Merge tag 'sched_ext-for-6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[linux.git] / mm / mm_init.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm_init.c - Memory initialisation verification and debugging
4  *
5  * Copyright 2008 IBM Corporation, 2008
6  * Author Mel Gorman <mel@csn.ul.ie>
7  *
8  */
9 #include <linux/kernel.h>
10 #include <linux/init.h>
11 #include <linux/kobject.h>
12 #include <linux/export.h>
13 #include <linux/memory.h>
14 #include <linux/notifier.h>
15 #include <linux/sched.h>
16 #include <linux/mman.h>
17 #include <linux/memblock.h>
18 #include <linux/page-isolation.h>
19 #include <linux/padata.h>
20 #include <linux/nmi.h>
21 #include <linux/buffer_head.h>
22 #include <linux/kmemleak.h>
23 #include <linux/kfence.h>
24 #include <linux/page_ext.h>
25 #include <linux/pti.h>
26 #include <linux/pgtable.h>
27 #include <linux/stackdepot.h>
28 #include <linux/swap.h>
29 #include <linux/cma.h>
30 #include <linux/crash_dump.h>
31 #include <linux/execmem.h>
32 #include <linux/vmstat.h>
33 #include "internal.h"
34 #include "slab.h"
35 #include "shuffle.h"
36
37 #include <asm/setup.h>
38
39 #ifdef CONFIG_DEBUG_MEMORY_INIT
40 int __meminitdata mminit_loglevel;
41
42 /* The zonelists are simply reported, validation is manual. */
43 void __init mminit_verify_zonelist(void)
44 {
45         int nid;
46
47         if (mminit_loglevel < MMINIT_VERIFY)
48                 return;
49
50         for_each_online_node(nid) {
51                 pg_data_t *pgdat = NODE_DATA(nid);
52                 struct zone *zone;
53                 struct zoneref *z;
54                 struct zonelist *zonelist;
55                 int i, listid, zoneid;
56
57                 for (i = 0; i < MAX_ZONELISTS * MAX_NR_ZONES; i++) {
58
59                         /* Identify the zone and nodelist */
60                         zoneid = i % MAX_NR_ZONES;
61                         listid = i / MAX_NR_ZONES;
62                         zonelist = &pgdat->node_zonelists[listid];
63                         zone = &pgdat->node_zones[zoneid];
64                         if (!populated_zone(zone))
65                                 continue;
66
67                         /* Print information about the zonelist */
68                         printk(KERN_DEBUG "mminit::zonelist %s %d:%s = ",
69                                 listid > 0 ? "thisnode" : "general", nid,
70                                 zone->name);
71
72                         /* Iterate the zonelist */
73                         for_each_zone_zonelist(zone, z, zonelist, zoneid)
74                                 pr_cont("%d:%s ", zone_to_nid(zone), zone->name);
75                         pr_cont("\n");
76                 }
77         }
78 }
79
80 void __init mminit_verify_pageflags_layout(void)
81 {
82         int shift, width;
83         unsigned long or_mask, add_mask;
84
85         shift = BITS_PER_LONG;
86         width = shift - SECTIONS_WIDTH - NODES_WIDTH - ZONES_WIDTH
87                 - LAST_CPUPID_SHIFT - KASAN_TAG_WIDTH - LRU_GEN_WIDTH - LRU_REFS_WIDTH;
88         mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths",
89                 "Section %d Node %d Zone %d Lastcpupid %d Kasantag %d Gen %d Tier %d Flags %d\n",
90                 SECTIONS_WIDTH,
91                 NODES_WIDTH,
92                 ZONES_WIDTH,
93                 LAST_CPUPID_WIDTH,
94                 KASAN_TAG_WIDTH,
95                 LRU_GEN_WIDTH,
96                 LRU_REFS_WIDTH,
97                 NR_PAGEFLAGS);
98         mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts",
99                 "Section %d Node %d Zone %d Lastcpupid %d Kasantag %d\n",
100                 SECTIONS_SHIFT,
101                 NODES_SHIFT,
102                 ZONES_SHIFT,
103                 LAST_CPUPID_SHIFT,
104                 KASAN_TAG_WIDTH);
105         mminit_dprintk(MMINIT_TRACE, "pageflags_layout_pgshifts",
106                 "Section %lu Node %lu Zone %lu Lastcpupid %lu Kasantag %lu\n",
107                 (unsigned long)SECTIONS_PGSHIFT,
108                 (unsigned long)NODES_PGSHIFT,
109                 (unsigned long)ZONES_PGSHIFT,
110                 (unsigned long)LAST_CPUPID_PGSHIFT,
111                 (unsigned long)KASAN_TAG_PGSHIFT);
112         mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodezoneid",
113                 "Node/Zone ID: %lu -> %lu\n",
114                 (unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT),
115                 (unsigned long)ZONEID_PGOFF);
116         mminit_dprintk(MMINIT_TRACE, "pageflags_layout_usage",
117                 "location: %d -> %d layout %d -> %d unused %d -> %d page-flags\n",
118                 shift, width, width, NR_PAGEFLAGS, NR_PAGEFLAGS, 0);
119 #ifdef NODE_NOT_IN_PAGE_FLAGS
120         mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
121                 "Node not in page flags");
122 #endif
123 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
124         mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
125                 "Last cpupid not in page flags");
126 #endif
127
128         if (SECTIONS_WIDTH) {
129                 shift -= SECTIONS_WIDTH;
130                 BUG_ON(shift != SECTIONS_PGSHIFT);
131         }
132         if (NODES_WIDTH) {
133                 shift -= NODES_WIDTH;
134                 BUG_ON(shift != NODES_PGSHIFT);
135         }
136         if (ZONES_WIDTH) {
137                 shift -= ZONES_WIDTH;
138                 BUG_ON(shift != ZONES_PGSHIFT);
139         }
140
141         /* Check for bitmask overlaps */
142         or_mask = (ZONES_MASK << ZONES_PGSHIFT) |
143                         (NODES_MASK << NODES_PGSHIFT) |
144                         (SECTIONS_MASK << SECTIONS_PGSHIFT);
145         add_mask = (ZONES_MASK << ZONES_PGSHIFT) +
146                         (NODES_MASK << NODES_PGSHIFT) +
147                         (SECTIONS_MASK << SECTIONS_PGSHIFT);
148         BUG_ON(or_mask != add_mask);
149 }
150
151 static __init int set_mminit_loglevel(char *str)
152 {
153         get_option(&str, &mminit_loglevel);
154         return 0;
155 }
156 early_param("mminit_loglevel", set_mminit_loglevel);
157 #endif /* CONFIG_DEBUG_MEMORY_INIT */
158
159 struct kobject *mm_kobj;
160
161 #ifdef CONFIG_SMP
162 s32 vm_committed_as_batch = 32;
163
164 void mm_compute_batch(int overcommit_policy)
165 {
166         u64 memsized_batch;
167         s32 nr = num_present_cpus();
168         s32 batch = max_t(s32, nr*2, 32);
169         unsigned long ram_pages = totalram_pages();
170
171         /*
172          * For policy OVERCOMMIT_NEVER, set batch size to 0.4% of
173          * (total memory/#cpus), and lift it to 25% for other policies
174          * to easy the possible lock contention for percpu_counter
175          * vm_committed_as, while the max limit is INT_MAX
176          */
177         if (overcommit_policy == OVERCOMMIT_NEVER)
178                 memsized_batch = min_t(u64, ram_pages/nr/256, INT_MAX);
179         else
180                 memsized_batch = min_t(u64, ram_pages/nr/4, INT_MAX);
181
182         vm_committed_as_batch = max_t(s32, memsized_batch, batch);
183 }
184
185 static int __meminit mm_compute_batch_notifier(struct notifier_block *self,
186                                         unsigned long action, void *arg)
187 {
188         switch (action) {
189         case MEM_ONLINE:
190         case MEM_OFFLINE:
191                 mm_compute_batch(sysctl_overcommit_memory);
192                 break;
193         default:
194                 break;
195         }
196         return NOTIFY_OK;
197 }
198
199 static int __init mm_compute_batch_init(void)
200 {
201         mm_compute_batch(sysctl_overcommit_memory);
202         hotplug_memory_notifier(mm_compute_batch_notifier, MM_COMPUTE_BATCH_PRI);
203         return 0;
204 }
205
206 __initcall(mm_compute_batch_init);
207
208 #endif
209
210 static int __init mm_sysfs_init(void)
211 {
212         mm_kobj = kobject_create_and_add("mm", kernel_kobj);
213         if (!mm_kobj)
214                 return -ENOMEM;
215
216         return 0;
217 }
218 postcore_initcall(mm_sysfs_init);
219
220 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
221 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
222 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
223
224 static unsigned long required_kernelcore __initdata;
225 static unsigned long required_kernelcore_percent __initdata;
226 static unsigned long required_movablecore __initdata;
227 static unsigned long required_movablecore_percent __initdata;
228
229 static unsigned long nr_kernel_pages __initdata;
230 static unsigned long nr_all_pages __initdata;
231
232 static bool deferred_struct_pages __meminitdata;
233
234 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
235
236 static int __init cmdline_parse_core(char *p, unsigned long *core,
237                                      unsigned long *percent)
238 {
239         unsigned long long coremem;
240         char *endptr;
241
242         if (!p)
243                 return -EINVAL;
244
245         /* Value may be a percentage of total memory, otherwise bytes */
246         coremem = simple_strtoull(p, &endptr, 0);
247         if (*endptr == '%') {
248                 /* Paranoid check for percent values greater than 100 */
249                 WARN_ON(coremem > 100);
250
251                 *percent = coremem;
252         } else {
253                 coremem = memparse(p, &p);
254                 /* Paranoid check that UL is enough for the coremem value */
255                 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
256
257                 *core = coremem >> PAGE_SHIFT;
258                 *percent = 0UL;
259         }
260         return 0;
261 }
262
263 bool mirrored_kernelcore __initdata_memblock;
264
265 /*
266  * kernelcore=size sets the amount of memory for use for allocations that
267  * cannot be reclaimed or migrated.
268  */
269 static int __init cmdline_parse_kernelcore(char *p)
270 {
271         /* parse kernelcore=mirror */
272         if (parse_option_str(p, "mirror")) {
273                 mirrored_kernelcore = true;
274                 return 0;
275         }
276
277         return cmdline_parse_core(p, &required_kernelcore,
278                                   &required_kernelcore_percent);
279 }
280 early_param("kernelcore", cmdline_parse_kernelcore);
281
282 /*
283  * movablecore=size sets the amount of memory for use for allocations that
284  * can be reclaimed or migrated.
285  */
286 static int __init cmdline_parse_movablecore(char *p)
287 {
288         return cmdline_parse_core(p, &required_movablecore,
289                                   &required_movablecore_percent);
290 }
291 early_param("movablecore", cmdline_parse_movablecore);
292
293 /*
294  * early_calculate_totalpages()
295  * Sum pages in active regions for movable zone.
296  * Populate N_MEMORY for calculating usable_nodes.
