perf script: Skip aggregation for stat events
[linux.git] / tools / perf / builtin-timechart.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * builtin-timechart.c - make an svg timechart of system activity
4  *
5  * (C) Copyright 2009 Intel Corporation
6  *
7  * Authors:
8  *     Arjan van de Ven <arjan@linux.intel.com>
9  */
10
11 #include <errno.h>
12 #include <inttypes.h>
13
14 #include "builtin.h"
15 #include "util/color.h"
16 #include <linux/list.h>
17 #include "util/evlist.h" // for struct evsel_str_handler
18 #include "util/evsel.h"
19 #include <linux/kernel.h>
20 #include <linux/rbtree.h>
21 #include <linux/time64.h>
22 #include <linux/zalloc.h>
23 #include "util/symbol.h"
24 #include "util/thread.h"
25 #include "util/callchain.h"
26
27 #include "util/header.h"
28 #include <subcmd/pager.h>
29 #include <subcmd/parse-options.h>
30 #include "util/parse-events.h"
31 #include "util/event.h"
32 #include "util/session.h"
33 #include "util/svghelper.h"
34 #include "util/tool.h"
35 #include "util/data.h"
36 #include "util/debug.h"
37 #include "util/string2.h"
38 #include "util/tracepoint.h"
39 #include "util/util.h"
40 #include <linux/err.h>
41 #include <traceevent/event-parse.h>
42
43 #ifdef LACKS_OPEN_MEMSTREAM_PROTOTYPE
44 FILE *open_memstream(char **ptr, size_t *sizeloc);
45 #endif
46
47 #define SUPPORT_OLD_POWER_EVENTS 1
48 #define PWR_EVENT_EXIT -1
49
50 struct per_pid;
51 struct power_event;
52 struct wake_event;
53
54 struct timechart {
55         struct perf_tool        tool;
56         struct per_pid          *all_data;
57         struct power_event      *power_events;
58         struct wake_event       *wake_events;
59         int                     proc_num;
60         unsigned int            numcpus;
61         u64                     min_freq,       /* Lowest CPU frequency seen */
62                                 max_freq,       /* Highest CPU frequency seen */
63                                 turbo_frequency,
64                                 first_time, last_time;
65         bool                    power_only,
66                                 tasks_only,
67                                 with_backtrace,
68                                 topology;
69         bool                    force;
70         /* IO related settings */
71         bool                    io_only,
72                                 skip_eagain;
73         u64                     io_events;
74         u64                     min_time,
75                                 merge_dist;
76 };
77
78 struct per_pidcomm;
79 struct cpu_sample;
80 struct io_sample;
81
82 /*
83  * Datastructure layout:
84  * We keep an list of "pid"s, matching the kernels notion of a task struct.
85  * Each "pid" entry, has a list of "comm"s.
86  *      this is because we want to track different programs different, while
87  *      exec will reuse the original pid (by design).
88  * Each comm has a list of samples that will be used to draw
89  * final graph.
90  */
91
92 struct per_pid {
93         struct per_pid *next;
94
95         int             pid;
96         int             ppid;
97
98         u64             start_time;
99         u64             end_time;
100         u64             total_time;
101         u64             total_bytes;
102         int             display;
103
104         struct per_pidcomm *all;
105         struct per_pidcomm *current;
106 };
107
108
109 struct per_pidcomm {
110         struct per_pidcomm *next;
111
112         u64             start_time;
113         u64             end_time;
114         u64             total_time;
115         u64             max_bytes;
116         u64             total_bytes;
117
118         int             Y;
119         int             display;
120
121         long            state;
122         u64             state_since;
123
124         char            *comm;
125
126         struct cpu_sample *samples;
127         struct io_sample  *io_samples;
128 };
129
130 struct sample_wrapper {
131         struct sample_wrapper *next;
132
133         u64             timestamp;
134         unsigned char   data[];
135 };
136
137 #define TYPE_NONE       0
138 #define TYPE_RUNNING    1
139 #define TYPE_WAITING    2
140 #define TYPE_BLOCKED    3
141
142 struct cpu_sample {
143         struct cpu_sample *next;
144
145         u64 start_time;
146         u64 end_time;
147         int type;
148         int cpu;
149         const char *backtrace;
150 };
151
152 enum {
153         IOTYPE_READ,
154         IOTYPE_WRITE,
155         IOTYPE_SYNC,
156         IOTYPE_TX,
157         IOTYPE_RX,
158         IOTYPE_POLL,
159 };
160
161 struct io_sample {
162         struct io_sample *next;
163
164         u64 start_time;
165         u64 end_time;
166         u64 bytes;
167         int type;
168         int fd;
169         int err;
170         int merges;
171 };
172
173 #define CSTATE 1
174 #define PSTATE 2
175
176 struct power_event {
177         struct power_event *next;
178         int type;
179         int state;
180         u64 start_time;
181         u64 end_time;
182         int cpu;
183 };
184
185 struct wake_event {
186         struct wake_event *next;
187         int waker;
188         int wakee;
189         u64 time;
190         const char *backtrace;
191 };
192
193 struct process_filter {
194         char                    *name;
195         int                     pid;
196         struct process_filter   *next;
197 };
198
199 static struct process_filter *process_filter;
200
201
202 static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
203 {
204         struct per_pid *cursor = tchart->all_data;
205
206         while (cursor) {
207                 if (cursor->pid == pid)
208                         return cursor;
209                 cursor = cursor->next;
210         }
211         cursor = zalloc(sizeof(*cursor));
212         assert(cursor != NULL);
213         cursor->pid = pid;
214         cursor->next = tchart->all_data;
215         tchart->all_data = cursor;
216         return cursor;
217 }
218
219 static struct per_pidcomm *create_pidcomm(struct per_pid *p)
220 {
221         struct per_pidcomm *c;
222
223         c = zalloc(sizeof(*c));
224         if (!c)
225                 return NULL;
226         p->current = c;
227         c->next = p->all;
228         p->all = c;
229         return c;
230 }
231
232 static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
233 {
234         struct per_pid *p;
235         struct per_pidcomm *c;
236         p = find_create_pid(tchart, pid);
237         c = p->all;
238         while (c) {
239                 if (c->comm && strcmp(c->comm, comm) == 0) {
240                         p->current = c;
241                         return;
242                 }
243                 if (!c->comm) {
244                         c->comm = strdup(comm);
245                         p->current = c;
246                         return;
247                 }
248                 c = c->next;
249         }
250         c = create_pidcomm(p);
251         assert(c != NULL);
252         c->comm = strdup(comm);
253 }
254
255 static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
256 {
257         struct per_pid *p, *pp;
258         p = find_create_pid(tchart, pid);
259         pp = find_create_pid(tchart, ppid);
260         p->ppid = ppid;
261         if (pp->current && pp->current->comm && !p->current)
262                 pid_set_comm(tchart, pid, pp->current->comm);
263
264         p->start_time = timestamp;
265         if (p->current && !p->current->start_time) {
266                 p->current->start_time = timestamp;
267                 p->current->state_since = timestamp;
268         }
269 }
270
271 static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
272 {
273         struct per_pid *p;
274         p = find_create_pid(tchart, pid);
275         p->end_time = timestamp;
276         if (p->current)
277                 p->current->end_time = timestamp;
278 }
279
280 static void pid_put_sample(struct timechart *tchart, int pid, int type,
281                            unsigned int cpu, u64 start, u64 end,
282                            const char *backtrace)
283 {
284         struct per_pid *p;
285         struct per_pidcomm *c;
286         struct cpu_sample *sample;
287
288         p = find_create_pid(tchart, pid);
289         c = p->current;
290         if (!c) {
291                 c = create_pidcomm(p);
292                 assert(c != NULL);
293         }
294
295         sample = zalloc(sizeof(*sample));
296         assert(sample != NULL);
297         sample->start_time = start;
298         sample->end_time = end;
299         sample->type = type;
300         sample->next = c->samples;
301         sample->cpu = cpu;
302         sample->backtrace = backtrace;
303         c->samples = sample;
304
305         if (sample->type == TYPE_RUNNING && end > start && start > 0) {
306                 c->total_time += (end-start);
