se);
7355 * sched_yield() is very simple
7357 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7359 static void yield_task_fair(struct rq *rq)
7361 struct task_struct *curr = rq->curr;
7362 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7363 struct sched_entity *se = &curr->se;
7366 * Are we the only task in the tree?
7368 if (unlikely(rq->nr_running == 1))
7371 clear_buddies(cfs_rq, se);
7373 if (curr->policy != SCHED_BATCH) {
7374 update_rq_clock(rq);
7376 * Update run-time statistics of the 'current'.
7378 update_curr(cfs_rq);
7380 * Tell update_rq_clock() that we've just updated,
7381 * so we don't do microscopic update in schedule()
7382 * and double the fastpath cost.
7384 rq_clock_skip_update(rq);
7390 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
7392 struct sched_entity *se = &p->se;
7394 /* throttled hierarchies are not runnable */
7395 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7398 /* Tell the scheduler that we'd really like pse to run next. */
7401 yield_task_fair(rq);
7407 /**************************************************
7408 * Fair scheduling class load-balancing methods.
7412 * The purpose of load-balancing is to achieve the same basic fairness the
7413 * per-CPU scheduler provides, namely provide a proportional amount of compute
7414 * time to each task. This is expressed in the following equation:
7416 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7418 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7419 * W_i,0 is defined as:
7421 * W_i,0 = \Sum_j w_i,j (2)
7423 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7424 * is derived from the nice value as per sched_prio_to_weight[].
7426 * The weight average is an exponential decay average of the instantaneous
7429 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7431 * C_i is the compute capacity of CPU i, typically it is the
7432 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7433 * can also include other factors [XXX].
7435 * To achieve this balance we define a measure of imbalance which follows
7436 * directly from (1):
7438 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
7440 * We them move tasks around to minimize the imbalance. In the continuous
7441 * function space it is obvious this converges, in the discrete case we get
7442 * a few fun cases generally called infeasible weight scenarios.
7445 * - infeasible weights;
7446 * - local vs global optima in the discrete case. ]
7451 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7452 * for all i,j solution, we create a tree of CPUs that follows the hardware
7453 * topology where each level pairs two lower groups (or better). This results
7454 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7455 * tree to only the first of the previous level and we decrease the frequency
7456 * of load-balance at each level inv. proportional to the number of CPUs in
7462 * \Sum { --- * --- * 2^i } = O(n) (5)
7464 * `- size of each group
7465 * | | `- number of CPUs doing load-balance
7467 * `- sum over all levels
7469 * Coupled with a limit on how many tasks we can migrate every balance pass,
7470 * this makes (5) the runtime complexity of the balancer.
7472 * An important property here is that each CPU is still (indirectly) connected
7473 * to every other CPU in at most O(log n) steps:
7475 * The adjacency matrix of the resulting graph is given by:
7478 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7481 * And you'll find that:
7483 * A^(log_2 n)_i,j != 0 for all i,j (7)
7485 * Showing there's indeed a path between every CPU in at most O(log n) steps.
7486 * The task movement gives a factor of O(m), giving a convergence complexity
7489 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7494 * In order to avoid CPUs going idle while there's still work to do, new idle
7495 * balancing is more aggressive and has the newly idle CPU iterate up the domain
7496 * tree itself instead of relying on other CPUs to bring it work.
7498 * This adds some complexity to both (5) and (8) but it reduces the total idle
7506 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7509 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7514 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7516 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7518 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7521 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7522 * rewrite all of this once again.]
7525 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7527 enum fbq_type { regular, remote, all };
7530 * 'group_type' describes the group of CPUs at the moment of load balancing.
7532 * The enum is ordered by pulling priority, with the group with lowest priority
7533 * first so the group_type can simply be compared when selecting the busiest
7534 * group. See update_sd_pick_busiest().
7537 /* The group has spare capacity that can be used to run more tasks. */
7538 group_has_spare = 0,
7540 * The group is fully used and the tasks don't compete for more CPU
7541 * cycles. Nevertheless, some tasks might wait before running.
7545 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7546 * and must be migrated to a more powerful CPU.
7550 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7551 * and the task should be migrated to it instead of running on the
7556 * The tasks' affinity constraints previously prevented the scheduler
7557 * from balancing the load across the system.
7561 * The CPU is overloaded and can't provide expected CPU cycles to all
7567 enum migration_type {
7574 #define LBF_ALL_PINNED 0x01
7575 #define LBF_NEED_BREAK 0x02
7576 #define LBF_DST_PINNED 0x04
7577 #define LBF_SOME_PINNED 0x08
7578 #define LBF_ACTIVE_LB 0x10
7581 struct sched_domain *sd;
7589 struct cpumask *dst_grpmask;
7591 enum cpu_idle_type idle;
7593 /* The set of CPUs under consideration for load-balancing */
7594 struct cpumask *cpus;
7599 unsigned int loop_break;
7600 unsigned int loop_max;
7602 enum fbq_type fbq_type;
7603 enum migration_type migration_type;
7604 struct list_head tasks;
7608 * Is this task likely cache-hot:
7610 static int task_hot(struct task_struct *p, struct lb_env *env)
7614 lockdep_assert_rq_held(env->src_rq);
7616 if (p->sched_class != &fair_sched_class)
7619 if (unlikely(task_has_idle_policy(p)))
7622 /* SMT siblings share cache */
7623 if (env->sd->flags & SD_SHARE_CPUCAPACITY)
7627 * Buddy candidates are cache hot:
7629 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7630 (&p->se == cfs_rq_of(&p->se)->next ||
7631 &p->se == cfs_rq_of(&p->se)->last))
7634 if (sysctl_sched_migration_cost == -1)
7638 * Don't migrate task if the task's cookie does not match
7639 * with the destination CPU's core cookie.
7641 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
7644 if (sysctl_sched_migration_cost == 0)
7647 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7649 return delta < (s64)sysctl_sched_migration_cost;
7652 #ifdef CONFIG_NUMA_BALANCING
7654 * Returns 1, if task migration degrades locality
7655 * Returns 0, if task migration improves locality i.e migration preferred.
7656 * Returns -1, if task migration is not affected by locality.
7658 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7660 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7661 unsigned long src_weight, dst_weight;
7662 int src_nid, dst_nid, dist;
7664 if (!static_branch_likely(&sched_numa_balancing))
7667 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7670 src_nid = cpu_to_node(env->src_cpu);
7671 dst_nid = cpu_to_node(env->dst_cpu);
7673 if (src_nid == dst_nid)
7676 /* Migrating away from the preferred node is always bad. */
7677 if (src_nid == p->numa_preferred_nid) {
7678 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7684 /* Encourage migration to the preferred node. */
7685 if (dst_nid == p->numa_preferred_nid)
7688 /* Leaving a core idle is often worse than degrading locality. */
7689 if (env->idle == CPU_IDLE)
7692 dist = node_distance(src_nid, dst_nid);
7694 src_weight = group_weight(p, src_nid, dist);
7695 dst_weight = group_weight(p, dst_nid, dist);
7697 src_weight = task_weight(p, src_nid, dist);
7698 dst_weight = task_weight(p, dst_nid, dist);
7701 return dst_weight < src_weight;
7705 static inline int migrate_degrades_locality(struct task_struct *p,
7713 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7716 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7720 lockdep_assert_rq_held(env->src_rq);
7723 * We do not migrate tasks that are:
7724 * 1) throttled_lb_pair, or
7725 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7726 * 3) running (obviously), or
7727 * 4) are cache-hot on their current CPU.
7729 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7732 /* Disregard pcpu kthreads; they are where they need to be. */
7733 if (kthread_is_per_cpu(p))
7736 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7739 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7741 env->flags |= LBF_SOME_PINNED;
7744 * Remember if this task can be migrated to any other CPU in
7745 * our sched_group. We may want to revisit it if we couldn't
7746 * meet load balance goals by pulling other tasks on src_cpu.
7748 * Avoid computing new_dst_cpu
7750 * - if we have already computed one in current iteration
7751 * - if it's an active balance
7753 if (env->idle == CPU_NEWLY_IDLE ||
7754 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
7757 /* Prevent to re-select dst_cpu via env's CPUs: */
7758 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7759 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7760 env->flags |= LBF_DST_PINNED;
7761 env->new_dst_cpu = cpu;
7769 /* Record that we found at least one task that could run on dst_cpu */
7770 env->flags &= ~LBF_ALL_PINNED;
7772 if (task_running(env->src_rq, p)) {
7773 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7778 * Aggressive migration if:
7780 * 2) destination numa is preferred
7781 * 3) task is cache cold, or
7782 * 4) too many balance attempts have failed.
7784 if (env->flags & LBF_ACTIVE_LB)
7787 tsk_cache_hot = migrate_degrades_locality(p, env);
7788 if (tsk_cache_hot == -1)
7789 tsk_cache_hot = task_hot(p, env);
7791 if (tsk_cache_hot <= 0 ||
7792 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7793 if (tsk_cache_hot == 1) {
7794 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7795 schedstat_inc(p->se.statistics.nr_forced_migrations);
7800 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7805 * detach_task() -- detach the task for the migration specified in env
7807 static void detach_task(struct task_struct *p, struct lb_env *env)
7809 lockdep_assert_rq_held(env->src_rq);
7811 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7812 set_task_cpu(p, env->dst_cpu);
7816 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7817 * part of active balancing operations within "domain".
7819 * Returns a task if successful and NULL otherwise.
7821 static struct task_struct *detach_one_task(struct lb_env *env)
7823 struct task_struct *p;
7825 lockdep_assert_rq_held(env->src_rq);
7827 list_for_each_entry_reverse(p,
7828 &env->src_rq->cfs_tasks, se.group_node) {
7829 if (!can_migrate_task(p, env))
7832 detach_task(p, env);
7835 * Right now, this is only the second place where
7836 * lb_gained[env->idle] is updated (other is detach_tasks)
7837 * so we can safely collect stats here rather than
7838 * inside detach_tasks().
7840 schedstat_inc(env->sd->lb_gained[env->idle]);
7846 static const unsigned int sched_nr_migrate_break = 32;
7849 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
7850 * busiest_rq, as part of a balancing operation within domain "sd".
7852 * Returns number of detached tasks if successful and 0 otherwise.
7854 static int detach_tasks(struct lb_env *env)
7856 struct list_head *tasks = &env->src_rq->cfs_tasks;
7857 unsigned long util, load;
7858 struct task_struct *p;
7861 lockdep_assert_rq_held(env->src_rq);
7864 * Source run queue has been emptied by another CPU, clear
7865 * LBF_ALL_PINNED flag as we will not test any task.
7867 if (env->src_rq->nr_running <= 1) {
7868 env->flags &= ~LBF_ALL_PINNED;
7872 if (env->imbalance <= 0)
7875 while (!list_empty(tasks)) {
7877 * We don't want to steal all, otherwise we may be treated likewise,
7878 * which could at worst lead to a livelock crash.
7880 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7883 p = list_last_entry(tasks, struct task_struct, se.group_node);
7886 /* We've more or less seen every task there is, call it quits */
7887 if (env->loop > env->loop_max)
7890 /* take a breather every nr_migrate tasks */
7891 if (env->loop > env->loop_break) {
7892 env->loop_break += sched_nr_migrate_break;
7893 env->flags |= LBF_NEED_BREAK;
7897 if (!can_migrate_task(p, env))
7900 switch (env->migration_type) {
7903 * Depending of the number of CPUs and tasks and the
7904 * cgroup hierarchy, task_h_load() can return a null
7905 * value. Make sure that env->imbalance decreases
7906 * otherwise detach_tasks() will stop only after
7907 * detaching up to loop_max tasks.
7909 load = max_t(unsigned long, task_h_load(p), 1);
7911 if (sched_feat(LB_MIN) &&
7912 load < 16 && !env->sd->nr_balance_failed)
7916 * Make sure that we don't migrate too much load.
7917 * Nevertheless, let relax the constraint if
7918 * scheduler fails to find a good waiting task to
7921 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
7924 env->imbalance -= load;
7928 util = task_util_est(p);
7930 if (util > env->imbalance)
7933 env->imbalance -= util;
7940 case migrate_misfit:
7941 /* This is not a misfit task */
7942 if (task_fits_capacity(p, capacity_of(env->src_cpu)))
7949 detach_task(p, env);
7950 list_add(&p->se.group_node, &env->tasks);
7954 #ifdef CONFIG_PREEMPTION
7956 * NEWIDLE balancing is a source of latency, so preemptible
7957 * kernels will stop after the first task is detached to minimize
7958 * the critical section.
