Merge tag 'phy-fixes-6.4-1' of git://git.kernel.org/pub/scm/linux/kernel/git/phy...
[linux.git] / drivers / soundwire / bus.c
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 // Copyright(c) 2015-17 Intel Corporation.
3
4 #include <linux/acpi.h>
5 #include <linux/delay.h>
6 #include <linux/mod_devicetable.h>
7 #include <linux/pm_runtime.h>
8 #include <linux/soundwire/sdw_registers.h>
9 #include <linux/soundwire/sdw.h>
10 #include <linux/soundwire/sdw_type.h>
11 #include "bus.h"
12 #include "sysfs_local.h"
13
14 static DEFINE_IDA(sdw_bus_ida);
15 static DEFINE_IDA(sdw_peripheral_ida);
16
17 static int sdw_get_id(struct sdw_bus *bus)
18 {
19         int rc = ida_alloc(&sdw_bus_ida, GFP_KERNEL);
20
21         if (rc < 0)
22                 return rc;
23
24         bus->id = rc;
25         return 0;
26 }
27
28 /**
29  * sdw_bus_master_add() - add a bus Master instance
30  * @bus: bus instance
31  * @parent: parent device
32  * @fwnode: firmware node handle
33  *
34  * Initializes the bus instance, read properties and create child
35  * devices.
36  */
37 int sdw_bus_master_add(struct sdw_bus *bus, struct device *parent,
38                        struct fwnode_handle *fwnode)
39 {
40         struct sdw_master_prop *prop = NULL;
41         int ret;
42
43         if (!parent) {
44                 pr_err("SoundWire parent device is not set\n");
45                 return -ENODEV;
46         }
47
48         ret = sdw_get_id(bus);
49         if (ret < 0) {
50                 dev_err(parent, "Failed to get bus id\n");
51                 return ret;
52         }
53
54         ret = sdw_master_device_add(bus, parent, fwnode);
55         if (ret < 0) {
56                 dev_err(parent, "Failed to add master device at link %d\n",
57                         bus->link_id);
58                 return ret;
59         }
60
61         if (!bus->ops) {
62                 dev_err(bus->dev, "SoundWire Bus ops are not set\n");
63                 return -EINVAL;
64         }
65
66         if (!bus->compute_params) {
67                 dev_err(bus->dev,
68                         "Bandwidth allocation not configured, compute_params no set\n");
69                 return -EINVAL;
70         }
71
72         mutex_init(&bus->msg_lock);
73         mutex_init(&bus->bus_lock);
74         INIT_LIST_HEAD(&bus->slaves);
75         INIT_LIST_HEAD(&bus->m_rt_list);
76
77         /*
78          * Initialize multi_link flag
79          */
80         bus->multi_link = false;
81         if (bus->ops->read_prop) {
82                 ret = bus->ops->read_prop(bus);
83                 if (ret < 0) {
84                         dev_err(bus->dev,
85                                 "Bus read properties failed:%d\n", ret);
86                         return ret;
87                 }
88         }
89
90         sdw_bus_debugfs_init(bus);
91
92         /*
93          * Device numbers in SoundWire are 0 through 15. Enumeration device
94          * number (0), Broadcast device number (15), Group numbers (12 and
95          * 13) and Master device number (14) are not used for assignment so
96          * mask these and other higher bits.
97          */
98
99         /* Set higher order bits */
100         *bus->assigned = ~GENMASK(SDW_BROADCAST_DEV_NUM, SDW_ENUM_DEV_NUM);
101
102         /* Set enumuration device number and broadcast device number */
103         set_bit(SDW_ENUM_DEV_NUM, bus->assigned);
104         set_bit(SDW_BROADCAST_DEV_NUM, bus->assigned);
105
106         /* Set group device numbers and master device number */
107         set_bit(SDW_GROUP12_DEV_NUM, bus->assigned);
108         set_bit(SDW_GROUP13_DEV_NUM, bus->assigned);
109         set_bit(SDW_MASTER_DEV_NUM, bus->assigned);
110
111         /*
112          * SDW is an enumerable bus, but devices can be powered off. So,
113          * they won't be able to report as present.
114          *
115          * Create Slave devices based on Slaves described in
116          * the respective firmware (ACPI/DT)
117          */
118         if (IS_ENABLED(CONFIG_ACPI) && ACPI_HANDLE(bus->dev))
119                 ret = sdw_acpi_find_slaves(bus);
120         else if (IS_ENABLED(CONFIG_OF) && bus->dev->of_node)
121                 ret = sdw_of_find_slaves(bus);
122         else
123                 ret = -ENOTSUPP; /* No ACPI/DT so error out */
124
125         if (ret < 0) {
126                 dev_err(bus->dev, "Finding slaves failed:%d\n", ret);
127                 return ret;
128         }
129
130         /*
131          * Initialize clock values based on Master properties. The max
132          * frequency is read from max_clk_freq property. Current assumption
133          * is that the bus will start at highest clock frequency when
134          * powered on.
135          *
136          * Default active bank will be 0 as out of reset the Slaves have
137          * to start with bank 0 (Table 40 of Spec)
138          */
139         prop = &bus->prop;
140         bus->params.max_dr_freq = prop->max_clk_freq * SDW_DOUBLE_RATE_FACTOR;
141         bus->params.curr_dr_freq = bus->params.max_dr_freq;
142         bus->params.curr_bank = SDW_BANK0;
143         bus->params.next_bank = SDW_BANK1;
144
145         return 0;
146 }
147 EXPORT_SYMBOL(sdw_bus_master_add);
148
149 static int sdw_delete_slave(struct device *dev, void *data)
150 {
151         struct sdw_slave *slave = dev_to_sdw_dev(dev);
152         struct sdw_bus *bus = slave->bus;
153
154         pm_runtime_disable(dev);
155
156         sdw_slave_debugfs_exit(slave);
157
158         mutex_lock(&bus->bus_lock);
159
160         if (slave->dev_num) { /* clear dev_num if assigned */
161                 clear_bit(slave->dev_num, bus->assigned);
162                 if (bus->dev_num_ida_min)
163                         ida_free(&sdw_peripheral_ida, slave->dev_num);
164         }
165         list_del_init(&slave->node);
166         mutex_unlock(&bus->bus_lock);
167
168         device_unregister(dev);
169         return 0;
170 }
171
172 /**
173  * sdw_bus_master_delete() - delete the bus master instance
174  * @bus: bus to be deleted
175  *
176  * Remove the instance, delete the child devices.
177  */
178 void sdw_bus_master_delete(struct sdw_bus *bus)
179 {
180         device_for_each_child(bus->dev, NULL, sdw_delete_slave);
181         sdw_master_device_del(bus);
182
183         sdw_bus_debugfs_exit(bus);
184         ida_free(&sdw_bus_ida, bus->id);
185 }
186 EXPORT_SYMBOL(sdw_bus_master_delete);
187
188 /*
189  * SDW IO Calls
190  */
191
192 static inline int find_response_code(enum sdw_command_response resp)
193 {
194         switch (resp) {
195         case SDW_CMD_OK:
196                 return 0;
197
198         case SDW_CMD_IGNORED:
199                 return -ENODATA;
200
201         case SDW_CMD_TIMEOUT:
202                 return -ETIMEDOUT;
203
204         default:
205                 return -EIO;
206         }
207 }
208
209 static inline int do_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
210 {
211         int retry = bus->prop.err_threshold;
212         enum sdw_command_response resp;
213         int ret = 0, i;
214
215         for (i = 0; i <= retry; i++) {
216                 resp = bus->ops->xfer_msg(bus, msg);
217                 ret = find_response_code(resp);
218
219                 /* if cmd is ok or ignored return */
220                 if (ret == 0 || ret == -ENODATA)
221                         return ret;
222         }
223
224         return ret;
225 }
226
227 static inline int do_transfer_defer(struct sdw_bus *bus,
228                                     struct sdw_msg *msg)
229 {
230         struct sdw_defer *defer = &bus->defer_msg;
231         int retry = bus->prop.err_threshold;
232         enum sdw_command_response resp;
233         int ret = 0, i;
234
235         defer->msg = msg;
236         defer->length = msg->len;
237         init_completion(&defer->complete);
238
239         for (i = 0; i <= retry; i++) {
240                 resp = bus->ops->xfer_msg_defer(bus);
241                 ret = find_response_code(resp);
242                 /* if cmd is ok or ignored return */
243                 if (ret == 0 || ret == -ENODATA)
244                         return ret;
245         }
246
247         return ret;
248 }
249
250 static int sdw_transfer_unlocked(struct sdw_bus *bus, struct sdw_msg *msg)
251 {
252         int ret;
253
254         ret = do_transfer(bus, msg);
255         if (ret != 0 && ret != -ENODATA)
256                 dev_err(bus->dev, "trf on Slave %d failed:%d %s addr %x count %d\n",
257                         msg->dev_num, ret,
258                         (msg->flags & SDW_MSG_FLAG_WRITE) ? "write" : "read",
259                         msg->addr, msg->len);
260
261         return ret;
262 }
263
264 /**
265  * sdw_transfer() - Synchronous transfer message to a SDW Slave device
266  * @bus: SDW bus
267  * @msg: SDW message to be xfered
268  */
269 int sdw_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
270 {
271         int ret;
272
273         mutex_lock(&bus->msg_lock);
274
275         ret = sdw_transfer_unlocked(bus, msg);
276
277         mutex_unlock(&bus->msg_lock);
278
279         return ret;
280 }
281
282 /**
283  * sdw_show_ping_status() - Direct report of PING status, to be used by Peripheral drivers
284  * @bus: SDW bus
285  * @sync_delay: Delay before reading status
286  */
287 void sdw_show_ping_status(struct sdw_bus *bus, bool sync_delay)
288 {
289         u32 status;
290
291         if (!bus->ops->read_ping_status)
292                 return;
293
294         /*
295          * wait for peripheral to sync if desired. 10-15ms should be more than
296          * enough in most cases.