307                 p->total_time += (end-start);
308         }
309
310         if (c->start_time == 0 || c->start_time > start)
311                 c->start_time = start;
312         if (p->start_time == 0 || p->start_time > start)
313                 p->start_time = start;
314 }
315
316 #define MAX_CPUS 4096
317
318 static u64 cpus_cstate_start_times[MAX_CPUS];
319 static int cpus_cstate_state[MAX_CPUS];
320 static u64 cpus_pstate_start_times[MAX_CPUS];
321 static u64 cpus_pstate_state[MAX_CPUS];
322
323 static int process_comm_event(struct perf_tool *tool,
324                               union perf_event *event,
325                               struct perf_sample *sample __maybe_unused,
326                               struct machine *machine __maybe_unused)
327 {
328         struct timechart *tchart = container_of(tool, struct timechart, tool);
329         pid_set_comm(tchart, event->comm.tid, event->comm.comm);
330         return 0;
331 }
332
333 static int process_fork_event(struct perf_tool *tool,
334                               union perf_event *event,
335                               struct perf_sample *sample __maybe_unused,
336                               struct machine *machine __maybe_unused)
337 {
338         struct timechart *tchart = container_of(tool, struct timechart, tool);
339         pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
340         return 0;
341 }
342
343 static int process_exit_event(struct perf_tool *tool,
344                               union perf_event *event,
345                               struct perf_sample *sample __maybe_unused,
346                               struct machine *machine __maybe_unused)
347 {
348         struct timechart *tchart = container_of(tool, struct timechart, tool);
349         pid_exit(tchart, event->fork.pid, event->fork.time);
350         return 0;
351 }
352
353 #ifdef SUPPORT_OLD_POWER_EVENTS
354 static int use_old_power_events;
355 #endif
356
357 static void c_state_start(int cpu, u64 timestamp, int state)
358 {
359         cpus_cstate_start_times[cpu] = timestamp;
360         cpus_cstate_state[cpu] = state;
361 }
362
363 static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
364 {
365         struct power_event *pwr = zalloc(sizeof(*pwr));
366
367         if (!pwr)
368                 return;
369
370         pwr->state = cpus_cstate_state[cpu];
371         pwr->start_time = cpus_cstate_start_times[cpu];
372         pwr->end_time = timestamp;
373         pwr->cpu = cpu;
374         pwr->type = CSTATE;
375         pwr->next = tchart->power_events;
376
377         tchart->power_events = pwr;
378 }
379
380 static struct power_event *p_state_end(struct timechart *tchart, int cpu,
381                                         u64 timestamp)
382 {
383         struct power_event *pwr = zalloc(sizeof(*pwr));
384
385         if (!pwr)
386                 return NULL;
387
388         pwr->state = cpus_pstate_state[cpu];
389         pwr->start_time = cpus_pstate_start_times[cpu];
390         pwr->end_time = timestamp;
391         pwr->cpu = cpu;
392         pwr->type = PSTATE;
393         pwr->next = tchart->power_events;
394         if (!pwr->start_time)
395                 pwr->start_time = tchart->first_time;
396
397         tchart->power_events = pwr;
398         return pwr;
399 }
400
401 static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
402 {
403         struct power_event *pwr;
404
405         if (new_freq > 8000000) /* detect invalid data */
406                 return;
407
408         pwr = p_state_end(tchart, cpu, timestamp);
409         if (!pwr)
410                 return;
411
412         cpus_pstate_state[cpu] = new_freq;
413         cpus_pstate_start_times[cpu] = timestamp;
414
415         if ((u64)new_freq > tchart->max_freq)
416                 tchart->max_freq = new_freq;
417
418         if (new_freq < tchart->min_freq || tchart->min_freq == 0)
419                 tchart->min_freq = new_freq;
420
421         if (new_freq == tchart->max_freq - 1000)
422                 tchart->turbo_frequency = tchart->max_freq;
423 }
424
425 static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
426                          int waker, int wakee, u8 flags, const char *backtrace)
427 {
428         struct per_pid *p;
429         struct wake_event *we = zalloc(sizeof(*we));
430
431         if (!we)
432                 return;
433
434         we->time = timestamp;
435         we->waker = waker;
436         we->backtrace = backtrace;
437
438         if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
439                 we->waker = -1;
440
441         we->wakee = wakee;
442         we->next = tchart->wake_events;
443         tchart->wake_events = we;
444         p = find_create_pid(tchart, we->wakee);
445
446         if (p && p->current && p->current->state == TYPE_NONE) {
447                 p->current->state_since = timestamp;
448                 p->current->state = TYPE_WAITING;
449         }
450         if (p && p->current && p->current->state == TYPE_BLOCKED) {
451                 pid_put_sample(tchart, p->pid, p->current->state, cpu,
452                                p->current->state_since, timestamp, NULL);
453                 p->current->state_since = timestamp;
454                 p->current->state = TYPE_WAITING;
455         }
456 }
457
458 static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
459                          int prev_pid, int next_pid, u64 prev_state,
460                          const char *backtrace)
461 {
462         struct per_pid *p = NULL, *prev_p;
463
464         prev_p = find_create_pid(tchart, prev_pid);
465
466         p = find_create_pid(tchart, next_pid);
467
468         if (prev_p->current && prev_p->current->state != TYPE_NONE)
469                 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
470                                prev_p->current->state_since, timestamp,
471                                backtrace);
472         if (p && p->current) {
473                 if (p->current->state != TYPE_NONE)
474                         pid_put_sample(tchart, next_pid, p->current->state, cpu,
475                                        p->current->state_since, timestamp,
476                                        backtrace);
477
478                 p->current->state_since = timestamp;
479                 p->current->state = TYPE_RUNNING;
480         }
481
482         if (prev_p->current) {
483                 prev_p->current->state = TYPE_NONE;
484                 prev_p->current->state_since = timestamp;
485                 if (prev_state & 2)
486                         prev_p->current->state = TYPE_BLOCKED;
487                 if (prev_state == 0)
488                         prev_p->current->state = TYPE_WAITING;
489         }
490 }
491
492 static const char *cat_backtrace(union perf_event *event,
493                                  struct perf_sample *sample,
494                                  struct machine *machine)
495 {
496         struct addr_location al;
497         unsigned int i;
498         char *p = NULL;
499         size_t p_len;
500         u8 cpumode = PERF_RECORD_MISC_USER;
501         struct addr_location tal;
502         struct ip_callchain *chain = sample->callchain;
503         FILE *f = open_memstream(&p, &p_len);
504
505         if (!f) {
506                 perror("open_memstream error");
507                 return NULL;
508         }
509
510         if (!chain)
511                 goto exit;
512
513         if (machine__resolve(machine, &al, sample) < 0) {
514                 fprintf(stderr, "problem processing %d event, skipping it.\n",
515                         event->header.type);
516                 goto exit;
517         }
518
519         for (i = 0; i < chain->nr; i++) {
520                 u64 ip;
521
522                 if (callchain_param.order == ORDER_CALLEE)
523                         ip = chain->ips[i];
524                 else
525                         ip = chain->ips[chain->nr - i - 1];
526
527                 if (ip >= PERF_CONTEXT_MAX) {
528                         switch (ip) {
529                         case PERF_CONTEXT_HV:
530                                 cpumode = PERF_RECORD_MISC_HYPERVISOR;
531                                 break;
532                         case PERF_CONTEXT_KERNEL:
533                                 cpumode = PERF_RECORD_MISC_KERNEL;
534                                 break;
535                         case PERF_CONTEXT_USER:
536                                 cpumode = PERF_RECORD_MISC_USER;
537                                 break;
538                         default:
539                                 pr_debug("invalid callchain context: "
540                                          "%"PRId64"\n", (s64) ip);
541
542                                 /*
543                                  * It seems the callchain is corrupted.
544                                  * Discard all.
