Initial import of binutils 2.27 on vendor branch
[dragonfly.git] / contrib / binutils-2.27 / gold / mips.cc
1 // mips.cc -- mips target support for gold.
2
3 // Copyright (C) 2011-2016 Free Software Foundation, Inc.
4 // Written by Sasa Stankovic <sasa.stankovic@imgtec.com>
5 //        and Aleksandar Simeonov <aleksandar.simeonov@rt-rk.com>.
6 // This file contains borrowed and adapted code from bfd/elfxx-mips.c.
7
8 // This file is part of gold.
9
10 // This program is free software; you can redistribute it and/or modify
11 // it under the terms of the GNU General Public License as published by
12 // the Free Software Foundation; either version 3 of the License, or
13 // (at your option) any later version.
14
15 // This program is distributed in the hope that it will be useful,
16 // but WITHOUT ANY WARRANTY; without even the implied warranty of
17 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 // GNU General Public License for more details.
19
20 // You should have received a copy of the GNU General Public License
21 // along with this program; if not, write to the Free Software
22 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
23 // MA 02110-1301, USA.
24
25 #include "gold.h"
26
27 #include <algorithm>
28 #include <set>
29 #include <sstream>
30 #include "demangle.h"
31
32 #include "elfcpp.h"
33 #include "parameters.h"
34 #include "reloc.h"
35 #include "mips.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "layout.h"
39 #include "output.h"
40 #include "copy-relocs.h"
41 #include "target.h"
42 #include "target-reloc.h"
43 #include "target-select.h"
44 #include "tls.h"
45 #include "errors.h"
46 #include "gc.h"
47 #include "attributes.h"
48 #include "nacl.h"
49
50 namespace
51 {
52 using namespace gold;
53
54 template<int size, bool big_endian>
55 class Mips_output_data_plt;
56
57 template<int size, bool big_endian>
58 class Mips_output_data_got;
59
60 template<int size, bool big_endian>
61 class Target_mips;
62
63 template<int size, bool big_endian>
64 class Mips_output_section_reginfo;
65
66 template<int size, bool big_endian>
67 class Mips_output_data_la25_stub;
68
69 template<int size, bool big_endian>
70 class Mips_output_data_mips_stubs;
71
72 template<int size>
73 class Mips_symbol;
74
75 template<int size, bool big_endian>
76 class Mips_got_info;
77
78 template<int size, bool big_endian>
79 class Mips_relobj;
80
81 class Mips16_stub_section_base;
82
83 template<int size, bool big_endian>
84 class Mips16_stub_section;
85
86 // The ABI says that every symbol used by dynamic relocations must have
87 // a global GOT entry.  Among other things, this provides the dynamic
88 // linker with a free, directly-indexed cache.  The GOT can therefore
89 // contain symbols that are not referenced by GOT relocations themselves
90 // (in other words, it may have symbols that are not referenced by things
91 // like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
92
93 // GOT relocations are less likely to overflow if we put the associated
94 // GOT entries towards the beginning.  We therefore divide the global
95 // GOT entries into two areas: "normal" and "reloc-only".  Entries in
96 // the first area can be used for both dynamic relocations and GP-relative
97 // accesses, while those in the "reloc-only" area are for dynamic
98 // relocations only.
99
100 // These GGA_* ("Global GOT Area") values are organised so that lower
101 // values are more general than higher values.  Also, non-GGA_NONE
102 // values are ordered by the position of the area in the GOT.
103
104 enum Global_got_area
105 {
106   GGA_NORMAL = 0,
107   GGA_RELOC_ONLY = 1,
108   GGA_NONE = 2
109 };
110
111 // The types of GOT entries needed for this platform.
112 // These values are exposed to the ABI in an incremental link.
113 // Do not renumber existing values without changing the version
114 // number of the .gnu_incremental_inputs section.
115 enum Got_type
116 {
117   GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
118   GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
119   GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
120
121   // GOT entries for multi-GOT. We support up to 1024 GOTs in multi-GOT links.
122   GOT_TYPE_STANDARD_MULTIGOT = 3,
123   GOT_TYPE_TLS_OFFSET_MULTIGOT = GOT_TYPE_STANDARD_MULTIGOT + 1024,
124   GOT_TYPE_TLS_PAIR_MULTIGOT = GOT_TYPE_TLS_OFFSET_MULTIGOT + 1024
125 };
126
127 // TLS type of GOT entry.
128 enum Got_tls_type
129 {
130   GOT_TLS_NONE = 0,
131   GOT_TLS_GD = 1,
132   GOT_TLS_LDM = 2,
133   GOT_TLS_IE = 4
134 };
135
136 // Values found in the r_ssym field of a relocation entry.
137 enum Special_relocation_symbol
138 {
139   RSS_UNDEF = 0,    // None - value is zero.
140   RSS_GP = 1,       // Value of GP.
141   RSS_GP0 = 2,      // Value of GP in object being relocated.
142   RSS_LOC = 3       // Address of location being relocated.
143 };
144
145 // Whether the section is readonly.
146 static inline bool
147 is_readonly_section(Output_section* output_section)
148 {
149   elfcpp::Elf_Xword section_flags = output_section->flags();
150   elfcpp::Elf_Word section_type = output_section->type();
151
152   if (section_type == elfcpp::SHT_NOBITS)
153     return false;
154
155   if (section_flags & elfcpp::SHF_WRITE)
156     return false;
157
158   return true;
159 }
160
161 // Return TRUE if a relocation of type R_TYPE from OBJECT might
162 // require an la25 stub.  See also local_pic_function, which determines
163 // whether the destination function ever requires a stub.
164 template<int size, bool big_endian>
165 static inline bool
166 relocation_needs_la25_stub(Mips_relobj<size, big_endian>* object,
167                            unsigned int r_type, bool target_is_16_bit_code)
168 {
169   // We specifically ignore branches and jumps from EF_PIC objects,
170   // where the onus is on the compiler or programmer to perform any
171   // necessary initialization of $25.  Sometimes such initialization
172   // is unnecessary; for example, -mno-shared functions do not use
173   // the incoming value of $25, and may therefore be called directly.
174   if (object->is_pic())
175     return false;
176
177   switch (r_type)
178     {
179     case elfcpp::R_MIPS_26:
180     case elfcpp::R_MIPS_PC16:
181     case elfcpp::R_MIPS_PC21_S2:
182     case elfcpp::R_MIPS_PC26_S2:
183     case elfcpp::R_MICROMIPS_26_S1:
184     case elfcpp::R_MICROMIPS_PC7_S1:
185     case elfcpp::R_MICROMIPS_PC10_S1:
186     case elfcpp::R_MICROMIPS_PC16_S1:
187     case elfcpp::R_MICROMIPS_PC23_S2:
188       return true;
189
190     case elfcpp::R_MIPS16_26:
191       return !target_is_16_bit_code;
192
193     default:
194       return false;
195     }
196 }
197
198 // Return true if SYM is a locally-defined PIC function, in the sense
199 // that it or its fn_stub might need $25 to be valid on entry.
200 // Note that MIPS16 functions set up $gp using PC-relative instructions,
201 // so they themselves never need $25 to be valid.  Only non-MIPS16
202 // entry points are of interest here.
