if_iwm - Factor out and improve iwm_mvm_scan_rxon_flags() in if_iwm_scan.c.
[dragonfly.git] / sys / net / if.c
1 /*
2  * Copyright (c) 1980, 1986, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *      @(#)if.c        8.3 (Berkeley) 1/4/94
30  * $FreeBSD: src/sys/net/if.c,v 1.185 2004/03/13 02:35:03 brooks Exp $
31  */
32
33 #include "opt_inet6.h"
34 #include "opt_inet.h"
35 #include "opt_ifpoll.h"
36
37 #include <sys/param.h>
38 #include <sys/malloc.h>
39 #include <sys/mbuf.h>
40 #include <sys/systm.h>
41 #include <sys/proc.h>
42 #include <sys/priv.h>
43 #include <sys/protosw.h>
44 #include <sys/socket.h>
45 #include <sys/socketvar.h>
46 #include <sys/socketops.h>
47 #include <sys/kernel.h>
48 #include <sys/ktr.h>
49 #include <sys/mutex.h>
50 #include <sys/sockio.h>
51 #include <sys/syslog.h>
52 #include <sys/sysctl.h>
53 #include <sys/domain.h>
54 #include <sys/thread.h>
55 #include <sys/serialize.h>
56 #include <sys/bus.h>
57
58 #include <sys/thread2.h>
59 #include <sys/msgport2.h>
60 #include <sys/mutex2.h>
61
62 #include <net/if.h>
63 #include <net/if_arp.h>
64 #include <net/if_dl.h>
65 #include <net/if_types.h>
66 #include <net/if_var.h>
67 #include <net/ifq_var.h>
68 #include <net/radix.h>
69 #include <net/route.h>
70 #include <net/if_clone.h>
71 #include <net/netisr2.h>
72 #include <net/netmsg2.h>
73
74 #include <machine/atomic.h>
75 #include <machine/stdarg.h>
76 #include <machine/smp.h>
77
78 #if defined(INET) || defined(INET6)
79 /*XXX*/
80 #include <netinet/in.h>
81 #include <netinet/in_var.h>
82 #include <netinet/if_ether.h>
83 #ifdef INET6
84 #include <netinet6/in6_var.h>
85 #include <netinet6/in6_ifattach.h>
86 #endif
87 #endif
88
89 struct netmsg_ifaddr {
90         struct netmsg_base base;
91         struct ifaddr   *ifa;
92         struct ifnet    *ifp;
93         int             tail;
94 };
95
96 struct ifsubq_stage_head {
97         TAILQ_HEAD(, ifsubq_stage)      stg_head;
98 } __cachealign;
99
100 /*
101  * System initialization
102  */
103 static void     if_attachdomain(void *);
104 static void     if_attachdomain1(struct ifnet *);
105 static int      ifconf(u_long, caddr_t, struct ucred *);
106 static void     ifinit(void *);
107 static void     ifnetinit(void *);
108 static void     if_slowtimo(void *);
109 static void     link_rtrequest(int, struct rtentry *);
110 static int      if_rtdel(struct radix_node *, void *);
111 static void     if_slowtimo_dispatch(netmsg_t);
112
113 /* Helper functions */
114 static void     ifsq_watchdog_reset(struct ifsubq_watchdog *);
115 static int      if_delmulti_serialized(struct ifnet *, struct sockaddr *);
116 static struct ifnet_array *ifnet_array_alloc(int);
117 static void     ifnet_array_free(struct ifnet_array *);
118 static struct ifnet_array *ifnet_array_add(struct ifnet *,
119                     const struct ifnet_array *);
120 static struct ifnet_array *ifnet_array_del(struct ifnet *,
121                     const struct ifnet_array *);
122
123 #ifdef INET6
124 /*
125  * XXX: declare here to avoid to include many inet6 related files..
126  * should be more generalized?
127  */
128 extern void     nd6_setmtu(struct ifnet *);
129 #endif
130
131 SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers");
132 SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management");
133
134 static int ifsq_stage_cntmax = 4;
135 TUNABLE_INT("net.link.stage_cntmax", &ifsq_stage_cntmax);
136 SYSCTL_INT(_net_link, OID_AUTO, stage_cntmax, CTLFLAG_RW,
137     &ifsq_stage_cntmax, 0, "ifq staging packet count max");
138
139 static int if_stats_compat = 0;
140 SYSCTL_INT(_net_link, OID_AUTO, stats_compat, CTLFLAG_RW,
141     &if_stats_compat, 0, "Compat the old ifnet stats");
142
143 SYSINIT(interfaces, SI_SUB_PROTO_IF, SI_ORDER_FIRST, ifinit, NULL);
144 /* Must be after netisr_init */
145 SYSINIT(ifnet, SI_SUB_PRE_DRIVERS, SI_ORDER_SECOND, ifnetinit, NULL);
146
147 static  if_com_alloc_t *if_com_alloc[256];
148 static  if_com_free_t *if_com_free[256];
149
150 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
151 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
152 MALLOC_DEFINE(M_IFNET, "ifnet", "interface structure");
153
154 int                     ifqmaxlen = IFQ_MAXLEN;
155 struct ifnethead        ifnet = TAILQ_HEAD_INITIALIZER(ifnet);
156
157 static struct ifnet_array       ifnet_array0;
158 static struct ifnet_array       *ifnet_array = &ifnet_array0;
159
160 static struct callout           if_slowtimo_timer;
161 static struct netmsg_base       if_slowtimo_netmsg;
162
163 int                     if_index = 0;
164 struct ifnet            **ifindex2ifnet = NULL;
165 static struct thread    *ifnet_threads[MAXCPU];
166 static struct mtx       ifnet_mtx = MTX_INITIALIZER("ifnet");
167
168 static struct ifsubq_stage_head ifsubq_stage_heads[MAXCPU];
169
170 #ifdef notyet
171 #define IFQ_KTR_STRING          "ifq=%p"
172 #define IFQ_KTR_ARGS    struct ifaltq *ifq
173 #ifndef KTR_IFQ
174 #define KTR_IFQ                 KTR_ALL
175 #endif
176 KTR_INFO_MASTER(ifq);
177 KTR_INFO(KTR_IFQ, ifq, enqueue, 0, IFQ_KTR_STRING, IFQ_KTR_ARGS);
178 KTR_INFO(KTR_IFQ, ifq, dequeue, 1, IFQ_KTR_STRING, IFQ_KTR_ARGS);
179 #define logifq(name, arg)       KTR_LOG(ifq_ ## name, arg)
180
181 #define IF_START_KTR_STRING     "ifp=%p"
182 #define IF_START_KTR_ARGS       struct ifnet *ifp
183 #ifndef KTR_IF_START
184 #define KTR_IF_START            KTR_ALL
185 #endif
186 KTR_INFO_MASTER(if_start);
187 KTR_INFO(KTR_IF_START, if_start, run, 0,
188          IF_START_KTR_STRING, IF_START_KTR_ARGS);
189 KTR_INFO(KTR_IF_START, if_start, sched, 1,
190          IF_START_KTR_STRING, IF_START_KTR_ARGS);
191 KTR_INFO(KTR_IF_START, if_start, avoid, 2,
192          IF_START_KTR_STRING, IF_START_KTR_ARGS);
193 KTR_INFO(KTR_IF_START, if_start, contend_sched, 3,
194          IF_START_KTR_STRING, IF_START_KTR_ARGS);
195 KTR_INFO(KTR_IF_START, if_start, chase_sched, 4,
196          IF_START_KTR_STRING, IF_START_KTR_ARGS);
197 #define logifstart(name, arg)   KTR_LOG(if_start_ ## name, arg)
198 #endif
199
200 TAILQ_HEAD(, ifg_group) ifg_head = TAILQ_HEAD_INITIALIZER(ifg_head);
201
202 /*
203  * Network interface utility routines.
204  *
205  * Routines with ifa_ifwith* names take sockaddr *'s as
206  * parameters.
207  */
208 /* ARGSUSED*/
209 static void
210 ifinit(void *dummy)
211 {
212         struct ifnet *ifp;
213
214         callout_init_mp(&if_slowtimo_timer);
215         netmsg_init(&if_slowtimo_netmsg, NULL, &netisr_adone_rport,
216             MSGF_PRIORITY, if_slowtimo_dispatch);
217
218         /* XXX is this necessary? */
219         ifnet_lock();
220         TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
221                 if (ifp->if_snd.altq_maxlen == 0) {
222                         if_printf(ifp, "XXX: driver didn't set altq_maxlen\n");
223                         ifq_set_maxlen(&ifp->if_snd, ifqmaxlen);
224                 }
225         }
226         ifnet_unlock();
227
228         /* Start if_slowtimo */
229         lwkt_sendmsg(netisr_cpuport(0), &if_slowtimo_netmsg.lmsg);
230 }
231
232 static void
233 ifsq_ifstart_ipifunc(void *arg)
234 {
235         struct ifaltq_subque *ifsq = arg;
236         struct lwkt_msg *lmsg = ifsq_get_ifstart_lmsg(ifsq, mycpuid);
237
238         crit_enter();
239         if (lmsg->ms_flags & MSGF_DONE)
240                 lwkt_sendmsg_oncpu(netisr_cpuport(mycpuid), lmsg);
241         crit_exit();
242 }
243
244 static __inline void
245 ifsq_stage_remove(struct ifsubq_stage_head *head, struct ifsubq_stage *stage)
246 {
247         KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED);
248         TAILQ_REMOVE(&head->stg_head, stage, stg_link);
249         stage->stg_flags &= ~(IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED);
250         stage->stg_cnt = 0;
251         stage->stg_len = 0;
252 }
253
254 static __inline void
255 ifsq_stage_insert(struct ifsubq_stage_head *head, struct ifsubq_stage *stage)
256 {
257         KKASSERT((stage->stg_flags &
258             (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0);
259         stage->stg_flags |= IFSQ_STAGE_FLAG_QUED;
260         TAILQ_INSERT_TAIL(&head->stg_head, stage, stg_link);
261 }
262
263 /*
264  * Schedule ifnet.if_start on the subqueue owner CPU
265  */
266 static void
267 ifsq_ifstart_schedule(struct ifaltq_subque *ifsq, int force)
268 {
269         int cpu;
270
271         if (!force && curthread->td_type == TD_TYPE_NETISR &&
272             ifsq_stage_cntmax > 0) {
273                 struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid);
274
275                 stage->stg_cnt = 0;
276                 stage->stg_len = 0;
277                 if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0)
278                         ifsq_stage_insert(&ifsubq_stage_heads[mycpuid], stage);
279                 stage->stg_flags |= IFSQ_STAGE_FLAG_SCHED;
280                 return;
281         }
282
283         cpu = ifsq_get_cpuid(ifsq);
284         if (cpu != mycpuid)
285                 lwkt_send_ipiq(globaldata_find(cpu), ifsq_ifstart_ipifunc, ifsq);
286         else
287                 ifsq_ifstart_ipifunc(ifsq);
288 }
289
290 /*
291  * NOTE:
292  * This function will release ifnet.if_start subqueue interlock,
293  * if ifnet.if_start for the subqueue does not need to be scheduled
294  */
295 static __inline int
296 ifsq_ifstart_need_schedule(struct ifaltq_subque *ifsq, int running)
297 {
298         if (!running || ifsq_is_empty(ifsq)
299 #ifdef ALTQ
300             || ifsq->ifsq_altq->altq_tbr != NULL
301 #endif
302         ) {
303                 ALTQ_SQ_LOCK(ifsq);
304                 /*
305                  * ifnet.if_start subqueue interlock is released, if:
306                  * 1) Hardware can not take any packets, due to
307                  *    o  interface is marked down
308                  *    o  hardware queue is full (ifsq_is_oactive)
309                  *    Under the second situation, hardware interrupt
310                  *    or polling(4) will call/schedule ifnet.if_start
311                  *    on the subqueue when hardware queue is ready
312                  * 2) There is no packet in the subqueue.
313                  *    Further ifq_dispatch or ifq_handoff will call/
314                  *    schedule ifnet.if_start on the subqueue.
315                  * 3) TBR is used and it does not allow further
316                  *    dequeueing.
317                  *    TBR callout will call ifnet.if_start on the
318                  *    subqueue.
319                  */
320                 if (!running || !ifsq_data_ready(ifsq)) {
321                         ifsq_clr_started(ifsq);
322                         ALTQ_SQ_UNLOCK(ifsq);
323                         return 0;
324                 }
325                 ALTQ_SQ_UNLOCK(ifsq);
326         }
327         return 1;
328 }
329
330 static void
331 ifsq_ifstart_dispatch(netmsg_t msg)
332 {
333         struct lwkt_msg *lmsg = &msg->base.lmsg;
334         struct ifaltq_subque *ifsq = lmsg->u.ms_resultp;
335         struct ifnet *ifp = ifsq_get_ifp(ifsq);
336         struct globaldata *gd = mycpu;
337         int running = 0, need_sched;
338
339         crit_enter_gd(gd);
340
341         lwkt_replymsg(lmsg, 0); /* reply ASAP */
342
343         if (gd->gd_cpuid != ifsq_get_cpuid(ifsq)) {
344                 /*
345                  * We need to chase the subqueue owner CPU change.
346                  */
347                 ifsq_ifstart_schedule(ifsq, 1);
348                 crit_exit_gd(gd);
349                 return;
350         }
351
352         ifsq_serialize_hw(ifsq);
353         if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) {
354                 ifp->if_start(ifp, ifsq);
355                 if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
356                         running = 1;
357         }
358         need_sched = ifsq_ifstart_need_schedule(ifsq, running);
359         ifsq_deserialize_hw(ifsq);
360
361         if (need_sched) {
362                 /*
363                  * More data need to be transmitted, ifnet.if_start is
364                  * scheduled on the subqueue owner CPU, and we keep going.
365                  * NOTE: ifnet.if_start subqueue interlock is not released.
366                  */
367                 ifsq_ifstart_schedule(ifsq, 0);
368         }
369
370         crit_exit_gd(gd);
371 }
372
373 /* Device driver ifnet.if_start helper function */
374 void
375 ifsq_devstart(struct ifaltq_subque *ifsq)
376 {
377         struct ifnet *ifp = ifsq_get_ifp(ifsq);
378         int running = 0;
379
380         ASSERT_ALTQ_SQ_SERIALIZED_HW(ifsq);
381
382         ALTQ_SQ_LOCK(ifsq);
383         if (ifsq_is_started(ifsq) || !ifsq_data_ready(ifsq)) {
384                 ALTQ_SQ_UNLOCK(ifsq);
385                 return;
386         }
387         ifsq_set_started(ifsq);
388         ALTQ_SQ_UNLOCK(ifsq);
389
390         ifp->if_start(ifp, ifsq);
391
392         if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
393                 running = 1;
394
395         if (ifsq_ifstart_need_schedule(ifsq, running)) {
396                 /*
397                  * More data need to be transmitted, ifnet.if_start is
398                  * scheduled on ifnet's CPU, and we keep going.
399                  * NOTE: ifnet.if_start interlock is not released.
400                  */
401                 ifsq_ifstart_schedule(ifsq, 0);
402         }
403 }
404
405 void
406 if_devstart(struct ifnet *ifp)
407 {
408         ifsq_devstart(ifq_get_subq_default(&ifp->if_snd));
409 }
410
411 /* Device driver ifnet.if_start schedule helper function */
412 void
413 ifsq_devstart_sched(struct ifaltq_subque *ifsq)
414 {
415         ifsq_ifstart_schedule(ifsq, 1);
416 }
417
418 void
419 if_devstart_sched(struct ifnet *ifp)
420 {
421         ifsq_devstart_sched(ifq_get_subq_default(&ifp->if_snd));
422 }
423
424 static void
425 if_default_serialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
426 {
427         lwkt_serialize_enter(ifp->if_serializer);
428 }
429
430 static void
431 if_default_deserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
432 {
433         lwkt_serialize_exit(ifp->if_serializer);
434 }
435
436 static int
437 if_default_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz __unused)
438 {
439         return lwkt_serialize_try(ifp->if_serializer);
440 }
441
442 #ifdef INVARIANTS
443 static void
444 if_default_serialize_assert(struct ifnet *ifp,
445                             enum ifnet_serialize slz __unused,
446                             boolean_t serialized)
447 {
448         if (serialized)
449                 ASSERT_SERIALIZED(ifp->if_serializer);
450         else
451                 ASSERT_NOT_SERIALIZED(ifp->if_serializer);
452 }
453 #endif
454
455 /*
456  * Attach an interface to the list of "active" interfaces.