297          */
298         if (sync_delay)
299                 usleep_range(10000, 15000);
300
301         mutex_lock(&bus->msg_lock);
302
303         status = bus->ops->read_ping_status(bus);
304
305         mutex_unlock(&bus->msg_lock);
306
307         if (!status)
308                 dev_warn(bus->dev, "%s: no peripherals attached\n", __func__);
309         else
310                 dev_dbg(bus->dev, "PING status: %#x\n", status);
311 }
312 EXPORT_SYMBOL(sdw_show_ping_status);
313
314 /**
315  * sdw_transfer_defer() - Asynchronously transfer message to a SDW Slave device
316  * @bus: SDW bus
317  * @msg: SDW message to be xfered
318  *
319  * Caller needs to hold the msg_lock lock while calling this
320  */
321 int sdw_transfer_defer(struct sdw_bus *bus, struct sdw_msg *msg)
322 {
323         int ret;
324
325         if (!bus->ops->xfer_msg_defer)
326                 return -ENOTSUPP;
327
328         ret = do_transfer_defer(bus, msg);
329         if (ret != 0 && ret != -ENODATA)
330                 dev_err(bus->dev, "Defer trf on Slave %d failed:%d\n",
331                         msg->dev_num, ret);
332
333         return ret;
334 }
335
336 int sdw_fill_msg(struct sdw_msg *msg, struct sdw_slave *slave,
337                  u32 addr, size_t count, u16 dev_num, u8 flags, u8 *buf)
338 {
339         memset(msg, 0, sizeof(*msg));
340         msg->addr = addr; /* addr is 16 bit and truncated here */
341         msg->len = count;
342         msg->dev_num = dev_num;
343         msg->flags = flags;
344         msg->buf = buf;
345
346         if (addr < SDW_REG_NO_PAGE) /* no paging area */
347                 return 0;
348
349         if (addr >= SDW_REG_MAX) { /* illegal addr */
350                 pr_err("SDW: Invalid address %x passed\n", addr);
351                 return -EINVAL;
352         }
353
354         if (addr < SDW_REG_OPTIONAL_PAGE) { /* 32k but no page */
355                 if (slave && !slave->prop.paging_support)
356                         return 0;
357                 /* no need for else as that will fall-through to paging */
358         }
359
360         /* paging mandatory */
361         if (dev_num == SDW_ENUM_DEV_NUM || dev_num == SDW_BROADCAST_DEV_NUM) {
362                 pr_err("SDW: Invalid device for paging :%d\n", dev_num);
363                 return -EINVAL;
364         }
365
366         if (!slave) {
367                 pr_err("SDW: No slave for paging addr\n");
368                 return -EINVAL;
369         }
370
371         if (!slave->prop.paging_support) {
372                 dev_err(&slave->dev,
373                         "address %x needs paging but no support\n", addr);
374                 return -EINVAL;
375         }
376
377         msg->addr_page1 = FIELD_GET(SDW_SCP_ADDRPAGE1_MASK, addr);
378         msg->addr_page2 = FIELD_GET(SDW_SCP_ADDRPAGE2_MASK, addr);
379         msg->addr |= BIT(15);
380         msg->page = true;
381
382         return 0;
383 }
384
385 /*
386  * Read/Write IO functions.
387  */
388
389 static int sdw_ntransfer_no_pm(struct sdw_slave *slave, u32 addr, u8 flags,
390                                size_t count, u8 *val)
391 {
392         struct sdw_msg msg;
393         size_t size;
394         int ret;
395
396         while (count) {
397                 // Only handle bytes up to next page boundary
398                 size = min_t(size_t, count, (SDW_REGADDR + 1) - (addr & SDW_REGADDR));
399
400                 ret = sdw_fill_msg(&msg, slave, addr, size, slave->dev_num, flags, val);
401                 if (ret < 0)
402                         return ret;
403
404                 ret = sdw_transfer(slave->bus, &msg);
405                 if (ret < 0 && !slave->is_mockup_device)
406                         return ret;
407
408                 addr += size;
409                 val += size;
410                 count -= size;
411         }
412
413         return 0;
414 }
415
416 /**
417  * sdw_nread_no_pm() - Read "n" contiguous SDW Slave registers with no PM
418  * @slave: SDW Slave
419  * @addr: Register address
420  * @count: length
421  * @val: Buffer for values to be read
422  *
423  * Note that if the message crosses a page boundary each page will be
424  * transferred under a separate invocation of the msg_lock.
425  */
426 int sdw_nread_no_pm(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
427 {
428         return sdw_ntransfer_no_pm(slave, addr, SDW_MSG_FLAG_READ, count, val);
429 }
430 EXPORT_SYMBOL(sdw_nread_no_pm);
431
432 /**
433  * sdw_nwrite_no_pm() - Write "n" contiguous SDW Slave registers with no PM
434  * @slave: SDW Slave
435  * @addr: Register address
436  * @count: length
437  * @val: Buffer for values to be written
438  *
439  * Note that if the message crosses a page boundary each page will be
440  * transferred under a separate invocation of the msg_lock.
441  */
442 int sdw_nwrite_no_pm(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
443 {
444         return sdw_ntransfer_no_pm(slave, addr, SDW_MSG_FLAG_WRITE, count, (u8 *)val);
445 }
446 EXPORT_SYMBOL(sdw_nwrite_no_pm);
447
448 /**
449  * sdw_write_no_pm() - Write a SDW Slave register with no PM
450  * @slave: SDW Slave
451  * @addr: Register address
452  * @value: Register value
453  */
454 int sdw_write_no_pm(struct sdw_slave *slave, u32 addr, u8 value)
455 {
456         return sdw_nwrite_no_pm(slave, addr, 1, &value);
457 }
458 EXPORT_SYMBOL(sdw_write_no_pm);
459
460 static int
461 sdw_bread_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr)
462 {
463         struct sdw_msg msg;
464         u8 buf;
465         int ret;
466
467         ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
468                            SDW_MSG_FLAG_READ, &buf);
469         if (ret < 0)
470                 return ret;
471
472         ret = sdw_transfer(bus, &msg);
473         if (ret < 0)
474                 return ret;
475
476         return buf;
477 }
478
479 static int
480 sdw_bwrite_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
481 {
482         struct sdw_msg msg;
483         int ret;
484
485         ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
486                            SDW_MSG_FLAG_WRITE, &value);
487         if (ret < 0)
488                 return ret;
489
490         return sdw_transfer(bus, &msg);
491 }
492
493 int sdw_bread_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr)
494 {
495         struct sdw_msg msg;
496         u8 buf;
497         int ret;
498
499         ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
500                            SDW_MSG_FLAG_READ, &buf);
501         if (ret < 0)
502                 return ret;
503
504         ret = sdw_transfer_unlocked(bus, &msg);
505         if (ret < 0)
506                 return ret;
507
508         return buf;
509 }
510 EXPORT_SYMBOL(sdw_bread_no_pm_unlocked);
511
512 int sdw_bwrite_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
513 {
514         struct sdw_msg msg;
515         int ret;
516
517         ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
518                            SDW_MSG_FLAG_WRITE, &value);
519         if (ret < 0)
520                 return ret;
521
522         return sdw_transfer_unlocked(bus, &msg);
523 }
524 EXPORT_SYMBOL(sdw_bwrite_no_pm_unlocked);
525
526 /**
527  * sdw_read_no_pm() - Read a SDW Slave register with no PM
528  * @slave: SDW Slave
529  * @addr: Register address
530  */
531 int sdw_read_no_pm(struct sdw_slave *slave, u32 addr)
532 {
533         u8 buf;
534         int ret;
535
536         ret = sdw_nread_no_pm(slave, addr, 1, &buf);
537         if (ret < 0)
538                 return ret;
539         else
540                 return buf;
541 }
542 EXPORT_SYMBOL(sdw_read_no_pm);
543
544 int sdw_update_no_pm(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
545 {
546         int tmp;
547
548         tmp = sdw_read_no_pm(slave, addr);
549         if (tmp < 0)
550                 return tmp;
551
552         tmp = (tmp & ~mask) | val;
553         return sdw_write_no_pm(slave, addr, tmp);
554 }
555 EXPORT_SYMBOL(sdw_update_no_pm);
556
557 /* Read-Modify-Write Slave register */
558 int sdw_update(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
559 {
560         int tmp;
561
562         tmp = sdw_read(slave, addr);
563         if (tmp < 0)
564                 return tmp;
565
566         tmp = (tmp & ~mask) | val;
567         return sdw_write(slave, addr, tmp);
568 }
569 EXPORT_SYMBOL(sdw_update);
570
571 /**
572  * sdw_nread() - Read "n" contiguous SDW Slave registers
573  * @slave: SDW Slave
574  * @addr: Register address
575  * @count: length
576  * @val: Buffer for values to be read
577  *
578  * This version of the function will take a PM reference to the slave
579  * device.