545                                  */
546                                 zfree(&p);
547                                 goto exit_put;
548                         }
549                         continue;
550                 }
551
552                 tal.filtered = 0;
553                 if (thread__find_symbol(al.thread, cpumode, ip, &tal))
554                         fprintf(f, "..... %016" PRIx64 " %s\n", ip, tal.sym->name);
555                 else
556                         fprintf(f, "..... %016" PRIx64 "\n", ip);
557         }
558 exit_put:
559         addr_location__put(&al);
560 exit:
561         fclose(f);
562
563         return p;
564 }
565
566 typedef int (*tracepoint_handler)(struct timechart *tchart,
567                                   struct evsel *evsel,
568                                   struct perf_sample *sample,
569                                   const char *backtrace);
570
571 static int process_sample_event(struct perf_tool *tool,
572                                 union perf_event *event,
573                                 struct perf_sample *sample,
574                                 struct evsel *evsel,
575                                 struct machine *machine)
576 {
577         struct timechart *tchart = container_of(tool, struct timechart, tool);
578
579         if (evsel->core.attr.sample_type & PERF_SAMPLE_TIME) {
580                 if (!tchart->first_time || tchart->first_time > sample->time)
581                         tchart->first_time = sample->time;
582                 if (tchart->last_time < sample->time)
583                         tchart->last_time = sample->time;
584         }
585
586         if (evsel->handler != NULL) {
587                 tracepoint_handler f = evsel->handler;
588                 return f(tchart, evsel, sample,
589                          cat_backtrace(event, sample, machine));
590         }
591
592         return 0;
593 }
594
595 static int
596 process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
597                         struct evsel *evsel,
598                         struct perf_sample *sample,
599                         const char *backtrace __maybe_unused)
600 {
601         u32 state  = evsel__intval(evsel, sample, "state");
602         u32 cpu_id = evsel__intval(evsel, sample, "cpu_id");
603
604         if (state == (u32)PWR_EVENT_EXIT)
605                 c_state_end(tchart, cpu_id, sample->time);
606         else
607                 c_state_start(cpu_id, sample->time, state);
608         return 0;
609 }
610
611 static int
612 process_sample_cpu_frequency(struct timechart *tchart,
613                              struct evsel *evsel,
614                              struct perf_sample *sample,
615                              const char *backtrace __maybe_unused)
616 {
617         u32 state  = evsel__intval(evsel, sample, "state");
618         u32 cpu_id = evsel__intval(evsel, sample, "cpu_id");
619
620         p_state_change(tchart, cpu_id, sample->time, state);
621         return 0;
622 }
623
624 static int
625 process_sample_sched_wakeup(struct timechart *tchart,
626                             struct evsel *evsel,
627                             struct perf_sample *sample,
628                             const char *backtrace)
629 {
630         u8 flags  = evsel__intval(evsel, sample, "common_flags");
631         int waker = evsel__intval(evsel, sample, "common_pid");
632         int wakee = evsel__intval(evsel, sample, "pid");
633
634         sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
635         return 0;
636 }
637
638 static int
639 process_sample_sched_switch(struct timechart *tchart,
640                             struct evsel *evsel,
641                             struct perf_sample *sample,
642                             const char *backtrace)
643 {
644         int prev_pid   = evsel__intval(evsel, sample, "prev_pid");
645         int next_pid   = evsel__intval(evsel, sample, "next_pid");
646         u64 prev_state = evsel__intval(evsel, sample, "prev_state");
647
648         sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
649                      prev_state, backtrace);
650         return 0;
651 }
652
653 #ifdef SUPPORT_OLD_POWER_EVENTS
654 static int
655 process_sample_power_start(struct timechart *tchart __maybe_unused,
656                            struct evsel *evsel,
657                            struct perf_sample *sample,
658                            const char *backtrace __maybe_unused)
659 {
660         u64 cpu_id = evsel__intval(evsel, sample, "cpu_id");
661         u64 value  = evsel__intval(evsel, sample, "value");
662
663         c_state_start(cpu_id, sample->time, value);
664         return 0;
665 }
666
667 static int
668 process_sample_power_end(struct timechart *tchart,
669                          struct evsel *evsel __maybe_unused,
670                          struct perf_sample *sample,
671                          const char *backtrace __maybe_unused)
672 {
673         c_state_end(tchart, sample->cpu, sample->time);
674         return 0;
675 }
676
677 static int
678 process_sample_power_frequency(struct timechart *tchart,
679                                struct evsel *evsel,
680                                struct perf_sample *sample,
681                                const char *backtrace __maybe_unused)
682 {
683         u64 cpu_id = evsel__intval(evsel, sample, "cpu_id");
684         u64 value  = evsel__intval(evsel, sample, "value");
685
686         p_state_change(tchart, cpu_id, sample->time, value);
687         return 0;
688 }
689 #endif /* SUPPORT_OLD_POWER_EVENTS */
690
691 /*
692  * After the last sample we need to wrap up the current C/P state
693  * and close out each CPU for these.
694  */
695 static void end_sample_processing(struct timechart *tchart)
696 {
697         u64 cpu;
698         struct power_event *pwr;
699
700         for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
701                 /* C state */
702 #if 0
703                 pwr = zalloc(sizeof(*pwr));
704                 if (!pwr)
705                         return;
706
707                 pwr->state = cpus_cstate_state[cpu];
708                 pwr->start_time = cpus_cstate_start_times[cpu];
709                 pwr->end_time = tchart->last_time;
710                 pwr->cpu = cpu;
711                 pwr->type = CSTATE;
712                 pwr->next = tchart->power_events;
713
714                 tchart->power_events = pwr;
715 #endif
716                 /* P state */
717
718                 pwr = p_state_end(tchart, cpu, tchart->last_time);
719                 if (!pwr)
720                         return;
721
722                 if (!pwr->state)
723                         pwr->state = tchart->min_freq;
724         }
725 }
726
727 static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
728                                u64 start, int fd)
729 {
730         struct per_pid *p = find_create_pid(tchart, pid);
731         struct per_pidcomm *c = p->current;
732         struct io_sample *sample;
733         struct io_sample *prev;
734
735         if (!c) {
736                 c = create_pidcomm(p);
737                 if (!c)
738                         return -ENOMEM;
739         }
740
741         prev = c->io_samples;
742
743         if (prev && prev->start_time && !prev->end_time) {
744                 pr_warning("Skip invalid start event: "
745                            "previous event already started!\n");
746
747                 /* remove previous event that has been started,
748                  * we are not sure we will ever get an end for it */
749                 c->io_samples = prev->next;
750                 free(prev);
751                 return 0;
752         }
753
754         sample = zalloc(sizeof(*sample));
755         if (!sample)
756                 return -ENOMEM;
757         sample->start_time = start;
758         sample->type = type;
759         sample->fd = fd;
760         sample->next = c->io_samples;
761         c->io_samples = sample;
762
763         if (c->start_time == 0 || c->start_time > start)
764                 c->start_time = start;
765
766         return 0;
767 }
768
769 static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
770                              u64 end, long ret)
771 {
772         struct per_pid *p = find_create_pid(tchart, pid);
773         struct per_pidcomm *c = p->current;
774         struct io_sample *sample, *prev;
775
776         if (!c) {
777                 pr_warning("Invalid pidcomm!\n");
778                 return -1;
779         }
780
781         sample = c->io_samples;
782
783         if (!sample) /* skip partially captured events */
784                 return 0;
785
786         if (sample->end_time) {
787                 pr_warning("Skip invalid end event: "
788                            "previous event already ended!\n");
789                 return 0;
790         }
791
792         if (sample->type != type) {
793                 pr_warning("Skip invalid end event: invalid event type!\n");
794                 return 0;
795         }
796
797         sample->end_time = end;
798         prev = sample->next;
799
800         /* we want to be able to see small and fast transfers, so make them
801          * at least min_time long, but don't overlap them */
802         if (sample->end_time - sample->start_time < tchart->min_time)
803                 sample->end_time = sample->start_time + tchart->min_time;
804         if (prev && sample->start_time < prev->end_time) {
805                 if (prev->err) /* try to make errors more visible */
806                         sample->start_time = prev->end_time;
807                 else
808                         prev->end_time = sample->start_time;
809         }
810
811         if (ret < 0) {
812                 sample->err = ret;
813         } else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
814                    type == IOTYPE_TX || type == IOTYPE_RX) {
