Merge tag 'mmc-v5.17-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[linux.git] / drivers / acpi / cppc_acpi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
4  *
5  * (C) Copyright 2014, 2015 Linaro Ltd.
6  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
7  *
8  * CPPC describes a few methods for controlling CPU performance using
9  * information from a per CPU table called CPC. This table is described in
10  * the ACPI v5.0+ specification. The table consists of a list of
11  * registers which may be memory mapped or hardware registers and also may
12  * include some static integer values.
13  *
14  * CPU performance is on an abstract continuous scale as against a discretized
15  * P-state scale which is tied to CPU frequency only. In brief, the basic
16  * operation involves:
17  *
18  * - OS makes a CPU performance request. (Can provide min and max bounds)
19  *
20  * - Platform (such as BMC) is free to optimize request within requested bounds
21  *   depending on power/thermal budgets etc.
22  *
23  * - Platform conveys its decision back to OS
24  *
25  * The communication between OS and platform occurs through another medium
26  * called (PCC) Platform Communication Channel. This is a generic mailbox like
27  * mechanism which includes doorbell semantics to indicate register updates.
28  * See drivers/mailbox/pcc.c for details on PCC.
29  *
30  * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31  * above specifications.
32  */
33
34 #define pr_fmt(fmt)     "ACPI CPPC: " fmt
35
36 #include <linux/delay.h>
37 #include <linux/iopoll.h>
38 #include <linux/ktime.h>
39 #include <linux/rwsem.h>
40 #include <linux/wait.h>
41 #include <linux/topology.h>
42
43 #include <acpi/cppc_acpi.h>
44
45 struct cppc_pcc_data {
46         struct pcc_mbox_chan *pcc_channel;
47         void __iomem *pcc_comm_addr;
48         bool pcc_channel_acquired;
49         unsigned int deadline_us;
50         unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
51
52         bool pending_pcc_write_cmd;     /* Any pending/batched PCC write cmds? */
53         bool platform_owns_pcc;         /* Ownership of PCC subspace */
54         unsigned int pcc_write_cnt;     /* Running count of PCC write commands */
55
56         /*
57          * Lock to provide controlled access to the PCC channel.
58          *
59          * For performance critical usecases(currently cppc_set_perf)
60          *      We need to take read_lock and check if channel belongs to OSPM
61          * before reading or writing to PCC subspace
62          *      We need to take write_lock before transferring the channel
63          * ownership to the platform via a Doorbell
64          *      This allows us to batch a number of CPPC requests if they happen
65          * to originate in about the same time
66          *
67          * For non-performance critical usecases(init)
68          *      Take write_lock for all purposes which gives exclusive access
69          */
70         struct rw_semaphore pcc_lock;
71
72         /* Wait queue for CPUs whose requests were batched */
73         wait_queue_head_t pcc_write_wait_q;
74         ktime_t last_cmd_cmpl_time;
75         ktime_t last_mpar_reset;
76         int mpar_count;
77         int refcount;
78 };
79
80 /* Array to represent the PCC channel per subspace ID */
81 static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
82 /* The cpu_pcc_subspace_idx contains per CPU subspace ID */
83 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
84
85 /*
86  * The cpc_desc structure contains the ACPI register details
87  * as described in the per CPU _CPC tables. The details
88  * include the type of register (e.g. PCC, System IO, FFH etc.)
89  * and destination addresses which lets us READ/WRITE CPU performance
90  * information using the appropriate I/O methods.
91  */
92 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
93
94 /* pcc mapped address + header size + offset within PCC subspace */
95 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
96                                                 0x8 + (offs))
97
98 /* Check if a CPC register is in PCC */
99 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&             \
100                                 (cpc)->cpc_entry.reg.space_id ==        \
101                                 ACPI_ADR_SPACE_PLATFORM_COMM)
102
103 /* Evaluates to True if reg is a NULL register descriptor */
104 #define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
105                                 (reg)->address == 0 &&                  \
106                                 (reg)->bit_width == 0 &&                \
107                                 (reg)->bit_offset == 0 &&               \
108                                 (reg)->access_width == 0)
109
110 /* Evaluates to True if an optional cpc field is supported */
111 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?          \
112                                 !!(cpc)->cpc_entry.int_value :          \
113                                 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
114 /*
115  * Arbitrary Retries in case the remote processor is slow to respond
116  * to PCC commands. Keeping it high enough to cover emulators where
117  * the processors run painfully slow.
