Merge tag 'nfs-for-6.12-1' of git://git.linux-nfs.org/projects/anna/linux-nfs
[linux.git] / kernel / fork.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/sched/ext.h>
27 #include <linux/seq_file.h>
28 #include <linux/rtmutex.h>
29 #include <linux/init.h>
30 #include <linux/unistd.h>
31 #include <linux/module.h>
32 #include <linux/vmalloc.h>
33 #include <linux/completion.h>
34 #include <linux/personality.h>
35 #include <linux/mempolicy.h>
36 #include <linux/sem.h>
37 #include <linux/file.h>
38 #include <linux/fdtable.h>
39 #include <linux/iocontext.h>
40 #include <linux/key.h>
41 #include <linux/kmsan.h>
42 #include <linux/binfmts.h>
43 #include <linux/mman.h>
44 #include <linux/mmu_notifier.h>
45 #include <linux/fs.h>
46 #include <linux/mm.h>
47 #include <linux/mm_inline.h>
48 #include <linux/memblock.h>
49 #include <linux/nsproxy.h>
50 #include <linux/capability.h>
51 #include <linux/cpu.h>
52 #include <linux/cgroup.h>
53 #include <linux/security.h>
54 #include <linux/hugetlb.h>
55 #include <linux/seccomp.h>
56 #include <linux/swap.h>
57 #include <linux/syscalls.h>
58 #include <linux/syscall_user_dispatch.h>
59 #include <linux/jiffies.h>
60 #include <linux/futex.h>
61 #include <linux/compat.h>
62 #include <linux/kthread.h>
63 #include <linux/task_io_accounting_ops.h>
64 #include <linux/rcupdate.h>
65 #include <linux/ptrace.h>
66 #include <linux/mount.h>
67 #include <linux/audit.h>
68 #include <linux/memcontrol.h>
69 #include <linux/ftrace.h>
70 #include <linux/proc_fs.h>
71 #include <linux/profile.h>
72 #include <linux/rmap.h>
73 #include <linux/ksm.h>
74 #include <linux/acct.h>
75 #include <linux/userfaultfd_k.h>
76 #include <linux/tsacct_kern.h>
77 #include <linux/cn_proc.h>
78 #include <linux/freezer.h>
79 #include <linux/delayacct.h>
80 #include <linux/taskstats_kern.h>
81 #include <linux/tty.h>
82 #include <linux/fs_struct.h>
83 #include <linux/magic.h>
84 #include <linux/perf_event.h>
85 #include <linux/posix-timers.h>
86 #include <linux/user-return-notifier.h>
87 #include <linux/oom.h>
88 #include <linux/khugepaged.h>
89 #include <linux/signalfd.h>
90 #include <linux/uprobes.h>
91 #include <linux/aio.h>
92 #include <linux/compiler.h>
93 #include <linux/sysctl.h>
94 #include <linux/kcov.h>
95 #include <linux/livepatch.h>
96 #include <linux/thread_info.h>
97 #include <linux/stackleak.h>
98 #include <linux/kasan.h>
99 #include <linux/scs.h>
100 #include <linux/io_uring.h>
101 #include <linux/bpf.h>
102 #include <linux/stackprotector.h>
103 #include <linux/user_events.h>
104 #include <linux/iommu.h>
105 #include <linux/rseq.h>
106 #include <uapi/linux/pidfd.h>
107 #include <linux/pidfs.h>
108
109 #include <asm/pgalloc.h>
110 #include <linux/uaccess.h>
111 #include <asm/mmu_context.h>
112 #include <asm/cacheflush.h>
113 #include <asm/tlbflush.h>
114
115 #include <trace/events/sched.h>
116
117 #define CREATE_TRACE_POINTS
118 #include <trace/events/task.h>
119
120 #include <kunit/visibility.h>
121
122 /*
123  * Minimum number of threads to boot the kernel
124  */
125 #define MIN_THREADS 20
126
127 /*
128  * Maximum number of threads
129  */
130 #define MAX_THREADS FUTEX_TID_MASK
131
132 /*
133  * Protected counters by write_lock_irq(&tasklist_lock)
134  */
135 unsigned long total_forks;      /* Handle normal Linux uptimes. */
136 int nr_threads;                 /* The idle threads do not count.. */
137
138 static int max_threads;         /* tunable limit on nr_threads */
139
140 #define NAMED_ARRAY_INDEX(x)    [x] = __stringify(x)
141
142 static const char * const resident_page_types[] = {
143         NAMED_ARRAY_INDEX(MM_FILEPAGES),
144         NAMED_ARRAY_INDEX(MM_ANONPAGES),
145         NAMED_ARRAY_INDEX(MM_SWAPENTS),
146         NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
147 };
148
149 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
150
151 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
152
153 #ifdef CONFIG_PROVE_RCU
154 int lockdep_tasklist_lock_is_held(void)
155 {
156         return lockdep_is_held(&tasklist_lock);
157 }
158 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
159 #endif /* #ifdef CONFIG_PROVE_RCU */
160
161 int nr_processes(void)
162 {
163         int cpu;
164         int total = 0;
165
166         for_each_possible_cpu(cpu)
167                 total += per_cpu(process_counts, cpu);
168
169         return total;
170 }
171
172 void __weak arch_release_task_struct(struct task_struct *tsk)
173 {
174 }
175
176 static struct kmem_cache *task_struct_cachep;
177
178 static inline struct task_struct *alloc_task_struct_node(int node)
179 {
180         return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
181 }
182
183 static inline void free_task_struct(struct task_struct *tsk)
184 {
185         kmem_cache_free(task_struct_cachep, tsk);
186 }
187
188 /*
189  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
190  * kmemcache based allocator.
191  */
192 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
193
194 #  ifdef CONFIG_VMAP_STACK
195 /*
196  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
197  * flush.  Try to minimize the number of calls by caching stacks.
198  */
199 #define NR_CACHED_STACKS 2
200 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
201
202 struct vm_stack {
203         struct rcu_head rcu;
204         struct vm_struct *stack_vm_area;
205 };
206
207 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
208 {
209         unsigned int i;
210
211         for (i = 0; i < NR_CACHED_STACKS; i++) {
212                 struct vm_struct *tmp = NULL;
213
214                 if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm))
215                         return true;
216         }
217         return false;
218 }
219
220 static void thread_stack_free_rcu(struct rcu_head *rh)
221 {
222         struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
223
224         if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
225                 return;
226
227         vfree(vm_stack);
228 }
229
230 static void thread_stack_delayed_free(struct task_struct *tsk)
231 {
232         struct vm_stack *vm_stack = tsk->stack;
233
234         vm_stack->stack_vm_area = tsk->stack_vm_area;
235         call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
236 }
237
238 static int free_vm_stack_cache(unsigned int cpu)
239 {
240         struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
241         int i;
242
243         for (i = 0; i < NR_CACHED_STACKS; i++) {
244                 struct vm_struct *vm_stack = cached_vm_stacks[i];
245
246                 if (!vm_stack)
247                         continue;
248
249                 vfree(vm_stack->addr);
250                 cached_vm_stacks[i] = NULL;
251         }
252
253         return 0;
254 }
255
256 static int memcg_charge_kernel_stack(struct vm_struct *vm)
257 {
258         int i;
259         int ret;
260         int nr_charged = 0;
261
262         BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
263
264         for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
265                 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
266                 if (ret)
267                         goto err;
268                 nr_charged++;
269         }
270         return 0;
271 err:
272         for (i = 0; i < nr_charged; i++)
273                 memcg_kmem_uncharge_page(vm->pages[i], 0);
274         return ret;
275 }
276
277 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
278 {
279         struct vm_struct *vm;
280         void *stack;
281         int i;
282
283         for (i = 0; i < NR_CACHED_STACKS; i++) {
284                 struct vm_struct *s;
285
286                 s = this_cpu_xchg(cached_stacks[i], NULL);
287
288                 if (!s)
289                         continue;
290
291                 /* Reset stack metadata. */
292                 kasan_unpoison_range(s->addr, THREAD_SIZE);
293
294                 stack = kasan_reset_tag(s->addr);
295
296                 /* Clear stale pointers from reused stack. */
297                 memset(stack, 0, THREAD_SIZE);
298
299                 if (memcg_charge_kernel_stack(s)) {
300                         vfree(s->addr);
301                         return -ENOMEM;
302                 }
303
304                 tsk->stack_vm_area = s;
305                 tsk->stack = stack;
306                 return 0;
307         }
308
309         /*
310          * Allocated stacks are cached and later reused by new threads,
311          * so memcg accounting is performed manually on assigning/releasing
312          * stacks to tasks. Drop __GFP_ACCOUNT.
313          */
314         stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
315                                      VMALLOC_START, VMALLOC_END,
316                                      THREADINFO_GFP & ~__GFP_ACCOUNT,
317                                      PAGE_KERNEL,
318                                      0, node, __builtin_return_address(0));
319         if (!stack)
320                 return -ENOMEM;
321
322         vm = find_vm_area(stack);
323         if (memcg_charge_kernel_stack(vm)) {
324                 vfree(stack);
325                 return -ENOMEM;
326         }
327         /*
328          * We can't call find_vm_area() in interrupt context, and
329          * free_thread_stack() can be called in interrupt context,
330          * so cache the vm_struct.
331          */
332         tsk->stack_vm_area = vm;
333         stack = kasan_reset_tag(stack);
334         tsk->stack = stack;
335         return 0;
336 }
337
338 static void free_thread_stack(struct task_struct *tsk)
339 {
340         if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
341                 thread_stack_delayed_free(tsk);
342
343         tsk->stack = NULL;
344         tsk->stack_vm_area = NULL;
345 }
346
347 #  else /* !CONFIG_VMAP_STACK */
348
349 static void thread_stack_free_rcu(struct rcu_head *rh)
350 {
351         __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
352 }
353
354 static void thread_stack_delayed_free(struct task_struct *tsk)
355 {
356         struct rcu_head *rh = tsk->stack;
357
358         call_rcu(rh, thread_stack_free_rcu);
359 }
360
361 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
362 {
363         struct page *page = alloc_pages_node(node, THREADINFO_GFP,
364                                              THREAD_SIZE_ORDER);
365
366         if (likely(page)) {
367                 tsk->stack = kasan_reset_tag(page_address(page));
368                 return 0;
369         }
370         return -ENOMEM;
371 }
372
373 static void free_thread_stack(struct task_struct *tsk)
374 {
375         thread_stack_delayed_free(tsk);
376         tsk->stack = NULL;
377 }
378
379 #  endif /* CONFIG_VMAP_STACK */
380 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
381
382 static struct kmem_cache *thread_stack_cache;
383
384 static void thread_stack_free_rcu(struct rcu_head *rh)
385 {
386         kmem_cache_free(thread_stack_cache, rh);
387 }
388
389 static void thread_stack_delayed_free(struct task_struct *tsk)
390 {
391         struct rcu_head *rh = tsk->stack;
392
393         call_rcu(rh, thread_stack_free_rcu);
394 }
395
396 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
397 {
398         unsigned long *stack;
399         stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
400         stack = kasan_reset_tag(stack);
401         tsk->stack = stack;
402         return stack ? 0 : -ENOMEM;
403 }
404
405 static void free_thread_stack(struct task_struct *tsk)
406 {
407         thread_stack_delayed_free(tsk);
408         tsk->stack = NULL;
409 }
410
411 void thread_stack_cache_init(void)
412 {
413         thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
414                                         THREAD_SIZE, THREAD_SIZE, 0, 0,
415                                         THREAD_SIZE, NULL);
416         BUG_ON(thread_stack_cache == NULL);
417 }
418
419 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
420
421 /* SLAB cache for signal_struct structures (tsk->signal) */
422 static struct kmem_cache *signal_cachep;
423
424 /* SLAB cache for sighand_struct structures (tsk->sighand) */
425 struct kmem_cache *sighand_cachep;
426
427 /* SLAB cache for files_struct structures (tsk->files) */
428 struct kmem_cache *files_cachep;
429
430 /* SLAB cache for fs_struct structures (tsk->fs) */
431 struct kmem_cache *fs_cachep;
432
433 /* SLAB cache for vm_area_struct structures */
434 static struct kmem_cache *vm_area_cachep;
435
436 /* SLAB cache for mm_struct structures (tsk->mm) */
437 static struct kmem_cache *mm_cachep;
438
439 #ifdef CONFIG_PER_VMA_LOCK
440
441 /* SLAB cache for vm_area_struct.lock */
442 static struct kmem_cache *vma_lock_cachep;
443
444 static bool vma_lock_alloc(struct vm_area_struct *vma)
445 {
446         vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
447         if (!vma->vm_lock)
448                 return false;
449
450         init_rwsem(&vma->vm_lock->lock);
451         vma->vm_lock_seq = -1;
452
453         return true;
454 }
455
456 static inline void vma_lock_free(struct vm_area_struct *vma)
457 {
458         kmem_cache_free(vma_lock_cachep, vma->vm_lock);
459 }
460
461 #else /* CONFIG_PER_VMA_LOCK */
462
463 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
464 static inline void vma_lock_free(struct vm_area_struct *vma) {}
465
466 #endif /* CONFIG_PER_VMA_LOCK */
467
468 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
469 {
470         struct vm_area_struct *vma;
471
472         vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
473         if (!vma)
474                 return NULL;
475
476         vma_init(vma, mm);
477         if (!vma_lock_alloc(vma)) {
478                 kmem_cache_free(vm_area_cachep, vma);
479                 return NULL;
480         }
481
482         return vma;
483 }
484
485 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
486 {
487         struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
488
489         if (!new)
490                 return NULL;
491
492         ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
493         ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
494         /*
495          * orig->shared.rb may be modified concurrently, but the clone
496          * will be reinitialized.