7960 if (env->idle == CPU_NEWLY_IDLE)
7965 * We only want to steal up to the prescribed amount of
7968 if (env->imbalance <= 0)
7973 list_move(&p->se.group_node, tasks);
7977 * Right now, this is one of only two places we collect this stat
7978 * so we can safely collect detach_one_task() stats here rather
7979 * than inside detach_one_task().
7981 schedstat_add(env->sd->lb_gained[env->idle], detached);
7987 * attach_task() -- attach the task detached by detach_task() to its new rq.
7989 static void attach_task(struct rq *rq, struct task_struct *p)
7991 lockdep_assert_rq_held(rq);
7993 BUG_ON(task_rq(p) != rq);
7994 activate_task(rq, p, ENQUEUE_NOCLOCK);
7995 check_preempt_curr(rq, p, 0);
7999 * attach_one_task() -- attaches the task returned from detach_one_task() to
8002 static void attach_one_task(struct rq *rq, struct task_struct *p)
8007 update_rq_clock(rq);
8013 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
8016 static void attach_tasks(struct lb_env *env)
8018 struct list_head *tasks = &env->tasks;
8019 struct task_struct *p;
8022 rq_lock(env->dst_rq, &rf);
8023 update_rq_clock(env->dst_rq);
8025 while (!list_empty(tasks)) {
8026 p = list_first_entry(tasks, struct task_struct, se.group_node);
8027 list_del_init(&p->se.group_node);
8029 attach_task(env->dst_rq, p);
8032 rq_unlock(env->dst_rq, &rf);
8035 #ifdef CONFIG_NO_HZ_COMMON
8036 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
8038 if (cfs_rq->avg.load_avg)
8041 if (cfs_rq->avg.util_avg)
8047 static inline bool others_have_blocked(struct rq *rq)
8049 if (READ_ONCE(rq->avg_rt.util_avg))
8052 if (READ_ONCE(rq->avg_dl.util_avg))
8055 if (thermal_load_avg(rq))
8058 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
8059 if (READ_ONCE(rq->avg_irq.util_avg))
8066 static inline void update_blocked_load_tick(struct rq *rq)
8068 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
8071 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
8074 rq->has_blocked_load = 0;
8077 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
8078 static inline bool others_have_blocked(struct rq *rq) { return false; }
8079 static inline void update_blocked_load_tick(struct rq *rq) {}
8080 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
8083 static bool __update_blocked_others(struct rq *rq, bool *done)
8085 const struct sched_class *curr_class;
8086 u64 now = rq_clock_pelt(rq);
8087 unsigned long thermal_pressure;
8091 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
8092 * DL and IRQ signals have been updated before updating CFS.
8094 curr_class = rq->curr->sched_class;
8096 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
8098 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
8099 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
8100 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
8101 update_irq_load_avg(rq, 0);
8103 if (others_have_blocked(rq))
8109 #ifdef CONFIG_FAIR_GROUP_SCHED
8111 static bool __update_blocked_fair(struct rq *rq, bool *done)
8113 struct cfs_rq *cfs_rq, *pos;
8114 bool decayed = false;
8115 int cpu = cpu_of(rq);
8118 * Iterates the task_group tree in a bottom up fashion, see
8119 * list_add_leaf_cfs_rq() for details.
8121 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
8122 struct sched_entity *se;
8124 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
8125 update_tg_load_avg(cfs_rq);
8127 if (cfs_rq == &rq->cfs)
8131 /* Propagate pending load changes to the parent, if any: */
8132 se = cfs_rq->tg->se[cpu];
8133 if (se && !skip_blocked_update(se))
8134 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
8137 * There can be a lot of idle CPU cgroups. Don't let fully
8138 * decayed cfs_rqs linger on the list.
8140 if (cfs_rq_is_decayed(cfs_rq))
8141 list_del_leaf_cfs_rq(cfs_rq);
8143 /* Don't need periodic decay once load/util_avg are null */
8144 if (cfs_rq_has_blocked(cfs_rq))
8152 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
8153 * This needs to be done in a top-down fashion because the load of a child
8154 * group is a fraction of its parents load.
8156 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
8158 struct rq *rq = rq_of(cfs_rq);
8159 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
8160 unsigned long now = jiffies;
8163 if (cfs_rq->last_h_load_update == now)
8166 WRITE_ONCE(cfs_rq->h_load_next, NULL);
8167 for_each_sched_entity(se) {
8168 cfs_rq = cfs_rq_of(se);
8169 WRITE_ONCE(cfs_rq->h_load_next, se);
8170 if (cfs_rq->last_h_load_update == now)
8175 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
8176 cfs_rq->last_h_load_update = now;
8179 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
8180 load = cfs_rq->h_load;
8181 load = div64_ul(load * se->avg.load_avg,
8182 cfs_rq_load_avg(cfs_rq) + 1);
8183 cfs_rq = group_cfs_rq(se);
8184 cfs_rq->h_load = load;
8185 cfs_rq->last_h_load_update = now;
8189 static unsigned long task_h_load(struct task_struct *p)
8191 struct cfs_rq *cfs_rq = task_cfs_rq(p);
8193 update_cfs_rq_h_load(cfs_rq);
8194 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
8195 cfs_rq_load_avg(cfs_rq) + 1);
8198 static bool __update_blocked_fair(struct rq *rq, bool *done)
8200 struct cfs_rq *cfs_rq = &rq->cfs;
8203 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8204 if (cfs_rq_has_blocked(cfs_rq))
8210 static unsigned long task_h_load(struct task_struct *p)
8212 return p->se.avg.load_avg;
8216 static void update_blocked_averages(int cpu)
8218 bool decayed = false, done = true;
8219 struct rq *rq = cpu_rq(cpu);
8222 rq_lock_irqsave(rq, &rf);
8223 update_blocked_load_tick(rq);
8224 update_rq_clock(rq);
8226 decayed |= __update_blocked_others(rq, &done);
8227 decayed |= __update_blocked_fair(rq, &done);
8229 update_blocked_load_status(rq, !done);
8231 cpufreq_update_util(rq, 0);
8232 rq_unlock_irqrestore(rq, &rf);
8235 /********** Helpers for find_busiest_group ************************/
8238 * sg_lb_stats - stats of a sched_group required for load_balancing
8240 struct sg_lb_stats {
8241 unsigned long avg_load; /*Avg load across the CPUs of the group */
8242 unsigned long group_load; /* Total load over the CPUs of the group */
8243 unsigned long group_capacity;
8244 unsigned long group_util; /* Total utilization over the CPUs of the group */
8245 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
8246 unsigned int sum_nr_running; /* Nr of tasks running in the group */
8247 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
8248 unsigned int idle_cpus;
8249 unsigned int group_weight;
8250 enum group_type group_type;
8251 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
8252 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
8253 #ifdef CONFIG_NUMA_BALANCING
8254 unsigned int nr_numa_running;
8255 unsigned int nr_preferred_running;
8260 * sd_lb_stats - Structure to store the statistics of a sched_domain
8261 * during load balancing.
8263 struct sd_lb_stats {
8264 struct sched_group *busiest; /* Busiest group in this sd */
8265 struct sched_group *local; /* Local group in this sd */
8266 unsigned long total_load; /* Total load of all groups in sd */
8267 unsigned long total_capacity; /* Total capacity of all groups in sd */
8268 unsigned long avg_load; /* Average load across all groups in sd */
8269 unsigned int prefer_sibling; /* tasks should go to sibling first */
8271 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8272 struct sg_lb_stats local_stat; /* Statistics of the local group */
8275 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8278 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8279 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8280 * We must however set busiest_stat::group_type and
8281 * busiest_stat::idle_cpus to the worst busiest group because
8282 * update_sd_pick_busiest() reads these before assignment.
8284 *sds = (struct sd_lb_stats){
8288 .total_capacity = 0UL,
8290 .idle_cpus = UINT_MAX,
8291 .group_type = group_has_spare,
8296 static unsigned long scale_rt_capacity(int cpu)
8298 struct rq *rq = cpu_rq(cpu);
8299 unsigned long max = arch_scale_cpu_capacity(cpu);
8300 unsigned long used, free;
8303 irq = cpu_util_irq(rq);
8305 if (unlikely(irq >= max))
8309 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8310 * (running and not running) with weights 0 and 1024 respectively.
8311 * avg_thermal.load_avg tracks thermal pressure and the weighted
8312 * average uses the actual delta max capacity(load).
8314 used = READ_ONCE(rq->avg_rt.util_avg);
8315 used += READ_ONCE(rq->avg_dl.util_avg);
8316 used += thermal_load_avg(rq);
8318 if (unlikely(used >= max))
8323 return scale_irq_capacity(free, irq, max);
8326 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8328 unsigned long capacity = scale_rt_capacity(cpu);
8329 struct sched_group *sdg = sd->groups;
8331 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
8336 cpu_rq(cpu)->cpu_capacity = capacity;
8337 trace_sched_cpu_capacity_tp(cpu_rq(cpu));
8339 sdg->sgc->capacity = capacity;
8340 sdg->sgc->min_capacity = capacity;
8341 sdg->sgc->max_capacity = capacity;
8344 void update_group_capacity(struct sched_domain *sd, int cpu)
8346 struct sched_domain *child = sd->child;
8347 struct sched_group *group, *sdg = sd->groups;
8348 unsigned long capacity, min_capacity, max_capacity;
8349 unsigned long interval;
8351 interval = msecs_to_jiffies(sd->balance_interval);
8352 interval = clamp(interval, 1UL, max_load_balance_interval);
8353 sdg->sgc->next_update = jiffies + interval;
8356 update_cpu_capacity(sd, cpu);
8361 min_capacity = ULONG_MAX;
8364 if (child->flags & SD_OVERLAP) {
8366 * SD_OVERLAP domains cannot assume that child groups
8367 * span the current group.
8370 for_each_cpu(cpu, sched_group_span(sdg)) {
8371 unsigned long cpu_cap = capacity_of(cpu);
8373 capacity += cpu_cap;
8374 min_capacity = min(cpu_cap, min_capacity);
8375 max_capacity = max(cpu_cap, max_capacity);
8379 * !SD_OVERLAP domains can assume that child groups
8380 * span the current group.
8383 group = child->groups;
8385 struct sched_group_capacity *sgc = group->sgc;
8387 capacity += sgc->capacity;
8388 min_capacity = min(sgc->min_capacity, min_capacity);
8389 max_capacity = max(sgc->max_capacity, max_capacity);
8390 group = group->next;
8391 } while (group != child->groups);
8394 sdg->sgc->capacity = capacity;
8395 sdg->sgc->min_capacity = min_capacity;
8396 sdg->sgc->max_capacity = max_capacity;
8400 * Check whether the capacity of the rq has been noticeably reduced by side
8401 * activity. The imbalance_pct is used for the threshold.
8402 * Return true is the capacity is reduced
8405 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8407 return ((rq->cpu_capacity * sd->imbalance_pct) <
8408 (rq->cpu_capacity_orig * 100));
8412 * Check whether a rq has a misfit task and if it looks like we can actually
8413 * help that task: we can migrate the task to a CPU of higher capacity, or
8414 * the task's current CPU is heavily pressured.
8416 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8418 return rq->misfit_task_load &&
8419 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8420 check_cpu_capacity(rq, sd));
8424 * Group imbalance indicates (and tries to solve) the problem where balancing
8425 * groups is inadequate due to ->cpus_ptr constraints.
8427 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8428 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8431 * { 0 1 2 3 } { 4 5 6 7 }
8434 * If we were to balance group-wise we'd place two tasks in the first group and
8435 * two tasks in the second group. Clearly this is undesired as it will overload
8436 * cpu 3 and leave one of the CPUs in the second group unused.
8438 * The current solution to this issue is detecting the skew in the first group
8439 * by noticing the lower domain failed to reach balance and had difficulty
8440 * moving tasks due to affinity constraints.
8442 * When this is so detected; this group becomes a candidate for busiest; see
8443 * update_sd_pick_busiest(). And calculate_imbalance() and
8444 * find_busiest_group() avoid some of the usual balance conditions to allow it
8445 * to create an effective group imbalance.