118  */
119 #define NUM_RETRIES 500ULL
120
121 #define OVER_16BTS_MASK ~0xFFFFULL
122
123 #define define_one_cppc_ro(_name)               \
124 static struct kobj_attribute _name =            \
125 __ATTR(_name, 0444, show_##_name, NULL)
126
127 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
128
129 #define show_cppc_data(access_fn, struct_name, member_name)             \
130         static ssize_t show_##member_name(struct kobject *kobj,         \
131                                 struct kobj_attribute *attr, char *buf) \
132         {                                                               \
133                 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);           \
134                 struct struct_name st_name = {0};                       \
135                 int ret;                                                \
136                                                                         \
137                 ret = access_fn(cpc_ptr->cpu_id, &st_name);             \
138                 if (ret)                                                \
139                         return ret;                                     \
140                                                                         \
141                 return scnprintf(buf, PAGE_SIZE, "%llu\n",              \
142                                 (u64)st_name.member_name);              \
143         }                                                               \
144         define_one_cppc_ro(member_name)
145
146 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
147 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
148 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
149 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
150 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
151 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
152
153 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
154 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
155
156 static ssize_t show_feedback_ctrs(struct kobject *kobj,
157                 struct kobj_attribute *attr, char *buf)
158 {
159         struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
160         struct cppc_perf_fb_ctrs fb_ctrs = {0};
161         int ret;
162
163         ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
164         if (ret)
165                 return ret;
166
167         return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
168                         fb_ctrs.reference, fb_ctrs.delivered);
169 }
170 define_one_cppc_ro(feedback_ctrs);
171
172 static struct attribute *cppc_attrs[] = {
173         &feedback_ctrs.attr,
174         &reference_perf.attr,
175         &wraparound_time.attr,
176         &highest_perf.attr,
177         &lowest_perf.attr,
178         &lowest_nonlinear_perf.attr,
179         &nominal_perf.attr,
180         &nominal_freq.attr,
181         &lowest_freq.attr,
182         NULL
183 };
184 ATTRIBUTE_GROUPS(cppc);
185
186 static struct kobj_type cppc_ktype = {
187         .sysfs_ops = &kobj_sysfs_ops,
188         .default_groups = cppc_groups,
189 };
190
191 static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
192 {
193         int ret, status;
194         struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
195         struct acpi_pcct_shared_memory __iomem *generic_comm_base =
196                 pcc_ss_data->pcc_comm_addr;
197
198         if (!pcc_ss_data->platform_owns_pcc)
199                 return 0;
200
201         /*
202          * Poll PCC status register every 3us(delay_us) for maximum of
203          * deadline_us(timeout_us) until PCC command complete bit is set(cond)
204          */
205         ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
206                                         status & PCC_CMD_COMPLETE_MASK, 3,
207                                         pcc_ss_data->deadline_us);
208
209         if (likely(!ret)) {
210                 pcc_ss_data->platform_owns_pcc = false;
211                 if (chk_err_bit && (status & PCC_ERROR_MASK))
212                         ret = -EIO;
213         }
214
215         if (unlikely(ret))
216                 pr_err("PCC check channel failed for ss: %d. ret=%d\n",
217                        pcc_ss_id, ret);
218
219         return ret;
220 }
221
222 /*
223  * This function transfers the ownership of the PCC to the platform
224  * So it must be called while holding write_lock(pcc_lock)
225  */
226 static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
227 {
228         int ret = -EIO, i;
229         struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
230         struct acpi_pcct_shared_memory __iomem *generic_comm_base =
231                 pcc_ss_data->pcc_comm_addr;
232         unsigned int time_delta;
233
234         /*
235          * For CMD_WRITE we know for a fact the caller should have checked
236          * the channel before writing to PCC space
237          */
238         if (cmd == CMD_READ) {
239                 /*
240                  * If there are pending cpc_writes, then we stole the channel
241                  * before write completion, so first send a WRITE command to
242                  * platform
243                  */
244                 if (pcc_ss_data->pending_pcc_write_cmd)
245                         send_pcc_cmd(pcc_ss_id, CMD_WRITE);
246
247                 ret = check_pcc_chan(pcc_ss_id, false);
248                 if (ret)
249                         goto end;
250         } else /* CMD_WRITE */
251                 pcc_ss_data->pending_pcc_write_cmd = FALSE;
252
253         /*
254          * Handle the Minimum Request Turnaround Time(MRTT)
255          * "The minimum amount of time that OSPM must wait after the completion
256          * of a command before issuing the next command, in microseconds"
257          */
258         if (pcc_ss_data->pcc_mrtt) {
259                 time_delta = ktime_us_delta(ktime_get(),
260                                             pcc_ss_data->last_cmd_cmpl_time);
261                 if (pcc_ss_data->pcc_mrtt > time_delta)
262                         udelay(pcc_ss_data->pcc_mrtt - time_delta);
263         }
264
265         /*
266          * Handle the non-zero Maximum Periodic Access Rate(MPAR)
267          * "The maximum number of periodic requests that the subspace channel can
268          * support, reported in commands per minute. 0 indicates no limitation."
269          *
270          * This parameter should be ideally zero or large enough so that it can
271          * handle maximum number of requests that all the cores in the system can
272          * collectively generate. If it is not, we will follow the spec and just
273          * not send the request to the platform after hitting the MPAR limit in
274          * any 60s window
275          */
276         if (pcc_ss_data->pcc_mpar) {
277                 if (pcc_ss_data->mpar_count == 0) {
278                         time_delta = ktime_ms_delta(ktime_get(),
279                                                     pcc_ss_data->last_mpar_reset);
280                         if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
281                                 pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
282                                          pcc_ss_id);
283                                 ret = -EIO;
284                                 goto end;
285                         }
286                         pcc_ss_data->last_mpar_reset = ktime_get();
287                         pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
288                 }
289                 pcc_ss_data->mpar_count--;
290         }
291
292         /* Write to the shared comm region. */
293         writew_relaxed(cmd, &generic_comm_base->command);
294
295         /* Flip CMD COMPLETE bit */
296         writew_relaxed(0, &generic_comm_base->status);
297
298         pcc_ss_data->platform_owns_pcc = true;
299
300         /* Ring doorbell */
301         ret = mbox_send_message(pcc_ss_data->pcc_channel->mchan, &cmd);
302         if (ret < 0) {
303                 pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
304                        pcc_ss_id, cmd, ret);
305                 goto end;
306         }
307
308         /* wait for completion and check for PCC errro bit */
309         ret = check_pcc_chan(pcc_ss_id, true);
310
311         if (pcc_ss_data->pcc_mrtt)
312                 pcc_ss_data->last_cmd_cmpl_time = ktime_get();
313
314         if (pcc_ss_data->pcc_channel->mchan->mbox->txdone_irq)
315                 mbox_chan_txdone(pcc_ss_data->pcc_channel->mchan, ret);
316         else
317                 mbox_client_txdone(pcc_ss_data->pcc_channel->mchan, ret);
318
319 end:
320         if (cmd == CMD_WRITE) {
321                 if (unlikely(ret)) {
322                         for_each_possible_cpu(i) {