497          */
498         data_race(memcpy(new, orig, sizeof(*new)));
499         if (!vma_lock_alloc(new)) {
500                 kmem_cache_free(vm_area_cachep, new);
501                 return NULL;
502         }
503         INIT_LIST_HEAD(&new->anon_vma_chain);
504         vma_numab_state_init(new);
505         dup_anon_vma_name(orig, new);
506
507         return new;
508 }
509
510 void __vm_area_free(struct vm_area_struct *vma)
511 {
512         vma_numab_state_free(vma);
513         free_anon_vma_name(vma);
514         vma_lock_free(vma);
515         kmem_cache_free(vm_area_cachep, vma);
516 }
517
518 #ifdef CONFIG_PER_VMA_LOCK
519 static void vm_area_free_rcu_cb(struct rcu_head *head)
520 {
521         struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
522                                                   vm_rcu);
523
524         /* The vma should not be locked while being destroyed. */
525         VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
526         __vm_area_free(vma);
527 }
528 #endif
529
530 void vm_area_free(struct vm_area_struct *vma)
531 {
532 #ifdef CONFIG_PER_VMA_LOCK
533         call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
534 #else
535         __vm_area_free(vma);
536 #endif
537 }
538
539 static void account_kernel_stack(struct task_struct *tsk, int account)
540 {
541         if (IS_ENABLED(CONFIG_VMAP_STACK)) {
542                 struct vm_struct *vm = task_stack_vm_area(tsk);
543                 int i;
544
545                 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
546                         mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
547                                               account * (PAGE_SIZE / 1024));
548         } else {
549                 void *stack = task_stack_page(tsk);
550
551                 /* All stack pages are in the same node. */
552                 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
553                                       account * (THREAD_SIZE / 1024));
554         }
555 }
556
557 void exit_task_stack_account(struct task_struct *tsk)
558 {
559         account_kernel_stack(tsk, -1);
560
561         if (IS_ENABLED(CONFIG_VMAP_STACK)) {
562                 struct vm_struct *vm;
563                 int i;
564
565                 vm = task_stack_vm_area(tsk);
566                 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
567                         memcg_kmem_uncharge_page(vm->pages[i], 0);
568         }
569 }
570
571 static void release_task_stack(struct task_struct *tsk)
572 {
573         if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
574                 return;  /* Better to leak the stack than to free prematurely */
575
576         free_thread_stack(tsk);
577 }
578
579 #ifdef CONFIG_THREAD_INFO_IN_TASK
580 void put_task_stack(struct task_struct *tsk)
581 {
582         if (refcount_dec_and_test(&tsk->stack_refcount))
583                 release_task_stack(tsk);
584 }
585 #endif
586
587 void free_task(struct task_struct *tsk)
588 {
589 #ifdef CONFIG_SECCOMP
590         WARN_ON_ONCE(tsk->seccomp.filter);
591 #endif
592         release_user_cpus_ptr(tsk);
593         scs_release(tsk);
594
595 #ifndef CONFIG_THREAD_INFO_IN_TASK
596         /*
597          * The task is finally done with both the stack and thread_info,
598          * so free both.
599          */
600         release_task_stack(tsk);
601 #else
602         /*
603          * If the task had a separate stack allocation, it should be gone
604          * by now.
605          */
606         WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
607 #endif
608         rt_mutex_debug_task_free(tsk);
609         ftrace_graph_exit_task(tsk);
610         arch_release_task_struct(tsk);
611         if (tsk->flags & PF_KTHREAD)
612                 free_kthread_struct(tsk);
613         bpf_task_storage_free(tsk);
614         free_task_struct(tsk);
615 }
616 EXPORT_SYMBOL(free_task);
617
618 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
619 {
620         struct file *exe_file;
621
622         exe_file = get_mm_exe_file(oldmm);
623         RCU_INIT_POINTER(mm->exe_file, exe_file);
624 }
625
626 #ifdef CONFIG_MMU
627 static __latent_entropy int dup_mmap(struct mm_struct *mm,
628                                         struct mm_struct *oldmm)
629 {
630         struct vm_area_struct *mpnt, *tmp;
631         int retval;
632         unsigned long charge = 0;
633         LIST_HEAD(uf);
634         VMA_ITERATOR(vmi, mm, 0);
635
636         uprobe_start_dup_mmap();
637         if (mmap_write_lock_killable(oldmm)) {
638                 retval = -EINTR;
639                 goto fail_uprobe_end;
640         }
641         flush_cache_dup_mm(oldmm);
642         uprobe_dup_mmap(oldmm, mm);
643         /*
644          * Not linked in yet - no deadlock potential:
645          */
646         mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
647
648         /* No ordering required: file already has been exposed. */
649         dup_mm_exe_file(mm, oldmm);
650
651         mm->total_vm = oldmm->total_vm;
652         mm->data_vm = oldmm->data_vm;
653         mm->exec_vm = oldmm->exec_vm;
654         mm->stack_vm = oldmm->stack_vm;
655
656         retval = ksm_fork(mm, oldmm);
657         if (retval)
658                 goto out;
659         khugepaged_fork(mm, oldmm);
660
661         /* Use __mt_dup() to efficiently build an identical maple tree. */
662         retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL);
663         if (unlikely(retval))
664                 goto out;
665
666         mt_clear_in_rcu(vmi.mas.tree);
667         for_each_vma(vmi, mpnt) {
668                 struct file *file;
669
670                 vma_start_write(mpnt);
671                 if (mpnt->vm_flags & VM_DONTCOPY) {
672                         retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start,
673                                                     mpnt->vm_end, GFP_KERNEL);
674                         if (retval)
675                                 goto loop_out;
676
677                         vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
678                         continue;
679                 }
680                 charge = 0;
681                 /*
682                  * Don't duplicate many vmas if we've been oom-killed (for
683                  * example)
684                  */
685                 if (fatal_signal_pending(current)) {
686                         retval = -EINTR;
687                         goto loop_out;
688                 }
689                 if (mpnt->vm_flags & VM_ACCOUNT) {
690                         unsigned long len = vma_pages(mpnt);
691
692                         if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
693                                 goto fail_nomem;
694                         charge = len;
695                 }
696                 tmp = vm_area_dup(mpnt);
697                 if (!tmp)
698                         goto fail_nomem;
699                 retval = vma_dup_policy(mpnt, tmp);
700                 if (retval)
701                         goto fail_nomem_policy;
702                 tmp->vm_mm = mm;
703                 retval = dup_userfaultfd(tmp, &uf);
704                 if (retval)
705                         goto fail_nomem_anon_vma_fork;
706                 if (tmp->vm_flags & VM_WIPEONFORK) {
707                         /*
708                          * VM_WIPEONFORK gets a clean slate in the child.
709                          * Don't prepare anon_vma until fault since we don't
710                          * copy page for current vma.
711                          */
712                         tmp->anon_vma = NULL;
713                 } else if (anon_vma_fork(tmp, mpnt))
714                         goto fail_nomem_anon_vma_fork;
715                 vm_flags_clear(tmp, VM_LOCKED_MASK);
716                 /*
717                  * Copy/update hugetlb private vma information.
718                  */
719                 if (is_vm_hugetlb_page(tmp))
720                         hugetlb_dup_vma_private(tmp);
721
722                 /*
723                  * Link the vma into the MT. After using __mt_dup(), memory
724                  * allocation is not necessary here, so it cannot fail.
725                  */
726                 vma_iter_bulk_store(&vmi, tmp);
727
728                 mm->map_count++;
729
730                 if (tmp->vm_ops && tmp->vm_ops->open)
731                         tmp->vm_ops->open(tmp);
732
733                 file = tmp->vm_file;
734                 if (file) {
735                         struct address_space *mapping = file->f_mapping;
736
737                         get_file(file);
738                         i_mmap_lock_write(mapping);
739                         if (vma_is_shared_maywrite(tmp))
740                                 mapping_allow_writable(mapping);
741                         flush_dcache_mmap_lock(mapping);
742                         /* insert tmp into the share list, just after mpnt */
743                         vma_interval_tree_insert_after(tmp, mpnt,
744                                         &mapping->i_mmap);
745                         flush_dcache_mmap_unlock(mapping);
746                         i_mmap_unlock_write(mapping);
747                 }
748
749                 if (!(tmp->vm_flags & VM_WIPEONFORK))
750                         retval = copy_page_range(tmp, mpnt);
751
752                 if (retval) {
753                         mpnt = vma_next(&vmi);
754                         goto loop_out;
755                 }
756         }
757         /* a new mm has just been created */
758         retval = arch_dup_mmap(oldmm, mm);
759 loop_out:
760         vma_iter_free(&vmi);
761         if (!retval) {
762                 mt_set_in_rcu(vmi.mas.tree);
763         } else if (mpnt) {
764                 /*
765                  * The entire maple tree has already been duplicated. If the
766                  * mmap duplication fails, mark the failure point with
767                  * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered,
768                  * stop releasing VMAs that have not been duplicated after this
769                  * point.
770                  */
771                 mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1);
772                 mas_store(&vmi.mas, XA_ZERO_ENTRY);
773         }
774 out:
775         mmap_write_unlock(mm);
776         flush_tlb_mm(oldmm);
777         mmap_write_unlock(oldmm);
778         dup_userfaultfd_complete(&uf);
779 fail_uprobe_end:
780         uprobe_end_dup_mmap();
781         return retval;
782
783 fail_nomem_anon_vma_fork:
784         mpol_put(vma_policy(tmp));
785 fail_nomem_policy:
786         vm_area_free(tmp);
787 fail_nomem:
788         retval = -ENOMEM;
789         vm_unacct_memory(charge);
790         goto loop_out;
791 }
792
793 static inline int mm_alloc_pgd(struct mm_struct *mm)
794 {
795         mm->pgd = pgd_alloc(mm);
796         if (unlikely(!mm->pgd))
797                 return -ENOMEM;
798         return 0;
799 }
800
801 static inline void mm_free_pgd(struct mm_struct *mm)
802 {
803         pgd_free(mm, mm->pgd);
804 }
805 #else
806 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
807 {
808         mmap_write_lock(oldmm);
809         dup_mm_exe_file(mm, oldmm);
810         mmap_write_unlock(oldmm);
811         return 0;
812 }
813 #define mm_alloc_pgd(mm)        (0)
814 #define mm_free_pgd(mm)
815 #endif /* CONFIG_MMU */
816
817 static void check_mm(struct mm_struct *mm)
818 {
819         int i;
820
821         BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
822                          "Please make sure 'struct resident_page_types[]' is updated as well");
823
824         for (i = 0; i < NR_MM_COUNTERS; i++) {
825                 long x = percpu_counter_sum(&mm->rss_stat[i]);
826
827                 if (unlikely(x))
828                         pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
829                                  mm, resident_page_types[i], x);
830         }
831
832         if (mm_pgtables_bytes(mm))
833                 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
834                                 mm_pgtables_bytes(mm));
835
836 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
837         VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
838 #endif
839 }
840
841 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
842 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
843
844 static void do_check_lazy_tlb(void *arg)
845 {
846         struct mm_struct *mm = arg;
847
848         WARN_ON_ONCE(current->active_mm == mm);
849 }
850
851 static void do_shoot_lazy_tlb(void *arg)
852 {
853         struct mm_struct *mm = arg;
854
855         if (current->active_mm == mm) {
856                 WARN_ON_ONCE(current->mm);
857                 current->active_mm = &init_mm;
858                 switch_mm(mm, &init_mm, current);
859         }
860 }
861
862 static void cleanup_lazy_tlbs(struct mm_struct *mm)
863 {
864         if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
865                 /*
866                  * In this case, lazy tlb mms are refounted and would not reach
867                  * __mmdrop until all CPUs have switched away and mmdrop()ed.
868                  */
869                 return;
870         }
871
872         /*
873          * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
874          * requires lazy mm users to switch to another mm when the refcount
875          * drops to zero, before the mm is freed. This requires IPIs here to
876          * switch kernel threads to init_mm.
877          *
878          * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
879          * switch with the final userspace teardown TLB flush which leaves the
880          * mm lazy on this CPU but no others, reducing the need for additional
881          * IPIs here. There are cases where a final IPI is still required here,
882          * such as the final mmdrop being performed on a different CPU than the
883          * one exiting, or kernel threads using the mm when userspace exits.
884          *
885          * IPI overheads have not found to be expensive, but they could be
886          * reduced in a number of possible ways, for example (roughly
887          * increasing order of complexity):
888          * - The last lazy reference created by exit_mm() could instead switch
889          *   to init_mm, however it's probable this will run on the same CPU
890          *   immediately afterwards, so this may not reduce IPIs much.
891          * - A batch of mms requiring IPIs could be gathered and freed at once.
892          * - CPUs store active_mm where it can be remotely checked without a
893          *   lock, to filter out false-positives in the cpumask.
894          * - After mm_users or mm_count reaches zero, switching away from the
895          *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
896          *   with some batching or delaying of the final IPIs.
897          * - A delayed freeing and RCU-like quiescing sequence based on mm
898          *   switching to avoid IPIs completely.
899          */
900         on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
901         if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
902                 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
903 }
904
905 /*
906  * Called when the last reference to the mm
907  * is dropped: either by a lazy thread or by
908  * mmput. Free the page directory and the mm.