203 template<int size, bool big_endian>
204 static inline bool
205 local_pic_function(Mips_symbol<size>* sym)
206 {
207   bool def_regular = (sym->source() == Symbol::FROM_OBJECT
208                       && !sym->object()->is_dynamic()
209                       && !sym->is_undefined());
210
211   if (sym->is_defined() && def_regular)
212     {
213       Mips_relobj<size, big_endian>* object =
214         static_cast<Mips_relobj<size, big_endian>*>(sym->object());
215
216       if ((object->is_pic() || sym->is_pic())
217           && (!sym->is_mips16()
218               || (sym->has_mips16_fn_stub() && sym->need_fn_stub())))
219         return true;
220     }
221   return false;
222 }
223
224 static inline bool
225 hi16_reloc(int r_type)
226 {
227   return (r_type == elfcpp::R_MIPS_HI16
228           || r_type == elfcpp::R_MIPS16_HI16
229           || r_type == elfcpp::R_MICROMIPS_HI16
230           || r_type == elfcpp::R_MIPS_PCHI16);
231 }
232
233 static inline bool
234 lo16_reloc(int r_type)
235 {
236   return (r_type == elfcpp::R_MIPS_LO16
237           || r_type == elfcpp::R_MIPS16_LO16
238           || r_type == elfcpp::R_MICROMIPS_LO16
239           || r_type == elfcpp::R_MIPS_PCLO16);
240 }
241
242 static inline bool
243 got16_reloc(unsigned int r_type)
244 {
245   return (r_type == elfcpp::R_MIPS_GOT16
246           || r_type == elfcpp::R_MIPS16_GOT16
247           || r_type == elfcpp::R_MICROMIPS_GOT16);
248 }
249
250 static inline bool
251 call_lo16_reloc(unsigned int r_type)
252 {
253   return (r_type == elfcpp::R_MIPS_CALL_LO16
254           || r_type == elfcpp::R_MICROMIPS_CALL_LO16);
255 }
256
257 static inline bool
258 got_lo16_reloc(unsigned int r_type)
259 {
260   return (r_type == elfcpp::R_MIPS_GOT_LO16
261           || r_type == elfcpp::R_MICROMIPS_GOT_LO16);
262 }
263
264 static inline bool
265 eh_reloc(unsigned int r_type)
266 {
267   return (r_type == elfcpp::R_MIPS_EH);
268 }
269
270 static inline bool
271 got_disp_reloc(unsigned int r_type)
272 {
273   return (r_type == elfcpp::R_MIPS_GOT_DISP
274           || r_type == elfcpp::R_MICROMIPS_GOT_DISP);
275 }
276
277 static inline bool
278 got_page_reloc(unsigned int r_type)
279 {
280   return (r_type == elfcpp::R_MIPS_GOT_PAGE
281           || r_type == elfcpp::R_MICROMIPS_GOT_PAGE);
282 }
283
284 static inline bool
285 tls_gd_reloc(unsigned int r_type)
286 {
287   return (r_type == elfcpp::R_MIPS_TLS_GD
288           || r_type == elfcpp::R_MIPS16_TLS_GD
289           || r_type == elfcpp::R_MICROMIPS_TLS_GD);
290 }
291
292 static inline bool
293 tls_gottprel_reloc(unsigned int r_type)
294 {
295   return (r_type == elfcpp::R_MIPS_TLS_GOTTPREL
296           || r_type == elfcpp::R_MIPS16_TLS_GOTTPREL
297           || r_type == elfcpp::R_MICROMIPS_TLS_GOTTPREL);
298 }
299
300 static inline bool
301 tls_ldm_reloc(unsigned int r_type)
302 {
303   return (r_type == elfcpp::R_MIPS_TLS_LDM
304           || r_type == elfcpp::R_MIPS16_TLS_LDM
305           || r_type == elfcpp::R_MICROMIPS_TLS_LDM);
306 }
307
308 static inline bool
309 mips16_call_reloc(unsigned int r_type)
310 {
311   return (r_type == elfcpp::R_MIPS16_26
312           || r_type == elfcpp::R_MIPS16_CALL16);
313 }
314
315 static inline bool
316 jal_reloc(unsigned int r_type)
317 {
318   return (r_type == elfcpp::R_MIPS_26
319           || r_type == elfcpp::R_MIPS16_26
320           || r_type == elfcpp::R_MICROMIPS_26_S1);
321 }
322
323 static inline bool
324 micromips_branch_reloc(unsigned int r_type)
325 {
326   return (r_type == elfcpp::R_MICROMIPS_26_S1
327           || r_type == elfcpp::R_MICROMIPS_PC16_S1
328           || r_type == elfcpp::R_MICROMIPS_PC10_S1
329           || r_type == elfcpp::R_MICROMIPS_PC7_S1);
330 }
331
332 // Check if R_TYPE is a MIPS16 reloc.
333 static inline bool
334 mips16_reloc(unsigned int r_type)
335 {
336   switch (r_type)
337     {
338     case elfcpp::R_MIPS16_26:
339     case elfcpp::R_MIPS16_GPREL:
340     case elfcpp::R_MIPS16_GOT16:
341     case elfcpp::R_MIPS16_CALL16:
342     case elfcpp::R_MIPS16_HI16:
343     case elfcpp::R_MIPS16_LO16:
344     case elfcpp::R_MIPS16_TLS_GD:
345     case elfcpp::R_MIPS16_TLS_LDM:
346     case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
347     case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
348     case elfcpp::R_MIPS16_TLS_GOTTPREL:
349     case elfcpp::R_MIPS16_TLS_TPREL_HI16:
350     case elfcpp::R_MIPS16_TLS_TPREL_LO16:
351       return true;
352
353     default:
354       return false;
355     }
356 }
357
358 // Check if R_TYPE is a microMIPS reloc.
359 static inline bool
360 micromips_reloc(unsigned int r_type)
361 {
362   switch (r_type)
363     {
364     case elfcpp::R_MICROMIPS_26_S1:
365     case elfcpp::R_MICROMIPS_HI16:
366     case elfcpp::R_MICROMIPS_LO16:
367     case elfcpp::R_MICROMIPS_GPREL16:
368     case elfcpp::R_MICROMIPS_LITERAL:
369     case elfcpp::R_MICROMIPS_GOT16:
370     case elfcpp::R_MICROMIPS_PC7_S1:
371     case elfcpp::R_MICROMIPS_PC10_S1:
372     case elfcpp::R_MICROMIPS_PC16_S1:
373     case elfcpp::R_MICROMIPS_CALL16:
374     case elfcpp::R_MICROMIPS_GOT_DISP:
375     case elfcpp::R_MICROMIPS_GOT_PAGE:
376     case elfcpp::R_MICROMIPS_GOT_OFST:
377     case elfcpp::R_MICROMIPS_GOT_HI16:
378     case elfcpp::R_MICROMIPS_GOT_LO16:
379     case elfcpp::R_MICROMIPS_SUB:
380     case elfcpp::R_MICROMIPS_HIGHER:
381     case elfcpp::R_MICROMIPS_HIGHEST:
382     case elfcpp::R_MICROMIPS_CALL_HI16:
383     case elfcpp::R_MICROMIPS_CALL_LO16:
384     case elfcpp::R_MICROMIPS_SCN_DISP:
385     case elfcpp::R_MICROMIPS_JALR:
386     case elfcpp::R_MICROMIPS_HI0_LO16:
387     case elfcpp::R_MICROMIPS_TLS_GD:
388     case elfcpp::R_MICROMIPS_TLS_LDM:
389     case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
390     case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
391     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
392     case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
393     case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
394     case elfcpp::R_MICROMIPS_GPREL7_S2:
395     case elfcpp::R_MICROMIPS_PC23_S2:
396       return true;
397
398     default:
399       return false;
400     }
401 }
402
403 static inline bool
404 is_matching_lo16_reloc(unsigned int high_reloc, unsigned int lo16_reloc)
405 {
406   switch (high_reloc)
407     {
408     case elfcpp::R_MIPS_HI16:
409     case elfcpp::R_MIPS_GOT16:
410       return lo16_reloc == elfcpp::R_MIPS_LO16;
411     case elfcpp::R_MIPS_PCHI16:
412       return lo16_reloc == elfcpp::R_MIPS_PCLO16;
413     case elfcpp::R_MIPS16_HI16:
414     case elfcpp::R_MIPS16_GOT16:
415       return lo16_reloc == elfcpp::R_MIPS16_LO16;
416     case elfcpp::R_MICROMIPS_HI16:
417     case elfcpp::R_MICROMIPS_GOT16:
418       return lo16_reloc == elfcpp::R_MICROMIPS_LO16;
419     default:
420       return false;
421     }
422 }
423
424 // This class is used to hold information about one GOT entry.
425 // There are three types of entry:
426 //
427 //    (1) a SYMBOL + OFFSET address, where SYMBOL is local to an input object
428 //          (object != NULL, symndx >= 0, tls_type != GOT_TLS_LDM)
429 //    (2) a SYMBOL address, where SYMBOL is not local to an input object
430 //          (sym != NULL, symndx == -1)
431 //    (3) a TLS LDM slot (there's only one of these per GOT.)