297  */
298 static unsigned long __init early_calculate_totalpages(void)
299 {
300         unsigned long totalpages = 0;
301         unsigned long start_pfn, end_pfn;
302         int i, nid;
303
304         for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
305                 unsigned long pages = end_pfn - start_pfn;
306
307                 totalpages += pages;
308                 if (pages)
309                         node_set_state(nid, N_MEMORY);
310         }
311         return totalpages;
312 }
313
314 /*
315  * This finds a zone that can be used for ZONE_MOVABLE pages. The
316  * assumption is made that zones within a node are ordered in monotonic
317  * increasing memory addresses so that the "highest" populated zone is used
318  */
319 static void __init find_usable_zone_for_movable(void)
320 {
321         int zone_index;
322         for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
323                 if (zone_index == ZONE_MOVABLE)
324                         continue;
325
326                 if (arch_zone_highest_possible_pfn[zone_index] >
327                                 arch_zone_lowest_possible_pfn[zone_index])
328                         break;
329         }
330
331         VM_BUG_ON(zone_index == -1);
332         movable_zone = zone_index;
333 }
334
335 /*
336  * Find the PFN the Movable zone begins in each node. Kernel memory
337  * is spread evenly between nodes as long as the nodes have enough
338  * memory. When they don't, some nodes will have more kernelcore than
339  * others
340  */
341 static void __init find_zone_movable_pfns_for_nodes(void)
342 {
343         int i, nid;
344         unsigned long usable_startpfn;
345         unsigned long kernelcore_node, kernelcore_remaining;
346         /* save the state before borrow the nodemask */
347         nodemask_t saved_node_state = node_states[N_MEMORY];
348         unsigned long totalpages = early_calculate_totalpages();
349         int usable_nodes = nodes_weight(node_states[N_MEMORY]);
350         struct memblock_region *r;
351
352         /* Need to find movable_zone earlier when movable_node is specified. */
353         find_usable_zone_for_movable();
354
355         /*
356          * If movable_node is specified, ignore kernelcore and movablecore
357          * options.
358          */
359         if (movable_node_is_enabled()) {
360                 for_each_mem_region(r) {
361                         if (!memblock_is_hotpluggable(r))
362                                 continue;
363
364                         nid = memblock_get_region_node(r);
365
366                         usable_startpfn = memblock_region_memory_base_pfn(r);
367                         zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
368                                 min(usable_startpfn, zone_movable_pfn[nid]) :
369                                 usable_startpfn;
370                 }
371
372                 goto out2;
373         }
374
375         /*
376          * If kernelcore=mirror is specified, ignore movablecore option
377          */
378         if (mirrored_kernelcore) {
379                 bool mem_below_4gb_not_mirrored = false;
380
381                 if (!memblock_has_mirror()) {
382                         pr_warn("The system has no mirror memory, ignore kernelcore=mirror.\n");
383                         goto out;
384                 }
385
386                 if (is_kdump_kernel()) {
387                         pr_warn("The system is under kdump, ignore kernelcore=mirror.\n");
388                         goto out;
389                 }
390
391                 for_each_mem_region(r) {
392                         if (memblock_is_mirror(r))
393                                 continue;
394
395                         nid = memblock_get_region_node(r);
396
397                         usable_startpfn = memblock_region_memory_base_pfn(r);
398
399                         if (usable_startpfn < PHYS_PFN(SZ_4G)) {
400                                 mem_below_4gb_not_mirrored = true;
401                                 continue;
402                         }
403
404                         zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
405                                 min(usable_startpfn, zone_movable_pfn[nid]) :
406                                 usable_startpfn;
407                 }
408
409                 if (mem_below_4gb_not_mirrored)
410                         pr_warn("This configuration results in unmirrored kernel memory.\n");
411
412                 goto out2;
413         }
414
415         /*
416          * If kernelcore=nn% or movablecore=nn% was specified, calculate the
417          * amount of necessary memory.
418          */
419         if (required_kernelcore_percent)
420                 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
421                                        10000UL;
422         if (required_movablecore_percent)
423                 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
424                                         10000UL;
425
426         /*
427          * If movablecore= was specified, calculate what size of
428          * kernelcore that corresponds so that memory usable for
429          * any allocation type is evenly spread. If both kernelcore
430          * and movablecore are specified, then the value of kernelcore
431          * will be used for required_kernelcore if it's greater than
432          * what movablecore would have allowed.
433          */
434         if (required_movablecore) {
435                 unsigned long corepages;
436
437                 /*
438                  * Round-up so that ZONE_MOVABLE is at least as large as what
439                  * was requested by the user
440                  */
441                 required_movablecore =
442                         roundup(required_movablecore, MAX_ORDER_NR_PAGES);
443                 required_movablecore = min(totalpages, required_movablecore);
444                 corepages = totalpages - required_movablecore;
445
446                 required_kernelcore = max(required_kernelcore, corepages);
447         }
448
449         /*
450          * If kernelcore was not specified or kernelcore size is larger
451          * than totalpages, there is no ZONE_MOVABLE.
452          */
453         if (!required_kernelcore || required_kernelcore >= totalpages)
454                 goto out;
455
456         /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
457         usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
458
459 restart:
460         /* Spread kernelcore memory as evenly as possible throughout nodes */
461         kernelcore_node = required_kernelcore / usable_nodes;
462         for_each_node_state(nid, N_MEMORY) {
463                 unsigned long start_pfn, end_pfn;
464
465                 /*
466                  * Recalculate kernelcore_node if the division per node
467                  * now exceeds what is necessary to satisfy the requested
468                  * amount of memory for the kernel
469                  */
470                 if (required_kernelcore < kernelcore_node)
471                         kernelcore_node = required_kernelcore / usable_nodes;
472
473                 /*
474                  * As the map is walked, we track how much memory is usable
475                  * by the kernel using kernelcore_remaining. When it is
476                  * 0, the rest of the node is usable by ZONE_MOVABLE
477                  */
478                 kernelcore_remaining = kernelcore_node;
479
480                 /* Go through each range of PFNs within this node */
481                 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
482                         unsigned long size_pages;
483
484                         start_pfn = max(start_pfn, zone_movable_pfn[nid]);
485                         if (start_pfn >= end_pfn)
486                                 continue;
487
488                         /* Account for what is only usable for kernelcore */
489                         if (start_pfn < usable_startpfn) {
490                                 unsigned long kernel_pages;
491                                 kernel_pages = min(end_pfn, usable_startpfn)
492                                                                 - start_pfn;
493
494                                 kernelcore_remaining -= min(kernel_pages,
495                                                         kernelcore_remaining);
496                                 required_kernelcore -= min(kernel_pages,
497                                                         required_kernelcore);
498
499                                 /* Continue if range is now fully accounted */
500                                 if (end_pfn <= usable_startpfn) {
501
502                                         /*
503                                          * Push zone_movable_pfn to the end so
504                                          * that if we have to rebalance
505                                          * kernelcore across nodes, we will
506                                          * not double account here
507                                          */
508                                         zone_movable_pfn[nid] = end_pfn;
509                                         continue;
510                                 }
511                                 start_pfn = usable_startpfn;
512                         }
513
514                         /*
515                          * The usable PFN range for ZONE_MOVABLE is from
516                          * start_pfn->end_pfn. Calculate size_pages as the
517                          * number of pages used as kernelcore
518                          */
519                         size_pages = end_pfn - start_pfn;
520                         if (size_pages > kernelcore_remaining)
521                                 size_pages = kernelcore_remaining;
522                         zone_movable_pfn[nid] = start_pfn + size_pages;
523
524                         /*
525                          * Some kernelcore has been met, update counts and
526                          * break if the kernelcore for this node has been
527                          * satisfied
528                          */
529                         required_kernelcore -= min(required_kernelcore,
530                                                                 size_pages);
531                         kernelcore_remaining -= size_pages;
532                         if (!kernelcore_remaining)
533                                 break;
534                 }
535         }
536
537         /*
538          * If there is still required_kernelcore, we do another pass with one
539          * less node in the count. This will push zone_movable_pfn[nid] further
540          * along on the nodes that still have memory until kernelcore is
541          * satisfied
542          */
543         usable_nodes--;
544         if (usable_nodes && required_kernelcore > usable_nodes)
545                 goto restart;
546
547 out2:
548         /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
549         for (nid = 0; nid < MAX_NUMNODES; nid++) {
550                 unsigned long start_pfn, end_pfn;
551
552                 zone_movable_pfn[nid] =
553                         roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
554
555                 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
556                 if (zone_movable_pfn[nid] >= end_pfn)
557                         zone_movable_pfn[nid] = 0;
558         }
559
560 out:
561         /* restore the node_state */
562         node_states[N_MEMORY] = saved_node_state;
563 }
564
565 void __meminit __init_single_page(struct page *page, unsigned long pfn,
566                                 unsigned long zone, int nid)
567 {
568         mm_zero_struct_page(page);
569         set_page_links(page, zone, nid, pfn);
570         init_page_count(page);
571         atomic_set(&page->_mapcount, -1);
572         page_cpupid_reset_last(page);
573         page_kasan_tag_reset(page);
574
575         INIT_LIST_HEAD(&page->lru);
576 #ifdef WANT_PAGE_VIRTUAL
577         /* The shift won't overflow because ZONE_NORMAL is below 4G. */
578         if (!is_highmem_idx(zone))
579                 set_page_address(page, __va(pfn << PAGE_SHIFT));
580 #endif
581 }
582
583 #ifdef CONFIG_NUMA
584 /*
585  * During memory init memblocks map pfns to nids. The search is expensive and
586  * this caches recent lookups. The implementation of __early_pfn_to_nid
587  * treats start/end as pfns.
588  */
589 struct mminit_pfnnid_cache {
590         unsigned long last_start;
591         unsigned long last_end;
592         int last_nid;
593 };
594
595 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
596
597 /*
598  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
599  */
600 static int __meminit __early_pfn_to_nid(unsigned long pfn,
601                                         struct mminit_pfnnid_cache *state)
602 {
603         unsigned long start_pfn, end_pfn;
604         int nid;
605
606         if (state->last_start <= pfn && pfn < state->last_end)
607                 return state->last_nid;
608
609         nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
610         if (nid != NUMA_NO_NODE) {
611                 state->last_start = start_pfn;
612                 state->last_end = end_pfn;
613                 state->last_nid = nid;
614         }
615
616         return nid;
617 }
618
619 int __meminit early_pfn_to_nid(unsigned long pfn)
620 {
621         static DEFINE_SPINLOCK(early_pfn_lock);
622         int nid;
623
624         spin_lock(&early_pfn_lock);
625         nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
626         if (nid < 0)
627                 nid = first_online_node;
628         spin_unlock(&early_pfn_lock);
629
630         return nid;
631 }
632
633 int hashdist = HASHDIST_DEFAULT;
634
635 static int __init set_hashdist(char *str)
636 {
637         if (!str)
638                 return 0;
639         hashdist = simple_strtoul(str, &str, 0);
640         return 1;
641 }
642 __setup("hashdist=", set_hashdist);
643
644 static inline void fixup_hashdist(void)
645 {
646         if (num_node_state(N_MEMORY) == 1)
647                 hashdist = 0;
648 }
649 #else
650 static inline void fixup_hashdist(void) {}
651 #endif /* CONFIG_NUMA */
652
653 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
654 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
655 {
656         pgdat->first_deferred_pfn = ULONG_MAX;
657 }
658
659 /* Returns true if the struct page for the pfn is initialised */
660 static inline bool __meminit early_page_initialised(unsigned long pfn, int nid)
661 {
662         if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
663                 return false;
664
665         return true;
666 }
667
668 /*
669  * Returns true when the remaining initialisation should be deferred until
670  * later in the boot cycle when it can be parallelised.