815
816                 if ((u64)ret > c->max_bytes)
817                         c->max_bytes = ret;
818
819                 c->total_bytes += ret;
820                 p->total_bytes += ret;
821                 sample->bytes = ret;
822         }
823
824         /* merge two requests to make svg smaller and render-friendly */
825         if (prev &&
826             prev->type == sample->type &&
827             prev->err == sample->err &&
828             prev->fd == sample->fd &&
829             prev->end_time + tchart->merge_dist >= sample->start_time) {
830
831                 sample->bytes += prev->bytes;
832                 sample->merges += prev->merges + 1;
833
834                 sample->start_time = prev->start_time;
835                 sample->next = prev->next;
836                 free(prev);
837
838                 if (!sample->err && sample->bytes > c->max_bytes)
839                         c->max_bytes = sample->bytes;
840         }
841
842         tchart->io_events++;
843
844         return 0;
845 }
846
847 static int
848 process_enter_read(struct timechart *tchart,
849                    struct evsel *evsel,
850                    struct perf_sample *sample)
851 {
852         long fd = evsel__intval(evsel, sample, "fd");
853         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
854                                    sample->time, fd);
855 }
856
857 static int
858 process_exit_read(struct timechart *tchart,
859                   struct evsel *evsel,
860                   struct perf_sample *sample)
861 {
862         long ret = evsel__intval(evsel, sample, "ret");
863         return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
864                                  sample->time, ret);
865 }
866
867 static int
868 process_enter_write(struct timechart *tchart,
869                     struct evsel *evsel,
870                     struct perf_sample *sample)
871 {
872         long fd = evsel__intval(evsel, sample, "fd");
873         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
874                                    sample->time, fd);
875 }
876
877 static int
878 process_exit_write(struct timechart *tchart,
879                    struct evsel *evsel,
880                    struct perf_sample *sample)
881 {
882         long ret = evsel__intval(evsel, sample, "ret");
883         return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
884                                  sample->time, ret);
885 }
886
887 static int
888 process_enter_sync(struct timechart *tchart,
889                    struct evsel *evsel,
890                    struct perf_sample *sample)
891 {
892         long fd = evsel__intval(evsel, sample, "fd");
893         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
894                                    sample->time, fd);
895 }
896
897 static int
898 process_exit_sync(struct timechart *tchart,
899                   struct evsel *evsel,
900                   struct perf_sample *sample)
901 {
902         long ret = evsel__intval(evsel, sample, "ret");
903         return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
904                                  sample->time, ret);
905 }
906
907 static int
908 process_enter_tx(struct timechart *tchart,
909                  struct evsel *evsel,
910                  struct perf_sample *sample)
911 {
912         long fd = evsel__intval(evsel, sample, "fd");
913         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
914                                    sample->time, fd);
915 }
916
917 static int
918 process_exit_tx(struct timechart *tchart,
919                 struct evsel *evsel,
920                 struct perf_sample *sample)
921 {
922         long ret = evsel__intval(evsel, sample, "ret");
923         return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
924                                  sample->time, ret);
925 }
926
927 static int
928 process_enter_rx(struct timechart *tchart,
929                  struct evsel *evsel,
930                  struct perf_sample *sample)
931 {
932         long fd = evsel__intval(evsel, sample, "fd");
933         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
934                                    sample->time, fd);
935 }
936
937 static int
938 process_exit_rx(struct timechart *tchart,
939                 struct evsel *evsel,
940                 struct perf_sample *sample)
941 {
942         long ret = evsel__intval(evsel, sample, "ret");
943         return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
944                                  sample->time, ret);
945 }
946
947 static int
948 process_enter_poll(struct timechart *tchart,
949                    struct evsel *evsel,
950                    struct perf_sample *sample)
951 {
952         long fd = evsel__intval(evsel, sample, "fd");
953         return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
954                                    sample->time, fd);
955 }
956
957 static int
958 process_exit_poll(struct timechart *tchart,
959                   struct evsel *evsel,
960                   struct perf_sample *sample)
961 {
962         long ret = evsel__intval(evsel, sample, "ret");
963         return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
964                                  sample->time, ret);
965 }
966
967 /*
968  * Sort the pid datastructure
969  */
970 static void sort_pids(struct timechart *tchart)
971 {
972         struct per_pid *new_list, *p, *cursor, *prev;
973         /* sort by ppid first, then by pid, lowest to highest */
974
975         new_list = NULL;
976
977         while (tchart->all_data) {
978                 p = tchart->all_data;
979                 tchart->all_data = p->next;
980                 p->next = NULL;
981
982                 if (new_list == NULL) {
983                         new_list = p;
984                         p->next = NULL;
985                         continue;
986                 }
987                 prev = NULL;
988                 cursor = new_list;
989                 while (cursor) {
990                         if (cursor->ppid > p->ppid ||
991                                 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
992                                 /* must insert before */
993                                 if (prev) {
994                                         p->next = prev->next;
995                                         prev->next = p;
996                                         cursor = NULL;
997                                         continue;
998                                 } else {
999                                         p->next = new_list;
1000                                         new_list = p;
1001                                         cursor = NULL;
1002                                         continue;
1003                                 }
1004                         }
1005
1006                         prev = cursor;
1007                         cursor = cursor->next;
1008                         if (!cursor)
1009                                 prev->next = p;
1010                 }
1011         }
1012         tchart->all_data = new_list;
1013 }
1014
1015
1016 static void draw_c_p_states(struct timechart *tchart)
1017 {
1018         struct power_event *pwr;
1019         pwr = tchart->power_events;
1020
1021         /*
1022          * two pass drawing so that the P state bars are on top of the C state blocks
1023          */
1024         while (pwr) {
1025                 if (pwr->type == CSTATE)
1026                         svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1027                 pwr = pwr->next;
1028         }
1029
1030         pwr = tchart->power_events;
1031         while (pwr) {
1032                 if (pwr->type == PSTATE) {
1033                         if (!pwr->state)
1034                                 pwr->state = tchart->min_freq;
1035                         svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1036                 }
1037                 pwr = pwr->next;
1038         }
1039 }
1040
1041 static void draw_wakeups(struct timechart *tchart)
1042 {
1043         struct wake_event *we;
1044         struct per_pid *p;
1045         struct per_pidcomm *c;
1046
1047         we = tchart->wake_events;
1048         while (we) {
1049                 int from = 0, to = 0;
1050                 char *task_from = NULL, *task_to = NULL;
1051
1052                 /* locate the column of the waker and wakee */
1053                 p = tchart->all_data;
1054                 while (p) {
1055                         if (p->pid == we->waker || p->pid == we->wakee) {
1056                                 c = p->all;
1057                                 while (c) {
1058                                         if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
1059                                                 if (p->pid == we->waker && !from) {
1060                                                         from = c->Y;
1061                                                         task_from = strdup(c->comm);
1062                                                 }
1063                                                 if (p->pid == we->wakee && !to) {
1064                                                         to = c->Y;
1065                                                         task_to = strdup(c->comm);
1066                                                 }
1067                                         }
1068                                         c = c->next;
1069                                 }
1070                                 c = p->all;
1071                                 while (c) {
1072                                         if (p->pid == we->waker && !from) {
1073                                                 from = c->Y;
1074                                                 task_from = strdup(c->comm);