432 //          (object != NULL, symndx == 0, tls_type == GOT_TLS_LDM)
433
434 template<int size, bool big_endian>
435 class Mips_got_entry
436 {
437   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
438
439  public:
440   Mips_got_entry(Mips_relobj<size, big_endian>* object, unsigned int symndx,
441                  Mips_address addend, unsigned char tls_type,
442                  unsigned int shndx, bool is_section_symbol)
443     : addend_(addend), symndx_(symndx), tls_type_(tls_type),
444       is_section_symbol_(is_section_symbol), shndx_(shndx)
445   { this->d.object = object; }
446
447   Mips_got_entry(Mips_symbol<size>* sym, unsigned char tls_type)
448     : addend_(0), symndx_(-1U), tls_type_(tls_type),
449       is_section_symbol_(false), shndx_(-1U)
450   { this->d.sym = sym; }
451
452   // Return whether this entry is for a local symbol.
453   bool
454   is_for_local_symbol() const
455   { return this->symndx_ != -1U; }
456
457   // Return whether this entry is for a global symbol.
458   bool
459   is_for_global_symbol() const
460   { return this->symndx_ == -1U; }
461
462   // Return the hash of this entry.
463   size_t
464   hash() const
465   {
466     if (this->tls_type_ == GOT_TLS_LDM)
467       return this->symndx_ + (1 << 18);
468
469     size_t name_hash_value = gold::string_hash<char>(
470         (this->symndx_ != -1U)
471          ? this->d.object->name().c_str()
472          : this->d.sym->name());
473     size_t addend = this->addend_;
474     return name_hash_value ^ this->symndx_ ^ addend;
475   }
476
477   // Return whether this entry is equal to OTHER.
478   bool
479   equals(Mips_got_entry<size, big_endian>* other) const
480   {
481     if (this->tls_type_ == GOT_TLS_LDM)
482       return true;
483
484     return ((this->tls_type_ == other->tls_type_)
485              && (this->symndx_ == other->symndx_)
486              && ((this->symndx_ != -1U)
487                   ? (this->d.object == other->d.object)
488                   : (this->d.sym == other->d.sym))
489              && (this->addend_ == other->addend_));
490   }
491
492   // Return input object that needs this GOT entry.
493   Mips_relobj<size, big_endian>*
494   object() const
495   {
496     gold_assert(this->symndx_ != -1U);
497     return this->d.object;
498   }
499
500   // Return local symbol index for local GOT entries.
501   unsigned int
502   symndx() const
503   {
504     gold_assert(this->symndx_ != -1U);
505     return this->symndx_;
506   }
507
508   // Return the relocation addend for local GOT entries.
509   Mips_address
510   addend() const
511   { return this->addend_; }
512
513   // Return global symbol for global GOT entries.
514   Mips_symbol<size>*
515   sym() const
516   {
517     gold_assert(this->symndx_ == -1U);
518     return this->d.sym;
519   }
520
521   // Return whether this is a TLS GOT entry.
522   bool
523   is_tls_entry() const
524   { return this->tls_type_ != GOT_TLS_NONE; }
525
526   // Return TLS type of this GOT entry.
527   unsigned char
528   tls_type() const
529   { return this->tls_type_; }
530
531   // Return section index of the local symbol for local GOT entries.
532   unsigned int
533   shndx() const
534   { return this->shndx_; }
535
536   // Return whether this is a STT_SECTION symbol.
537   bool
538   is_section_symbol() const
539   { return this->is_section_symbol_; }
540
541  private:
542   // The addend.
543   Mips_address addend_;
544
545   // The index of the symbol if we have a local symbol; -1 otherwise.
546   unsigned int symndx_;
547
548   union
549   {
550     // The input object for local symbols that needs the GOT entry.
551     Mips_relobj<size, big_endian>* object;
552     // If symndx == -1, the global symbol corresponding to this GOT entry.  The
553     // symbol's entry is in the local area if mips_sym->global_got_area is
554     // GGA_NONE, otherwise it is in the global area.
555     Mips_symbol<size>* sym;
556   } d;
557
558   // The TLS type of this GOT entry.  An LDM GOT entry will be a local
559   // symbol entry with r_symndx == 0.
560   unsigned char tls_type_;
561
562   // Whether this is a STT_SECTION symbol.
563   bool is_section_symbol_;
564
565   // For local GOT entries, section index of the local symbol.
566   unsigned int shndx_;
567 };
568
569 // Hash for Mips_got_entry.
570
571 template<int size, bool big_endian>
572 class Mips_got_entry_hash
573 {
574  public:
575   size_t
576   operator()(Mips_got_entry<size, big_endian>* entry) const
577   { return entry->hash(); }
578 };
579
580 // Equality for Mips_got_entry.
581
582 template<int size, bool big_endian>
583 class Mips_got_entry_eq
584 {
585  public:
586   bool
587   operator()(Mips_got_entry<size, big_endian>* e1,
588              Mips_got_entry<size, big_endian>* e2) const
589   { return e1->equals(e2); }
590 };
591
592 // Hash for Mips_symbol.
593
594 template<int size>
595 class Mips_symbol_hash
596 {
597  public:
598   size_t
599   operator()(Mips_symbol<size>* sym) const
600   { return sym->hash(); }
601 };
602
603 // Got_page_range.  This class describes a range of addends: [MIN_ADDEND,
604 // MAX_ADDEND].  The instances form a non-overlapping list that is sorted by
605 // increasing MIN_ADDEND.
606
607 struct Got_page_range
608 {
609   Got_page_range()
610     : next(NULL), min_addend(0), max_addend(0)
611   { }
612
613   Got_page_range* next;
614   int min_addend;
615   int max_addend;
616
617   // Return the maximum number of GOT page entries required.
618   int
619   get_max_pages()
620   { return (this->max_addend - this->min_addend + 0x1ffff) >> 16; }
621 };
622
623 // Got_page_entry.  This class describes the range of addends that are applied
624 // to page relocations against a given symbol.
625
626 struct Got_page_entry
627 {
628   Got_page_entry()
629     : object(NULL), symndx(-1U), ranges(NULL), num_pages(0)
630   { }
631
632   Got_page_entry(Object* object_, unsigned int symndx_)
633     : object(object_), symndx(symndx_), ranges(NULL), num_pages(0)
634   { }
635
636   // The input object that needs the GOT page entry.
637   Object* object;
638   // The index of the symbol, as stored in the relocation r_info.
639   unsigned int symndx;
640   // The ranges for this page entry.
641   Got_page_range* ranges;
642   // The maximum number of page entries needed for RANGES.
643   unsigned int num_pages;
644 };
645
646 // Hash for Got_page_entry.
647
648 struct Got_page_entry_hash
649 {
650   size_t
651   operator()(Got_page_entry* entry) const
652   { return reinterpret_cast<uintptr_t>(entry->object) + entry->symndx; }
653 };
654
655 // Equality for Got_page_entry.
656
657 struct Got_page_entry_eq
658 {
659   bool
660   operator()(Got_page_entry* entry1, Got_page_entry* entry2) const
661   {
662     return entry1->object == entry2->object && entry1->symndx == entry2->symndx;
663   }
664 };
665
666 // This class is used to hold .got information when linking.
667
668 template<int size, bool big_endian>
669 class Mips_got_info
670 {
671   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
672   typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
673     Reloc_section;
674   typedef Unordered_map<unsigned int, unsigned int> Got_page_offsets;
675
676   // Unordered set of GOT entries.
677   typedef Unordered_set<Mips_got_entry<size, big_endian>*,
678       Mips_got_entry_hash<size, big_endian>,
679       Mips_got_entry_eq<size, big_endian> > Got_entry_set;
680
681   // Unordered set of GOT page entries.
682   typedef Unordered_set<Got_page_entry*,
683       Got_page_entry_hash, Got_page_entry_eq> Got_page_entry_set;
684
685   // Unordered set of global GOT entries.
686   typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
687       Global_got_entry_set;
688
689  public:
690   Mips_got_info()
691     : local_gotno_(0), page_gotno_(0), global_gotno_(0), reloc_only_gotno_(0),
692       tls_gotno_(0), tls_ldm_offset_(-1U), global_got_symbols_(),
693       got_entries_(), got_page_entries_(), got_page_offset_start_(0),
694       got_page_offset_next_(0), got_page_offsets_(), next_(NULL), index_(-1U),
695       offset_(0)
696   { }
697
698   // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
699   // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
700   void
701   record_local_got_symbol(Mips_relobj<size, big_endian>* object,
702                           unsigned int symndx, Mips_address addend,
703                           unsigned int r_type, unsigned int shndx,
704                           bool is_section_symbol);
705
706   // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
707   // in OBJECT.  FOR_CALL is true if the caller is only interested in
708   // using the GOT entry for calls.  DYN_RELOC is true if R_TYPE is a dynamic
709   // relocation.