457  *
458  * The serializer is optional.
459  */
460 void
461 if_attach(struct ifnet *ifp, lwkt_serialize_t serializer)
462 {
463         unsigned socksize;
464         int namelen, masklen;
465         struct sockaddr_dl *sdl, *sdl_addr;
466         struct ifaddr *ifa;
467         struct ifaltq *ifq;
468         struct ifnet **old_ifindex2ifnet = NULL;
469         struct ifnet_array *old_ifnet_array;
470         int i, q;
471
472         static int if_indexlim = 8;
473
474         if (ifp->if_serialize != NULL) {
475                 KASSERT(ifp->if_deserialize != NULL &&
476                         ifp->if_tryserialize != NULL &&
477                         ifp->if_serialize_assert != NULL,
478                         ("serialize functions are partially setup"));
479
480                 /*
481                  * If the device supplies serialize functions,
482                  * then clear if_serializer to catch any invalid
483                  * usage of this field.
484                  */
485                 KASSERT(serializer == NULL,
486                         ("both serialize functions and default serializer "
487                          "are supplied"));
488                 ifp->if_serializer = NULL;
489         } else {
490                 KASSERT(ifp->if_deserialize == NULL &&
491                         ifp->if_tryserialize == NULL &&
492                         ifp->if_serialize_assert == NULL,
493                         ("serialize functions are partially setup"));
494                 ifp->if_serialize = if_default_serialize;
495                 ifp->if_deserialize = if_default_deserialize;
496                 ifp->if_tryserialize = if_default_tryserialize;
497 #ifdef INVARIANTS
498                 ifp->if_serialize_assert = if_default_serialize_assert;
499 #endif
500
501                 /*
502                  * The serializer can be passed in from the device,
503                  * allowing the same serializer to be used for both
504                  * the interrupt interlock and the device queue.
505                  * If not specified, the netif structure will use an
506                  * embedded serializer.
507                  */
508                 if (serializer == NULL) {
509                         serializer = &ifp->if_default_serializer;
510                         lwkt_serialize_init(serializer);
511                 }
512                 ifp->if_serializer = serializer;
513         }
514
515         /*
516          * XXX -
517          * The old code would work if the interface passed a pre-existing
518          * chain of ifaddrs to this code.  We don't trust our callers to
519          * properly initialize the tailq, however, so we no longer allow
520          * this unlikely case.
521          */
522         ifp->if_addrheads = kmalloc(ncpus * sizeof(struct ifaddrhead),
523                                     M_IFADDR, M_WAITOK | M_ZERO);
524         for (i = 0; i < ncpus; ++i)
525                 TAILQ_INIT(&ifp->if_addrheads[i]);
526
527         TAILQ_INIT(&ifp->if_multiaddrs);
528         TAILQ_INIT(&ifp->if_groups);
529         getmicrotime(&ifp->if_lastchange);
530
531         /*
532          * create a Link Level name for this device
533          */
534         namelen = strlen(ifp->if_xname);
535         masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + namelen;
536         socksize = masklen + ifp->if_addrlen;
537         if (socksize < sizeof(*sdl))
538                 socksize = sizeof(*sdl);
539         socksize = RT_ROUNDUP(socksize);
540         ifa = ifa_create(sizeof(struct ifaddr) + 2 * socksize);
541         sdl = sdl_addr = (struct sockaddr_dl *)(ifa + 1);
542         sdl->sdl_len = socksize;
543         sdl->sdl_family = AF_LINK;
544         bcopy(ifp->if_xname, sdl->sdl_data, namelen);
545         sdl->sdl_nlen = namelen;
546         sdl->sdl_type = ifp->if_type;
547         ifp->if_lladdr = ifa;
548         ifa->ifa_ifp = ifp;
549         ifa->ifa_rtrequest = link_rtrequest;
550         ifa->ifa_addr = (struct sockaddr *)sdl;
551         sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
552         ifa->ifa_netmask = (struct sockaddr *)sdl;
553         sdl->sdl_len = masklen;
554         while (namelen != 0)
555                 sdl->sdl_data[--namelen] = 0xff;
556         ifa_iflink(ifa, ifp, 0 /* Insert head */);
557
558         ifp->if_data_pcpu = kmalloc_cachealign(
559             ncpus * sizeof(struct ifdata_pcpu), M_DEVBUF, M_WAITOK | M_ZERO);
560
561         if (ifp->if_mapsubq == NULL)
562                 ifp->if_mapsubq = ifq_mapsubq_default;
563
564         ifq = &ifp->if_snd;
565         ifq->altq_type = 0;
566         ifq->altq_disc = NULL;
567         ifq->altq_flags &= ALTQF_CANTCHANGE;
568         ifq->altq_tbr = NULL;
569         ifq->altq_ifp = ifp;
570
571         if (ifq->altq_subq_cnt <= 0)
572                 ifq->altq_subq_cnt = 1;
573         ifq->altq_subq = kmalloc_cachealign(
574             ifq->altq_subq_cnt * sizeof(struct ifaltq_subque),
575             M_DEVBUF, M_WAITOK | M_ZERO);
576
577         if (ifq->altq_maxlen == 0) {
578                 if_printf(ifp, "driver didn't set altq_maxlen\n");
579                 ifq_set_maxlen(ifq, ifqmaxlen);
580         }
581
582         for (q = 0; q < ifq->altq_subq_cnt; ++q) {
583                 struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
584
585                 ALTQ_SQ_LOCK_INIT(ifsq);
586                 ifsq->ifsq_index = q;
587
588                 ifsq->ifsq_altq = ifq;
589                 ifsq->ifsq_ifp = ifp;
590
591                 ifsq->ifsq_maxlen = ifq->altq_maxlen;
592                 ifsq->ifsq_maxbcnt = ifsq->ifsq_maxlen * MCLBYTES;
593                 ifsq->ifsq_prepended = NULL;
594                 ifsq->ifsq_started = 0;
595                 ifsq->ifsq_hw_oactive = 0;
596                 ifsq_set_cpuid(ifsq, 0);
597                 if (ifp->if_serializer != NULL)
598                         ifsq_set_hw_serialize(ifsq, ifp->if_serializer);
599
600                 ifsq->ifsq_stage =
601                     kmalloc_cachealign(ncpus * sizeof(struct ifsubq_stage),
602                     M_DEVBUF, M_WAITOK | M_ZERO);
603                 for (i = 0; i < ncpus; ++i)
604                         ifsq->ifsq_stage[i].stg_subq = ifsq;
605
606                 ifsq->ifsq_ifstart_nmsg =
607                     kmalloc(ncpus * sizeof(struct netmsg_base),
608                     M_LWKTMSG, M_WAITOK);
609                 for (i = 0; i < ncpus; ++i) {
610                         netmsg_init(&ifsq->ifsq_ifstart_nmsg[i], NULL,
611                             &netisr_adone_rport, 0, ifsq_ifstart_dispatch);
612                         ifsq->ifsq_ifstart_nmsg[i].lmsg.u.ms_resultp = ifsq;
613                 }
614         }
615         ifq_set_classic(ifq);
616
617         /*
618          * Increase mbuf cluster/jcluster limits for the mbufs that
619          * could sit on the device queues for quite some time.
620          */
621         if (ifp->if_nmbclusters > 0)
622                 mcl_inclimit(ifp->if_nmbclusters);
623         if (ifp->if_nmbjclusters > 0)
624                 mjcl_inclimit(ifp->if_nmbjclusters);
625
626         /*
627          * Install this ifp into ifindex2inet, ifnet queue and ifnet
628          * array after it is setup.
629          *
630          * Protect ifindex2ifnet, ifnet queue and ifnet array changes
631          * by ifnet lock, so that non-netisr threads could get a
632          * consistent view.
633          */
634         ifnet_lock();
635
636         /* Don't update if_index until ifindex2ifnet is setup */
637         ifp->if_index = if_index + 1;
638         sdl_addr->sdl_index = ifp->if_index;
639
640         /*
641          * Install this ifp into ifindex2ifnet
642          */
643         if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
644                 unsigned int n;
645                 struct ifnet **q;
646
647                 /*
648                  * Grow ifindex2ifnet
649                  */
650                 if_indexlim <<= 1;
651                 n = if_indexlim * sizeof(*q);
652                 q = kmalloc(n, M_IFADDR, M_WAITOK | M_ZERO);
653                 if (ifindex2ifnet != NULL) {
654                         bcopy(ifindex2ifnet, q, n/2);
655                         /* Free old ifindex2ifnet after sync all netisrs */
656                         old_ifindex2ifnet = ifindex2ifnet;
657                 }
658                 ifindex2ifnet = q;
659         }
660         ifindex2ifnet[ifp->if_index] = ifp;
661         /*
662          * Update if_index after this ifp is installed into ifindex2ifnet,
663          * so that netisrs could get a consistent view of ifindex2ifnet.
664          */
665         cpu_sfence();
666         if_index = ifp->if_index;
667
668         /*
669          * Install this ifp into ifnet array.
670          */
671         /* Free old ifnet array after sync all netisrs */
672         old_ifnet_array = ifnet_array;
673         ifnet_array = ifnet_array_add(ifp, old_ifnet_array);
674
675         /*
676          * Install this ifp into ifnet queue.
677          */
678         TAILQ_INSERT_TAIL(&ifnetlist, ifp, if_link);
679
680         ifnet_unlock();
681
682         /*
683          * Sync all netisrs so that the old ifindex2ifnet and ifnet array
684          * are no longer accessed and we can free them safely later on.
685          */
686         netmsg_service_sync();
687         if (old_ifindex2ifnet != NULL)
688                 kfree(old_ifindex2ifnet, M_IFADDR);
689         ifnet_array_free(old_ifnet_array);
690
691         if (!SLIST_EMPTY(&domains))
692                 if_attachdomain1(ifp);
693
694         /* Announce the interface. */
695         EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
696         devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL);
697         rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
698 }
699
700 static void
701 if_attachdomain(void *dummy)
702 {
703         struct ifnet *ifp;
704
705         ifnet_lock();
706         TAILQ_FOREACH(ifp, &ifnetlist, if_list)
707                 if_attachdomain1(ifp);
708         ifnet_unlock();
709 }
710 SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_FIRST,
711         if_attachdomain, NULL);
712
713 static void
714 if_attachdomain1(struct ifnet *ifp)
715 {
716         struct domain *dp;
717
718         crit_enter();
719
720         /* address family dependent data region */
721         bzero(ifp->if_afdata, sizeof(ifp->if_afdata));
722         SLIST_FOREACH(dp, &domains, dom_next)
723                 if (dp->dom_ifattach)
724                         ifp->if_afdata[dp->dom_family] =
725                                 (*dp->dom_ifattach)(ifp);
726         crit_exit();
727 }
728
729 /*
730  * Purge all addresses whose type is _not_ AF_LINK
731  */
732 static void
733 if_purgeaddrs_nolink_dispatch(netmsg_t nmsg)
734 {
735         struct lwkt_msg *lmsg = &nmsg->lmsg;
736         struct ifnet *ifp = lmsg->u.ms_resultp;
737         struct ifaddr_container *ifac, *next;
738
739         ASSERT_IN_NETISR(0);
740
741         /*
742          * The ifaddr processing in the following loop will block,
743          * however, this function is called in netisr0, in which
744          * ifaddr list changes happen, so we don't care about the
745          * blockness of the ifaddr processing here.
746          */
747         TAILQ_FOREACH_MUTABLE(ifac, &ifp->if_addrheads[mycpuid],
748                               ifa_link, next) {
749                 struct ifaddr *ifa = ifac->ifa;
750
751                 /* Ignore marker */
752                 if (ifa->ifa_addr->sa_family == AF_UNSPEC)
753                         continue;
754
755                 /* Leave link ifaddr as it is */
756                 if (ifa->ifa_addr->sa_family == AF_LINK)
757                         continue;
758 #ifdef INET
759                 /* XXX: Ugly!! ad hoc just for INET */
760                 if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET) {
761                         struct ifaliasreq ifr;
762 #ifdef IFADDR_DEBUG_VERBOSE
763                         int i;
764
765                         kprintf("purge in4 addr %p: ", ifa);
766                         for (i = 0; i < ncpus; ++i)
767                                 kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
768                         kprintf("\n");
769 #endif
770
771                         bzero(&ifr, sizeof ifr);
772                         ifr.ifra_addr = *ifa->ifa_addr;
773                         if (ifa->ifa_dstaddr)
774                                 ifr.ifra_broadaddr = *ifa->ifa_dstaddr;
775                         if (in_control(SIOCDIFADDR, (caddr_t)&ifr, ifp,
776                                        NULL) == 0)
777                                 continue;
778                 }
779 #endif /* INET */
780 #ifdef INET6
781                 if (ifa->ifa_addr && ifa->ifa_addr->sa_family == AF_INET6) {
782 #ifdef IFADDR_DEBUG_VERBOSE
783                         int i;
784
785                         kprintf("purge in6 addr %p: ", ifa);
786                         for (i = 0; i < ncpus; ++i)
787                                 kprintf("%d ", ifa->ifa_containers[i].ifa_refcnt);
788                         kprintf("\n");
789 #endif
790
791                         in6_purgeaddr(ifa);
792                         /* ifp_addrhead is already updated */
793                         continue;
794                 }
795 #endif /* INET6 */
796                 ifa_ifunlink(ifa, ifp);
797                 ifa_destroy(ifa);
798         }
799
800         lwkt_replymsg(lmsg, 0);
801 }
802
803 void
804 if_purgeaddrs_nolink(struct ifnet *ifp)
805 {
806         struct netmsg_base nmsg;
807         struct lwkt_msg *lmsg = &nmsg.lmsg;
808
809         ASSERT_CANDOMSG_NETISR0(curthread);
810
811         netmsg_init(&nmsg, NULL, &curthread->td_msgport, 0,
812             if_purgeaddrs_nolink_dispatch);
813         lmsg->u.ms_resultp = ifp;
814         lwkt_domsg(netisr_cpuport(0), lmsg, 0);
815 }
816
817 static void
818 ifq_stage_detach_handler(netmsg_t nmsg)
819 {
820         struct ifaltq *ifq = nmsg->lmsg.u.ms_resultp;
821         int q;
822
823         for (q = 0; q < ifq->altq_subq_cnt; ++q) {
824                 struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
825                 struct ifsubq_stage *stage = ifsq_get_stage(ifsq, mycpuid);
826
827                 if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED)
828                         ifsq_stage_remove(&ifsubq_stage_heads[mycpuid], stage);
829         }
830         lwkt_replymsg(&nmsg->lmsg, 0);
831 }
832
833 static void
834 ifq_stage_detach(struct ifaltq *ifq)
835 {
836         struct netmsg_base base;
837         int cpu;
838
839         netmsg_init(&base, NULL, &curthread->td_msgport, 0,
840             ifq_stage_detach_handler);
841         base.lmsg.u.ms_resultp = ifq;
842
843         for (cpu = 0; cpu < ncpus; ++cpu)
844                 lwkt_domsg(netisr_cpuport(cpu), &base.lmsg, 0);
845 }
846
847 struct netmsg_if_rtdel {
848         struct netmsg_base      base;
849         struct ifnet            *ifp;
850 };
851
852 static void
853 if_rtdel_dispatch(netmsg_t msg)
854 {
855         struct netmsg_if_rtdel *rmsg = (void *)msg;
856         int i, nextcpu, cpu;
857
858         cpu = mycpuid;
859         for (i = 1; i <= AF_MAX; i++) {
860                 struct radix_node_head  *rnh;
861
862                 if ((rnh = rt_tables[cpu][i]) == NULL)
863                         continue;
864                 rnh->rnh_walktree(rnh, if_rtdel, rmsg->ifp);
865         }
866
867         nextcpu = cpu + 1;
868         if (nextcpu < ncpus)
869                 lwkt_forwardmsg(netisr_cpuport(nextcpu), &rmsg->base.lmsg);
870         else
871                 lwkt_replymsg(&rmsg->base.lmsg, 0);
872 }
873
874 /*
875  * Detach an interface, removing it from the
876  * list of "active" interfaces.
877  */
878 void
879 if_detach(struct ifnet *ifp)
880 {
881         struct ifnet_array *old_ifnet_array;
882         struct netmsg_if_rtdel msg;
883         struct domain *dp;
884         int q;
885
886         /* Announce that the interface is gone. */
887         EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
888         rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
889         devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL);
890
891         /*
892          * Remove this ifp from ifindex2inet, ifnet queue and ifnet
893          * array before it is whacked.