8447 * This is a somewhat tricky proposition since the next run might not find the
8448 * group imbalance and decide the groups need to be balanced again. A most
8449 * subtle and fragile situation.
8452 static inline int sg_imbalanced(struct sched_group *group)
8454 return group->sgc->imbalance;
8458 * group_has_capacity returns true if the group has spare capacity that could
8459 * be used by some tasks.
8460 * We consider that a group has spare capacity if the * number of task is
8461 * smaller than the number of CPUs or if the utilization is lower than the
8462 * available capacity for CFS tasks.
8463 * For the latter, we use a threshold to stabilize the state, to take into
8464 * account the variance of the tasks' load and to return true if the available
8465 * capacity in meaningful for the load balancer.
8466 * As an example, an available capacity of 1% can appear but it doesn't make
8467 * any benefit for the load balance.
8470 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8472 if (sgs->sum_nr_running < sgs->group_weight)
8475 if ((sgs->group_capacity * imbalance_pct) <
8476 (sgs->group_runnable * 100))
8479 if ((sgs->group_capacity * 100) >
8480 (sgs->group_util * imbalance_pct))
8487 * group_is_overloaded returns true if the group has more tasks than it can
8489 * group_is_overloaded is not equals to !group_has_capacity because a group
8490 * with the exact right number of tasks, has no more spare capacity but is not
8491 * overloaded so both group_has_capacity and group_is_overloaded return
8495 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8497 if (sgs->sum_nr_running <= sgs->group_weight)
8500 if ((sgs->group_capacity * 100) <
8501 (sgs->group_util * imbalance_pct))
8504 if ((sgs->group_capacity * imbalance_pct) <
8505 (sgs->group_runnable * 100))
8512 group_type group_classify(unsigned int imbalance_pct,
8513 struct sched_group *group,
8514 struct sg_lb_stats *sgs)
8516 if (group_is_overloaded(imbalance_pct, sgs))
8517 return group_overloaded;
8519 if (sg_imbalanced(group))
8520 return group_imbalanced;
8522 if (sgs->group_asym_packing)
8523 return group_asym_packing;
8525 if (sgs->group_misfit_task_load)
8526 return group_misfit_task;
8528 if (!group_has_capacity(imbalance_pct, sgs))
8529 return group_fully_busy;
8531 return group_has_spare;
8535 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8536 * @env: The load balancing environment.
8537 * @group: sched_group whose statistics are to be updated.
8538 * @sgs: variable to hold the statistics for this group.
8539 * @sg_status: Holds flag indicating the status of the sched_group
8541 static inline void update_sg_lb_stats(struct lb_env *env,
8542 struct sched_group *group,
8543 struct sg_lb_stats *sgs,
8546 int i, nr_running, local_group;
8548 memset(sgs, 0, sizeof(*sgs));
8550 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8552 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8553 struct rq *rq = cpu_rq(i);
8555 sgs->group_load += cpu_load(rq);
8556 sgs->group_util += cpu_util(i);
8557 sgs->group_runnable += cpu_runnable(rq);
8558 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
8560 nr_running = rq->nr_running;
8561 sgs->sum_nr_running += nr_running;
8564 *sg_status |= SG_OVERLOAD;
8566 if (cpu_overutilized(i))
8567 *sg_status |= SG_OVERUTILIZED;
8569 #ifdef CONFIG_NUMA_BALANCING
8570 sgs->nr_numa_running += rq->nr_numa_running;
8571 sgs->nr_preferred_running += rq->nr_preferred_running;
8574 * No need to call idle_cpu() if nr_running is not 0
8576 if (!nr_running && idle_cpu(i)) {
8578 /* Idle cpu can't have misfit task */
8585 /* Check for a misfit task on the cpu */
8586 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8587 sgs->group_misfit_task_load < rq->misfit_task_load) {
8588 sgs->group_misfit_task_load = rq->misfit_task_load;
8589 *sg_status |= SG_OVERLOAD;
8593 /* Check if dst CPU is idle and preferred to this group */
8594 if (env->sd->flags & SD_ASYM_PACKING &&
8595 env->idle != CPU_NOT_IDLE &&
8596 sgs->sum_h_nr_running &&
8597 sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
8598 sgs->group_asym_packing = 1;
8601 sgs->group_capacity = group->sgc->capacity;
8603 sgs->group_weight = group->group_weight;
8605 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
8607 /* Computing avg_load makes sense only when group is overloaded */
8608 if (sgs->group_type == group_overloaded)
8609 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8610 sgs->group_capacity;
8614 * update_sd_pick_busiest - return 1 on busiest group
8615 * @env: The load balancing environment.
8616 * @sds: sched_domain statistics
8617 * @sg: sched_group candidate to be checked for being the busiest
8618 * @sgs: sched_group statistics
8620 * Determine if @sg is a busier group than the previously selected
8623 * Return: %true if @sg is a busier group than the previously selected
8624 * busiest group. %false otherwise.
8626 static bool update_sd_pick_busiest(struct lb_env *env,
8627 struct sd_lb_stats *sds,
8628 struct sched_group *sg,
8629 struct sg_lb_stats *sgs)
8631 struct sg_lb_stats *busiest = &sds->busiest_stat;
8633 /* Make sure that there is at least one task to pull */
8634 if (!sgs->sum_h_nr_running)
8638 * Don't try to pull misfit tasks we can't help.
8639 * We can use max_capacity here as reduction in capacity on some
8640 * CPUs in the group should either be possible to resolve
8641 * internally or be covered by avg_load imbalance (eventually).
8643 if (sgs->group_type == group_misfit_task &&
8644 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
8645 sds->local_stat.group_type != group_has_spare))
8648 if (sgs->group_type > busiest->group_type)
8651 if (sgs->group_type < busiest->group_type)
8655 * The candidate and the current busiest group are the same type of
8656 * group. Let check which one is the busiest according to the type.
8659 switch (sgs->group_type) {
8660 case group_overloaded:
8661 /* Select the overloaded group with highest avg_load. */
8662 if (sgs->avg_load <= busiest->avg_load)
8666 case group_imbalanced:
8668 * Select the 1st imbalanced group as we don't have any way to
8669 * choose one more than another.
8673 case group_asym_packing:
8674 /* Prefer to move from lowest priority CPU's work */
8675 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8679 case group_misfit_task:
8681 * If we have more than one misfit sg go with the biggest
8684 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8688 case group_fully_busy:
8690 * Select the fully busy group with highest avg_load. In
8691 * theory, there is no need to pull task from such kind of
8692 * group because tasks have all compute capacity that they need
8693 * but we can still improve the overall throughput by reducing
8694 * contention when accessing shared HW resources.
8696 * XXX for now avg_load is not computed and always 0 so we
8697 * select the 1st one.
8699 if (sgs->avg_load <= busiest->avg_load)
8703 case group_has_spare:
8705 * Select not overloaded group with lowest number of idle cpus
8706 * and highest number of running tasks. We could also compare
8707 * the spare capacity which is more stable but it can end up
8708 * that the group has less spare capacity but finally more idle
8709 * CPUs which means less opportunity to pull tasks.
8711 if (sgs->idle_cpus > busiest->idle_cpus)
8713 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8714 (sgs->sum_nr_running <= busiest->sum_nr_running))
8721 * Candidate sg has no more than one task per CPU and has higher
8722 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8723 * throughput. Maximize throughput, power/energy consequences are not
8726 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8727 (sgs->group_type <= group_fully_busy) &&
8728 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
8734 #ifdef CONFIG_NUMA_BALANCING
8735 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8737 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
8739 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
8744 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8746 if (rq->nr_running > rq->nr_numa_running)
8748 if (rq->nr_running > rq->nr_preferred_running)
8753 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8758 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8762 #endif /* CONFIG_NUMA_BALANCING */
8768 * task_running_on_cpu - return 1 if @p is running on @cpu.
8771 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8773 /* Task has no contribution or is new */
8774 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8777 if (task_on_rq_queued(p))
8784 * idle_cpu_without - would a given CPU be idle without p ?
8785 * @cpu: the processor on which idleness is tested.
8786 * @p: task which should be ignored.
8788 * Return: 1 if the CPU would be idle. 0 otherwise.
8790 static int idle_cpu_without(int cpu, struct task_struct *p)
8792 struct rq *rq = cpu_rq(cpu);
8794 if (rq->curr != rq->idle && rq->curr != p)
8798 * rq->nr_running can't be used but an updated version without the
8799 * impact of p on cpu must be used instead. The updated nr_running
8800 * be computed and tested before calling idle_cpu_without().
8804 if (rq->ttwu_pending)
8812 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
8813 * @sd: The sched_domain level to look for idlest group.
8814 * @group: sched_group whose statistics are to be updated.
8815 * @sgs: variable to hold the statistics for this group.
8816 * @p: The task for which we look for the idlest group/CPU.
8818 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8819 struct sched_group *group,
8820 struct sg_lb_stats *sgs,
8821 struct task_struct *p)
8825 memset(sgs, 0, sizeof(*sgs));
8827 for_each_cpu(i, sched_group_span(group)) {
8828 struct rq *rq = cpu_rq(i);
8831 sgs->group_load += cpu_load_without(rq, p);
8832 sgs->group_util += cpu_util_without(i, p);
8833 sgs->group_runnable += cpu_runnable_without(rq, p);
8834 local = task_running_on_cpu(i, p);
8835 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
8837 nr_running = rq->nr_running - local;
8838 sgs->sum_nr_running += nr_running;
8841 * No need to call idle_cpu_without() if nr_running is not 0
8843 if (!nr_running && idle_cpu_without(i, p))
8848 /* Check if task fits in the group */
8849 if (sd->flags & SD_ASYM_CPUCAPACITY &&
8850 !task_fits_capacity(p, group->sgc->max_capacity)) {
8851 sgs->group_misfit_task_load = 1;
8854 sgs->group_capacity = group->sgc->capacity;
8856 sgs->group_weight = group->group_weight;
8858 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8861 * Computing avg_load makes sense only when group is fully busy or
8864 if (sgs->group_type == group_fully_busy ||
8865 sgs->group_type == group_overloaded)
8866 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8867 sgs->group_capacity;
8870 static bool update_pick_idlest(struct sched_group *idlest,
8871 struct sg_lb_stats *idlest_sgs,
8872 struct sched_group *group,
8873 struct sg_lb_stats *sgs)
8875 if (sgs->group_type < idlest_sgs->group_type)
8878 if (sgs->group_type > idlest_sgs->group_type)
8882 * The candidate and the current idlest group are the same type of
8883 * group. Let check which one is the idlest according to the type.
8886 switch (sgs->group_type) {
8887 case group_overloaded:
8888 case group_fully_busy:
8889 /* Select the group with lowest avg_load. */
8890 if (idlest_sgs->avg_load <= sgs->avg_load)
8894 case group_imbalanced:
8895 case group_asym_packing:
8896 /* Those types are not used in the slow wakeup path */
8899 case group_misfit_task:
8900 /* Select group with the highest max capacity */
8901 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
8905 case group_has_spare:
8906 /* Select group with most idle CPUs */
8907 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
8910 /* Select group with lowest group_util */
8911 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
8912 idlest_sgs->group_util <= sgs->group_util)
8922 * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain.
8923 * This is an approximation as the number of running tasks may not be
8924 * related to the number of busy CPUs due to sched_setaffinity.
8926 static inline bool allow_numa_imbalance(int dst_running, int dst_weight)
8928 return (dst_running < (dst_weight >> 2));
8932 * find_idlest_group() finds and returns the least busy CPU group within the
8935 * Assumes p is allowed on at least one CPU in sd.
8937 static struct sched_group *
8938 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
8940 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
8941 struct sg_lb_stats local_sgs, tmp_sgs;
8942 struct sg_lb_stats *sgs;
8943 unsigned long imbalance;
8944 struct sg_lb_stats idlest_sgs = {
8945 .avg_load = UINT_MAX,
8946 .group_type = group_overloaded,
8952 /* Skip over this group if it has no CPUs allowed */
8953 if (!cpumask_intersects(sched_group_span(group),
8957 /* Skip over this group if no cookie matched */
8958 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
8961 local_group = cpumask_test_cpu(this_cpu,
8962 sched_group_span(group));
8971 update_sg_wakeup_stats(sd, group, sgs, p);
8973 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
8978 } while (group = group->next, group != sd->groups);
8981 /* There is no idlest group to push tasks to */
8985 /* The local group has been skipped because of CPU affinity */
8990 * If the local group is idler than the selected idlest group
8991 * don't try and push the task.