671  */
672 static bool __meminit
673 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
674 {
675         static unsigned long prev_end_pfn, nr_initialised;
676
677         if (early_page_ext_enabled())
678                 return false;
679
680         /* Always populate low zones for address-constrained allocations */
681         if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
682                 return false;
683
684         if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
685                 return true;
686
687         /*
688          * prev_end_pfn static that contains the end of previous zone
689          * No need to protect because called very early in boot before smp_init.
690          */
691         if (prev_end_pfn != end_pfn) {
692                 prev_end_pfn = end_pfn;
693                 nr_initialised = 0;
694         }
695
696         /*
697          * We start only with one section of pages, more pages are added as
698          * needed until the rest of deferred pages are initialized.
699          */
700         nr_initialised++;
701         if ((nr_initialised > PAGES_PER_SECTION) &&
702             (pfn & (PAGES_PER_SECTION - 1)) == 0) {
703                 NODE_DATA(nid)->first_deferred_pfn = pfn;
704                 return true;
705         }
706         return false;
707 }
708
709 static void __meminit init_reserved_page(unsigned long pfn, int nid)
710 {
711         pg_data_t *pgdat;
712         int zid;
713
714         if (early_page_initialised(pfn, nid))
715                 return;
716
717         pgdat = NODE_DATA(nid);
718
719         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
720                 struct zone *zone = &pgdat->node_zones[zid];
721
722                 if (zone_spans_pfn(zone, pfn))
723                         break;
724         }
725         __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
726 }
727 #else
728 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
729
730 static inline bool early_page_initialised(unsigned long pfn, int nid)
731 {
732         return true;
733 }
734
735 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
736 {
737         return false;
738 }
739
740 static inline void init_reserved_page(unsigned long pfn, int nid)
741 {
742 }
743 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
744
745 /*
746  * Initialised pages do not have PageReserved set. This function is
747  * called for each range allocated by the bootmem allocator and
748  * marks the pages PageReserved. The remaining valid pages are later
749  * sent to the buddy page allocator.
750  */
751 void __meminit reserve_bootmem_region(phys_addr_t start,
752                                       phys_addr_t end, int nid)
753 {
754         unsigned long start_pfn = PFN_DOWN(start);
755         unsigned long end_pfn = PFN_UP(end);
756
757         for (; start_pfn < end_pfn; start_pfn++) {
758                 if (pfn_valid(start_pfn)) {
759                         struct page *page = pfn_to_page(start_pfn);
760
761                         init_reserved_page(start_pfn, nid);
762
763                         /*
764                          * no need for atomic set_bit because the struct
765                          * page is not visible yet so nobody should
766                          * access it yet.
767                          */
768                         __SetPageReserved(page);
769                 }
770         }
771 }
772
773 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
774 static bool __meminit
775 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
776 {
777         static struct memblock_region *r;
778
779         if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
780                 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
781                         for_each_mem_region(r) {
782                                 if (*pfn < memblock_region_memory_end_pfn(r))
783                                         break;
784                         }
785                 }
786                 if (*pfn >= memblock_region_memory_base_pfn(r) &&
787                     memblock_is_mirror(r)) {
788                         *pfn = memblock_region_memory_end_pfn(r);
789                         return true;
790                 }
791         }
792         return false;
793 }
794
795 /*
796  * Only struct pages that correspond to ranges defined by memblock.memory
797  * are zeroed and initialized by going through __init_single_page() during
798  * memmap_init_zone_range().
799  *
800  * But, there could be struct pages that correspond to holes in
801  * memblock.memory. This can happen because of the following reasons:
802  * - physical memory bank size is not necessarily the exact multiple of the
803  *   arbitrary section size
804  * - early reserved memory may not be listed in memblock.memory
805  * - non-memory regions covered by the contigious flatmem mapping
806  * - memory layouts defined with memmap= kernel parameter may not align
807  *   nicely with memmap sections
808  *
809  * Explicitly initialize those struct pages so that:
810  * - PG_Reserved is set
811  * - zone and node links point to zone and node that span the page if the
812  *   hole is in the middle of a zone
813  * - zone and node links point to adjacent zone/node if the hole falls on
814  *   the zone boundary; the pages in such holes will be prepended to the
815  *   zone/node above the hole except for the trailing pages in the last
816  *   section that will be appended to the zone/node below.
817  */
818 static void __init init_unavailable_range(unsigned long spfn,
819                                           unsigned long epfn,
820                                           int zone, int node)
821 {
822         unsigned long pfn;
823         u64 pgcnt = 0;
824
825         for (pfn = spfn; pfn < epfn; pfn++) {
826                 if (!pfn_valid(pageblock_start_pfn(pfn))) {
827                         pfn = pageblock_end_pfn(pfn) - 1;
828                         continue;
829                 }
830                 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
831                 __SetPageReserved(pfn_to_page(pfn));
832                 pgcnt++;
833         }
834
835         if (pgcnt)
836                 pr_info("On node %d, zone %s: %lld pages in unavailable ranges\n",
837                         node, zone_names[zone], pgcnt);
838 }
839
840 /*
841  * Initially all pages are reserved - free ones are freed
842  * up by memblock_free_all() once the early boot process is
843  * done. Non-atomic initialization, single-pass.
844  *
845  * All aligned pageblocks are initialized to the specified migratetype
846  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
847  * zone stats (e.g., nr_isolate_pageblock) are touched.
848  */
849 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
850                 unsigned long start_pfn, unsigned long zone_end_pfn,
851                 enum meminit_context context,
852                 struct vmem_altmap *altmap, int migratetype)
853 {
854         unsigned long pfn, end_pfn = start_pfn + size;
855         struct page *page;
856
857         if (highest_memmap_pfn < end_pfn - 1)
858                 highest_memmap_pfn = end_pfn - 1;
859
860 #ifdef CONFIG_ZONE_DEVICE
861         /*
862          * Honor reservation requested by the driver for this ZONE_DEVICE
863          * memory. We limit the total number of pages to initialize to just
864          * those that might contain the memory mapping. We will defer the
865          * ZONE_DEVICE page initialization until after we have released
866          * the hotplug lock.
867          */
868         if (zone == ZONE_DEVICE) {
869                 if (!altmap)
870                         return;
871
872                 if (start_pfn == altmap->base_pfn)
873                         start_pfn += altmap->reserve;
874                 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
875         }
876 #endif
877
878         for (pfn = start_pfn; pfn < end_pfn; ) {
879                 /*
880                  * There can be holes in boot-time mem_map[]s handed to this
881                  * function.  They do not exist on hotplugged memory.
882                  */
883                 if (context == MEMINIT_EARLY) {
884                         if (overlap_memmap_init(zone, &pfn))
885                                 continue;
886                         if (defer_init(nid, pfn, zone_end_pfn)) {
887                                 deferred_struct_pages = true;
888                                 break;
889                         }
890                 }
891
892                 page = pfn_to_page(pfn);
893                 __init_single_page(page, pfn, zone, nid);
894                 if (context == MEMINIT_HOTPLUG) {
895 #ifdef CONFIG_ZONE_DEVICE
896                         if (zone == ZONE_DEVICE)
897                                 __SetPageReserved(page);
898                         else
899 #endif
900                                 __SetPageOffline(page);
901                 }
902
903                 /*
904                  * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
905                  * such that unmovable allocations won't be scattered all
906                  * over the place during system boot.
907                  */
908                 if (pageblock_aligned(pfn)) {
909                         set_pageblock_migratetype(page, migratetype);
910                         cond_resched();
911                 }
912                 pfn++;
913         }
914 }
915
916 static void __init memmap_init_zone_range(struct zone *zone,
917                                           unsigned long start_pfn,
918                                           unsigned long end_pfn,
919                                           unsigned long *hole_pfn)
920 {
921         unsigned long zone_start_pfn = zone->zone_start_pfn;
922         unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
923         int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
924
925         start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
926         end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
927
928         if (start_pfn >= end_pfn)
929                 return;
930
931         memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
932                           zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
933
934         if (*hole_pfn < start_pfn)
935                 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
936
937         *hole_pfn = end_pfn;
938 }
939
940 static void __init memmap_init(void)
941 {
942         unsigned long start_pfn, end_pfn;
943         unsigned long hole_pfn = 0;
944         int i, j, zone_id = 0, nid;
945
946         for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
947                 struct pglist_data *node = NODE_DATA(nid);
948
949                 for (j = 0; j < MAX_NR_ZONES; j++) {
950                         struct zone *zone = node->node_zones + j;
951
952                         if (!populated_zone(zone))
953                                 continue;
954
955                         memmap_init_zone_range(zone, start_pfn, end_pfn,
956                                                &hole_pfn);
957                         zone_id = j;
958                 }
959         }
960
961 #ifdef CONFIG_SPARSEMEM
962         /*
963          * Initialize the memory map for hole in the range [memory_end,
964          * section_end].
965          * Append the pages in this hole to the highest zone in the last
966          * node.
967          * The call to init_unavailable_range() is outside the ifdef to
968          * silence the compiler warining about zone_id set but not used;
969          * for FLATMEM it is a nop anyway
970          */
971         end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
972         if (hole_pfn < end_pfn)
973 #endif
974                 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
975 }
976
977 #ifdef CONFIG_ZONE_DEVICE
978 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
979                                           unsigned long zone_idx, int nid,
980                                           struct dev_pagemap *pgmap)
981 {
982
983         __init_single_page(page, pfn, zone_idx, nid);
984
985         /*
986          * Mark page reserved as it will need to wait for onlining
987          * phase for it to be fully associated with a zone.
988          *
989          * We can use the non-atomic __set_bit operation for setting
990          * the flag as we are still initializing the pages.
991          */
992         __SetPageReserved(page);
993
994         /*
995          * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
996          * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
997          * ever freed or placed on a driver-private list.
998          */
999         page->pgmap = pgmap;
1000         page->zone_device_data = NULL;
1001
1002         /*
1003          * Mark the block movable so that blocks are reserved for
1004          * movable at startup. This will force kernel allocations
1005          * to reserve their blocks rather than leaking throughout
1006          * the address space during boot when many long-lived
1007          * kernel allocations are made.
1008          *
1009          * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
1010          * because this is done early in section_activate()
1011          */
1012         if (pageblock_aligned(pfn)) {
1013                 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1014                 cond_resched();
1015         }
1016
1017         /*
1018          * ZONE_DEVICE pages are released directly to the driver page allocator
1019          * which will set the page count to 1 when allocating the page.
1020          */
1021         if (pgmap->type == MEMORY_DEVICE_PRIVATE ||
1022             pgmap->type == MEMORY_DEVICE_COHERENT)
1023                 set_page_count(page, 0);
1024 }
1025
1026 /*
1027  * With compound page geometry and when struct pages are stored in ram most
1028  * tail pages are reused. Consequently, the amount of unique struct pages to
1029  * initialize is a lot smaller that the total amount of struct pages being
1030  * mapped. This is a paired / mild layering violation with explicit knowledge
1031  * of how the sparse_vmemmap internals handle compound pages in the lack
1032  * of an altmap. See vmemmap_populate_compound_pages().