580  * Note that if the message crosses a page boundary each page will be
581  * transferred under a separate invocation of the msg_lock.
582  */
583 int sdw_nread(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
584 {
585         int ret;
586
587         ret = pm_runtime_get_sync(&slave->dev);
588         if (ret < 0 && ret != -EACCES) {
589                 pm_runtime_put_noidle(&slave->dev);
590                 return ret;
591         }
592
593         ret = sdw_nread_no_pm(slave, addr, count, val);
594
595         pm_runtime_mark_last_busy(&slave->dev);
596         pm_runtime_put(&slave->dev);
597
598         return ret;
599 }
600 EXPORT_SYMBOL(sdw_nread);
601
602 /**
603  * sdw_nwrite() - Write "n" contiguous SDW Slave registers
604  * @slave: SDW Slave
605  * @addr: Register address
606  * @count: length
607  * @val: Buffer for values to be written
608  *
609  * This version of the function will take a PM reference to the slave
610  * device.
611  * Note that if the message crosses a page boundary each page will be
612  * transferred under a separate invocation of the msg_lock.
613  */
614 int sdw_nwrite(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
615 {
616         int ret;
617
618         ret = pm_runtime_get_sync(&slave->dev);
619         if (ret < 0 && ret != -EACCES) {
620                 pm_runtime_put_noidle(&slave->dev);
621                 return ret;
622         }
623
624         ret = sdw_nwrite_no_pm(slave, addr, count, val);
625
626         pm_runtime_mark_last_busy(&slave->dev);
627         pm_runtime_put(&slave->dev);
628
629         return ret;
630 }
631 EXPORT_SYMBOL(sdw_nwrite);
632
633 /**
634  * sdw_read() - Read a SDW Slave register
635  * @slave: SDW Slave
636  * @addr: Register address
637  *
638  * This version of the function will take a PM reference to the slave
639  * device.
640  */
641 int sdw_read(struct sdw_slave *slave, u32 addr)
642 {
643         u8 buf;
644         int ret;
645
646         ret = sdw_nread(slave, addr, 1, &buf);
647         if (ret < 0)
648                 return ret;
649
650         return buf;
651 }
652 EXPORT_SYMBOL(sdw_read);
653
654 /**
655  * sdw_write() - Write a SDW Slave register
656  * @slave: SDW Slave
657  * @addr: Register address
658  * @value: Register value
659  *
660  * This version of the function will take a PM reference to the slave
661  * device.
662  */
663 int sdw_write(struct sdw_slave *slave, u32 addr, u8 value)
664 {
665         return sdw_nwrite(slave, addr, 1, &value);
666 }
667 EXPORT_SYMBOL(sdw_write);
668
669 /*
670  * SDW alert handling
671  */
672
673 /* called with bus_lock held */
674 static struct sdw_slave *sdw_get_slave(struct sdw_bus *bus, int i)
675 {
676         struct sdw_slave *slave;
677
678         list_for_each_entry(slave, &bus->slaves, node) {
679                 if (slave->dev_num == i)
680                         return slave;
681         }
682
683         return NULL;
684 }
685
686 int sdw_compare_devid(struct sdw_slave *slave, struct sdw_slave_id id)
687 {
688         if (slave->id.mfg_id != id.mfg_id ||
689             slave->id.part_id != id.part_id ||
690             slave->id.class_id != id.class_id ||
691             (slave->id.unique_id != SDW_IGNORED_UNIQUE_ID &&
692              slave->id.unique_id != id.unique_id))
693                 return -ENODEV;
694
695         return 0;
696 }
697 EXPORT_SYMBOL(sdw_compare_devid);
698
699 /* called with bus_lock held */
700 static int sdw_get_device_num(struct sdw_slave *slave)
701 {
702         int bit;
703
704         if (slave->bus->dev_num_ida_min) {
705                 bit = ida_alloc_range(&sdw_peripheral_ida,
706                                       slave->bus->dev_num_ida_min, SDW_MAX_DEVICES,
707                                       GFP_KERNEL);
708                 if (bit < 0)
709                         goto err;
710         } else {
711                 bit = find_first_zero_bit(slave->bus->assigned, SDW_MAX_DEVICES);
712                 if (bit == SDW_MAX_DEVICES) {
713                         bit = -ENODEV;
714                         goto err;
715                 }
716         }
717
718         /*
719          * Do not update dev_num in Slave data structure here,
720          * Update once program dev_num is successful
721          */
722         set_bit(bit, slave->bus->assigned);
723
724 err:
725         return bit;
726 }
727
728 static int sdw_assign_device_num(struct sdw_slave *slave)
729 {
730         struct sdw_bus *bus = slave->bus;
731         int ret, dev_num;
732         bool new_device = false;
733
734         /* check first if device number is assigned, if so reuse that */
735         if (!slave->dev_num) {
736                 if (!slave->dev_num_sticky) {
737                         mutex_lock(&slave->bus->bus_lock);
738                         dev_num = sdw_get_device_num(slave);
739                         mutex_unlock(&slave->bus->bus_lock);
740                         if (dev_num < 0) {
741                                 dev_err(bus->dev, "Get dev_num failed: %d\n",
742                                         dev_num);
743                                 return dev_num;
744                         }
745                         slave->dev_num = dev_num;
746                         slave->dev_num_sticky = dev_num;
747                         new_device = true;
748                 } else {
749                         slave->dev_num = slave->dev_num_sticky;
750                 }
751         }
752
753         if (!new_device)
754                 dev_dbg(bus->dev,
755                         "Slave already registered, reusing dev_num:%d\n",
756                         slave->dev_num);
757
758         /* Clear the slave->dev_num to transfer message on device 0 */
759         dev_num = slave->dev_num;
760         slave->dev_num = 0;
761
762         ret = sdw_write_no_pm(slave, SDW_SCP_DEVNUMBER, dev_num);
763         if (ret < 0) {
764                 dev_err(bus->dev, "Program device_num %d failed: %d\n",
765                         dev_num, ret);
766                 return ret;
767         }
768
769         /* After xfer of msg, restore dev_num */
770         slave->dev_num = slave->dev_num_sticky;
771
772         return 0;
773 }
774
775 void sdw_extract_slave_id(struct sdw_bus *bus,
776                           u64 addr, struct sdw_slave_id *id)
777 {
778         dev_dbg(bus->dev, "SDW Slave Addr: %llx\n", addr);
779
780         id->sdw_version = SDW_VERSION(addr);
781         id->unique_id = SDW_UNIQUE_ID(addr);
782         id->mfg_id = SDW_MFG_ID(addr);
783         id->part_id = SDW_PART_ID(addr);
784         id->class_id = SDW_CLASS_ID(addr);
785
786         dev_dbg(bus->dev,
787                 "SDW Slave class_id 0x%02x, mfg_id 0x%04x, part_id 0x%04x, unique_id 0x%x, version 0x%x\n",
788                 id->class_id, id->mfg_id, id->part_id, id->unique_id, id->sdw_version);
789 }
790 EXPORT_SYMBOL(sdw_extract_slave_id);
791
792 static int sdw_program_device_num(struct sdw_bus *bus, bool *programmed)
793 {
794         u8 buf[SDW_NUM_DEV_ID_REGISTERS] = {0};
795         struct sdw_slave *slave, *_s;
796         struct sdw_slave_id id;
797         struct sdw_msg msg;
798         bool found;
799         int count = 0, ret;
800         u64 addr;
801
802         *programmed = false;
803
804         /* No Slave, so use raw xfer api */
805         ret = sdw_fill_msg(&msg, NULL, SDW_SCP_DEVID_0,
806                            SDW_NUM_DEV_ID_REGISTERS, 0, SDW_MSG_FLAG_READ, buf);
807         if (ret < 0)
808                 return ret;
809
810         do {
811                 ret = sdw_transfer(bus, &msg);
812                 if (ret == -ENODATA) { /* end of device id reads */
813                         dev_dbg(bus->dev, "No more devices to enumerate\n");
814                         ret = 0;
815                         break;
816                 }
817                 if (ret < 0) {
818                         dev_err(bus->dev, "DEVID read fail:%d\n", ret);
819                         break;
820                 }
821
822                 /*
823                  * Construct the addr and extract. Cast the higher shift
824                  * bits to avoid truncation due to size limit.