1075                                         }
1076                                         if (p->pid == we->wakee && !to) {
1077                                                 to = c->Y;
1078                                                 task_to = strdup(c->comm);
1079                                         }
1080                                         c = c->next;
1081                                 }
1082                         }
1083                         p = p->next;
1084                 }
1085
1086                 if (!task_from) {
1087                         task_from = malloc(40);
1088                         sprintf(task_from, "[%i]", we->waker);
1089                 }
1090                 if (!task_to) {
1091                         task_to = malloc(40);
1092                         sprintf(task_to, "[%i]", we->wakee);
1093                 }
1094
1095                 if (we->waker == -1)
1096                         svg_interrupt(we->time, to, we->backtrace);
1097                 else if (from && to && abs(from - to) == 1)
1098                         svg_wakeline(we->time, from, to, we->backtrace);
1099                 else
1100                         svg_partial_wakeline(we->time, from, task_from, to,
1101                                              task_to, we->backtrace);
1102                 we = we->next;
1103
1104                 free(task_from);
1105                 free(task_to);
1106         }
1107 }
1108
1109 static void draw_cpu_usage(struct timechart *tchart)
1110 {
1111         struct per_pid *p;
1112         struct per_pidcomm *c;
1113         struct cpu_sample *sample;
1114         p = tchart->all_data;
1115         while (p) {
1116                 c = p->all;
1117                 while (c) {
1118                         sample = c->samples;
1119                         while (sample) {
1120                                 if (sample->type == TYPE_RUNNING) {
1121                                         svg_process(sample->cpu,
1122                                                     sample->start_time,
1123                                                     sample->end_time,
1124                                                     p->pid,
1125                                                     c->comm,
1126                                                     sample->backtrace);
1127                                 }
1128
1129                                 sample = sample->next;
1130                         }
1131                         c = c->next;
1132                 }
1133                 p = p->next;
1134         }
1135 }
1136
1137 static void draw_io_bars(struct timechart *tchart)
1138 {
1139         const char *suf;
1140         double bytes;
1141         char comm[256];
1142         struct per_pid *p;
1143         struct per_pidcomm *c;
1144         struct io_sample *sample;
1145         int Y = 1;
1146
1147         p = tchart->all_data;
1148         while (p) {
1149                 c = p->all;
1150                 while (c) {
1151                         if (!c->display) {
1152                                 c->Y = 0;
1153                                 c = c->next;
1154                                 continue;
1155                         }
1156
1157                         svg_box(Y, c->start_time, c->end_time, "process3");
1158                         sample = c->io_samples;
1159                         for (sample = c->io_samples; sample; sample = sample->next) {
1160                                 double h = (double)sample->bytes / c->max_bytes;
1161
1162                                 if (tchart->skip_eagain &&
1163                                     sample->err == -EAGAIN)
1164                                         continue;
1165
1166                                 if (sample->err)
1167                                         h = 1;
1168
1169                                 if (sample->type == IOTYPE_SYNC)
1170                                         svg_fbox(Y,
1171                                                 sample->start_time,
1172                                                 sample->end_time,
1173                                                 1,
1174                                                 sample->err ? "error" : "sync",
1175                                                 sample->fd,
1176                                                 sample->err,
1177                                                 sample->merges);
1178                                 else if (sample->type == IOTYPE_POLL)
1179                                         svg_fbox(Y,
1180                                                 sample->start_time,
1181                                                 sample->end_time,
1182                                                 1,
1183                                                 sample->err ? "error" : "poll",
1184                                                 sample->fd,
1185                                                 sample->err,
1186                                                 sample->merges);
1187                                 else if (sample->type == IOTYPE_READ)
1188                                         svg_ubox(Y,
1189                                                 sample->start_time,
1190                                                 sample->end_time,
1191                                                 h,
1192                                                 sample->err ? "error" : "disk",
1193                                                 sample->fd,
1194                                                 sample->err,
1195                                                 sample->merges);
1196                                 else if (sample->type == IOTYPE_WRITE)
1197                                         svg_lbox(Y,
1198                                                 sample->start_time,
1199                                                 sample->end_time,
1200                                                 h,
1201                                                 sample->err ? "error" : "disk",
1202                                                 sample->fd,
1203                                                 sample->err,
1204                                                 sample->merges);
1205                                 else if (sample->type == IOTYPE_RX)
1206                                         svg_ubox(Y,
1207                                                 sample->start_time,
1208                                                 sample->end_time,
1209                                                 h,
1210                                                 sample->err ? "error" : "net",
1211                                                 sample->fd,
1212                                                 sample->err,
1213                                                 sample->merges);
1214                                 else if (sample->type == IOTYPE_TX)
1215                                         svg_lbox(Y,
1216                                                 sample->start_time,
1217                                                 sample->end_time,
1218                                                 h,
1219                                                 sample->err ? "error" : "net",
1220                                                 sample->fd,
1221                                                 sample->err,
1222                                                 sample->merges);
1223                         }
1224
1225                         suf = "";
1226                         bytes = c->total_bytes;
1227                         if (bytes > 1024) {
1228                                 bytes = bytes / 1024;
1229                                 suf = "K";
1230                         }
1231                         if (bytes > 1024) {
1232                                 bytes = bytes / 1024;
1233                                 suf = "M";
1234                         }
1235                         if (bytes > 1024) {
1236                                 bytes = bytes / 1024;
1237                                 suf = "G";
1238                         }
1239
1240
1241                         sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1242                         svg_text(Y, c->start_time, comm);
1243
1244                         c->Y = Y;
1245                         Y++;
1246                         c = c->next;
1247                 }
1248                 p = p->next;
1249         }
1250 }
1251
1252 static void draw_process_bars(struct timechart *tchart)
1253 {
1254         struct per_pid *p;
1255         struct per_pidcomm *c;
1256         struct cpu_sample *sample;
1257         int Y = 0;
1258
1259         Y = 2 * tchart->numcpus + 2;
1260
1261         p = tchart->all_data;
1262         while (p) {
1263                 c = p->all;
1264                 while (c) {
1265                         if (!c->display) {
1266                                 c->Y = 0;
1267                                 c = c->next;
1268                                 continue;
1269                         }
1270
1271                         svg_box(Y, c->start_time, c->end_time, "process");
1272                         sample = c->samples;
1273                         while (sample) {
1274                                 if (sample->type == TYPE_RUNNING)
1275                                         svg_running(Y, sample->cpu,
1276                                                     sample->start_time,
1277                                                     sample->end_time,
1278                                                     sample->backtrace);
1279                                 if (sample->type == TYPE_BLOCKED)
1280                                         svg_blocked(Y, sample->cpu,
1281                                                     sample->start_time,