1033  */
1034 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
1035                                               struct dev_pagemap *pgmap)
1036 {
1037         if (!vmemmap_can_optimize(altmap, pgmap))
1038                 return pgmap_vmemmap_nr(pgmap);
1039
1040         return VMEMMAP_RESERVE_NR * (PAGE_SIZE / sizeof(struct page));
1041 }
1042
1043 static void __ref memmap_init_compound(struct page *head,
1044                                        unsigned long head_pfn,
1045                                        unsigned long zone_idx, int nid,
1046                                        struct dev_pagemap *pgmap,
1047                                        unsigned long nr_pages)
1048 {
1049         unsigned long pfn, end_pfn = head_pfn + nr_pages;
1050         unsigned int order = pgmap->vmemmap_shift;
1051
1052         __SetPageHead(head);
1053         for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
1054                 struct page *page = pfn_to_page(pfn);
1055
1056                 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
1057                 prep_compound_tail(head, pfn - head_pfn);
1058                 set_page_count(page, 0);
1059
1060                 /*
1061                  * The first tail page stores important compound page info.
1062                  * Call prep_compound_head() after the first tail page has
1063                  * been initialized, to not have the data overwritten.
1064                  */
1065                 if (pfn == head_pfn + 1)
1066                         prep_compound_head(head, order);
1067         }
1068 }
1069
1070 void __ref memmap_init_zone_device(struct zone *zone,
1071                                    unsigned long start_pfn,
1072                                    unsigned long nr_pages,
1073                                    struct dev_pagemap *pgmap)
1074 {
1075         unsigned long pfn, end_pfn = start_pfn + nr_pages;
1076         struct pglist_data *pgdat = zone->zone_pgdat;
1077         struct vmem_altmap *altmap = pgmap_altmap(pgmap);
1078         unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
1079         unsigned long zone_idx = zone_idx(zone);
1080         unsigned long start = jiffies;
1081         int nid = pgdat->node_id;
1082
1083         if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
1084                 return;
1085
1086         /*
1087          * The call to memmap_init should have already taken care
1088          * of the pages reserved for the memmap, so we can just jump to
1089          * the end of that region and start processing the device pages.
1090          */
1091         if (altmap) {
1092                 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1093                 nr_pages = end_pfn - start_pfn;
1094         }
1095
1096         for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
1097                 struct page *page = pfn_to_page(pfn);
1098
1099                 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
1100
1101                 if (pfns_per_compound == 1)
1102                         continue;
1103
1104                 memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
1105                                      compound_nr_pages(altmap, pgmap));
1106         }
1107
1108         pr_debug("%s initialised %lu pages in %ums\n", __func__,
1109                 nr_pages, jiffies_to_msecs(jiffies - start));
1110 }
1111 #endif
1112
1113 /*
1114  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
1115  * because it is sized independent of architecture. Unlike the other zones,
1116  * the starting point for ZONE_MOVABLE is not fixed. It may be different
1117  * in each node depending on the size of each node and how evenly kernelcore
1118  * is distributed. This helper function adjusts the zone ranges
1119  * provided by the architecture for a given node by using the end of the
1120  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
1121  * zones within a node are in order of monotonic increases memory addresses
1122  */
1123 static void __init adjust_zone_range_for_zone_movable(int nid,
1124                                         unsigned long zone_type,
1125                                         unsigned long node_end_pfn,
1126                                         unsigned long *zone_start_pfn,
1127                                         unsigned long *zone_end_pfn)
1128 {
1129         /* Only adjust if ZONE_MOVABLE is on this node */
1130         if (zone_movable_pfn[nid]) {
1131                 /* Size ZONE_MOVABLE */
1132                 if (zone_type == ZONE_MOVABLE) {
1133                         *zone_start_pfn = zone_movable_pfn[nid];
1134                         *zone_end_pfn = min(node_end_pfn,
1135                                 arch_zone_highest_possible_pfn[movable_zone]);
1136
1137                 /* Adjust for ZONE_MOVABLE starting within this range */
1138                 } else if (!mirrored_kernelcore &&
1139                         *zone_start_pfn < zone_movable_pfn[nid] &&
1140                         *zone_end_pfn > zone_movable_pfn[nid]) {
1141                         *zone_end_pfn = zone_movable_pfn[nid];
1142
1143                 /* Check if this whole range is within ZONE_MOVABLE */
1144                 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
1145                         *zone_start_pfn = *zone_end_pfn;
1146         }
1147 }
1148
1149 /*
1150  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
1151  * then all holes in the requested range will be accounted for.
1152  */
1153 static unsigned long __init __absent_pages_in_range(int nid,
1154                                 unsigned long range_start_pfn,
1155                                 unsigned long range_end_pfn)
1156 {
1157         unsigned long nr_absent = range_end_pfn - range_start_pfn;
1158         unsigned long start_pfn, end_pfn;
1159         int i;
1160
1161         for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
1162                 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
1163                 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
1164                 nr_absent -= end_pfn - start_pfn;
1165         }
1166         return nr_absent;
1167 }
1168
1169 /**
1170  * absent_pages_in_range - Return number of page frames in holes within a range
1171  * @start_pfn: The start PFN to start searching for holes
1172  * @end_pfn: The end PFN to stop searching for holes
1173  *
1174  * Return: the number of pages frames in memory holes within a range.
1175  */
1176 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
1177                                                         unsigned long end_pfn)
1178 {
1179         return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
1180 }
1181
1182 /* Return the number of page frames in holes in a zone on a node */
1183 static unsigned long __init zone_absent_pages_in_node(int nid,
1184                                         unsigned long zone_type,
1185                                         unsigned long zone_start_pfn,
1186                                         unsigned long zone_end_pfn)
1187 {
1188         unsigned long nr_absent;
1189
1190         /* zone is empty, we don't have any absent pages */
1191         if (zone_start_pfn == zone_end_pfn)
1192                 return 0;
1193
1194         nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
1195
1196         /*
1197          * ZONE_MOVABLE handling.
1198          * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
1199          * and vice versa.
1200          */
1201         if (mirrored_kernelcore && zone_movable_pfn[nid]) {
1202                 unsigned long start_pfn, end_pfn;
1203                 struct memblock_region *r;
1204
1205                 for_each_mem_region(r) {
1206                         start_pfn = clamp(memblock_region_memory_base_pfn(r),
1207                                           zone_start_pfn, zone_end_pfn);
1208                         end_pfn = clamp(memblock_region_memory_end_pfn(r),
1209                                         zone_start_pfn, zone_end_pfn);
1210
1211                         if (zone_type == ZONE_MOVABLE &&
1212                             memblock_is_mirror(r))
1213                                 nr_absent += end_pfn - start_pfn;
1214
1215                         if (zone_type == ZONE_NORMAL &&
1216                             !memblock_is_mirror(r))
1217                                 nr_absent += end_pfn - start_pfn;
1218                 }
1219         }
1220
1221         return nr_absent;
1222 }
1223
1224 /*
1225  * Return the number of pages a zone spans in a node, including holes
1226  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
1227  */
1228 static unsigned long __init zone_spanned_pages_in_node(int nid,
1229                                         unsigned long zone_type,
1230                                         unsigned long node_start_pfn,
1231                                         unsigned long node_end_pfn,
1232                                         unsigned long *zone_start_pfn,
1233                                         unsigned long *zone_end_pfn)
1234 {
1235         unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
1236         unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
1237
1238         /* Get the start and end of the zone */
1239         *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
1240         *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
1241         adjust_zone_range_for_zone_movable(nid, zone_type, node_end_pfn,
1242                                            zone_start_pfn, zone_end_pfn);
1243
1244         /* Check that this node has pages within the zone's required range */
1245         if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
1246                 return 0;
1247
1248         /* Move the zone boundaries inside the node if necessary */
1249         *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
1250         *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
1251
1252         /* Return the spanned pages */
1253         return *zone_end_pfn - *zone_start_pfn;
1254 }
1255
1256 static void __init reset_memoryless_node_totalpages(struct pglist_data *pgdat)
1257 {
1258         struct zone *z;
1259
1260         for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) {
1261                 z->zone_start_pfn = 0;
1262                 z->spanned_pages = 0;
1263                 z->present_pages = 0;
1264 #if defined(CONFIG_MEMORY_HOTPLUG)
1265                 z->present_early_pages = 0;
1266 #endif
1267         }
1268
1269         pgdat->node_spanned_pages = 0;
1270         pgdat->node_present_pages = 0;
1271         pr_debug("On node %d totalpages: 0\n", pgdat->node_id);
1272 }
1273
1274 static void __init calc_nr_kernel_pages(void)
1275 {
1276         unsigned long start_pfn, end_pfn;
1277         phys_addr_t start_addr, end_addr;
1278         u64 u;
1279 #ifdef CONFIG_HIGHMEM
1280         unsigned long high_zone_low = arch_zone_lowest_possible_pfn[ZONE_HIGHMEM];
1281 #endif
1282
1283         for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
1284                 start_pfn = PFN_UP(start_addr);
1285                 end_pfn   = PFN_DOWN(end_addr);
1286
1287                 if (start_pfn < end_pfn) {
1288                         nr_all_pages += end_pfn - start_pfn;
1289 #ifdef CONFIG_HIGHMEM
1290                         start_pfn = clamp(start_pfn, 0, high_zone_low);
1291                         end_pfn = clamp(end_pfn, 0, high_zone_low);
1292 #endif
1293                         nr_kernel_pages += end_pfn - start_pfn;
1294                 }
1295         }
1296 }
1297
1298 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
1299                                                 unsigned long node_start_pfn,
1300                                                 unsigned long node_end_pfn)
1301 {
1302         unsigned long realtotalpages = 0, totalpages = 0;
1303         enum zone_type i;
1304
1305         for (i = 0; i < MAX_NR_ZONES; i++) {
1306                 struct zone *zone = pgdat->node_zones + i;
1307                 unsigned long zone_start_pfn, zone_end_pfn;
1308                 unsigned long spanned, absent;
1309                 unsigned long real_size;
1310
1311                 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
1312                                                      node_start_pfn,
1313                                                      node_end_pfn,
1314                                                      &zone_start_pfn,
1315                                                      &zone_end_pfn);
1316                 absent = zone_absent_pages_in_node(pgdat->node_id, i,
1317                                                    zone_start_pfn,
1318                                                    zone_end_pfn);
1319
1320                 real_size = spanned - absent;
1321
1322                 if (spanned)
1323                         zone->zone_start_pfn = zone_start_pfn;
1324                 else
1325                         zone->zone_start_pfn = 0;
1326                 zone->spanned_pages = spanned;
1327                 zone->present_pages = real_size;
1328 #if defined(CONFIG_MEMORY_HOTPLUG)
1329                 zone->present_early_pages = real_size;
1330 #endif
1331
1332                 totalpages += spanned;
1333                 realtotalpages += real_size;
1334         }
1335
1336         pgdat->node_spanned_pages = totalpages;
1337         pgdat->node_present_pages = realtotalpages;
1338         pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1339 }
1340
1341 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1342 static void pgdat_init_split_queue(struct pglist_data *pgdat)
1343 {
1344         struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
1345
1346         spin_lock_init(&ds_queue->split_queue_lock);
1347         INIT_LIST_HEAD(&ds_queue->split_queue);
1348         ds_queue->split_queue_len = 0;
1349 }
1350 #else
1351 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
1352 #endif
1353
1354 #ifdef CONFIG_COMPACTION
1355 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
1356 {
1357         init_waitqueue_head(&pgdat->kcompactd_wait);
1358 }
1359 #else
1360 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
1361 #endif
1362
1363 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1364 {
1365         int i;
1366
1367         pgdat_resize_init(pgdat);
1368         pgdat_kswapd_lock_init(pgdat);
1369
1370         pgdat_init_split_queue(pgdat);
1371         pgdat_init_kcompactd(pgdat);
1372
1373         init_waitqueue_head(&pgdat->kswapd_wait);
1374         init_waitqueue_head(&pgdat->pfmemalloc_wait);
1375
1376         for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
1377                 init_waitqueue_head(&pgdat->reclaim_wait[i]);
1378
1379         pgdat_page_ext_init(pgdat);
1380         lruvec_init(&pgdat->__lruvec);
1381 }
1382
1383 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
1384                                                         unsigned long remaining_pages)
1385 {
1386         atomic_long_set(&zone->managed_pages, remaining_pages);
1387         zone_set_nid(zone, nid);
1388         zone->name = zone_names[idx];
1389         zone->zone_pgdat = NODE_DATA(nid);
1390         spin_lock_init(&zone->lock);
1391         zone_seqlock_init(zone);
1392         zone_pcp_init(zone);
1393 }
1394
1395 static void __meminit zone_init_free_lists(struct zone *zone)
1396 {
1397         unsigned int order, t;
1398         for_each_migratetype_order(order, t) {
1399                 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1400                 zone->free_area[order].nr_free = 0;
1401         }
1402
1403 #ifdef CONFIG_UNACCEPTED_MEMORY
1404         INIT_LIST_HEAD(&zone->unaccepted_pages);
1405 #endif
1406 }
1407
1408 void __meminit init_currently_empty_zone(struct zone *zone,
1409                                         unsigned long zone_start_pfn,
1410                                         unsigned long size)
1411 {
1412         struct pglist_data *pgdat = zone->zone_pgdat;
1413         int zone_idx = zone_idx(zone) + 1;
1414
1415         if (zone_idx > pgdat->nr_zones)
1416                 pgdat->nr_zones = zone_idx;
1417
1418         zone->zone_start_pfn = zone_start_pfn;
1419
1420         mminit_dprintk(MMINIT_TRACE, "memmap_init",
1421                         "Initialising map node %d zone %lu pfns %lu -> %lu\n",
1422                         pgdat->node_id,
1423                         (unsigned long)zone_idx(zone),
1424                         zone_start_pfn, (zone_start_pfn + size));
1425
1426         zone_init_free_lists(zone);
1427         zone->initialized = 1;
1428 }
1429
1430 #ifndef CONFIG_SPARSEMEM
1431 /*
1432  * Calculate the size of the zone->blockflags rounded to an unsigned long
1433  * Start by making sure zonesize is a multiple of pageblock_order by rounding
1434  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
1435  * round what is now in bits to nearest long in bits, then return it in
1436  * bytes.