894          *
895          * Protect ifindex2ifnet, ifnet queue and ifnet array changes
896          * by ifnet lock, so that non-netisr threads could get a
897          * consistent view.
898          */
899         ifnet_lock();
900
901         /*
902          * Remove this ifp from ifindex2ifnet and maybe decrement if_index.
903          */
904         ifindex2ifnet[ifp->if_index] = NULL;
905         while (if_index > 0 && ifindex2ifnet[if_index] == NULL)
906                 if_index--;
907
908         /*
909          * Remove this ifp from ifnet queue.
910          */
911         TAILQ_REMOVE(&ifnetlist, ifp, if_link);
912
913         /*
914          * Remove this ifp from ifnet array.
915          */
916         /* Free old ifnet array after sync all netisrs */
917         old_ifnet_array = ifnet_array;
918         ifnet_array = ifnet_array_del(ifp, old_ifnet_array);
919
920         ifnet_unlock();
921
922         /*
923          * Sync all netisrs so that the old ifnet array is no longer
924          * accessed and we can free it safely later on.
925          */
926         netmsg_service_sync();
927         ifnet_array_free(old_ifnet_array);
928
929         /*
930          * Remove routes and flush queues.
931          */
932         crit_enter();
933 #ifdef IFPOLL_ENABLE
934         if (ifp->if_flags & IFF_NPOLLING)
935                 ifpoll_deregister(ifp);
936 #endif
937         if_down(ifp);
938
939         /* Decrease the mbuf clusters/jclusters limits increased by us */
940         if (ifp->if_nmbclusters > 0)
941                 mcl_inclimit(-ifp->if_nmbclusters);
942         if (ifp->if_nmbjclusters > 0)
943                 mjcl_inclimit(-ifp->if_nmbjclusters);
944
945 #ifdef ALTQ
946         if (ifq_is_enabled(&ifp->if_snd))
947                 altq_disable(&ifp->if_snd);
948         if (ifq_is_attached(&ifp->if_snd))
949                 altq_detach(&ifp->if_snd);
950 #endif
951
952         /*
953          * Clean up all addresses.
954          */
955         ifp->if_lladdr = NULL;
956
957         if_purgeaddrs_nolink(ifp);
958         if (!TAILQ_EMPTY(&ifp->if_addrheads[mycpuid])) {
959                 struct ifaddr *ifa;
960
961                 ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
962                 KASSERT(ifa->ifa_addr->sa_family == AF_LINK,
963                         ("non-link ifaddr is left on if_addrheads"));
964
965                 ifa_ifunlink(ifa, ifp);
966                 ifa_destroy(ifa);
967                 KASSERT(TAILQ_EMPTY(&ifp->if_addrheads[mycpuid]),
968                         ("there are still ifaddrs left on if_addrheads"));
969         }
970
971 #ifdef INET
972         /*
973          * Remove all IPv4 kernel structures related to ifp.
974          */
975         in_ifdetach(ifp);
976 #endif
977
978 #ifdef INET6
979         /*
980          * Remove all IPv6 kernel structs related to ifp.  This should be done
981          * before removing routing entries below, since IPv6 interface direct
982          * routes are expected to be removed by the IPv6-specific kernel API.
983          * Otherwise, the kernel will detect some inconsistency and bark it.
984          */
985         in6_ifdetach(ifp);
986 #endif
987
988         /*
989          * Delete all remaining routes using this interface
990          */
991         netmsg_init(&msg.base, NULL, &curthread->td_msgport, MSGF_PRIORITY,
992             if_rtdel_dispatch);
993         msg.ifp = ifp;
994         rt_domsg_global(&msg.base);
995
996         SLIST_FOREACH(dp, &domains, dom_next)
997                 if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family])
998                         (*dp->dom_ifdetach)(ifp,
999                                 ifp->if_afdata[dp->dom_family]);
1000
1001         kfree(ifp->if_addrheads, M_IFADDR);
1002
1003         lwkt_synchronize_ipiqs("if_detach");
1004         ifq_stage_detach(&ifp->if_snd);
1005
1006         for (q = 0; q < ifp->if_snd.altq_subq_cnt; ++q) {
1007                 struct ifaltq_subque *ifsq = &ifp->if_snd.altq_subq[q];
1008
1009                 kfree(ifsq->ifsq_ifstart_nmsg, M_LWKTMSG);
1010                 kfree(ifsq->ifsq_stage, M_DEVBUF);
1011         }
1012         kfree(ifp->if_snd.altq_subq, M_DEVBUF);
1013
1014         kfree(ifp->if_data_pcpu, M_DEVBUF);
1015
1016         crit_exit();
1017 }
1018
1019 /*
1020  * Create interface group without members
1021  */
1022 struct ifg_group *
1023 if_creategroup(const char *groupname)
1024 {
1025         struct ifg_group        *ifg = NULL;
1026
1027         if ((ifg = (struct ifg_group *)kmalloc(sizeof(struct ifg_group),
1028             M_TEMP, M_NOWAIT)) == NULL)
1029                 return (NULL);
1030
1031         strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group));
1032         ifg->ifg_refcnt = 0;
1033         ifg->ifg_carp_demoted = 0;
1034         TAILQ_INIT(&ifg->ifg_members);
1035 #if NPF > 0
1036         pfi_attach_ifgroup(ifg);
1037 #endif
1038         TAILQ_INSERT_TAIL(&ifg_head, ifg, ifg_next);
1039
1040         return (ifg);
1041 }
1042
1043 /*
1044  * Add a group to an interface
1045  */
1046 int
1047 if_addgroup(struct ifnet *ifp, const char *groupname)
1048 {
1049         struct ifg_list         *ifgl;
1050         struct ifg_group        *ifg = NULL;
1051         struct ifg_member       *ifgm;
1052
1053         if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' &&
1054             groupname[strlen(groupname) - 1] <= '9')
1055                 return (EINVAL);
1056
1057         TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1058                 if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
1059                         return (EEXIST);
1060
1061         if ((ifgl = kmalloc(sizeof(*ifgl), M_TEMP, M_NOWAIT)) == NULL)
1062                 return (ENOMEM);
1063
1064         if ((ifgm = kmalloc(sizeof(*ifgm), M_TEMP, M_NOWAIT)) == NULL) {
1065                 kfree(ifgl, M_TEMP);
1066                 return (ENOMEM);
1067         }
1068
1069         TAILQ_FOREACH(ifg, &ifg_head, ifg_next)
1070                 if (!strcmp(ifg->ifg_group, groupname))
1071                         break;
1072
1073         if (ifg == NULL && (ifg = if_creategroup(groupname)) == NULL) {
1074                 kfree(ifgl, M_TEMP);
1075                 kfree(ifgm, M_TEMP);
1076                 return (ENOMEM);
1077         }
1078
1079         ifg->ifg_refcnt++;
1080         ifgl->ifgl_group = ifg;
1081         ifgm->ifgm_ifp = ifp;
1082
1083         TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next);
1084         TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next);
1085
1086 #if NPF > 0
1087         pfi_group_change(groupname);
1088 #endif
1089
1090         return (0);
1091 }
1092
1093 /*
1094  * Remove a group from an interface
1095  */
1096 int
1097 if_delgroup(struct ifnet *ifp, const char *groupname)
1098 {
1099         struct ifg_list         *ifgl;
1100         struct ifg_member       *ifgm;
1101
1102         TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1103                 if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
1104                         break;
1105         if (ifgl == NULL)
1106                 return (ENOENT);
1107
1108         TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next);
1109
1110         TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next)
1111                 if (ifgm->ifgm_ifp == ifp)
1112                         break;
1113
1114         if (ifgm != NULL) {
1115                 TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next);
1116                 kfree(ifgm, M_TEMP);
1117         }
1118
1119         if (--ifgl->ifgl_group->ifg_refcnt == 0) {
1120                 TAILQ_REMOVE(&ifg_head, ifgl->ifgl_group, ifg_next);
1121 #if NPF > 0
1122                 pfi_detach_ifgroup(ifgl->ifgl_group);
1123 #endif
1124                 kfree(ifgl->ifgl_group, M_TEMP);
1125         }
1126
1127         kfree(ifgl, M_TEMP);
1128
1129 #if NPF > 0
1130         pfi_group_change(groupname);
1131 #endif
1132
1133         return (0);
1134 }
1135
1136 /*
1137  * Stores all groups from an interface in memory pointed
1138  * to by data
1139  */
1140 int
1141 if_getgroup(caddr_t data, struct ifnet *ifp)
1142 {
1143         int                      len, error;
1144         struct ifg_list         *ifgl;
1145         struct ifg_req           ifgrq, *ifgp;
1146         struct ifgroupreq       *ifgr = (struct ifgroupreq *)data;
1147
1148         if (ifgr->ifgr_len == 0) {
1149                 TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
1150                         ifgr->ifgr_len += sizeof(struct ifg_req);
1151                 return (0);
1152         }
1153
1154         len = ifgr->ifgr_len;
1155         ifgp = ifgr->ifgr_groups;
1156         TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) {
1157                 if (len < sizeof(ifgrq))
1158                         return (EINVAL);
1159                 bzero(&ifgrq, sizeof ifgrq);
1160                 strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group,
1161                     sizeof(ifgrq.ifgrq_group));
1162                 if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp,
1163                     sizeof(struct ifg_req))))
1164                         return (error);
1165                 len -= sizeof(ifgrq);
1166                 ifgp++;
1167         }
1168
1169         return (0);
1170 }
1171
1172 /*
1173  * Stores all members of a group in memory pointed to by data
1174  */
1175 int
1176 if_getgroupmembers(caddr_t data)
1177 {
1178         struct ifgroupreq       *ifgr = (struct ifgroupreq *)data;
1179         struct ifg_group        *ifg;
1180         struct ifg_member       *ifgm;
1181         struct ifg_req           ifgrq, *ifgp;
1182         int                      len, error;
1183
1184         TAILQ_FOREACH(ifg, &ifg_head, ifg_next)
1185                 if (!strcmp(ifg->ifg_group, ifgr->ifgr_name))
1186                         break;
1187         if (ifg == NULL)
1188                 return (ENOENT);
1189
1190         if (ifgr->ifgr_len == 0) {
1191                 TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next)
1192                         ifgr->ifgr_len += sizeof(ifgrq);
1193                 return (0);
1194         }
1195
1196         len = ifgr->ifgr_len;
1197         ifgp = ifgr->ifgr_groups;
1198         TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) {
1199                 if (len < sizeof(ifgrq))
1200                         return (EINVAL);
1201                 bzero(&ifgrq, sizeof ifgrq);
1202                 strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname,
1203                     sizeof(ifgrq.ifgrq_member));
1204                 if ((error = copyout((caddr_t)&ifgrq, (caddr_t)ifgp,
1205                     sizeof(struct ifg_req))))
1206                         return (error);
1207                 len -= sizeof(ifgrq);
1208                 ifgp++;
1209         }
1210
1211         return (0);
1212 }
1213
1214 /*
1215  * Delete Routes for a Network Interface
1216  *
1217  * Called for each routing entry via the rnh->rnh_walktree() call above
1218  * to delete all route entries referencing a detaching network interface.
1219  *
1220  * Arguments:
1221  *      rn      pointer to node in the routing table
1222  *      arg     argument passed to rnh->rnh_walktree() - detaching interface
1223  *
1224  * Returns:
1225  *      0       successful
1226  *      errno   failed - reason indicated
1227  *
1228  */
1229 static int
1230 if_rtdel(struct radix_node *rn, void *arg)
1231 {
1232         struct rtentry  *rt = (struct rtentry *)rn;
1233         struct ifnet    *ifp = arg;
1234         int             err;
1235
1236         if (rt->rt_ifp == ifp) {
1237
1238                 /*
1239                  * Protect (sorta) against walktree recursion problems
1240                  * with cloned routes
1241                  */
1242                 if (!(rt->rt_flags & RTF_UP))
1243                         return (0);
1244
1245                 err = rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
1246                                 rt_mask(rt), rt->rt_flags,
1247                                 NULL);
1248                 if (err) {
1249                         log(LOG_WARNING, "if_rtdel: error %d\n", err);
1250                 }
1251         }
1252
1253         return (0);
1254 }
1255
1256 static __inline boolean_t
1257 ifa_prefer(const struct ifaddr *cur_ifa, const struct ifaddr *old_ifa)
1258 {
1259         if (old_ifa == NULL)
1260                 return TRUE;
1261
1262         if ((old_ifa->ifa_ifp->if_flags & IFF_UP) == 0 &&
1263             (cur_ifa->ifa_ifp->if_flags & IFF_UP))
1264                 return TRUE;
1265         if ((old_ifa->ifa_flags & IFA_ROUTE) == 0 &&
1266             (cur_ifa->ifa_flags & IFA_ROUTE))
1267                 return TRUE;
1268         return FALSE;
1269 }
1270
1271 /*
1272  * Locate an interface based on a complete address.
1273  */
1274 struct ifaddr *
1275 ifa_ifwithaddr(struct sockaddr *addr)
1276 {
1277         const struct ifnet_array *arr;
1278         int i;
1279
1280         arr = ifnet_array_get();
1281         for (i = 0; i < arr->ifnet_count; ++i) {
1282                 struct ifnet *ifp = arr->ifnet_arr[i];
1283                 struct ifaddr_container *ifac;
1284
1285                 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1286                         struct ifaddr *ifa = ifac->ifa;
1287
1288                         if (ifa->ifa_addr->sa_family != addr->sa_family)
1289                                 continue;
1290                         if (sa_equal(addr, ifa->ifa_addr))
1291                                 return (ifa);
1292                         if ((ifp->if_flags & IFF_BROADCAST) &&
1293                             ifa->ifa_broadaddr &&
1294                             /* IPv6 doesn't have broadcast */
1295                             ifa->ifa_broadaddr->sa_len != 0 &&
1296                             sa_equal(ifa->ifa_broadaddr, addr))
1297                                 return (ifa);
1298                 }
1299         }
1300         return (NULL);
1301 }
1302
1303 /*
1304  * Locate the point to point interface with a given destination address.
1305  */
1306 struct ifaddr *
1307 ifa_ifwithdstaddr(struct sockaddr *addr)
1308 {
1309         const struct ifnet_array *arr;
1310         int i;
1311
1312         arr = ifnet_array_get();
1313         for (i = 0; i < arr->ifnet_count; ++i) {
1314                 struct ifnet *ifp = arr->ifnet_arr[i];
1315                 struct ifaddr_container *ifac;
1316
1317                 if (!(ifp->if_flags & IFF_POINTOPOINT))
1318                         continue;
1319
1320                 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1321                         struct ifaddr *ifa = ifac->ifa;
1322
1323                         if (ifa->ifa_addr->sa_family != addr->sa_family)
1324                                 continue;
1325                         if (ifa->ifa_dstaddr &&
1326                             sa_equal(addr, ifa->ifa_dstaddr))
1327                                 return (ifa);
1328                 }
1329         }
1330         return (NULL);
1331 }
1332
1333 /*
1334  * Find an interface on a specific network.  If many, choice
1335  * is most specific found.
1336  */
1337 struct ifaddr *
1338 ifa_ifwithnet(struct sockaddr *addr)
1339 {
1340         struct ifaddr *ifa_maybe = NULL;
1341         u_int af = addr->sa_family;
1342         char *addr_data = addr->sa_data, *cplim;
1343         const struct ifnet_array *arr;
1344         int i;
1345
1346         /*
1347          * AF_LINK addresses can be looked up directly by their index number,
1348          * so do that if we can.
1349          */
1350         if (af == AF_LINK) {
1351                 struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr;
1352
1353                 if (sdl->sdl_index && sdl->sdl_index <= if_index)
1354                         return (ifindex2ifnet[sdl->sdl_index]->if_lladdr);
1355         }
1356
1357         /*
1358          * Scan though each interface, looking for ones that have
1359          * addresses in this address family.
1360          */
1361         arr = ifnet_array_get();
1362         for (i = 0; i < arr->ifnet_count; ++i) {
1363                 struct ifnet *ifp = arr->ifnet_arr[i];
1364                 struct ifaddr_container *ifac;
1365
1366                 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1367                         struct ifaddr *ifa = ifac->ifa;
1368                         char *cp, *cp2, *cp3;
1369
1370                         if (ifa->ifa_addr->sa_family != af)
1371 next:                           continue;
1372                         if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) {
1373                                 /*
1374                                  * This is a bit broken as it doesn't
1375                                  * take into account that the remote end may
1376                                  * be a single node in the network we are
1377                                  * looking for.