909  */
910 void __mmdrop(struct mm_struct *mm)
911 {
912         BUG_ON(mm == &init_mm);
913         WARN_ON_ONCE(mm == current->mm);
914
915         /* Ensure no CPUs are using this as their lazy tlb mm */
916         cleanup_lazy_tlbs(mm);
917
918         WARN_ON_ONCE(mm == current->active_mm);
919         mm_free_pgd(mm);
920         destroy_context(mm);
921         mmu_notifier_subscriptions_destroy(mm);
922         check_mm(mm);
923         put_user_ns(mm->user_ns);
924         mm_pasid_drop(mm);
925         mm_destroy_cid(mm);
926         percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
927
928         free_mm(mm);
929 }
930 EXPORT_SYMBOL_GPL(__mmdrop);
931
932 static void mmdrop_async_fn(struct work_struct *work)
933 {
934         struct mm_struct *mm;
935
936         mm = container_of(work, struct mm_struct, async_put_work);
937         __mmdrop(mm);
938 }
939
940 static void mmdrop_async(struct mm_struct *mm)
941 {
942         if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
943                 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
944                 schedule_work(&mm->async_put_work);
945         }
946 }
947
948 static inline void free_signal_struct(struct signal_struct *sig)
949 {
950         taskstats_tgid_free(sig);
951         sched_autogroup_exit(sig);
952         /*
953          * __mmdrop is not safe to call from softirq context on x86 due to
954          * pgd_dtor so postpone it to the async context
955          */
956         if (sig->oom_mm)
957                 mmdrop_async(sig->oom_mm);
958         kmem_cache_free(signal_cachep, sig);
959 }
960
961 static inline void put_signal_struct(struct signal_struct *sig)
962 {
963         if (refcount_dec_and_test(&sig->sigcnt))
964                 free_signal_struct(sig);
965 }
966
967 void __put_task_struct(struct task_struct *tsk)
968 {
969         WARN_ON(!tsk->exit_state);
970         WARN_ON(refcount_read(&tsk->usage));
971         WARN_ON(tsk == current);
972
973         sched_ext_free(tsk);
974         io_uring_free(tsk);
975         cgroup_free(tsk);
976         task_numa_free(tsk, true);
977         security_task_free(tsk);
978         exit_creds(tsk);
979         delayacct_tsk_free(tsk);
980         put_signal_struct(tsk->signal);
981         sched_core_free(tsk);
982         free_task(tsk);
983 }
984 EXPORT_SYMBOL_GPL(__put_task_struct);
985
986 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
987 {
988         struct task_struct *task = container_of(rhp, struct task_struct, rcu);
989
990         __put_task_struct(task);
991 }
992 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
993
994 void __init __weak arch_task_cache_init(void) { }
995
996 /*
997  * set_max_threads
998  */
999 static void __init set_max_threads(unsigned int max_threads_suggested)
1000 {
1001         u64 threads;
1002         unsigned long nr_pages = PHYS_PFN(memblock_phys_mem_size() - memblock_reserved_size());
1003
1004         /*
1005          * The number of threads shall be limited such that the thread
1006          * structures may only consume a small part of the available memory.
1007          */
1008         if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1009                 threads = MAX_THREADS;
1010         else
1011                 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1012                                     (u64) THREAD_SIZE * 8UL);
1013
1014         if (threads > max_threads_suggested)
1015                 threads = max_threads_suggested;
1016
1017         max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1018 }
1019
1020 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1021 /* Initialized by the architecture: */
1022 int arch_task_struct_size __read_mostly;
1023 #endif
1024
1025 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size)
1026 {
1027         /* Fetch thread_struct whitelist for the architecture. */
1028         arch_thread_struct_whitelist(offset, size);
1029
1030         /*
1031          * Handle zero-sized whitelist or empty thread_struct, otherwise
1032          * adjust offset to position of thread_struct in task_struct.
1033          */
1034         if (unlikely(*size == 0))
1035                 *offset = 0;
1036         else
1037                 *offset += offsetof(struct task_struct, thread);
1038 }
1039
1040 void __init fork_init(void)
1041 {
1042         int i;
1043 #ifndef ARCH_MIN_TASKALIGN
1044 #define ARCH_MIN_TASKALIGN      0
1045 #endif
1046         int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1047         unsigned long useroffset, usersize;
1048
1049         /* create a slab on which task_structs can be allocated */
1050         task_struct_whitelist(&useroffset, &usersize);
1051         task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1052                         arch_task_struct_size, align,
1053                         SLAB_PANIC|SLAB_ACCOUNT,
1054                         useroffset, usersize, NULL);
1055
1056         /* do the arch specific task caches init */
1057         arch_task_cache_init();
1058
1059         set_max_threads(MAX_THREADS);
1060
1061         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1062         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1063         init_task.signal->rlim[RLIMIT_SIGPENDING] =
1064                 init_task.signal->rlim[RLIMIT_NPROC];
1065
1066         for (i = 0; i < UCOUNT_COUNTS; i++)
1067                 init_user_ns.ucount_max[i] = max_threads/2;
1068
1069         set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
1070         set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
1071         set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1072         set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
1073
1074 #ifdef CONFIG_VMAP_STACK
1075         cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1076                           NULL, free_vm_stack_cache);
1077 #endif
1078
1079         scs_init();
1080
1081         lockdep_init_task(&init_task);
1082         uprobes_init();
1083 }
1084
1085 int __weak arch_dup_task_struct(struct task_struct *dst,
1086                                                struct task_struct *src)
1087 {
1088         *dst = *src;
1089         return 0;
1090 }
1091
1092 void set_task_stack_end_magic(struct task_struct *tsk)
1093 {
1094         unsigned long *stackend;
1095
1096         stackend = end_of_stack(tsk);
1097         *stackend = STACK_END_MAGIC;    /* for overflow detection */
1098 }
1099
1100 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1101 {
1102         struct task_struct *tsk;
1103         int err;
1104
1105         if (node == NUMA_NO_NODE)
1106                 node = tsk_fork_get_node(orig);
1107         tsk = alloc_task_struct_node(node);
1108         if (!tsk)
1109                 return NULL;
1110
1111         err = arch_dup_task_struct(tsk, orig);
1112         if (err)
1113                 goto free_tsk;
1114
1115         err = alloc_thread_stack_node(tsk, node);
1116         if (err)
1117                 goto free_tsk;
1118
1119 #ifdef CONFIG_THREAD_INFO_IN_TASK
1120         refcount_set(&tsk->stack_refcount, 1);
1121 #endif
1122         account_kernel_stack(tsk, 1);
1123
1124         err = scs_prepare(tsk, node);
1125         if (err)
1126                 goto free_stack;
1127
1128 #ifdef CONFIG_SECCOMP
1129         /*
1130          * We must handle setting up seccomp filters once we're under
1131          * the sighand lock in case orig has changed between now and
1132          * then. Until then, filter must be NULL to avoid messing up
1133          * the usage counts on the error path calling free_task.
1134          */
1135         tsk->seccomp.filter = NULL;
1136 #endif
1137
1138         setup_thread_stack(tsk, orig);
1139         clear_user_return_notifier(tsk);
1140         clear_tsk_need_resched(tsk);
1141         set_task_stack_end_magic(tsk);
1142         clear_syscall_work_syscall_user_dispatch(tsk);
1143
1144 #ifdef CONFIG_STACKPROTECTOR
1145         tsk->stack_canary = get_random_canary();
1146 #endif
1147         if (orig->cpus_ptr == &orig->cpus_mask)
1148                 tsk->cpus_ptr = &tsk->cpus_mask;
1149         dup_user_cpus_ptr(tsk, orig, node);
1150
1151         /*
1152          * One for the user space visible state that goes away when reaped.
1153          * One for the scheduler.
1154          */
1155         refcount_set(&tsk->rcu_users, 2);
1156         /* One for the rcu users */
1157         refcount_set(&tsk->usage, 1);
1158 #ifdef CONFIG_BLK_DEV_IO_TRACE
1159         tsk->btrace_seq = 0;
1160 #endif
1161         tsk->splice_pipe = NULL;
1162         tsk->task_frag.page = NULL;
1163         tsk->wake_q.next = NULL;
1164         tsk->worker_private = NULL;
1165
1166         kcov_task_init(tsk);
1167         kmsan_task_create(tsk);
1168         kmap_local_fork(tsk);
1169
1170 #ifdef CONFIG_FAULT_INJECTION
1171         tsk->fail_nth = 0;
1172 #endif
1173
1174 #ifdef CONFIG_BLK_CGROUP
1175         tsk->throttle_disk = NULL;
1176         tsk->use_memdelay = 0;
1177 #endif
1178
1179 #ifdef CONFIG_ARCH_HAS_CPU_PASID
1180         tsk->pasid_activated = 0;
1181 #endif
1182
1183 #ifdef CONFIG_MEMCG
1184         tsk->active_memcg = NULL;
1185 #endif
1186
1187 #ifdef CONFIG_CPU_SUP_INTEL
1188         tsk->reported_split_lock = 0;
1189 #endif
1190
1191 #ifdef CONFIG_SCHED_MM_CID
1192         tsk->mm_cid = -1;
1193         tsk->last_mm_cid = -1;
1194         tsk->mm_cid_active = 0;
1195         tsk->migrate_from_cpu = -1;
1196 #endif
1197         return tsk;
1198
1199 free_stack:
1200         exit_task_stack_account(tsk);
1201         free_thread_stack(tsk);
1202 free_tsk:
1203         free_task_struct(tsk);
1204         return NULL;
1205 }
1206
1207 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1208
1209 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1210
1211 static int __init coredump_filter_setup(char *s)
1212 {
1213         default_dump_filter =
1214                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1215                 MMF_DUMP_FILTER_MASK;
1216         return 1;
1217 }
1218
1219 __setup("coredump_filter=", coredump_filter_setup);
1220
1221 #include <linux/init_task.h>
1222
1223 static void mm_init_aio(struct mm_struct *mm)
1224 {
1225 #ifdef CONFIG_AIO
1226         spin_lock_init(&mm->ioctx_lock);
1227         mm->ioctx_table = NULL;
1228 #endif
1229 }
1230
1231 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1232                                            struct task_struct *p)
1233 {
1234 #ifdef CONFIG_MEMCG
1235         if (mm->owner == p)
1236                 WRITE_ONCE(mm->owner, NULL);
1237 #endif
1238 }
1239
1240 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1241 {
1242 #ifdef CONFIG_MEMCG
1243         mm->owner = p;
1244 #endif
1245 }
1246
1247 static void mm_init_uprobes_state(struct mm_struct *mm)
1248 {
1249 #ifdef CONFIG_UPROBES
1250         mm->uprobes_state.xol_area = NULL;
1251 #endif
1252 }
1253
1254 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1255         struct user_namespace *user_ns)
1256 {
1257         mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1258         mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1259         atomic_set(&mm->mm_users, 1);
1260         atomic_set(&mm->mm_count, 1);
1261         seqcount_init(&mm->write_protect_seq);
1262         mmap_init_lock(mm);
1263         INIT_LIST_HEAD(&mm->mmlist);
1264 #ifdef CONFIG_PER_VMA_LOCK
1265         mm->mm_lock_seq = 0;
1266 #endif
1267         mm_pgtables_bytes_init(mm);
1268         mm->map_count = 0;
1269         mm->locked_vm = 0;
1270         atomic64_set(&mm->pinned_vm, 0);
1271         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1272         spin_lock_init(&mm->page_table_lock);
1273         spin_lock_init(&mm->arg_lock);
1274         mm_init_cpumask(mm);
1275         mm_init_aio(mm);
1276         mm_init_owner(mm, p);
1277         mm_pasid_init(mm);
1278         RCU_INIT_POINTER(mm->exe_file, NULL);
1279         mmu_notifier_subscriptions_init(mm);
1280         init_tlb_flush_pending(mm);
1281 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
1282         mm->pmd_huge_pte = NULL;
1283 #endif
1284         mm_init_uprobes_state(mm);
1285         hugetlb_count_init(mm);
1286
1287         if (current->mm) {
1288                 mm->flags = mmf_init_flags(current->mm->flags);
1289                 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1290         } else {
1291                 mm->flags = default_dump_filter;
1292                 mm->def_flags = 0;
1293         }
1294
1295         if (mm_alloc_pgd(mm))
1296                 goto fail_nopgd;
1297
1298         if (init_new_context(p, mm))
1299                 goto fail_nocontext;
1300
1301         if (mm_alloc_cid(mm))
1302                 goto fail_cid;
1303
1304         if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1305                                      NR_MM_COUNTERS))
1306                 goto fail_pcpu;
1307
1308         mm->user_ns = get_user_ns(user_ns);
1309         lru_gen_init_mm(mm);
1310         return mm;
1311
1312 fail_pcpu:
1313         mm_destroy_cid(mm);
1314 fail_cid:
1315         destroy_context(mm);
1316 fail_nocontext:
1317         mm_free_pgd(mm);
1318 fail_nopgd:
1319         free_mm(mm);
1320         return NULL;
1321 }
1322
1323 /*
1324  * Allocate and initialize an mm_struct.