323                                 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
324
325                                 if (!desc)
326                                         continue;
327
328                                 if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
329                                         desc->write_cmd_status = ret;
330                         }
331                 }
332                 pcc_ss_data->pcc_write_cnt++;
333                 wake_up_all(&pcc_ss_data->pcc_write_wait_q);
334         }
335
336         return ret;
337 }
338
339 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
340 {
341         if (ret < 0)
342                 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
343                                 *(u16 *)msg, ret);
344         else
345                 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
346                                 *(u16 *)msg, ret);
347 }
348
349 static struct mbox_client cppc_mbox_cl = {
350         .tx_done = cppc_chan_tx_done,
351         .knows_txdone = true,
352 };
353
354 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
355 {
356         int result = -EFAULT;
357         acpi_status status = AE_OK;
358         struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
359         struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
360         struct acpi_buffer state = {0, NULL};
361         union acpi_object  *psd = NULL;
362         struct acpi_psd_package *pdomain;
363
364         status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
365                                             &buffer, ACPI_TYPE_PACKAGE);
366         if (status == AE_NOT_FOUND)     /* _PSD is optional */
367                 return 0;
368         if (ACPI_FAILURE(status))
369                 return -ENODEV;
370
371         psd = buffer.pointer;
372         if (!psd || psd->package.count != 1) {
373                 pr_debug("Invalid _PSD data\n");
374                 goto end;
375         }
376
377         pdomain = &(cpc_ptr->domain_info);
378
379         state.length = sizeof(struct acpi_psd_package);
380         state.pointer = pdomain;
381
382         status = acpi_extract_package(&(psd->package.elements[0]),
383                 &format, &state);
384         if (ACPI_FAILURE(status)) {
385                 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
386                 goto end;
387         }
388
389         if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
390                 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
391                 goto end;
392         }
393
394         if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
395                 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
396                 goto end;
397         }
398
399         if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
400             pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
401             pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
402                 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
403                 goto end;
404         }
405
406         result = 0;
407 end:
408         kfree(buffer.pointer);
409         return result;
410 }
411
412 bool acpi_cpc_valid(void)
413 {
414         struct cpc_desc *cpc_ptr;
415         int cpu;
416
417         for_each_present_cpu(cpu) {
418                 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
419                 if (!cpc_ptr)
420                         return false;
421         }
422
423         return true;
424 }
425 EXPORT_SYMBOL_GPL(acpi_cpc_valid);
426
427 /**
428  * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu
429  * @cpu: Find all CPUs that share a domain with cpu.
430  * @cpu_data: Pointer to CPU specific CPPC data including PSD info.
431  *
432  *      Return: 0 for success or negative value for err.
433  */
434 int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data)
435 {
436         struct cpc_desc *cpc_ptr, *match_cpc_ptr;
437         struct acpi_psd_package *match_pdomain;
438         struct acpi_psd_package *pdomain;
439         int count_target, i;
440
441         /*
442          * Now that we have _PSD data from all CPUs, let's setup P-state
443          * domain info.
444          */
445         cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
446         if (!cpc_ptr)
447                 return -EFAULT;
448
449         pdomain = &(cpc_ptr->domain_info);
450         cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
451         if (pdomain->num_processors <= 1)
452                 return 0;
453
454         /* Validate the Domain info */
455         count_target = pdomain->num_processors;
456         if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
457                 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL;
458         else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
459                 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW;
460         else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
461                 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY;
462
463         for_each_possible_cpu(i) {
464                 if (i == cpu)
465                         continue;
466
467                 match_cpc_ptr = per_cpu(cpc_desc_ptr, i);
468                 if (!match_cpc_ptr)
469                         goto err_fault;
470
471                 match_pdomain = &(match_cpc_ptr->domain_info);
472                 if (match_pdomain->domain != pdomain->domain)
473                         continue;
474
475                 /* Here i and cpu are in the same domain */
476                 if (match_pdomain->num_processors != count_target)
477                         goto err_fault;
478
479                 if (pdomain->coord_type != match_pdomain->coord_type)
480                         goto err_fault;
481
482                 cpumask_set_cpu(i, cpu_data->shared_cpu_map);
483         }
484
485         return 0;
486
487 err_fault:
488         /* Assume no coordination on any error parsing domain info */
489         cpumask_clear(cpu_data->shared_cpu_map);
490         cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
491         cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE;
492
493         return -EFAULT;
494 }
495 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
496
497 static int register_pcc_channel(int pcc_ss_idx)
498 {
499         struct pcc_mbox_chan *pcc_chan;
500         u64 usecs_lat;
501
502         if (pcc_ss_idx >= 0) {
503                 pcc_chan = pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
504
505                 if (IS_ERR(pcc_chan)) {
506                         pr_err("Failed to find PCC channel for subspace %d\n",
507                                pcc_ss_idx);
508                         return -ENODEV;
509                 }
510
511                 pcc_data[pcc_ss_idx]->pcc_channel = pcc_chan;
512                 /*
513                  * cppc_ss->latency is just a Nominal value. In reality
514                  * the remote processor could be much slower to reply.
515                  * So add an arbitrary amount of wait on top of Nominal.
516                  */
517                 usecs_lat = NUM_RETRIES * pcc_chan->latency;
518                 pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
519                 pcc_data[pcc_ss_idx]->pcc_mrtt = pcc_chan->min_turnaround_time;
520                 pcc_data[pcc_ss_idx]->pcc_mpar = pcc_chan->max_access_rate;
521                 pcc_data[pcc_ss_idx]->pcc_nominal = pcc_chan->latency;
522
523                 pcc_data[pcc_ss_idx]->pcc_comm_addr =
524                         acpi_os_ioremap(pcc_chan->shmem_base_addr,
525                                         pcc_chan->shmem_size);
526                 if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
527                         pr_err("Failed to ioremap PCC comm region mem for %d\n",
528                                pcc_ss_idx);
529                         return -ENOMEM;
530                 }
531
532                 /* Set flag so that we don't come here for each CPU. */
533                 pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
534         }
535
536         return 0;
537 }
538
539 /**
540  * cpc_ffh_supported() - check if FFH reading supported
541  *
542  * Check if the architecture has support for functional fixed hardware
543  * read/write capability.
544  *
545  * Return: true for supported, false for not supported
546  */
547 bool __weak cpc_ffh_supported(void)
548 {
549         return false;
550 }
551
552 /**
553  * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
554  *
555  * Check and allocate the cppc_pcc_data memory.
556  * In some processor configurations it is possible that same subspace
557  * is shared between multiple CPUs. This is seen especially in CPUs
558  * with hardware multi-threading support.