710   void
711   record_global_got_symbol(Mips_symbol<size>* mips_sym,
712                            Mips_relobj<size, big_endian>* object,
713                            unsigned int r_type, bool dyn_reloc, bool for_call);
714
715   // Add ENTRY to master GOT and to OBJECT's GOT.
716   void
717   record_got_entry(Mips_got_entry<size, big_endian>* entry,
718                    Mips_relobj<size, big_endian>* object);
719
720   // Record that OBJECT has a page relocation against symbol SYMNDX and
721   // that ADDEND is the addend for that relocation.
722   void
723   record_got_page_entry(Mips_relobj<size, big_endian>* object,
724                         unsigned int symndx, int addend);
725
726   // Create all entries that should be in the local part of the GOT.
727   void
728   add_local_entries(Target_mips<size, big_endian>* target, Layout* layout);
729
730   // Create GOT page entries.
731   void
732   add_page_entries(Target_mips<size, big_endian>* target, Layout* layout);
733
734   // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
735   void
736   add_global_entries(Target_mips<size, big_endian>* target, Layout* layout,
737                      unsigned int non_reloc_only_global_gotno);
738
739   // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
740   void
741   add_reloc_only_entries(Mips_output_data_got<size, big_endian>* got);
742
743   // Create TLS GOT entries.
744   void
745   add_tls_entries(Target_mips<size, big_endian>* target, Layout* layout);
746
747   // Decide whether the symbol needs an entry in the global part of the primary
748   // GOT, setting global_got_area accordingly.  Count the number of global
749   // symbols that are in the primary GOT only because they have dynamic
750   // relocations R_MIPS_REL32 against them (reloc_only_gotno).
751   void
752   count_got_symbols(Symbol_table* symtab);
753
754   // Return the offset of GOT page entry for VALUE.
755   unsigned int
756   get_got_page_offset(Mips_address value,
757                       Mips_output_data_got<size, big_endian>* got);
758
759   // Count the number of GOT entries required.
760   void
761   count_got_entries();
762
763   // Count the number of GOT entries required by ENTRY.  Accumulate the result.
764   void
765   count_got_entry(Mips_got_entry<size, big_endian>* entry);
766
767   // Add FROM's GOT entries.
768   void
769   add_got_entries(Mips_got_info<size, big_endian>* from);
770
771   // Add FROM's GOT page entries.
772   void
773   add_got_page_entries(Mips_got_info<size, big_endian>* from);
774
775   // Return GOT size.
776   unsigned int
777   got_size() const
778   { return ((2 + this->local_gotno_ + this->page_gotno_ + this->global_gotno_
779              + this->tls_gotno_) * size/8);
780   }
781
782   // Return the number of local GOT entries.
783   unsigned int
784   local_gotno() const
785   { return this->local_gotno_; }
786
787   // Return the maximum number of page GOT entries needed.
788   unsigned int
789   page_gotno() const
790   { return this->page_gotno_; }
791
792   // Return the number of global GOT entries.
793   unsigned int
794   global_gotno() const
795   { return this->global_gotno_; }
796
797   // Set the number of global GOT entries.
798   void
799   set_global_gotno(unsigned int global_gotno)
800   { this->global_gotno_ = global_gotno; }
801
802   // Return the number of GGA_RELOC_ONLY global GOT entries.
803   unsigned int
804   reloc_only_gotno() const
805   { return this->reloc_only_gotno_; }
806
807   // Return the number of TLS GOT entries.
808   unsigned int
809   tls_gotno() const
810   { return this->tls_gotno_; }
811
812   // Return the GOT type for this GOT.  Used for multi-GOT links only.
813   unsigned int
814   multigot_got_type(unsigned int got_type) const
815   {
816     switch (got_type)
817       {
818       case GOT_TYPE_STANDARD:
819         return GOT_TYPE_STANDARD_MULTIGOT + this->index_;
820       case GOT_TYPE_TLS_OFFSET:
821         return GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
822       case GOT_TYPE_TLS_PAIR:
823         return GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
824       default:
825         gold_unreachable();
826       }
827   }
828
829   // Remove lazy-binding stubs for global symbols in this GOT.
830   void
831   remove_lazy_stubs(Target_mips<size, big_endian>* target);
832
833   // Return offset of this GOT from the start of .got section.
834   unsigned int
835   offset() const
836   { return this->offset_; }
837
838   // Set offset of this GOT from the start of .got section.
839   void
840   set_offset(unsigned int offset)
841   { this->offset_ = offset; }
842
843   // Set index of this GOT in multi-GOT links.
844   void
845   set_index(unsigned int index)
846   { this->index_ = index; }
847
848   // Return next GOT in multi-GOT links.
849   Mips_got_info<size, big_endian>*
850   next() const
851   { return this->next_; }
852
853   // Set next GOT in multi-GOT links.
854   void
855   set_next(Mips_got_info<size, big_endian>* next)
856   { this->next_ = next; }
857
858   // Return the offset of TLS LDM entry for this GOT.
859   unsigned int
860   tls_ldm_offset() const
861   { return this->tls_ldm_offset_; }
862
863   // Set the offset of TLS LDM entry for this GOT.
864   void
865   set_tls_ldm_offset(unsigned int tls_ldm_offset)
866   { this->tls_ldm_offset_ = tls_ldm_offset; }
867
868   Global_got_entry_set&
869   global_got_symbols()
870   { return this->global_got_symbols_; }
871
872   // Return the GOT_TLS_* type required by relocation type R_TYPE.
873   static int
874   mips_elf_reloc_tls_type(unsigned int r_type)
875   {
876     if (tls_gd_reloc(r_type))
877       return GOT_TLS_GD;
878
879     if (tls_ldm_reloc(r_type))
880       return GOT_TLS_LDM;
881
882     if (tls_gottprel_reloc(r_type))
883       return GOT_TLS_IE;
884
885     return GOT_TLS_NONE;
886   }
887
888   // Return the number of GOT slots needed for GOT TLS type TYPE.
889   static int
890   mips_tls_got_entries(unsigned int type)
891   {
892     switch (type)
893       {
894       case GOT_TLS_GD:
895       case GOT_TLS_LDM:
896         return 2;
897
898       case GOT_TLS_IE:
899         return 1;
900
901       case GOT_TLS_NONE:
902         return 0;
903
904       default:
905         gold_unreachable();
906       }
907   }
908
909  private:
910   // The number of local GOT entries.
911   unsigned int local_gotno_;
912   // The maximum number of page GOT entries needed.
913   unsigned int page_gotno_;
914   // The number of global GOT entries.
915   unsigned int global_gotno_;
916   // The number of global GOT entries that are in the GGA_RELOC_ONLY area.
917   unsigned int reloc_only_gotno_;
918   // The number of TLS GOT entries.
919   unsigned int tls_gotno_;
920   // The offset of TLS LDM entry for this GOT.
921   unsigned int tls_ldm_offset_;
922   // All symbols that have global GOT entry.
923   Global_got_entry_set global_got_symbols_;
924   // A hash table holding GOT entries.
925   Got_entry_set got_entries_;
926   // A hash table of GOT page entries.
927   Got_page_entry_set got_page_entries_;
928   // The offset of first GOT page entry for this GOT.
929   unsigned int got_page_offset_start_;
930   // The offset of next available GOT page entry for this GOT.
931   unsigned int got_page_offset_next_;
932   // A hash table that maps GOT page entry value to the GOT offset where
933   // the entry is located.
934   Got_page_offsets got_page_offsets_;
935   // In multi-GOT links, a pointer to the next GOT.
936   Mips_got_info<size, big_endian>* next_;
937   // Index of this GOT in multi-GOT links.
938   unsigned int index_;
939   // The offset of this GOT in multi-GOT links.
940   unsigned int offset_;
941 };
942
943 // This is a helper class used during relocation scan.  It records GOT16 addend.