1325  */
1326 struct mm_struct *mm_alloc(void)
1327 {
1328         struct mm_struct *mm;
1329
1330         mm = allocate_mm();
1331         if (!mm)
1332                 return NULL;
1333
1334         memset(mm, 0, sizeof(*mm));
1335         return mm_init(mm, current, current_user_ns());
1336 }
1337 EXPORT_SYMBOL_IF_KUNIT(mm_alloc);
1338
1339 static inline void __mmput(struct mm_struct *mm)
1340 {
1341         VM_BUG_ON(atomic_read(&mm->mm_users));
1342
1343         uprobe_clear_state(mm);
1344         exit_aio(mm);
1345         ksm_exit(mm);
1346         khugepaged_exit(mm); /* must run before exit_mmap */
1347         exit_mmap(mm);
1348         mm_put_huge_zero_folio(mm);
1349         set_mm_exe_file(mm, NULL);
1350         if (!list_empty(&mm->mmlist)) {
1351                 spin_lock(&mmlist_lock);
1352                 list_del(&mm->mmlist);
1353                 spin_unlock(&mmlist_lock);
1354         }
1355         if (mm->binfmt)
1356                 module_put(mm->binfmt->module);
1357         lru_gen_del_mm(mm);
1358         mmdrop(mm);
1359 }
1360
1361 /*
1362  * Decrement the use count and release all resources for an mm.
1363  */
1364 void mmput(struct mm_struct *mm)
1365 {
1366         might_sleep();
1367
1368         if (atomic_dec_and_test(&mm->mm_users))
1369                 __mmput(mm);
1370 }
1371 EXPORT_SYMBOL_GPL(mmput);
1372
1373 #ifdef CONFIG_MMU
1374 static void mmput_async_fn(struct work_struct *work)
1375 {
1376         struct mm_struct *mm = container_of(work, struct mm_struct,
1377                                             async_put_work);
1378
1379         __mmput(mm);
1380 }
1381
1382 void mmput_async(struct mm_struct *mm)
1383 {
1384         if (atomic_dec_and_test(&mm->mm_users)) {
1385                 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1386                 schedule_work(&mm->async_put_work);
1387         }
1388 }
1389 EXPORT_SYMBOL_GPL(mmput_async);
1390 #endif
1391
1392 /**
1393  * set_mm_exe_file - change a reference to the mm's executable file
1394  * @mm: The mm to change.
1395  * @new_exe_file: The new file to use.
1396  *
1397  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1398  *
1399  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1400  * invocations: in mmput() nobody alive left, in execve it happens before
1401  * the new mm is made visible to anyone.
1402  *
1403  * Can only fail if new_exe_file != NULL.
1404  */
1405 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1406 {
1407         struct file *old_exe_file;
1408
1409         /*
1410          * It is safe to dereference the exe_file without RCU as
1411          * this function is only called if nobody else can access
1412          * this mm -- see comment above for justification.
1413          */
1414         old_exe_file = rcu_dereference_raw(mm->exe_file);
1415
1416         if (new_exe_file)
1417                 get_file(new_exe_file);
1418         rcu_assign_pointer(mm->exe_file, new_exe_file);
1419         if (old_exe_file)
1420                 fput(old_exe_file);
1421         return 0;
1422 }
1423
1424 /**
1425  * replace_mm_exe_file - replace a reference to the mm's executable file
1426  * @mm: The mm to change.
1427  * @new_exe_file: The new file to use.
1428  *
1429  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1430  *
1431  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1432  */
1433 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1434 {
1435         struct vm_area_struct *vma;
1436         struct file *old_exe_file;
1437         int ret = 0;
1438
1439         /* Forbid mm->exe_file change if old file still mapped. */
1440         old_exe_file = get_mm_exe_file(mm);
1441         if (old_exe_file) {
1442                 VMA_ITERATOR(vmi, mm, 0);
1443                 mmap_read_lock(mm);
1444                 for_each_vma(vmi, vma) {
1445                         if (!vma->vm_file)
1446                                 continue;
1447                         if (path_equal(&vma->vm_file->f_path,
1448                                        &old_exe_file->f_path)) {
1449                                 ret = -EBUSY;
1450                                 break;
1451                         }
1452                 }
1453                 mmap_read_unlock(mm);
1454                 fput(old_exe_file);
1455                 if (ret)
1456                         return ret;
1457         }
1458
1459         get_file(new_exe_file);
1460
1461         /* set the new file */
1462         mmap_write_lock(mm);
1463         old_exe_file = rcu_dereference_raw(mm->exe_file);
1464         rcu_assign_pointer(mm->exe_file, new_exe_file);
1465         mmap_write_unlock(mm);
1466
1467         if (old_exe_file)
1468                 fput(old_exe_file);
1469         return 0;
1470 }
1471
1472 /**
1473  * get_mm_exe_file - acquire a reference to the mm's executable file
1474  * @mm: The mm of interest.
1475  *
1476  * Returns %NULL if mm has no associated executable file.
1477  * User must release file via fput().
1478  */
1479 struct file *get_mm_exe_file(struct mm_struct *mm)
1480 {
1481         struct file *exe_file;
1482
1483         rcu_read_lock();
1484         exe_file = get_file_rcu(&mm->exe_file);
1485         rcu_read_unlock();
1486         return exe_file;
1487 }
1488
1489 /**
1490  * get_task_exe_file - acquire a reference to the task's executable file
1491  * @task: The task.
1492  *
1493  * Returns %NULL if task's mm (if any) has no associated executable file or
1494  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1495  * User must release file via fput().
1496  */
1497 struct file *get_task_exe_file(struct task_struct *task)
1498 {
1499         struct file *exe_file = NULL;
1500         struct mm_struct *mm;
1501
1502         task_lock(task);
1503         mm = task->mm;
1504         if (mm) {
1505                 if (!(task->flags & PF_KTHREAD))
1506                         exe_file = get_mm_exe_file(mm);
1507         }
1508         task_unlock(task);
1509         return exe_file;
1510 }
1511
1512 /**
1513  * get_task_mm - acquire a reference to the task's mm
1514  * @task: The task.
1515  *
1516  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1517  * this kernel workthread has transiently adopted a user mm with use_mm,
1518  * to do its AIO) is not set and if so returns a reference to it, after
1519  * bumping up the use count.  User must release the mm via mmput()
1520  * after use.  Typically used by /proc and ptrace.
1521  */
1522 struct mm_struct *get_task_mm(struct task_struct *task)
1523 {
1524         struct mm_struct *mm;
1525
1526         if (task->flags & PF_KTHREAD)
1527                 return NULL;
1528
1529         task_lock(task);
1530         mm = task->mm;
1531         if (mm)
1532                 mmget(mm);
1533         task_unlock(task);
1534         return mm;
1535 }
1536 EXPORT_SYMBOL_GPL(get_task_mm);
1537
1538 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1539 {
1540         struct mm_struct *mm;
1541         int err;
1542
1543         err =  down_read_killable(&task->signal->exec_update_lock);
1544         if (err)
1545                 return ERR_PTR(err);
1546
1547         mm = get_task_mm(task);
1548         if (mm && mm != current->mm &&
1549                         !ptrace_may_access(task, mode)) {
1550                 mmput(mm);
1551                 mm = ERR_PTR(-EACCES);
1552         }
1553         up_read(&task->signal->exec_update_lock);
1554
1555         return mm;
1556 }
1557
1558 static void complete_vfork_done(struct task_struct *tsk)
1559 {
1560         struct completion *vfork;
1561
1562         task_lock(tsk);
1563         vfork = tsk->vfork_done;
1564         if (likely(vfork)) {
1565                 tsk->vfork_done = NULL;
1566                 complete(vfork);
1567         }
1568         task_unlock(tsk);
1569 }
1570
1571 static int wait_for_vfork_done(struct task_struct *child,
1572                                 struct completion *vfork)
1573 {
1574         unsigned int state = TASK_KILLABLE|TASK_FREEZABLE;
1575         int killed;
1576
1577         cgroup_enter_frozen();
1578         killed = wait_for_completion_state(vfork, state);
1579         cgroup_leave_frozen(false);
1580
1581         if (killed) {
1582                 task_lock(child);
1583                 child->vfork_done = NULL;
1584                 task_unlock(child);
1585         }
1586
1587         put_task_struct(child);
1588         return killed;
1589 }
1590
1591 /* Please note the differences between mmput and mm_release.
1592  * mmput is called whenever we stop holding onto a mm_struct,
1593  * error success whatever.
1594  *
1595  * mm_release is called after a mm_struct has been removed
1596  * from the current process.
1597  *
1598  * This difference is important for error handling, when we
1599  * only half set up a mm_struct for a new process and need to restore
1600  * the old one.  Because we mmput the new mm_struct before
1601  * restoring the old one. . .
1602  * Eric Biederman 10 January 1998
1603  */
1604 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1605 {
1606         uprobe_free_utask(tsk);
1607
1608         /* Get rid of any cached register state */
1609         deactivate_mm(tsk, mm);
1610
1611         /*
1612          * Signal userspace if we're not exiting with a core dump
1613          * because we want to leave the value intact for debugging
1614          * purposes.
1615          */
1616         if (tsk->clear_child_tid) {
1617                 if (atomic_read(&mm->mm_users) > 1) {
1618                         /*
1619                          * We don't check the error code - if userspace has
1620                          * not set up a proper pointer then tough luck.
1621                          */
1622                         put_user(0, tsk->clear_child_tid);
1623                         do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1624                                         1, NULL, NULL, 0, 0);
1625                 }
1626                 tsk->clear_child_tid = NULL;
1627         }
1628
1629         /*
1630          * All done, finally we can wake up parent and return this mm to him.
1631          * Also kthread_stop() uses this completion for synchronization.
1632          */
1633         if (tsk->vfork_done)
1634                 complete_vfork_done(tsk);
1635 }
1636
1637 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1638 {
1639         futex_exit_release(tsk);
1640         mm_release(tsk, mm);
1641 }
1642
1643 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1644 {
1645         futex_exec_release(tsk);
1646         mm_release(tsk, mm);
1647 }
1648
1649 /**
1650  * dup_mm() - duplicates an existing mm structure
1651  * @tsk: the task_struct with which the new mm will be associated.
1652  * @oldmm: the mm to duplicate.
1653  *
1654  * Allocates a new mm structure and duplicates the provided @oldmm structure
1655  * content into it.
1656  *
1657  * Return: the duplicated mm or NULL on failure.
1658  */
1659 static struct mm_struct *dup_mm(struct task_struct *tsk,
1660                                 struct mm_struct *oldmm)
1661 {
1662         struct mm_struct *mm;
1663         int err;
1664
1665         mm = allocate_mm();
1666         if (!mm)
1667                 goto fail_nomem;
1668
1669         memcpy(mm, oldmm, sizeof(*mm));
1670
1671         if (!mm_init(mm, tsk, mm->user_ns))
1672                 goto fail_nomem;
1673
1674         err = dup_mmap(mm, oldmm);
1675         if (err)
1676                 goto free_pt;
1677
1678         mm->hiwater_rss = get_mm_rss(mm);
1679         mm->hiwater_vm = mm->total_vm;
1680
1681         if (mm->binfmt && !try_module_get(mm->binfmt->module))
1682                 goto free_pt;
1683
1684         return mm;
1685
1686 free_pt:
1687         /* don't put binfmt in mmput, we haven't got module yet */
1688         mm->binfmt = NULL;
1689         mm_init_owner(mm, NULL);
1690         mmput(mm);
1691
1692 fail_nomem:
1693         return NULL;
1694 }
1695
1696 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1697 {
1698         struct mm_struct *mm, *oldmm;
1699
1700         tsk->min_flt = tsk->maj_flt = 0;
1701         tsk->nvcsw = tsk->nivcsw = 0;
1702 #ifdef CONFIG_DETECT_HUNG_TASK
1703         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1704         tsk->last_switch_time = 0;
1705 #endif
1706
1707         tsk->mm = NULL;
1708         tsk->active_mm = NULL;
1709
1710         /*
1711          * Are we cloning a kernel thread?
1712          *
1713          * We need to steal a active VM for that..
1714          */
1715         oldmm = current->mm;
1716         if (!oldmm)
1717                 return 0;
1718
1719         if (clone_flags & CLONE_VM) {
1720                 mmget(oldmm);
1721                 mm = oldmm;
1722         } else {
1723                 mm = dup_mm(tsk, current->mm);
1724                 if (!mm)
1725                         return -ENOMEM;
1726         }
1727
1728         tsk->mm = mm;
1729         tsk->active_mm = mm;
1730         sched_mm_cid_fork(tsk);
1731         return 0;
1732 }
1733
1734 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1735 {
1736         struct fs_struct *fs = current->fs;
1737         if (clone_flags & CLONE_FS) {
1738                 /* tsk->fs is already what we want */
1739                 spin_lock(&fs->lock);
1740                 /* "users" and "in_exec" locked for check_unsafe_exec() */
1741                 if (fs->in_exec) {
1742                         spin_unlock(&fs->lock);
1743                         return -EAGAIN;
1744                 }
1745                 fs->users++;
1746                 spin_unlock(&fs->lock);
1747                 return 0;
1748         }
1749         tsk->fs = copy_fs_struct(fs);
1750         if (!tsk->fs)
1751                 return -ENOMEM;
1752         return 0;
1753 }
1754
1755 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1756                       int no_files)
1757 {
1758         struct files_struct *oldf, *newf;
1759         int error = 0;
1760
1761         /*
1762          * A background process may not have any files ...