559  *
560  * Return: 0 for success, errno for failure
561  */
562 static int pcc_data_alloc(int pcc_ss_id)
563 {
564         if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
565                 return -EINVAL;
566
567         if (pcc_data[pcc_ss_id]) {
568                 pcc_data[pcc_ss_id]->refcount++;
569         } else {
570                 pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
571                                               GFP_KERNEL);
572                 if (!pcc_data[pcc_ss_id])
573                         return -ENOMEM;
574                 pcc_data[pcc_ss_id]->refcount++;
575         }
576
577         return 0;
578 }
579
580 /* Check if CPPC revision + num_ent combination is supported */
581 static bool is_cppc_supported(int revision, int num_ent)
582 {
583         int expected_num_ent;
584
585         switch (revision) {
586         case CPPC_V2_REV:
587                 expected_num_ent = CPPC_V2_NUM_ENT;
588                 break;
589         case CPPC_V3_REV:
590                 expected_num_ent = CPPC_V3_NUM_ENT;
591                 break;
592         default:
593                 pr_debug("Firmware exports unsupported CPPC revision: %d\n",
594                         revision);
595                 return false;
596         }
597
598         if (expected_num_ent != num_ent) {
599                 pr_debug("Firmware exports %d entries. Expected: %d for CPPC rev:%d\n",
600                         num_ent, expected_num_ent, revision);
601                 return false;
602         }
603
604         return true;
605 }
606
607 /*
608  * An example CPC table looks like the following.
609  *
610  *  Name (_CPC, Package() {
611  *      17,                                                     // NumEntries
612  *      1,                                                      // Revision
613  *      ResourceTemplate() {Register(PCC, 32, 0, 0x120, 2)},    // Highest Performance
614  *      ResourceTemplate() {Register(PCC, 32, 0, 0x124, 2)},    // Nominal Performance
615  *      ResourceTemplate() {Register(PCC, 32, 0, 0x128, 2)},    // Lowest Nonlinear Performance
616  *      ResourceTemplate() {Register(PCC, 32, 0, 0x12C, 2)},    // Lowest Performance
617  *      ResourceTemplate() {Register(PCC, 32, 0, 0x130, 2)},    // Guaranteed Performance Register
618  *      ResourceTemplate() {Register(PCC, 32, 0, 0x110, 2)},    // Desired Performance Register
619  *      ResourceTemplate() {Register(SystemMemory, 0, 0, 0, 0)},
620  *      ...
621  *      ...
622  *      ...
623  *  }
624  * Each Register() encodes how to access that specific register.
625  * e.g. a sample PCC entry has the following encoding:
626  *
627  *  Register (
628  *      PCC,    // AddressSpaceKeyword
629  *      8,      // RegisterBitWidth
630  *      8,      // RegisterBitOffset
631  *      0x30,   // RegisterAddress
632  *      9,      // AccessSize (subspace ID)
633  *  )
634  */
635
636 #ifndef init_freq_invariance_cppc
637 static inline void init_freq_invariance_cppc(void) { }
638 #endif
639
640 /**
641  * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
642  * @pr: Ptr to acpi_processor containing this CPU's logical ID.
643  *
644  *      Return: 0 for success or negative value for err.
645  */
646 int acpi_cppc_processor_probe(struct acpi_processor *pr)
647 {
648         struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
649         union acpi_object *out_obj, *cpc_obj;
650         struct cpc_desc *cpc_ptr;
651         struct cpc_reg *gas_t;
652         struct device *cpu_dev;
653         acpi_handle handle = pr->handle;
654         unsigned int num_ent, i, cpc_rev;
655         int pcc_subspace_id = -1;
656         acpi_status status;
657         int ret = -EFAULT;
658
659         /* Parse the ACPI _CPC table for this CPU. */
660         status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
661                         ACPI_TYPE_PACKAGE);
662         if (ACPI_FAILURE(status)) {
663                 ret = -ENODEV;
664                 goto out_buf_free;
665         }
666
667         out_obj = (union acpi_object *) output.pointer;
668
669         cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
670         if (!cpc_ptr) {
671                 ret = -ENOMEM;
672                 goto out_buf_free;
673         }
674
675         /* First entry is NumEntries. */
676         cpc_obj = &out_obj->package.elements[0];
677         if (cpc_obj->type == ACPI_TYPE_INTEGER) {
678                 num_ent = cpc_obj->integer.value;
679         } else {
680                 pr_debug("Unexpected entry type(%d) for NumEntries\n",
681                                 cpc_obj->type);
682                 goto out_free;
683         }
684         cpc_ptr->num_entries = num_ent;
685
686         /* Second entry should be revision. */
687         cpc_obj = &out_obj->package.elements[1];
688         if (cpc_obj->type == ACPI_TYPE_INTEGER) {
689                 cpc_rev = cpc_obj->integer.value;
690         } else {
691                 pr_debug("Unexpected entry type(%d) for Revision\n",
692                                 cpc_obj->type);
693                 goto out_free;
694         }
695         cpc_ptr->version = cpc_rev;
696
697         if (!is_cppc_supported(cpc_rev, num_ent))
698                 goto out_free;
699
700         /* Iterate through remaining entries in _CPC */
701         for (i = 2; i < num_ent; i++) {
702                 cpc_obj = &out_obj->package.elements[i];
703
704                 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
705                         cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
706                         cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
707                 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
708                         gas_t = (struct cpc_reg *)
709                                 cpc_obj->buffer.pointer;
710
711                         /*
712                          * The PCC Subspace index is encoded inside
713                          * the CPC table entries. The same PCC index
714                          * will be used for all the PCC entries,
715                          * so extract it only once.
716                          */
717                         if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
718                                 if (pcc_subspace_id < 0) {
719                                         pcc_subspace_id = gas_t->access_width;
720                                         if (pcc_data_alloc(pcc_subspace_id))
721                                                 goto out_free;
722                                 } else if (pcc_subspace_id != gas_t->access_width) {
723                                         pr_debug("Mismatched PCC ids.\n");
724                                         goto out_free;
725                                 }
726                         } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
727                                 if (gas_t->address) {
728                                         void __iomem *addr;
729
730                                         addr = ioremap(gas_t->address, gas_t->bit_width/8);
731                                         if (!addr)
732                                                 goto out_free;
733                                         cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
734                                 }
735                         } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
736                                 if (gas_t->access_width < 1 || gas_t->access_width > 3) {
737                                         /*
738                                          * 1 = 8-bit, 2 = 16-bit, and 3 = 32-bit.