1282                                                     sample->end_time,
1283                                                     sample->backtrace);
1284                                 if (sample->type == TYPE_WAITING)
1285                                         svg_waiting(Y, sample->cpu,
1286                                                     sample->start_time,
1287                                                     sample->end_time,
1288                                                     sample->backtrace);
1289                                 sample = sample->next;
1290                         }
1291
1292                         if (c->comm) {
1293                                 char comm[256];
1294                                 if (c->total_time > 5000000000) /* 5 seconds */
1295                                         sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / (double)NSEC_PER_SEC);
1296                                 else
1297                                         sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / (double)NSEC_PER_MSEC);
1298
1299                                 svg_text(Y, c->start_time, comm);
1300                         }
1301                         c->Y = Y;
1302                         Y++;
1303                         c = c->next;
1304                 }
1305                 p = p->next;
1306         }
1307 }
1308
1309 static void add_process_filter(const char *string)
1310 {
1311         int pid = strtoull(string, NULL, 10);
1312         struct process_filter *filt = malloc(sizeof(*filt));
1313
1314         if (!filt)
1315                 return;
1316
1317         filt->name = strdup(string);
1318         filt->pid  = pid;
1319         filt->next = process_filter;
1320
1321         process_filter = filt;
1322 }
1323
1324 static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1325 {
1326         struct process_filter *filt;
1327         if (!process_filter)
1328                 return 1;
1329
1330         filt = process_filter;
1331         while (filt) {
1332                 if (filt->pid && p->pid == filt->pid)
1333                         return 1;
1334                 if (strcmp(filt->name, c->comm) == 0)
1335                         return 1;
1336                 filt = filt->next;
1337         }
1338         return 0;
1339 }
1340
1341 static int determine_display_tasks_filtered(struct timechart *tchart)
1342 {
1343         struct per_pid *p;
1344         struct per_pidcomm *c;
1345         int count = 0;
1346
1347         p = tchart->all_data;
1348         while (p) {
1349                 p->display = 0;
1350                 if (p->start_time == 1)
1351                         p->start_time = tchart->first_time;
1352
1353                 /* no exit marker, task kept running to the end */
1354                 if (p->end_time == 0)
1355                         p->end_time = tchart->last_time;
1356
1357                 c = p->all;
1358
1359                 while (c) {
1360                         c->display = 0;
1361
1362                         if (c->start_time == 1)
1363                                 c->start_time = tchart->first_time;
1364
1365                         if (passes_filter(p, c)) {
1366                                 c->display = 1;
1367                                 p->display = 1;
1368                                 count++;
1369                         }
1370
1371                         if (c->end_time == 0)
1372                                 c->end_time = tchart->last_time;
1373
1374                         c = c->next;
1375                 }
1376                 p = p->next;
1377         }
1378         return count;
1379 }
1380
1381 static int determine_display_tasks(struct timechart *tchart, u64 threshold)
1382 {
1383         struct per_pid *p;
1384         struct per_pidcomm *c;
1385         int count = 0;
1386
1387         p = tchart->all_data;
1388         while (p) {
1389                 p->display = 0;
1390                 if (p->start_time == 1)
1391                         p->start_time = tchart->first_time;
1392
1393                 /* no exit marker, task kept running to the end */
1394                 if (p->end_time == 0)
1395                         p->end_time = tchart->last_time;
1396                 if (p->total_time >= threshold)
1397                         p->display = 1;
1398
1399                 c = p->all;
1400
1401                 while (c) {
1402                         c->display = 0;
1403
1404                         if (c->start_time == 1)
1405                                 c->start_time = tchart->first_time;
1406
1407                         if (c->total_time >= threshold) {
1408                                 c->display = 1;
1409                                 count++;
1410                         }
1411
1412                         if (c->end_time == 0)
1413                                 c->end_time = tchart->last_time;
1414
1415                         c = c->next;
1416                 }
1417                 p = p->next;
1418         }
1419         return count;
1420 }
1421
1422 static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1423 {
1424         struct per_pid *p;
1425         struct per_pidcomm *c;
1426         int count = 0;
1427
1428         p = timechart->all_data;
1429         while (p) {
1430                 /* no exit marker, task kept running to the end */
1431                 if (p->end_time == 0)
1432                         p->end_time = timechart->last_time;
1433
1434                 c = p->all;
1435
1436                 while (c) {
1437                         c->display = 0;
1438
1439                         if (c->total_bytes >= threshold) {
1440                                 c->display = 1;
1441                                 count++;
1442                         }
1443
1444                         if (c->end_time == 0)
1445                                 c->end_time = timechart->last_time;
1446
1447                         c = c->next;
1448                 }
1449                 p = p->next;
1450         }
1451         return count;
1452 }
1453
1454 #define BYTES_THRESH (1 * 1024 * 1024)
1455 #define TIME_THRESH 10000000
1456
1457 static void write_svg_file(struct timechart *tchart, const char *filename)
1458 {
1459         u64 i;
1460         int count;
1461         int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
1462
1463         if (tchart->power_only)
1464                 tchart->proc_num = 0;
1465
1466         /* We'd like to show at least proc_num tasks;
1467          * be less picky if we have fewer */
1468         do {
1469                 if (process_filter)
1470                         count = determine_display_tasks_filtered(tchart);
1471                 else if (tchart->io_events)
1472                         count = determine_display_io_tasks(tchart, thresh);
1473                 else
1474                         count = determine_display_tasks(tchart, thresh);
1475                 thresh /= 10;
1476         } while (!process_filter && thresh && count < tchart->proc_num);
1477
1478         if (!tchart->proc_num)
1479                 count = 0;
1480
1481         if (tchart->io_events) {
1482                 open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
1483
1484                 svg_time_grid(0.5);
1485                 svg_io_legenda();
1486
1487                 draw_io_bars(tchart);
1488         } else {
1489                 open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1490
1491                 svg_time_grid(0);
1492
1493                 svg_legenda();
1494
1495                 for (i = 0; i < tchart->numcpus; i++)
1496                         svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1497
1498                 draw_cpu_usage(tchart);
1499                 if (tchart->proc_num)
1500                         draw_process_bars(tchart);
1501                 if (!tchart->tasks_only)
1502                         draw_c_p_states(tchart);
1503                 if (tchart->proc_num)
1504                         draw_wakeups(tchart);
1505         }
1506
1507         svg_close();
1508 }
1509
1510 static int process_header(struct perf_file_section *section __maybe_unused,
1511                           struct perf_header *ph,
1512                           int feat,
1513                           int fd __maybe_unused,
1514                           void *data)
1515 {
1516         struct timechart *tchart = data;
1517
1518         switch (feat) {
1519         case HEADER_NRCPUS:
1520                 tchart->numcpus = ph->env.nr_cpus_avail;
1521                 break;
1522
1523         case HEADER_CPU_TOPOLOGY:
1524                 if (!tchart->topology)
1525                         break;
1526
1527                 if (svg_build_topology_map(&ph->env))
1528                         fprintf(stderr, "problem building topology\n");
1529                 break;
1530
1531         default:
1532                 break;
1533         }
1534
1535         return 0;
1536 }
1537
1538 static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1539 {
1540         const struct evsel_str_handler power_tracepoints[] = {
1541                 { "power:cpu_idle",             process_sample_cpu_idle },
1542                 { "power:cpu_frequency",        process_sample_cpu_frequency },
1543                 { "sched:sched_wakeup",         process_sample_sched_wakeup },
1544                 { "sched:sched_switch",         process_sample_sched_switch },
1545 #ifdef SUPPORT_OLD_POWER_EVENTS
1546                 { "power:power_start",          process_sample_power_start },
1547                 { "power:power_end",            process_sample_power_end },
1548                 { "power:power_frequency",      process_sample_power_frequency },
1549 #endif
1550
1551                 { "syscalls:sys_enter_read",            process_enter_read },
1552                 { "syscalls:sys_enter_pread64",         process_enter_read },