8993 if (local_sgs.group_type < idlest_sgs.group_type)
8997 * If the local group is busier than the selected idlest group
8998 * try and push the task.
9000 if (local_sgs.group_type > idlest_sgs.group_type)
9003 switch (local_sgs.group_type) {
9004 case group_overloaded:
9005 case group_fully_busy:
9007 /* Calculate allowed imbalance based on load */
9008 imbalance = scale_load_down(NICE_0_LOAD) *
9009 (sd->imbalance_pct-100) / 100;
9012 * When comparing groups across NUMA domains, it's possible for
9013 * the local domain to be very lightly loaded relative to the
9014 * remote domains but "imbalance" skews the comparison making
9015 * remote CPUs look much more favourable. When considering
9016 * cross-domain, add imbalance to the load on the remote node
9017 * and consider staying local.
9020 if ((sd->flags & SD_NUMA) &&
9021 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
9025 * If the local group is less loaded than the selected
9026 * idlest group don't try and push any tasks.
9028 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
9031 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
9035 case group_imbalanced:
9036 case group_asym_packing:
9037 /* Those type are not used in the slow wakeup path */
9040 case group_misfit_task:
9041 /* Select group with the highest max capacity */
9042 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
9046 case group_has_spare:
9047 if (sd->flags & SD_NUMA) {
9048 #ifdef CONFIG_NUMA_BALANCING
9051 * If there is spare capacity at NUMA, try to select
9052 * the preferred node
9054 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
9057 idlest_cpu = cpumask_first(sched_group_span(idlest));
9058 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
9062 * Otherwise, keep the task on this node to stay close
9063 * its wakeup source and improve locality. If there is
9064 * a real need of migration, periodic load balance will
9067 if (allow_numa_imbalance(local_sgs.sum_nr_running, sd->span_weight))
9072 * Select group with highest number of idle CPUs. We could also
9073 * compare the utilization which is more stable but it can end
9074 * up that the group has less spare capacity but finally more
9075 * idle CPUs which means more opportunity to run task.
9077 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
9086 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
9087 * @env: The load balancing environment.
9088 * @sds: variable to hold the statistics for this sched_domain.
9091 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
9093 struct sched_domain *child = env->sd->child;
9094 struct sched_group *sg = env->sd->groups;
9095 struct sg_lb_stats *local = &sds->local_stat;
9096 struct sg_lb_stats tmp_sgs;
9100 struct sg_lb_stats *sgs = &tmp_sgs;
9103 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
9108 if (env->idle != CPU_NEWLY_IDLE ||
9109 time_after_eq(jiffies, sg->sgc->next_update))
9110 update_group_capacity(env->sd, env->dst_cpu);
9113 update_sg_lb_stats(env, sg, sgs, &sg_status);
9119 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
9121 sds->busiest_stat = *sgs;
9125 /* Now, start updating sd_lb_stats */
9126 sds->total_load += sgs->group_load;
9127 sds->total_capacity += sgs->group_capacity;
9130 } while (sg != env->sd->groups);
9132 /* Tag domain that child domain prefers tasks go to siblings first */
9133 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
9136 if (env->sd->flags & SD_NUMA)
9137 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
9139 if (!env->sd->parent) {
9140 struct root_domain *rd = env->dst_rq->rd;
9142 /* update overload indicator if we are at root domain */
9143 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
9145 /* Update over-utilization (tipping point, U >= 0) indicator */
9146 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
9147 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
9148 } else if (sg_status & SG_OVERUTILIZED) {
9149 struct root_domain *rd = env->dst_rq->rd;
9151 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
9152 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
9156 #define NUMA_IMBALANCE_MIN 2
9158 static inline long adjust_numa_imbalance(int imbalance,
9159 int dst_running, int dst_weight)
9161 if (!allow_numa_imbalance(dst_running, dst_weight))
9165 * Allow a small imbalance based on a simple pair of communicating
9166 * tasks that remain local when the destination is lightly loaded.
9168 if (imbalance <= NUMA_IMBALANCE_MIN)
9175 * calculate_imbalance - Calculate the amount of imbalance present within the
9176 * groups of a given sched_domain during load balance.
9177 * @env: load balance environment
9178 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
9180 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
9182 struct sg_lb_stats *local, *busiest;
9184 local = &sds->local_stat;
9185 busiest = &sds->busiest_stat;
9187 if (busiest->group_type == group_misfit_task) {
9188 /* Set imbalance to allow misfit tasks to be balanced. */
9189 env->migration_type = migrate_misfit;
9194 if (busiest->group_type == group_asym_packing) {
9196 * In case of asym capacity, we will try to migrate all load to
9197 * the preferred CPU.
9199 env->migration_type = migrate_task;
9200 env->imbalance = busiest->sum_h_nr_running;
9204 if (busiest->group_type == group_imbalanced) {
9206 * In the group_imb case we cannot rely on group-wide averages
9207 * to ensure CPU-load equilibrium, try to move any task to fix
9208 * the imbalance. The next load balance will take care of
9209 * balancing back the system.
9211 env->migration_type = migrate_task;
9217 * Try to use spare capacity of local group without overloading it or
9220 if (local->group_type == group_has_spare) {
9221 if ((busiest->group_type > group_fully_busy) &&
9222 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
9224 * If busiest is overloaded, try to fill spare
9225 * capacity. This might end up creating spare capacity
9226 * in busiest or busiest still being overloaded but
9227 * there is no simple way to directly compute the
9228 * amount of load to migrate in order to balance the
9231 env->migration_type = migrate_util;
9232 env->imbalance = max(local->group_capacity, local->group_util) -
9236 * In some cases, the group's utilization is max or even
9237 * higher than capacity because of migrations but the
9238 * local CPU is (newly) idle. There is at least one
9239 * waiting task in this overloaded busiest group. Let's
9242 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9243 env->migration_type = migrate_task;
9250 if (busiest->group_weight == 1 || sds->prefer_sibling) {
9251 unsigned int nr_diff = busiest->sum_nr_running;
9253 * When prefer sibling, evenly spread running tasks on
9256 env->migration_type = migrate_task;
9257 lsub_positive(&nr_diff, local->sum_nr_running);
9258 env->imbalance = nr_diff >> 1;
9262 * If there is no overload, we just want to even the number of
9265 env->migration_type = migrate_task;
9266 env->imbalance = max_t(long, 0, (local->idle_cpus -
9267 busiest->idle_cpus) >> 1);
9270 /* Consider allowing a small imbalance between NUMA groups */
9271 if (env->sd->flags & SD_NUMA) {
9272 env->imbalance = adjust_numa_imbalance(env->imbalance,
9273 busiest->sum_nr_running, busiest->group_weight);
9280 * Local is fully busy but has to take more load to relieve the
9283 if (local->group_type < group_overloaded) {
9285 * Local will become overloaded so the avg_load metrics are
9289 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9290 local->group_capacity;
9292 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9293 sds->total_capacity;
9295 * If the local group is more loaded than the selected
9296 * busiest group don't try to pull any tasks.
9298 if (local->avg_load >= busiest->avg_load) {
9305 * Both group are or will become overloaded and we're trying to get all
9306 * the CPUs to the average_load, so we don't want to push ourselves
9307 * above the average load, nor do we wish to reduce the max loaded CPU
9308 * below the average load. At the same time, we also don't want to
9309 * reduce the group load below the group capacity. Thus we look for
9310 * the minimum possible imbalance.
9312 env->migration_type = migrate_load;
9313 env->imbalance = min(
9314 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
9315 (sds->avg_load - local->avg_load) * local->group_capacity
9316 ) / SCHED_CAPACITY_SCALE;
9319 /******* find_busiest_group() helpers end here *********************/
9322 * Decision matrix according to the local and busiest group type:
9324 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9325 * has_spare nr_idle balanced N/A N/A balanced balanced
9326 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
9327 * misfit_task force N/A N/A N/A force force
9328 * asym_packing force force N/A N/A force force
9329 * imbalanced force force N/A N/A force force
9330 * overloaded force force N/A N/A force avg_load
9332 * N/A : Not Applicable because already filtered while updating
9334 * balanced : The system is balanced for these 2 groups.
9335 * force : Calculate the imbalance as load migration is probably needed.
9336 * avg_load : Only if imbalance is significant enough.
9337 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
9338 * different in groups.
9342 * find_busiest_group - Returns the busiest group within the sched_domain
9343 * if there is an imbalance.
9345 * Also calculates the amount of runnable load which should be moved
9346 * to restore balance.
9348 * @env: The load balancing environment.
9350 * Return: - The busiest group if imbalance exists.
9352 static struct sched_group *find_busiest_group(struct lb_env *env)
9354 struct sg_lb_stats *local, *busiest;
9355 struct sd_lb_stats sds;
9357 init_sd_lb_stats(&sds);
9360 * Compute the various statistics relevant for load balancing at
9363 update_sd_lb_stats(env, &sds);
9365 if (sched_energy_enabled()) {
9366 struct root_domain *rd = env->dst_rq->rd;
9368 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9372 local = &sds.local_stat;
9373 busiest = &sds.busiest_stat;
9375 /* There is no busy sibling group to pull tasks from */
9379 /* Misfit tasks should be dealt with regardless of the avg load */
9380 if (busiest->group_type == group_misfit_task)
9383 /* ASYM feature bypasses nice load balance check */
9384 if (busiest->group_type == group_asym_packing)
9388 * If the busiest group is imbalanced the below checks don't
9389 * work because they assume all things are equal, which typically
9390 * isn't true due to cpus_ptr constraints and the like.
9392 if (busiest->group_type == group_imbalanced)
9396 * If the local group is busier than the selected busiest group
9397 * don't try and pull any tasks.
9399 if (local->group_type > busiest->group_type)
9403 * When groups are overloaded, use the avg_load to ensure fairness
9406 if (local->group_type == group_overloaded) {
9408 * If the local group is more loaded than the selected
9409 * busiest group don't try to pull any tasks.
9411 if (local->avg_load >= busiest->avg_load)
9414 /* XXX broken for overlapping NUMA groups */
9415 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9419 * Don't pull any tasks if this group is already above the
9420 * domain average load.
9422 if (local->avg_load >= sds.avg_load)
9426 * If the busiest group is more loaded, use imbalance_pct to be
9429 if (100 * busiest->avg_load <=
9430 env->sd->imbalance_pct * local->avg_load)
9434 /* Try to move all excess tasks to child's sibling domain */
9435 if (sds.prefer_sibling && local->group_type == group_has_spare &&
9436 busiest->sum_nr_running > local->sum_nr_running + 1)
9439 if (busiest->group_type != group_overloaded) {
9440 if (env->idle == CPU_NOT_IDLE)
9442 * If the busiest group is not overloaded (and as a
9443 * result the local one too) but this CPU is already
9444 * busy, let another idle CPU try to pull task.
9448 if (busiest->group_weight > 1 &&
9449 local->idle_cpus <= (busiest->idle_cpus + 1))
9451 * If the busiest group is not overloaded
9452 * and there is no imbalance between this and busiest
9453 * group wrt idle CPUs, it is balanced. The imbalance
9454 * becomes significant if the diff is greater than 1
9455 * otherwise we might end up to just move the imbalance
9456 * on another group. Of course this applies only if
9457 * there is more than 1 CPU per group.
9461 if (busiest->sum_h_nr_running == 1)
9463 * busiest doesn't have any tasks waiting to run
9469 /* Looks like there is an imbalance. Compute it */
9470 calculate_imbalance(env, &sds);
9471 return env->imbalance ? sds.busiest : NULL;
9479 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
9481 static struct rq *find_busiest_queue(struct lb_env *env,
9482 struct sched_group *group)
9484 struct rq *busiest = NULL, *rq;
9485 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9486 unsigned int busiest_nr = 0;
9489 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9490 unsigned long capacity, load, util;
9491 unsigned int nr_running;
9495 rt = fbq_classify_rq(rq);
9498 * We classify groups/runqueues into three groups:
9499 * - regular: there are !numa tasks
9500 * - remote: there are numa tasks that run on the 'wrong' node
9501 * - all: there is no distinction
9503 * In order to avoid migrating ideally placed numa tasks,
9504 * ignore those when there's better options.