739                                          * SystemIO doesn't implement 64-bit
740                                          * registers.
741                                          */
742                                         pr_debug("Invalid access width %d for SystemIO register\n",
743                                                 gas_t->access_width);
744                                         goto out_free;
745                                 }
746                                 if (gas_t->address & OVER_16BTS_MASK) {
747                                         /* SystemIO registers use 16-bit integer addresses */
748                                         pr_debug("Invalid IO port %llu for SystemIO register\n",
749                                                 gas_t->address);
750                                         goto out_free;
751                                 }
752                         } else {
753                                 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
754                                         /* Support only PCC, SystemMemory, SystemIO, and FFH type regs. */
755                                         pr_debug("Unsupported register type: %d\n", gas_t->space_id);
756                                         goto out_free;
757                                 }
758                         }
759
760                         cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
761                         memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
762                 } else {
763                         pr_debug("Err in entry:%d in CPC table of CPU:%d\n", i, pr->id);
764                         goto out_free;
765                 }
766         }
767         per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
768
769         /*
770          * Initialize the remaining cpc_regs as unsupported.
771          * Example: In case FW exposes CPPC v2, the below loop will initialize
772          * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
773          */
774         for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
775                 cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
776                 cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
777         }
778
779
780         /* Store CPU Logical ID */
781         cpc_ptr->cpu_id = pr->id;
782
783         /* Parse PSD data for this CPU */
784         ret = acpi_get_psd(cpc_ptr, handle);
785         if (ret)
786                 goto out_free;
787
788         /* Register PCC channel once for all PCC subspace ID. */
789         if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
790                 ret = register_pcc_channel(pcc_subspace_id);
791                 if (ret)
792                         goto out_free;
793
794                 init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
795                 init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
796         }
797
798         /* Everything looks okay */
799         pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
800
801         /* Add per logical CPU nodes for reading its feedback counters. */
802         cpu_dev = get_cpu_device(pr->id);
803         if (!cpu_dev) {
804                 ret = -EINVAL;
805                 goto out_free;
806         }
807
808         /* Plug PSD data into this CPU's CPC descriptor. */
809         per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
810
811         ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
812                         "acpi_cppc");
813         if (ret) {
814                 per_cpu(cpc_desc_ptr, pr->id) = NULL;
815                 kobject_put(&cpc_ptr->kobj);
816                 goto out_free;
817         }
818
819         init_freq_invariance_cppc();
820
821         kfree(output.pointer);
822         return 0;
823
824 out_free:
825         /* Free all the mapped sys mem areas for this CPU */
826         for (i = 2; i < cpc_ptr->num_entries; i++) {
827                 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
828
829                 if (addr)
830                         iounmap(addr);
831         }
832         kfree(cpc_ptr);
833
834 out_buf_free:
835         kfree(output.pointer);
836         return ret;
837 }
838 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
839
840 /**
841  * acpi_cppc_processor_exit - Cleanup CPC structs.
842  * @pr: Ptr to acpi_processor containing this CPU's logical ID.
843  *
844  * Return: Void
845  */
846 void acpi_cppc_processor_exit(struct acpi_processor *pr)
847 {
848         struct cpc_desc *cpc_ptr;
849         unsigned int i;
850         void __iomem *addr;
851         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
852
853         if (pcc_ss_id >= 0 && pcc_data[pcc_ss_id]) {
854                 if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
855                         pcc_data[pcc_ss_id]->refcount--;
856                         if (!pcc_data[pcc_ss_id]->refcount) {
857                                 pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
858                                 kfree(pcc_data[pcc_ss_id]);
859                                 pcc_data[pcc_ss_id] = NULL;
860                         }
861                 }
862         }
863
864         cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
865         if (!cpc_ptr)
866                 return;
867
868         /* Free all the mapped sys mem areas for this CPU */
869         for (i = 2; i < cpc_ptr->num_entries; i++) {
870                 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
871                 if (addr)
872                         iounmap(addr);
873         }
874
875         kobject_put(&cpc_ptr->kobj);
876         kfree(cpc_ptr);
877 }
878 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
879
880 /**
881  * cpc_read_ffh() - Read FFH register
882  * @cpunum:     CPU number to read
883  * @reg:        cppc register information
884  * @val:        place holder for return value
885  *
886  * Read bit_width bits from a specified address and bit_offset
887  *
888  * Return: 0 for success and error code
889  */
890 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
891 {
892         return -ENOTSUPP;
893 }
894
895 /**
896  * cpc_write_ffh() - Write FFH register
897  * @cpunum:     CPU number to write
898  * @reg:        cppc register information
899  * @val:        value to write
900  *
901  * Write value of bit_width bits to a specified address and bit_offset
902  *
903  * Return: 0 for success and error code
904  */
905 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
906 {
907         return -ENOTSUPP;
908 }
909
910 /*
911  * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
912  * as fast as possible. We have already mapped the PCC subspace during init, so
913  * we can directly write to it.