825                  */
826                 addr = buf[5] | (buf[4] << 8) | (buf[3] << 16) |
827                         ((u64)buf[2] << 24) | ((u64)buf[1] << 32) |
828                         ((u64)buf[0] << 40);
829
830                 sdw_extract_slave_id(bus, addr, &id);
831
832                 found = false;
833                 /* Now compare with entries */
834                 list_for_each_entry_safe(slave, _s, &bus->slaves, node) {
835                         if (sdw_compare_devid(slave, id) == 0) {
836                                 found = true;
837
838                                 /*
839                                  * To prevent skipping state-machine stages don't
840                                  * program a device until we've seen it UNATTACH.
841                                  * Must return here because no other device on #0
842                                  * can be detected until this one has been
843                                  * assigned a device ID.
844                                  */
845                                 if (slave->status != SDW_SLAVE_UNATTACHED)
846                                         return 0;
847
848                                 /*
849                                  * Assign a new dev_num to this Slave and
850                                  * not mark it present. It will be marked
851                                  * present after it reports ATTACHED on new
852                                  * dev_num
853                                  */
854                                 ret = sdw_assign_device_num(slave);
855                                 if (ret < 0) {
856                                         dev_err(bus->dev,
857                                                 "Assign dev_num failed:%d\n",
858                                                 ret);
859                                         return ret;
860                                 }
861
862                                 *programmed = true;
863
864                                 break;
865                         }
866                 }
867
868                 if (!found) {
869                         /* TODO: Park this device in Group 13 */
870
871                         /*
872                          * add Slave device even if there is no platform
873                          * firmware description. There will be no driver probe
874                          * but the user/integration will be able to see the
875                          * device, enumeration status and device number in sysfs
876                          */
877                         sdw_slave_add(bus, &id, NULL);
878
879                         dev_err(bus->dev, "Slave Entry not found\n");
880                 }
881
882                 count++;
883
884                 /*
885                  * Check till error out or retry (count) exhausts.
886                  * Device can drop off and rejoin during enumeration
887                  * so count till twice the bound.
888                  */
889
890         } while (ret == 0 && count < (SDW_MAX_DEVICES * 2));
891
892         return ret;
893 }
894
895 static void sdw_modify_slave_status(struct sdw_slave *slave,
896                                     enum sdw_slave_status status)
897 {
898         struct sdw_bus *bus = slave->bus;
899
900         mutex_lock(&bus->bus_lock);
901
902         dev_vdbg(bus->dev,
903                  "changing status slave %d status %d new status %d\n",
904                  slave->dev_num, slave->status, status);
905
906         if (status == SDW_SLAVE_UNATTACHED) {
907                 dev_dbg(&slave->dev,
908                         "initializing enumeration and init completion for Slave %d\n",
909                         slave->dev_num);
910
911                 init_completion(&slave->enumeration_complete);
912                 init_completion(&slave->initialization_complete);
913
914         } else if ((status == SDW_SLAVE_ATTACHED) &&
915                    (slave->status == SDW_SLAVE_UNATTACHED)) {
916                 dev_dbg(&slave->dev,
917                         "signaling enumeration completion for Slave %d\n",
918                         slave->dev_num);
919
920                 complete(&slave->enumeration_complete);
921         }
922         slave->status = status;
923         mutex_unlock(&bus->bus_lock);
924 }
925
926 static int sdw_slave_clk_stop_callback(struct sdw_slave *slave,
927                                        enum sdw_clk_stop_mode mode,
928                                        enum sdw_clk_stop_type type)
929 {
930         int ret = 0;
931
932         mutex_lock(&slave->sdw_dev_lock);
933
934         if (slave->probed)  {
935                 struct device *dev = &slave->dev;
936                 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
937
938                 if (drv->ops && drv->ops->clk_stop)
939                         ret = drv->ops->clk_stop(slave, mode, type);
940         }
941
942         mutex_unlock(&slave->sdw_dev_lock);
943
944         return ret;
945 }
946
947 static int sdw_slave_clk_stop_prepare(struct sdw_slave *slave,
948                                       enum sdw_clk_stop_mode mode,
949                                       bool prepare)
950 {
951         bool wake_en;
952         u32 val = 0;
953         int ret;
954
955         wake_en = slave->prop.wake_capable;
956
957         if (prepare) {
958                 val = SDW_SCP_SYSTEMCTRL_CLK_STP_PREP;
959
960                 if (mode == SDW_CLK_STOP_MODE1)
961                         val |= SDW_SCP_SYSTEMCTRL_CLK_STP_MODE1;
962
963                 if (wake_en)
964                         val |= SDW_SCP_SYSTEMCTRL_WAKE_UP_EN;
965         } else {
966                 ret = sdw_read_no_pm(slave, SDW_SCP_SYSTEMCTRL);
967                 if (ret < 0) {
968                         if (ret != -ENODATA)
969                                 dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL read failed:%d\n", ret);
970                         return ret;
971                 }
972                 val = ret;
973                 val &= ~(SDW_SCP_SYSTEMCTRL_CLK_STP_PREP);
974         }
975
976         ret = sdw_write_no_pm(slave, SDW_SCP_SYSTEMCTRL, val);
977
978         if (ret < 0 && ret != -ENODATA)
979                 dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL write failed:%d\n", ret);
980
981         return ret;
982 }
983
984 static int sdw_bus_wait_for_clk_prep_deprep(struct sdw_bus *bus, u16 dev_num)
985 {
986         int retry = bus->clk_stop_timeout;
987         int val;
988
989         do {
990                 val = sdw_bread_no_pm(bus, dev_num, SDW_SCP_STAT);
991                 if (val < 0) {
992                         if (val != -ENODATA)
993                                 dev_err(bus->dev, "SDW_SCP_STAT bread failed:%d\n", val);
994                         return val;
995                 }
996                 val &= SDW_SCP_STAT_CLK_STP_NF;
997                 if (!val) {
998                         dev_dbg(bus->dev, "clock stop prep/de-prep done slave:%d\n",
999                                 dev_num);
1000                         return 0;
1001                 }
1002
1003                 usleep_range(1000, 1500);
1004                 retry--;
1005         } while (retry);
1006
1007         dev_err(bus->dev, "clock stop prep/de-prep failed slave:%d\n",
1008                 dev_num);
1009
1010         return -ETIMEDOUT;
1011 }
1012
1013 /**
1014  * sdw_bus_prep_clk_stop: prepare Slave(s) for clock stop
1015  *
1016  * @bus: SDW bus instance
1017  *
1018  * Query Slave for clock stop mode and prepare for that mode.
1019  */
1020 int sdw_bus_prep_clk_stop(struct sdw_bus *bus)
1021 {
1022         bool simple_clk_stop = true;
1023         struct sdw_slave *slave;
1024         bool is_slave = false;
1025         int ret = 0;
1026
1027         /*
1028          * In order to save on transition time, prepare
1029          * each Slave and then wait for all Slave(s) to be
1030          * prepared for clock stop.
1031          * If one of the Slave devices has lost sync and
1032          * replies with Command Ignored/-ENODATA, we continue
1033          * the loop
1034          */
1035         list_for_each_entry(slave, &bus->slaves, node) {
1036                 if (!slave->dev_num)
1037                         continue;
1038
1039                 if (slave->status != SDW_SLAVE_ATTACHED &&
1040                     slave->status != SDW_SLAVE_ALERT)
1041                         continue;
1042
1043                 /* Identify if Slave(s) are available on Bus */
1044                 is_slave = true;
1045
1046                 ret = sdw_slave_clk_stop_callback(slave,
1047                                                   SDW_CLK_STOP_MODE0,
1048                                                   SDW_CLK_PRE_PREPARE);
1049                 if (ret < 0 && ret != -ENODATA) {
1050                         dev_err(&slave->dev, "clock stop pre-prepare cb failed:%d\n", ret);
1051                         return ret;
1052                 }
1053
1054                 /* Only prepare a Slave device if needed */
1055                 if (!slave->prop.simple_clk_stop_capable) {
1056                         simple_clk_stop = false;
1057
1058                         ret = sdw_slave_clk_stop_prepare(slave,
1059                                                          SDW_CLK_STOP_MODE0,
1060                                                          true);
1061                         if (ret < 0 && ret != -ENODATA) {
1062                                 dev_err(&slave->dev, "clock stop prepare failed:%d\n", ret);
1063                                 return ret;
1064                         }
1065                 }
1066         }
1067
1068         /* Skip remaining clock stop preparation if no Slave is attached */
1069         if (!is_slave)
1070                 return 0;
1071
1072         /*
1073          * Don't wait for all Slaves to be ready if they follow the simple
1074          * state machine
1075          */
1076         if (!simple_clk_stop) {
1077                 ret = sdw_bus_wait_for_clk_prep_deprep(bus,
1078                                                        SDW_BROADCAST_DEV_NUM);
1079                 /*
1080                  * if there are no Slave devices present and the reply is
1081                  * Command_Ignored/-ENODATA, we don't need to continue with the
1082                  * flow and can just return here. The error code is not modified
1083                  * and its handling left as an exercise for the caller.