9506 * If we ignore the actual busiest queue to migrate another
9507 * task, the next balance pass can still reduce the busiest
9508 * queue by moving tasks around inside the node.
9510 * If we cannot move enough load due to this classification
9511 * the next pass will adjust the group classification and
9512 * allow migration of more tasks.
9514 * Both cases only affect the total convergence complexity.
9516 if (rt > env->fbq_type)
9519 nr_running = rq->cfs.h_nr_running;
9523 capacity = capacity_of(i);
9526 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9527 * eventually lead to active_balancing high->low capacity.
9528 * Higher per-CPU capacity is considered better than balancing
9531 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9532 !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
9536 switch (env->migration_type) {
9539 * When comparing with load imbalance, use cpu_load()
9540 * which is not scaled with the CPU capacity.
9542 load = cpu_load(rq);
9544 if (nr_running == 1 && load > env->imbalance &&
9545 !check_cpu_capacity(rq, env->sd))
9549 * For the load comparisons with the other CPUs,
9550 * consider the cpu_load() scaled with the CPU
9551 * capacity, so that the load can be moved away
9552 * from the CPU that is potentially running at a
9555 * Thus we're looking for max(load_i / capacity_i),
9556 * crosswise multiplication to rid ourselves of the
9557 * division works out to:
9558 * load_i * capacity_j > load_j * capacity_i;
9559 * where j is our previous maximum.
9561 if (load * busiest_capacity > busiest_load * capacity) {
9562 busiest_load = load;
9563 busiest_capacity = capacity;
9569 util = cpu_util(cpu_of(rq));
9572 * Don't try to pull utilization from a CPU with one
9573 * running task. Whatever its utilization, we will fail
9576 if (nr_running <= 1)
9579 if (busiest_util < util) {
9580 busiest_util = util;
9586 if (busiest_nr < nr_running) {
9587 busiest_nr = nr_running;
9592 case migrate_misfit:
9594 * For ASYM_CPUCAPACITY domains with misfit tasks we
9595 * simply seek the "biggest" misfit task.
9597 if (rq->misfit_task_load > busiest_load) {
9598 busiest_load = rq->misfit_task_load;
9611 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9612 * so long as it is large enough.
9614 #define MAX_PINNED_INTERVAL 512
9617 asym_active_balance(struct lb_env *env)
9620 * ASYM_PACKING needs to force migrate tasks from busy but
9621 * lower priority CPUs in order to pack all tasks in the
9622 * highest priority CPUs.
9624 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9625 sched_asym_prefer(env->dst_cpu, env->src_cpu);
9629 imbalanced_active_balance(struct lb_env *env)
9631 struct sched_domain *sd = env->sd;
9634 * The imbalanced case includes the case of pinned tasks preventing a fair
9635 * distribution of the load on the system but also the even distribution of the
9636 * threads on a system with spare capacity
9638 if ((env->migration_type == migrate_task) &&
9639 (sd->nr_balance_failed > sd->cache_nice_tries+2))
9645 static int need_active_balance(struct lb_env *env)
9647 struct sched_domain *sd = env->sd;
9649 if (asym_active_balance(env))
9652 if (imbalanced_active_balance(env))
9656 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9657 * It's worth migrating the task if the src_cpu's capacity is reduced
9658 * because of other sched_class or IRQs if more capacity stays
9659 * available on dst_cpu.
9661 if ((env->idle != CPU_NOT_IDLE) &&
9662 (env->src_rq->cfs.h_nr_running == 1)) {
9663 if ((check_cpu_capacity(env->src_rq, sd)) &&
9664 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9668 if (env->migration_type == migrate_misfit)
9674 static int active_load_balance_cpu_stop(void *data);
9676 static int should_we_balance(struct lb_env *env)
9678 struct sched_group *sg = env->sd->groups;
9682 * Ensure the balancing environment is consistent; can happen
9683 * when the softirq triggers 'during' hotplug.
9685 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9689 * In the newly idle case, we will allow all the CPUs
9690 * to do the newly idle load balance.
9692 if (env->idle == CPU_NEWLY_IDLE)
9695 /* Try to find first idle CPU */
9696 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
9700 /* Are we the first idle CPU? */
9701 return cpu == env->dst_cpu;
9704 /* Are we the first CPU of this group ? */
9705 return group_balance_cpu(sg) == env->dst_cpu;
9709 * Check this_cpu to ensure it is balanced within domain. Attempt to move
9710 * tasks if there is an imbalance.
9712 static int load_balance(int this_cpu, struct rq *this_rq,
9713 struct sched_domain *sd, enum cpu_idle_type idle,
9714 int *continue_balancing)
9716 int ld_moved, cur_ld_moved, active_balance = 0;
9717 struct sched_domain *sd_parent = sd->parent;
9718 struct sched_group *group;
9721 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
9723 struct lb_env env = {
9725 .dst_cpu = this_cpu,
9727 .dst_grpmask = sched_group_span(sd->groups),
9729 .loop_break = sched_nr_migrate_break,
9732 .tasks = LIST_HEAD_INIT(env.tasks),
9735 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
9737 schedstat_inc(sd->lb_count[idle]);
9740 if (!should_we_balance(&env)) {
9741 *continue_balancing = 0;
9745 group = find_busiest_group(&env);
9747 schedstat_inc(sd->lb_nobusyg[idle]);
9751 busiest = find_busiest_queue(&env, group);
9753 schedstat_inc(sd->lb_nobusyq[idle]);
9757 BUG_ON(busiest == env.dst_rq);
9759 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
9761 env.src_cpu = busiest->cpu;
9762 env.src_rq = busiest;
9765 /* Clear this flag as soon as we find a pullable task */
9766 env.flags |= LBF_ALL_PINNED;
9767 if (busiest->nr_running > 1) {
9769 * Attempt to move tasks. If find_busiest_group has found
9770 * an imbalance but busiest->nr_running <= 1, the group is
9771 * still unbalanced. ld_moved simply stays zero, so it is
9772 * correctly treated as an imbalance.
9774 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
9777 rq_lock_irqsave(busiest, &rf);
9778 update_rq_clock(busiest);
9781 * cur_ld_moved - load moved in current iteration
9782 * ld_moved - cumulative load moved across iterations
9784 cur_ld_moved = detach_tasks(&env);
9787 * We've detached some tasks from busiest_rq. Every
9788 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9789 * unlock busiest->lock, and we are able to be sure
9790 * that nobody can manipulate the tasks in parallel.
9791 * See task_rq_lock() family for the details.
9794 rq_unlock(busiest, &rf);
9798 ld_moved += cur_ld_moved;
9801 local_irq_restore(rf.flags);
9803 if (env.flags & LBF_NEED_BREAK) {
9804 env.flags &= ~LBF_NEED_BREAK;
9809 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9810 * us and move them to an alternate dst_cpu in our sched_group
9811 * where they can run. The upper limit on how many times we
9812 * iterate on same src_cpu is dependent on number of CPUs in our
9815 * This changes load balance semantics a bit on who can move
9816 * load to a given_cpu. In addition to the given_cpu itself
9817 * (or a ilb_cpu acting on its behalf where given_cpu is
9818 * nohz-idle), we now have balance_cpu in a position to move
9819 * load to given_cpu. In rare situations, this may cause
9820 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9821 * _independently_ and at _same_ time to move some load to
9822 * given_cpu) causing excess load to be moved to given_cpu.
9823 * This however should not happen so much in practice and
9824 * moreover subsequent load balance cycles should correct the
9825 * excess load moved.
9827 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
9829 /* Prevent to re-select dst_cpu via env's CPUs */
9830 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
9832 env.dst_rq = cpu_rq(env.new_dst_cpu);
9833 env.dst_cpu = env.new_dst_cpu;
9834 env.flags &= ~LBF_DST_PINNED;
9836 env.loop_break = sched_nr_migrate_break;
9839 * Go back to "more_balance" rather than "redo" since we
9840 * need to continue with same src_cpu.
9846 * We failed to reach balance because of affinity.
9849 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9851 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
9852 *group_imbalance = 1;
9855 /* All tasks on this runqueue were pinned by CPU affinity */
9856 if (unlikely(env.flags & LBF_ALL_PINNED)) {
9857 __cpumask_clear_cpu(cpu_of(busiest), cpus);
9859 * Attempting to continue load balancing at the current
9860 * sched_domain level only makes sense if there are
9861 * active CPUs remaining as possible busiest CPUs to
9862 * pull load from which are not contained within the
9863 * destination group that is receiving any migrated
9866 if (!cpumask_subset(cpus, env.dst_grpmask)) {
9868 env.loop_break = sched_nr_migrate_break;
9871 goto out_all_pinned;
9876 schedstat_inc(sd->lb_failed[idle]);
9878 * Increment the failure counter only on periodic balance.
9879 * We do not want newidle balance, which can be very
9880 * frequent, pollute the failure counter causing
9881 * excessive cache_hot migrations and active balances.
9883 if (idle != CPU_NEWLY_IDLE)
9884 sd->nr_balance_failed++;
9886 if (need_active_balance(&env)) {
9887 unsigned long flags;
9889 raw_spin_rq_lock_irqsave(busiest, flags);
9892 * Don't kick the active_load_balance_cpu_stop,
9893 * if the curr task on busiest CPU can't be
9894 * moved to this_cpu:
9896 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
9897 raw_spin_rq_unlock_irqrestore(busiest, flags);
9898 goto out_one_pinned;
9901 /* Record that we found at least one task that could run on this_cpu */
9902 env.flags &= ~LBF_ALL_PINNED;
9905 * ->active_balance synchronizes accesses to
9906 * ->active_balance_work. Once set, it's cleared
9907 * only after active load balance is finished.
9909 if (!busiest->active_balance) {
9910 busiest->active_balance = 1;
9911 busiest->push_cpu = this_cpu;
9914 raw_spin_rq_unlock_irqrestore(busiest, flags);
9916 if (active_balance) {
9917 stop_one_cpu_nowait(cpu_of(busiest),
9918 active_load_balance_cpu_stop, busiest,
9919 &busiest->active_balance_work);
9923 sd->nr_balance_failed = 0;
9926 if (likely(!active_balance) || need_active_balance(&env)) {
9927 /* We were unbalanced, so reset the balancing interval */
9928 sd->balance_interval = sd->min_interval;
9935 * We reach balance although we may have faced some affinity
9936 * constraints. Clear the imbalance flag only if other tasks got
9937 * a chance to move and fix the imbalance.
9939 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
9940 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9942 if (*group_imbalance)
9943 *group_imbalance = 0;
9948 * We reach balance because all tasks are pinned at this level so
9949 * we can't migrate them. Let the imbalance flag set so parent level
9950 * can try to migrate them.
9952 schedstat_inc(sd->lb_balanced[idle]);
9954 sd->nr_balance_failed = 0;
9960 * newidle_balance() disregards balance intervals, so we could
9961 * repeatedly reach this code, which would lead to balance_interval
9962 * skyrocketing in a short amount of time. Skip the balance_interval
9963 * increase logic to avoid that.
9965 if (env.idle == CPU_NEWLY_IDLE)
9968 /* tune up the balancing interval */
9969 if ((env.flags & LBF_ALL_PINNED &&
9970 sd->balance_interval < MAX_PINNED_INTERVAL) ||
9971 sd->balance_interval < sd->max_interval)
9972 sd->balance_interval *= 2;
9977 static inline unsigned long
9978 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9980 unsigned long interval = sd->balance_interval;
9983 interval *= sd->busy_factor;
9985 /* scale ms to jiffies */
9986 interval = msecs_to_jiffies(interval);
9989 * Reduce likelihood of busy balancing at higher domains racing with
9990 * balancing at lower domains by preventing their balancing periods
9991 * from being multiples of each other.
9996 interval = clamp(interval, 1UL, max_load_balance_interval);
10002 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
10004 unsigned long interval, next;
10006 /* used by idle balance, so cpu_busy = 0 */
10007 interval = get_sd_balance_interval(sd, 0);
10008 next = sd->last_balance + interval;
10010 if (time_after(*next_balance, next))
10011 *next_balance = next;
10015 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
10016 * running tasks off the busiest CPU onto idle CPUs. It requires at
10017 * least 1 task to be running on each physical CPU where possible, and
10018 * avoids physical / logical imbalances.