914  */
915
916 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
917 {
918         void __iomem *vaddr = NULL;
919         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
920         struct cpc_reg *reg = &reg_res->cpc_entry.reg;
921
922         if (reg_res->type == ACPI_TYPE_INTEGER) {
923                 *val = reg_res->cpc_entry.int_value;
924                 return 0;
925         }
926
927         *val = 0;
928
929         if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
930                 u32 width = 8 << (reg->access_width - 1);
931                 u32 val_u32;
932                 acpi_status status;
933
934                 status = acpi_os_read_port((acpi_io_address)reg->address,
935                                            &val_u32, width);
936                 if (ACPI_FAILURE(status)) {
937                         pr_debug("Error: Failed to read SystemIO port %llx\n",
938                                  reg->address);
939                         return -EFAULT;
940                 }
941
942                 *val = val_u32;
943                 return 0;
944         } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
945                 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
946         else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
947                 vaddr = reg_res->sys_mem_vaddr;
948         else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
949                 return cpc_read_ffh(cpu, reg, val);
950         else
951                 return acpi_os_read_memory((acpi_physical_address)reg->address,
952                                 val, reg->bit_width);
953
954         switch (reg->bit_width) {
955         case 8:
956                 *val = readb_relaxed(vaddr);
957                 break;
958         case 16:
959                 *val = readw_relaxed(vaddr);
960                 break;
961         case 32:
962                 *val = readl_relaxed(vaddr);
963                 break;
964         case 64:
965                 *val = readq_relaxed(vaddr);
966                 break;
967         default:
968                 pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
969                          reg->bit_width, pcc_ss_id);
970                 return -EFAULT;
971         }
972
973         return 0;
974 }
975
976 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
977 {
978         int ret_val = 0;
979         void __iomem *vaddr = NULL;
980         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
981         struct cpc_reg *reg = &reg_res->cpc_entry.reg;
982
983         if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
984                 u32 width = 8 << (reg->access_width - 1);
985                 acpi_status status;
986
987                 status = acpi_os_write_port((acpi_io_address)reg->address,
988                                             (u32)val, width);
989                 if (ACPI_FAILURE(status)) {
990                         pr_debug("Error: Failed to write SystemIO port %llx\n",
991                                  reg->address);
992                         return -EFAULT;
993                 }
994
995                 return 0;
996         } else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
997                 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
998         else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
999                 vaddr = reg_res->sys_mem_vaddr;
1000         else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1001                 return cpc_write_ffh(cpu, reg, val);
1002         else
1003                 return acpi_os_write_memory((acpi_physical_address)reg->address,
1004                                 val, reg->bit_width);
1005
1006         switch (reg->bit_width) {
1007         case 8:
1008                 writeb_relaxed(val, vaddr);
1009                 break;
1010         case 16:
1011                 writew_relaxed(val, vaddr);
1012                 break;
1013         case 32:
1014                 writel_relaxed(val, vaddr);
1015                 break;
1016         case 64:
1017                 writeq_relaxed(val, vaddr);
1018                 break;
1019         default:
1020                 pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1021                          reg->bit_width, pcc_ss_id);
1022                 ret_val = -EFAULT;
1023                 break;
1024         }
1025
1026         return ret_val;
1027 }
1028
1029 static int cppc_get_perf(int cpunum, enum cppc_regs reg_idx, u64 *perf)
1030 {
1031         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1032         struct cpc_register_resource *reg;
1033
1034         if (!cpc_desc) {
1035                 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1036                 return -ENODEV;
1037         }
1038
1039         reg = &cpc_desc->cpc_regs[reg_idx];
1040
1041         if (CPC_IN_PCC(reg)) {
1042                 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1043                 struct cppc_pcc_data *pcc_ss_data = NULL;
1044                 int ret = 0;
1045
1046                 if (pcc_ss_id < 0)
1047                         return -EIO;
1048
1049                 pcc_ss_data = pcc_data[pcc_ss_id];
1050
1051                 down_write(&pcc_ss_data->pcc_lock);
1052
1053                 if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1054                         cpc_read(cpunum, reg, perf);
1055                 else
1056                         ret = -EIO;
1057
1058                 up_write(&pcc_ss_data->pcc_lock);
1059
1060                 return ret;
1061         }
1062
1063         cpc_read(cpunum, reg, perf);
1064
1065         return 0;
1066 }
1067
1068 /**
1069  * cppc_get_desired_perf - Get the desired performance register value.
1070  * @cpunum: CPU from which to get desired performance.
1071  * @desired_perf: Return address.
1072  *
1073  * Return: 0 for success, -EIO otherwise.
1074  */
1075 int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1076 {
1077         return cppc_get_perf(cpunum, DESIRED_PERF, desired_perf);
1078 }
1079 EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1080
1081 /**
1082  * cppc_get_nominal_perf - Get the nominal performance register value.
1083  * @cpunum: CPU from which to get nominal performance.
1084  * @nominal_perf: Return address.
1085  *
1086  * Return: 0 for success, -EIO otherwise.
1087  */
1088 int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf)
1089 {
1090         return cppc_get_perf(cpunum, NOMINAL_PERF, nominal_perf);
1091 }
1092
1093 /**
1094  * cppc_get_perf_caps - Get a CPU's performance capabilities.
1095  * @cpunum: CPU from which to get capabilities info.
1096  * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1097  *
1098  * Return: 0 for success with perf_caps populated else -ERRNO.
1099  */
1100 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1101 {
1102         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1103         struct cpc_register_resource *highest_reg, *lowest_reg,
1104                 *lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1105                 *low_freq_reg = NULL, *nom_freq_reg = NULL;
1106         u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1107         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1108         struct cppc_pcc_data *pcc_ss_data = NULL;
1109         int ret = 0, regs_in_pcc = 0;
1110
1111         if (!cpc_desc) {
1112                 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1113                 return -ENODEV;
1114         }
1115
1116         highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1117         lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1118         lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1119         nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1120         low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1121         nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1122         guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1123
1124         /* Are any of the regs PCC ?*/
1125         if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1126                 CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1127                 CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1128                 if (pcc_ss_id < 0) {
1129                         pr_debug("Invalid pcc_ss_id\n");
1130                         return -ENODEV;
1131                 }
1132                 pcc_ss_data = pcc_data[pcc_ss_id];
1133                 regs_in_pcc = 1;
1134                 down_write(&pcc_ss_data->pcc_lock);
1135                 /* Ring doorbell once to update PCC subspace */
1136                 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1137                         ret = -EIO;
1138                         goto out_err;
1139                 }
1140         }
1141
1142         cpc_read(cpunum, highest_reg, &high);
1143         perf_caps->highest_perf = high;
1144
1145         cpc_read(cpunum, lowest_reg, &low);
1146         perf_caps->lowest_perf = low;
1147
1148         cpc_read(cpunum, nominal_reg, &nom);
1149         perf_caps->nominal_perf = nom;
1150
1151         if (guaranteed_reg->type != ACPI_TYPE_BUFFER  ||
1152             IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1153                 perf_caps->guaranteed_perf = 0;
1154         } else {
1155                 cpc_read(cpunum, guaranteed_reg, &guaranteed);
1156                 perf_caps->guaranteed_perf = guaranteed;
1157         }
1158
1159         cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1160         perf_caps->lowest_nonlinear_perf = min_nonlinear;
1161
1162         if (!high || !low || !nom || !min_nonlinear)
1163                 ret = -EFAULT;
1164
1165         /* Read optional lowest and nominal frequencies if present */
1166         if (CPC_SUPPORTED(low_freq_reg))
1167                 cpc_read(cpunum, low_freq_reg, &low_f);
1168
1169         if (CPC_SUPPORTED(nom_freq_reg))
1170                 cpc_read(cpunum, nom_freq_reg, &nom_f);
1171
1172         perf_caps->lowest_freq = low_f;
1173         perf_caps->nominal_freq = nom_f;
1174
1175
1176 out_err:
1177         if (regs_in_pcc)
1178                 up_write(&pcc_ss_data->pcc_lock);
1179         return ret;
1180 }
1181 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1182
1183 /**
1184  * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1185  * @cpunum: CPU from which to read counters.