1084                  */
1085                 if (ret < 0)
1086                         return ret;
1087         }
1088
1089         /* Inform slaves that prep is done */
1090         list_for_each_entry(slave, &bus->slaves, node) {
1091                 if (!slave->dev_num)
1092                         continue;
1093
1094                 if (slave->status != SDW_SLAVE_ATTACHED &&
1095                     slave->status != SDW_SLAVE_ALERT)
1096                         continue;
1097
1098                 ret = sdw_slave_clk_stop_callback(slave,
1099                                                   SDW_CLK_STOP_MODE0,
1100                                                   SDW_CLK_POST_PREPARE);
1101
1102                 if (ret < 0 && ret != -ENODATA) {
1103                         dev_err(&slave->dev, "clock stop post-prepare cb failed:%d\n", ret);
1104                         return ret;
1105                 }
1106         }
1107
1108         return 0;
1109 }
1110 EXPORT_SYMBOL(sdw_bus_prep_clk_stop);
1111
1112 /**
1113  * sdw_bus_clk_stop: stop bus clock
1114  *
1115  * @bus: SDW bus instance
1116  *
1117  * After preparing the Slaves for clock stop, stop the clock by broadcasting
1118  * write to SCP_CTRL register.
1119  */
1120 int sdw_bus_clk_stop(struct sdw_bus *bus)
1121 {
1122         int ret;
1123
1124         /*
1125          * broadcast clock stop now, attached Slaves will ACK this,
1126          * unattached will ignore
1127          */
1128         ret = sdw_bwrite_no_pm(bus, SDW_BROADCAST_DEV_NUM,
1129                                SDW_SCP_CTRL, SDW_SCP_CTRL_CLK_STP_NOW);
1130         if (ret < 0) {
1131                 if (ret != -ENODATA)
1132                         dev_err(bus->dev, "ClockStopNow Broadcast msg failed %d\n", ret);
1133                 return ret;
1134         }
1135
1136         return 0;
1137 }
1138 EXPORT_SYMBOL(sdw_bus_clk_stop);
1139
1140 /**
1141  * sdw_bus_exit_clk_stop: Exit clock stop mode
1142  *
1143  * @bus: SDW bus instance
1144  *
1145  * This De-prepares the Slaves by exiting Clock Stop Mode 0. For the Slaves
1146  * exiting Clock Stop Mode 1, they will be de-prepared after they enumerate
1147  * back.
1148  */
1149 int sdw_bus_exit_clk_stop(struct sdw_bus *bus)
1150 {
1151         bool simple_clk_stop = true;
1152         struct sdw_slave *slave;
1153         bool is_slave = false;
1154         int ret;
1155
1156         /*
1157          * In order to save on transition time, de-prepare
1158          * each Slave and then wait for all Slave(s) to be
1159          * de-prepared after clock resume.
1160          */
1161         list_for_each_entry(slave, &bus->slaves, node) {
1162                 if (!slave->dev_num)
1163                         continue;
1164
1165                 if (slave->status != SDW_SLAVE_ATTACHED &&
1166                     slave->status != SDW_SLAVE_ALERT)
1167                         continue;
1168
1169                 /* Identify if Slave(s) are available on Bus */
1170                 is_slave = true;
1171
1172                 ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
1173                                                   SDW_CLK_PRE_DEPREPARE);
1174                 if (ret < 0)
1175                         dev_warn(&slave->dev, "clock stop pre-deprepare cb failed:%d\n", ret);
1176
1177                 /* Only de-prepare a Slave device if needed */
1178                 if (!slave->prop.simple_clk_stop_capable) {
1179                         simple_clk_stop = false;
1180
1181                         ret = sdw_slave_clk_stop_prepare(slave, SDW_CLK_STOP_MODE0,
1182                                                          false);
1183
1184                         if (ret < 0)
1185                                 dev_warn(&slave->dev, "clock stop deprepare failed:%d\n", ret);
1186                 }
1187         }
1188
1189         /* Skip remaining clock stop de-preparation if no Slave is attached */
1190         if (!is_slave)
1191                 return 0;
1192
1193         /*
1194          * Don't wait for all Slaves to be ready if they follow the simple
1195          * state machine
1196          */
1197         if (!simple_clk_stop) {
1198                 ret = sdw_bus_wait_for_clk_prep_deprep(bus, SDW_BROADCAST_DEV_NUM);
1199                 if (ret < 0)
1200                         dev_warn(bus->dev, "clock stop deprepare wait failed:%d\n", ret);
1201         }
1202
1203         list_for_each_entry(slave, &bus->slaves, node) {
1204                 if (!slave->dev_num)
1205                         continue;
1206
1207                 if (slave->status != SDW_SLAVE_ATTACHED &&
1208                     slave->status != SDW_SLAVE_ALERT)
1209                         continue;
1210
1211                 ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
1212                                                   SDW_CLK_POST_DEPREPARE);
1213                 if (ret < 0)
1214                         dev_warn(&slave->dev, "clock stop post-deprepare cb failed:%d\n", ret);
1215         }
1216
1217         return 0;
1218 }
1219 EXPORT_SYMBOL(sdw_bus_exit_clk_stop);
1220
1221 int sdw_configure_dpn_intr(struct sdw_slave *slave,
1222                            int port, bool enable, int mask)
1223 {
1224         u32 addr;
1225         int ret;
1226         u8 val = 0;
1227
1228         if (slave->bus->params.s_data_mode != SDW_PORT_DATA_MODE_NORMAL) {
1229                 dev_dbg(&slave->dev, "TEST FAIL interrupt %s\n",
1230                         enable ? "on" : "off");
1231                 mask |= SDW_DPN_INT_TEST_FAIL;
1232         }
1233
1234         addr = SDW_DPN_INTMASK(port);
1235
1236         /* Set/Clear port ready interrupt mask */
1237         if (enable) {
1238                 val |= mask;
1239                 val |= SDW_DPN_INT_PORT_READY;
1240         } else {
1241                 val &= ~(mask);
1242                 val &= ~SDW_DPN_INT_PORT_READY;
1243         }
1244
1245         ret = sdw_update_no_pm(slave, addr, (mask | SDW_DPN_INT_PORT_READY), val);
1246         if (ret < 0)
1247                 dev_err(&slave->dev,
1248                         "SDW_DPN_INTMASK write failed:%d\n", val);
1249
1250         return ret;
1251 }
1252
1253 static int sdw_slave_set_frequency(struct sdw_slave *slave)
1254 {
1255         u32 mclk_freq = slave->bus->prop.mclk_freq;
1256         u32 curr_freq = slave->bus->params.curr_dr_freq >> 1;
1257         unsigned int scale;
1258         u8 scale_index;
1259         u8 base;
1260         int ret;
1261
1262         /*
1263          * frequency base and scale registers are required for SDCA
1264          * devices. They may also be used for 1.2+/non-SDCA devices.
1265          * Driver can set the property, we will need a DisCo property
1266          * to discover this case from platform firmware.
1267          */
1268         if (!slave->id.class_id && !slave->prop.clock_reg_supported)
1269                 return 0;
1270
1271         if (!mclk_freq) {
1272                 dev_err(&slave->dev,
1273                         "no bus MCLK, cannot set SDW_SCP_BUS_CLOCK_BASE\n");
1274                 return -EINVAL;
1275         }
1276
1277         /*
1278          * map base frequency using Table 89 of SoundWire 1.2 spec.
1279          * The order of the tests just follows the specification, this
1280          * is not a selection between possible values or a search for
1281          * the best value but just a mapping.  Only one case per platform
1282          * is relevant.
1283          * Some BIOS have inconsistent values for mclk_freq but a
1284          * correct root so we force the mclk_freq to avoid variations.