10020 static int active_load_balance_cpu_stop(void *data)
10022 struct rq *busiest_rq = data;
10023 int busiest_cpu = cpu_of(busiest_rq);
10024 int target_cpu = busiest_rq->push_cpu;
10025 struct rq *target_rq = cpu_rq(target_cpu);
10026 struct sched_domain *sd;
10027 struct task_struct *p = NULL;
10028 struct rq_flags rf;
10030 rq_lock_irq(busiest_rq, &rf);
10032 * Between queueing the stop-work and running it is a hole in which
10033 * CPUs can become inactive. We should not move tasks from or to
10036 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
10039 /* Make sure the requested CPU hasn't gone down in the meantime: */
10040 if (unlikely(busiest_cpu != smp_processor_id() ||
10041 !busiest_rq->active_balance))
10044 /* Is there any task to move? */
10045 if (busiest_rq->nr_running <= 1)
10049 * This condition is "impossible", if it occurs
10050 * we need to fix it. Originally reported by
10051 * Bjorn Helgaas on a 128-CPU setup.
10053 BUG_ON(busiest_rq == target_rq);
10055 /* Search for an sd spanning us and the target CPU. */
10057 for_each_domain(target_cpu, sd) {
10058 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
10063 struct lb_env env = {
10065 .dst_cpu = target_cpu,
10066 .dst_rq = target_rq,
10067 .src_cpu = busiest_rq->cpu,
10068 .src_rq = busiest_rq,
10070 .flags = LBF_ACTIVE_LB,
10073 schedstat_inc(sd->alb_count);
10074 update_rq_clock(busiest_rq);
10076 p = detach_one_task(&env);
10078 schedstat_inc(sd->alb_pushed);
10079 /* Active balancing done, reset the failure counter. */
10080 sd->nr_balance_failed = 0;
10082 schedstat_inc(sd->alb_failed);
10087 busiest_rq->active_balance = 0;
10088 rq_unlock(busiest_rq, &rf);
10091 attach_one_task(target_rq, p);
10093 local_irq_enable();
10098 static DEFINE_SPINLOCK(balancing);
10101 * Scale the max load_balance interval with the number of CPUs in the system.
10102 * This trades load-balance latency on larger machines for less cross talk.
10104 void update_max_interval(void)
10106 max_load_balance_interval = HZ*num_online_cpus()/10;
10110 * It checks each scheduling domain to see if it is due to be balanced,
10111 * and initiates a balancing operation if so.
10113 * Balancing parameters are set up in init_sched_domains.
10115 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
10117 int continue_balancing = 1;
10119 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10120 unsigned long interval;
10121 struct sched_domain *sd;
10122 /* Earliest time when we have to do rebalance again */
10123 unsigned long next_balance = jiffies + 60*HZ;
10124 int update_next_balance = 0;
10125 int need_serialize, need_decay = 0;
10129 for_each_domain(cpu, sd) {
10131 * Decay the newidle max times here because this is a regular
10132 * visit to all the domains. Decay ~1% per second.
10134 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
10135 sd->max_newidle_lb_cost =
10136 (sd->max_newidle_lb_cost * 253) / 256;
10137 sd->next_decay_max_lb_cost = jiffies + HZ;
10140 max_cost += sd->max_newidle_lb_cost;
10143 * Stop the load balance at this level. There is another
10144 * CPU in our sched group which is doing load balancing more
10147 if (!continue_balancing) {
10153 interval = get_sd_balance_interval(sd, busy);
10155 need_serialize = sd->flags & SD_SERIALIZE;
10156 if (need_serialize) {
10157 if (!spin_trylock(&balancing))
10161 if (time_after_eq(jiffies, sd->last_balance + interval)) {
10162 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10164 * The LBF_DST_PINNED logic could have changed
10165 * env->dst_cpu, so we can't know our idle
10166 * state even if we migrated tasks. Update it.
10168 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
10169 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10171 sd->last_balance = jiffies;
10172 interval = get_sd_balance_interval(sd, busy);
10174 if (need_serialize)
10175 spin_unlock(&balancing);
10177 if (time_after(next_balance, sd->last_balance + interval)) {
10178 next_balance = sd->last_balance + interval;
10179 update_next_balance = 1;
10184 * Ensure the rq-wide value also decays but keep it at a
10185 * reasonable floor to avoid funnies with rq->avg_idle.
10187 rq->max_idle_balance_cost =
10188 max((u64)sysctl_sched_migration_cost, max_cost);
10193 * next_balance will be updated only when there is a need.
10194 * When the cpu is attached to null domain for ex, it will not be
10197 if (likely(update_next_balance))
10198 rq->next_balance = next_balance;
10202 static inline int on_null_domain(struct rq *rq)
10204 return unlikely(!rcu_dereference_sched(rq->sd));
10207 #ifdef CONFIG_NO_HZ_COMMON
10209 * idle load balancing details
10210 * - When one of the busy CPUs notice that there may be an idle rebalancing
10211 * needed, they will kick the idle load balancer, which then does idle
10212 * load balancing for all the idle CPUs.
10213 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10217 static inline int find_new_ilb(void)
10221 for_each_cpu_and(ilb, nohz.idle_cpus_mask,
10222 housekeeping_cpumask(HK_FLAG_MISC)) {
10224 if (ilb == smp_processor_id())
10235 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10236 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
10238 static void kick_ilb(unsigned int flags)
10243 * Increase nohz.next_balance only when if full ilb is triggered but
10244 * not if we only update stats.
10246 if (flags & NOHZ_BALANCE_KICK)
10247 nohz.next_balance = jiffies+1;
10249 ilb_cpu = find_new_ilb();
10251 if (ilb_cpu >= nr_cpu_ids)
10255 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10256 * the first flag owns it; cleared by nohz_csd_func().
10258 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10259 if (flags & NOHZ_KICK_MASK)
10263 * This way we generate an IPI on the target CPU which
10264 * is idle. And the softirq performing nohz idle load balance
10265 * will be run before returning from the IPI.
10267 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
10271 * Current decision point for kicking the idle load balancer in the presence
10272 * of idle CPUs in the system.
10274 static void nohz_balancer_kick(struct rq *rq)
10276 unsigned long now = jiffies;
10277 struct sched_domain_shared *sds;
10278 struct sched_domain *sd;
10279 int nr_busy, i, cpu = rq->cpu;
10280 unsigned int flags = 0;
10282 if (unlikely(rq->idle_balance))
10286 * We may be recently in ticked or tickless idle mode. At the first
10287 * busy tick after returning from idle, we will update the busy stats.
10289 nohz_balance_exit_idle(rq);
10292 * None are in tickless mode and hence no need for NOHZ idle load
10295 if (likely(!atomic_read(&nohz.nr_cpus)))
10298 if (READ_ONCE(nohz.has_blocked) &&
10299 time_after(now, READ_ONCE(nohz.next_blocked)))
10300 flags = NOHZ_STATS_KICK;
10302 if (time_before(now, nohz.next_balance))
10305 if (rq->nr_running >= 2) {
10306 flags = NOHZ_KICK_MASK;
10312 sd = rcu_dereference(rq->sd);
10315 * If there's a CFS task and the current CPU has reduced
10316 * capacity; kick the ILB to see if there's a better CPU to run
10319 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
10320 flags = NOHZ_KICK_MASK;
10325 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
10328 * When ASYM_PACKING; see if there's a more preferred CPU
10329 * currently idle; in which case, kick the ILB to move tasks
10332 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
10333 if (sched_asym_prefer(i, cpu)) {
10334 flags = NOHZ_KICK_MASK;
10340 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10343 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10344 * to run the misfit task on.
10346 if (check_misfit_status(rq, sd)) {
10347 flags = NOHZ_KICK_MASK;
10352 * For asymmetric systems, we do not want to nicely balance
10353 * cache use, instead we want to embrace asymmetry and only
10354 * ensure tasks have enough CPU capacity.
10356 * Skip the LLC logic because it's not relevant in that case.
10361 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10364 * If there is an imbalance between LLC domains (IOW we could
10365 * increase the overall cache use), we need some less-loaded LLC
10366 * domain to pull some load. Likewise, we may need to spread
10367 * load within the current LLC domain (e.g. packed SMT cores but
10368 * other CPUs are idle). We can't really know from here how busy
10369 * the others are - so just get a nohz balance going if it looks
10370 * like this LLC domain has tasks we could move.
10372 nr_busy = atomic_read(&sds->nr_busy_cpus);
10374 flags = NOHZ_KICK_MASK;
10385 static void set_cpu_sd_state_busy(int cpu)
10387 struct sched_domain *sd;
10390 sd = rcu_dereference(per_cpu(sd_llc, cpu));
10392 if (!sd || !sd->nohz_idle)
10396 atomic_inc(&sd->shared->nr_busy_cpus);
10401 void nohz_balance_exit_idle(struct rq *rq)
10403 SCHED_WARN_ON(rq != this_rq());
10405 if (likely(!rq->nohz_tick_stopped))
10408 rq->nohz_tick_stopped = 0;
10409 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10410 atomic_dec(&nohz.nr_cpus);
10412 set_cpu_sd_state_busy(rq->cpu);
10415 static void set_cpu_sd_state_idle(int cpu)
10417 struct sched_domain *sd;
10420 sd = rcu_dereference(per_cpu(sd_llc, cpu));
10422 if (!sd || sd->nohz_idle)
10426 atomic_dec(&sd->shared->nr_busy_cpus);
10432 * This routine will record that the CPU is going idle with tick stopped.
10433 * This info will be used in performing idle load balancing in the future.
10435 void nohz_balance_enter_idle(int cpu)
10437 struct rq *rq = cpu_rq(cpu);
10439 SCHED_WARN_ON(cpu != smp_processor_id());
10441 /* If this CPU is going down, then nothing needs to be done: */
10442 if (!cpu_active(cpu))
10445 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
10446 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
10450 * Can be set safely without rq->lock held
10451 * If a clear happens, it will have evaluated last additions because
10452 * rq->lock is held during the check and the clear
10454 rq->has_blocked_load = 1;
10457 * The tick is still stopped but load could have been added in the
10458 * meantime. We set the nohz.has_blocked flag to trig a check of the
10459 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10460 * of nohz.has_blocked can only happen after checking the new load
10462 if (rq->nohz_tick_stopped)
10465 /* If we're a completely isolated CPU, we don't play: */
10466 if (on_null_domain(rq))
10469 rq->nohz_tick_stopped = 1;
10471 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10472 atomic_inc(&nohz.nr_cpus);
10475 * Ensures that if nohz_idle_balance() fails to observe our
10476 * @idle_cpus_mask store, it must observe the @has_blocked
10479 smp_mb__after_atomic();
10481 set_cpu_sd_state_idle(cpu);
10485 * Each time a cpu enter idle, we assume that it has blocked load and
10486 * enable the periodic update of the load of idle cpus
10488 WRITE_ONCE(nohz.has_blocked, 1);
10491 static bool update_nohz_stats(struct rq *rq)
10493 unsigned int cpu = rq->cpu;
10495 if (!rq->has_blocked_load)
10498 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
10501 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
10504 update_blocked_averages(cpu);
10506 return rq->has_blocked_load;
10510 * Internal function that runs load balance for all idle cpus. The load balance
10511 * can be a simple update of blocked load or a complete load balance with
10512 * tasks movement depending of flags.
10514 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10515 enum cpu_idle_type idle)
10517 /* Earliest time when we have to do rebalance again */
10518 unsigned long now = jiffies;
10519 unsigned long next_balance = now + 60*HZ;
10520 bool has_blocked_load = false;
10521 int update_next_balance = 0;
10522 int this_cpu = this_rq->cpu;
10526 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
10529 * We assume there will be no idle load after this update and clear
10530 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10531 * set the has_blocked flag and trig another update of idle load.
10532 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10533 * setting the flag, we are sure to not clear the state and not
10534 * check the load of an idle cpu.
10536 WRITE_ONCE(nohz.has_blocked, 0);
10539 * Ensures that if we miss the CPU, we must see the has_blocked
10540 * store from nohz_balance_enter_idle().
10545 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
10546 * chance for other idle cpu to pull load.
10548 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) {
10549 if (!idle_cpu(balance_cpu))
10553 * If this CPU gets work to do, stop the load balancing
10554 * work being done for other CPUs. Next load
10555 * balancing owner will pick it up.