1763          */
1764         oldf = current->files;
1765         if (!oldf)
1766                 goto out;
1767
1768         if (no_files) {
1769                 tsk->files = NULL;
1770                 goto out;
1771         }
1772
1773         if (clone_flags & CLONE_FILES) {
1774                 atomic_inc(&oldf->count);
1775                 goto out;
1776         }
1777
1778         newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1779         if (!newf)
1780                 goto out;
1781
1782         tsk->files = newf;
1783         error = 0;
1784 out:
1785         return error;
1786 }
1787
1788 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1789 {
1790         struct sighand_struct *sig;
1791
1792         if (clone_flags & CLONE_SIGHAND) {
1793                 refcount_inc(&current->sighand->count);
1794                 return 0;
1795         }
1796         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1797         RCU_INIT_POINTER(tsk->sighand, sig);
1798         if (!sig)
1799                 return -ENOMEM;
1800
1801         refcount_set(&sig->count, 1);
1802         spin_lock_irq(&current->sighand->siglock);
1803         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1804         spin_unlock_irq(&current->sighand->siglock);
1805
1806         /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1807         if (clone_flags & CLONE_CLEAR_SIGHAND)
1808                 flush_signal_handlers(tsk, 0);
1809
1810         return 0;
1811 }
1812
1813 void __cleanup_sighand(struct sighand_struct *sighand)
1814 {
1815         if (refcount_dec_and_test(&sighand->count)) {
1816                 signalfd_cleanup(sighand);
1817                 /*
1818                  * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1819                  * without an RCU grace period, see __lock_task_sighand().
1820                  */
1821                 kmem_cache_free(sighand_cachep, sighand);
1822         }
1823 }
1824
1825 /*
1826  * Initialize POSIX timer handling for a thread group.
1827  */
1828 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1829 {
1830         struct posix_cputimers *pct = &sig->posix_cputimers;
1831         unsigned long cpu_limit;
1832
1833         cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1834         posix_cputimers_group_init(pct, cpu_limit);
1835 }
1836
1837 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1838 {
1839         struct signal_struct *sig;
1840
1841         if (clone_flags & CLONE_THREAD)
1842                 return 0;
1843
1844         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1845         tsk->signal = sig;
1846         if (!sig)
1847                 return -ENOMEM;
1848
1849         sig->nr_threads = 1;
1850         sig->quick_threads = 1;
1851         atomic_set(&sig->live, 1);
1852         refcount_set(&sig->sigcnt, 1);
1853
1854         /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1855         sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1856         tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1857
1858         init_waitqueue_head(&sig->wait_chldexit);
1859         sig->curr_target = tsk;
1860         init_sigpending(&sig->shared_pending);
1861         INIT_HLIST_HEAD(&sig->multiprocess);
1862         seqlock_init(&sig->stats_lock);
1863         prev_cputime_init(&sig->prev_cputime);
1864
1865 #ifdef CONFIG_POSIX_TIMERS
1866         INIT_HLIST_HEAD(&sig->posix_timers);
1867         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1868         sig->real_timer.function = it_real_fn;
1869 #endif
1870
1871         task_lock(current->group_leader);
1872         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1873         task_unlock(current->group_leader);
1874
1875         posix_cpu_timers_init_group(sig);
1876
1877         tty_audit_fork(sig);
1878         sched_autogroup_fork(sig);
1879
1880         sig->oom_score_adj = current->signal->oom_score_adj;
1881         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1882
1883         mutex_init(&sig->cred_guard_mutex);
1884         init_rwsem(&sig->exec_update_lock);
1885
1886         return 0;
1887 }
1888
1889 static void copy_seccomp(struct task_struct *p)
1890 {
1891 #ifdef CONFIG_SECCOMP
1892         /*
1893          * Must be called with sighand->lock held, which is common to
1894          * all threads in the group. Holding cred_guard_mutex is not
1895          * needed because this new task is not yet running and cannot
1896          * be racing exec.
1897          */
1898         assert_spin_locked(&current->sighand->siglock);
1899
1900         /* Ref-count the new filter user, and assign it. */
1901         get_seccomp_filter(current);
1902         p->seccomp = current->seccomp;
1903
1904         /*
1905          * Explicitly enable no_new_privs here in case it got set
1906          * between the task_struct being duplicated and holding the
1907          * sighand lock. The seccomp state and nnp must be in sync.
1908          */
1909         if (task_no_new_privs(current))
1910                 task_set_no_new_privs(p);
1911
1912         /*
1913          * If the parent gained a seccomp mode after copying thread
1914          * flags and between before we held the sighand lock, we have
1915          * to manually enable the seccomp thread flag here.
1916          */
1917         if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1918                 set_task_syscall_work(p, SECCOMP);
1919 #endif
1920 }
1921
1922 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1923 {
1924         current->clear_child_tid = tidptr;
1925
1926         return task_pid_vnr(current);
1927 }
1928
1929 static void rt_mutex_init_task(struct task_struct *p)
1930 {
1931         raw_spin_lock_init(&p->pi_lock);
1932 #ifdef CONFIG_RT_MUTEXES
1933         p->pi_waiters = RB_ROOT_CACHED;
1934         p->pi_top_task = NULL;
1935         p->pi_blocked_on = NULL;
1936 #endif
1937 }
1938
1939 static inline void init_task_pid_links(struct task_struct *task)
1940 {
1941         enum pid_type type;
1942
1943         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1944                 INIT_HLIST_NODE(&task->pid_links[type]);
1945 }
1946
1947 static inline void
1948 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1949 {
1950         if (type == PIDTYPE_PID)
1951                 task->thread_pid = pid;
1952         else
1953                 task->signal->pids[type] = pid;
1954 }
1955
1956 static inline void rcu_copy_process(struct task_struct *p)
1957 {
1958 #ifdef CONFIG_PREEMPT_RCU
1959         p->rcu_read_lock_nesting = 0;
1960         p->rcu_read_unlock_special.s = 0;
1961         p->rcu_blocked_node = NULL;
1962         INIT_LIST_HEAD(&p->rcu_node_entry);
1963 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1964 #ifdef CONFIG_TASKS_RCU
1965         p->rcu_tasks_holdout = false;
1966         INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1967         p->rcu_tasks_idle_cpu = -1;
1968         INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
1969 #endif /* #ifdef CONFIG_TASKS_RCU */
1970 #ifdef CONFIG_TASKS_TRACE_RCU
1971         p->trc_reader_nesting = 0;
1972         p->trc_reader_special.s = 0;
1973         INIT_LIST_HEAD(&p->trc_holdout_list);
1974         INIT_LIST_HEAD(&p->trc_blkd_node);
1975 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1976 }
1977
1978 /**
1979  * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
1980  * @pid:   the struct pid for which to create a pidfd
1981  * @flags: flags of the new @pidfd
1982  * @ret: Where to return the file for the pidfd.
1983  *
1984  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
1985  * caller's file descriptor table. The pidfd is reserved but not installed yet.
1986  *
1987  * The helper doesn't perform checks on @pid which makes it useful for pidfds
1988  * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
1989  * pidfd file are prepared.
1990  *
1991  * If this function returns successfully the caller is responsible to either
1992  * call fd_install() passing the returned pidfd and pidfd file as arguments in
1993  * order to install the pidfd into its file descriptor table or they must use
1994  * put_unused_fd() and fput() on the returned pidfd and pidfd file
1995  * respectively.
1996  *
1997  * This function is useful when a pidfd must already be reserved but there
1998  * might still be points of failure afterwards and the caller wants to ensure
1999  * that no pidfd is leaked into its file descriptor table.
2000  *
2001  * Return: On success, a reserved pidfd is returned from the function and a new
2002  *         pidfd file is returned in the last argument to the function. On
2003  *         error, a negative error code is returned from the function and the
2004  *         last argument remains unchanged.
2005  */
2006 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2007 {
2008         int pidfd;
2009         struct file *pidfd_file;
2010
2011         pidfd = get_unused_fd_flags(O_CLOEXEC);
2012         if (pidfd < 0)
2013                 return pidfd;
2014
2015         pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR);
2016         if (IS_ERR(pidfd_file)) {
2017                 put_unused_fd(pidfd);
2018                 return PTR_ERR(pidfd_file);
2019         }
2020         /*
2021          * anon_inode_getfile() ignores everything outside of the
2022          * O_ACCMODE | O_NONBLOCK mask, set PIDFD_THREAD manually.
2023          */
2024         pidfd_file->f_flags |= (flags & PIDFD_THREAD);
2025         *ret = pidfd_file;
2026         return pidfd;
2027 }
2028
2029 /**
2030  * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2031  * @pid:   the struct pid for which to create a pidfd
2032  * @flags: flags of the new @pidfd
2033  * @ret: Where to return the pidfd.
2034  *
2035  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2036  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2037  *
2038  * The helper verifies that @pid is still in use, without PIDFD_THREAD the
2039  * task identified by @pid must be a thread-group leader.
2040  *
2041  * If this function returns successfully the caller is responsible to either
2042  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2043  * order to install the pidfd into its file descriptor table or they must use
2044  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2045  * respectively.
2046  *
2047  * This function is useful when a pidfd must already be reserved but there
2048  * might still be points of failure afterwards and the caller wants to ensure
2049  * that no pidfd is leaked into its file descriptor table.
2050  *
2051  * Return: On success, a reserved pidfd is returned from the function and a new
2052  *         pidfd file is returned in the last argument to the function. On
2053  *         error, a negative error code is returned from the function and the
2054  *         last argument remains unchanged.
2055  */
2056 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2057 {
2058         bool thread = flags & PIDFD_THREAD;
2059
2060         if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID))
2061                 return -EINVAL;
2062
2063         return __pidfd_prepare(pid, flags, ret);
2064 }
2065
2066 static void __delayed_free_task(struct rcu_head *rhp)
2067 {
2068         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2069
2070         free_task(tsk);
2071 }
2072
2073 static __always_inline void delayed_free_task(struct task_struct *tsk)
2074 {
2075         if (IS_ENABLED(CONFIG_MEMCG))
2076                 call_rcu(&tsk->rcu, __delayed_free_task);
2077         else
2078                 free_task(tsk);
2079 }
2080
2081 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2082 {
2083         /* Skip if kernel thread */
2084         if (!tsk->mm)
2085                 return;
2086
2087         /* Skip if spawning a thread or using vfork */
2088         if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2089                 return;
2090
2091         /* We need to synchronize with __set_oom_adj */
2092         mutex_lock(&oom_adj_mutex);
2093         set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2094         /* Update the values in case they were changed after copy_signal */
2095         tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2096         tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2097         mutex_unlock(&oom_adj_mutex);
2098 }
2099
2100 #ifdef CONFIG_RV
2101 static void rv_task_fork(struct task_struct *p)
2102 {
2103         int i;
2104
2105         for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2106                 p->rv[i].da_mon.monitoring = false;
2107 }
2108 #else
2109 #define rv_task_fork(p) do {} while (0)
2110 #endif
2111
2112 /*
2113  * This creates a new process as a copy of the old one,
2114  * but does not actually start it yet.
2115  *
2116  * It copies the registers, and all the appropriate
2117  * parts of the process environment (as per the clone
2118  * flags). The actual kick-off is left to the caller.
2119  */
2120 __latent_entropy struct task_struct *copy_process(
2121                                         struct pid *pid,
2122                                         int trace,
2123                                         int node,
2124                                         struct kernel_clone_args *args)
2125 {
2126         int pidfd = -1, retval;
2127         struct task_struct *p;
2128         struct multiprocess_signals delayed;
2129         struct file *pidfile = NULL;
2130         const u64 clone_flags = args->flags;
2131         struct nsproxy *nsp = current->nsproxy;
2132
2133         /*
2134          * Don't allow sharing the root directory with processes in a different
2135          * namespace
2136          */
2137         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2138                 return ERR_PTR(-EINVAL);
2139
2140         if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2141                 return ERR_PTR(-EINVAL);
2142
2143         /*
2144          * Thread groups must share signals as well, and detached threads
2145          * can only be started up within the thread group.
2146          */
2147         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2148                 return ERR_PTR(-EINVAL);
2149
2150         /*
2151          * Shared signal handlers imply shared VM. By way of the above,
2152          * thread groups also imply shared VM. Blocking this case allows
2153          * for various simplifications in other code.
2154          */
2155         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2156                 return ERR_PTR(-EINVAL);
2157
2158         /*
2159          * Siblings of global init remain as zombies on exit since they are
2160          * not reaped by their parent (swapper). To solve this and to avoid
2161          * multi-rooted process trees, prevent global and container-inits
2162          * from creating siblings.
2163          */
2164         if ((clone_flags & CLONE_PARENT) &&
2165                                 current->signal->flags & SIGNAL_UNKILLABLE)
2166                 return ERR_PTR(-EINVAL);
2167
2168         /*
2169          * If the new process will be in a different pid or user namespace
2170          * do not allow it to share a thread group with the forking task.
2171          */
2172         if (clone_flags & CLONE_THREAD) {
2173                 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2174                     (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2175                         return ERR_PTR(-EINVAL);
2176         }
2177
2178         if (clone_flags & CLONE_PIDFD) {
2179                 /*
2180                  * - CLONE_DETACHED is blocked so that we can potentially
2181                  *   reuse it later for CLONE_PIDFD.
2182                  */
2183                 if (clone_flags & CLONE_DETACHED)
2184                         return ERR_PTR(-EINVAL);
2185         }
2186
2187         /*
2188          * Force any signals received before this point to be delivered
2189          * before the fork happens.  Collect up signals sent to multiple
2190          * processes that happen during the fork and delay them so that
2191          * they appear to happen after the fork.