1285          */
1286         if (!(19200000 % mclk_freq)) {
1287                 mclk_freq = 19200000;
1288                 base = SDW_SCP_BASE_CLOCK_19200000_HZ;
1289         } else if (!(24000000 % mclk_freq)) {
1290                 mclk_freq = 24000000;
1291                 base = SDW_SCP_BASE_CLOCK_24000000_HZ;
1292         } else if (!(24576000 % mclk_freq)) {
1293                 mclk_freq = 24576000;
1294                 base = SDW_SCP_BASE_CLOCK_24576000_HZ;
1295         } else if (!(22579200 % mclk_freq)) {
1296                 mclk_freq = 22579200;
1297                 base = SDW_SCP_BASE_CLOCK_22579200_HZ;
1298         } else if (!(32000000 % mclk_freq)) {
1299                 mclk_freq = 32000000;
1300                 base = SDW_SCP_BASE_CLOCK_32000000_HZ;
1301         } else {
1302                 dev_err(&slave->dev,
1303                         "Unsupported clock base, mclk %d\n",
1304                         mclk_freq);
1305                 return -EINVAL;
1306         }
1307
1308         if (mclk_freq % curr_freq) {
1309                 dev_err(&slave->dev,
1310                         "mclk %d is not multiple of bus curr_freq %d\n",
1311                         mclk_freq, curr_freq);
1312                 return -EINVAL;
1313         }
1314
1315         scale = mclk_freq / curr_freq;
1316
1317         /*
1318          * map scale to Table 90 of SoundWire 1.2 spec - and check
1319          * that the scale is a power of two and maximum 64
1320          */
1321         scale_index = ilog2(scale);
1322
1323         if (BIT(scale_index) != scale || scale_index > 6) {
1324                 dev_err(&slave->dev,
1325                         "No match found for scale %d, bus mclk %d curr_freq %d\n",
1326                         scale, mclk_freq, curr_freq);
1327                 return -EINVAL;
1328         }
1329         scale_index++;
1330
1331         ret = sdw_write_no_pm(slave, SDW_SCP_BUS_CLOCK_BASE, base);
1332         if (ret < 0) {
1333                 dev_err(&slave->dev,
1334                         "SDW_SCP_BUS_CLOCK_BASE write failed:%d\n", ret);
1335                 return ret;
1336         }
1337
1338         /* initialize scale for both banks */
1339         ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B0, scale_index);
1340         if (ret < 0) {
1341                 dev_err(&slave->dev,
1342                         "SDW_SCP_BUSCLOCK_SCALE_B0 write failed:%d\n", ret);
1343                 return ret;
1344         }
1345         ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B1, scale_index);
1346         if (ret < 0)
1347                 dev_err(&slave->dev,
1348                         "SDW_SCP_BUSCLOCK_SCALE_B1 write failed:%d\n", ret);
1349
1350         dev_dbg(&slave->dev,
1351                 "Configured bus base %d, scale %d, mclk %d, curr_freq %d\n",
1352                 base, scale_index, mclk_freq, curr_freq);
1353
1354         return ret;
1355 }
1356
1357 static int sdw_initialize_slave(struct sdw_slave *slave)
1358 {
1359         struct sdw_slave_prop *prop = &slave->prop;
1360         int status;
1361         int ret;
1362         u8 val;
1363
1364         ret = sdw_slave_set_frequency(slave);
1365         if (ret < 0)
1366                 return ret;
1367
1368         if (slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_CLASH) {
1369                 /* Clear bus clash interrupt before enabling interrupt mask */
1370                 status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1371                 if (status < 0) {
1372                         dev_err(&slave->dev,
1373                                 "SDW_SCP_INT1 (BUS_CLASH) read failed:%d\n", status);
1374                         return status;
1375                 }
1376                 if (status & SDW_SCP_INT1_BUS_CLASH) {
1377                         dev_warn(&slave->dev, "Bus clash detected before INT mask is enabled\n");
1378                         ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_BUS_CLASH);
1379                         if (ret < 0) {
1380                                 dev_err(&slave->dev,
1381                                         "SDW_SCP_INT1 (BUS_CLASH) write failed:%d\n", ret);
1382                                 return ret;
1383                         }
1384                 }
1385         }
1386         if ((slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_PARITY) &&
1387             !(slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY)) {
1388                 /* Clear parity interrupt before enabling interrupt mask */
1389                 status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1390                 if (status < 0) {
1391                         dev_err(&slave->dev,
1392                                 "SDW_SCP_INT1 (PARITY) read failed:%d\n", status);
1393                         return status;
1394                 }
1395                 if (status & SDW_SCP_INT1_PARITY) {
1396                         dev_warn(&slave->dev, "PARITY error detected before INT mask is enabled\n");
1397                         ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_PARITY);
1398                         if (ret < 0) {
1399                                 dev_err(&slave->dev,
1400                                         "SDW_SCP_INT1 (PARITY) write failed:%d\n", ret);
1401                                 return ret;
1402                         }
1403                 }
1404         }
1405
1406         /*
1407          * Set SCP_INT1_MASK register, typically bus clash and
1408          * implementation-defined interrupt mask. The Parity detection
1409          * may not always be correct on startup so its use is
1410          * device-dependent, it might e.g. only be enabled in
1411          * steady-state after a couple of frames.
1412          */
1413         val = slave->prop.scp_int1_mask;
1414
1415         /* Enable SCP interrupts */
1416         ret = sdw_update_no_pm(slave, SDW_SCP_INTMASK1, val, val);
1417         if (ret < 0) {
1418                 dev_err(&slave->dev,
1419                         "SDW_SCP_INTMASK1 write failed:%d\n", ret);
1420                 return ret;
1421         }
1422
1423         /* No need to continue if DP0 is not present */
1424         if (!slave->prop.dp0_prop)
1425                 return 0;
1426
1427         /* Enable DP0 interrupts */
1428         val = prop->dp0_prop->imp_def_interrupts;
1429         val |= SDW_DP0_INT_PORT_READY | SDW_DP0_INT_BRA_FAILURE;
1430
1431         ret = sdw_update_no_pm(slave, SDW_DP0_INTMASK, val, val);
1432         if (ret < 0)
1433                 dev_err(&slave->dev,
1434                         "SDW_DP0_INTMASK read failed:%d\n", ret);
1435         return ret;
1436 }
1437
1438 static int sdw_handle_dp0_interrupt(struct sdw_slave *slave, u8 *slave_status)
1439 {
1440         u8 clear, impl_int_mask;
1441         int status, status2, ret, count = 0;
1442
1443         status = sdw_read_no_pm(slave, SDW_DP0_INT);
1444         if (status < 0) {
1445                 dev_err(&slave->dev,
1446                         "SDW_DP0_INT read failed:%d\n", status);
1447                 return status;
1448         }
1449
1450         do {
1451                 clear = status & ~SDW_DP0_INTERRUPTS;
1452
1453                 if (status & SDW_DP0_INT_TEST_FAIL) {
1454                         dev_err(&slave->dev, "Test fail for port 0\n");
1455                         clear |= SDW_DP0_INT_TEST_FAIL;
1456                 }
1457
1458                 /*
1459                  * Assumption: PORT_READY interrupt will be received only for
1460                  * ports implementing Channel Prepare state machine (CP_SM)
1461                  */
1462
1463                 if (status & SDW_DP0_INT_PORT_READY) {
1464                         complete(&slave->port_ready[0]);
1465                         clear |= SDW_DP0_INT_PORT_READY;
1466                 }
1467
1468                 if (status & SDW_DP0_INT_BRA_FAILURE) {
1469                         dev_err(&slave->dev, "BRA failed\n");
1470                         clear |= SDW_DP0_INT_BRA_FAILURE;
1471                 }
1472
1473                 impl_int_mask = SDW_DP0_INT_IMPDEF1 |
1474                         SDW_DP0_INT_IMPDEF2 | SDW_DP0_INT_IMPDEF3;
1475
1476                 if (status & impl_int_mask) {
1477                         clear |= impl_int_mask;
1478                         *slave_status = clear;
1479                 }
1480
1481                 /* clear the interrupts but don't touch reserved and SDCA_CASCADE fields */
1482                 ret = sdw_write_no_pm(slave, SDW_DP0_INT, clear);
1483                 if (ret < 0) {
1484                         dev_err(&slave->dev,
1485                                 "SDW_DP0_INT write failed:%d\n", ret);
1486                         return ret;
1487                 }
1488
1489                 /* Read DP0 interrupt again */
1490                 status2 = sdw_read_no_pm(slave, SDW_DP0_INT);
1491                 if (status2 < 0) {
1492                         dev_err(&slave->dev,
1493                                 "SDW_DP0_INT read failed:%d\n", status2);
1494                         return status2;
1495                 }
1496                 /* filter to limit loop to interrupts identified in the first status read */
1497                 status &= status2;
1498
1499                 count++;
1500
1501                 /* we can get alerts while processing so keep retrying */
1502         } while ((status & SDW_DP0_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
1503
1504         if (count == SDW_READ_INTR_CLEAR_RETRY)
1505                 dev_warn(&slave->dev, "Reached MAX_RETRY on DP0 read\n");
1506
1507         return ret;
1508 }
1509
1510 static int sdw_handle_port_interrupt(struct sdw_slave *slave,
1511                                      int port, u8 *slave_status)
1512 {
1513         u8 clear, impl_int_mask;
1514         int status, status2, ret, count = 0;
1515         u32 addr;
1516
1517         if (port == 0)
1518                 return sdw_handle_dp0_interrupt(slave, slave_status);
1519
1520         addr = SDW_DPN_INT(port);
1521         status = sdw_read_no_pm(slave, addr);
1522         if (status < 0) {
1523                 dev_err(&slave->dev,
1524                         "SDW_DPN_INT read failed:%d\n", status);
1525
1526                 return status;
1527         }
1528
1529         do {
1530                 clear = status & ~SDW_DPN_INTERRUPTS;
1531
1532                 if (status & SDW_DPN_INT_TEST_FAIL) {
1533                         dev_err(&slave->dev, "Test fail for port:%d\n", port);
1534                         clear |= SDW_DPN_INT_TEST_FAIL;
1535                 }
1536
1537                 /*
1538                  * Assumption: PORT_READY interrupt will be received only
1539                  * for ports implementing CP_SM.
