1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 // Copyright(c) 2015-17 Intel Corporation.
4 #include <linux/acpi.h>
5 #include <linux/delay.h>
6 #include <linux/mod_devicetable.h>
7 #include <linux/pm_runtime.h>
8 #include <linux/soundwire/sdw_registers.h>
9 #include <linux/soundwire/sdw.h>
10 #include <linux/soundwire/sdw_type.h>
12 #include "sysfs_local.h"
14 static DEFINE_IDA(sdw_bus_ida);
15 static DEFINE_IDA(sdw_peripheral_ida);
17 static int sdw_get_id(struct sdw_bus *bus)
19 int rc = ida_alloc(&sdw_bus_ida, GFP_KERNEL);
29 * sdw_bus_master_add() - add a bus Master instance
31 * @parent: parent device
32 * @fwnode: firmware node handle
34 * Initializes the bus instance, read properties and create child
37 int sdw_bus_master_add(struct sdw_bus *bus, struct device *parent,
38 struct fwnode_handle *fwnode)
40 struct sdw_master_prop *prop = NULL;
44 pr_err("SoundWire parent device is not set\n");
48 ret = sdw_get_id(bus);
50 dev_err(parent, "Failed to get bus id\n");
54 ret = sdw_master_device_add(bus, parent, fwnode);
56 dev_err(parent, "Failed to add master device at link %d\n",
62 dev_err(bus->dev, "SoundWire Bus ops are not set\n");
66 if (!bus->compute_params) {
68 "Bandwidth allocation not configured, compute_params no set\n");
72 mutex_init(&bus->msg_lock);
73 mutex_init(&bus->bus_lock);
74 INIT_LIST_HEAD(&bus->slaves);
75 INIT_LIST_HEAD(&bus->m_rt_list);
78 * Initialize multi_link flag
80 bus->multi_link = false;
81 if (bus->ops->read_prop) {
82 ret = bus->ops->read_prop(bus);
85 "Bus read properties failed:%d\n", ret);
90 sdw_bus_debugfs_init(bus);
93 * Device numbers in SoundWire are 0 through 15. Enumeration device
94 * number (0), Broadcast device number (15), Group numbers (12 and
95 * 13) and Master device number (14) are not used for assignment so
96 * mask these and other higher bits.
99 /* Set higher order bits */
100 *bus->assigned = ~GENMASK(SDW_BROADCAST_DEV_NUM, SDW_ENUM_DEV_NUM);
102 /* Set enumuration device number and broadcast device number */
103 set_bit(SDW_ENUM_DEV_NUM, bus->assigned);
104 set_bit(SDW_BROADCAST_DEV_NUM, bus->assigned);
106 /* Set group device numbers and master device number */
107 set_bit(SDW_GROUP12_DEV_NUM, bus->assigned);
108 set_bit(SDW_GROUP13_DEV_NUM, bus->assigned);
109 set_bit(SDW_MASTER_DEV_NUM, bus->assigned);
112 * SDW is an enumerable bus, but devices can be powered off. So,
113 * they won't be able to report as present.
115 * Create Slave devices based on Slaves described in
116 * the respective firmware (ACPI/DT)
118 if (IS_ENABLED(CONFIG_ACPI) && ACPI_HANDLE(bus->dev))
119 ret = sdw_acpi_find_slaves(bus);
120 else if (IS_ENABLED(CONFIG_OF) && bus->dev->of_node)
121 ret = sdw_of_find_slaves(bus);
123 ret = -ENOTSUPP; /* No ACPI/DT so error out */
126 dev_err(bus->dev, "Finding slaves failed:%d\n", ret);
131 * Initialize clock values based on Master properties. The max
132 * frequency is read from max_clk_freq property. Current assumption
133 * is that the bus will start at highest clock frequency when
136 * Default active bank will be 0 as out of reset the Slaves have
137 * to start with bank 0 (Table 40 of Spec)
140 bus->params.max_dr_freq = prop->max_clk_freq * SDW_DOUBLE_RATE_FACTOR;
141 bus->params.curr_dr_freq = bus->params.max_dr_freq;
142 bus->params.curr_bank = SDW_BANK0;
143 bus->params.next_bank = SDW_BANK1;
147 EXPORT_SYMBOL(sdw_bus_master_add);
149 static int sdw_delete_slave(struct device *dev, void *data)
151 struct sdw_slave *slave = dev_to_sdw_dev(dev);
152 struct sdw_bus *bus = slave->bus;
154 pm_runtime_disable(dev);
156 sdw_slave_debugfs_exit(slave);
158 mutex_lock(&bus->bus_lock);
160 if (slave->dev_num) { /* clear dev_num if assigned */
161 clear_bit(slave->dev_num, bus->assigned);
162 if (bus->dev_num_ida_min)
163 ida_free(&sdw_peripheral_ida, slave->dev_num);
165 list_del_init(&slave->node);
166 mutex_unlock(&bus->bus_lock);
168 device_unregister(dev);
173 * sdw_bus_master_delete() - delete the bus master instance
174 * @bus: bus to be deleted
176 * Remove the instance, delete the child devices.
178 void sdw_bus_master_delete(struct sdw_bus *bus)
180 device_for_each_child(bus->dev, NULL, sdw_delete_slave);
181 sdw_master_device_del(bus);
183 sdw_bus_debugfs_exit(bus);
184 ida_free(&sdw_bus_ida, bus->id);
186 EXPORT_SYMBOL(sdw_bus_master_delete);
192 static inline int find_response_code(enum sdw_command_response resp)
198 case SDW_CMD_IGNORED:
201 case SDW_CMD_TIMEOUT:
209 static inline int do_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
211 int retry = bus->prop.err_threshold;
212 enum sdw_command_response resp;
215 for (i = 0; i <= retry; i++) {
216 resp = bus->ops->xfer_msg(bus, msg);
217 ret = find_response_code(resp);
219 /* if cmd is ok or ignored return */
220 if (ret == 0 || ret == -ENODATA)
227 static inline int do_transfer_defer(struct sdw_bus *bus,
230 struct sdw_defer *defer = &bus->defer_msg;
231 int retry = bus->prop.err_threshold;
232 enum sdw_command_response resp;
236 defer->length = msg->len;
237 init_completion(&defer->complete);
239 for (i = 0; i <= retry; i++) {
240 resp = bus->ops->xfer_msg_defer(bus);
241 ret = find_response_code(resp);
242 /* if cmd is ok or ignored return */
243 if (ret == 0 || ret == -ENODATA)
250 static int sdw_transfer_unlocked(struct sdw_bus *bus, struct sdw_msg *msg)
254 ret = do_transfer(bus, msg);
255 if (ret != 0 && ret != -ENODATA)
256 dev_err(bus->dev, "trf on Slave %d failed:%d %s addr %x count %d\n",
258 (msg->flags & SDW_MSG_FLAG_WRITE) ? "write" : "read",
259 msg->addr, msg->len);
265 * sdw_transfer() - Synchronous transfer message to a SDW Slave device
267 * @msg: SDW message to be xfered
269 int sdw_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
273 mutex_lock(&bus->msg_lock);
275 ret = sdw_transfer_unlocked(bus, msg);
277 mutex_unlock(&bus->msg_lock);
283 * sdw_show_ping_status() - Direct report of PING status, to be used by Peripheral drivers
285 * @sync_delay: Delay before reading status
287 void sdw_show_ping_status(struct sdw_bus *bus, bool sync_delay)
291 if (!bus->ops->read_ping_status)
295 * wait for peripheral to sync if desired. 10-15ms should be more than
296 * enough in most cases.