944
945 template<int size, bool big_endian>
946 struct got16_addend
947 {
948   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
949
950   got16_addend(const Sized_relobj_file<size, big_endian>* _object,
951                unsigned int _shndx, unsigned int _r_type, unsigned int _r_sym,
952                Mips_address _addend)
953     : object(_object), shndx(_shndx), r_type(_r_type), r_sym(_r_sym),
954       addend(_addend)
955   { }
956
957   const Sized_relobj_file<size, big_endian>* object;
958   unsigned int shndx;
959   unsigned int r_type;
960   unsigned int r_sym;
961   Mips_address addend;
962 };
963
964 // .MIPS.abiflags section content
965
966 template<bool big_endian>
967 struct Mips_abiflags
968 {
969   typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype8;
970   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
971   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
972
973   Mips_abiflags()
974     : version(0), isa_level(0), isa_rev(0), gpr_size(0), cpr1_size(0),
975       cpr2_size(0), fp_abi(0), isa_ext(0), ases(0), flags1(0), flags2(0)
976   { }
977
978   // Version of flags structure.
979   Valtype16 version;
980   // The level of the ISA: 1-5, 32, 64.
981   Valtype8 isa_level;
982   // The revision of ISA: 0 for MIPS V and below, 1-n otherwise.
983   Valtype8 isa_rev;
984   // The size of general purpose registers.
985   Valtype8 gpr_size;
986   // The size of co-processor 1 registers.
987   Valtype8 cpr1_size;
988   // The size of co-processor 2 registers.
989   Valtype8 cpr2_size;
990   // The floating-point ABI.
991   Valtype8 fp_abi;
992   // Processor-specific extension.
993   Valtype32 isa_ext;
994   // Mask of ASEs used.
995   Valtype32 ases;
996   // Mask of general flags.
997   Valtype32 flags1;
998   Valtype32 flags2;
999 };
1000
1001 // Mips_symbol class.  Holds additional symbol information needed for Mips.
1002
1003 template<int size>
1004 class Mips_symbol : public Sized_symbol<size>
1005 {
1006  public:
1007   Mips_symbol()
1008     : need_fn_stub_(false), has_nonpic_branches_(false), la25_stub_offset_(-1U),
1009       has_static_relocs_(false), no_lazy_stub_(false), lazy_stub_offset_(0),
1010       pointer_equality_needed_(false), global_got_area_(GGA_NONE),
1011       global_gotoffset_(-1U), got_only_for_calls_(true), has_lazy_stub_(false),
1012       needs_mips_plt_(false), needs_comp_plt_(false), mips_plt_offset_(-1U),
1013       comp_plt_offset_(-1U), mips16_fn_stub_(NULL), mips16_call_stub_(NULL),
1014       mips16_call_fp_stub_(NULL), applied_secondary_got_fixup_(false)
1015   { }
1016
1017   // Return whether this is a MIPS16 symbol.
1018   bool
1019   is_mips16() const
1020   {
1021     // (st_other & STO_MIPS16) == STO_MIPS16
1022     return ((this->nonvis() & (elfcpp::STO_MIPS16 >> 2))
1023             == elfcpp::STO_MIPS16 >> 2);
1024   }
1025
1026   // Return whether this is a microMIPS symbol.
1027   bool
1028   is_micromips() const
1029   {
1030     // (st_other & STO_MIPS_ISA) == STO_MICROMIPS
1031     return ((this->nonvis() & (elfcpp::STO_MIPS_ISA >> 2))
1032             == elfcpp::STO_MICROMIPS >> 2);
1033   }
1034
1035   // Return whether the symbol needs MIPS16 fn_stub.
1036   bool
1037   need_fn_stub() const
1038   { return this->need_fn_stub_; }
1039
1040   // Set that the symbol needs MIPS16 fn_stub.
1041   void
1042   set_need_fn_stub()
1043   { this->need_fn_stub_ = true; }
1044
1045   // Return whether this symbol is referenced by branch relocations from
1046   // any non-PIC input file.
1047   bool
1048   has_nonpic_branches() const
1049   { return this->has_nonpic_branches_; }
1050
1051   // Set that this symbol is referenced by branch relocations from
1052   // any non-PIC input file.
1053   void
1054   set_has_nonpic_branches()
1055   { this->has_nonpic_branches_ = true; }
1056
1057   // Return the offset of the la25 stub for this symbol from the start of the
1058   // la25 stub section.
1059   unsigned int
1060   la25_stub_offset() const
1061   { return this->la25_stub_offset_; }
1062
1063   // Set the offset of the la25 stub for this symbol from the start of the
1064   // la25 stub section.
1065   void
1066   set_la25_stub_offset(unsigned int offset)
1067   { this->la25_stub_offset_ = offset; }
1068
1069   // Return whether the symbol has la25 stub.  This is true if this symbol is
1070   // for a PIC function, and there are non-PIC branches and jumps to it.
1071   bool
1072   has_la25_stub() const
1073   { return this->la25_stub_offset_ != -1U; }
1074
1075   // Return whether there is a relocation against this symbol that must be
1076   // resolved by the static linker (that is, the relocation cannot possibly
1077   // be made dynamic).
1078   bool
1079   has_static_relocs() const
1080   { return this->has_static_relocs_; }
1081
1082   // Set that there is a relocation against this symbol that must be resolved
1083   // by the static linker (that is, the relocation cannot possibly be made
1084   // dynamic).
1085   void
1086   set_has_static_relocs()
1087   { this->has_static_relocs_ = true; }
1088
1089   // Return whether we must not create a lazy-binding stub for this symbol.
1090   bool
1091   no_lazy_stub() const
1092   { return this->no_lazy_stub_; }
1093
1094   // Set that we must not create a lazy-binding stub for this symbol.
1095   void
1096   set_no_lazy_stub()
1097   { this->no_lazy_stub_ = true; }
1098
1099   // Return the offset of the lazy-binding stub for this symbol from the start
1100   // of .MIPS.stubs section.
1101   unsigned int
1102   lazy_stub_offset() const
1103   { return this->lazy_stub_offset_; }
1104
1105   // Set the offset of the lazy-binding stub for this symbol from the start
1106   // of .MIPS.stubs section.
1107   void
1108   set_lazy_stub_offset(unsigned int offset)
1109   { this->lazy_stub_offset_ = offset; }
1110
1111   // Return whether there are any relocations for this symbol where
1112   // pointer equality matters.
1113   bool
1114   pointer_equality_needed() const
1115   { return this->pointer_equality_needed_; }
1116
1117   // Set that there are relocations for this symbol where pointer equality
1118   // matters.
1119   void
1120   set_pointer_equality_needed()
1121   { this->pointer_equality_needed_ = true; }
1122
1123   // Return global GOT area where this symbol in located.
1124   Global_got_area
1125   global_got_area() const
1126   { return this->global_got_area_; }
1127
1128   // Set global GOT area where this symbol in located.
1129   void
1130   set_global_got_area(Global_got_area global_got_area)
1131   { this->global_got_area_ = global_got_area; }
1132
1133   // Return the global GOT offset for this symbol.  For multi-GOT links, this
1134   // returns the offset from the start of .got section to the first GOT entry
1135   // for the symbol.  Note that in multi-GOT links the symbol can have entry
1136   // in more than one GOT.
1137   unsigned int
1138   global_gotoffset() const
1139   { return this->global_gotoffset_; }
1140
1141   // Set the global GOT offset for this symbol.  Note that in multi-GOT links
1142   // the symbol can have entry in more than one GOT.  This method will set
1143   // the offset only if it is less than current offset.
1144   void
1145   set_global_gotoffset(unsigned int offset)
1146   {
1147     if (this->global_gotoffset_ == -1U || offset < this->global_gotoffset_)
1148       this->global_gotoffset_ = offset;
1149   }
1150
1151   // Return whether all GOT relocations for this symbol are for calls.
1152   bool
1153   got_only_for_calls() const
1154   { return this->got_only_for_calls_; }
1155
1156   // Set that there is a GOT relocation for this symbol that is not for call.
1157   void
1158   set_got_not_only_for_calls()
1159   { this->got_only_for_calls_ = false; }
1160
1161   // Return whether this is a PIC symbol.
1162   bool
1163   is_pic() const
1164   {
1165     // (st_other & STO_MIPS_FLAGS) == STO_MIPS_PIC
1166     return ((this->nonvis() & (elfcpp::STO_MIPS_FLAGS >> 2))
1167             == (elfcpp::STO_MIPS_PIC >> 2));
1168   }
1169
1170   // Set the flag in st_other field that marks this symbol as PIC.