1540                  */
1541                 if (status & SDW_DPN_INT_PORT_READY) {
1542                         complete(&slave->port_ready[port]);
1543                         clear |= SDW_DPN_INT_PORT_READY;
1544                 }
1545
1546                 impl_int_mask = SDW_DPN_INT_IMPDEF1 |
1547                         SDW_DPN_INT_IMPDEF2 | SDW_DPN_INT_IMPDEF3;
1548
1549                 if (status & impl_int_mask) {
1550                         clear |= impl_int_mask;
1551                         *slave_status = clear;
1552                 }
1553
1554                 /* clear the interrupt but don't touch reserved fields */
1555                 ret = sdw_write_no_pm(slave, addr, clear);
1556                 if (ret < 0) {
1557                         dev_err(&slave->dev,
1558                                 "SDW_DPN_INT write failed:%d\n", ret);
1559                         return ret;
1560                 }
1561
1562                 /* Read DPN interrupt again */
1563                 status2 = sdw_read_no_pm(slave, addr);
1564                 if (status2 < 0) {
1565                         dev_err(&slave->dev,
1566                                 "SDW_DPN_INT read failed:%d\n", status2);
1567                         return status2;
1568                 }
1569                 /* filter to limit loop to interrupts identified in the first status read */
1570                 status &= status2;
1571
1572                 count++;
1573
1574                 /* we can get alerts while processing so keep retrying */
1575         } while ((status & SDW_DPN_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
1576
1577         if (count == SDW_READ_INTR_CLEAR_RETRY)
1578                 dev_warn(&slave->dev, "Reached MAX_RETRY on port read");
1579
1580         return ret;
1581 }
1582
1583 static int sdw_handle_slave_alerts(struct sdw_slave *slave)
1584 {
1585         struct sdw_slave_intr_status slave_intr;
1586         u8 clear = 0, bit, port_status[15] = {0};
1587         int port_num, stat, ret, count = 0;
1588         unsigned long port;
1589         bool slave_notify;
1590         u8 sdca_cascade = 0;
1591         u8 buf, buf2[2], _buf, _buf2[2];
1592         bool parity_check;
1593         bool parity_quirk;
1594
1595         sdw_modify_slave_status(slave, SDW_SLAVE_ALERT);
1596
1597         ret = pm_runtime_get_sync(&slave->dev);
1598         if (ret < 0 && ret != -EACCES) {
1599                 dev_err(&slave->dev, "Failed to resume device: %d\n", ret);
1600                 pm_runtime_put_noidle(&slave->dev);
1601                 return ret;
1602         }
1603
1604         /* Read Intstat 1, Intstat 2 and Intstat 3 registers */
1605         ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
1606         if (ret < 0) {
1607                 dev_err(&slave->dev,
1608                         "SDW_SCP_INT1 read failed:%d\n", ret);
1609                 goto io_err;
1610         }
1611         buf = ret;
1612
1613         ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, buf2);
1614         if (ret < 0) {
1615                 dev_err(&slave->dev,
1616                         "SDW_SCP_INT2/3 read failed:%d\n", ret);
1617                 goto io_err;
1618         }
1619
1620         if (slave->id.class_id) {
1621                 ret = sdw_read_no_pm(slave, SDW_DP0_INT);
1622                 if (ret < 0) {
1623                         dev_err(&slave->dev,
1624                                 "SDW_DP0_INT read failed:%d\n", ret);
1625                         goto io_err;
1626                 }
1627                 sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1628         }
1629
1630         do {
1631                 slave_notify = false;
1632
1633                 /*
1634                  * Check parity, bus clash and Slave (impl defined)
1635                  * interrupt
1636                  */
1637                 if (buf & SDW_SCP_INT1_PARITY) {
1638                         parity_check = slave->prop.scp_int1_mask & SDW_SCP_INT1_PARITY;
1639                         parity_quirk = !slave->first_interrupt_done &&
1640                                 (slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY);
1641
1642                         if (parity_check && !parity_quirk)
1643                                 dev_err(&slave->dev, "Parity error detected\n");
1644                         clear |= SDW_SCP_INT1_PARITY;
1645                 }
1646
1647                 if (buf & SDW_SCP_INT1_BUS_CLASH) {
1648                         if (slave->prop.scp_int1_mask & SDW_SCP_INT1_BUS_CLASH)
1649                                 dev_err(&slave->dev, "Bus clash detected\n");
1650                         clear |= SDW_SCP_INT1_BUS_CLASH;
1651                 }
1652
1653                 /*
1654                  * When bus clash or parity errors are detected, such errors
1655                  * are unlikely to be recoverable errors.
1656                  * TODO: In such scenario, reset bus. Make this configurable
1657                  * via sysfs property with bus reset being the default.
1658                  */
1659
1660                 if (buf & SDW_SCP_INT1_IMPL_DEF) {
1661                         if (slave->prop.scp_int1_mask & SDW_SCP_INT1_IMPL_DEF) {
1662                                 dev_dbg(&slave->dev, "Slave impl defined interrupt\n");
1663                                 slave_notify = true;
1664                         }
1665                         clear |= SDW_SCP_INT1_IMPL_DEF;
1666                 }
1667
1668                 /* the SDCA interrupts are cleared in the codec driver .interrupt_callback() */
1669                 if (sdca_cascade)
1670                         slave_notify = true;
1671
1672                 /* Check port 0 - 3 interrupts */
1673                 port = buf & SDW_SCP_INT1_PORT0_3;
1674
1675                 /* To get port number corresponding to bits, shift it */
1676                 port = FIELD_GET(SDW_SCP_INT1_PORT0_3, port);
1677                 for_each_set_bit(bit, &port, 8) {
1678                         sdw_handle_port_interrupt(slave, bit,
1679                                                   &port_status[bit]);
1680                 }
1681
1682                 /* Check if cascade 2 interrupt is present */
1683                 if (buf & SDW_SCP_INT1_SCP2_CASCADE) {
1684                         port = buf2[0] & SDW_SCP_INTSTAT2_PORT4_10;
1685                         for_each_set_bit(bit, &port, 8) {
1686                                 /* scp2 ports start from 4 */
1687                                 port_num = bit + 4;
1688                                 sdw_handle_port_interrupt(slave,
1689                                                 port_num,
1690                                                 &port_status[port_num]);
1691                         }
1692                 }
1693
1694                 /* now check last cascade */
1695                 if (buf2[0] & SDW_SCP_INTSTAT2_SCP3_CASCADE) {
1696                         port = buf2[1] & SDW_SCP_INTSTAT3_PORT11_14;
1697                         for_each_set_bit(bit, &port, 8) {
1698                                 /* scp3 ports start from 11 */
1699                                 port_num = bit + 11;
1700                                 sdw_handle_port_interrupt(slave,
1701                                                 port_num,
1702                                                 &port_status[port_num]);
1703                         }
1704                 }
1705
1706                 /* Update the Slave driver */
1707                 if (slave_notify) {
1708                         mutex_lock(&slave->sdw_dev_lock);
1709
1710                         if (slave->probed) {
1711                                 struct device *dev = &slave->dev;
1712                                 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
1713
1714                                 if (drv->ops && drv->ops->interrupt_callback) {
1715                                         slave_intr.sdca_cascade = sdca_cascade;
1716                                         slave_intr.control_port = clear;
1717                                         memcpy(slave_intr.port, &port_status,
1718                                                sizeof(slave_intr.port));
1719
1720                                         drv->ops->interrupt_callback(slave, &slave_intr);
1721                                 }
1722                         }
1723
1724                         mutex_unlock(&slave->sdw_dev_lock);
1725                 }
1726
1727                 /* Ack interrupt */
1728                 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, clear);
1729                 if (ret < 0) {
1730                         dev_err(&slave->dev,
1731                                 "SDW_SCP_INT1 write failed:%d\n", ret);
1732                         goto io_err;
1733                 }
1734
1735                 /* at this point all initial interrupt sources were handled */
1736                 slave->first_interrupt_done = true;
1737
1738                 /*
1739                  * Read status again to ensure no new interrupts arrived
1740                  * while servicing interrupts.