1437  */
1438 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
1439 {
1440         unsigned long usemapsize;
1441
1442         zonesize += zone_start_pfn & (pageblock_nr_pages-1);
1443         usemapsize = roundup(zonesize, pageblock_nr_pages);
1444         usemapsize = usemapsize >> pageblock_order;
1445         usemapsize *= NR_PAGEBLOCK_BITS;
1446         usemapsize = roundup(usemapsize, BITS_PER_LONG);
1447
1448         return usemapsize / BITS_PER_BYTE;
1449 }
1450
1451 static void __ref setup_usemap(struct zone *zone)
1452 {
1453         unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
1454                                                zone->spanned_pages);
1455         zone->pageblock_flags = NULL;
1456         if (usemapsize) {
1457                 zone->pageblock_flags =
1458                         memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
1459                                             zone_to_nid(zone));
1460                 if (!zone->pageblock_flags)
1461                         panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
1462                               usemapsize, zone->name, zone_to_nid(zone));
1463         }
1464 }
1465 #else
1466 static inline void setup_usemap(struct zone *zone) {}
1467 #endif /* CONFIG_SPARSEMEM */
1468
1469 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
1470
1471 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
1472 void __init set_pageblock_order(void)
1473 {
1474         unsigned int order = MAX_PAGE_ORDER;
1475
1476         /* Check that pageblock_nr_pages has not already been setup */
1477         if (pageblock_order)
1478                 return;
1479
1480         /* Don't let pageblocks exceed the maximum allocation granularity. */
1481         if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
1482                 order = HUGETLB_PAGE_ORDER;
1483
1484         /*
1485          * Assume the largest contiguous order of interest is a huge page.
1486          * This value may be variable depending on boot parameters on powerpc.
1487          */
1488         pageblock_order = order;
1489 }
1490 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
1491
1492 /*
1493  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
1494  * is unused as pageblock_order is set at compile-time. See
1495  * include/linux/pageblock-flags.h for the values of pageblock_order based on
1496  * the kernel config
1497  */
1498 void __init set_pageblock_order(void)
1499 {
1500 }
1501
1502 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
1503
1504 /*
1505  * Set up the zone data structures
1506  * - init pgdat internals
1507  * - init all zones belonging to this node
1508  *
1509  * NOTE: this function is only called during memory hotplug
1510  */
1511 #ifdef CONFIG_MEMORY_HOTPLUG
1512 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
1513 {
1514         int nid = pgdat->node_id;
1515         enum zone_type z;
1516         int cpu;
1517
1518         pgdat_init_internals(pgdat);
1519
1520         if (pgdat->per_cpu_nodestats == &boot_nodestats)
1521                 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
1522
1523         /*
1524          * Reset the nr_zones, order and highest_zoneidx before reuse.
1525          * Note that kswapd will init kswapd_highest_zoneidx properly
1526          * when it starts in the near future.
1527          */
1528         pgdat->nr_zones = 0;
1529         pgdat->kswapd_order = 0;
1530         pgdat->kswapd_highest_zoneidx = 0;
1531         pgdat->node_start_pfn = 0;
1532         pgdat->node_present_pages = 0;
1533
1534         for_each_online_cpu(cpu) {
1535                 struct per_cpu_nodestat *p;
1536
1537                 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
1538                 memset(p, 0, sizeof(*p));
1539         }
1540
1541         /*
1542          * When memory is hot-added, all the memory is in offline state. So
1543          * clear all zones' present_pages and managed_pages because they will
1544          * be updated in online_pages() and offline_pages().
1545          */
1546         for (z = 0; z < MAX_NR_ZONES; z++) {
1547                 struct zone *zone = pgdat->node_zones + z;
1548
1549                 zone->present_pages = 0;
1550                 zone_init_internals(zone, z, nid, 0);
1551         }
1552 }
1553 #endif
1554
1555 static void __init free_area_init_core(struct pglist_data *pgdat)
1556 {
1557         enum zone_type j;
1558         int nid = pgdat->node_id;
1559
1560         pgdat_init_internals(pgdat);
1561         pgdat->per_cpu_nodestats = &boot_nodestats;
1562
1563         for (j = 0; j < MAX_NR_ZONES; j++) {
1564                 struct zone *zone = pgdat->node_zones + j;
1565                 unsigned long size = zone->spanned_pages;
1566
1567                 /*
1568                  * Initialize zone->managed_pages as 0 , it will be reset
1569                  * when memblock allocator frees pages into buddy system.
1570                  */
1571                 zone_init_internals(zone, j, nid, zone->present_pages);
1572
1573                 if (!size)
1574                         continue;
1575
1576                 setup_usemap(zone);
1577                 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
1578         }
1579 }
1580
1581 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
1582                           phys_addr_t min_addr, int nid, bool exact_nid)
1583 {
1584         void *ptr;
1585
1586         if (exact_nid)
1587                 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
1588                                                    MEMBLOCK_ALLOC_ACCESSIBLE,
1589                                                    nid);
1590         else
1591                 ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
1592                                                  MEMBLOCK_ALLOC_ACCESSIBLE,
1593                                                  nid);
1594
1595         if (ptr && size > 0)
1596                 page_init_poison(ptr, size);
1597
1598         return ptr;
1599 }
1600
1601 #ifdef CONFIG_FLATMEM
1602 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1603 {
1604         unsigned long start, offset, size, end;
1605         struct page *map;
1606
1607         /* Skip empty nodes */
1608         if (!pgdat->node_spanned_pages)
1609                 return;
1610
1611         start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
1612         offset = pgdat->node_start_pfn - start;
1613         /*
1614                  * The zone's endpoints aren't required to be MAX_PAGE_ORDER
1615          * aligned but the node_mem_map endpoints must be in order
1616          * for the buddy allocator to function correctly.
1617          */
1618         end = ALIGN(pgdat_end_pfn(pgdat), MAX_ORDER_NR_PAGES);
1619         size =  (end - start) * sizeof(struct page);
1620         map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
1621                            pgdat->node_id, false);
1622         if (!map)
1623                 panic("Failed to allocate %ld bytes for node %d memory map\n",
1624                       size, pgdat->node_id);
1625         pgdat->node_mem_map = map + offset;
1626         memmap_boot_pages_add(DIV_ROUND_UP(size, PAGE_SIZE));
1627         pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
1628                  __func__, pgdat->node_id, (unsigned long)pgdat,
1629                  (unsigned long)pgdat->node_mem_map);
1630 #ifndef CONFIG_NUMA
1631         /* the global mem_map is just set as node 0's */
1632         if (pgdat == NODE_DATA(0)) {
1633                 mem_map = NODE_DATA(0)->node_mem_map;
1634                 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
1635                         mem_map -= offset;
1636         }
1637 #endif
1638 }
1639 #else
1640 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
1641 #endif /* CONFIG_FLATMEM */
1642
1643 /**
1644  * get_pfn_range_for_nid - Return the start and end page frames for a node
1645  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
1646  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
1647  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
1648  *
1649  * It returns the start and end page frame of a node based on information
1650  * provided by memblock_set_node(). If called for a node
1651  * with no available memory, the start and end PFNs will be 0.
1652  */
1653 void __init get_pfn_range_for_nid(unsigned int nid,
1654                         unsigned long *start_pfn, unsigned long *end_pfn)
1655 {
1656         unsigned long this_start_pfn, this_end_pfn;
1657         int i;
1658
1659         *start_pfn = -1UL;
1660         *end_pfn = 0;
1661
1662         for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
1663                 *start_pfn = min(*start_pfn, this_start_pfn);
1664                 *end_pfn = max(*end_pfn, this_end_pfn);
1665         }
1666
1667         if (*start_pfn == -1UL)
1668                 *start_pfn = 0;
1669 }
1670
1671 static void __init free_area_init_node(int nid)
1672 {
1673         pg_data_t *pgdat = NODE_DATA(nid);
1674         unsigned long start_pfn = 0;
1675         unsigned long end_pfn = 0;
1676
1677         /* pg_data_t should be reset to zero when it's allocated */
1678         WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
1679
1680         get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1681
1682         pgdat->node_id = nid;
1683         pgdat->node_start_pfn = start_pfn;
1684         pgdat->per_cpu_nodestats = NULL;
1685
1686         if (start_pfn != end_pfn) {
1687                 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
1688                         (u64)start_pfn << PAGE_SHIFT,
1689                         end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
1690
1691                 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1692         } else {
1693                 pr_info("Initmem setup node %d as memoryless\n", nid);
1694
1695                 reset_memoryless_node_totalpages(pgdat);
1696         }
1697
1698         alloc_node_mem_map(pgdat);
1699         pgdat_set_deferred_range(pgdat);
1700
1701         free_area_init_core(pgdat);
1702         lru_gen_init_pgdat(pgdat);
1703 }
1704
1705 /* Any regular or high memory on that node ? */
1706 static void __init check_for_memory(pg_data_t *pgdat)
1707 {
1708         enum zone_type zone_type;
1709
1710         for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
1711                 struct zone *zone = &pgdat->node_zones[zone_type];
1712                 if (populated_zone(zone)) {
1713                         if (IS_ENABLED(CONFIG_HIGHMEM))
1714                                 node_set_state(pgdat->node_id, N_HIGH_MEMORY);
1715                         if (zone_type <= ZONE_NORMAL)
1716                                 node_set_state(pgdat->node_id, N_NORMAL_MEMORY);
1717                         break;
1718                 }
1719         }
1720 }
1721
1722 #if MAX_NUMNODES > 1
1723 /*
1724  * Figure out the number of possible node ids.