299 usleep_range(10000, 15000);
301 mutex_lock(&bus->msg_lock);
303 status = bus->ops->read_ping_status(bus);
305 mutex_unlock(&bus->msg_lock);
308 dev_warn(bus->dev, "%s: no peripherals attached\n", __func__);
310 dev_dbg(bus->dev, "PING status: %#x\n", status);
312 EXPORT_SYMBOL(sdw_show_ping_status);
315 * sdw_transfer_defer() - Asynchronously transfer message to a SDW Slave device
317 * @msg: SDW message to be xfered
319 * Caller needs to hold the msg_lock lock while calling this
321 int sdw_transfer_defer(struct sdw_bus *bus, struct sdw_msg *msg)
325 if (!bus->ops->xfer_msg_defer)
328 ret = do_transfer_defer(bus, msg);
329 if (ret != 0 && ret != -ENODATA)
330 dev_err(bus->dev, "Defer trf on Slave %d failed:%d\n",
336 int sdw_fill_msg(struct sdw_msg *msg, struct sdw_slave *slave,
337 u32 addr, size_t count, u16 dev_num, u8 flags, u8 *buf)
339 memset(msg, 0, sizeof(*msg));
340 msg->addr = addr; /* addr is 16 bit and truncated here */
342 msg->dev_num = dev_num;
346 if (addr < SDW_REG_NO_PAGE) /* no paging area */
349 if (addr >= SDW_REG_MAX) { /* illegal addr */
350 pr_err("SDW: Invalid address %x passed\n", addr);
354 if (addr < SDW_REG_OPTIONAL_PAGE) { /* 32k but no page */
355 if (slave && !slave->prop.paging_support)
357 /* no need for else as that will fall-through to paging */
360 /* paging mandatory */
361 if (dev_num == SDW_ENUM_DEV_NUM || dev_num == SDW_BROADCAST_DEV_NUM) {
362 pr_err("SDW: Invalid device for paging :%d\n", dev_num);
367 pr_err("SDW: No slave for paging addr\n");
371 if (!slave->prop.paging_support) {
373 "address %x needs paging but no support\n", addr);
377 msg->addr_page1 = FIELD_GET(SDW_SCP_ADDRPAGE1_MASK, addr);
378 msg->addr_page2 = FIELD_GET(SDW_SCP_ADDRPAGE2_MASK, addr);
379 msg->addr |= BIT(15);
386 * Read/Write IO functions.
389 static int sdw_ntransfer_no_pm(struct sdw_slave *slave, u32 addr, u8 flags,
390 size_t count, u8 *val)
397 // Only handle bytes up to next page boundary
398 size = min_t(size_t, count, (SDW_REGADDR + 1) - (addr & SDW_REGADDR));
400 ret = sdw_fill_msg(&msg, slave, addr, size, slave->dev_num, flags, val);
404 ret = sdw_transfer(slave->bus, &msg);
405 if (ret < 0 && !slave->is_mockup_device)
417 * sdw_nread_no_pm() - Read "n" contiguous SDW Slave registers with no PM
419 * @addr: Register address
421 * @val: Buffer for values to be read
423 * Note that if the message crosses a page boundary each page will be
424 * transferred under a separate invocation of the msg_lock.
426 int sdw_nread_no_pm(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
428 return sdw_ntransfer_no_pm(slave, addr, SDW_MSG_FLAG_READ, count, val);
430 EXPORT_SYMBOL(sdw_nread_no_pm);
433 * sdw_nwrite_no_pm() - Write "n" contiguous SDW Slave registers with no PM
435 * @addr: Register address
437 * @val: Buffer for values to be written
439 * Note that if the message crosses a page boundary each page will be
440 * transferred under a separate invocation of the msg_lock.
442 int sdw_nwrite_no_pm(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
444 return sdw_ntransfer_no_pm(slave, addr, SDW_MSG_FLAG_WRITE, count, (u8 *)val);
446 EXPORT_SYMBOL(sdw_nwrite_no_pm);
449 * sdw_write_no_pm() - Write a SDW Slave register with no PM
451 * @addr: Register address
452 * @value: Register value
454 int sdw_write_no_pm(struct sdw_slave *slave, u32 addr, u8 value)
456 return sdw_nwrite_no_pm(slave, addr, 1, &value);
458 EXPORT_SYMBOL(sdw_write_no_pm);
461 sdw_bread_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr)
467 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
468 SDW_MSG_FLAG_READ, &buf);
472 ret = sdw_transfer(bus, &msg);
480 sdw_bwrite_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
485 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
486 SDW_MSG_FLAG_WRITE, &value);
490 return sdw_transfer(bus, &msg);
493 int sdw_bread_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr)
499 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
500 SDW_MSG_FLAG_READ, &buf);
504 ret = sdw_transfer_unlocked(bus, &msg);
510 EXPORT_SYMBOL(sdw_bread_no_pm_unlocked);
512 int sdw_bwrite_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
517 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
518 SDW_MSG_FLAG_WRITE, &value);
522 return sdw_transfer_unlocked(bus, &msg);
524 EXPORT_SYMBOL(sdw_bwrite_no_pm_unlocked);
527 * sdw_read_no_pm() - Read a SDW Slave register with no PM
529 * @addr: Register address
531 int sdw_read_no_pm(struct sdw_slave *slave, u32 addr)
536 ret = sdw_nread_no_pm(slave, addr, 1, &buf);
542 EXPORT_SYMBOL(sdw_read_no_pm);
544 int sdw_update_no_pm(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
548 tmp = sdw_read_no_pm(slave, addr);
552 tmp = (tmp & ~mask) | val;
553 return sdw_write_no_pm(slave, addr, tmp);
555 EXPORT_SYMBOL(sdw_update_no_pm);
557 /* Read-Modify-Write Slave register */
558 int sdw_update(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
562 tmp = sdw_read(slave, addr);
566 tmp = (tmp & ~mask) | val;
567 return sdw_write(slave, addr, tmp);
569 EXPORT_SYMBOL(sdw_update);
572 * sdw_nread() - Read "n" contiguous SDW Slave registers
574 * @addr: Register address
576 * @val: Buffer for values to be read
578 * This version of the function will take a PM reference to the slave
580 * Note that if the message crosses a page boundary each page will be
581 * transferred under a separate invocation of the msg_lock.