1186  * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1187  *
1188  * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1189  */
1190 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1191 {
1192         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1193         struct cpc_register_resource *delivered_reg, *reference_reg,
1194                 *ref_perf_reg, *ctr_wrap_reg;
1195         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1196         struct cppc_pcc_data *pcc_ss_data = NULL;
1197         u64 delivered, reference, ref_perf, ctr_wrap_time;
1198         int ret = 0, regs_in_pcc = 0;
1199
1200         if (!cpc_desc) {
1201                 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1202                 return -ENODEV;
1203         }
1204
1205         delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1206         reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1207         ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1208         ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1209
1210         /*
1211          * If reference perf register is not supported then we should
1212          * use the nominal perf value
1213          */
1214         if (!CPC_SUPPORTED(ref_perf_reg))
1215                 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1216
1217         /* Are any of the regs PCC ?*/
1218         if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1219                 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1220                 if (pcc_ss_id < 0) {
1221                         pr_debug("Invalid pcc_ss_id\n");
1222                         return -ENODEV;
1223                 }
1224                 pcc_ss_data = pcc_data[pcc_ss_id];
1225                 down_write(&pcc_ss_data->pcc_lock);
1226                 regs_in_pcc = 1;
1227                 /* Ring doorbell once to update PCC subspace */
1228                 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1229                         ret = -EIO;
1230                         goto out_err;
1231                 }
1232         }
1233
1234         cpc_read(cpunum, delivered_reg, &delivered);
1235         cpc_read(cpunum, reference_reg, &reference);
1236         cpc_read(cpunum, ref_perf_reg, &ref_perf);
1237
1238         /*
1239          * Per spec, if ctr_wrap_time optional register is unsupported, then the
1240          * performance counters are assumed to never wrap during the lifetime of
1241          * platform
1242          */
1243         ctr_wrap_time = (u64)(~((u64)0));
1244         if (CPC_SUPPORTED(ctr_wrap_reg))
1245                 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1246
1247         if (!delivered || !reference || !ref_perf) {
1248                 ret = -EFAULT;
1249                 goto out_err;
1250         }
1251
1252         perf_fb_ctrs->delivered = delivered;
1253         perf_fb_ctrs->reference = reference;
1254         perf_fb_ctrs->reference_perf = ref_perf;
1255         perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1256 out_err:
1257         if (regs_in_pcc)
1258                 up_write(&pcc_ss_data->pcc_lock);
1259         return ret;
1260 }
1261 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1262
1263 /**
1264  * cppc_set_enable - Set to enable CPPC on the processor by writing the
1265  * Continuous Performance Control package EnableRegister field.
1266  * @cpu: CPU for which to enable CPPC register.
1267  * @enable: 0 - disable, 1 - enable CPPC feature on the processor.
1268  *
1269  * Return: 0 for success, -ERRNO or -EIO otherwise.
1270  */
1271 int cppc_set_enable(int cpu, bool enable)
1272 {
1273         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1274         struct cpc_register_resource *enable_reg;
1275         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1276         struct cppc_pcc_data *pcc_ss_data = NULL;
1277         int ret = -EINVAL;
1278
1279         if (!cpc_desc) {
1280                 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1281                 return -EINVAL;
1282         }
1283
1284         enable_reg = &cpc_desc->cpc_regs[ENABLE];
1285
1286         if (CPC_IN_PCC(enable_reg)) {
1287
1288                 if (pcc_ss_id < 0)
1289                         return -EIO;
1290
1291                 ret = cpc_write(cpu, enable_reg, enable);
1292                 if (ret)
1293                         return ret;
1294
1295                 pcc_ss_data = pcc_data[pcc_ss_id];
1296
1297                 down_write(&pcc_ss_data->pcc_lock);
1298                 /* after writing CPC, transfer the ownership of PCC to platfrom */
1299                 ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1300                 up_write(&pcc_ss_data->pcc_lock);
1301                 return ret;
1302         }
1303
1304         return cpc_write(cpu, enable_reg, enable);
1305 }
1306 EXPORT_SYMBOL_GPL(cppc_set_enable);
1307
1308 /**
1309  * cppc_set_perf - Set a CPU's performance controls.
1310  * @cpu: CPU for which to set performance controls.
1311  * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1312  *
1313  * Return: 0 for success, -ERRNO otherwise.