1725  */
1726 void __init setup_nr_node_ids(void)
1727 {
1728         unsigned int highest;
1729
1730         highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
1731         nr_node_ids = highest + 1;
1732 }
1733 #endif
1734
1735 /*
1736  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
1737  * such cases we allow max_zone_pfn sorted in the descending order
1738  */
1739 static bool arch_has_descending_max_zone_pfns(void)
1740 {
1741         return IS_ENABLED(CONFIG_ARC) && !IS_ENABLED(CONFIG_ARC_HAS_PAE40);
1742 }
1743
1744 /**
1745  * free_area_init - Initialise all pg_data_t and zone data
1746  * @max_zone_pfn: an array of max PFNs for each zone
1747  *
1748  * This will call free_area_init_node() for each active node in the system.
1749  * Using the page ranges provided by memblock_set_node(), the size of each
1750  * zone in each node and their holes is calculated. If the maximum PFN
1751  * between two adjacent zones match, it is assumed that the zone is empty.
1752  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
1753  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
1754  * starts where the previous one ended. For example, ZONE_DMA32 starts
1755  * at arch_max_dma_pfn.
1756  */
1757 void __init free_area_init(unsigned long *max_zone_pfn)
1758 {
1759         unsigned long start_pfn, end_pfn;
1760         int i, nid, zone;
1761         bool descending;
1762
1763         /* Record where the zone boundaries are */
1764         memset(arch_zone_lowest_possible_pfn, 0,
1765                                 sizeof(arch_zone_lowest_possible_pfn));
1766         memset(arch_zone_highest_possible_pfn, 0,
1767                                 sizeof(arch_zone_highest_possible_pfn));
1768
1769         start_pfn = PHYS_PFN(memblock_start_of_DRAM());
1770         descending = arch_has_descending_max_zone_pfns();
1771
1772         for (i = 0; i < MAX_NR_ZONES; i++) {
1773                 if (descending)
1774                         zone = MAX_NR_ZONES - i - 1;
1775                 else
1776                         zone = i;
1777
1778                 if (zone == ZONE_MOVABLE)
1779                         continue;
1780
1781                 end_pfn = max(max_zone_pfn[zone], start_pfn);
1782                 arch_zone_lowest_possible_pfn[zone] = start_pfn;
1783                 arch_zone_highest_possible_pfn[zone] = end_pfn;
1784
1785                 start_pfn = end_pfn;
1786         }
1787
1788         /* Find the PFNs that ZONE_MOVABLE begins at in each node */
1789         memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
1790         find_zone_movable_pfns_for_nodes();
1791
1792         /* Print out the zone ranges */
1793         pr_info("Zone ranges:\n");
1794         for (i = 0; i < MAX_NR_ZONES; i++) {
1795                 if (i == ZONE_MOVABLE)
1796                         continue;
1797                 pr_info("  %-8s ", zone_names[i]);
1798                 if (arch_zone_lowest_possible_pfn[i] ==
1799                                 arch_zone_highest_possible_pfn[i])
1800                         pr_cont("empty\n");
1801                 else
1802                         pr_cont("[mem %#018Lx-%#018Lx]\n",
1803                                 (u64)arch_zone_lowest_possible_pfn[i]
1804                                         << PAGE_SHIFT,
1805                                 ((u64)arch_zone_highest_possible_pfn[i]
1806                                         << PAGE_SHIFT) - 1);
1807         }
1808
1809         /* Print out the PFNs ZONE_MOVABLE begins at in each node */
1810         pr_info("Movable zone start for each node\n");
1811         for (i = 0; i < MAX_NUMNODES; i++) {
1812                 if (zone_movable_pfn[i])
1813                         pr_info("  Node %d: %#018Lx\n", i,
1814                                (u64)zone_movable_pfn[i] << PAGE_SHIFT);
1815         }
1816
1817         /*
1818          * Print out the early node map, and initialize the
1819          * subsection-map relative to active online memory ranges to
1820          * enable future "sub-section" extensions of the memory map.
1821          */
1822         pr_info("Early memory node ranges\n");
1823         for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
1824                 pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
1825                         (u64)start_pfn << PAGE_SHIFT,
1826                         ((u64)end_pfn << PAGE_SHIFT) - 1);
1827                 subsection_map_init(start_pfn, end_pfn - start_pfn);
1828         }
1829
1830         /* Initialise every node */
1831         mminit_verify_pageflags_layout();
1832         setup_nr_node_ids();
1833         set_pageblock_order();
1834
1835         for_each_node(nid) {
1836                 pg_data_t *pgdat;
1837
1838                 if (!node_online(nid))
1839                         alloc_offline_node_data(nid);
1840
1841                 pgdat = NODE_DATA(nid);
1842                 free_area_init_node(nid);
1843
1844                 /*
1845                  * No sysfs hierarcy will be created via register_one_node()
1846                  *for memory-less node because here it's not marked as N_MEMORY
1847                  *and won't be set online later. The benefit is userspace
1848                  *program won't be confused by sysfs files/directories of
1849                  *memory-less node. The pgdat will get fully initialized by
1850                  *hotadd_init_pgdat() when memory is hotplugged into this node.
1851                  */
1852                 if (pgdat->node_present_pages) {
1853                         node_set_state(nid, N_MEMORY);
1854                         check_for_memory(pgdat);
1855                 }
1856         }
1857
1858         calc_nr_kernel_pages();
1859         memmap_init();
1860
1861         /* disable hash distribution for systems with a single node */
1862         fixup_hashdist();
1863 }
1864
1865 /**
1866  * node_map_pfn_alignment - determine the maximum internode alignment
1867  *
1868  * This function should be called after node map is populated and sorted.
1869  * It calculates the maximum power of two alignment which can distinguish
1870  * all the nodes.
1871  *
1872  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
1873  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
1874  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
1875  * shifted, 1GiB is enough and this function will indicate so.
1876  *
1877  * This is used to test whether pfn -> nid mapping of the chosen memory
1878  * model has fine enough granularity to avoid incorrect mapping for the
1879  * populated node map.
1880  *
1881  * Return: the determined alignment in pfn's.  0 if there is no alignment
1882  * requirement (single node).
1883  */
1884 unsigned long __init node_map_pfn_alignment(void)
1885 {
1886         unsigned long accl_mask = 0, last_end = 0;
1887         unsigned long start, end, mask;
1888         int last_nid = NUMA_NO_NODE;
1889         int i, nid;
1890
1891         for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1892                 if (!start || last_nid < 0 || last_nid == nid) {
1893                         last_nid = nid;
1894                         last_end = end;
1895                         continue;
1896                 }
1897
1898                 /*
1899                  * Start with a mask granular enough to pin-point to the
1900                  * start pfn and tick off bits one-by-one until it becomes
1901                  * too coarse to separate the current node from the last.
1902                  */
1903                 mask = ~((1 << __ffs(start)) - 1);
1904                 while (mask && last_end <= (start & (mask << 1)))
1905                         mask <<= 1;
1906
1907                 /* accumulate all internode masks */
1908                 accl_mask |= mask;
1909         }
1910
1911         /* convert mask to number of pages */
1912         return ~accl_mask + 1;
1913 }
1914
1915 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1916 static void __init deferred_free_pages(unsigned long pfn,
1917                 unsigned long nr_pages)
1918 {
1919         struct page *page;
1920         unsigned long i;
1921
1922         if (!nr_pages)
1923                 return;
1924
1925         page = pfn_to_page(pfn);
1926
1927         /* Free a large naturally-aligned chunk if possible */
1928         if (nr_pages == MAX_ORDER_NR_PAGES && IS_MAX_ORDER_ALIGNED(pfn)) {
1929                 for (i = 0; i < nr_pages; i += pageblock_nr_pages)
1930                         set_pageblock_migratetype(page + i, MIGRATE_MOVABLE);
1931                 __free_pages_core(page, MAX_PAGE_ORDER, MEMINIT_EARLY);
1932                 return;
1933         }
1934
1935         /* Accept chunks smaller than MAX_PAGE_ORDER upfront */
1936         accept_memory(PFN_PHYS(pfn), nr_pages * PAGE_SIZE);
1937
1938         for (i = 0; i < nr_pages; i++, page++, pfn++) {
1939                 if (pageblock_aligned(pfn))
1940                         set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1941                 __free_pages_core(page, 0, MEMINIT_EARLY);
1942         }
1943 }
1944
1945 /* Completion tracking for deferred_init_memmap() threads */
1946 static atomic_t pgdat_init_n_undone __initdata;
1947 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1948
1949 static inline void __init pgdat_init_report_one_done(void)
1950 {
1951         if (atomic_dec_and_test(&pgdat_init_n_undone))
1952                 complete(&pgdat_init_all_done_comp);
1953 }
1954
1955 /*
1956  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1957  * by performing it only once every MAX_ORDER_NR_PAGES.
1958  * Return number of pages initialized.
1959  */
1960 static unsigned long __init deferred_init_pages(struct zone *zone,
1961                 unsigned long pfn, unsigned long end_pfn)
1962 {
1963         int nid = zone_to_nid(zone);
1964         unsigned long nr_pages = end_pfn - pfn;
1965         int zid = zone_idx(zone);
1966         struct page *page = pfn_to_page(pfn);
1967
1968         for (; pfn < end_pfn; pfn++, page++)
1969                 __init_single_page(page, pfn, zid, nid);
1970         return nr_pages;
1971 }
1972
1973 /*
1974  * This function is meant to pre-load the iterator for the zone init from
1975  * a given point.
1976  * Specifically it walks through the ranges starting with initial index
1977  * passed to it until we are caught up to the first_init_pfn value and
1978  * exits there. If we never encounter the value we return false indicating
1979  * there are no valid ranges left.
1980  */
1981 static bool __init
1982 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1983                                     unsigned long *spfn, unsigned long *epfn,
1984                                     unsigned long first_init_pfn)
1985 {
1986         u64 j = *i;
1987
1988         if (j == 0)
1989                 __next_mem_pfn_range_in_zone(&j, zone, spfn, epfn);
1990
1991         /*
1992          * Start out by walking through the ranges in this zone that have
1993          * already been initialized. We don't need to do anything with them
1994          * so we just need to flush them out of the system.
1995          */
1996         for_each_free_mem_pfn_range_in_zone_from(j, zone, spfn, epfn) {
1997                 if (*epfn <= first_init_pfn)
1998                         continue;
1999                 if (*spfn < first_init_pfn)
2000                         *spfn = first_init_pfn;
2001                 *i = j;
2002                 return true;
2003         }
2004
2005         return false;
2006 }
2007
2008 /*
2009  * Initialize and free pages. We do it in two loops: first we initialize
2010  * struct page, then free to buddy allocator, because while we are
2011  * freeing pages we can access pages that are ahead (computing buddy
2012  * page in __free_one_page()).