1553                 { "syscalls:sys_enter_readv",           process_enter_read },
1554                 { "syscalls:sys_enter_preadv",          process_enter_read },
1555                 { "syscalls:sys_enter_write",           process_enter_write },
1556                 { "syscalls:sys_enter_pwrite64",        process_enter_write },
1557                 { "syscalls:sys_enter_writev",          process_enter_write },
1558                 { "syscalls:sys_enter_pwritev",         process_enter_write },
1559                 { "syscalls:sys_enter_sync",            process_enter_sync },
1560                 { "syscalls:sys_enter_sync_file_range", process_enter_sync },
1561                 { "syscalls:sys_enter_fsync",           process_enter_sync },
1562                 { "syscalls:sys_enter_msync",           process_enter_sync },
1563                 { "syscalls:sys_enter_recvfrom",        process_enter_rx },
1564                 { "syscalls:sys_enter_recvmmsg",        process_enter_rx },
1565                 { "syscalls:sys_enter_recvmsg",         process_enter_rx },
1566                 { "syscalls:sys_enter_sendto",          process_enter_tx },
1567                 { "syscalls:sys_enter_sendmsg",         process_enter_tx },
1568                 { "syscalls:sys_enter_sendmmsg",        process_enter_tx },
1569                 { "syscalls:sys_enter_epoll_pwait",     process_enter_poll },
1570                 { "syscalls:sys_enter_epoll_wait",      process_enter_poll },
1571                 { "syscalls:sys_enter_poll",            process_enter_poll },
1572                 { "syscalls:sys_enter_ppoll",           process_enter_poll },
1573                 { "syscalls:sys_enter_pselect6",        process_enter_poll },
1574                 { "syscalls:sys_enter_select",          process_enter_poll },
1575
1576                 { "syscalls:sys_exit_read",             process_exit_read },
1577                 { "syscalls:sys_exit_pread64",          process_exit_read },
1578                 { "syscalls:sys_exit_readv",            process_exit_read },
1579                 { "syscalls:sys_exit_preadv",           process_exit_read },
1580                 { "syscalls:sys_exit_write",            process_exit_write },
1581                 { "syscalls:sys_exit_pwrite64",         process_exit_write },
1582                 { "syscalls:sys_exit_writev",           process_exit_write },
1583                 { "syscalls:sys_exit_pwritev",          process_exit_write },
1584                 { "syscalls:sys_exit_sync",             process_exit_sync },
1585                 { "syscalls:sys_exit_sync_file_range",  process_exit_sync },
1586                 { "syscalls:sys_exit_fsync",            process_exit_sync },
1587                 { "syscalls:sys_exit_msync",            process_exit_sync },
1588                 { "syscalls:sys_exit_recvfrom",         process_exit_rx },
1589                 { "syscalls:sys_exit_recvmmsg",         process_exit_rx },
1590                 { "syscalls:sys_exit_recvmsg",          process_exit_rx },
1591                 { "syscalls:sys_exit_sendto",           process_exit_tx },
1592                 { "syscalls:sys_exit_sendmsg",          process_exit_tx },
1593                 { "syscalls:sys_exit_sendmmsg",         process_exit_tx },
1594                 { "syscalls:sys_exit_epoll_pwait",      process_exit_poll },
1595                 { "syscalls:sys_exit_epoll_wait",       process_exit_poll },
1596                 { "syscalls:sys_exit_poll",             process_exit_poll },
1597                 { "syscalls:sys_exit_ppoll",            process_exit_poll },
1598                 { "syscalls:sys_exit_pselect6",         process_exit_poll },
1599                 { "syscalls:sys_exit_select",           process_exit_poll },
1600         };
1601         struct perf_data data = {
1602                 .path  = input_name,
1603                 .mode  = PERF_DATA_MODE_READ,
1604                 .force = tchart->force,
1605         };
1606
1607         struct perf_session *session = perf_session__new(&data, &tchart->tool);
1608         int ret = -EINVAL;
1609
1610         if (IS_ERR(session))
1611                 return PTR_ERR(session);
1612
1613         symbol__init(&session->header.env);
1614
1615         (void)perf_header__process_sections(&session->header,
1616                                             perf_data__fd(session->data),
1617                                             tchart,
1618                                             process_header);
1619
1620         if (!perf_session__has_traces(session, "timechart record"))
1621                 goto out_delete;
1622
1623         if (perf_session__set_tracepoints_handlers(session,
1624                                                    power_tracepoints)) {
1625                 pr_err("Initializing session tracepoint handlers failed\n");
1626                 goto out_delete;
1627         }
1628
1629         ret = perf_session__process_events(session);
1630         if (ret)
1631                 goto out_delete;
1632
1633         end_sample_processing(tchart);
1634
1635         sort_pids(tchart);
1636
1637         write_svg_file(tchart, output_name);
1638
1639         pr_info("Written %2.1f seconds of trace to %s.\n",
1640                 (tchart->last_time - tchart->first_time) / (double)NSEC_PER_SEC, output_name);
1641 out_delete:
1642         perf_session__delete(session);
1643         return ret;
1644 }
1645
1646 static int timechart__io_record(int argc, const char **argv)
1647 {
1648         unsigned int rec_argc, i;
1649         const char **rec_argv;
1650         const char **p;
1651         char *filter = NULL;
1652
1653         const char * const common_args[] = {
1654                 "record", "-a", "-R", "-c", "1",
1655         };
1656         unsigned int common_args_nr = ARRAY_SIZE(common_args);
1657
1658         const char * const disk_events[] = {
1659                 "syscalls:sys_enter_read",
1660                 "syscalls:sys_enter_pread64",
1661                 "syscalls:sys_enter_readv",
1662                 "syscalls:sys_enter_preadv",
1663                 "syscalls:sys_enter_write",
1664                 "syscalls:sys_enter_pwrite64",
1665                 "syscalls:sys_enter_writev",
1666                 "syscalls:sys_enter_pwritev",
1667                 "syscalls:sys_enter_sync",
1668                 "syscalls:sys_enter_sync_file_range",
1669                 "syscalls:sys_enter_fsync",
1670                 "syscalls:sys_enter_msync",
1671
1672                 "syscalls:sys_exit_read",
1673                 "syscalls:sys_exit_pread64",
1674                 "syscalls:sys_exit_readv",
1675                 "syscalls:sys_exit_preadv",
1676                 "syscalls:sys_exit_write",
1677                 "syscalls:sys_exit_pwrite64",
1678                 "syscalls:sys_exit_writev",
1679                 "syscalls:sys_exit_pwritev",
1680                 "syscalls:sys_exit_sync",
1681                 "syscalls:sys_exit_sync_file_range",
1682                 "syscalls:sys_exit_fsync",
1683                 "syscalls:sys_exit_msync",
1684         };
1685         unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1686
1687         const char * const net_events[] = {
1688                 "syscalls:sys_enter_recvfrom",
1689                 "syscalls:sys_enter_recvmmsg",
1690                 "syscalls:sys_enter_recvmsg",
1691                 "syscalls:sys_enter_sendto",
1692                 "syscalls:sys_enter_sendmsg",
1693                 "syscalls:sys_enter_sendmmsg",
1694
1695                 "syscalls:sys_exit_recvfrom",
1696                 "syscalls:sys_exit_recvmmsg",
1697                 "syscalls:sys_exit_recvmsg",
1698                 "syscalls:sys_exit_sendto",
1699                 "syscalls:sys_exit_sendmsg",
1700                 "syscalls:sys_exit_sendmmsg",
1701         };
1702         unsigned int net_events_nr = ARRAY_SIZE(net_events);
1703
1704         const char * const poll_events[] = {
1705                 "syscalls:sys_enter_epoll_pwait",
1706                 "syscalls:sys_enter_epoll_wait",
1707                 "syscalls:sys_enter_poll",
1708                 "syscalls:sys_enter_ppoll",
1709                 "syscalls:sys_enter_pselect6",
1710                 "syscalls:sys_enter_select",
1711
1712                 "syscalls:sys_exit_epoll_pwait",
1713                 "syscalls:sys_exit_epoll_wait",
1714                 "syscalls:sys_exit_poll",
1715                 "syscalls:sys_exit_ppoll",
1716                 "syscalls:sys_exit_pselect6",
1717                 "syscalls:sys_exit_select",
1718         };
1719         unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1720
1721         rec_argc = common_args_nr +
1722                 disk_events_nr * 4 +
1723                 net_events_nr * 4 +
1724                 poll_events_nr * 4 +
1725                 argc;
1726         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1727
1728         if (rec_argv == NULL)
1729                 return -ENOMEM;
1730
1731         if (asprintf(&filter, "common_pid != %d", getpid()) < 0) {
1732                 free(rec_argv);
1733                 return -ENOMEM;
1734         }
1735
1736         p = rec_argv;
1737         for (i = 0; i < common_args_nr; i++)
1738                 *p++ = strdup(common_args[i]);
1739
1740         for (i = 0; i < disk_events_nr; i++) {
1741                 if (!is_valid_tracepoint(disk_events[i])) {
1742                         rec_argc -= 4;
1743                         continue;
1744                 }
1745
1746                 *p++ = "-e";
1747                 *p++ = strdup(disk_events[i]);
1748                 *p++ = "--filter";
1749                 *p++ = filter;
1750         }
1751         for (i = 0; i < net_events_nr; i++) {
1752                 if (!is_valid_tracepoint(net_events[i])) {
1753                         rec_argc -= 4;
1754                         continue;
1755                 }
1756