1378                                  * The trouble is that we don't know the
1379                                  * netmask for the remote end.
1380                                  */
1381                                 if (ifa->ifa_dstaddr != NULL &&
1382                                     sa_equal(addr, ifa->ifa_dstaddr))
1383                                         return (ifa);
1384                         } else {
1385                                 /*
1386                                  * if we have a special address handler,
1387                                  * then use it instead of the generic one.
1388                                  */
1389                                 if (ifa->ifa_claim_addr) {
1390                                         if ((*ifa->ifa_claim_addr)(ifa, addr)) {
1391                                                 return (ifa);
1392                                         } else {
1393                                                 continue;
1394                                         }
1395                                 }
1396
1397                                 /*
1398                                  * Scan all the bits in the ifa's address.
1399                                  * If a bit dissagrees with what we are
1400                                  * looking for, mask it with the netmask
1401                                  * to see if it really matters.
1402                                  * (A byte at a time)
1403                                  */
1404                                 if (ifa->ifa_netmask == 0)
1405                                         continue;
1406                                 cp = addr_data;
1407                                 cp2 = ifa->ifa_addr->sa_data;
1408                                 cp3 = ifa->ifa_netmask->sa_data;
1409                                 cplim = ifa->ifa_netmask->sa_len +
1410                                         (char *)ifa->ifa_netmask;
1411                                 while (cp3 < cplim)
1412                                         if ((*cp++ ^ *cp2++) & *cp3++)
1413                                                 goto next; /* next address! */
1414                                 /*
1415                                  * If the netmask of what we just found
1416                                  * is more specific than what we had before
1417                                  * (if we had one) then remember the new one
1418                                  * before continuing to search for an even
1419                                  * better one.  If the netmasks are equal,
1420                                  * we prefer the this ifa based on the result
1421                                  * of ifa_prefer().
1422                                  */
1423                                 if (ifa_maybe == NULL ||
1424                                     rn_refines((char *)ifa->ifa_netmask,
1425                                         (char *)ifa_maybe->ifa_netmask) ||
1426                                     (sa_equal(ifa_maybe->ifa_netmask,
1427                                         ifa->ifa_netmask) &&
1428                                      ifa_prefer(ifa, ifa_maybe)))
1429                                         ifa_maybe = ifa;
1430                         }
1431                 }
1432         }
1433         return (ifa_maybe);
1434 }
1435
1436 /*
1437  * Find an interface address specific to an interface best matching
1438  * a given address.
1439  */
1440 struct ifaddr *
1441 ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp)
1442 {
1443         struct ifaddr_container *ifac;
1444         char *cp, *cp2, *cp3;
1445         char *cplim;
1446         struct ifaddr *ifa_maybe = NULL;
1447         u_int af = addr->sa_family;
1448
1449         if (af >= AF_MAX)
1450                 return (0);
1451         TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1452                 struct ifaddr *ifa = ifac->ifa;
1453
1454                 if (ifa->ifa_addr->sa_family != af)
1455                         continue;
1456                 if (ifa_maybe == NULL)
1457                         ifa_maybe = ifa;
1458                 if (ifa->ifa_netmask == NULL) {
1459                         if (sa_equal(addr, ifa->ifa_addr) ||
1460                             (ifa->ifa_dstaddr != NULL &&
1461                              sa_equal(addr, ifa->ifa_dstaddr)))
1462                                 return (ifa);
1463                         continue;
1464                 }
1465                 if (ifp->if_flags & IFF_POINTOPOINT) {
1466                         if (sa_equal(addr, ifa->ifa_dstaddr))
1467                                 return (ifa);
1468                 } else {
1469                         cp = addr->sa_data;
1470                         cp2 = ifa->ifa_addr->sa_data;
1471                         cp3 = ifa->ifa_netmask->sa_data;
1472                         cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
1473                         for (; cp3 < cplim; cp3++)
1474                                 if ((*cp++ ^ *cp2++) & *cp3)
1475                                         break;
1476                         if (cp3 == cplim)
1477                                 return (ifa);
1478                 }
1479         }
1480         return (ifa_maybe);
1481 }
1482
1483 /*
1484  * Default action when installing a route with a Link Level gateway.
1485  * Lookup an appropriate real ifa to point to.
1486  * This should be moved to /sys/net/link.c eventually.
1487  */
1488 static void
1489 link_rtrequest(int cmd, struct rtentry *rt)
1490 {
1491         struct ifaddr *ifa;
1492         struct sockaddr *dst;
1493         struct ifnet *ifp;
1494
1495         if (cmd != RTM_ADD || (ifa = rt->rt_ifa) == NULL ||
1496             (ifp = ifa->ifa_ifp) == NULL || (dst = rt_key(rt)) == NULL)
1497                 return;
1498         ifa = ifaof_ifpforaddr(dst, ifp);
1499         if (ifa != NULL) {
1500                 IFAFREE(rt->rt_ifa);
1501                 IFAREF(ifa);
1502                 rt->rt_ifa = ifa;
1503                 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
1504                         ifa->ifa_rtrequest(cmd, rt);
1505         }
1506 }
1507
1508 struct netmsg_ifroute {
1509         struct netmsg_base      base;
1510         struct ifnet            *ifp;
1511         int                     flag;
1512         int                     fam;
1513 };
1514
1515 /*
1516  * Mark an interface down and notify protocols of the transition.
1517  */
1518 static void
1519 if_unroute_dispatch(netmsg_t nmsg)
1520 {
1521         struct netmsg_ifroute *msg = (struct netmsg_ifroute *)nmsg;
1522         struct ifnet *ifp = msg->ifp;
1523         int flag = msg->flag, fam = msg->fam;
1524         struct ifaddr_container *ifac;
1525
1526         ifp->if_flags &= ~flag;
1527         getmicrotime(&ifp->if_lastchange);
1528         /*
1529          * The ifaddr processing in the following loop will block,
1530          * however, this function is called in netisr0, in which
1531          * ifaddr list changes happen, so we don't care about the
1532          * blockness of the ifaddr processing here.
1533          */
1534         TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1535                 struct ifaddr *ifa = ifac->ifa;
1536
1537                 /* Ignore marker */
1538                 if (ifa->ifa_addr->sa_family == AF_UNSPEC)
1539                         continue;
1540
1541                 if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1542                         kpfctlinput(PRC_IFDOWN, ifa->ifa_addr);
1543         }
1544         ifq_purge_all(&ifp->if_snd);
1545         rt_ifmsg(ifp);
1546
1547         lwkt_replymsg(&nmsg->lmsg, 0);
1548 }
1549
1550 void
1551 if_unroute(struct ifnet *ifp, int flag, int fam)
1552 {
1553         struct netmsg_ifroute msg;
1554
1555         ASSERT_CANDOMSG_NETISR0(curthread);
1556
1557         netmsg_init(&msg.base, NULL, &curthread->td_msgport, 0,
1558             if_unroute_dispatch);
1559         msg.ifp = ifp;
1560         msg.flag = flag;
1561         msg.fam = fam;
1562         lwkt_domsg(netisr_cpuport(0), &msg.base.lmsg, 0);
1563 }
1564
1565 /*
1566  * Mark an interface up and notify protocols of the transition.
1567  */
1568 static void
1569 if_route_dispatch(netmsg_t nmsg)
1570 {
1571         struct netmsg_ifroute *msg = (struct netmsg_ifroute *)nmsg;
1572         struct ifnet *ifp = msg->ifp;
1573         int flag = msg->flag, fam = msg->fam;
1574         struct ifaddr_container *ifac;
1575
1576         ifq_purge_all(&ifp->if_snd);
1577         ifp->if_flags |= flag;
1578         getmicrotime(&ifp->if_lastchange);
1579         /*
1580          * The ifaddr processing in the following loop will block,
1581          * however, this function is called in netisr0, in which
1582          * ifaddr list changes happen, so we don't care about the
1583          * blockness of the ifaddr processing here.
1584          */
1585         TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
1586                 struct ifaddr *ifa = ifac->ifa;
1587
1588                 /* Ignore marker */
1589                 if (ifa->ifa_addr->sa_family == AF_UNSPEC)
1590                         continue;
1591
1592                 if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
1593                         kpfctlinput(PRC_IFUP, ifa->ifa_addr);
1594         }
1595         rt_ifmsg(ifp);
1596 #ifdef INET6
1597         in6_if_up(ifp);
1598 #endif
1599
1600         lwkt_replymsg(&nmsg->lmsg, 0);
1601 }
1602
1603 void
1604 if_route(struct ifnet *ifp, int flag, int fam)
1605 {
1606         struct netmsg_ifroute msg;
1607
1608         ASSERT_CANDOMSG_NETISR0(curthread);
1609
1610         netmsg_init(&msg.base, NULL, &curthread->td_msgport, 0,
1611             if_route_dispatch);
1612         msg.ifp = ifp;
1613         msg.flag = flag;
1614         msg.fam = fam;
1615         lwkt_domsg(netisr_cpuport(0), &msg.base.lmsg, 0);
1616 }
1617
1618 /*
1619  * Mark an interface down and notify protocols of the transition.  An
1620  * interface going down is also considered to be a synchronizing event.
1621  * We must ensure that all packet processing related to the interface
1622  * has completed before we return so e.g. the caller can free the ifnet
1623  * structure that the mbufs may be referencing.
1624  *
1625  * NOTE: must be called at splnet or eqivalent.
1626  */
1627 void
1628 if_down(struct ifnet *ifp)
1629 {
1630         if_unroute(ifp, IFF_UP, AF_UNSPEC);
1631         netmsg_service_sync();
1632 }
1633
1634 /*
1635  * Mark an interface up and notify protocols of
1636  * the transition.
1637  * NOTE: must be called at splnet or eqivalent.
1638  */
1639 void
1640 if_up(struct ifnet *ifp)
1641 {
1642         if_route(ifp, IFF_UP, AF_UNSPEC);
1643 }
1644
1645 /*
1646  * Process a link state change.
1647  * NOTE: must be called at splsoftnet or equivalent.
1648  */
1649 void
1650 if_link_state_change(struct ifnet *ifp)
1651 {
1652         int link_state = ifp->if_link_state;
1653
1654         rt_ifmsg(ifp);
1655         devctl_notify("IFNET", ifp->if_xname,
1656             (link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL);
1657 }
1658
1659 /*
1660  * Handle interface watchdog timer routines.  Called
1661  * from softclock, we decrement timers (if set) and
1662  * call the appropriate interface routine on expiration.
1663  */
1664 static void
1665 if_slowtimo_dispatch(netmsg_t nmsg)
1666 {
1667         struct globaldata *gd = mycpu;
1668         const struct ifnet_array *arr;
1669         int i;
1670
1671         ASSERT_IN_NETISR(0);
1672
1673         crit_enter_gd(gd);
1674         lwkt_replymsg(&nmsg->lmsg, 0);  /* reply ASAP */
1675         crit_exit_gd(gd);
1676
1677         arr = ifnet_array_get();
1678         for (i = 0; i < arr->ifnet_count; ++i) {
1679                 struct ifnet *ifp = arr->ifnet_arr[i];
1680
1681                 crit_enter_gd(gd);
1682
1683                 if (if_stats_compat) {
1684                         IFNET_STAT_GET(ifp, ipackets, ifp->if_ipackets);
1685                         IFNET_STAT_GET(ifp, ierrors, ifp->if_ierrors);
1686                         IFNET_STAT_GET(ifp, opackets, ifp->if_opackets);
1687                         IFNET_STAT_GET(ifp, oerrors, ifp->if_oerrors);
1688                         IFNET_STAT_GET(ifp, collisions, ifp->if_collisions);
1689                         IFNET_STAT_GET(ifp, ibytes, ifp->if_ibytes);
1690                         IFNET_STAT_GET(ifp, obytes, ifp->if_obytes);
1691                         IFNET_STAT_GET(ifp, imcasts, ifp->if_imcasts);
1692                         IFNET_STAT_GET(ifp, omcasts, ifp->if_omcasts);
1693                         IFNET_STAT_GET(ifp, iqdrops, ifp->if_iqdrops);
1694                         IFNET_STAT_GET(ifp, noproto, ifp->if_noproto);
1695                         IFNET_STAT_GET(ifp, oqdrops, ifp->if_oqdrops);
1696                 }
1697
1698                 if (ifp->if_timer == 0 || --ifp->if_timer) {
1699                         crit_exit_gd(gd);
1700                         continue;
1701                 }
1702                 if (ifp->if_watchdog) {
1703                         if (ifnet_tryserialize_all(ifp)) {
1704                                 (*ifp->if_watchdog)(ifp);
1705                                 ifnet_deserialize_all(ifp);
1706                         } else {
1707                                 /* try again next timeout */
1708                                 ++ifp->if_timer;
1709                         }
1710                 }
1711
1712                 crit_exit_gd(gd);
1713         }
1714
1715         callout_reset(&if_slowtimo_timer, hz / IFNET_SLOWHZ, if_slowtimo, NULL);
1716 }
1717
1718 static void
1719 if_slowtimo(void *arg __unused)
1720 {
1721         struct lwkt_msg *lmsg = &if_slowtimo_netmsg.lmsg;
1722
1723         KASSERT(mycpuid == 0, ("not on cpu0"));
1724         crit_enter();
1725         if (lmsg->ms_flags & MSGF_DONE)
1726                 lwkt_sendmsg_oncpu(netisr_cpuport(0), lmsg);
1727         crit_exit();
1728 }
1729
1730 /*
1731  * Map interface name to
1732  * interface structure pointer.
1733  */
1734 struct ifnet *
1735 ifunit(const char *name)
1736 {
1737         struct ifnet *ifp;
1738
1739         /*
1740          * Search all the interfaces for this name/number
1741          */
1742         KASSERT(mtx_owned(&ifnet_mtx), ("ifnet is not locked"));
1743
1744         TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
1745                 if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0)
1746                         break;
1747         }
1748         return (ifp);
1749 }
1750
1751 struct ifnet *
1752 ifunit_netisr(const char *name)
1753 {
1754         const struct ifnet_array *arr;
1755         int i;
1756
1757         /*
1758          * Search all the interfaces for this name/number
1759          */
1760
1761         arr = ifnet_array_get();
1762         for (i = 0; i < arr->ifnet_count; ++i) {
1763                 struct ifnet *ifp = arr->ifnet_arr[i];
1764
1765                 if (strncmp(ifp->if_xname, name, IFNAMSIZ) == 0)
1766                         return ifp;
1767         }
1768         return NULL;
1769 }
1770
1771 /*
1772  * Interface ioctls.
1773  */
1774 int
1775 ifioctl(struct socket *so, u_long cmd, caddr_t data, struct ucred *cred)
1776 {
1777         struct ifnet *ifp;
1778         struct ifreq *ifr;
1779         struct ifstat *ifs;
1780         int error;
1781         short oif_flags;
1782         int new_flags;
1783         size_t namelen, onamelen;
1784         char new_name[IFNAMSIZ];
1785         struct ifaddr *ifa;
1786         struct sockaddr_dl *sdl;
1787
1788         switch (cmd) {
1789         case SIOCGIFCONF:
1790         case OSIOCGIFCONF:
1791                 return (ifconf(cmd, data, cred));
1792         default:
1793                 break;
1794         }
1795
1796         ifr = (struct ifreq *)data;
1797
1798         switch (cmd) {
1799         case SIOCIFCREATE:
1800         case SIOCIFCREATE2:
1801                 if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1802                         return (error);
1803                 return (if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name),
1804                         cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL));
1805         case SIOCIFDESTROY:
1806                 if ((error = priv_check_cred(cred, PRIV_ROOT, 0)) != 0)
1807                         return (error);
1808                 return (if_clone_destroy(ifr->ifr_name));
1809         case SIOCIFGCLONERS:
1810                 return (if_clone_list((struct if_clonereq *)data));
1811         default:
1812                 break;
1813         }
1814
1815         /*
1816          * Nominal ioctl through interface, lookup the ifp and obtain a
1817          * lock to serialize the ifconfig ioctl operation.