2013  *
2014  * In order to try and keep some memory in the cache we have the loop
2015  * broken along max page order boundaries. This way we will not cause
2016  * any issues with the buddy page computation.
2017  */
2018 static unsigned long __init
2019 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2020                        unsigned long *end_pfn)
2021 {
2022         unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2023         unsigned long spfn = *start_pfn, epfn = *end_pfn;
2024         unsigned long nr_pages = 0;
2025         u64 j = *i;
2026
2027         /* First we loop through and initialize the page values */
2028         for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2029                 unsigned long t;
2030
2031                 if (mo_pfn <= *start_pfn)
2032                         break;
2033
2034                 t = min(mo_pfn, *end_pfn);
2035                 nr_pages += deferred_init_pages(zone, *start_pfn, t);
2036
2037                 if (mo_pfn < *end_pfn) {
2038                         *start_pfn = mo_pfn;
2039                         break;
2040                 }
2041         }
2042
2043         /* Reset values and now loop through freeing pages as needed */
2044         swap(j, *i);
2045
2046         for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2047                 unsigned long t;
2048
2049                 if (mo_pfn <= spfn)
2050                         break;
2051
2052                 t = min(mo_pfn, epfn);
2053                 deferred_free_pages(spfn, t - spfn);
2054
2055                 if (mo_pfn <= epfn)
2056                         break;
2057         }
2058
2059         return nr_pages;
2060 }
2061
2062 static void __init
2063 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2064                            void *arg)
2065 {
2066         unsigned long spfn, epfn;
2067         struct zone *zone = arg;
2068         u64 i = 0;
2069
2070         deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2071
2072         /*
2073          * Initialize and free pages in MAX_PAGE_ORDER sized increments so that
2074          * we can avoid introducing any issues with the buddy allocator.
2075          */
2076         while (spfn < end_pfn) {
2077                 deferred_init_maxorder(&i, zone, &spfn, &epfn);
2078                 cond_resched();
2079         }
2080 }
2081
2082 static unsigned int __init
2083 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2084 {
2085         return max(cpumask_weight(node_cpumask), 1U);
2086 }
2087
2088 /* Initialise remaining memory on a node */
2089 static int __init deferred_init_memmap(void *data)
2090 {
2091         pg_data_t *pgdat = data;
2092         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2093         unsigned long spfn = 0, epfn = 0;
2094         unsigned long first_init_pfn, flags;
2095         unsigned long start = jiffies;
2096         struct zone *zone;
2097         int max_threads;
2098         u64 i = 0;
2099
2100         /* Bind memory initialisation thread to a local node if possible */
2101         if (!cpumask_empty(cpumask))
2102                 set_cpus_allowed_ptr(current, cpumask);
2103
2104         pgdat_resize_lock(pgdat, &flags);
2105         first_init_pfn = pgdat->first_deferred_pfn;
2106         if (first_init_pfn == ULONG_MAX) {
2107                 pgdat_resize_unlock(pgdat, &flags);
2108                 pgdat_init_report_one_done();
2109                 return 0;
2110         }
2111
2112         /* Sanity check boundaries */
2113         BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2114         BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2115         pgdat->first_deferred_pfn = ULONG_MAX;
2116
2117         /*
2118          * Once we unlock here, the zone cannot be grown anymore, thus if an
2119          * interrupt thread must allocate this early in boot, zone must be
2120          * pre-grown prior to start of deferred page initialization.
2121          */
2122         pgdat_resize_unlock(pgdat, &flags);
2123
2124         /* Only the highest zone is deferred */
2125         zone = pgdat->node_zones + pgdat->nr_zones - 1;
2126
2127         max_threads = deferred_page_init_max_threads(cpumask);
2128
2129         while (deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, first_init_pfn)) {
2130                 first_init_pfn = ALIGN(epfn, PAGES_PER_SECTION);
2131                 struct padata_mt_job job = {
2132                         .thread_fn   = deferred_init_memmap_chunk,
2133                         .fn_arg      = zone,
2134                         .start       = spfn,
2135                         .size        = first_init_pfn - spfn,
2136                         .align       = PAGES_PER_SECTION,
2137                         .min_chunk   = PAGES_PER_SECTION,
2138                         .max_threads = max_threads,
2139                         .numa_aware  = false,
2140                 };
2141
2142                 padata_do_multithreaded(&job);
2143         }
2144
2145         /* Sanity check that the next zone really is unpopulated */
2146         WARN_ON(pgdat->nr_zones < MAX_NR_ZONES && populated_zone(++zone));
2147
2148         pr_info("node %d deferred pages initialised in %ums\n",
2149                 pgdat->node_id, jiffies_to_msecs(jiffies - start));
2150
2151         pgdat_init_report_one_done();
2152         return 0;
2153 }
2154
2155 /*
2156  * If this zone has deferred pages, try to grow it by initializing enough
2157  * deferred pages to satisfy the allocation specified by order, rounded up to
2158  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2159  * of SECTION_SIZE bytes by initializing struct pages in increments of
2160  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2161  *
2162  * Return true when zone was grown, otherwise return false. We return true even
2163  * when we grow less than requested, to let the caller decide if there are
2164  * enough pages to satisfy the allocation.
2165  */
2166 bool __init deferred_grow_zone(struct zone *zone, unsigned int order)
2167 {
2168         unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2169         pg_data_t *pgdat = zone->zone_pgdat;
2170         unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2171         unsigned long spfn, epfn, flags;
2172         unsigned long nr_pages = 0;
2173         u64 i = 0;
2174
2175         /* Only the last zone may have deferred pages */
2176         if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2177                 return false;
2178
2179         pgdat_resize_lock(pgdat, &flags);
2180
2181         /*
2182          * If someone grew this zone while we were waiting for spinlock, return
2183          * true, as there might be enough pages already.
2184          */
2185         if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2186                 pgdat_resize_unlock(pgdat, &flags);
2187                 return true;
2188         }
2189
2190         /* If the zone is empty somebody else may have cleared out the zone */
2191         if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2192                                                  first_deferred_pfn)) {
2193                 pgdat->first_deferred_pfn = ULONG_MAX;
2194                 pgdat_resize_unlock(pgdat, &flags);
2195                 /* Retry only once. */
2196                 return first_deferred_pfn != ULONG_MAX;
2197         }
2198
2199         /*
2200          * Initialize and free pages in MAX_PAGE_ORDER sized increments so
2201          * that we can avoid introducing any issues with the buddy
2202          * allocator.
2203          */
2204         while (spfn < epfn) {
2205                 /* update our first deferred PFN for this section */
2206                 first_deferred_pfn = spfn;
2207
2208                 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2209                 touch_nmi_watchdog();
2210
2211                 /* We should only stop along section boundaries */
2212                 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2213                         continue;
2214
2215                 /* If our quota has been met we can stop here */
2216                 if (nr_pages >= nr_pages_needed)
2217                         break;
2218         }
2219
2220         pgdat->first_deferred_pfn = spfn;
2221         pgdat_resize_unlock(pgdat, &flags);
2222
2223         return nr_pages > 0;
2224 }
2225
2226 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2227
2228 #ifdef CONFIG_CMA
2229 void __init init_cma_reserved_pageblock(struct page *page)
2230 {
2231         unsigned i = pageblock_nr_pages;
2232         struct page *p = page;
2233
2234         do {
2235                 __ClearPageReserved(p);
2236                 set_page_count(p, 0);
2237         } while (++p, --i);
2238
2239         set_pageblock_migratetype(page, MIGRATE_CMA);
2240         set_page_refcounted(page);
2241         /* pages were reserved and not allocated */
2242         clear_page_tag_ref(page);
2243         __free_pages(page, pageblock_order);
2244
2245         adjust_managed_page_count(page, pageblock_nr_pages);
2246         page_zone(page)->cma_pages += pageblock_nr_pages;
2247 }
2248 #endif
2249
2250 void set_zone_contiguous(struct zone *zone)
2251 {
2252         unsigned long block_start_pfn = zone->zone_start_pfn;
2253         unsigned long block_end_pfn;
2254
2255         block_end_pfn = pageblock_end_pfn(block_start_pfn);
2256         for (; block_start_pfn < zone_end_pfn(zone);
2257                         block_start_pfn = block_end_pfn,
2258                          block_end_pfn += pageblock_nr_pages) {
2259
2260                 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
2261
2262                 if (!__pageblock_pfn_to_page(block_start_pfn,
2263                                              block_end_pfn, zone))
2264                         return;
2265                 cond_resched();
2266         }
2267
2268         /* We confirm that there is no hole */
2269         zone->contiguous = true;
2270 }
2271
2272 static void __init mem_init_print_info(void);
2273 void __init page_alloc_init_late(void)
2274 {
2275         struct zone *zone;
2276         int nid;
2277
2278 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2279
2280         /* There will be num_node_state(N_MEMORY) threads */
2281         atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2282         for_each_node_state(nid, N_MEMORY) {
2283                 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2284         }
2285
2286         /* Block until all are initialised */
2287         wait_for_completion(&pgdat_init_all_done_comp);
2288
2289         /*
2290          * We initialized the rest of the deferred pages.  Permanently disable
2291          * on-demand struct page initialization.
2292          */
2293         static_branch_disable(&deferred_pages);
2294
2295         /* Reinit limits that are based on free pages after the kernel is up */
2296         files_maxfiles_init();
2297 #endif
2298
2299         /* Accounting of total+free memory is stable at this point. */
2300         mem_init_print_info();
2301         buffer_init();
2302
2303         /* Discard memblock private memory */
2304         memblock_discard();
2305
2306         for_each_node_state(nid, N_MEMORY)
2307                 shuffle_free_memory(NODE_DATA(nid));
2308
2309         for_each_populated_zone(zone)
2310                 set_zone_contiguous(zone);
2311
2312         /* Initialize page ext after all struct pages are initialized. */
2313         if (deferred_struct_pages)
2314                 page_ext_init();
2315
2316         page_alloc_sysctl_init();
2317 }
2318
2319 /*
2320  * Adaptive scale is meant to reduce sizes of hash tables on large memory
2321  * machines. As memory size is increased the scale is also increased but at
2322  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
2323  * quadruples the scale is increased by one, which means the size of hash table
2324  * only doubles, instead of quadrupling as well.
2325  * Because 32-bit systems cannot have large physical memory, where this scaling
2326  * makes sense, it is disabled on such platforms.