10557 if (need_resched()) {
10558 has_blocked_load = true;
10562 rq = cpu_rq(balance_cpu);
10564 has_blocked_load |= update_nohz_stats(rq);
10567 * If time for next balance is due,
10570 if (time_after_eq(jiffies, rq->next_balance)) {
10571 struct rq_flags rf;
10573 rq_lock_irqsave(rq, &rf);
10574 update_rq_clock(rq);
10575 rq_unlock_irqrestore(rq, &rf);
10577 if (flags & NOHZ_BALANCE_KICK)
10578 rebalance_domains(rq, CPU_IDLE);
10581 if (time_after(next_balance, rq->next_balance)) {
10582 next_balance = rq->next_balance;
10583 update_next_balance = 1;
10588 * next_balance will be updated only when there is a need.
10589 * When the CPU is attached to null domain for ex, it will not be
10592 if (likely(update_next_balance))
10593 nohz.next_balance = next_balance;
10595 WRITE_ONCE(nohz.next_blocked,
10596 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10599 /* There is still blocked load, enable periodic update */
10600 if (has_blocked_load)
10601 WRITE_ONCE(nohz.has_blocked, 1);
10605 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10606 * rebalancing for all the cpus for whom scheduler ticks are stopped.
10608 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10610 unsigned int flags = this_rq->nohz_idle_balance;
10615 this_rq->nohz_idle_balance = 0;
10617 if (idle != CPU_IDLE)
10620 _nohz_idle_balance(this_rq, flags, idle);
10626 * Check if we need to run the ILB for updating blocked load before entering
10629 void nohz_run_idle_balance(int cpu)
10631 unsigned int flags;
10633 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
10636 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
10637 * (ie NOHZ_STATS_KICK set) and will do the same.
10639 if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
10640 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK, CPU_IDLE);
10643 static void nohz_newidle_balance(struct rq *this_rq)
10645 int this_cpu = this_rq->cpu;
10648 * This CPU doesn't want to be disturbed by scheduler
10651 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10654 /* Will wake up very soon. No time for doing anything else*/
10655 if (this_rq->avg_idle < sysctl_sched_migration_cost)
10658 /* Don't need to update blocked load of idle CPUs*/
10659 if (!READ_ONCE(nohz.has_blocked) ||
10660 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10664 * Set the need to trigger ILB in order to update blocked load
10665 * before entering idle state.
10667 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
10670 #else /* !CONFIG_NO_HZ_COMMON */
10671 static inline void nohz_balancer_kick(struct rq *rq) { }
10673 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10678 static inline void nohz_newidle_balance(struct rq *this_rq) { }
10679 #endif /* CONFIG_NO_HZ_COMMON */
10682 * newidle_balance is called by schedule() if this_cpu is about to become
10683 * idle. Attempts to pull tasks from other CPUs.
10686 * < 0 - we released the lock and there are !fair tasks present
10687 * 0 - failed, no new tasks
10688 * > 0 - success, new (fair) tasks present
10690 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
10692 unsigned long next_balance = jiffies + HZ;
10693 int this_cpu = this_rq->cpu;
10694 struct sched_domain *sd;
10695 int pulled_task = 0;
10698 update_misfit_status(NULL, this_rq);
10701 * There is a task waiting to run. No need to search for one.
10702 * Return 0; the task will be enqueued when switching to idle.
10704 if (this_rq->ttwu_pending)
10708 * We must set idle_stamp _before_ calling idle_balance(), such that we
10709 * measure the duration of idle_balance() as idle time.
10711 this_rq->idle_stamp = rq_clock(this_rq);
10714 * Do not pull tasks towards !active CPUs...
10716 if (!cpu_active(this_cpu))
10720 * This is OK, because current is on_cpu, which avoids it being picked
10721 * for load-balance and preemption/IRQs are still disabled avoiding
10722 * further scheduler activity on it and we're being very careful to
10723 * re-start the picking loop.
10725 rq_unpin_lock(this_rq, rf);
10727 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
10728 !READ_ONCE(this_rq->rd->overload)) {
10731 sd = rcu_dereference_check_sched_domain(this_rq->sd);
10733 update_next_balance(sd, &next_balance);
10739 raw_spin_rq_unlock(this_rq);
10741 update_blocked_averages(this_cpu);
10743 for_each_domain(this_cpu, sd) {
10744 int continue_balancing = 1;
10745 u64 t0, domain_cost;
10747 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10748 update_next_balance(sd, &next_balance);
10752 if (sd->flags & SD_BALANCE_NEWIDLE) {
10753 t0 = sched_clock_cpu(this_cpu);
10755 pulled_task = load_balance(this_cpu, this_rq,
10756 sd, CPU_NEWLY_IDLE,
10757 &continue_balancing);
10759 domain_cost = sched_clock_cpu(this_cpu) - t0;
10760 if (domain_cost > sd->max_newidle_lb_cost)
10761 sd->max_newidle_lb_cost = domain_cost;
10763 curr_cost += domain_cost;
10766 update_next_balance(sd, &next_balance);
10769 * Stop searching for tasks to pull if there are
10770 * now runnable tasks on this rq.
10772 if (pulled_task || this_rq->nr_running > 0 ||
10773 this_rq->ttwu_pending)
10778 raw_spin_rq_lock(this_rq);
10780 if (curr_cost > this_rq->max_idle_balance_cost)
10781 this_rq->max_idle_balance_cost = curr_cost;
10784 * While browsing the domains, we released the rq lock, a task could
10785 * have been enqueued in the meantime. Since we're not going idle,
10786 * pretend we pulled a task.
10788 if (this_rq->cfs.h_nr_running && !pulled_task)
10791 /* Is there a task of a high priority class? */
10792 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10796 /* Move the next balance forward */
10797 if (time_after(this_rq->next_balance, next_balance))
10798 this_rq->next_balance = next_balance;
10801 this_rq->idle_stamp = 0;
10803 nohz_newidle_balance(this_rq);
10805 rq_repin_lock(this_rq, rf);
10807 return pulled_task;
10811 * run_rebalance_domains is triggered when needed from the scheduler tick.
10812 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10814 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
10816 struct rq *this_rq = this_rq();
10817 enum cpu_idle_type idle = this_rq->idle_balance ?
10818 CPU_IDLE : CPU_NOT_IDLE;
10821 * If this CPU has a pending nohz_balance_kick, then do the
10822 * balancing on behalf of the other idle CPUs whose ticks are
10823 * stopped. Do nohz_idle_balance *before* rebalance_domains to
10824 * give the idle CPUs a chance to load balance. Else we may
10825 * load balance only within the local sched_domain hierarchy
10826 * and abort nohz_idle_balance altogether if we pull some load.
10828 if (nohz_idle_balance(this_rq, idle))
10831 /* normal load balance */
10832 update_blocked_averages(this_rq->cpu);
10833 rebalance_domains(this_rq, idle);
10837 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10839 void trigger_load_balance(struct rq *rq)
10842 * Don't need to rebalance while attached to NULL domain or
10843 * runqueue CPU is not active
10845 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
10848 if (time_after_eq(jiffies, rq->next_balance))
10849 raise_softirq(SCHED_SOFTIRQ);
10851 nohz_balancer_kick(rq);
10854 static void rq_online_fair(struct rq *rq)
10858 update_runtime_enabled(rq);
10861 static void rq_offline_fair(struct rq *rq)
10865 /* Ensure any throttled groups are reachable by pick_next_task */
10866 unthrottle_offline_cfs_rqs(rq);
10869 #endif /* CONFIG_SMP */
10871 #ifdef CONFIG_SCHED_CORE
10873 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
10875 u64 slice = sched_slice(cfs_rq_of(se), se);
10876 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
10878 return (rtime * min_nr_tasks > slice);
10881 #define MIN_NR_TASKS_DURING_FORCEIDLE 2
10882 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
10884 if (!sched_core_enabled(rq))
10888 * If runqueue has only one task which used up its slice and
10889 * if the sibling is forced idle, then trigger schedule to
10890 * give forced idle task a chance.
10892 * sched_slice() considers only this active rq and it gets the
10893 * whole slice. But during force idle, we have siblings acting
10894 * like a single runqueue and hence we need to consider runnable
10895 * tasks on this CPU and the forced idle CPU. Ideally, we should
10896 * go through the forced idle rq, but that would be a perf hit.
10897 * We can assume that the forced idle CPU has at least
10898 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
10899 * if we need to give up the CPU.
10901 if (rq->core->core_forceidle && rq->cfs.nr_running == 1 &&
10902 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
10907 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
10909 static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle)
10911 for_each_sched_entity(se) {
10912 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10915 if (cfs_rq->forceidle_seq == fi_seq)
10917 cfs_rq->forceidle_seq = fi_seq;
10920 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
10924 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
10926 struct sched_entity *se = &p->se;
10928 if (p->sched_class != &fair_sched_class)
10931 se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
10934 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
10936 struct rq *rq = task_rq(a);
10937 struct sched_entity *sea = &a->se;
10938 struct sched_entity *seb = &b->se;
10939 struct cfs_rq *cfs_rqa;
10940 struct cfs_rq *cfs_rqb;
10943 SCHED_WARN_ON(task_rq(b)->core != rq->core);
10945 #ifdef CONFIG_FAIR_GROUP_SCHED
10947 * Find an se in the hierarchy for tasks a and b, such that the se's
10948 * are immediate siblings.
10950 while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
10951 int sea_depth = sea->depth;
10952 int seb_depth = seb->depth;
10954 if (sea_depth >= seb_depth)
10955 sea = parent_entity(sea);
10956 if (sea_depth <= seb_depth)
10957 seb = parent_entity(seb);
10960 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
10961 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
10963 cfs_rqa = sea->cfs_rq;
10964 cfs_rqb = seb->cfs_rq;
10966 cfs_rqa = &task_rq(a)->cfs;
10967 cfs_rqb = &task_rq(b)->cfs;
10971 * Find delta after normalizing se's vruntime with its cfs_rq's
10972 * min_vruntime_fi, which would have been updated in prior calls
10973 * to se_fi_update().
10975 delta = (s64)(sea->vruntime - seb->vruntime) +
10976 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
10981 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
10985 * scheduler tick hitting a task of our scheduling class.
10987 * NOTE: This function can be called remotely by the tick offload that
10988 * goes along full dynticks. Therefore no local assumption can be made
10989 * and everything must be accessed through the @rq and @curr passed in
10992 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
10994 struct cfs_rq *cfs_rq;
10995 struct sched_entity *se = &curr->se;
10997 for_each_sched_entity(se) {
10998 cfs_rq = cfs_rq_of(se);
10999 entity_tick(cfs_rq, se, queued);
11002 if (static_branch_unlikely(&sched_numa_balancing))
11003 task_tick_numa(rq, curr);
11005 update_misfit_status(curr, rq);
11006 update_overutilized_status(task_rq(curr));
11008 task_tick_core(rq, curr);
11012 * called on fork with the child task as argument from the parent's context
11013 * - child not yet on the tasklist
11014 * - preemption disabled
11016 static void task_fork_fair(struct task_struct *p)
11018 struct cfs_rq *cfs_rq;
11019 struct sched_entity *se = &p->se, *curr;
11020 struct rq *rq = this_rq();
11021 struct rq_flags rf;
11024 update_rq_clock(rq);
11026 cfs_rq = task_cfs_rq(current);
11027 curr = cfs_rq->curr;
11029 update_curr(cfs_rq);
11030 se->vruntime = curr->vruntime;
11032 place_entity(cfs_rq, se, 1);
11034 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
11036 * Upon rescheduling, sched_class::put_prev_task() will place
11037 * 'current' within the tree based on its new key value.
11039 swap(curr->vruntime, se->vruntime);
11043 se->vruntime -= cfs_rq->min_vruntime;
11044 rq_unlock(rq, &rf);
11048 * Priority of the task has changed. Check to see if we preempt
11049 * the current task.
11052 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
11054 if (!task_on_rq_queued(p))
11057 if (rq->cfs.nr_running == 1)
11061 * Reschedule if we are currently running on this runqueue and
11062 * our priority decreased, or if we are not currently running on
11063 * this runqueue and our priority is higher than the current's
11065 if (task_current(rq, p)) {
11066 if (p->prio > oldprio)
11069 check_preempt_curr(rq, p, 0);
11072 static inline bool vruntime_normalized(struct task_struct *p)
11074 struct sched_entity *se = &p->se;
11077 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
11078 * the dequeue_entity(.flags=0) will already have normalized the
11085 * When !on_rq, vruntime of the task has usually NOT been normalized.