1818          */
1819         ifnet_lock();
1820
1821         ifp = ifunit(ifr->ifr_name);
1822         if (ifp == NULL) {
1823                 ifnet_unlock();
1824                 return (ENXIO);
1825         }
1826         error = 0;
1827
1828         switch (cmd) {
1829         case SIOCGIFINDEX:
1830                 ifr->ifr_index = ifp->if_index;
1831                 break;
1832
1833         case SIOCGIFFLAGS:
1834                 ifr->ifr_flags = ifp->if_flags;
1835                 ifr->ifr_flagshigh = ifp->if_flags >> 16;
1836                 break;
1837
1838         case SIOCGIFCAP:
1839                 ifr->ifr_reqcap = ifp->if_capabilities;
1840                 ifr->ifr_curcap = ifp->if_capenable;
1841                 break;
1842
1843         case SIOCGIFMETRIC:
1844                 ifr->ifr_metric = ifp->if_metric;
1845                 break;
1846
1847         case SIOCGIFMTU:
1848                 ifr->ifr_mtu = ifp->if_mtu;
1849                 break;
1850
1851         case SIOCGIFTSOLEN:
1852                 ifr->ifr_tsolen = ifp->if_tsolen;
1853                 break;
1854
1855         case SIOCGIFDATA:
1856                 error = copyout((caddr_t)&ifp->if_data, ifr->ifr_data,
1857                                 sizeof(ifp->if_data));
1858                 break;
1859
1860         case SIOCGIFPHYS:
1861                 ifr->ifr_phys = ifp->if_physical;
1862                 break;
1863
1864         case SIOCGIFPOLLCPU:
1865                 ifr->ifr_pollcpu = -1;
1866                 break;
1867
1868         case SIOCSIFPOLLCPU:
1869                 break;
1870
1871         case SIOCSIFFLAGS:
1872                 error = priv_check_cred(cred, PRIV_ROOT, 0);
1873                 if (error)
1874                         break;
1875                 new_flags = (ifr->ifr_flags & 0xffff) |
1876                     (ifr->ifr_flagshigh << 16);
1877                 if (ifp->if_flags & IFF_SMART) {
1878                         /* Smart drivers twiddle their own routes */
1879                 } else if (ifp->if_flags & IFF_UP &&
1880                     (new_flags & IFF_UP) == 0) {
1881                         crit_enter();
1882                         if_down(ifp);
1883                         crit_exit();
1884                 } else if (new_flags & IFF_UP &&
1885                     (ifp->if_flags & IFF_UP) == 0) {
1886                         crit_enter();
1887                         if_up(ifp);
1888                         crit_exit();
1889                 }
1890
1891 #ifdef IFPOLL_ENABLE
1892                 if ((new_flags ^ ifp->if_flags) & IFF_NPOLLING) {
1893                         if (new_flags & IFF_NPOLLING)
1894                                 ifpoll_register(ifp);
1895                         else
1896                                 ifpoll_deregister(ifp);
1897                 }
1898 #endif
1899
1900                 ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
1901                         (new_flags &~ IFF_CANTCHANGE);
1902                 if (new_flags & IFF_PPROMISC) {
1903                         /* Permanently promiscuous mode requested */
1904                         ifp->if_flags |= IFF_PROMISC;
1905                 } else if (ifp->if_pcount == 0) {
1906                         ifp->if_flags &= ~IFF_PROMISC;
1907                 }
1908                 if (ifp->if_ioctl) {
1909                         ifnet_serialize_all(ifp);
1910                         ifp->if_ioctl(ifp, cmd, data, cred);
1911                         ifnet_deserialize_all(ifp);
1912                 }
1913                 getmicrotime(&ifp->if_lastchange);
1914                 break;
1915
1916         case SIOCSIFCAP:
1917                 error = priv_check_cred(cred, PRIV_ROOT, 0);
1918                 if (error)
1919                         break;
1920                 if (ifr->ifr_reqcap & ~ifp->if_capabilities) {
1921                         error = EINVAL;
1922                         break;
1923                 }
1924                 ifnet_serialize_all(ifp);
1925                 ifp->if_ioctl(ifp, cmd, data, cred);
1926                 ifnet_deserialize_all(ifp);
1927                 break;
1928
1929         case SIOCSIFNAME:
1930                 error = priv_check_cred(cred, PRIV_ROOT, 0);
1931                 if (error)
1932                         break;
1933                 error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL);
1934                 if (error)
1935                         break;
1936                 if (new_name[0] == '\0') {
1937                         error = EINVAL;
1938                         break;
1939                 }
1940                 if (ifunit(new_name) != NULL) {
1941                         error = EEXIST;
1942                         break;
1943                 }
1944
1945                 EVENTHANDLER_INVOKE(ifnet_detach_event, ifp);
1946
1947                 /* Announce the departure of the interface. */
1948                 rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1949
1950                 strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname));
1951                 ifa = TAILQ_FIRST(&ifp->if_addrheads[mycpuid])->ifa;
1952                 sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1953                 namelen = strlen(new_name);
1954                 onamelen = sdl->sdl_nlen;
1955                 /*
1956                  * Move the address if needed.  This is safe because we
1957                  * allocate space for a name of length IFNAMSIZ when we
1958                  * create this in if_attach().
1959                  */
1960                 if (namelen != onamelen) {
1961                         bcopy(sdl->sdl_data + onamelen,
1962                             sdl->sdl_data + namelen, sdl->sdl_alen);
1963                 }
1964                 bcopy(new_name, sdl->sdl_data, namelen);
1965                 sdl->sdl_nlen = namelen;
1966                 sdl = (struct sockaddr_dl *)ifa->ifa_netmask;
1967                 bzero(sdl->sdl_data, onamelen);
1968                 while (namelen != 0)
1969                         sdl->sdl_data[--namelen] = 0xff;
1970
1971                 EVENTHANDLER_INVOKE(ifnet_attach_event, ifp);
1972
1973                 /* Announce the return of the interface. */
1974                 rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
1975                 break;
1976
1977         case SIOCSIFMETRIC:
1978                 error = priv_check_cred(cred, PRIV_ROOT, 0);
1979                 if (error)
1980                         break;
1981                 ifp->if_metric = ifr->ifr_metric;
1982                 getmicrotime(&ifp->if_lastchange);
1983                 break;
1984
1985         case SIOCSIFPHYS:
1986                 error = priv_check_cred(cred, PRIV_ROOT, 0);
1987                 if (error)
1988                         break;
1989                 if (ifp->if_ioctl == NULL) {
1990                         error = EOPNOTSUPP;
1991                         break;
1992                 }
1993                 ifnet_serialize_all(ifp);
1994                 error = ifp->if_ioctl(ifp, cmd, data, cred);
1995                 ifnet_deserialize_all(ifp);
1996                 if (error == 0)
1997                         getmicrotime(&ifp->if_lastchange);
1998                 break;
1999
2000         case SIOCSIFMTU:
2001         {
2002                 u_long oldmtu = ifp->if_mtu;
2003
2004                 error = priv_check_cred(cred, PRIV_ROOT, 0);
2005                 if (error)
2006                         break;
2007                 if (ifp->if_ioctl == NULL) {
2008                         error = EOPNOTSUPP;
2009                         break;
2010                 }
2011                 if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU) {
2012                         error = EINVAL;
2013                         break;
2014                 }
2015                 ifnet_serialize_all(ifp);
2016                 error = ifp->if_ioctl(ifp, cmd, data, cred);
2017                 ifnet_deserialize_all(ifp);
2018                 if (error == 0) {
2019                         getmicrotime(&ifp->if_lastchange);
2020                         rt_ifmsg(ifp);
2021                 }
2022                 /*
2023                  * If the link MTU changed, do network layer specific procedure.
2024                  */
2025                 if (ifp->if_mtu != oldmtu) {
2026 #ifdef INET6
2027                         nd6_setmtu(ifp);
2028 #endif
2029                 }
2030                 break;
2031         }
2032
2033         case SIOCSIFTSOLEN:
2034                 error = priv_check_cred(cred, PRIV_ROOT, 0);
2035                 if (error)
2036                         break;
2037
2038                 /* XXX need driver supplied upper limit */
2039                 if (ifr->ifr_tsolen <= 0) {
2040                         error = EINVAL;
2041                         break;
2042                 }
2043                 ifp->if_tsolen = ifr->ifr_tsolen;
2044                 break;
2045
2046         case SIOCADDMULTI:
2047         case SIOCDELMULTI:
2048                 error = priv_check_cred(cred, PRIV_ROOT, 0);
2049                 if (error)
2050                         break;
2051
2052                 /* Don't allow group membership on non-multicast interfaces. */
2053                 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
2054                         error = EOPNOTSUPP;
2055                         break;
2056                 }
2057
2058                 /* Don't let users screw up protocols' entries. */
2059                 if (ifr->ifr_addr.sa_family != AF_LINK) {
2060                         error = EINVAL;
2061                         break;
2062                 }
2063
2064                 if (cmd == SIOCADDMULTI) {
2065                         struct ifmultiaddr *ifma;
2066                         error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
2067                 } else {
2068                         error = if_delmulti(ifp, &ifr->ifr_addr);
2069                 }
2070                 if (error == 0)
2071                         getmicrotime(&ifp->if_lastchange);
2072                 break;
2073
2074         case SIOCSIFPHYADDR:
2075         case SIOCDIFPHYADDR:
2076 #ifdef INET6
2077         case SIOCSIFPHYADDR_IN6:
2078 #endif
2079         case SIOCSLIFPHYADDR:
2080         case SIOCSIFMEDIA:
2081         case SIOCSIFGENERIC:
2082                 error = priv_check_cred(cred, PRIV_ROOT, 0);
2083                 if (error)
2084                         break;
2085                 if (ifp->if_ioctl == 0) {
2086                         error = EOPNOTSUPP;
2087                         break;
2088                 }
2089                 ifnet_serialize_all(ifp);
2090                 error = ifp->if_ioctl(ifp, cmd, data, cred);
2091                 ifnet_deserialize_all(ifp);
2092                 if (error == 0)
2093                         getmicrotime(&ifp->if_lastchange);
2094                 break;
2095
2096         case SIOCGIFSTATUS:
2097                 ifs = (struct ifstat *)data;
2098                 ifs->ascii[0] = '\0';
2099                 /* fall through */
2100         case SIOCGIFPSRCADDR:
2101         case SIOCGIFPDSTADDR:
2102         case SIOCGLIFPHYADDR:
2103         case SIOCGIFMEDIA:
2104         case SIOCGIFGENERIC:
2105                 if (ifp->if_ioctl == NULL) {
2106                         error = EOPNOTSUPP;
2107                         break;
2108                 }
2109                 ifnet_serialize_all(ifp);
2110                 error = ifp->if_ioctl(ifp, cmd, data, cred);
2111                 ifnet_deserialize_all(ifp);
2112                 break;
2113
2114         case SIOCSIFLLADDR:
2115                 error = priv_check_cred(cred, PRIV_ROOT, 0);
2116                 if (error)
2117                         break;
2118                 error = if_setlladdr(ifp, ifr->ifr_addr.sa_data,
2119                                      ifr->ifr_addr.sa_len);
2120                 EVENTHANDLER_INVOKE(iflladdr_event, ifp);
2121                 break;
2122
2123         default:
2124                 oif_flags = ifp->if_flags;
2125                 if (so->so_proto == 0) {
2126                         error = EOPNOTSUPP;
2127                         break;
2128                 }
2129                 error = so_pru_control_direct(so, cmd, data, ifp);
2130
2131                 if ((oif_flags ^ ifp->if_flags) & IFF_UP) {
2132 #ifdef INET6
2133                         DELAY(100);/* XXX: temporary workaround for fxp issue*/
2134                         if (ifp->if_flags & IFF_UP) {
2135                                 crit_enter();
2136                                 in6_if_up(ifp);
2137                                 crit_exit();
2138                         }
2139 #endif
2140                 }
2141                 break;
2142         }
2143
2144         ifnet_unlock();
2145         return (error);
2146 }
2147
2148 /*
2149  * Set/clear promiscuous mode on interface ifp based on the truth value
2150  * of pswitch.  The calls are reference counted so that only the first
2151  * "on" request actually has an effect, as does the final "off" request.
2152  * Results are undefined if the "off" and "on" requests are not matched.
2153  */
2154 int
2155 ifpromisc(struct ifnet *ifp, int pswitch)
2156 {
2157         struct ifreq ifr;
2158         int error;
2159         int oldflags;
2160
2161         oldflags = ifp->if_flags;
2162         if (ifp->if_flags & IFF_PPROMISC) {
2163                 /* Do nothing if device is in permanently promiscuous mode */
2164                 ifp->if_pcount += pswitch ? 1 : -1;
2165                 return (0);
2166         }
2167         if (pswitch) {
2168                 /*
2169                  * If the device is not configured up, we cannot put it in
2170                  * promiscuous mode.
2171                  */
2172                 if ((ifp->if_flags & IFF_UP) == 0)
2173                         return (ENETDOWN);
2174                 if (ifp->if_pcount++ != 0)
2175                         return (0);
2176                 ifp->if_flags |= IFF_PROMISC;
2177                 log(LOG_INFO, "%s: promiscuous mode enabled\n",
2178                     ifp->if_xname);
2179         } else {
2180                 if (--ifp->if_pcount > 0)
2181                         return (0);
2182                 ifp->if_flags &= ~IFF_PROMISC;
2183                 log(LOG_INFO, "%s: promiscuous mode disabled\n",
2184                     ifp->if_xname);
2185         }
2186         ifr.ifr_flags = ifp->if_flags;
2187         ifr.ifr_flagshigh = ifp->if_flags >> 16;
2188         ifnet_serialize_all(ifp);
2189         error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr, NULL);
2190         ifnet_deserialize_all(ifp);
2191         if (error == 0)
2192                 rt_ifmsg(ifp);
2193         else
2194                 ifp->if_flags = oldflags;
2195         return error;
2196 }
2197
2198 /*
2199  * Return interface configuration
2200  * of system.  List may be used
2201  * in later ioctl's (above) to get
2202  * other information.
2203  */
2204 static int
2205 ifconf(u_long cmd, caddr_t data, struct ucred *cred)
2206 {
2207         struct ifconf *ifc = (struct ifconf *)data;
2208         struct ifnet *ifp;
2209         struct sockaddr *sa;
2210         struct ifreq ifr, *ifrp;
2211         int space = ifc->ifc_len, error = 0;
2212
2213         ifrp = ifc->ifc_req;
2214
2215         ifnet_lock();
2216         TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
2217                 struct ifaddr_container *ifac, *ifac_mark;
2218                 struct ifaddr_marker mark;
2219                 struct ifaddrhead *head;
2220                 int addrs;
2221
2222                 if (space <= sizeof ifr)
2223                         break;
2224
2225                 /*
2226                  * Zero the stack declared structure first to prevent
2227                  * memory disclosure.
2228                  */
2229                 bzero(&ifr, sizeof(ifr));
2230                 if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name))
2231                     >= sizeof(ifr.ifr_name)) {
2232                         error = ENAMETOOLONG;
2233                         break;
2234                 }
2235
2236                 /*
2237                  * Add a marker, since copyout() could block and during that
2238                  * period the list could be changed.  Inserting the marker to
2239                  * the header of the list will not cause trouble for the code
2240                  * assuming that the first element of the list is AF_LINK; the
2241                  * marker will be moved to the next position w/o blocking.
2242                  */
2243                 ifa_marker_init(&mark, ifp);
2244                 ifac_mark = &mark.ifac;
2245                 head = &ifp->if_addrheads[mycpuid];
2246
2247                 addrs = 0;
2248                 TAILQ_INSERT_HEAD(head, ifac_mark, ifa_link);
2249                 while ((ifac = TAILQ_NEXT(ifac_mark, ifa_link)) != NULL) {
2250                         struct ifaddr *ifa = ifac->ifa;
2251
2252                         TAILQ_REMOVE(head, ifac_mark, ifa_link);
2253                         TAILQ_INSERT_AFTER(head, ifac, ifac_mark, ifa_link);
2254
2255                         /* Ignore marker */
2256                         if (ifa->ifa_addr->sa_family == AF_UNSPEC)
2257                                 continue;
2258
2259                         if (space <= sizeof ifr)
2260                                 break;
2261                         sa = ifa->ifa_addr;
2262                         if (cred->cr_prison &&
2263                             prison_if(cred, sa))
2264                                 continue;
2265                         addrs++;
2266                         /*
2267                          * Keep a reference on this ifaddr, so that it will
2268                          * not be destroyed when its address is copied to
2269                          * the userland, which could block.