1171   void
1172   set_pic()
1173   {
1174     if (this->is_mips16())
1175       // (st_other & ~(STO_MIPS16 | STO_MIPS_FLAGS)) | STO_MIPS_PIC
1176       this->set_nonvis((this->nonvis()
1177                         & ~((elfcpp::STO_MIPS16 >> 2)
1178                             | (elfcpp::STO_MIPS_FLAGS >> 2)))
1179                        | (elfcpp::STO_MIPS_PIC >> 2));
1180     else
1181       // (other & ~STO_MIPS_FLAGS) | STO_MIPS_PIC
1182       this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1183                        | (elfcpp::STO_MIPS_PIC >> 2));
1184   }
1185
1186   // Set the flag in st_other field that marks this symbol as PLT.
1187   void
1188   set_mips_plt()
1189   {
1190     if (this->is_mips16())
1191       // (st_other & (STO_MIPS16 | ~STO_MIPS_FLAGS)) | STO_MIPS_PLT
1192       this->set_nonvis((this->nonvis()
1193                         & ((elfcpp::STO_MIPS16 >> 2)
1194                            | ~(elfcpp::STO_MIPS_FLAGS >> 2)))
1195                        | (elfcpp::STO_MIPS_PLT >> 2));
1196
1197     else
1198       // (st_other & ~STO_MIPS_FLAGS) | STO_MIPS_PLT
1199       this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1200                        | (elfcpp::STO_MIPS_PLT >> 2));
1201   }
1202
1203   // Downcast a base pointer to a Mips_symbol pointer.
1204   static Mips_symbol<size>*
1205   as_mips_sym(Symbol* sym)
1206   { return static_cast<Mips_symbol<size>*>(sym); }
1207
1208   // Downcast a base pointer to a Mips_symbol pointer.
1209   static const Mips_symbol<size>*
1210   as_mips_sym(const Symbol* sym)
1211   { return static_cast<const Mips_symbol<size>*>(sym); }
1212
1213   // Return whether the symbol has lazy-binding stub.
1214   bool
1215   has_lazy_stub() const
1216   { return this->has_lazy_stub_; }
1217
1218   // Set whether the symbol has lazy-binding stub.
1219   void
1220   set_has_lazy_stub(bool has_lazy_stub)
1221   { this->has_lazy_stub_ = has_lazy_stub; }
1222
1223   // Return whether the symbol needs a standard PLT entry.
1224   bool
1225   needs_mips_plt() const
1226   { return this->needs_mips_plt_; }
1227
1228   // Set whether the symbol needs a standard PLT entry.
1229   void
1230   set_needs_mips_plt(bool needs_mips_plt)
1231   { this->needs_mips_plt_ = needs_mips_plt; }
1232
1233   // Return whether the symbol needs a compressed (MIPS16 or microMIPS) PLT
1234   // entry.
1235   bool
1236   needs_comp_plt() const
1237   { return this->needs_comp_plt_; }
1238
1239   // Set whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1240   void
1241   set_needs_comp_plt(bool needs_comp_plt)
1242   { this->needs_comp_plt_ = needs_comp_plt; }
1243
1244   // Return standard PLT entry offset, or -1 if none.
1245   unsigned int
1246   mips_plt_offset() const
1247   { return this->mips_plt_offset_; }
1248
1249   // Set standard PLT entry offset.
1250   void
1251   set_mips_plt_offset(unsigned int mips_plt_offset)
1252   { this->mips_plt_offset_ = mips_plt_offset; }
1253
1254   // Return whether the symbol has standard PLT entry.
1255   bool
1256   has_mips_plt_offset() const
1257   { return this->mips_plt_offset_ != -1U; }
1258
1259   // Return compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1260   unsigned int
1261   comp_plt_offset() const
1262   { return this->comp_plt_offset_; }
1263
1264   // Set compressed (MIPS16 or microMIPS) PLT entry offset.
1265   void
1266   set_comp_plt_offset(unsigned int comp_plt_offset)
1267   { this->comp_plt_offset_ = comp_plt_offset; }
1268
1269   // Return whether the symbol has compressed (MIPS16 or microMIPS) PLT entry.
1270   bool
1271   has_comp_plt_offset() const
1272   { return this->comp_plt_offset_ != -1U; }
1273
1274   // Return MIPS16 fn stub for a symbol.
1275   template<bool big_endian>
1276   Mips16_stub_section<size, big_endian>*
1277   get_mips16_fn_stub() const
1278   {
1279     return static_cast<Mips16_stub_section<size, big_endian>*>(mips16_fn_stub_);
1280   }
1281
1282   // Set MIPS16 fn stub for a symbol.
1283   void
1284   set_mips16_fn_stub(Mips16_stub_section_base* stub)
1285   { this->mips16_fn_stub_ = stub; }
1286
1287   // Return whether symbol has MIPS16 fn stub.
1288   bool
1289   has_mips16_fn_stub() const
1290   { return this->mips16_fn_stub_ != NULL; }
1291
1292   // Return MIPS16 call stub for a symbol.
1293   template<bool big_endian>
1294   Mips16_stub_section<size, big_endian>*
1295   get_mips16_call_stub() const
1296   {
1297     return static_cast<Mips16_stub_section<size, big_endian>*>(
1298       mips16_call_stub_);
1299   }
1300
1301   // Set MIPS16 call stub for a symbol.
1302   void
1303   set_mips16_call_stub(Mips16_stub_section_base* stub)
1304   { this->mips16_call_stub_ = stub; }
1305
1306   // Return whether symbol has MIPS16 call stub.
1307   bool
1308   has_mips16_call_stub() const
1309   { return this->mips16_call_stub_ != NULL; }
1310
1311   // Return MIPS16 call_fp stub for a symbol.
1312   template<bool big_endian>
1313   Mips16_stub_section<size, big_endian>*
1314   get_mips16_call_fp_stub() const
1315   {
1316     return static_cast<Mips16_stub_section<size, big_endian>*>(
1317       mips16_call_fp_stub_);
1318   }
1319
1320   // Set MIPS16 call_fp stub for a symbol.
1321   void
1322   set_mips16_call_fp_stub(Mips16_stub_section_base* stub)
1323   { this->mips16_call_fp_stub_ = stub; }
1324
1325   // Return whether symbol has MIPS16 call_fp stub.
1326   bool
1327   has_mips16_call_fp_stub() const
1328   { return this->mips16_call_fp_stub_ != NULL; }
1329
1330   bool
1331   get_applied_secondary_got_fixup() const
1332   { return applied_secondary_got_fixup_; }
1333
1334   void
1335   set_applied_secondary_got_fixup()
1336   { this->applied_secondary_got_fixup_ = true; }
1337
1338   // Return the hash of this symbol.
1339   size_t
1340   hash() const
1341   {
1342     return gold::string_hash<char>(this->name());
1343   }
1344
1345  private:
1346   // Whether the symbol needs MIPS16 fn_stub.  This is true if this symbol
1347   // appears in any relocs other than a 16 bit call.
1348   bool need_fn_stub_;
1349
1350   // True if this symbol is referenced by branch relocations from
1351   // any non-PIC input file.  This is used to determine whether an
1352   // la25 stub is required.
1353   bool has_nonpic_branches_;
1354
1355   // The offset of the la25 stub for this symbol from the start of the
1356   // la25 stub section.
1357   unsigned int la25_stub_offset_;
1358
1359   // True if there is a relocation against this symbol that must be
1360   // resolved by the static linker (that is, the relocation cannot
1361   // possibly be made dynamic).
1362   bool has_static_relocs_;
1363
1364   // Whether we must not create a lazy-binding stub for this symbol.
1365   // This is true if the symbol has relocations related to taking the
1366   // function's address.
1367   bool no_lazy_stub_;
1368
1369   // The offset of the lazy-binding stub for this symbol from the start of
1370   // .MIPS.stubs section.
1371   unsigned int lazy_stub_offset_;
1372
1373   // True if there are any relocations for this symbol where pointer equality
1374   // matters.
1375   bool pointer_equality_needed_;
1376
1377   // Global GOT area where this symbol in located, or GGA_NONE if symbol is not
1378   // in the global part of the GOT.
1379   Global_got_area global_got_area_;
1380
1381   // The global GOT offset for this symbol.  For multi-GOT links, this is offset
1382   // from the start of .got section to the first GOT entry for the symbol.
1383   // Note that in multi-GOT links the symbol can have entry in more than one GOT.