583 int sdw_nread(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
587 ret = pm_runtime_get_sync(&slave->dev);
588 if (ret < 0 && ret != -EACCES) {
589 pm_runtime_put_noidle(&slave->dev);
593 ret = sdw_nread_no_pm(slave, addr, count, val);
595 pm_runtime_mark_last_busy(&slave->dev);
596 pm_runtime_put(&slave->dev);
600 EXPORT_SYMBOL(sdw_nread);
603 * sdw_nwrite() - Write "n" contiguous SDW Slave registers
605 * @addr: Register address
607 * @val: Buffer for values to be written
609 * This version of the function will take a PM reference to the slave
611 * Note that if the message crosses a page boundary each page will be
612 * transferred under a separate invocation of the msg_lock.
614 int sdw_nwrite(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
618 ret = pm_runtime_get_sync(&slave->dev);
619 if (ret < 0 && ret != -EACCES) {
620 pm_runtime_put_noidle(&slave->dev);
624 ret = sdw_nwrite_no_pm(slave, addr, count, val);
626 pm_runtime_mark_last_busy(&slave->dev);
627 pm_runtime_put(&slave->dev);
631 EXPORT_SYMBOL(sdw_nwrite);
634 * sdw_read() - Read a SDW Slave register
636 * @addr: Register address
638 * This version of the function will take a PM reference to the slave
641 int sdw_read(struct sdw_slave *slave, u32 addr)
646 ret = sdw_nread(slave, addr, 1, &buf);
652 EXPORT_SYMBOL(sdw_read);
655 * sdw_write() - Write a SDW Slave register
657 * @addr: Register address
658 * @value: Register value
660 * This version of the function will take a PM reference to the slave
663 int sdw_write(struct sdw_slave *slave, u32 addr, u8 value)
665 return sdw_nwrite(slave, addr, 1, &value);
667 EXPORT_SYMBOL(sdw_write);
673 /* called with bus_lock held */
674 static struct sdw_slave *sdw_get_slave(struct sdw_bus *bus, int i)
676 struct sdw_slave *slave;
678 list_for_each_entry(slave, &bus->slaves, node) {
679 if (slave->dev_num == i)
686 int sdw_compare_devid(struct sdw_slave *slave, struct sdw_slave_id id)
688 if (slave->id.mfg_id != id.mfg_id ||
689 slave->id.part_id != id.part_id ||
690 slave->id.class_id != id.class_id ||
691 (slave->id.unique_id != SDW_IGNORED_UNIQUE_ID &&
692 slave->id.unique_id != id.unique_id))
697 EXPORT_SYMBOL(sdw_compare_devid);
699 /* called with bus_lock held */
700 static int sdw_get_device_num(struct sdw_slave *slave)
704 if (slave->bus->dev_num_ida_min) {
705 bit = ida_alloc_range(&sdw_peripheral_ida,
706 slave->bus->dev_num_ida_min, SDW_MAX_DEVICES,
711 bit = find_first_zero_bit(slave->bus->assigned, SDW_MAX_DEVICES);
712 if (bit == SDW_MAX_DEVICES) {
719 * Do not update dev_num in Slave data structure here,
720 * Update once program dev_num is successful
722 set_bit(bit, slave->bus->assigned);
728 static int sdw_assign_device_num(struct sdw_slave *slave)
730 struct sdw_bus *bus = slave->bus;
732 bool new_device = false;
734 /* check first if device number is assigned, if so reuse that */
735 if (!slave->dev_num) {
736 if (!slave->dev_num_sticky) {
737 mutex_lock(&slave->bus->bus_lock);
738 dev_num = sdw_get_device_num(slave);
739 mutex_unlock(&slave->bus->bus_lock);
741 dev_err(bus->dev, "Get dev_num failed: %d\n",
745 slave->dev_num = dev_num;
746 slave->dev_num_sticky = dev_num;
749 slave->dev_num = slave->dev_num_sticky;
755 "Slave already registered, reusing dev_num:%d\n",
758 /* Clear the slave->dev_num to transfer message on device 0 */
759 dev_num = slave->dev_num;
762 ret = sdw_write_no_pm(slave, SDW_SCP_DEVNUMBER, dev_num);
764 dev_err(bus->dev, "Program device_num %d failed: %d\n",
769 /* After xfer of msg, restore dev_num */
770 slave->dev_num = slave->dev_num_sticky;
775 void sdw_extract_slave_id(struct sdw_bus *bus,
776 u64 addr, struct sdw_slave_id *id)
778 dev_dbg(bus->dev, "SDW Slave Addr: %llx\n", addr);
780 id->sdw_version = SDW_VERSION(addr);
781 id->unique_id = SDW_UNIQUE_ID(addr);
782 id->mfg_id = SDW_MFG_ID(addr);
783 id->part_id = SDW_PART_ID(addr);
784 id->class_id = SDW_CLASS_ID(addr);
787 "SDW Slave class_id 0x%02x, mfg_id 0x%04x, part_id 0x%04x, unique_id 0x%x, version 0x%x\n",
788 id->class_id, id->mfg_id, id->part_id, id->unique_id, id->sdw_version);
790 EXPORT_SYMBOL(sdw_extract_slave_id);
792 static int sdw_program_device_num(struct sdw_bus *bus, bool *programmed)
794 u8 buf[SDW_NUM_DEV_ID_REGISTERS] = {0};
795 struct sdw_slave *slave, *_s;
796 struct sdw_slave_id id;
804 /* No Slave, so use raw xfer api */
805 ret = sdw_fill_msg(&msg, NULL, SDW_SCP_DEVID_0,
806 SDW_NUM_DEV_ID_REGISTERS, 0, SDW_MSG_FLAG_READ, buf);
811 ret = sdw_transfer(bus, &msg);
812 if (ret == -ENODATA) { /* end of device id reads */
813 dev_dbg(bus->dev, "No more devices to enumerate\n");
818 dev_err(bus->dev, "DEVID read fail:%d\n", ret);
823 * Construct the addr and extract. Cast the higher shift
824 * bits to avoid truncation due to size limit.