2192          */
2193         sigemptyset(&delayed.signal);
2194         INIT_HLIST_NODE(&delayed.node);
2195
2196         spin_lock_irq(&current->sighand->siglock);
2197         if (!(clone_flags & CLONE_THREAD))
2198                 hlist_add_head(&delayed.node, &current->signal->multiprocess);
2199         recalc_sigpending();
2200         spin_unlock_irq(&current->sighand->siglock);
2201         retval = -ERESTARTNOINTR;
2202         if (task_sigpending(current))
2203                 goto fork_out;
2204
2205         retval = -ENOMEM;
2206         p = dup_task_struct(current, node);
2207         if (!p)
2208                 goto fork_out;
2209         p->flags &= ~PF_KTHREAD;
2210         if (args->kthread)
2211                 p->flags |= PF_KTHREAD;
2212         if (args->user_worker) {
2213                 /*
2214                  * Mark us a user worker, and block any signal that isn't
2215                  * fatal or STOP
2216                  */
2217                 p->flags |= PF_USER_WORKER;
2218                 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2219         }
2220         if (args->io_thread)
2221                 p->flags |= PF_IO_WORKER;
2222
2223         if (args->name)
2224                 strscpy_pad(p->comm, args->name, sizeof(p->comm));
2225
2226         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2227         /*
2228          * Clear TID on mm_release()?
2229          */
2230         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2231
2232         ftrace_graph_init_task(p);
2233
2234         rt_mutex_init_task(p);
2235
2236         lockdep_assert_irqs_enabled();
2237 #ifdef CONFIG_PROVE_LOCKING
2238         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2239 #endif
2240         retval = copy_creds(p, clone_flags);
2241         if (retval < 0)
2242                 goto bad_fork_free;
2243
2244         retval = -EAGAIN;
2245         if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2246                 if (p->real_cred->user != INIT_USER &&
2247                     !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2248                         goto bad_fork_cleanup_count;
2249         }
2250         current->flags &= ~PF_NPROC_EXCEEDED;
2251
2252         /*
2253          * If multiple threads are within copy_process(), then this check
2254          * triggers too late. This doesn't hurt, the check is only there
2255          * to stop root fork bombs.
2256          */
2257         retval = -EAGAIN;
2258         if (data_race(nr_threads >= max_threads))
2259                 goto bad_fork_cleanup_count;
2260
2261         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
2262         p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2263         p->flags |= PF_FORKNOEXEC;
2264         INIT_LIST_HEAD(&p->children);
2265         INIT_LIST_HEAD(&p->sibling);
2266         rcu_copy_process(p);
2267         p->vfork_done = NULL;
2268         spin_lock_init(&p->alloc_lock);
2269
2270         init_sigpending(&p->pending);
2271
2272         p->utime = p->stime = p->gtime = 0;
2273 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2274         p->utimescaled = p->stimescaled = 0;
2275 #endif
2276         prev_cputime_init(&p->prev_cputime);
2277
2278 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2279         seqcount_init(&p->vtime.seqcount);
2280         p->vtime.starttime = 0;
2281         p->vtime.state = VTIME_INACTIVE;
2282 #endif
2283
2284 #ifdef CONFIG_IO_URING
2285         p->io_uring = NULL;
2286 #endif
2287
2288         p->default_timer_slack_ns = current->timer_slack_ns;
2289
2290 #ifdef CONFIG_PSI
2291         p->psi_flags = 0;
2292 #endif
2293
2294         task_io_accounting_init(&p->ioac);
2295         acct_clear_integrals(p);
2296
2297         posix_cputimers_init(&p->posix_cputimers);
2298
2299         p->io_context = NULL;
2300         audit_set_context(p, NULL);
2301         cgroup_fork(p);
2302         if (args->kthread) {
2303                 if (!set_kthread_struct(p))
2304                         goto bad_fork_cleanup_delayacct;
2305         }
2306 #ifdef CONFIG_NUMA
2307         p->mempolicy = mpol_dup(p->mempolicy);
2308         if (IS_ERR(p->mempolicy)) {
2309                 retval = PTR_ERR(p->mempolicy);
2310                 p->mempolicy = NULL;
2311                 goto bad_fork_cleanup_delayacct;
2312         }
2313 #endif
2314 #ifdef CONFIG_CPUSETS
2315         p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2316         seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2317 #endif
2318 #ifdef CONFIG_TRACE_IRQFLAGS
2319         memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2320         p->irqtrace.hardirq_disable_ip  = _THIS_IP_;
2321         p->irqtrace.softirq_enable_ip   = _THIS_IP_;
2322         p->softirqs_enabled             = 1;
2323         p->softirq_context              = 0;
2324 #endif
2325
2326         p->pagefault_disabled = 0;
2327
2328 #ifdef CONFIG_LOCKDEP
2329         lockdep_init_task(p);
2330 #endif
2331
2332 #ifdef CONFIG_DEBUG_MUTEXES
2333         p->blocked_on = NULL; /* not blocked yet */
2334 #endif
2335 #ifdef CONFIG_BCACHE
2336         p->sequential_io        = 0;
2337         p->sequential_io_avg    = 0;
2338 #endif
2339 #ifdef CONFIG_BPF_SYSCALL
2340         RCU_INIT_POINTER(p->bpf_storage, NULL);
2341         p->bpf_ctx = NULL;
2342 #endif
2343
2344         /* Perform scheduler related setup. Assign this task to a CPU. */
2345         retval = sched_fork(clone_flags, p);
2346         if (retval)
2347                 goto bad_fork_cleanup_policy;
2348
2349         retval = perf_event_init_task(p, clone_flags);
2350         if (retval)
2351                 goto bad_fork_sched_cancel_fork;
2352         retval = audit_alloc(p);
2353         if (retval)
2354                 goto bad_fork_cleanup_perf;
2355         /* copy all the process information */
2356         shm_init_task(p);
2357         retval = security_task_alloc(p, clone_flags);
2358         if (retval)
2359                 goto bad_fork_cleanup_audit;
2360         retval = copy_semundo(clone_flags, p);
2361         if (retval)
2362                 goto bad_fork_cleanup_security;
2363         retval = copy_files(clone_flags, p, args->no_files);
2364         if (retval)
2365                 goto bad_fork_cleanup_semundo;
2366         retval = copy_fs(clone_flags, p);
2367         if (retval)
2368                 goto bad_fork_cleanup_files;
2369         retval = copy_sighand(clone_flags, p);
2370         if (retval)
2371                 goto bad_fork_cleanup_fs;
2372         retval = copy_signal(clone_flags, p);
2373         if (retval)
2374                 goto bad_fork_cleanup_sighand;
2375         retval = copy_mm(clone_flags, p);
2376         if (retval)
2377                 goto bad_fork_cleanup_signal;
2378         retval = copy_namespaces(clone_flags, p);
2379         if (retval)
2380                 goto bad_fork_cleanup_mm;
2381         retval = copy_io(clone_flags, p);
2382         if (retval)
2383                 goto bad_fork_cleanup_namespaces;
2384         retval = copy_thread(p, args);
2385         if (retval)
2386                 goto bad_fork_cleanup_io;
2387
2388         stackleak_task_init(p);
2389
2390         if (pid != &init_struct_pid) {
2391                 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2392                                 args->set_tid_size);
2393                 if (IS_ERR(pid)) {
2394                         retval = PTR_ERR(pid);
2395                         goto bad_fork_cleanup_thread;
2396                 }
2397         }
2398
2399         /*
2400          * This has to happen after we've potentially unshared the file
2401          * descriptor table (so that the pidfd doesn't leak into the child
2402          * if the fd table isn't shared).
2403          */
2404         if (clone_flags & CLONE_PIDFD) {
2405                 int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0;
2406
2407                 /* Note that no task has been attached to @pid yet. */
2408                 retval = __pidfd_prepare(pid, flags, &pidfile);
2409                 if (retval < 0)
2410                         goto bad_fork_free_pid;
2411                 pidfd = retval;
2412
2413                 retval = put_user(pidfd, args->pidfd);
2414                 if (retval)
2415                         goto bad_fork_put_pidfd;
2416         }
2417
2418 #ifdef CONFIG_BLOCK
2419         p->plug = NULL;
2420 #endif
2421         futex_init_task(p);
2422
2423         /*
2424          * sigaltstack should be cleared when sharing the same VM
2425          */
2426         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2427                 sas_ss_reset(p);
2428
2429         /*
2430          * Syscall tracing and stepping should be turned off in the
2431          * child regardless of CLONE_PTRACE.
2432          */
2433         user_disable_single_step(p);
2434         clear_task_syscall_work(p, SYSCALL_TRACE);
2435 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2436         clear_task_syscall_work(p, SYSCALL_EMU);
2437 #endif
2438         clear_tsk_latency_tracing(p);
2439
2440         /* ok, now we should be set up.. */
2441         p->pid = pid_nr(pid);
2442         if (clone_flags & CLONE_THREAD) {
2443                 p->group_leader = current->group_leader;
2444                 p->tgid = current->tgid;
2445         } else {
2446                 p->group_leader = p;
2447                 p->tgid = p->pid;
2448         }
2449
2450         p->nr_dirtied = 0;
2451         p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2452         p->dirty_paused_when = 0;
2453
2454         p->pdeath_signal = 0;
2455         p->task_works = NULL;
2456         clear_posix_cputimers_work(p);
2457
2458 #ifdef CONFIG_KRETPROBES
2459         p->kretprobe_instances.first = NULL;
2460 #endif
2461 #ifdef CONFIG_RETHOOK
2462         p->rethooks.first = NULL;
2463 #endif
2464
2465         /*
2466          * Ensure that the cgroup subsystem policies allow the new process to be
2467          * forked. It should be noted that the new process's css_set can be changed
2468          * between here and cgroup_post_fork() if an organisation operation is in
2469          * progress.
2470          */
2471         retval = cgroup_can_fork(p, args);
2472         if (retval)
2473                 goto bad_fork_put_pidfd;
2474
2475         /*
2476          * Now that the cgroups are pinned, re-clone the parent cgroup and put
2477          * the new task on the correct runqueue. All this *before* the task
2478          * becomes visible.
2479          *
2480          * This isn't part of ->can_fork() because while the re-cloning is
2481          * cgroup specific, it unconditionally needs to place the task on a
2482          * runqueue.
2483          */
2484         retval = sched_cgroup_fork(p, args);
2485         if (retval)
2486                 goto bad_fork_cancel_cgroup;
2487
2488         /*
2489          * From this point on we must avoid any synchronous user-space
2490          * communication until we take the tasklist-lock. In particular, we do
2491          * not want user-space to be able to predict the process start-time by
2492          * stalling fork(2) after we recorded the start_time but before it is
2493          * visible to the system.
2494          */
2495
2496         p->start_time = ktime_get_ns();
2497         p->start_boottime = ktime_get_boottime_ns();
2498
2499         /*
2500          * Make it visible to the rest of the system, but dont wake it up yet.
2501          * Need tasklist lock for parent etc handling!
2502          */
2503         write_lock_irq(&tasklist_lock);
2504
2505         /* CLONE_PARENT re-uses the old parent */
2506         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2507                 p->real_parent = current->real_parent;
2508                 p->parent_exec_id = current->parent_exec_id;
2509                 if (clone_flags & CLONE_THREAD)
2510                         p->exit_signal = -1;
2511                 else
2512                         p->exit_signal = current->group_leader->exit_signal;
2513         } else {
2514                 p->real_parent = current;
2515                 p->parent_exec_id = current->self_exec_id;
2516                 p->exit_signal = args->exit_signal;
2517         }
2518
2519         klp_copy_process(p);
2520
2521         sched_core_fork(p);
2522
2523         spin_lock(&current->sighand->siglock);
2524
2525         rv_task_fork(p);
2526
2527         rseq_fork(p, clone_flags);
2528
2529         /* Don't start children in a dying pid namespace */
2530         if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2531                 retval = -ENOMEM;
2532                 goto bad_fork_core_free;
2533         }
2534
2535         /* Let kill terminate clone/fork in the middle */
2536         if (fatal_signal_pending(current)) {
2537                 retval = -EINTR;
2538                 goto bad_fork_core_free;
2539         }
2540
2541         /* No more failure paths after this point. */
2542
2543         /*
2544          * Copy seccomp details explicitly here, in case they were changed
2545          * before holding sighand lock.
2546          */
2547         copy_seccomp(p);
2548
2549         init_task_pid_links(p);
2550         if (likely(p->pid)) {
2551                 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2552
2553                 init_task_pid(p, PIDTYPE_PID, pid);
2554                 if (thread_group_leader(p)) {
2555                         init_task_pid(p, PIDTYPE_TGID, pid);
2556                         init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2557                         init_task_pid(p, PIDTYPE_SID, task_session(current));
2558
2559                         if (is_child_reaper(pid)) {
2560                                 ns_of_pid(pid)->child_reaper = p;
2561                                 p->signal->flags |= SIGNAL_UNKILLABLE;
2562                         }
2563                         p->signal->shared_pending.signal = delayed.signal;
2564                         p->signal->tty = tty_kref_get(current->signal->tty);
2565                         /*
2566                          * Inherit has_child_subreaper flag under the same
2567                          * tasklist_lock with adding child to the process tree
2568                          * for propagate_has_child_subreaper optimization.