2327  */
2328 #if __BITS_PER_LONG > 32
2329 #define ADAPT_SCALE_BASE        (64ul << 30)
2330 #define ADAPT_SCALE_SHIFT       2
2331 #define ADAPT_SCALE_NPAGES      (ADAPT_SCALE_BASE >> PAGE_SHIFT)
2332 #endif
2333
2334 /*
2335  * allocate a large system hash table from bootmem
2336  * - it is assumed that the hash table must contain an exact power-of-2
2337  *   quantity of entries
2338  * - limit is the number of hash buckets, not the total allocation size
2339  */
2340 void *__init alloc_large_system_hash(const char *tablename,
2341                                      unsigned long bucketsize,
2342                                      unsigned long numentries,
2343                                      int scale,
2344                                      int flags,
2345                                      unsigned int *_hash_shift,
2346                                      unsigned int *_hash_mask,
2347                                      unsigned long low_limit,
2348                                      unsigned long high_limit)
2349 {
2350         unsigned long long max = high_limit;
2351         unsigned long log2qty, size;
2352         void *table;
2353         gfp_t gfp_flags;
2354         bool virt;
2355         bool huge;
2356
2357         /* allow the kernel cmdline to have a say */
2358         if (!numentries) {
2359                 /* round applicable memory size up to nearest megabyte */
2360                 numentries = nr_kernel_pages;
2361
2362                 /* It isn't necessary when PAGE_SIZE >= 1MB */
2363                 if (PAGE_SIZE < SZ_1M)
2364                         numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
2365
2366 #if __BITS_PER_LONG > 32
2367                 if (!high_limit) {
2368                         unsigned long adapt;
2369
2370                         for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
2371                              adapt <<= ADAPT_SCALE_SHIFT)
2372                                 scale++;
2373                 }
2374 #endif
2375
2376                 /* limit to 1 bucket per 2^scale bytes of low memory */
2377                 if (scale > PAGE_SHIFT)
2378                         numentries >>= (scale - PAGE_SHIFT);
2379                 else
2380                         numentries <<= (PAGE_SHIFT - scale);
2381
2382                 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
2383                         numentries = PAGE_SIZE / bucketsize;
2384         }
2385         numentries = roundup_pow_of_two(numentries);
2386
2387         /* limit allocation size to 1/16 total memory by default */
2388         if (max == 0) {
2389                 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2390                 do_div(max, bucketsize);
2391         }
2392         max = min(max, 0x80000000ULL);
2393
2394         if (numentries < low_limit)
2395                 numentries = low_limit;
2396         if (numentries > max)
2397                 numentries = max;
2398
2399         log2qty = ilog2(numentries);
2400
2401         gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
2402         do {
2403                 virt = false;
2404                 size = bucketsize << log2qty;
2405                 if (flags & HASH_EARLY) {
2406                         if (flags & HASH_ZERO)
2407                                 table = memblock_alloc(size, SMP_CACHE_BYTES);
2408                         else
2409                                 table = memblock_alloc_raw(size,
2410                                                            SMP_CACHE_BYTES);
2411                 } else if (get_order(size) > MAX_PAGE_ORDER || hashdist) {
2412                         table = vmalloc_huge(size, gfp_flags);
2413                         virt = true;
2414                         if (table)
2415                                 huge = is_vm_area_hugepages(table);
2416                 } else {
2417                         /*
2418                          * If bucketsize is not a power-of-two, we may free
2419                          * some pages at the end of hash table which
2420                          * alloc_pages_exact() automatically does
2421                          */
2422                         table = alloc_pages_exact(size, gfp_flags);
2423                         kmemleak_alloc(table, size, 1, gfp_flags);
2424                 }
2425         } while (!table && size > PAGE_SIZE && --log2qty);
2426
2427         if (!table)
2428                 panic("Failed to allocate %s hash table\n", tablename);
2429
2430         pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
2431                 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
2432                 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
2433
2434         if (_hash_shift)
2435                 *_hash_shift = log2qty;
2436         if (_hash_mask)
2437                 *_hash_mask = (1 << log2qty) - 1;
2438
2439         return table;
2440 }
2441
2442 void __init memblock_free_pages(struct page *page, unsigned long pfn,
2443                                                         unsigned int order)
2444 {
2445         if (IS_ENABLED(CONFIG_DEFERRED_STRUCT_PAGE_INIT)) {
2446                 int nid = early_pfn_to_nid(pfn);
2447
2448                 if (!early_page_initialised(pfn, nid))
2449                         return;
2450         }
2451
2452         if (!kmsan_memblock_free_pages(page, order)) {
2453                 /* KMSAN will take care of these pages. */
2454                 return;
2455         }
2456
2457         /* pages were reserved and not allocated */
2458         clear_page_tag_ref(page);
2459         __free_pages_core(page, order, MEMINIT_EARLY);
2460 }
2461
2462 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
2463 EXPORT_SYMBOL(init_on_alloc);
2464
2465 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
2466 EXPORT_SYMBOL(init_on_free);
2467
2468 static bool _init_on_alloc_enabled_early __read_mostly
2469                                 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
2470 static int __init early_init_on_alloc(char *buf)
2471 {
2472
2473         return kstrtobool(buf, &_init_on_alloc_enabled_early);
2474 }
2475 early_param("init_on_alloc", early_init_on_alloc);
2476
2477 static bool _init_on_free_enabled_early __read_mostly
2478                                 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
2479 static int __init early_init_on_free(char *buf)
2480 {
2481         return kstrtobool(buf, &_init_on_free_enabled_early);
2482 }
2483 early_param("init_on_free", early_init_on_free);
2484
2485 DEFINE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
2486
2487 /*
2488  * Enable static keys related to various memory debugging and hardening options.
2489  * Some override others, and depend on early params that are evaluated in the
2490  * order of appearance. So we need to first gather the full picture of what was
2491  * enabled, and then make decisions.
2492  */
2493 static void __init mem_debugging_and_hardening_init(void)
2494 {
2495         bool page_poisoning_requested = false;
2496         bool want_check_pages = false;
2497
2498 #ifdef CONFIG_PAGE_POISONING
2499         /*
2500          * Page poisoning is debug page alloc for some arches. If
2501          * either of those options are enabled, enable poisoning.
2502          */
2503         if (page_poisoning_enabled() ||
2504              (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
2505               debug_pagealloc_enabled())) {
2506                 static_branch_enable(&_page_poisoning_enabled);
2507                 page_poisoning_requested = true;
2508                 want_check_pages = true;
2509         }
2510 #endif
2511
2512         if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
2513             page_poisoning_requested) {
2514                 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
2515                         "will take precedence over init_on_alloc and init_on_free\n");
2516                 _init_on_alloc_enabled_early = false;
2517                 _init_on_free_enabled_early = false;
2518         }
2519
2520         if (_init_on_alloc_enabled_early) {
2521                 want_check_pages = true;
2522                 static_branch_enable(&init_on_alloc);
2523         } else {
2524                 static_branch_disable(&init_on_alloc);
2525         }
2526
2527         if (_init_on_free_enabled_early) {
2528                 want_check_pages = true;
2529                 static_branch_enable(&init_on_free);
2530         } else {
2531                 static_branch_disable(&init_on_free);
2532         }
2533
2534         if (IS_ENABLED(CONFIG_KMSAN) &&
2535             (_init_on_alloc_enabled_early || _init_on_free_enabled_early))
2536                 pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
2537
2538 #ifdef CONFIG_DEBUG_PAGEALLOC
2539         if (debug_pagealloc_enabled()) {
2540                 want_check_pages = true;
2541                 static_branch_enable(&_debug_pagealloc_enabled);
2542
2543                 if (debug_guardpage_minorder())
2544                         static_branch_enable(&_debug_guardpage_enabled);
2545         }
2546 #endif
2547
2548         /*
2549          * Any page debugging or hardening option also enables sanity checking
2550          * of struct pages being allocated or freed. With CONFIG_DEBUG_VM it's
2551          * enabled already.
2552          */
2553         if (!IS_ENABLED(CONFIG_DEBUG_VM) && want_check_pages)
2554                 static_branch_enable(&check_pages_enabled);
2555 }
2556
2557 /* Report memory auto-initialization states for this boot. */
2558 static void __init report_meminit(void)
2559 {
2560         const char *stack;
2561
2562         if (IS_ENABLED(CONFIG_INIT_STACK_ALL_PATTERN))
2563                 stack = "all(pattern)";
2564         else if (IS_ENABLED(CONFIG_INIT_STACK_ALL_ZERO))
2565                 stack = "all(zero)";
2566         else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF_ALL))
2567                 stack = "byref_all(zero)";
2568         else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF))
2569                 stack = "byref(zero)";
2570         else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_USER))
2571                 stack = "__user(zero)";
2572         else
2573                 stack = "off";
2574
2575         pr_info("mem auto-init: stack:%s, heap alloc:%s, heap free:%s\n",
2576                 stack, want_init_on_alloc(GFP_KERNEL) ? "on" : "off",
2577                 want_init_on_free() ? "on" : "off");
2578         if (want_init_on_free())
2579                 pr_info("mem auto-init: clearing system memory may take some time...\n");
2580 }
2581
2582 static void __init mem_init_print_info(void)
2583 {
2584         unsigned long physpages, codesize, datasize, rosize, bss_size;
2585         unsigned long init_code_size, init_data_size;
2586
2587         physpages = get_num_physpages();
2588         codesize = _etext - _stext;
2589         datasize = _edata - _sdata;
2590         rosize = __end_rodata - __start_rodata;
2591         bss_size = __bss_stop - __bss_start;
2592         init_data_size = __init_end - __init_begin;
2593         init_code_size = _einittext - _sinittext;
2594
2595         /*
2596          * Detect special cases and adjust section sizes accordingly:
2597          * 1) .init.* may be embedded into .data sections
2598          * 2) .init.text.* may be out of [__init_begin, __init_end],
2599          *    please refer to arch/tile/kernel/vmlinux.lds.S.
2600          * 3) .rodata.* may be embedded into .text or .data sections.
2601          */
2602 #define adj_init_size(start, end, size, pos, adj) \
2603         do { \
2604                 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
2605                         size -= adj; \
2606         } while (0)
2607
2608         adj_init_size(__init_begin, __init_end, init_data_size,
2609                      _sinittext, init_code_size);
2610         adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
2611         adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
2612         adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
2613         adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
2614
2615 #undef  adj_init_size
2616
2617         pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
2618 #ifdef  CONFIG_HIGHMEM
2619                 ", %luK highmem"
2620 #endif
2621                 ")\n",
2622                 K(nr_free_pages()), K(physpages),
2623                 codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
2624                 (init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
2625                 K(physpages - totalram_pages() - totalcma_pages),
2626                 K(totalcma_pages)
2627 #ifdef  CONFIG_HIGHMEM
2628                 , K(totalhigh_pages())
2629 #endif
2630                 );
2631 }
2632
2633 /*
2634  * Set up kernel memory allocators
2635  */
2636 void __init mm_core_init(void)
2637 {
2638         /* Initializations relying on SMP setup */
2639         BUILD_BUG_ON(MAX_ZONELISTS > 2);
2640         build_all_zonelists(NULL);
2641         page_alloc_init_cpuhp();
2642
2643         /*
2644          * page_ext requires contiguous pages,
2645          * bigger than MAX_PAGE_ORDER unless SPARSEMEM.
2646          */
2647         page_ext_init_flatmem();
2648         mem_debugging_and_hardening_init();
2649         kfence_alloc_pool_and_metadata();
2650         report_meminit();
2651         kmsan_init_shadow();
2652         stack_depot_early_init();
2653         mem_init();
2654         kmem_cache_init();
2655         /*
2656          * page_owner must be initialized after buddy is ready, and also after
2657          * slab is ready so that stack_depot_init() works properly
2658          */
2659         page_ext_init_flatmem_late();
2660         kmemleak_init();
2661         ptlock_cache_init();
2662         pgtable_cache_init();
2663         debug_objects_mem_init();
2664         vmalloc_init();
2665         /* If no deferred init page_ext now, as vmap is fully initialized */
2666         if (!deferred_struct_pages)
2667                 page_ext_init();
2668         /* Should be run before the first non-init thread is created */
2669         init_espfix_bsp();
2670         /* Should be run after espfix64 is set up. */
2671         pti_init();
2672         kmsan_init_runtime();
2673         mm_cache_init();
2674         execmem_init();
2675 }