2270                          */
2271                         IFAREF(ifa);
2272                         if (sa->sa_len <= sizeof(*sa)) {
2273                                 ifr.ifr_addr = *sa;
2274                                 error = copyout(&ifr, ifrp, sizeof ifr);
2275                                 ifrp++;
2276                         } else {
2277                                 if (space < (sizeof ifr) + sa->sa_len -
2278                                             sizeof(*sa)) {
2279                                         IFAFREE(ifa);
2280                                         break;
2281                                 }
2282                                 space -= sa->sa_len - sizeof(*sa);
2283                                 error = copyout(&ifr, ifrp,
2284                                                 sizeof ifr.ifr_name);
2285                                 if (error == 0)
2286                                         error = copyout(sa, &ifrp->ifr_addr,
2287                                                         sa->sa_len);
2288                                 ifrp = (struct ifreq *)
2289                                         (sa->sa_len + (caddr_t)&ifrp->ifr_addr);
2290                         }
2291                         IFAFREE(ifa);
2292                         if (error)
2293                                 break;
2294                         space -= sizeof ifr;
2295                 }
2296                 TAILQ_REMOVE(head, ifac_mark, ifa_link);
2297                 if (error)
2298                         break;
2299                 if (!addrs) {
2300                         bzero(&ifr.ifr_addr, sizeof ifr.ifr_addr);
2301                         error = copyout(&ifr, ifrp, sizeof ifr);
2302                         if (error)
2303                                 break;
2304                         space -= sizeof ifr;
2305                         ifrp++;
2306                 }
2307         }
2308         ifnet_unlock();
2309
2310         ifc->ifc_len -= space;
2311         return (error);
2312 }
2313
2314 /*
2315  * Just like if_promisc(), but for all-multicast-reception mode.
2316  */
2317 int
2318 if_allmulti(struct ifnet *ifp, int onswitch)
2319 {
2320         int error = 0;
2321         struct ifreq ifr;
2322
2323         crit_enter();
2324
2325         if (onswitch) {
2326                 if (ifp->if_amcount++ == 0) {
2327                         ifp->if_flags |= IFF_ALLMULTI;
2328                         ifr.ifr_flags = ifp->if_flags;
2329                         ifr.ifr_flagshigh = ifp->if_flags >> 16;
2330                         ifnet_serialize_all(ifp);
2331                         error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2332                                               NULL);
2333                         ifnet_deserialize_all(ifp);
2334                 }
2335         } else {
2336                 if (ifp->if_amcount > 1) {
2337                         ifp->if_amcount--;
2338                 } else {
2339                         ifp->if_amcount = 0;
2340                         ifp->if_flags &= ~IFF_ALLMULTI;
2341                         ifr.ifr_flags = ifp->if_flags;
2342                         ifr.ifr_flagshigh = ifp->if_flags >> 16;
2343                         ifnet_serialize_all(ifp);
2344                         error = ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2345                                               NULL);
2346                         ifnet_deserialize_all(ifp);
2347                 }
2348         }
2349
2350         crit_exit();
2351
2352         if (error == 0)
2353                 rt_ifmsg(ifp);
2354         return error;
2355 }
2356
2357 /*
2358  * Add a multicast listenership to the interface in question.
2359  * The link layer provides a routine which converts
2360  */
2361 int
2362 if_addmulti_serialized(struct ifnet *ifp, struct sockaddr *sa,
2363     struct ifmultiaddr **retifma)
2364 {
2365         struct sockaddr *llsa, *dupsa;
2366         int error;
2367         struct ifmultiaddr *ifma;
2368
2369         ASSERT_IFNET_SERIALIZED_ALL(ifp);
2370
2371         /*
2372          * If the matching multicast address already exists
2373          * then don't add a new one, just add a reference
2374          */
2375         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2376                 if (sa_equal(sa, ifma->ifma_addr)) {
2377                         ifma->ifma_refcount++;
2378                         if (retifma)
2379                                 *retifma = ifma;
2380                         return 0;
2381                 }
2382         }
2383
2384         /*
2385          * Give the link layer a chance to accept/reject it, and also
2386          * find out which AF_LINK address this maps to, if it isn't one
2387          * already.
2388          */
2389         if (ifp->if_resolvemulti) {
2390                 error = ifp->if_resolvemulti(ifp, &llsa, sa);
2391                 if (error)
2392                         return error;
2393         } else {
2394                 llsa = NULL;
2395         }
2396
2397         ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_INTWAIT);
2398         dupsa = kmalloc(sa->sa_len, M_IFMADDR, M_INTWAIT);
2399         bcopy(sa, dupsa, sa->sa_len);
2400
2401         ifma->ifma_addr = dupsa;
2402         ifma->ifma_lladdr = llsa;
2403         ifma->ifma_ifp = ifp;
2404         ifma->ifma_refcount = 1;
2405         ifma->ifma_protospec = NULL;
2406         rt_newmaddrmsg(RTM_NEWMADDR, ifma);
2407
2408         TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2409         if (retifma)
2410                 *retifma = ifma;
2411
2412         if (llsa != NULL) {
2413                 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2414                         if (sa_equal(ifma->ifma_addr, llsa))
2415                                 break;
2416                 }
2417                 if (ifma) {
2418                         ifma->ifma_refcount++;
2419                 } else {
2420                         ifma = kmalloc(sizeof *ifma, M_IFMADDR, M_INTWAIT);
2421                         dupsa = kmalloc(llsa->sa_len, M_IFMADDR, M_INTWAIT);
2422                         bcopy(llsa, dupsa, llsa->sa_len);
2423                         ifma->ifma_addr = dupsa;
2424                         ifma->ifma_ifp = ifp;
2425                         ifma->ifma_refcount = 1;
2426                         TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
2427                 }
2428         }
2429         /*
2430          * We are certain we have added something, so call down to the
2431          * interface to let them know about it.
2432          */
2433         if (ifp->if_ioctl)
2434                 ifp->if_ioctl(ifp, SIOCADDMULTI, 0, NULL);
2435
2436         return 0;
2437 }
2438
2439 int
2440 if_addmulti(struct ifnet *ifp, struct sockaddr *sa,
2441     struct ifmultiaddr **retifma)
2442 {
2443         int error;
2444
2445         ifnet_serialize_all(ifp);
2446         error = if_addmulti_serialized(ifp, sa, retifma);
2447         ifnet_deserialize_all(ifp);
2448
2449         return error;
2450 }
2451
2452 /*
2453  * Remove a reference to a multicast address on this interface.  Yell
2454  * if the request does not match an existing membership.
2455  */
2456 static int
2457 if_delmulti_serialized(struct ifnet *ifp, struct sockaddr *sa)
2458 {
2459         struct ifmultiaddr *ifma;
2460
2461         ASSERT_IFNET_SERIALIZED_ALL(ifp);
2462
2463         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2464                 if (sa_equal(sa, ifma->ifma_addr))
2465                         break;
2466         if (ifma == NULL)
2467                 return ENOENT;
2468
2469         if (ifma->ifma_refcount > 1) {
2470                 ifma->ifma_refcount--;
2471                 return 0;
2472         }
2473
2474         rt_newmaddrmsg(RTM_DELMADDR, ifma);
2475         sa = ifma->ifma_lladdr;
2476         TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2477         /*
2478          * Make sure the interface driver is notified
2479          * in the case of a link layer mcast group being left.
2480          */
2481         if (ifma->ifma_addr->sa_family == AF_LINK && sa == NULL)
2482                 ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2483         kfree(ifma->ifma_addr, M_IFMADDR);
2484         kfree(ifma, M_IFMADDR);
2485         if (sa == NULL)
2486                 return 0;
2487
2488         /*
2489          * Now look for the link-layer address which corresponds to
2490          * this network address.  It had been squirreled away in
2491          * ifma->ifma_lladdr for this purpose (so we don't have
2492          * to call ifp->if_resolvemulti() again), and we saved that
2493          * value in sa above.  If some nasty deleted the
2494          * link-layer address out from underneath us, we can deal because
2495          * the address we stored was is not the same as the one which was
2496          * in the record for the link-layer address.  (So we don't complain
2497          * in that case.)
2498          */
2499         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2500                 if (sa_equal(sa, ifma->ifma_addr))
2501                         break;
2502         if (ifma == NULL)
2503                 return 0;
2504
2505         if (ifma->ifma_refcount > 1) {
2506                 ifma->ifma_refcount--;
2507                 return 0;
2508         }
2509
2510         TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
2511         ifp->if_ioctl(ifp, SIOCDELMULTI, 0, NULL);
2512         kfree(ifma->ifma_addr, M_IFMADDR);
2513         kfree(sa, M_IFMADDR);
2514         kfree(ifma, M_IFMADDR);
2515
2516         return 0;
2517 }
2518
2519 int
2520 if_delmulti(struct ifnet *ifp, struct sockaddr *sa)
2521 {
2522         int error;
2523
2524         ifnet_serialize_all(ifp);
2525         error = if_delmulti_serialized(ifp, sa);
2526         ifnet_deserialize_all(ifp);
2527
2528         return error;
2529 }
2530
2531 /*
2532  * Delete all multicast group membership for an interface.
2533  * Should be used to quickly flush all multicast filters.
2534  */
2535 void
2536 if_delallmulti_serialized(struct ifnet *ifp)
2537 {
2538         struct ifmultiaddr *ifma, mark;
2539         struct sockaddr sa;
2540
2541         ASSERT_IFNET_SERIALIZED_ALL(ifp);
2542
2543         bzero(&sa, sizeof(sa));
2544         sa.sa_family = AF_UNSPEC;
2545         sa.sa_len = sizeof(sa);
2546
2547         bzero(&mark, sizeof(mark));
2548         mark.ifma_addr = &sa;
2549
2550         TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, &mark, ifma_link);
2551         while ((ifma = TAILQ_NEXT(&mark, ifma_link)) != NULL) {
2552                 TAILQ_REMOVE(&ifp->if_multiaddrs, &mark, ifma_link);
2553                 TAILQ_INSERT_AFTER(&ifp->if_multiaddrs, ifma, &mark,
2554                     ifma_link);
2555
2556                 if (ifma->ifma_addr->sa_family == AF_UNSPEC)
2557                         continue;
2558
2559                 if_delmulti_serialized(ifp, ifma->ifma_addr);
2560         }
2561         TAILQ_REMOVE(&ifp->if_multiaddrs, &mark, ifma_link);
2562 }
2563
2564
2565 /*
2566  * Set the link layer address on an interface.
2567  *
2568  * At this time we only support certain types of interfaces,
2569  * and we don't allow the length of the address to change.
2570  */
2571 int
2572 if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len)
2573 {
2574         struct sockaddr_dl *sdl;
2575         struct ifreq ifr;
2576
2577         sdl = IF_LLSOCKADDR(ifp);
2578         if (sdl == NULL)
2579                 return (EINVAL);
2580         if (len != sdl->sdl_alen)       /* don't allow length to change */
2581                 return (EINVAL);
2582         switch (ifp->if_type) {
2583         case IFT_ETHER:                 /* these types use struct arpcom */
2584         case IFT_XETHER:
2585         case IFT_L2VLAN:
2586         case IFT_IEEE8023ADLAG:
2587                 bcopy(lladdr, ((struct arpcom *)ifp->if_softc)->ac_enaddr, len);
2588                 bcopy(lladdr, LLADDR(sdl), len);
2589                 break;
2590         default:
2591                 return (ENODEV);
2592         }
2593         /*
2594          * If the interface is already up, we need
2595          * to re-init it in order to reprogram its
2596          * address filter.
2597          */
2598         ifnet_serialize_all(ifp);
2599         if ((ifp->if_flags & IFF_UP) != 0) {
2600 #ifdef INET
2601                 struct ifaddr_container *ifac;
2602 #endif
2603
2604                 ifp->if_flags &= ~IFF_UP;
2605                 ifr.ifr_flags = ifp->if_flags;
2606                 ifr.ifr_flagshigh = ifp->if_flags >> 16;
2607                 ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2608                               NULL);
2609                 ifp->if_flags |= IFF_UP;
2610                 ifr.ifr_flags = ifp->if_flags;
2611                 ifr.ifr_flagshigh = ifp->if_flags >> 16;
2612                 ifp->if_ioctl(ifp, SIOCSIFFLAGS, (caddr_t)&ifr,
2613                                  NULL);
2614 #ifdef INET
2615                 /*
2616                  * Also send gratuitous ARPs to notify other nodes about
2617                  * the address change.
2618                  */
2619                 TAILQ_FOREACH(ifac, &ifp->if_addrheads[mycpuid], ifa_link) {
2620                         struct ifaddr *ifa = ifac->ifa;
2621
2622                         if (ifa->ifa_addr != NULL &&
2623                             ifa->ifa_addr->sa_family == AF_INET)
2624                                 arp_gratuitous(ifp, ifa);
2625                 }
2626 #endif
2627         }
2628         ifnet_deserialize_all(ifp);
2629         return (0);
2630 }
2631
2632 struct ifmultiaddr *
2633 ifmaof_ifpforaddr(struct sockaddr *sa, struct ifnet *ifp)
2634 {
2635         struct ifmultiaddr *ifma;
2636
2637         /* TODO: need ifnet_serialize_main */
2638         ifnet_serialize_all(ifp);
2639         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
2640                 if (sa_equal(ifma->ifma_addr, sa))
2641                         break;
2642         ifnet_deserialize_all(ifp);
2643
2644         return ifma;
2645 }
2646
2647 /*
2648  * This function locates the first real ethernet MAC from a network
2649  * card and loads it into node, returning 0 on success or ENOENT if
2650  * no suitable interfaces were found.  It is used by the uuid code to
2651  * generate a unique 6-byte number.
2652  */
2653 int
2654 if_getanyethermac(uint16_t *node, int minlen)
2655 {
2656         struct ifnet *ifp;
2657         struct sockaddr_dl *sdl;
2658
2659         ifnet_lock();
2660         TAILQ_FOREACH(ifp, &ifnetlist, if_link) {
2661                 if (ifp->if_type != IFT_ETHER)
2662                         continue;
2663                 sdl = IF_LLSOCKADDR(ifp);
2664                 if (sdl->sdl_alen < minlen)
2665                         continue;
2666                 bcopy(((struct arpcom *)ifp->if_softc)->ac_enaddr, node,
2667                       minlen);
2668                 ifnet_unlock();
2669                 return(0);
2670         }
2671         ifnet_unlock();
2672         return (ENOENT);
2673 }
2674
2675 /*
2676  * The name argument must be a pointer to storage which will last as
2677  * long as the interface does.  For physical devices, the result of
2678  * device_get_name(dev) is a good choice and for pseudo-devices a
2679  * static string works well.
2680  */
2681 void
2682 if_initname(struct ifnet *ifp, const char *name, int unit)
2683 {
2684         ifp->if_dname = name;
2685         ifp->if_dunit = unit;
2686         if (unit != IF_DUNIT_NONE)
2687                 ksnprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit);
2688         else
2689                 strlcpy(ifp->if_xname, name, IFNAMSIZ);
2690 }
2691
2692 int
2693 if_printf(struct ifnet *ifp, const char *fmt, ...)