1314  */
1315 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1316 {
1317         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1318         struct cpc_register_resource *desired_reg;
1319         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1320         struct cppc_pcc_data *pcc_ss_data = NULL;
1321         int ret = 0;
1322
1323         if (!cpc_desc) {
1324                 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1325                 return -ENODEV;
1326         }
1327
1328         desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1329
1330         /*
1331          * This is Phase-I where we want to write to CPC registers
1332          * -> We want all CPUs to be able to execute this phase in parallel
1333          *
1334          * Since read_lock can be acquired by multiple CPUs simultaneously we
1335          * achieve that goal here
1336          */
1337         if (CPC_IN_PCC(desired_reg)) {
1338                 if (pcc_ss_id < 0) {
1339                         pr_debug("Invalid pcc_ss_id\n");
1340                         return -ENODEV;
1341                 }
1342                 pcc_ss_data = pcc_data[pcc_ss_id];
1343                 down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1344                 if (pcc_ss_data->platform_owns_pcc) {
1345                         ret = check_pcc_chan(pcc_ss_id, false);
1346                         if (ret) {
1347                                 up_read(&pcc_ss_data->pcc_lock);
1348                                 return ret;
1349                         }
1350                 }
1351                 /*
1352                  * Update the pending_write to make sure a PCC CMD_READ will not
1353                  * arrive and steal the channel during the switch to write lock
1354                  */
1355                 pcc_ss_data->pending_pcc_write_cmd = true;
1356                 cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1357                 cpc_desc->write_cmd_status = 0;
1358         }
1359
1360         /*
1361          * Skip writing MIN/MAX until Linux knows how to come up with
1362          * useful values.
1363          */
1364         cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1365
1366         if (CPC_IN_PCC(desired_reg))
1367                 up_read(&pcc_ss_data->pcc_lock);        /* END Phase-I */
1368         /*
1369          * This is Phase-II where we transfer the ownership of PCC to Platform
1370          *
1371          * Short Summary: Basically if we think of a group of cppc_set_perf
1372          * requests that happened in short overlapping interval. The last CPU to
1373          * come out of Phase-I will enter Phase-II and ring the doorbell.
1374          *
1375          * We have the following requirements for Phase-II:
1376          *     1. We want to execute Phase-II only when there are no CPUs
1377          * currently executing in Phase-I
1378          *     2. Once we start Phase-II we want to avoid all other CPUs from
1379          * entering Phase-I.
1380          *     3. We want only one CPU among all those who went through Phase-I
1381          * to run phase-II
1382          *
1383          * If write_trylock fails to get the lock and doesn't transfer the
1384          * PCC ownership to the platform, then one of the following will be TRUE
1385          *     1. There is at-least one CPU in Phase-I which will later execute
1386          * write_trylock, so the CPUs in Phase-I will be responsible for
1387          * executing the Phase-II.
1388          *     2. Some other CPU has beaten this CPU to successfully execute the
1389          * write_trylock and has already acquired the write_lock. We know for a
1390          * fact it (other CPU acquiring the write_lock) couldn't have happened
1391          * before this CPU's Phase-I as we held the read_lock.
1392          *     3. Some other CPU executing pcc CMD_READ has stolen the
1393          * down_write, in which case, send_pcc_cmd will check for pending
1394          * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1395          * So this CPU can be certain that its request will be delivered
1396          *    So in all cases, this CPU knows that its request will be delivered
1397          * by another CPU and can return
1398          *
1399          * After getting the down_write we still need to check for
1400          * pending_pcc_write_cmd to take care of the following scenario
1401          *    The thread running this code could be scheduled out between
1402          * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1403          * could have delivered the request to Platform by triggering the
1404          * doorbell and transferred the ownership of PCC to platform. So this
1405          * avoids triggering an unnecessary doorbell and more importantly before
1406          * triggering the doorbell it makes sure that the PCC channel ownership
1407          * is still with OSPM.
1408          *   pending_pcc_write_cmd can also be cleared by a different CPU, if
1409          * there was a pcc CMD_READ waiting on down_write and it steals the lock
1410          * before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this
1411          * case during a CMD_READ and if there are pending writes it delivers
1412          * the write command before servicing the read command
1413          */
1414         if (CPC_IN_PCC(desired_reg)) {
1415                 if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1416                         /* Update only if there are pending write commands */
1417                         if (pcc_ss_data->pending_pcc_write_cmd)
1418                                 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1419                         up_write(&pcc_ss_data->pcc_lock);       /* END Phase-II */
1420                 } else
1421                         /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1422                         wait_event(pcc_ss_data->pcc_write_wait_q,
1423                                    cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1424
1425                 /* send_pcc_cmd updates the status in case of failure */
1426                 ret = cpc_desc->write_cmd_status;
1427         }
1428         return ret;
1429 }
1430 EXPORT_SYMBOL_GPL(cppc_set_perf);
1431
1432 /**
1433  * cppc_get_transition_latency - returns frequency transition latency in ns
1434  *
1435  * ACPI CPPC does not explicitly specify how a platform can specify the
1436  * transition latency for performance change requests. The closest we have
1437  * is the timing information from the PCCT tables which provides the info
1438  * on the number and frequency of PCC commands the platform can handle.
1439  */
1440 unsigned int cppc_get_transition_latency(int cpu_num)
1441 {
1442         /*
1443          * Expected transition latency is based on the PCCT timing values
1444          * Below are definition from ACPI spec:
1445          * pcc_nominal- Expected latency to process a command, in microseconds
1446          * pcc_mpar   - The maximum number of periodic requests that the subspace
1447          *              channel can support, reported in commands per minute. 0
1448          *              indicates no limitation.
1449          * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
1450          *              completion of a command before issuing the next command,
1451          *              in microseconds.
1452          */
1453         unsigned int latency_ns = 0;
1454         struct cpc_desc *cpc_desc;
1455         struct cpc_register_resource *desired_reg;
1456         int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1457         struct cppc_pcc_data *pcc_ss_data;
1458
1459         cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1460         if (!cpc_desc)
1461                 return CPUFREQ_ETERNAL;
1462
1463         desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1464         if (!CPC_IN_PCC(desired_reg))
1465                 return CPUFREQ_ETERNAL;
1466
1467         if (pcc_ss_id < 0)
1468                 return CPUFREQ_ETERNAL;
1469
1470         pcc_ss_data = pcc_data[pcc_ss_id];
1471         if (pcc_ss_data->pcc_mpar)
1472                 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1473
1474         latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1475         latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1476
1477         return latency_ns;
1478 }
1479 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);