1757                 *p++ = "-e";
1758                 *p++ = strdup(net_events[i]);
1759                 *p++ = "--filter";
1760                 *p++ = filter;
1761         }
1762         for (i = 0; i < poll_events_nr; i++) {
1763                 if (!is_valid_tracepoint(poll_events[i])) {
1764                         rec_argc -= 4;
1765                         continue;
1766                 }
1767
1768                 *p++ = "-e";
1769                 *p++ = strdup(poll_events[i]);
1770                 *p++ = "--filter";
1771                 *p++ = filter;
1772         }
1773
1774         for (i = 0; i < (unsigned int)argc; i++)
1775                 *p++ = argv[i];
1776
1777         return cmd_record(rec_argc, rec_argv);
1778 }
1779
1780
1781 static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1782 {
1783         unsigned int rec_argc, i, j;
1784         const char **rec_argv;
1785         const char **p;
1786         unsigned int record_elems;
1787
1788         const char * const common_args[] = {
1789                 "record", "-a", "-R", "-c", "1",
1790         };
1791         unsigned int common_args_nr = ARRAY_SIZE(common_args);
1792
1793         const char * const backtrace_args[] = {
1794                 "-g",
1795         };
1796         unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1797
1798         const char * const power_args[] = {
1799                 "-e", "power:cpu_frequency",
1800                 "-e", "power:cpu_idle",
1801         };
1802         unsigned int power_args_nr = ARRAY_SIZE(power_args);
1803
1804         const char * const old_power_args[] = {
1805 #ifdef SUPPORT_OLD_POWER_EVENTS
1806                 "-e", "power:power_start",
1807                 "-e", "power:power_end",
1808                 "-e", "power:power_frequency",
1809 #endif
1810         };
1811         unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1812
1813         const char * const tasks_args[] = {
1814                 "-e", "sched:sched_wakeup",
1815                 "-e", "sched:sched_switch",
1816         };
1817         unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1818
1819 #ifdef SUPPORT_OLD_POWER_EVENTS
1820         if (!is_valid_tracepoint("power:cpu_idle") &&
1821             is_valid_tracepoint("power:power_start")) {
1822                 use_old_power_events = 1;
1823                 power_args_nr = 0;
1824         } else {
1825                 old_power_args_nr = 0;
1826         }
1827 #endif
1828
1829         if (tchart->power_only)
1830                 tasks_args_nr = 0;
1831
1832         if (tchart->tasks_only) {
1833                 power_args_nr = 0;
1834                 old_power_args_nr = 0;
1835         }
1836
1837         if (!tchart->with_backtrace)
1838                 backtrace_args_no = 0;
1839
1840         record_elems = common_args_nr + tasks_args_nr +
1841                 power_args_nr + old_power_args_nr + backtrace_args_no;
1842
1843         rec_argc = record_elems + argc;
1844         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1845
1846         if (rec_argv == NULL)
1847                 return -ENOMEM;
1848
1849         p = rec_argv;
1850         for (i = 0; i < common_args_nr; i++)
1851                 *p++ = strdup(common_args[i]);
1852
1853         for (i = 0; i < backtrace_args_no; i++)
1854                 *p++ = strdup(backtrace_args[i]);
1855
1856         for (i = 0; i < tasks_args_nr; i++)
1857                 *p++ = strdup(tasks_args[i]);
1858
1859         for (i = 0; i < power_args_nr; i++)
1860                 *p++ = strdup(power_args[i]);
1861
1862         for (i = 0; i < old_power_args_nr; i++)
1863                 *p++ = strdup(old_power_args[i]);
1864
1865         for (j = 0; j < (unsigned int)argc; j++)
1866                 *p++ = argv[j];
1867
1868         return cmd_record(rec_argc, rec_argv);
1869 }
1870
1871 static int
1872 parse_process(const struct option *opt __maybe_unused, const char *arg,
1873               int __maybe_unused unset)
1874 {
1875         if (arg)
1876                 add_process_filter(arg);
1877         return 0;
1878 }
1879
1880 static int
1881 parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1882                 int __maybe_unused unset)
1883 {
1884         unsigned long duration = strtoul(arg, NULL, 0);
1885
1886         if (svg_highlight || svg_highlight_name)
1887                 return -1;
1888
1889         if (duration)
1890                 svg_highlight = duration;
1891         else
1892                 svg_highlight_name = strdup(arg);
1893
1894         return 0;
1895 }
1896
1897 static int
1898 parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1899 {
1900         char unit = 'n';
1901         u64 *value = opt->value;
1902
1903         if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1904                 switch (unit) {
1905                 case 'm':
1906                         *value *= NSEC_PER_MSEC;
1907                         break;
1908                 case 'u':
1909                         *value *= NSEC_PER_USEC;
1910                         break;
1911                 case 'n':
1912                         break;
1913                 default:
1914                         return -1;
1915                 }
1916         }
1917
1918         return 0;
1919 }
1920
1921 int cmd_timechart(int argc, const char **argv)
1922 {
1923         struct timechart tchart = {
1924                 .tool = {
1925                         .comm            = process_comm_event,
1926                         .fork            = process_fork_event,
1927                         .exit            = process_exit_event,
1928                         .sample          = process_sample_event,
1929                         .ordered_events  = true,
1930                 },
1931                 .proc_num = 15,
1932                 .min_time = NSEC_PER_MSEC,
1933                 .merge_dist = 1000,
1934         };
1935         const char *output_name = "output.svg";
1936         const struct option timechart_common_options[] = {
1937         OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1938         OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only, "output processes data only"),
1939         OPT_END()
1940         };
1941         const struct option timechart_options[] = {
1942         OPT_STRING('i', "input", &input_name, "file", "input file name"),
1943         OPT_STRING('o', "output", &output_name, "file", "output file name"),
1944         OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1945         OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1946                       "highlight tasks. Pass duration in ns or process name.",
1947                        parse_highlight),
1948         OPT_CALLBACK('p', "process", NULL, "process",
1949                       "process selector. Pass a pid or process name.",
1950                        parse_process),
1951         OPT_CALLBACK(0, "symfs", NULL, "directory",
1952                      "Look for files with symbols relative to this directory",
1953                      symbol__config_symfs),
1954         OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1955                     "min. number of tasks to print"),
1956         OPT_BOOLEAN('t', "topology", &tchart.topology,
1957                     "sort CPUs according to topology"),
1958         OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1959                     "skip EAGAIN errors"),
1960         OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1961                      "all IO faster than min-time will visually appear longer",
1962                      parse_time),
1963         OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1964                      "merge events that are merge-dist us apart",
1965                      parse_time),
1966         OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
1967         OPT_PARENT(timechart_common_options),
1968         };
1969         const char * const timechart_subcommands[] = { "record", NULL };
1970         const char *timechart_usage[] = {
1971                 "perf timechart [<options>] {record}",
1972                 NULL
1973         };
1974         const struct option timechart_record_options[] = {
1975         OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1976                     "record only IO data"),
1977         OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1978         OPT_PARENT(timechart_common_options),
1979         };
1980         const char * const timechart_record_usage[] = {
1981                 "perf timechart record [<options>]",
1982                 NULL
1983         };
1984         argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
1985                         timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1986
1987         if (tchart.power_only && tchart.tasks_only) {
1988                 pr_err("-P and -T options cannot be used at the same time.\n");
1989                 return -1;
1990         }
1991
1992         if (argc && strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
1993                 argc = parse_options(argc, argv, timechart_record_options,
1994                                      timechart_record_usage,
1995                                      PARSE_OPT_STOP_AT_NON_OPTION);
1996
1997                 if (tchart.power_only && tchart.tasks_only) {
1998                         pr_err("-P and -T options cannot be used at the same time.\n");
1999                         return -1;
2000                 }
2001
2002                 if (tchart.io_only)
2003                         return timechart__io_record(argc, argv);
2004                 else
2005                         return timechart__record(&tchart, argc, argv);
2006         } else if (argc)
2007                 usage_with_options(timechart_usage, timechart_options);
2008
2009         setup_pager();
2010
2011         return __cmd_timechart(&tchart, output_name);
2012 }