2569                          */
2570                         p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2571                                                          p->real_parent->signal->is_child_subreaper;
2572                         list_add_tail(&p->sibling, &p->real_parent->children);
2573                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
2574                         attach_pid(p, PIDTYPE_TGID);
2575                         attach_pid(p, PIDTYPE_PGID);
2576                         attach_pid(p, PIDTYPE_SID);
2577                         __this_cpu_inc(process_counts);
2578                 } else {
2579                         current->signal->nr_threads++;
2580                         current->signal->quick_threads++;
2581                         atomic_inc(&current->signal->live);
2582                         refcount_inc(&current->signal->sigcnt);
2583                         task_join_group_stop(p);
2584                         list_add_tail_rcu(&p->thread_node,
2585                                           &p->signal->thread_head);
2586                 }
2587                 attach_pid(p, PIDTYPE_PID);
2588                 nr_threads++;
2589         }
2590         total_forks++;
2591         hlist_del_init(&delayed.node);
2592         spin_unlock(&current->sighand->siglock);
2593         syscall_tracepoint_update(p);
2594         write_unlock_irq(&tasklist_lock);
2595
2596         if (pidfile)
2597                 fd_install(pidfd, pidfile);
2598
2599         proc_fork_connector(p);
2600         sched_post_fork(p);
2601         cgroup_post_fork(p, args);
2602         perf_event_fork(p);
2603
2604         trace_task_newtask(p, clone_flags);
2605         uprobe_copy_process(p, clone_flags);
2606         user_events_fork(p, clone_flags);
2607
2608         copy_oom_score_adj(clone_flags, p);
2609
2610         return p;
2611
2612 bad_fork_core_free:
2613         sched_core_free(p);
2614         spin_unlock(&current->sighand->siglock);
2615         write_unlock_irq(&tasklist_lock);
2616 bad_fork_cancel_cgroup:
2617         cgroup_cancel_fork(p, args);
2618 bad_fork_put_pidfd:
2619         if (clone_flags & CLONE_PIDFD) {
2620                 fput(pidfile);
2621                 put_unused_fd(pidfd);
2622         }
2623 bad_fork_free_pid:
2624         if (pid != &init_struct_pid)
2625                 free_pid(pid);
2626 bad_fork_cleanup_thread:
2627         exit_thread(p);
2628 bad_fork_cleanup_io:
2629         if (p->io_context)
2630                 exit_io_context(p);
2631 bad_fork_cleanup_namespaces:
2632         exit_task_namespaces(p);
2633 bad_fork_cleanup_mm:
2634         if (p->mm) {
2635                 mm_clear_owner(p->mm, p);
2636                 mmput(p->mm);
2637         }
2638 bad_fork_cleanup_signal:
2639         if (!(clone_flags & CLONE_THREAD))
2640                 free_signal_struct(p->signal);
2641 bad_fork_cleanup_sighand:
2642         __cleanup_sighand(p->sighand);
2643 bad_fork_cleanup_fs:
2644         exit_fs(p); /* blocking */
2645 bad_fork_cleanup_files:
2646         exit_files(p); /* blocking */
2647 bad_fork_cleanup_semundo:
2648         exit_sem(p);
2649 bad_fork_cleanup_security:
2650         security_task_free(p);
2651 bad_fork_cleanup_audit:
2652         audit_free(p);
2653 bad_fork_cleanup_perf:
2654         perf_event_free_task(p);
2655 bad_fork_sched_cancel_fork:
2656         sched_cancel_fork(p);
2657 bad_fork_cleanup_policy:
2658         lockdep_free_task(p);
2659 #ifdef CONFIG_NUMA
2660         mpol_put(p->mempolicy);
2661 #endif
2662 bad_fork_cleanup_delayacct:
2663         delayacct_tsk_free(p);
2664 bad_fork_cleanup_count:
2665         dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2666         exit_creds(p);
2667 bad_fork_free:
2668         WRITE_ONCE(p->__state, TASK_DEAD);
2669         exit_task_stack_account(p);
2670         put_task_stack(p);
2671         delayed_free_task(p);
2672 fork_out:
2673         spin_lock_irq(&current->sighand->siglock);
2674         hlist_del_init(&delayed.node);
2675         spin_unlock_irq(&current->sighand->siglock);
2676         return ERR_PTR(retval);
2677 }
2678
2679 static inline void init_idle_pids(struct task_struct *idle)
2680 {
2681         enum pid_type type;
2682
2683         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2684                 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2685                 init_task_pid(idle, type, &init_struct_pid);
2686         }
2687 }
2688
2689 static int idle_dummy(void *dummy)
2690 {
2691         /* This function is never called */
2692         return 0;
2693 }
2694
2695 struct task_struct * __init fork_idle(int cpu)
2696 {
2697         struct task_struct *task;
2698         struct kernel_clone_args args = {
2699                 .flags          = CLONE_VM,
2700                 .fn             = &idle_dummy,
2701                 .fn_arg         = NULL,
2702                 .kthread        = 1,
2703                 .idle           = 1,
2704         };
2705
2706         task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2707         if (!IS_ERR(task)) {
2708                 init_idle_pids(task);
2709                 init_idle(task, cpu);
2710         }
2711
2712         return task;
2713 }
2714
2715 /*
2716  * This is like kernel_clone(), but shaved down and tailored to just
2717  * creating io_uring workers. It returns a created task, or an error pointer.
2718  * The returned task is inactive, and the caller must fire it up through
2719  * wake_up_new_task(p). All signals are blocked in the created task.
2720  */
2721 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2722 {
2723         unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2724                                 CLONE_IO;
2725         struct kernel_clone_args args = {
2726                 .flags          = ((lower_32_bits(flags) | CLONE_VM |
2727                                     CLONE_UNTRACED) & ~CSIGNAL),
2728                 .exit_signal    = (lower_32_bits(flags) & CSIGNAL),
2729                 .fn             = fn,
2730                 .fn_arg         = arg,
2731                 .io_thread      = 1,
2732                 .user_worker    = 1,
2733         };
2734
2735         return copy_process(NULL, 0, node, &args);
2736 }
2737
2738 /*
2739  *  Ok, this is the main fork-routine.
2740  *
2741  * It copies the process, and if successful kick-starts
2742  * it and waits for it to finish using the VM if required.
2743  *
2744  * args->exit_signal is expected to be checked for sanity by the caller.
2745  */
2746 pid_t kernel_clone(struct kernel_clone_args *args)
2747 {
2748         u64 clone_flags = args->flags;
2749         struct completion vfork;
2750         struct pid *pid;
2751         struct task_struct *p;
2752         int trace = 0;
2753         pid_t nr;
2754
2755         /*
2756          * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2757          * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2758          * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2759          * field in struct clone_args and it still doesn't make sense to have
2760          * them both point at the same memory location. Performing this check
2761          * here has the advantage that we don't need to have a separate helper
2762          * to check for legacy clone().
2763          */
2764         if ((clone_flags & CLONE_PIDFD) &&
2765             (clone_flags & CLONE_PARENT_SETTID) &&
2766             (args->pidfd == args->parent_tid))
2767                 return -EINVAL;
2768
2769         /*
2770          * Determine whether and which event to report to ptracer.  When
2771          * called from kernel_thread or CLONE_UNTRACED is explicitly
2772          * requested, no event is reported; otherwise, report if the event
2773          * for the type of forking is enabled.
2774          */
2775         if (!(clone_flags & CLONE_UNTRACED)) {
2776                 if (clone_flags & CLONE_VFORK)
2777                         trace = PTRACE_EVENT_VFORK;
2778                 else if (args->exit_signal != SIGCHLD)
2779                         trace = PTRACE_EVENT_CLONE;
2780                 else
2781                         trace = PTRACE_EVENT_FORK;
2782
2783                 if (likely(!ptrace_event_enabled(current, trace)))
2784                         trace = 0;
2785         }
2786
2787         p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2788         add_latent_entropy();
2789
2790         if (IS_ERR(p))
2791                 return PTR_ERR(p);
2792
2793         /*
2794          * Do this prior waking up the new thread - the thread pointer
2795          * might get invalid after that point, if the thread exits quickly.
2796          */
2797         trace_sched_process_fork(current, p);
2798
2799         pid = get_task_pid(p, PIDTYPE_PID);
2800         nr = pid_vnr(pid);
2801
2802         if (clone_flags & CLONE_PARENT_SETTID)
2803                 put_user(nr, args->parent_tid);
2804
2805         if (clone_flags & CLONE_VFORK) {
2806                 p->vfork_done = &vfork;
2807                 init_completion(&vfork);
2808                 get_task_struct(p);
2809         }
2810
2811         if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
2812                 /* lock the task to synchronize with memcg migration */
2813                 task_lock(p);
2814                 lru_gen_add_mm(p->mm);
2815                 task_unlock(p);
2816         }
2817
2818         wake_up_new_task(p);
2819
2820         /* forking complete and child started to run, tell ptracer */
2821         if (unlikely(trace))
2822                 ptrace_event_pid(trace, pid);
2823
2824         if (clone_flags & CLONE_VFORK) {
2825                 if (!wait_for_vfork_done(p, &vfork))
2826                         ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2827         }
2828
2829         put_pid(pid);
2830         return nr;
2831 }
2832
2833 /*
2834  * Create a kernel thread.
2835  */
2836 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2837                     unsigned long flags)
2838 {
2839         struct kernel_clone_args args = {
2840                 .flags          = ((lower_32_bits(flags) | CLONE_VM |
2841                                     CLONE_UNTRACED) & ~CSIGNAL),
2842                 .exit_signal    = (lower_32_bits(flags) & CSIGNAL),
2843                 .fn             = fn,
2844                 .fn_arg         = arg,
2845                 .name           = name,
2846                 .kthread        = 1,
2847         };
2848
2849         return kernel_clone(&args);
2850 }
2851
2852 /*
2853  * Create a user mode thread.
2854  */
2855 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2856 {
2857         struct kernel_clone_args args = {
2858                 .flags          = ((lower_32_bits(flags) | CLONE_VM |
2859                                     CLONE_UNTRACED) & ~CSIGNAL),
2860                 .exit_signal    = (lower_32_bits(flags) & CSIGNAL),
2861                 .fn             = fn,
2862                 .fn_arg         = arg,
2863         };
2864
2865         return kernel_clone(&args);
2866 }
2867
2868 #ifdef __ARCH_WANT_SYS_FORK
2869 SYSCALL_DEFINE0(fork)
2870 {
2871 #ifdef CONFIG_MMU
2872         struct kernel_clone_args args = {
2873                 .exit_signal = SIGCHLD,
2874         };
2875
2876         return kernel_clone(&args);
2877 #else
2878         /* can not support in nommu mode */
2879         return -EINVAL;
2880 #endif
2881 }
2882 #endif
2883
2884 #ifdef __ARCH_WANT_SYS_VFORK
2885 SYSCALL_DEFINE0(vfork)
2886 {
2887         struct kernel_clone_args args = {
2888                 .flags          = CLONE_VFORK | CLONE_VM,
2889                 .exit_signal    = SIGCHLD,
2890         };
2891
2892         return kernel_clone(&args);
2893 }
2894 #endif
2895
2896 #ifdef __ARCH_WANT_SYS_CLONE
2897 #ifdef CONFIG_CLONE_BACKWARDS
2898 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2899                  int __user *, parent_tidptr,
2900                  unsigned long, tls,
2901                  int __user *, child_tidptr)
2902 #elif defined(CONFIG_CLONE_BACKWARDS2)
2903 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2904                  int __user *, parent_tidptr,
2905                  int __user *, child_tidptr,
2906                  unsigned long, tls)
2907 #elif defined(CONFIG_CLONE_BACKWARDS3)
2908 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2909                 int, stack_size,
2910                 int __user *, parent_tidptr,
2911                 int __user *, child_tidptr,
2912                 unsigned long, tls)
2913 #else
2914 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2915                  int __user *, parent_tidptr,
2916                  int __user *, child_tidptr,
2917                  unsigned long, tls)
2918 #endif
2919 {
2920         struct kernel_clone_args args = {
2921                 .flags          = (lower_32_bits(clone_flags) & ~CSIGNAL),
2922                 .pidfd          = parent_tidptr,
2923                 .child_tid      = child_tidptr,
2924                 .parent_tid     = parent_tidptr,
2925                 .exit_signal    = (lower_32_bits(clone_flags) & CSIGNAL),
2926                 .stack          = newsp,
2927                 .tls            = tls,
2928         };
2929
2930         return kernel_clone(&args);
2931 }
2932 #endif
2933
2934 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2935                                               struct clone_args __user *uargs,
2936                                               size_t usize)
2937 {
2938         int err;
2939         struct clone_args args;
2940         pid_t *kset_tid = kargs->set_tid;
2941
2942         BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2943                      CLONE_ARGS_SIZE_VER0);
2944         BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2945                      CLONE_ARGS_SIZE_VER1);
2946         BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2947                      CLONE_ARGS_SIZE_VER2);
2948         BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2949
2950         if (unlikely(usize > PAGE_SIZE))
2951                 return -E2BIG;
2952         if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2953                 return -EINVAL;
2954
2955         err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2956         if (err)
2957                 return err;
2958
2959         if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2960                 return -EINVAL;
2961
2962         if (unlikely(!args.set_tid && args.set_tid_size > 0))
2963                 return -EINVAL;
2964
2965         if (unlikely(args.set_tid && args.set_tid_size == 0))
2966                 return -EINVAL;
2967
2968         /*
2969          * Verify that higher 32bits of exit_signal are unset and that
2970          * it is a valid signal
2971          */
2972         if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2973                      !valid_signal(args.exit_signal)))
2974                 return -EINVAL;
2975
2976         if ((args.flags & CLONE_INTO_CGROUP) &&
2977             (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2978                 return -EINVAL;
2979
2980         *kargs = (struct kernel_clone_args){
2981                 .flags          = args.flags,
2982                 .pidfd          = u64_to_user_ptr(args.pidfd),
2983                 .child_tid      = u64_to_user_ptr(args.child_tid),
2984                 .parent_tid     = u64_to_user_ptr(args.parent_tid),
2985                 .exit_signal    = args.exit_signal,
2986                 .stack          = args.stack,
2987                 .stack_size     = args.stack_size,
2988                 .tls            = args.tls,
2989                 .set_tid_size   = args.set_tid_size,
2990                 .cgroup         = args.cgroup,
2991         };
2992
2993         if (args.set_tid &&
2994                 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2995                         (kargs->set_tid_size * sizeof(pid_t))))
2996                 return -EFAULT;
2997
2998         kargs->set_tid = kset_tid;
2999
3000         return 0;
3001 }
3002
3003 /**
3004  * clone3_stack_valid - check and prepare stack
3005  * @kargs: kernel clone args
3006  *
3007  * Verify that the stack arguments userspace gave us are sane.