1384   unsigned int global_gotoffset_;
1385
1386   // Whether all GOT relocations for this symbol are for calls.
1387   bool got_only_for_calls_;
1388   // Whether the symbol has lazy-binding stub.
1389   bool has_lazy_stub_;
1390   // Whether the symbol needs a standard PLT entry.
1391   bool needs_mips_plt_;
1392   // Whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1393   bool needs_comp_plt_;
1394   // Standard PLT entry offset, or -1 if none.
1395   unsigned int mips_plt_offset_;
1396   // Compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1397   unsigned int comp_plt_offset_;
1398   // MIPS16 fn stub for a symbol.
1399   Mips16_stub_section_base* mips16_fn_stub_;
1400   // MIPS16 call stub for a symbol.
1401   Mips16_stub_section_base* mips16_call_stub_;
1402   // MIPS16 call_fp stub for a symbol.
1403   Mips16_stub_section_base* mips16_call_fp_stub_;
1404
1405   bool applied_secondary_got_fixup_;
1406 };
1407
1408 // Mips16_stub_section class.
1409
1410 // The mips16 compiler uses a couple of special sections to handle
1411 // floating point arguments.
1412
1413 // Section names that look like .mips16.fn.FNNAME contain stubs that
1414 // copy floating point arguments from the fp regs to the gp regs and
1415 // then jump to FNNAME.  If any 32 bit function calls FNNAME, the
1416 // call should be redirected to the stub instead.  If no 32 bit
1417 // function calls FNNAME, the stub should be discarded.  We need to
1418 // consider any reference to the function, not just a call, because
1419 // if the address of the function is taken we will need the stub,
1420 // since the address might be passed to a 32 bit function.
1421
1422 // Section names that look like .mips16.call.FNNAME contain stubs
1423 // that copy floating point arguments from the gp regs to the fp
1424 // regs and then jump to FNNAME.  If FNNAME is a 32 bit function,
1425 // then any 16 bit function that calls FNNAME should be redirected
1426 // to the stub instead.  If FNNAME is not a 32 bit function, the
1427 // stub should be discarded.
1428
1429 // .mips16.call.fp.FNNAME sections are similar, but contain stubs
1430 // which call FNNAME and then copy the return value from the fp regs
1431 // to the gp regs.  These stubs store the return address in $18 while
1432 // calling FNNAME; any function which might call one of these stubs
1433 // must arrange to save $18 around the call.  (This case is not
1434 // needed for 32 bit functions that call 16 bit functions, because
1435 // 16 bit functions always return floating point values in both
1436 // $f0/$f1 and $2/$3.)
1437
1438 // Note that in all cases FNNAME might be defined statically.
1439 // Therefore, FNNAME is not used literally.  Instead, the relocation
1440 // information will indicate which symbol the section is for.
1441
1442 // We record any stubs that we find in the symbol table.
1443
1444 // TODO(sasa): All mips16 stub sections should be emitted in the .text section.
1445
1446 class Mips16_stub_section_base { };
1447
1448 template<int size, bool big_endian>
1449 class Mips16_stub_section : public Mips16_stub_section_base
1450 {
1451   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1452
1453  public:
1454   Mips16_stub_section(Mips_relobj<size, big_endian>* object, unsigned int shndx)
1455     : object_(object), shndx_(shndx), r_sym_(0), gsym_(NULL),
1456       found_r_mips_none_(false)
1457   {
1458     gold_assert(object->is_mips16_fn_stub_section(shndx)
1459                 || object->is_mips16_call_stub_section(shndx)
1460                 || object->is_mips16_call_fp_stub_section(shndx));
1461   }
1462
1463   // Return the object of this stub section.
1464   Mips_relobj<size, big_endian>*
1465   object() const
1466   { return this->object_; }
1467
1468   // Return the size of a section.
1469   uint64_t
1470   section_size() const
1471   { return this->object_->section_size(this->shndx_); }
1472
1473   // Return section index of this stub section.
1474   unsigned int
1475   shndx() const
1476   { return this->shndx_; }
1477
1478   // Return symbol index, if stub is for a local function.
1479   unsigned int
1480   r_sym() const
1481   { return this->r_sym_; }
1482
1483   // Return symbol, if stub is for a global function.
1484   Mips_symbol<size>*
1485   gsym() const
1486   { return this->gsym_; }
1487
1488   // Return whether stub is for a local function.
1489   bool
1490   is_for_local_function() const
1491   { return this->gsym_ == NULL; }
1492
1493   // This method is called when a new relocation R_TYPE for local symbol R_SYM
1494   // is found in the stub section.  Try to find stub target.
1495   void
1496   new_local_reloc_found(unsigned int r_type, unsigned int r_sym)
1497   {
1498     // To find target symbol for this stub, trust the first R_MIPS_NONE
1499     // relocation, if any.  Otherwise trust the first relocation, whatever
1500     // its kind.
1501     if (this->found_r_mips_none_)
1502       return;
1503     if (r_type == elfcpp::R_MIPS_NONE)
1504       {
1505         this->r_sym_ = r_sym;
1506         this->gsym_ = NULL;
1507         this->found_r_mips_none_ = true;
1508       }
1509     else if (!is_target_found())
1510       this->r_sym_ = r_sym;
1511   }
1512
1513   // This method is called when a new relocation R_TYPE for global symbol GSYM
1514   // is found in the stub section.  Try to find stub target.
1515   void
1516   new_global_reloc_found(unsigned int r_type, Mips_symbol<size>* gsym)
1517   {
1518     // To find target symbol for this stub, trust the first R_MIPS_NONE
1519     // relocation, if any.  Otherwise trust the first relocation, whatever
1520     // its kind.
1521     if (this->found_r_mips_none_)
1522       return;
1523     if (r_type == elfcpp::R_MIPS_NONE)
1524       {
1525         this->gsym_ = gsym;
1526         this->r_sym_ = 0;
1527         this->found_r_mips_none_ = true;
1528       }
1529     else if (!is_target_found())
1530       this->gsym_ = gsym;
1531   }
1532
1533   // Return whether we found the stub target.
1534   bool
1535   is_target_found() const
1536   { return this->r_sym_ != 0 || this->gsym_ != NULL;  }
1537
1538   // Return whether this is a fn stub.
1539   bool
1540   is_fn_stub() const
1541   { return this->object_->is_mips16_fn_stub_section(this->shndx_); }
1542
1543   // Return whether this is a call stub.
1544   bool
1545   is_call_stub() const
1546   { return this->object_->is_mips16_call_stub_section(this->shndx_); }
1547
1548   // Return whether this is a call_fp stub.
1549   bool
1550   is_call_fp_stub() const
1551   { return this->object_->is_mips16_call_fp_stub_section(this->shndx_); }
1552
1553   // Return the output address.
1554   Mips_address
1555   output_address() const
1556   {
1557     return (this->object_->output_section(this->shndx_)->address()
1558             + this->object_->output_section_offset(this->shndx_));
1559   }
1560
1561  private:
1562   // The object of this stub section.
1563   Mips_relobj<size, big_endian>* object_;
1564   // The section index of this stub section.
1565   unsigned int shndx_;
1566   // The symbol index, if stub is for a local function.
1567   unsigned int r_sym_;
1568   // The symbol, if stub is for a global function.
1569   Mips_symbol<size>* gsym_;
1570   // True if we found R_MIPS_NONE relocation in this stub.
1571   bool found_r_mips_none_;
1572 };
1573
1574 // Mips_relobj class.
1575
1576 template<int size, bool big_endian>
1577 class Mips_relobj : public Sized_relobj_file<size, big_endian>
1578 {
1579   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1580   typedef std::map<unsigned int, Mips16_stub_section<size, big_endian>*>
1581     Mips16_stubs_int_map;
1582   typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1583
1584  public:
1585   Mips_relobj(const std::string& name, Input_file* input_file, off_t offset,
1586               const typename elfcpp::Ehdr<size, big_endian>& ehdr)
1587     : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
1588       processor_specific_flags_(0), local_symbol_is_mips16_(),
1589       local_symbol_is_micromips_(), mips16_stub_sections_(),
1590       local_non_16bit_calls_(), local_16bit_calls_(), local_mips16_fn_stubs_(),
1591       local_mips16_call_stubs_(), gp_(0), has_reginfo_section_(false),
1592       got_info_(NULL), section_is_mips16_fn_stub_(),
1593       section_is_mips16_call_stub_(), section_is_mips16_call_fp_stub_(),
1594       pdr_shndx_(-1U), attributes_section_data_(NULL), abiflags_(NULL),
1595       gprmask_(0), cprmask1_(0), cprmask2_(0), cprmask3_(0), cprmask4_(0)
1596   {
1597     this->is_pic_ = (ehdr.get_e_flags() & elfcpp::EF_MIPS_PIC) != 0;
1598     this->is_n32_ = elfcpp::abi_n32(ehdr.get_e_flags());
1599   }
1600
1601   ~Mips_relobj()
1602   { delete this->attributes_section_data_; }
1603
1604   // Downcast a base pointer to a Mips_relobj pointer.  This is
1605   // not type-safe but we only use Mips_relobj not the base class.