1741                  */
1742                 ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
1743                 if (ret < 0) {
1744                         dev_err(&slave->dev,
1745                                 "SDW_SCP_INT1 recheck read failed:%d\n", ret);
1746                         goto io_err;
1747                 }
1748                 _buf = ret;
1749
1750                 ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, _buf2);
1751                 if (ret < 0) {
1752                         dev_err(&slave->dev,
1753                                 "SDW_SCP_INT2/3 recheck read failed:%d\n", ret);
1754                         goto io_err;
1755                 }
1756
1757                 if (slave->id.class_id) {
1758                         ret = sdw_read_no_pm(slave, SDW_DP0_INT);
1759                         if (ret < 0) {
1760                                 dev_err(&slave->dev,
1761                                         "SDW_DP0_INT recheck read failed:%d\n", ret);
1762                                 goto io_err;
1763                         }
1764                         sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1765                 }
1766
1767                 /*
1768                  * Make sure no interrupts are pending, but filter to limit loop
1769                  * to interrupts identified in the first status read
1770                  */
1771                 buf &= _buf;
1772                 buf2[0] &= _buf2[0];
1773                 buf2[1] &= _buf2[1];
1774                 stat = buf || buf2[0] || buf2[1] || sdca_cascade;
1775
1776                 /*
1777                  * Exit loop if Slave is continuously in ALERT state even
1778                  * after servicing the interrupt multiple times.
1779                  */
1780                 count++;
1781
1782                 /* we can get alerts while processing so keep retrying */
1783         } while (stat != 0 && count < SDW_READ_INTR_CLEAR_RETRY);
1784
1785         if (count == SDW_READ_INTR_CLEAR_RETRY)
1786                 dev_warn(&slave->dev, "Reached MAX_RETRY on alert read\n");
1787
1788 io_err:
1789         pm_runtime_mark_last_busy(&slave->dev);
1790         pm_runtime_put_autosuspend(&slave->dev);
1791
1792         return ret;
1793 }
1794
1795 static int sdw_update_slave_status(struct sdw_slave *slave,
1796                                    enum sdw_slave_status status)
1797 {
1798         int ret = 0;
1799
1800         mutex_lock(&slave->sdw_dev_lock);
1801
1802         if (slave->probed) {
1803                 struct device *dev = &slave->dev;
1804                 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
1805
1806                 if (drv->ops && drv->ops->update_status)
1807                         ret = drv->ops->update_status(slave, status);
1808         }
1809
1810         mutex_unlock(&slave->sdw_dev_lock);
1811
1812         return ret;
1813 }
1814
1815 /**
1816  * sdw_handle_slave_status() - Handle Slave status
1817  * @bus: SDW bus instance
1818  * @status: Status for all Slave(s)
1819  */
1820 int sdw_handle_slave_status(struct sdw_bus *bus,
1821                             enum sdw_slave_status status[])
1822 {
1823         enum sdw_slave_status prev_status;
1824         struct sdw_slave *slave;
1825         bool attached_initializing, id_programmed;
1826         int i, ret = 0;
1827
1828         /* first check if any Slaves fell off the bus */
1829         for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1830                 mutex_lock(&bus->bus_lock);
1831                 if (test_bit(i, bus->assigned) == false) {
1832                         mutex_unlock(&bus->bus_lock);
1833                         continue;
1834                 }
1835                 mutex_unlock(&bus->bus_lock);
1836
1837                 slave = sdw_get_slave(bus, i);
1838                 if (!slave)
1839                         continue;
1840
1841                 if (status[i] == SDW_SLAVE_UNATTACHED &&
1842                     slave->status != SDW_SLAVE_UNATTACHED) {
1843                         dev_warn(&slave->dev, "Slave %d state check1: UNATTACHED, status was %d\n",
1844                                  i, slave->status);
1845                         sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1846
1847                         /* Ensure driver knows that peripheral unattached */
1848                         ret = sdw_update_slave_status(slave, status[i]);
1849                         if (ret < 0)
1850                                 dev_warn(&slave->dev, "Update Slave status failed:%d\n", ret);
1851                 }
1852         }
1853
1854         if (status[0] == SDW_SLAVE_ATTACHED) {
1855                 dev_dbg(bus->dev, "Slave attached, programming device number\n");
1856
1857                 /*
1858                  * Programming a device number will have side effects,
1859                  * so we deal with other devices at a later time.
1860                  * This relies on those devices reporting ATTACHED, which will
1861                  * trigger another call to this function. This will only
1862                  * happen if at least one device ID was programmed.
1863                  * Error returns from sdw_program_device_num() are currently
1864                  * ignored because there's no useful recovery that can be done.
1865                  * Returning the error here could result in the current status
1866                  * of other devices not being handled, because if no device IDs
1867                  * were programmed there's nothing to guarantee a status change
1868                  * to trigger another call to this function.
1869                  */
1870                 sdw_program_device_num(bus, &id_programmed);
1871                 if (id_programmed)
1872                         return 0;
1873         }
1874
1875         /* Continue to check other slave statuses */
1876         for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1877                 mutex_lock(&bus->bus_lock);
1878                 if (test_bit(i, bus->assigned) == false) {
1879                         mutex_unlock(&bus->bus_lock);
1880                         continue;
1881                 }
1882                 mutex_unlock(&bus->bus_lock);
1883
1884                 slave = sdw_get_slave(bus, i);
1885                 if (!slave)
1886                         continue;
1887
1888                 attached_initializing = false;
1889
1890                 switch (status[i]) {
1891                 case SDW_SLAVE_UNATTACHED:
1892                         if (slave->status == SDW_SLAVE_UNATTACHED)
1893                                 break;
1894
1895                         dev_warn(&slave->dev, "Slave %d state check2: UNATTACHED, status was %d\n",
1896                                  i, slave->status);
1897
1898                         sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1899                         break;
1900
1901                 case SDW_SLAVE_ALERT:
1902                         ret = sdw_handle_slave_alerts(slave);
1903                         if (ret < 0)
1904                                 dev_err(&slave->dev,
1905                                         "Slave %d alert handling failed: %d\n",
1906                                         i, ret);
1907                         break;
1908
1909                 case SDW_SLAVE_ATTACHED:
1910                         if (slave->status == SDW_SLAVE_ATTACHED)
1911                                 break;
1912
1913                         prev_status = slave->status;
1914                         sdw_modify_slave_status(slave, SDW_SLAVE_ATTACHED);
1915
1916                         if (prev_status == SDW_SLAVE_ALERT)
1917                                 break;
1918
1919                         attached_initializing = true;
1920
1921                         ret = sdw_initialize_slave(slave);
1922                         if (ret < 0)
1923                                 dev_err(&slave->dev,
1924                                         "Slave %d initialization failed: %d\n",
1925                                         i, ret);
1926
1927                         break;
1928
1929                 default:
1930                         dev_err(&slave->dev, "Invalid slave %d status:%d\n",
1931                                 i, status[i]);
1932                         break;
1933                 }
1934
1935                 ret = sdw_update_slave_status(slave, status[i]);
1936                 if (ret < 0)
1937                         dev_err(&slave->dev,
1938                                 "Update Slave status failed:%d\n", ret);
1939                 if (attached_initializing) {
1940                         dev_dbg(&slave->dev,
1941                                 "signaling initialization completion for Slave %d\n",
1942                                 slave->dev_num);
1943
1944                         complete(&slave->initialization_complete);
1945
1946                         /*
1947                          * If the manager became pm_runtime active, the peripherals will be
1948                          * restarted and attach, but their pm_runtime status may remain
1949                          * suspended. If the 'update_slave_status' callback initiates
1950                          * any sort of deferred processing, this processing would not be
1951                          * cancelled on pm_runtime suspend.
1952                          * To avoid such zombie states, we queue a request to resume.
1953                          * This would be a no-op in case the peripheral was being resumed
1954                          * by e.g. the ALSA/ASoC framework.
1955                          */
1956                         pm_request_resume(&slave->dev);
1957                 }
1958         }
1959
1960         return ret;
1961 }
1962 EXPORT_SYMBOL(sdw_handle_slave_status);
1963
1964 void sdw_clear_slave_status(struct sdw_bus *bus, u32 request)
1965 {
1966         struct sdw_slave *slave;
1967         int i;
1968
1969         /* Check all non-zero devices */
1970         for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1971                 mutex_lock(&bus->bus_lock);
1972                 if (test_bit(i, bus->assigned) == false) {
1973                         mutex_unlock(&bus->bus_lock);
1974                         continue;
1975                 }
1976                 mutex_unlock(&bus->bus_lock);
1977
1978                 slave = sdw_get_slave(bus, i);
1979                 if (!slave)
1980                         continue;
1981
1982                 if (slave->status != SDW_SLAVE_UNATTACHED) {
1983                         sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1984                         slave->first_interrupt_done = false;
1985                         sdw_update_slave_status(slave, SDW_SLAVE_UNATTACHED);
1986                 }
1987
1988                 /* keep track of request, used in pm_runtime resume */
1989                 slave->unattach_request = request;
1990         }
1991 }
1992 EXPORT_SYMBOL(sdw_clear_slave_status);