826 addr = buf[5] | (buf[4] << 8) | (buf[3] << 16) |
827 ((u64)buf[2] << 24) | ((u64)buf[1] << 32) |
830 sdw_extract_slave_id(bus, addr, &id);
833 /* Now compare with entries */
834 list_for_each_entry_safe(slave, _s, &bus->slaves, node) {
835 if (sdw_compare_devid(slave, id) == 0) {
839 * To prevent skipping state-machine stages don't
840 * program a device until we've seen it UNATTACH.
841 * Must return here because no other device on #0
842 * can be detected until this one has been
843 * assigned a device ID.
845 if (slave->status != SDW_SLAVE_UNATTACHED)
849 * Assign a new dev_num to this Slave and
850 * not mark it present. It will be marked
851 * present after it reports ATTACHED on new
854 ret = sdw_assign_device_num(slave);
857 "Assign dev_num failed:%d\n",
869 /* TODO: Park this device in Group 13 */
872 * add Slave device even if there is no platform
873 * firmware description. There will be no driver probe
874 * but the user/integration will be able to see the
875 * device, enumeration status and device number in sysfs
877 sdw_slave_add(bus, &id, NULL);
879 dev_err(bus->dev, "Slave Entry not found\n");
885 * Check till error out or retry (count) exhausts.
886 * Device can drop off and rejoin during enumeration
887 * so count till twice the bound.
890 } while (ret == 0 && count < (SDW_MAX_DEVICES * 2));
895 static void sdw_modify_slave_status(struct sdw_slave *slave,
896 enum sdw_slave_status status)
898 struct sdw_bus *bus = slave->bus;
900 mutex_lock(&bus->bus_lock);
903 "changing status slave %d status %d new status %d\n",
904 slave->dev_num, slave->status, status);
906 if (status == SDW_SLAVE_UNATTACHED) {
908 "initializing enumeration and init completion for Slave %d\n",
911 init_completion(&slave->enumeration_complete);
912 init_completion(&slave->initialization_complete);
914 } else if ((status == SDW_SLAVE_ATTACHED) &&
915 (slave->status == SDW_SLAVE_UNATTACHED)) {
917 "signaling enumeration completion for Slave %d\n",
920 complete(&slave->enumeration_complete);
922 slave->status = status;
923 mutex_unlock(&bus->bus_lock);
926 static int sdw_slave_clk_stop_callback(struct sdw_slave *slave,
927 enum sdw_clk_stop_mode mode,
928 enum sdw_clk_stop_type type)
932 mutex_lock(&slave->sdw_dev_lock);
935 struct device *dev = &slave->dev;
936 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
938 if (drv->ops && drv->ops->clk_stop)
939 ret = drv->ops->clk_stop(slave, mode, type);
942 mutex_unlock(&slave->sdw_dev_lock);
947 static int sdw_slave_clk_stop_prepare(struct sdw_slave *slave,
948 enum sdw_clk_stop_mode mode,
955 wake_en = slave->prop.wake_capable;
958 val = SDW_SCP_SYSTEMCTRL_CLK_STP_PREP;
960 if (mode == SDW_CLK_STOP_MODE1)
961 val |= SDW_SCP_SYSTEMCTRL_CLK_STP_MODE1;
964 val |= SDW_SCP_SYSTEMCTRL_WAKE_UP_EN;
966 ret = sdw_read_no_pm(slave, SDW_SCP_SYSTEMCTRL);
969 dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL read failed:%d\n", ret);
973 val &= ~(SDW_SCP_SYSTEMCTRL_CLK_STP_PREP);
976 ret = sdw_write_no_pm(slave, SDW_SCP_SYSTEMCTRL, val);
978 if (ret < 0 && ret != -ENODATA)
979 dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL write failed:%d\n", ret);
984 static int sdw_bus_wait_for_clk_prep_deprep(struct sdw_bus *bus, u16 dev_num)
986 int retry = bus->clk_stop_timeout;
990 val = sdw_bread_no_pm(bus, dev_num, SDW_SCP_STAT);
993 dev_err(bus->dev, "SDW_SCP_STAT bread failed:%d\n", val);
996 val &= SDW_SCP_STAT_CLK_STP_NF;
998 dev_dbg(bus->dev, "clock stop prep/de-prep done slave:%d\n",
1003 usleep_range(1000, 1500);
1007 dev_err(bus->dev, "clock stop prep/de-prep failed slave:%d\n",
1014 * sdw_bus_prep_clk_stop: prepare Slave(s) for clock stop
1016 * @bus: SDW bus instance
1018 * Query Slave for clock stop mode and prepare for that mode.
1020 int sdw_bus_prep_clk_stop(struct sdw_bus *bus)
1022 bool simple_clk_stop = true;
1023 struct sdw_slave *slave;
1024 bool is_slave = false;
1028 * In order to save on transition time, prepare
1029 * each Slave and then wait for all Slave(s) to be
1030 * prepared for clock stop.
1031 * If one of the Slave devices has lost sync and
1032 * replies with Command Ignored/-ENODATA, we continue
1035 list_for_each_entry(slave, &bus->slaves, node) {
1036 if (!slave->dev_num)
1039 if (slave->status != SDW_SLAVE_ATTACHED &&
1040 slave->status != SDW_SLAVE_ALERT)
1043 /* Identify if Slave(s) are available on Bus */
1046 ret = sdw_slave_clk_stop_callback(slave,
1048 SDW_CLK_PRE_PREPARE);
1049 if (ret < 0 && ret != -ENODATA) {
1050 dev_err(&slave->dev, "clock stop pre-prepare cb failed:%d\n", ret);
1054 /* Only prepare a Slave device if needed */
1055 if (!slave->prop.simple_clk_stop_capable) {
1056 simple_clk_stop = false;
1058 ret = sdw_slave_clk_stop_prepare(slave,
1061 if (ret < 0 && ret != -ENODATA) {
1062 dev_err(&slave->dev, "clock stop prepare failed:%d\n", ret);
1068 /* Skip remaining clock stop preparation if no Slave is attached */
1073 * Don't wait for all Slaves to be ready if they follow the simple
1076 if (!simple_clk_stop) {
1077 ret = sdw_bus_wait_for_clk_prep_deprep(bus,
1078 SDW_BROADCAST_DEV_NUM);
1080 * if there are no Slave devices present and the reply is
1081 * Command_Ignored/-ENODATA, we don't need to continue with the
1082 * flow and can just return here. The error code is not modified
1083 * and its handling left as an exercise for the caller.