11086 * But there are some cases where it has already been normalized:
11088 * - A forked child which is waiting for being woken up by
11089 * wake_up_new_task().
11090 * - A task which has been woken up by try_to_wake_up() and
11091 * waiting for actually being woken up by sched_ttwu_pending().
11093 if (!se->sum_exec_runtime ||
11094 (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup))
11100 #ifdef CONFIG_FAIR_GROUP_SCHED
11102 * Propagate the changes of the sched_entity across the tg tree to make it
11103 * visible to the root
11105 static void propagate_entity_cfs_rq(struct sched_entity *se)
11107 struct cfs_rq *cfs_rq;
11109 list_add_leaf_cfs_rq(cfs_rq_of(se));
11111 /* Start to propagate at parent */
11114 for_each_sched_entity(se) {
11115 cfs_rq = cfs_rq_of(se);
11117 if (!cfs_rq_throttled(cfs_rq)){
11118 update_load_avg(cfs_rq, se, UPDATE_TG);
11119 list_add_leaf_cfs_rq(cfs_rq);
11123 if (list_add_leaf_cfs_rq(cfs_rq))
11128 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
11131 static void detach_entity_cfs_rq(struct sched_entity *se)
11133 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11135 /* Catch up with the cfs_rq and remove our load when we leave */
11136 update_load_avg(cfs_rq, se, 0);
11137 detach_entity_load_avg(cfs_rq, se);
11138 update_tg_load_avg(cfs_rq);
11139 propagate_entity_cfs_rq(se);
11142 static void attach_entity_cfs_rq(struct sched_entity *se)
11144 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11146 #ifdef CONFIG_FAIR_GROUP_SCHED
11148 * Since the real-depth could have been changed (only FAIR
11149 * class maintain depth value), reset depth properly.
11151 se->depth = se->parent ? se->parent->depth + 1 : 0;
11154 /* Synchronize entity with its cfs_rq */
11155 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
11156 attach_entity_load_avg(cfs_rq, se);
11157 update_tg_load_avg(cfs_rq);
11158 propagate_entity_cfs_rq(se);
11161 static void detach_task_cfs_rq(struct task_struct *p)
11163 struct sched_entity *se = &p->se;
11164 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11166 if (!vruntime_normalized(p)) {
11168 * Fix up our vruntime so that the current sleep doesn't
11169 * cause 'unlimited' sleep bonus.
11171 place_entity(cfs_rq, se, 0);
11172 se->vruntime -= cfs_rq->min_vruntime;
11175 detach_entity_cfs_rq(se);
11178 static void attach_task_cfs_rq(struct task_struct *p)
11180 struct sched_entity *se = &p->se;
11181 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11183 attach_entity_cfs_rq(se);
11185 if (!vruntime_normalized(p))
11186 se->vruntime += cfs_rq->min_vruntime;
11189 static void switched_from_fair(struct rq *rq, struct task_struct *p)
11191 detach_task_cfs_rq(p);
11194 static void switched_to_fair(struct rq *rq, struct task_struct *p)
11196 attach_task_cfs_rq(p);
11198 if (task_on_rq_queued(p)) {
11200 * We were most likely switched from sched_rt, so
11201 * kick off the schedule if running, otherwise just see
11202 * if we can still preempt the current task.
11204 if (task_current(rq, p))
11207 check_preempt_curr(rq, p, 0);
11211 /* Account for a task changing its policy or group.
11213 * This routine is mostly called to set cfs_rq->curr field when a task
11214 * migrates between groups/classes.
11216 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
11218 struct sched_entity *se = &p->se;
11221 if (task_on_rq_queued(p)) {
11223 * Move the next running task to the front of the list, so our
11224 * cfs_tasks list becomes MRU one.
11226 list_move(&se->group_node, &rq->cfs_tasks);
11230 for_each_sched_entity(se) {
11231 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11233 set_next_entity(cfs_rq, se);
11234 /* ensure bandwidth has been allocated on our new cfs_rq */
11235 account_cfs_rq_runtime(cfs_rq, 0);
11239 void init_cfs_rq(struct cfs_rq *cfs_rq)
11241 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
11242 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
11243 #ifndef CONFIG_64BIT
11244 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
11247 raw_spin_lock_init(&cfs_rq->removed.lock);
11251 #ifdef CONFIG_FAIR_GROUP_SCHED
11252 static void task_set_group_fair(struct task_struct *p)
11254 struct sched_entity *se = &p->se;
11256 set_task_rq(p, task_cpu(p));
11257 se->depth = se->parent ? se->parent->depth + 1 : 0;
11260 static void task_move_group_fair(struct task_struct *p)
11262 detach_task_cfs_rq(p);
11263 set_task_rq(p, task_cpu(p));
11266 /* Tell se's cfs_rq has been changed -- migrated */
11267 p->se.avg.last_update_time = 0;
11269 attach_task_cfs_rq(p);
11272 static void task_change_group_fair(struct task_struct *p, int type)
11275 case TASK_SET_GROUP:
11276 task_set_group_fair(p);
11279 case TASK_MOVE_GROUP:
11280 task_move_group_fair(p);
11285 void free_fair_sched_group(struct task_group *tg)
11289 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
11291 for_each_possible_cpu(i) {
11293 kfree(tg->cfs_rq[i]);
11302 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11304 struct sched_entity *se;
11305 struct cfs_rq *cfs_rq;
11308 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
11311 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
11315 tg->shares = NICE_0_LOAD;
11317 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
11319 for_each_possible_cpu(i) {
11320 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
11321 GFP_KERNEL, cpu_to_node(i));
11325 se = kzalloc_node(sizeof(struct sched_entity),
11326 GFP_KERNEL, cpu_to_node(i));
11330 init_cfs_rq(cfs_rq);
11331 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
11332 init_entity_runnable_average(se);
11343 void online_fair_sched_group(struct task_group *tg)
11345 struct sched_entity *se;
11346 struct rq_flags rf;
11350 for_each_possible_cpu(i) {
11353 rq_lock_irq(rq, &rf);
11354 update_rq_clock(rq);
11355 attach_entity_cfs_rq(se);
11356 sync_throttle(tg, i);
11357 rq_unlock_irq(rq, &rf);
11361 void unregister_fair_sched_group(struct task_group *tg)
11363 unsigned long flags;
11367 for_each_possible_cpu(cpu) {
11369 remove_entity_load_avg(tg->se[cpu]);
11372 * Only empty task groups can be destroyed; so we can speculatively
11373 * check on_list without danger of it being re-added.
11375 if (!tg->cfs_rq[cpu]->on_list)
11380 raw_spin_rq_lock_irqsave(rq, flags);
11381 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11382 raw_spin_rq_unlock_irqrestore(rq, flags);
11386 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11387 struct sched_entity *se, int cpu,
11388 struct sched_entity *parent)
11390 struct rq *rq = cpu_rq(cpu);
11394 init_cfs_rq_runtime(cfs_rq);
11396 tg->cfs_rq[cpu] = cfs_rq;
11399 /* se could be NULL for root_task_group */
11404 se->cfs_rq = &rq->cfs;
11407 se->cfs_rq = parent->my_q;
11408 se->depth = parent->depth + 1;
11412 /* guarantee group entities always have weight */
11413 update_load_set(&se->load, NICE_0_LOAD);
11414 se->parent = parent;
11417 static DEFINE_MUTEX(shares_mutex);
11419 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11424 * We can't change the weight of the root cgroup.
11429 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11431 mutex_lock(&shares_mutex);
11432 if (tg->shares == shares)
11435 tg->shares = shares;
11436 for_each_possible_cpu(i) {
11437 struct rq *rq = cpu_rq(i);
11438 struct sched_entity *se = tg->se[i];
11439 struct rq_flags rf;
11441 /* Propagate contribution to hierarchy */
11442 rq_lock_irqsave(rq, &rf);
11443 update_rq_clock(rq);
11444 for_each_sched_entity(se) {
11445 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
11446 update_cfs_group(se);
11448 rq_unlock_irqrestore(rq, &rf);
11452 mutex_unlock(&shares_mutex);
11455 #else /* CONFIG_FAIR_GROUP_SCHED */
11457 void free_fair_sched_group(struct task_group *tg) { }
11459 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11464 void online_fair_sched_group(struct task_group *tg) { }
11466 void unregister_fair_sched_group(struct task_group *tg) { }
11468 #endif /* CONFIG_FAIR_GROUP_SCHED */
11471 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
11473 struct sched_entity *se = &task->se;
11474 unsigned int rr_interval = 0;
11477 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11480 if (rq->cfs.load.weight)
11481 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
11483 return rr_interval;
11487 * All the scheduling class methods:
11489 DEFINE_SCHED_CLASS(fair) = {
11491 .enqueue_task = enqueue_task_fair,
11492 .dequeue_task = dequeue_task_fair,
11493 .yield_task = yield_task_fair,
11494 .yield_to_task = yield_to_task_fair,
11496 .check_preempt_curr = check_preempt_wakeup,
11498 .pick_next_task = __pick_next_task_fair,
11499 .put_prev_task = put_prev_task_fair,
11500 .set_next_task = set_next_task_fair,
11503 .balance = balance_fair,
11504 .pick_task = pick_task_fair,
11505 .select_task_rq = select_task_rq_fair,
11506 .migrate_task_rq = migrate_task_rq_fair,
11508 .rq_online = rq_online_fair,
11509 .rq_offline = rq_offline_fair,
11511 .task_dead = task_dead_fair,
11512 .set_cpus_allowed = set_cpus_allowed_common,
11515 .task_tick = task_tick_fair,
11516 .task_fork = task_fork_fair,
11518 .prio_changed = prio_changed_fair,
11519 .switched_from = switched_from_fair,
11520 .switched_to = switched_to_fair,
11522 .get_rr_interval = get_rr_interval_fair,
11524 .update_curr = update_curr_fair,
11526 #ifdef CONFIG_FAIR_GROUP_SCHED
11527 .task_change_group = task_change_group_fair,
11530 #ifdef CONFIG_UCLAMP_TASK
11531 .uclamp_enabled = 1,
11535 #ifdef CONFIG_SCHED_DEBUG
11536 void print_cfs_stats(struct seq_file *m, int cpu)
11538 struct cfs_rq *cfs_rq, *pos;
11541 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
11542 print_cfs_rq(m, cpu, cfs_rq);
11546 #ifdef CONFIG_NUMA_BALANCING
11547 void show_numa_stats(struct task_struct *p, struct seq_file *m)
11550 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
11551 struct numa_group *ng;
11554 ng = rcu_dereference(p->numa_group);
11555 for_each_online_node(node) {
11556 if (p->numa_faults) {
11557 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11558 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11561 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11562 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
11564 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11568 #endif /* CONFIG_NUMA_BALANCING */
11569 #endif /* CONFIG_SCHED_DEBUG */
11571 __init void init_sched_fair_class(void)
11574 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11576 #ifdef CONFIG_NO_HZ_COMMON
11577 nohz.next_balance = jiffies;
11578 nohz.next_blocked = jiffies;
11579 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
11586 * Helper functions to facilitate extracting info from tracepoints.
11589 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11592 return cfs_rq ? &cfs_rq->avg : NULL;
11597 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11599 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11603 strlcpy(str, "(null)", len);
11608 cfs_rq_tg_path(cfs_rq, str, len);
11611 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11613 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11615 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11617 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11619 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11622 return rq ? &rq->avg_rt : NULL;
11627 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11629 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11632 return rq ? &rq->avg_dl : NULL;
11637 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11639 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11641 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11642 return rq ? &rq->avg_irq : NULL;
11647 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11649 int sched_trace_rq_cpu(struct rq *rq)
11651 return rq ? cpu_of(rq) : -1;
11653 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11655 int sched_trace_rq_cpu_capacity(struct rq *rq)
11661 SCHED_CAPACITY_SCALE
11665 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity);
11667 const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11670 return rd ? rd->span : NULL;
11675 EXPORT_SYMBOL_GPL(sched_trace_rd_span);
11677 int sched_trace_rq_nr_running(struct rq *rq)
11679 return rq ? rq->nr_running : -1;
11681 EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);