2694 {
2695         __va_list ap;
2696         int retval;
2697
2698         retval = kprintf("%s: ", ifp->if_xname);
2699         __va_start(ap, fmt);
2700         retval += kvprintf(fmt, ap);
2701         __va_end(ap);
2702         return (retval);
2703 }
2704
2705 struct ifnet *
2706 if_alloc(uint8_t type)
2707 {
2708         struct ifnet *ifp;
2709         size_t size;
2710
2711         /*
2712          * XXX temporary hack until arpcom is setup in if_l2com
2713          */
2714         if (type == IFT_ETHER)
2715                 size = sizeof(struct arpcom);
2716         else
2717                 size = sizeof(struct ifnet);
2718
2719         ifp = kmalloc(size, M_IFNET, M_WAITOK|M_ZERO);
2720
2721         ifp->if_type = type;
2722
2723         if (if_com_alloc[type] != NULL) {
2724                 ifp->if_l2com = if_com_alloc[type](type, ifp);
2725                 if (ifp->if_l2com == NULL) {
2726                         kfree(ifp, M_IFNET);
2727                         return (NULL);
2728                 }
2729         }
2730         return (ifp);
2731 }
2732
2733 void
2734 if_free(struct ifnet *ifp)
2735 {
2736         kfree(ifp, M_IFNET);
2737 }
2738
2739 void
2740 ifq_set_classic(struct ifaltq *ifq)
2741 {
2742         ifq_set_methods(ifq, ifq->altq_ifp->if_mapsubq,
2743             ifsq_classic_enqueue, ifsq_classic_dequeue, ifsq_classic_request);
2744 }
2745
2746 void
2747 ifq_set_methods(struct ifaltq *ifq, altq_mapsubq_t mapsubq,
2748     ifsq_enqueue_t enqueue, ifsq_dequeue_t dequeue, ifsq_request_t request)
2749 {
2750         int q;
2751
2752         KASSERT(mapsubq != NULL, ("mapsubq is not specified"));
2753         KASSERT(enqueue != NULL, ("enqueue is not specified"));
2754         KASSERT(dequeue != NULL, ("dequeue is not specified"));
2755         KASSERT(request != NULL, ("request is not specified"));
2756
2757         ifq->altq_mapsubq = mapsubq;
2758         for (q = 0; q < ifq->altq_subq_cnt; ++q) {
2759                 struct ifaltq_subque *ifsq = &ifq->altq_subq[q];
2760
2761                 ifsq->ifsq_enqueue = enqueue;
2762                 ifsq->ifsq_dequeue = dequeue;
2763                 ifsq->ifsq_request = request;
2764         }
2765 }
2766
2767 static void
2768 ifsq_norm_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m)
2769 {
2770         m->m_nextpkt = NULL;
2771         if (ifsq->ifsq_norm_tail == NULL)
2772                 ifsq->ifsq_norm_head = m;
2773         else
2774                 ifsq->ifsq_norm_tail->m_nextpkt = m;
2775         ifsq->ifsq_norm_tail = m;
2776         ALTQ_SQ_CNTR_INC(ifsq, m->m_pkthdr.len);
2777 }
2778
2779 static void
2780 ifsq_prio_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m)
2781 {
2782         m->m_nextpkt = NULL;
2783         if (ifsq->ifsq_prio_tail == NULL)
2784                 ifsq->ifsq_prio_head = m;
2785         else
2786                 ifsq->ifsq_prio_tail->m_nextpkt = m;
2787         ifsq->ifsq_prio_tail = m;
2788         ALTQ_SQ_CNTR_INC(ifsq, m->m_pkthdr.len);
2789         ALTQ_SQ_PRIO_CNTR_INC(ifsq, m->m_pkthdr.len);
2790 }
2791
2792 static struct mbuf *
2793 ifsq_norm_dequeue(struct ifaltq_subque *ifsq)
2794 {
2795         struct mbuf *m;
2796
2797         m = ifsq->ifsq_norm_head;
2798         if (m != NULL) {
2799                 if ((ifsq->ifsq_norm_head = m->m_nextpkt) == NULL)
2800                         ifsq->ifsq_norm_tail = NULL;
2801                 m->m_nextpkt = NULL;
2802                 ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
2803         }
2804         return m;
2805 }
2806
2807 static struct mbuf *
2808 ifsq_prio_dequeue(struct ifaltq_subque *ifsq)
2809 {
2810         struct mbuf *m;
2811
2812         m = ifsq->ifsq_prio_head;
2813         if (m != NULL) {
2814                 if ((ifsq->ifsq_prio_head = m->m_nextpkt) == NULL)
2815                         ifsq->ifsq_prio_tail = NULL;
2816                 m->m_nextpkt = NULL;
2817                 ALTQ_SQ_CNTR_DEC(ifsq, m->m_pkthdr.len);
2818                 ALTQ_SQ_PRIO_CNTR_DEC(ifsq, m->m_pkthdr.len);
2819         }
2820         return m;
2821 }
2822
2823 int
2824 ifsq_classic_enqueue(struct ifaltq_subque *ifsq, struct mbuf *m,
2825     struct altq_pktattr *pa __unused)
2826 {
2827         M_ASSERTPKTHDR(m);
2828         if (ifsq->ifsq_len >= ifsq->ifsq_maxlen ||
2829             ifsq->ifsq_bcnt >= ifsq->ifsq_maxbcnt) {
2830                 if ((m->m_flags & M_PRIO) &&
2831                     ifsq->ifsq_prio_len < (ifsq->ifsq_maxlen / 2) &&
2832                     ifsq->ifsq_prio_bcnt < (ifsq->ifsq_maxbcnt / 2)) {
2833                         struct mbuf *m_drop;
2834
2835                         /*
2836                          * Perform drop-head on normal queue
2837                          */
2838                         m_drop = ifsq_norm_dequeue(ifsq);
2839                         if (m_drop != NULL) {
2840                                 m_freem(m_drop);
2841                                 ifsq_prio_enqueue(ifsq, m);
2842                                 return 0;
2843                         }
2844                         /* XXX nothing could be dropped? */
2845                 }
2846                 m_freem(m);
2847                 return ENOBUFS;
2848         } else {
2849                 if (m->m_flags & M_PRIO)
2850                         ifsq_prio_enqueue(ifsq, m);
2851                 else
2852                         ifsq_norm_enqueue(ifsq, m);
2853                 return 0;
2854         }
2855 }
2856
2857 struct mbuf *
2858 ifsq_classic_dequeue(struct ifaltq_subque *ifsq, int op)
2859 {
2860         struct mbuf *m;
2861
2862         switch (op) {
2863         case ALTDQ_POLL:
2864                 m = ifsq->ifsq_prio_head;
2865                 if (m == NULL)
2866                         m = ifsq->ifsq_norm_head;
2867                 break;
2868
2869         case ALTDQ_REMOVE:
2870                 m = ifsq_prio_dequeue(ifsq);
2871                 if (m == NULL)
2872                         m = ifsq_norm_dequeue(ifsq);
2873                 break;
2874
2875         default:
2876                 panic("unsupported ALTQ dequeue op: %d", op);
2877         }
2878         return m;
2879 }
2880
2881 int
2882 ifsq_classic_request(struct ifaltq_subque *ifsq, int req, void *arg)
2883 {
2884         switch (req) {
2885         case ALTRQ_PURGE:
2886                 for (;;) {
2887                         struct mbuf *m;
2888
2889                         m = ifsq_classic_dequeue(ifsq, ALTDQ_REMOVE);
2890                         if (m == NULL)
2891                                 break;
2892                         m_freem(m);
2893                 }
2894                 break;
2895
2896         default:
2897                 panic("unsupported ALTQ request: %d", req);
2898         }
2899         return 0;
2900 }
2901
2902 static void
2903 ifsq_ifstart_try(struct ifaltq_subque *ifsq, int force_sched)
2904 {
2905         struct ifnet *ifp = ifsq_get_ifp(ifsq);
2906         int running = 0, need_sched;
2907
2908         /*
2909          * Try to do direct ifnet.if_start on the subqueue first, if there is
2910          * contention on the subqueue hardware serializer, ifnet.if_start on
2911          * the subqueue will be scheduled on the subqueue owner CPU.
2912          */
2913         if (!ifsq_tryserialize_hw(ifsq)) {
2914                 /*
2915                  * Subqueue hardware serializer contention happened,
2916                  * ifnet.if_start on the subqueue is scheduled on
2917                  * the subqueue owner CPU, and we keep going.
2918                  */
2919                 ifsq_ifstart_schedule(ifsq, 1);
2920                 return;
2921         }
2922
2923         if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq)) {
2924                 ifp->if_start(ifp, ifsq);
2925                 if ((ifp->if_flags & IFF_RUNNING) && !ifsq_is_oactive(ifsq))
2926                         running = 1;
2927         }
2928         need_sched = ifsq_ifstart_need_schedule(ifsq, running);
2929
2930         ifsq_deserialize_hw(ifsq);
2931
2932         if (need_sched) {
2933                 /*
2934                  * More data need to be transmitted, ifnet.if_start on the
2935                  * subqueue is scheduled on the subqueue owner CPU, and we
2936                  * keep going.
2937                  * NOTE: ifnet.if_start subqueue interlock is not released.
2938                  */
2939                 ifsq_ifstart_schedule(ifsq, force_sched);
2940         }
2941 }
2942
2943 /*
2944  * Subqeue packets staging mechanism:
2945  *
2946  * The packets enqueued into the subqueue are staged to a certain amount
2947  * before the ifnet.if_start on the subqueue is called.  In this way, the
2948  * driver could avoid writing to hardware registers upon every packet,
2949  * instead, hardware registers could be written when certain amount of
2950  * packets are put onto hardware TX ring.  The measurement on several modern
2951  * NICs (emx(4), igb(4), bnx(4), bge(4), jme(4)) shows that the hardware
2952  * registers writing aggregation could save ~20% CPU time when 18bytes UDP
2953  * datagrams are transmitted at 1.48Mpps.  The performance improvement by
2954  * hardware registers writing aggeregation is also mentioned by Luigi Rizzo's
2955  * netmap paper (http://info.iet.unipi.it/~luigi/netmap/).
2956  *
2957  * Subqueue packets staging is performed for two entry points into drivers'
2958  * transmission function:
2959  * - Direct ifnet.if_start calling on the subqueue, i.e. ifsq_ifstart_try()
2960  * - ifnet.if_start scheduling on the subqueue, i.e. ifsq_ifstart_schedule()
2961  *
2962  * Subqueue packets staging will be stopped upon any of the following
2963  * conditions:
2964  * - If the count of packets enqueued on the current CPU is great than or
2965  *   equal to ifsq_stage_cntmax. (XXX this should be per-interface)
2966  * - If the total length of packets enqueued on the current CPU is great
2967  *   than or equal to the hardware's MTU - max_protohdr.  max_protohdr is
2968  *   cut from the hardware's MTU mainly bacause a full TCP segment's size
2969  *   is usually less than hardware's MTU.
2970  * - ifsq_ifstart_schedule() is not pending on the current CPU and
2971  *   ifnet.if_start subqueue interlock (ifaltq_subq.ifsq_started) is not
2972  *   released.
2973  * - The if_start_rollup(), which is registered as low priority netisr
2974  *   rollup function, is called; probably because no more work is pending
2975  *   for netisr.
2976  *
2977  * NOTE:
2978  * Currently subqueue packet staging is only performed in netisr threads.
2979  */
2980 int
2981 ifq_dispatch(struct ifnet *ifp, struct mbuf *m, struct altq_pktattr *pa)
2982 {
2983         struct ifaltq *ifq = &ifp->if_snd;
2984         struct ifaltq_subque *ifsq;
2985         int error, start = 0, len, mcast = 0, avoid_start = 0;
2986         struct ifsubq_stage_head *head = NULL;
2987         struct ifsubq_stage *stage = NULL;
2988         struct globaldata *gd = mycpu;
2989         struct thread *td = gd->gd_curthread;
2990
2991         crit_enter_quick(td);
2992
2993         ifsq = ifq_map_subq(ifq, gd->gd_cpuid);
2994         ASSERT_ALTQ_SQ_NOT_SERIALIZED_HW(ifsq);
2995
2996         len = m->m_pkthdr.len;
2997         if (m->m_flags & M_MCAST)
2998                 mcast = 1;
2999
3000         if (td->td_type == TD_TYPE_NETISR) {
3001                 head = &ifsubq_stage_heads[mycpuid];
3002                 stage = ifsq_get_stage(ifsq, mycpuid);
3003
3004                 stage->stg_cnt++;
3005                 stage->stg_len += len;
3006                 if (stage->stg_cnt < ifsq_stage_cntmax &&
3007                     stage->stg_len < (ifp->if_mtu - max_protohdr))
3008                         avoid_start = 1;
3009         }
3010
3011         ALTQ_SQ_LOCK(ifsq);
3012         error = ifsq_enqueue_locked(ifsq, m, pa);
3013         if (error) {
3014                 IFNET_STAT_INC(ifp, oqdrops, 1);
3015                 if (!ifsq_data_ready(ifsq)) {
3016                         ALTQ_SQ_UNLOCK(ifsq);
3017                         crit_exit_quick(td);
3018                         return error;
3019                 }
3020                 avoid_start = 0;
3021         }
3022         if (!ifsq_is_started(ifsq)) {
3023                 if (avoid_start) {
3024                         ALTQ_SQ_UNLOCK(ifsq);
3025
3026                         KKASSERT(!error);
3027                         if ((stage->stg_flags & IFSQ_STAGE_FLAG_QUED) == 0)
3028                                 ifsq_stage_insert(head, stage);
3029
3030                         IFNET_STAT_INC(ifp, obytes, len);
3031                         if (mcast)
3032                                 IFNET_STAT_INC(ifp, omcasts, 1);
3033                         crit_exit_quick(td);
3034                         return error;
3035                 }
3036
3037                 /*
3038                  * Hold the subqueue interlock of ifnet.if_start
3039                  */
3040                 ifsq_set_started(ifsq);
3041                 start = 1;
3042         }
3043         ALTQ_SQ_UNLOCK(ifsq);
3044
3045         if (!error) {
3046                 IFNET_STAT_INC(ifp, obytes, len);
3047                 if (mcast)
3048                         IFNET_STAT_INC(ifp, omcasts, 1);
3049         }
3050
3051         if (stage != NULL) {
3052                 if (!start && (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)) {
3053                         KKASSERT(stage->stg_flags & IFSQ_STAGE_FLAG_QUED);
3054                         if (!avoid_start) {
3055                                 ifsq_stage_remove(head, stage);
3056                                 ifsq_ifstart_schedule(ifsq, 1);
3057                         }
3058                         crit_exit_quick(td);
3059                         return error;
3060                 }
3061
3062                 if (stage->stg_flags & IFSQ_STAGE_FLAG_QUED) {
3063                         ifsq_stage_remove(head, stage);
3064                 } else {
3065                         stage->stg_cnt = 0;
3066                         stage->stg_len = 0;
3067                 }
3068         }
3069
3070         if (!start) {
3071                 crit_exit_quick(td);
3072                 return error;
3073         }
3074
3075         ifsq_ifstart_try(ifsq, 0);
3076
3077         crit_exit_quick(td);
3078         return error;
3079 }
3080
3081 void *
3082 ifa_create(int size)
3083 {
3084         struct ifaddr *ifa;
3085         int i;
3086
3087         KASSERT(size >= sizeof(*ifa), ("ifaddr size too small"));
3088
3089         ifa = kmalloc(size, M_IFADDR, M_INTWAIT | M_ZERO);
3090         ifa->ifa_containers =
3091             kmalloc_cachealign(ncpus * sizeof(struct ifaddr_container),
3092                 M_IFADDR, M_INTWAIT | M_ZERO);
3093
3094         ifa->ifa_ncnt = ncpus;
3095         for (i = 0; i < ncpus; ++i) {
3096                 struct ifaddr_container *ifac = &ifa->ifa_containers[i];
3097
3098                 ifac->ifa_magic = IFA_CONTAINER_MAGIC;
3099                 ifac->ifa = ifa;
3100                 ifac->ifa_refcnt = 1;
3101         }
3102 #ifdef IFADDR_DEBUG
3103         kprintf("alloc ifa %p %d\n", ifa, size);
3104 #endif
3105         return ifa;
3106 }
3107
3108 void
3109 ifac_free(struct ifaddr_container *ifac, int cpu_id)
3110 {
3111         struct ifaddr *ifa = ifac->ifa;
3112
3113         KKASSERT(ifac->ifa_magic == IFA_CONTAINER_MAGIC);
3114         KKASSERT(ifac->ifa_refcnt == 0);
3115         KASSERT(ifac->ifa_listmask == 0,
3116                 ("ifa is still on %#x lists", ifac->ifa_listmask));
3117
3118         ifac->ifa_magic = IFA_CONTAINER_DEAD;
3119
3120 #ifdef IFADDR_DEBUG_VERBOSE
3121         kprintf("try free ifa %p cpu_id %d\n", ifac->ifa, cpu_id);
3122 #endif
3123
3124         KASSERT(ifa->ifa_ncnt > 0 && ifa->ifa_ncnt <= ncpus,
3125                 ("invalid # of ifac, %d", ifa->ifa_ncnt));
3126         if (atomic_fetchadd_int(&ifa->ifa_ncnt, -1) == 1) {
3127 #ifdef IFADDR_DEBUG
3128                 kprintf("free ifa %p\n", ifa);
3129 #endif
3130                 kfree(ifa->ifa_containers, M_IFADDR);
3131                 kfree(ifa, M_IFADDR);
3132         }
3133 }
3134
3135 static void
3136 ifa_iflink_dispatch(netmsg_t nmsg)
3137 {
3138         struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
3139         struct ifaddr *ifa = msg->ifa;
3140         struct ifnet *ifp = msg->ifp;
3141         int cpu = mycpuid;
3142         struct ifaddr_container *ifac;
3143
3144         crit_enter();
3145
3146         ifac = &ifa->ifa_containers[cpu];
3147         ASSERT_IFAC_VALID(ifac);
3148         KASSERT((ifac->ifa_listmask & IFA_LIST_IFADDRHEAD) == 0,
3149                 ("ifaddr is on if_addrheads"));
3150
3151         ifac->ifa_listmask |= IFA_LIST_IFADDRHEAD;
3152         if (msg->tail)
3153                 TAILQ_INSERT_TAIL(&ifp->if_addrheads[cpu], ifac, ifa_link);
3154         else
3155                 TAILQ_INSERT_HEAD(&ifp->if_addrheads[cpu], ifac, ifa_link);
3156
3157         crit_exit();
3158
3159         ifa_forwardmsg(&nmsg->lmsg, cpu + 1);
3160 }
3161
3162 void
3163 ifa_iflink(struct ifaddr *ifa, struct ifnet *ifp, int tail)
3164 {
3165         struct netmsg_ifaddr msg;
3166
3167         netmsg_init(&msg.base, NULL, &curthread->td_msgport,
3168                     0, ifa_iflink_dispatch);
3169         msg.ifa = ifa;
3170         msg.ifp = ifp;
3171         msg.tail = tail;
3172
3173         ifa_domsg(&msg.base.lmsg, 0);
3174 }
3175
3176 static void
3177 ifa_ifunlink_dispatch(netmsg_t nmsg)
3178 {
3179         struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
3180         struct ifaddr *ifa = msg->ifa;
3181         struct ifnet *ifp = msg->ifp;
3182         int cpu = mycpuid;
3183         struct ifaddr_container *ifac;
3184
3185         crit_enter();
3186
3187         ifac = &ifa->ifa_containers[cpu];
3188         ASSERT_IFAC_VALID(ifac);
3189         KASSERT(ifac->ifa_listmask & IFA_LIST_IFADDRHEAD,
3190                 ("ifaddr is not on if_addrhead"));
3191
3192         TAILQ_REMOVE(&ifp->if_addrheads[cpu], ifac, ifa_link);
3193         ifac->ifa_listmask &= ~IFA_LIST_IFADDRHEAD;
3194
3195         crit_exit();
3196
3197         ifa_forwardmsg(&nmsg->lmsg, cpu + 1);
3198 }
3199
3200 void
3201 ifa_ifunlink(struct ifaddr *ifa, struct ifnet *ifp)
3202 {
3203         struct netmsg_ifaddr msg;
3204
3205         netmsg_init(&msg.base, NULL, &curthread->td_msgport,
3206                     0, ifa_ifunlink_dispatch);
3207         msg.ifa = ifa;
3208         msg.ifp = ifp;
3209
3210         ifa_domsg(&msg.base.lmsg, 0);
3211 }
3212
3213 static void
3214 ifa_destroy_dispatch(netmsg_t nmsg)
3215 {
3216         struct netmsg_ifaddr *msg = (struct netmsg_ifaddr *)nmsg;
3217
3218         IFAFREE(msg->ifa);
3219         ifa_forwardmsg(&nmsg->lmsg, mycpuid + 1);
3220 }
3221
3222 void
3223 ifa_destroy(struct ifaddr *ifa)
3224 {
3225         struct netmsg_ifaddr msg;
3226
3227         netmsg_init(&msg.base, NULL, &curthread->td_msgport,
3228                     0, ifa_destroy_dispatch);
3229         msg.ifa = ifa;
3230
3231         ifa_domsg(&msg.base.lmsg, 0);
3232 }
3233
3234 struct lwkt_port *
3235 ifnet_portfn(int cpu)
3236 {
3237         return &ifnet_threads[cpu]->td_msgport;
3238 }
3239
3240 void
3241 ifnet_forwardmsg(struct lwkt_msg *lmsg, int next_cpu)
3242 {
3243         KKASSERT(next_cpu > mycpuid && next_cpu <= ncpus);
3244
3245         if (next_cpu < ncpus)
3246                 lwkt_forwardmsg(ifnet_portfn(next_cpu), lmsg);
3247         else
3248                 lwkt_replymsg(lmsg, 0);
3249 }
3250
3251 int
3252 ifnet_domsg(struct lwkt_msg *lmsg, int cpu)
3253 {
3254         KKASSERT(cpu < ncpus);
3255         return lwkt_domsg(ifnet_portfn(cpu), lmsg, 0);
3256 }
3257
3258 void
3259 ifnet_sendmsg(struct lwkt_msg *lmsg, int cpu)
3260 {
3261         KKASSERT(cpu < ncpus);
3262         lwkt_sendmsg(ifnet_portfn(cpu), lmsg);
3263 }
3264
3265 /*
3266  * Generic netmsg service loop.  Some protocols may roll their own but all
3267  * must do the basic command dispatch function call done here.