1089 /* Inform slaves that prep is done */
1090 list_for_each_entry(slave, &bus->slaves, node) {
1091 if (!slave->dev_num)
1094 if (slave->status != SDW_SLAVE_ATTACHED &&
1095 slave->status != SDW_SLAVE_ALERT)
1098 ret = sdw_slave_clk_stop_callback(slave,
1100 SDW_CLK_POST_PREPARE);
1102 if (ret < 0 && ret != -ENODATA) {
1103 dev_err(&slave->dev, "clock stop post-prepare cb failed:%d\n", ret);
1110 EXPORT_SYMBOL(sdw_bus_prep_clk_stop);
1113 * sdw_bus_clk_stop: stop bus clock
1115 * @bus: SDW bus instance
1117 * After preparing the Slaves for clock stop, stop the clock by broadcasting
1118 * write to SCP_CTRL register.
1120 int sdw_bus_clk_stop(struct sdw_bus *bus)
1125 * broadcast clock stop now, attached Slaves will ACK this,
1126 * unattached will ignore
1128 ret = sdw_bwrite_no_pm(bus, SDW_BROADCAST_DEV_NUM,
1129 SDW_SCP_CTRL, SDW_SCP_CTRL_CLK_STP_NOW);
1131 if (ret != -ENODATA)
1132 dev_err(bus->dev, "ClockStopNow Broadcast msg failed %d\n", ret);
1138 EXPORT_SYMBOL(sdw_bus_clk_stop);
1141 * sdw_bus_exit_clk_stop: Exit clock stop mode
1143 * @bus: SDW bus instance
1145 * This De-prepares the Slaves by exiting Clock Stop Mode 0. For the Slaves
1146 * exiting Clock Stop Mode 1, they will be de-prepared after they enumerate
1149 int sdw_bus_exit_clk_stop(struct sdw_bus *bus)
1151 bool simple_clk_stop = true;
1152 struct sdw_slave *slave;
1153 bool is_slave = false;
1157 * In order to save on transition time, de-prepare
1158 * each Slave and then wait for all Slave(s) to be
1159 * de-prepared after clock resume.
1161 list_for_each_entry(slave, &bus->slaves, node) {
1162 if (!slave->dev_num)
1165 if (slave->status != SDW_SLAVE_ATTACHED &&
1166 slave->status != SDW_SLAVE_ALERT)
1169 /* Identify if Slave(s) are available on Bus */
1172 ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
1173 SDW_CLK_PRE_DEPREPARE);
1175 dev_warn(&slave->dev, "clock stop pre-deprepare cb failed:%d\n", ret);
1177 /* Only de-prepare a Slave device if needed */
1178 if (!slave->prop.simple_clk_stop_capable) {
1179 simple_clk_stop = false;
1181 ret = sdw_slave_clk_stop_prepare(slave, SDW_CLK_STOP_MODE0,
1185 dev_warn(&slave->dev, "clock stop deprepare failed:%d\n", ret);
1189 /* Skip remaining clock stop de-preparation if no Slave is attached */
1194 * Don't wait for all Slaves to be ready if they follow the simple
1197 if (!simple_clk_stop) {
1198 ret = sdw_bus_wait_for_clk_prep_deprep(bus, SDW_BROADCAST_DEV_NUM);
1200 dev_warn(bus->dev, "clock stop deprepare wait failed:%d\n", ret);
1203 list_for_each_entry(slave, &bus->slaves, node) {
1204 if (!slave->dev_num)
1207 if (slave->status != SDW_SLAVE_ATTACHED &&
1208 slave->status != SDW_SLAVE_ALERT)
1211 ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
1212 SDW_CLK_POST_DEPREPARE);
1214 dev_warn(&slave->dev, "clock stop post-deprepare cb failed:%d\n", ret);
1219 EXPORT_SYMBOL(sdw_bus_exit_clk_stop);
1221 int sdw_configure_dpn_intr(struct sdw_slave *slave,
1222 int port, bool enable, int mask)
1228 if (slave->bus->params.s_data_mode != SDW_PORT_DATA_MODE_NORMAL) {
1229 dev_dbg(&slave->dev, "TEST FAIL interrupt %s\n",
1230 enable ? "on" : "off");
1231 mask |= SDW_DPN_INT_TEST_FAIL;
1234 addr = SDW_DPN_INTMASK(port);
1236 /* Set/Clear port ready interrupt mask */
1239 val |= SDW_DPN_INT_PORT_READY;
1242 val &= ~SDW_DPN_INT_PORT_READY;
1245 ret = sdw_update_no_pm(slave, addr, (mask | SDW_DPN_INT_PORT_READY), val);
1247 dev_err(&slave->dev,
1248 "SDW_DPN_INTMASK write failed:%d\n", val);
1253 static int sdw_slave_set_frequency(struct sdw_slave *slave)
1255 u32 mclk_freq = slave->bus->prop.mclk_freq;
1256 u32 curr_freq = slave->bus->params.curr_dr_freq >> 1;
1263 * frequency base and scale registers are required for SDCA
1264 * devices. They may also be used for 1.2+/non-SDCA devices.
1265 * Driver can set the property, we will need a DisCo property
1266 * to discover this case from platform firmware.
1268 if (!slave->id.class_id && !slave->prop.clock_reg_supported)
1272 dev_err(&slave->dev,
1273 "no bus MCLK, cannot set SDW_SCP_BUS_CLOCK_BASE\n");
1278 * map base frequency using Table 89 of SoundWire 1.2 spec.
1279 * The order of the tests just follows the specification, this
1280 * is not a selection between possible values or a search for
1281 * the best value but just a mapping. Only one case per platform
1283 * Some BIOS have inconsistent values for mclk_freq but a
1284 * correct root so we force the mclk_freq to avoid variations.