3008  * In addition, set the stack direction for userspace since it's easy for us to
3009  * determine.
3010  */
3011 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3012 {
3013         if (kargs->stack == 0) {
3014                 if (kargs->stack_size > 0)
3015                         return false;
3016         } else {
3017                 if (kargs->stack_size == 0)
3018                         return false;
3019
3020                 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3021                         return false;
3022
3023 #if !defined(CONFIG_STACK_GROWSUP)
3024                 kargs->stack += kargs->stack_size;
3025 #endif
3026         }
3027
3028         return true;
3029 }
3030
3031 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3032 {
3033         /* Verify that no unknown flags are passed along. */
3034         if (kargs->flags &
3035             ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3036                 return false;
3037
3038         /*
3039          * - make the CLONE_DETACHED bit reusable for clone3
3040          * - make the CSIGNAL bits reusable for clone3
3041          */
3042         if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3043                 return false;
3044
3045         if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3046             (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3047                 return false;
3048
3049         if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3050             kargs->exit_signal)
3051                 return false;
3052
3053         if (!clone3_stack_valid(kargs))
3054                 return false;
3055
3056         return true;
3057 }
3058
3059 /**
3060  * sys_clone3 - create a new process with specific properties
3061  * @uargs: argument structure
3062  * @size:  size of @uargs
3063  *
3064  * clone3() is the extensible successor to clone()/clone2().
3065  * It takes a struct as argument that is versioned by its size.
3066  *
3067  * Return: On success, a positive PID for the child process.
3068  *         On error, a negative errno number.
3069  */
3070 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3071 {
3072         int err;
3073
3074         struct kernel_clone_args kargs;
3075         pid_t set_tid[MAX_PID_NS_LEVEL];
3076
3077 #ifdef __ARCH_BROKEN_SYS_CLONE3
3078 #warning clone3() entry point is missing, please fix
3079         return -ENOSYS;
3080 #endif
3081
3082         kargs.set_tid = set_tid;
3083
3084         err = copy_clone_args_from_user(&kargs, uargs, size);
3085         if (err)
3086                 return err;
3087
3088         if (!clone3_args_valid(&kargs))
3089                 return -EINVAL;
3090
3091         return kernel_clone(&kargs);
3092 }
3093
3094 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3095 {
3096         struct task_struct *leader, *parent, *child;
3097         int res;
3098
3099         read_lock(&tasklist_lock);
3100         leader = top = top->group_leader;
3101 down:
3102         for_each_thread(leader, parent) {
3103                 list_for_each_entry(child, &parent->children, sibling) {
3104                         res = visitor(child, data);
3105                         if (res) {
3106                                 if (res < 0)
3107                                         goto out;
3108                                 leader = child;
3109                                 goto down;
3110                         }
3111 up:
3112                         ;
3113                 }
3114         }
3115
3116         if (leader != top) {
3117                 child = leader;
3118                 parent = child->real_parent;
3119                 leader = parent->group_leader;
3120                 goto up;
3121         }
3122 out:
3123         read_unlock(&tasklist_lock);
3124 }
3125
3126 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3127 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3128 #endif
3129
3130 static void sighand_ctor(void *data)
3131 {
3132         struct sighand_struct *sighand = data;
3133
3134         spin_lock_init(&sighand->siglock);
3135         init_waitqueue_head(&sighand->signalfd_wqh);
3136 }
3137
3138 void __init mm_cache_init(void)
3139 {
3140         unsigned int mm_size;
3141
3142         /*
3143          * The mm_cpumask is located at the end of mm_struct, and is
3144          * dynamically sized based on the maximum CPU number this system
3145          * can have, taking hotplug into account (nr_cpu_ids).
3146          */
3147         mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3148
3149         mm_cachep = kmem_cache_create_usercopy("mm_struct",
3150                         mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3151                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3152                         offsetof(struct mm_struct, saved_auxv),
3153                         sizeof_field(struct mm_struct, saved_auxv),
3154                         NULL);
3155 }
3156
3157 void __init proc_caches_init(void)
3158 {
3159         sighand_cachep = kmem_cache_create("sighand_cache",
3160                         sizeof(struct sighand_struct), 0,
3161                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3162                         SLAB_ACCOUNT, sighand_ctor);
3163         signal_cachep = kmem_cache_create("signal_cache",
3164                         sizeof(struct signal_struct), 0,
3165                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3166                         NULL);
3167         files_cachep = kmem_cache_create("files_cache",
3168                         sizeof(struct files_struct), 0,
3169                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3170                         NULL);
3171         fs_cachep = kmem_cache_create("fs_cache",
3172                         sizeof(struct fs_struct), 0,
3173                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3174                         NULL);
3175
3176         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3177 #ifdef CONFIG_PER_VMA_LOCK
3178         vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3179 #endif
3180         mmap_init();
3181         nsproxy_cache_init();
3182 }
3183
3184 /*
3185  * Check constraints on flags passed to the unshare system call.
3186  */
3187 static int check_unshare_flags(unsigned long unshare_flags)
3188 {
3189         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3190                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3191                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3192                                 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3193                                 CLONE_NEWTIME))
3194                 return -EINVAL;
3195         /*
3196          * Not implemented, but pretend it works if there is nothing
3197          * to unshare.  Note that unsharing the address space or the
3198          * signal handlers also need to unshare the signal queues (aka
3199          * CLONE_THREAD).
3200          */
3201         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3202                 if (!thread_group_empty(current))
3203                         return -EINVAL;
3204         }
3205         if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3206                 if (refcount_read(&current->sighand->count) > 1)
3207                         return -EINVAL;
3208         }
3209         if (unshare_flags & CLONE_VM) {
3210                 if (!current_is_single_threaded())
3211                         return -EINVAL;
3212         }
3213
3214         return 0;
3215 }
3216
3217 /*
3218  * Unshare the filesystem structure if it is being shared
3219  */
3220 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3221 {
3222         struct fs_struct *fs = current->fs;
3223
3224         if (!(unshare_flags & CLONE_FS) || !fs)
3225                 return 0;
3226
3227         /* don't need lock here; in the worst case we'll do useless copy */
3228         if (fs->users == 1)
3229                 return 0;
3230
3231         *new_fsp = copy_fs_struct(fs);
3232         if (!*new_fsp)
3233                 return -ENOMEM;
3234
3235         return 0;
3236 }
3237
3238 /*
3239  * Unshare file descriptor table if it is being shared
3240  */
3241 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3242                struct files_struct **new_fdp)
3243 {
3244         struct files_struct *fd = current->files;
3245         int error = 0;
3246
3247         if ((unshare_flags & CLONE_FILES) &&
3248             (fd && atomic_read(&fd->count) > 1)) {
3249                 *new_fdp = dup_fd(fd, max_fds, &error);
3250                 if (!*new_fdp)
3251                         return error;
3252         }
3253
3254         return 0;
3255 }
3256
3257 /*
3258  * unshare allows a process to 'unshare' part of the process
3259  * context which was originally shared using clone.  copy_*
3260  * functions used by kernel_clone() cannot be used here directly
3261  * because they modify an inactive task_struct that is being
3262  * constructed. Here we are modifying the current, active,
3263  * task_struct.
3264  */
3265 int ksys_unshare(unsigned long unshare_flags)
3266 {
3267         struct fs_struct *fs, *new_fs = NULL;
3268         struct files_struct *new_fd = NULL;
3269         struct cred *new_cred = NULL;
3270         struct nsproxy *new_nsproxy = NULL;
3271         int do_sysvsem = 0;
3272         int err;
3273
3274         /*
3275          * If unsharing a user namespace must also unshare the thread group
3276          * and unshare the filesystem root and working directories.
3277          */
3278         if (unshare_flags & CLONE_NEWUSER)
3279                 unshare_flags |= CLONE_THREAD | CLONE_FS;
3280         /*
3281          * If unsharing vm, must also unshare signal handlers.
3282          */
3283         if (unshare_flags & CLONE_VM)
3284                 unshare_flags |= CLONE_SIGHAND;
3285         /*
3286          * If unsharing a signal handlers, must also unshare the signal queues.
3287          */
3288         if (unshare_flags & CLONE_SIGHAND)
3289                 unshare_flags |= CLONE_THREAD;
3290         /*
3291          * If unsharing namespace, must also unshare filesystem information.
3292          */
3293         if (unshare_flags & CLONE_NEWNS)
3294                 unshare_flags |= CLONE_FS;
3295
3296         err = check_unshare_flags(unshare_flags);
3297         if (err)
3298                 goto bad_unshare_out;
3299         /*
3300          * CLONE_NEWIPC must also detach from the undolist: after switching
3301          * to a new ipc namespace, the semaphore arrays from the old
3302          * namespace are unreachable.
3303          */
3304         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3305                 do_sysvsem = 1;
3306         err = unshare_fs(unshare_flags, &new_fs);
3307         if (err)
3308                 goto bad_unshare_out;
3309         err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3310         if (err)
3311                 goto bad_unshare_cleanup_fs;
3312         err = unshare_userns(unshare_flags, &new_cred);
3313         if (err)
3314                 goto bad_unshare_cleanup_fd;
3315         err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3316                                          new_cred, new_fs);
3317         if (err)
3318                 goto bad_unshare_cleanup_cred;
3319
3320         if (new_cred) {
3321                 err = set_cred_ucounts(new_cred);
3322                 if (err)
3323                         goto bad_unshare_cleanup_cred;
3324         }
3325
3326         if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3327                 if (do_sysvsem) {
3328                         /*
3329                          * CLONE_SYSVSEM is equivalent to sys_exit().
3330                          */
3331                         exit_sem(current);
3332                 }
3333                 if (unshare_flags & CLONE_NEWIPC) {
3334                         /* Orphan segments in old ns (see sem above). */
3335                         exit_shm(current);
3336                         shm_init_task(current);
3337                 }
3338
3339                 if (new_nsproxy)
3340                         switch_task_namespaces(current, new_nsproxy);
3341
3342                 task_lock(current);
3343
3344                 if (new_fs) {
3345                         fs = current->fs;
3346                         spin_lock(&fs->lock);
3347                         current->fs = new_fs;
3348                         if (--fs->users)
3349                                 new_fs = NULL;
3350                         else
3351                                 new_fs = fs;
3352                         spin_unlock(&fs->lock);
3353                 }
3354
3355                 if (new_fd)
3356                         swap(current->files, new_fd);
3357
3358                 task_unlock(current);
3359
3360                 if (new_cred) {
3361                         /* Install the new user namespace */
3362                         commit_creds(new_cred);
3363                         new_cred = NULL;
3364                 }
3365         }
3366
3367         perf_event_namespaces(current);
3368
3369 bad_unshare_cleanup_cred:
3370         if (new_cred)
3371                 put_cred(new_cred);
3372 bad_unshare_cleanup_fd:
3373         if (new_fd)
3374                 put_files_struct(new_fd);
3375
3376 bad_unshare_cleanup_fs:
3377         if (new_fs)
3378                 free_fs_struct(new_fs);
3379
3380 bad_unshare_out:
3381         return err;
3382 }
3383
3384 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3385 {
3386         return ksys_unshare(unshare_flags);
3387 }
3388
3389 /*
3390  *      Helper to unshare the files of the current task.
3391  *      We don't want to expose copy_files internals to
3392  *      the exec layer of the kernel.
3393  */
3394
3395 int unshare_files(void)
3396 {
3397         struct task_struct *task = current;
3398         struct files_struct *old, *copy = NULL;
3399         int error;
3400
3401         error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3402         if (error || !copy)
3403                 return error;
3404
3405         old = task->files;
3406         task_lock(task);
3407         task->files = copy;
3408         task_unlock(task);
3409         put_files_struct(old);
3410         return 0;
3411 }
3412
3413 int sysctl_max_threads(const struct ctl_table *table, int write,
3414                        void *buffer, size_t *lenp, loff_t *ppos)
3415 {
3416         struct ctl_table t;
3417         int ret;
3418         int threads = max_threads;
3419         int min = 1;
3420         int max = MAX_THREADS;
3421
3422         t = *table;
3423         t.data = &threads;
3424         t.extra1 = &min;
3425         t.extra2 = &max;
3426
3427         ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3428         if (ret || !write)
3429                 return ret;
3430
3431         max_threads = threads;
3432
3433         return 0;
3434 }