3268  */
3269 static void
3270 ifnet_service_loop(void *arg __unused)
3271 {
3272         netmsg_t msg;
3273
3274         while ((msg = lwkt_waitport(&curthread->td_msgport, 0))) {
3275                 KASSERT(msg->base.nm_dispatch, ("ifnet_service: badmsg"));
3276                 msg->base.nm_dispatch(msg);
3277         }
3278 }
3279
3280 static void
3281 if_start_rollup(void)
3282 {
3283         struct ifsubq_stage_head *head = &ifsubq_stage_heads[mycpuid];
3284         struct ifsubq_stage *stage;
3285
3286         crit_enter();
3287
3288         while ((stage = TAILQ_FIRST(&head->stg_head)) != NULL) {
3289                 struct ifaltq_subque *ifsq = stage->stg_subq;
3290                 int is_sched = 0;
3291
3292                 if (stage->stg_flags & IFSQ_STAGE_FLAG_SCHED)
3293                         is_sched = 1;
3294                 ifsq_stage_remove(head, stage);
3295
3296                 if (is_sched) {
3297                         ifsq_ifstart_schedule(ifsq, 1);
3298                 } else {
3299                         int start = 0;
3300
3301                         ALTQ_SQ_LOCK(ifsq);
3302                         if (!ifsq_is_started(ifsq)) {
3303                                 /*
3304                                  * Hold the subqueue interlock of
3305                                  * ifnet.if_start
3306                                  */
3307                                 ifsq_set_started(ifsq);
3308                                 start = 1;
3309                         }
3310                         ALTQ_SQ_UNLOCK(ifsq);
3311
3312                         if (start)
3313                                 ifsq_ifstart_try(ifsq, 1);
3314                 }
3315                 KKASSERT((stage->stg_flags &
3316                     (IFSQ_STAGE_FLAG_QUED | IFSQ_STAGE_FLAG_SCHED)) == 0);
3317         }
3318
3319         crit_exit();
3320 }
3321
3322 static void
3323 ifnetinit(void *dummy __unused)
3324 {
3325         int i;
3326
3327         for (i = 0; i < ncpus; ++i) {
3328                 struct thread **thr = &ifnet_threads[i];
3329
3330                 lwkt_create(ifnet_service_loop, NULL, thr, NULL,
3331                             TDF_NOSTART|TDF_FORCE_SPINPORT|TDF_FIXEDCPU,
3332                             i, "ifnet %d", i);
3333                 netmsg_service_port_init(&(*thr)->td_msgport);
3334                 lwkt_schedule(*thr);
3335         }
3336
3337         for (i = 0; i < ncpus; ++i)
3338                 TAILQ_INIT(&ifsubq_stage_heads[i].stg_head);
3339         netisr_register_rollup(if_start_rollup, NETISR_ROLLUP_PRIO_IFSTART);
3340 }
3341
3342 void
3343 if_register_com_alloc(u_char type,
3344     if_com_alloc_t *a, if_com_free_t *f)
3345 {
3346
3347         KASSERT(if_com_alloc[type] == NULL,
3348             ("if_register_com_alloc: %d already registered", type));
3349         KASSERT(if_com_free[type] == NULL,
3350             ("if_register_com_alloc: %d free already registered", type));
3351
3352         if_com_alloc[type] = a;
3353         if_com_free[type] = f;
3354 }
3355
3356 void
3357 if_deregister_com_alloc(u_char type)
3358 {
3359
3360         KASSERT(if_com_alloc[type] != NULL,
3361             ("if_deregister_com_alloc: %d not registered", type));
3362         KASSERT(if_com_free[type] != NULL,
3363             ("if_deregister_com_alloc: %d free not registered", type));
3364         if_com_alloc[type] = NULL;
3365         if_com_free[type] = NULL;
3366 }
3367
3368 int
3369 if_ring_count2(int cnt, int cnt_max)
3370 {
3371         int shift = 0;
3372
3373         KASSERT(cnt_max >= 1 && powerof2(cnt_max),
3374             ("invalid ring count max %d", cnt_max));
3375
3376         if (cnt <= 0)
3377                 cnt = cnt_max;
3378         if (cnt > ncpus2)
3379                 cnt = ncpus2;
3380         if (cnt > cnt_max)
3381                 cnt = cnt_max;
3382
3383         while ((1 << (shift + 1)) <= cnt)
3384                 ++shift;
3385         cnt = 1 << shift;
3386
3387         KASSERT(cnt >= 1 && cnt <= ncpus2 && cnt <= cnt_max,
3388             ("calculate cnt %d, ncpus2 %d, cnt max %d",
3389              cnt, ncpus2, cnt_max));
3390         return cnt;
3391 }
3392
3393 void
3394 ifq_set_maxlen(struct ifaltq *ifq, int len)
3395 {
3396         ifq->altq_maxlen = len + (ncpus * ifsq_stage_cntmax);
3397 }
3398
3399 int
3400 ifq_mapsubq_default(struct ifaltq *ifq __unused, int cpuid __unused)
3401 {
3402         return ALTQ_SUBQ_INDEX_DEFAULT;
3403 }
3404
3405 int
3406 ifq_mapsubq_mask(struct ifaltq *ifq, int cpuid)
3407 {
3408         return (cpuid & ifq->altq_subq_mask);
3409 }
3410
3411 static void
3412 ifsq_watchdog(void *arg)
3413 {
3414         struct ifsubq_watchdog *wd = arg;
3415         struct ifnet *ifp;
3416
3417         if (__predict_true(wd->wd_timer == 0 || --wd->wd_timer))
3418                 goto done;
3419
3420         ifp = ifsq_get_ifp(wd->wd_subq);
3421         if (ifnet_tryserialize_all(ifp)) {
3422                 wd->wd_watchdog(wd->wd_subq);
3423                 ifnet_deserialize_all(ifp);
3424         } else {
3425                 /* try again next timeout */
3426                 wd->wd_timer = 1;
3427         }
3428 done:
3429         ifsq_watchdog_reset(wd);
3430 }
3431
3432 static void
3433 ifsq_watchdog_reset(struct ifsubq_watchdog *wd)
3434 {
3435         callout_reset_bycpu(&wd->wd_callout, hz, ifsq_watchdog, wd,
3436             ifsq_get_cpuid(wd->wd_subq));
3437 }
3438
3439 void
3440 ifsq_watchdog_init(struct ifsubq_watchdog *wd, struct ifaltq_subque *ifsq,
3441     ifsq_watchdog_t watchdog)
3442 {
3443         callout_init_mp(&wd->wd_callout);
3444         wd->wd_timer = 0;
3445         wd->wd_subq = ifsq;
3446         wd->wd_watchdog = watchdog;
3447 }
3448
3449 void
3450 ifsq_watchdog_start(struct ifsubq_watchdog *wd)
3451 {
3452         wd->wd_timer = 0;
3453         ifsq_watchdog_reset(wd);
3454 }
3455
3456 void
3457 ifsq_watchdog_stop(struct ifsubq_watchdog *wd)
3458 {
3459         wd->wd_timer = 0;
3460         callout_stop(&wd->wd_callout);
3461 }
3462
3463 void
3464 ifnet_lock(void)
3465 {
3466         KASSERT(curthread->td_type != TD_TYPE_NETISR,
3467             ("try holding ifnet lock in netisr"));
3468         mtx_lock(&ifnet_mtx);
3469 }
3470
3471 void
3472 ifnet_unlock(void)
3473 {
3474         KASSERT(curthread->td_type != TD_TYPE_NETISR,
3475             ("try holding ifnet lock in netisr"));
3476         mtx_unlock(&ifnet_mtx);
3477 }
3478
3479 static struct ifnet_array *
3480 ifnet_array_alloc(int count)
3481 {
3482         struct ifnet_array *arr;
3483
3484         arr = kmalloc(__offsetof(struct ifnet_array, ifnet_arr[count]),
3485             M_IFNET, M_WAITOK);
3486         arr->ifnet_count = count;
3487
3488         return arr;
3489 }
3490
3491 static void
3492 ifnet_array_free(struct ifnet_array *arr)
3493 {
3494         if (arr == &ifnet_array0)
3495                 return;
3496         kfree(arr, M_IFNET);
3497 }
3498
3499 static struct ifnet_array *
3500 ifnet_array_add(struct ifnet *ifp, const struct ifnet_array *old_arr)
3501 {
3502         struct ifnet_array *arr;
3503         int count, i;
3504
3505         KASSERT(old_arr->ifnet_count >= 0,
3506             ("invalid ifnet array count %d", old_arr->ifnet_count));
3507         count = old_arr->ifnet_count + 1;
3508         arr = ifnet_array_alloc(count);
3509
3510         /*
3511          * Save the old ifnet array and append this ifp to the end of
3512          * the new ifnet array.
3513          */
3514         for (i = 0; i < old_arr->ifnet_count; ++i) {
3515                 KASSERT(old_arr->ifnet_arr[i] != ifp,
3516                     ("%s is already in ifnet array", ifp->if_xname));
3517                 arr->ifnet_arr[i] = old_arr->ifnet_arr[i];
3518         }
3519         KASSERT(i == count - 1,
3520             ("add %s, ifnet array index mismatch, should be %d, but got %d",
3521              ifp->if_xname, count - 1, i));
3522         arr->ifnet_arr[i] = ifp;
3523
3524         return arr;
3525 }
3526
3527 static struct ifnet_array *
3528 ifnet_array_del(struct ifnet *ifp, const struct ifnet_array *old_arr)
3529 {
3530         struct ifnet_array *arr;
3531         int count, i, idx, found = 0;
3532
3533         KASSERT(old_arr->ifnet_count > 0,
3534             ("invalid ifnet array count %d", old_arr->ifnet_count));
3535         count = old_arr->ifnet_count - 1;
3536         arr = ifnet_array_alloc(count);
3537
3538         /*
3539          * Save the old ifnet array, but skip this ifp.
3540          */
3541         idx = 0;
3542         for (i = 0; i < old_arr->ifnet_count; ++i) {
3543                 if (old_arr->ifnet_arr[i] == ifp) {
3544                         KASSERT(!found,
3545                             ("dup %s is in ifnet array", ifp->if_xname));
3546                         found = 1;
3547                         continue;
3548                 }
3549                 KASSERT(idx < count,
3550                     ("invalid ifnet array index %d, count %d", idx, count));
3551                 arr->ifnet_arr[idx] = old_arr->ifnet_arr[i];
3552                 ++idx;
3553         }
3554         KASSERT(found, ("%s is not in ifnet array", ifp->if_xname));
3555         KASSERT(idx == count,
3556             ("del %s, ifnet array count mismatch, should be %d, but got %d ",
3557              ifp->if_xname, count, idx));
3558
3559         return arr;
3560 }
3561
3562 const struct ifnet_array *
3563 ifnet_array_get(void)
3564 {
3565         KASSERT(curthread->td_type == TD_TYPE_NETISR, ("not in netisr"));
3566         return ifnet_array;
3567 }
3568
3569 int
3570 ifnet_array_isempty(void)
3571 {
3572         KASSERT(curthread->td_type == TD_TYPE_NETISR, ("not in netisr"));
3573         if (ifnet_array->ifnet_count == 0)
3574                 return 1;
3575         else
3576                 return 0;
3577 }
3578
3579 void
3580 ifa_marker_init(struct ifaddr_marker *mark, struct ifnet *ifp)
3581 {
3582         struct ifaddr *ifa;
3583
3584         memset(mark, 0, sizeof(*mark));
3585         ifa = &mark->ifa;
3586
3587         mark->ifac.ifa = ifa;
3588
3589         ifa->ifa_addr = &mark->addr;
3590         ifa->ifa_dstaddr = &mark->dstaddr;
3591         ifa->ifa_netmask = &mark->netmask;
3592         ifa->ifa_ifp = ifp;
3593 }