1286 if (!(19200000 % mclk_freq)) {
1287 mclk_freq = 19200000;
1288 base = SDW_SCP_BASE_CLOCK_19200000_HZ;
1289 } else if (!(24000000 % mclk_freq)) {
1290 mclk_freq = 24000000;
1291 base = SDW_SCP_BASE_CLOCK_24000000_HZ;
1292 } else if (!(24576000 % mclk_freq)) {
1293 mclk_freq = 24576000;
1294 base = SDW_SCP_BASE_CLOCK_24576000_HZ;
1295 } else if (!(22579200 % mclk_freq)) {
1296 mclk_freq = 22579200;
1297 base = SDW_SCP_BASE_CLOCK_22579200_HZ;
1298 } else if (!(32000000 % mclk_freq)) {
1299 mclk_freq = 32000000;
1300 base = SDW_SCP_BASE_CLOCK_32000000_HZ;
1302 dev_err(&slave->dev,
1303 "Unsupported clock base, mclk %d\n",
1308 if (mclk_freq % curr_freq) {
1309 dev_err(&slave->dev,
1310 "mclk %d is not multiple of bus curr_freq %d\n",
1311 mclk_freq, curr_freq);
1315 scale = mclk_freq / curr_freq;
1318 * map scale to Table 90 of SoundWire 1.2 spec - and check
1319 * that the scale is a power of two and maximum 64
1321 scale_index = ilog2(scale);
1323 if (BIT(scale_index) != scale || scale_index > 6) {
1324 dev_err(&slave->dev,
1325 "No match found for scale %d, bus mclk %d curr_freq %d\n",
1326 scale, mclk_freq, curr_freq);
1331 ret = sdw_write_no_pm(slave, SDW_SCP_BUS_CLOCK_BASE, base);
1333 dev_err(&slave->dev,
1334 "SDW_SCP_BUS_CLOCK_BASE write failed:%d\n", ret);
1338 /* initialize scale for both banks */
1339 ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B0, scale_index);
1341 dev_err(&slave->dev,
1342 "SDW_SCP_BUSCLOCK_SCALE_B0 write failed:%d\n", ret);
1345 ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B1, scale_index);
1347 dev_err(&slave->dev,
1348 "SDW_SCP_BUSCLOCK_SCALE_B1 write failed:%d\n", ret);
1350 dev_dbg(&slave->dev,
1351 "Configured bus base %d, scale %d, mclk %d, curr_freq %d\n",
1352 base, scale_index, mclk_freq, curr_freq);
1357 static int sdw_initialize_slave(struct sdw_slave *slave)
1359 struct sdw_slave_prop *prop = &slave->prop;
1364 ret = sdw_slave_set_frequency(slave);
1368 if (slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_CLASH) {
1369 /* Clear bus clash interrupt before enabling interrupt mask */
1370 status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1372 dev_err(&slave->dev,
1373 "SDW_SCP_INT1 (BUS_CLASH) read failed:%d\n", status);
1376 if (status & SDW_SCP_INT1_BUS_CLASH) {
1377 dev_warn(&slave->dev, "Bus clash detected before INT mask is enabled\n");
1378 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_BUS_CLASH);
1380 dev_err(&slave->dev,
1381 "SDW_SCP_INT1 (BUS_CLASH) write failed:%d\n", ret);
1386 if ((slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_PARITY) &&
1387 !(slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY)) {
1388 /* Clear parity interrupt before enabling interrupt mask */
1389 status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1391 dev_err(&slave->dev,
1392 "SDW_SCP_INT1 (PARITY) read failed:%d\n", status);
1395 if (status & SDW_SCP_INT1_PARITY) {
1396 dev_warn(&slave->dev, "PARITY error detected before INT mask is enabled\n");
1397 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_PARITY);
1399 dev_err(&slave->dev,
1400 "SDW_SCP_INT1 (PARITY) write failed:%d\n", ret);
1407 * Set SCP_INT1_MASK register, typically bus clash and
1408 * implementation-defined interrupt mask. The Parity detection
1409 * may not always be correct on startup so its use is
1410 * device-dependent, it might e.g. only be enabled in
1411 * steady-state after a couple of frames.
1413 val = slave->prop.scp_int1_mask;
1415 /* Enable SCP interrupts */
1416 ret = sdw_update_no_pm(slave, SDW_SCP_INTMASK1, val, val);
1418 dev_err(&slave->dev,
1419 "SDW_SCP_INTMASK1 write failed:%d\n", ret);
1423 /* No need to continue if DP0 is not present */
1424 if (!slave->prop.dp0_prop)
1427 /* Enable DP0 interrupts */
1428 val = prop->dp0_prop->imp_def_interrupts;
1429 val |= SDW_DP0_INT_PORT_READY | SDW_DP0_INT_BRA_FAILURE;
1431 ret = sdw_update_no_pm(slave, SDW_DP0_INTMASK, val, val);
1433 dev_err(&slave->dev,
1434 "SDW_DP0_INTMASK read failed:%d\n", ret);
1438 static int sdw_handle_dp0_interrupt(struct sdw_slave *slave, u8 *slave_status)
1440 u8 clear, impl_int_mask;
1441 int status, status2, ret, count = 0;
1443 status = sdw_read_no_pm(slave, SDW_DP0_INT);
1445 dev_err(&slave->dev,
1446 "SDW_DP0_INT read failed:%d\n", status);
1451 clear = status & ~SDW_DP0_INTERRUPTS;
1453 if (status & SDW_DP0_INT_TEST_FAIL) {
1454 dev_err(&slave->dev, "Test fail for port 0\n");
1455 clear |= SDW_DP0_INT_TEST_FAIL;
1459 * Assumption: PORT_READY interrupt will be received only for
1460 * ports implementing Channel Prepare state machine (CP_SM)
1463 if (status & SDW_DP0_INT_PORT_READY) {
1464 complete(&slave->port_ready[0]);
1465 clear |= SDW_DP0_INT_PORT_READY;
1468 if (status & SDW_DP0_INT_BRA_FAILURE) {
1469 dev_err(&slave->dev, "BRA failed\n");
1470 clear |= SDW_DP0_INT_BRA_FAILURE;
1473 impl_int_mask = SDW_DP0_INT_IMPDEF1 |
1474 SDW_DP0_INT_IMPDEF2 | SDW_DP0_INT_IMPDEF3;
1476 if (status & impl_int_mask) {
1477 clear |= impl_int_mask;
1478 *slave_status = clear;
1481 /* clear the interrupts but don't touch reserved and SDCA_CASCADE fields */
1482 ret = sdw_write_no_pm(slave, SDW_DP0_INT, clear);
1484 dev_err(&slave->dev,
1485 "SDW_DP0_INT write failed:%d\n", ret);
1489 /* Read DP0 interrupt again */
1490 status2 = sdw_read_no_pm(slave, SDW_DP0_INT);
1492 dev_err(&slave->dev,
1493 "SDW_DP0_INT read failed:%d\n", status2);
1496 /* filter to limit loop to interrupts identified in the first status read */
1501 /* we can get alerts while processing so keep retrying */
1502 } while ((status & SDW_DP0_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
1504 if (count == SDW_READ_INTR_CLEAR_RETRY)
1505 dev_warn(&slave->dev, "Reached MAX_RETRY on DP0 read\n");
1510 static int sdw_handle_port_interrupt(struct sdw_slave *slave,
1511 int port, u8 *slave_status)
1513 u8 clear, impl_int_mask;
1514 int status, status2, ret, count = 0;
1518 return sdw_handle_dp0_interrupt(slave, slave_status);
1520 addr = SDW_DPN_INT(port);
1521 status = sdw_read_no_pm(slave, addr);
1523 dev_err(&slave->dev,
1524 "SDW_DPN_INT read failed:%d\n", status);
1530 clear = status & ~SDW_DPN_INTERRUPTS;
1532 if (status & SDW_DPN_INT_TEST_FAIL) {
1533 dev_err(&slave->dev, "Test fail for port:%d\n", port);
1534 clear |= SDW_DPN_INT_TEST_FAIL;
1538 * Assumption: PORT_READY interrupt will be received only
1539 * for ports implementing CP_SM.
1541 if (status & SDW_DPN_INT_PORT_READY) {
1542 complete(&slave->port_ready[port]);
1543 clear |= SDW_DPN_INT_PORT_READY;
1546 impl_int_mask = SDW_DPN_INT_IMPDEF1 |
1547 SDW_DPN_INT_IMPDEF2 | SDW_DPN_INT_IMPDEF3;
1549 if (status & impl_int_mask) {
1550 clear |= impl_int_mask;
1551 *slave_status = clear;
1554 /* clear the interrupt but don't touch reserved fields */
1555 ret = sdw_write_no_pm(slave, addr, clear);
1557 dev_err(&slave->dev,
1558 "SDW_DPN_INT write failed:%d\n", ret);
1562 /* Read DPN interrupt again */
1563 status2 = sdw_read_no_pm(slave, addr);
1565 dev_err(&slave->dev,
1566 "SDW_DPN_INT read failed:%d\n", status2);
1569 /* filter to limit loop to interrupts identified in the first status read */
1574 /* we can get alerts while processing so keep retrying */
1575 } while ((status & SDW_DPN_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
1577 if (count == SDW_READ_INTR_CLEAR_RETRY)
1578 dev_warn(&slave->dev, "Reached MAX_RETRY on port read");
1583 static int sdw_handle_slave_alerts(struct sdw_slave *slave)
1585 struct sdw_slave_intr_status slave_intr;
1586 u8 clear = 0, bit, port_status[15] = {0};
1587 int port_num, stat, ret, count = 0;
1590 u8 sdca_cascade = 0;
1591 u8 buf, buf2[2], _buf, _buf2[2];
1595 sdw_modify_slave_status(slave, SDW_SLAVE_ALERT);
1597 ret = pm_runtime_get_sync(&slave->dev);
1598 if (ret < 0 && ret != -EACCES) {
1599 dev_err(&slave->dev, "Failed to resume device: %d\n", ret);
1600 pm_runtime_put_noidle(&slave->dev);
1604 /* Read Intstat 1, Intstat 2 and Intstat 3 registers */
1605 ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
1607 dev_err(&slave->dev,
1608 "SDW_SCP_INT1 read failed:%d\n", ret);
1613 ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, buf2);
1615 dev_err(&slave->dev,
1616 "SDW_SCP_INT2/3 read failed:%d\n", ret);
1620 if (slave->id.class_id) {
1621 ret = sdw_read_no_pm(slave, SDW_DP0_INT);
1623 dev_err(&slave->dev,
1624 "SDW_DP0_INT read failed:%d\n", ret);
1627 sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1631 slave_notify = false;
1634 * Check parity, bus clash and Slave (impl defined)
1637 if (buf & SDW_SCP_INT1_PARITY) {
1638 parity_check = slave->prop.scp_int1_mask & SDW_SCP_INT1_PARITY;
1639 parity_quirk = !slave->first_interrupt_done &&
1640 (slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY);
1642 if (parity_check && !parity_quirk)
1643 dev_err(&slave->dev, "Parity error detected\n");
1644 clear |= SDW_SCP_INT1_PARITY;
1647 if (buf & SDW_SCP_INT1_BUS_CLASH) {
1648 if (slave->prop.scp_int1_mask & SDW_SCP_INT1_BUS_CLASH)
1649 dev_err(&slave->dev, "Bus clash detected\n");
1650 clear |= SDW_SCP_INT1_BUS_CLASH;
1654 * When bus clash or parity errors are detected, such errors
1655 * are unlikely to be recoverable errors.
1656 * TODO: In such scenario, reset bus. Make this configurable
1657 * via sysfs property with bus reset being the default.
1660 if (buf & SDW_SCP_INT1_IMPL_DEF) {
1661 if (slave->prop.scp_int1_mask & SDW_SCP_INT1_IMPL_DEF) {
1662 dev_dbg(&slave->dev, "Slave impl defined interrupt\n");
1663 slave_notify = true;
1665 clear |= SDW_SCP_INT1_IMPL_DEF;
1668 /* the SDCA interrupts are cleared in the codec driver .interrupt_callback() */
1670 slave_notify = true;
1672 /* Check port 0 - 3 interrupts */
1673 port = buf & SDW_SCP_INT1_PORT0_3;
1675 /* To get port number corresponding to bits, shift it */
1676 port = FIELD_GET(SDW_SCP_INT1_PORT0_3, port);
1677 for_each_set_bit(bit, &port, 8) {
1678 sdw_handle_port_interrupt(slave, bit,
1682 /* Check if cascade 2 interrupt is present */
1683 if (buf & SDW_SCP_INT1_SCP2_CASCADE) {
1684 port = buf2[0] & SDW_SCP_INTSTAT2_PORT4_10;
1685 for_each_set_bit(bit, &port, 8) {
1686 /* scp2 ports start from 4 */
1688 sdw_handle_port_interrupt(slave,
1690 &port_status[port_num]);
1694 /* now check last cascade */
1695 if (buf2[0] & SDW_SCP_INTSTAT2_SCP3_CASCADE) {
1696 port = buf2[1] & SDW_SCP_INTSTAT3_PORT11_14;
1697 for_each_set_bit(bit, &port, 8) {
1698 /* scp3 ports start from 11 */
1699 port_num = bit + 11;
1700 sdw_handle_port_interrupt(slave,
1702 &port_status[port_num]);
1706 /* Update the Slave driver */
1708 mutex_lock(&slave->sdw_dev_lock);
1710 if (slave->probed) {
1711 struct device *dev = &slave->dev;
1712 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
1714 if (drv->ops && drv->ops->interrupt_callback) {
1715 slave_intr.sdca_cascade = sdca_cascade;
1716 slave_intr.control_port = clear;
1717 memcpy(slave_intr.port, &port_status,
1718 sizeof(slave_intr.port));
1720 drv->ops->interrupt_callback(slave, &slave_intr);
1724 mutex_unlock(&slave->sdw_dev_lock);
1728 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, clear);
1730 dev_err(&slave->dev,
1731 "SDW_SCP_INT1 write failed:%d\n", ret);
1735 /* at this point all initial interrupt sources were handled */
1736 slave->first_interrupt_done = true;
1739 * Read status again to ensure no new interrupts arrived
1740 * while servicing interrupts.
1742 ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
1744 dev_err(&slave->dev,
1745 "SDW_SCP_INT1 recheck read failed:%d\n", ret);
1750 ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, _buf2);
1752 dev_err(&slave->dev,
1753 "SDW_SCP_INT2/3 recheck read failed:%d\n", ret);
1757 if (slave->id.class_id) {
1758 ret = sdw_read_no_pm(slave, SDW_DP0_INT);
1760 dev_err(&slave->dev,
1761 "SDW_DP0_INT recheck read failed:%d\n", ret);
1764 sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1768 * Make sure no interrupts are pending, but filter to limit loop
1769 * to interrupts identified in the first status read
1772 buf2[0] &= _buf2[0];
1773 buf2[1] &= _buf2[1];
1774 stat = buf || buf2[0] || buf2[1] || sdca_cascade;
1777 * Exit loop if Slave is continuously in ALERT state even
1778 * after servicing the interrupt multiple times.
1782 /* we can get alerts while processing so keep retrying */
1783 } while (stat != 0 && count < SDW_READ_INTR_CLEAR_RETRY);
1785 if (count == SDW_READ_INTR_CLEAR_RETRY)
1786 dev_warn(&slave->dev, "Reached MAX_RETRY on alert read\n");
1789 pm_runtime_mark_last_busy(&slave->dev);
1790 pm_runtime_put_autosuspend(&slave->dev);
1795 static int sdw_update_slave_status(struct sdw_slave *slave,
1796 enum sdw_slave_status status)
1800 mutex_lock(&slave->sdw_dev_lock);
1802 if (slave->probed) {
1803 struct device *dev = &slave->dev;
1804 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
1806 if (drv->ops && drv->ops->update_status)
1807 ret = drv->ops->update_status(slave, status);
1810 mutex_unlock(&slave->sdw_dev_lock);
1816 * sdw_handle_slave_status() - Handle Slave status
1817 * @bus: SDW bus instance
1818 * @status: Status for all Slave(s)
1820 int sdw_handle_slave_status(struct sdw_bus *bus,
1821 enum sdw_slave_status status[])
1823 enum sdw_slave_status prev_status;
1824 struct sdw_slave *slave;
1825 bool attached_initializing, id_programmed;
1828 /* first check if any Slaves fell off the bus */
1829 for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1830 mutex_lock(&bus->bus_lock);
1831 if (test_bit(i, bus->assigned) == false) {
1832 mutex_unlock(&bus->bus_lock);
1835 mutex_unlock(&bus->bus_lock);
1837 slave = sdw_get_slave(bus, i);
1841 if (status[i] == SDW_SLAVE_UNATTACHED &&
1842 slave->status != SDW_SLAVE_UNATTACHED) {
1843 dev_warn(&slave->dev, "Slave %d state check1: UNATTACHED, status was %d\n",
1845 sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1847 /* Ensure driver knows that peripheral unattached */
1848 ret = sdw_update_slave_status(slave, status[i]);
1850 dev_warn(&slave->dev, "Update Slave status failed:%d\n", ret);
1854 if (status[0] == SDW_SLAVE_ATTACHED) {
1855 dev_dbg(bus->dev, "Slave attached, programming device number\n");
1858 * Programming a device number will have side effects,
1859 * so we deal with other devices at a later time.
1860 * This relies on those devices reporting ATTACHED, which will
1861 * trigger another call to this function. This will only
1862 * happen if at least one device ID was programmed.
1863 * Error returns from sdw_program_device_num() are currently
1864 * ignored because there's no useful recovery that can be done.
1865 * Returning the error here could result in the current status
1866 * of other devices not being handled, because if no device IDs
1867 * were programmed there's nothing to guarantee a status change
1868 * to trigger another call to this function.
1870 sdw_program_device_num(bus, &id_programmed);
1875 /* Continue to check other slave statuses */
1876 for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1877 mutex_lock(&bus->bus_lock);
1878 if (test_bit(i, bus->assigned) == false) {
1879 mutex_unlock(&bus->bus_lock);
1882 mutex_unlock(&bus->bus_lock);
1884 slave = sdw_get_slave(bus, i);
1888 attached_initializing = false;
1890 switch (status[i]) {
1891 case SDW_SLAVE_UNATTACHED:
1892 if (slave->status == SDW_SLAVE_UNATTACHED)
1895 dev_warn(&slave->dev, "Slave %d state check2: UNATTACHED, status was %d\n",
1898 sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1901 case SDW_SLAVE_ALERT:
1902 ret = sdw_handle_slave_alerts(slave);
1904 dev_err(&slave->dev,
1905 "Slave %d alert handling failed: %d\n",
1909 case SDW_SLAVE_ATTACHED:
1910 if (slave->status == SDW_SLAVE_ATTACHED)
1913 prev_status = slave->status;
1914 sdw_modify_slave_status(slave, SDW_SLAVE_ATTACHED);
1916 if (prev_status == SDW_SLAVE_ALERT)
1919 attached_initializing = true;
1921 ret = sdw_initialize_slave(slave);
1923 dev_err(&slave->dev,
1924 "Slave %d initialization failed: %d\n",
1930 dev_err(&slave->dev, "Invalid slave %d status:%d\n",
1935 ret = sdw_update_slave_status(slave, status[i]);
1937 dev_err(&slave->dev,
1938 "Update Slave status failed:%d\n", ret);
1939 if (attached_initializing) {
1940 dev_dbg(&slave->dev,
1941 "signaling initialization completion for Slave %d\n",
1944 complete(&slave->initialization_complete);
1947 * If the manager became pm_runtime active, the peripherals will be
1948 * restarted and attach, but their pm_runtime status may remain
1949 * suspended. If the 'update_slave_status' callback initiates
1950 * any sort of deferred processing, this processing would not be
1951 * cancelled on pm_runtime suspend.
1952 * To avoid such zombie states, we queue a request to resume.
1953 * This would be a no-op in case the peripheral was being resumed
1954 * by e.g. the ALSA/ASoC framework.
1956 pm_request_resume(&slave->dev);
1962 EXPORT_SYMBOL(sdw_handle_slave_status);
1964 void sdw_clear_slave_status(struct sdw_bus *bus, u32 request)
1966 struct sdw_slave *slave;
1969 /* Check all non-zero devices */
1970 for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1971 mutex_lock(&bus->bus_lock);
1972 if (test_bit(i, bus->assigned) == false) {
1973 mutex_unlock(&bus->bus_lock);
1976 mutex_unlock(&bus->bus_lock);
1978 slave = sdw_get_slave(bus, i);
1982 if (slave->status != SDW_SLAVE_UNATTACHED) {
1983 sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1984 slave->first_interrupt_done = false;
1985 sdw_update_slave_status(slave, SDW_SLAVE_UNATTACHED);
1988 /* keep track of request, used in pm_runtime resume */
1989 slave->unattach_request = request;
1992 EXPORT_SYMBOL(sdw_clear_slave_status);