1606   static Mips_relobj<size, big_endian>*
1607   as_mips_relobj(Relobj* relobj)
1608   { return static_cast<Mips_relobj<size, big_endian>*>(relobj); }
1609
1610   // Downcast a base pointer to a Mips_relobj pointer.  This is
1611   // not type-safe but we only use Mips_relobj not the base class.
1612   static const Mips_relobj<size, big_endian>*
1613   as_mips_relobj(const Relobj* relobj)
1614   { return static_cast<const Mips_relobj<size, big_endian>*>(relobj); }
1615
1616   // Processor-specific flags in ELF file header.  This is valid only after
1617   // reading symbols.
1618   elfcpp::Elf_Word
1619   processor_specific_flags() const
1620   { return this->processor_specific_flags_; }
1621
1622   // Whether a local symbol is MIPS16 symbol.  R_SYM is the symbol table
1623   // index.  This is only valid after do_count_local_symbol is called.
1624   bool
1625   local_symbol_is_mips16(unsigned int r_sym) const
1626   {
1627     gold_assert(r_sym < this->local_symbol_is_mips16_.size());
1628     return this->local_symbol_is_mips16_[r_sym];
1629   }
1630
1631   // Whether a local symbol is microMIPS symbol.  R_SYM is the symbol table
1632   // index.  This is only valid after do_count_local_symbol is called.
1633   bool
1634   local_symbol_is_micromips(unsigned int r_sym) const
1635   {
1636     gold_assert(r_sym < this->local_symbol_is_micromips_.size());
1637     return this->local_symbol_is_micromips_[r_sym];
1638   }
1639
1640   // Get or create MIPS16 stub section.
1641   Mips16_stub_section<size, big_endian>*
1642   get_mips16_stub_section(unsigned int shndx)
1643   {
1644     typename Mips16_stubs_int_map::const_iterator it =
1645       this->mips16_stub_sections_.find(shndx);
1646     if (it != this->mips16_stub_sections_.end())
1647       return (*it).second;
1648
1649     Mips16_stub_section<size, big_endian>* stub_section =
1650       new Mips16_stub_section<size, big_endian>(this, shndx);
1651     this->mips16_stub_sections_.insert(
1652       std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1653         stub_section->shndx(), stub_section));
1654     return stub_section;
1655   }
1656
1657   // Return MIPS16 fn stub section for local symbol R_SYM, or NULL if this
1658   // object doesn't have fn stub for R_SYM.
1659   Mips16_stub_section<size, big_endian>*
1660   get_local_mips16_fn_stub(unsigned int r_sym) const
1661   {
1662     typename Mips16_stubs_int_map::const_iterator it =
1663       this->local_mips16_fn_stubs_.find(r_sym);
1664     if (it != this->local_mips16_fn_stubs_.end())
1665       return (*it).second;
1666     return NULL;
1667   }
1668
1669   // Record that this object has MIPS16 fn stub for local symbol.  This method
1670   // is only called if we decided not to discard the stub.
1671   void
1672   add_local_mips16_fn_stub(Mips16_stub_section<size, big_endian>* stub)
1673   {
1674     gold_assert(stub->is_for_local_function());
1675     unsigned int r_sym = stub->r_sym();
1676     this->local_mips16_fn_stubs_.insert(
1677       std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1678         r_sym, stub));
1679   }
1680
1681   // Return MIPS16 call stub section for local symbol R_SYM, or NULL if this
1682   // object doesn't have call stub for R_SYM.
1683   Mips16_stub_section<size, big_endian>*
1684   get_local_mips16_call_stub(unsigned int r_sym) const
1685   {
1686     typename Mips16_stubs_int_map::const_iterator it =
1687       this->local_mips16_call_stubs_.find(r_sym);
1688     if (it != this->local_mips16_call_stubs_.end())
1689       return (*it).second;
1690     return NULL;
1691   }
1692
1693   // Record that this object has MIPS16 call stub for local symbol.  This method
1694   // is only called if we decided not to discard the stub.
1695   void
1696   add_local_mips16_call_stub(Mips16_stub_section<size, big_endian>* stub)
1697   {
1698     gold_assert(stub->is_for_local_function());
1699     unsigned int r_sym = stub->r_sym();
1700     this->local_mips16_call_stubs_.insert(
1701       std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1702         r_sym, stub));
1703   }
1704
1705   // Record that we found "non 16-bit" call relocation against local symbol
1706   // SYMNDX.  This reloc would need to refer to a MIPS16 fn stub, if there
1707   // is one.
1708   void
1709   add_local_non_16bit_call(unsigned int symndx)
1710   { this->local_non_16bit_calls_.insert(symndx); }
1711
1712   // Return true if there is any "non 16-bit" call relocation against local
1713   // symbol SYMNDX in this object.
1714   bool
1715   has_local_non_16bit_call_relocs(unsigned int symndx)
1716   {
1717     return (this->local_non_16bit_calls_.find(symndx)
1718             != this->local_non_16bit_calls_.end());
1719   }
1720
1721   // Record that we found 16-bit call relocation R_MIPS16_26 against local
1722   // symbol SYMNDX.  Local MIPS16 call or call_fp stubs will only be needed
1723   // if there is some R_MIPS16_26 relocation that refers to the stub symbol.
1724   void
1725   add_local_16bit_call(unsigned int symndx)
1726   { this->local_16bit_calls_.insert(symndx); }
1727
1728   // Return true if there is any 16-bit call relocation R_MIPS16_26 against local
1729   // symbol SYMNDX in this object.
1730   bool
1731   has_local_16bit_call_relocs(unsigned int symndx)
1732   {
1733     return (this->local_16bit_calls_.find(symndx)
1734             != this->local_16bit_calls_.end());
1735   }
1736
1737   // Get gp value that was used to create this object.
1738   Mips_address
1739   gp_value() const
1740   { return this->gp_; }
1741
1742   // Return whether the object is a PIC object.
1743   bool
1744   is_pic() const
1745   { return this->is_pic_; }
1746
1747   // Return whether the object uses N32 ABI.
1748   bool
1749   is_n32() const
1750   { return this->is_n32_; }
1751
1752   // Return whether the object uses N64 ABI.
1753   bool
1754   is_n64() const
1755   { return size == 64; }
1756
1757   // Return whether the object uses NewABI conventions.
1758   bool
1759   is_newabi() const
1760   { return this->is_n32() || this->is_n64(); }
1761
1762   // Return Mips_got_info for this object.
1763   Mips_got_info<size, big_endian>*
1764   get_got_info() const
1765   { return this->got_info_; }
1766
1767   // Return Mips_got_info for this object.  Create new info if it doesn't exist.
1768   Mips_got_info<size, big_endian>*
1769   get_or_create_got_info()
1770   {
1771     if (!this->got_info_)
1772       this->got_info_ = new Mips_got_info<size, big_endian>();
1773     return this->got_info_;
1774   }
1775
1776   // Set Mips_got_info for this object.
1777   void
1778   set_got_info(Mips_got_info<size, big_endian>* got_info)
1779   { this->got_info_ = got_info; }
1780
1781   // Whether a section SHDNX is a MIPS16 stub section.  This is only valid
1782   // after do_read_symbols is called.
1783   bool
1784   is_mips16_stub_section(unsigned int shndx)
1785   {
1786     return (is_mips16_fn_stub_section(shndx)
1787             || is_mips16_call_stub_section(shndx)
1788             || is_mips16_call_fp_stub_section(shndx));
1789   }
1790
1791   // Return TRUE if relocations in section SHNDX can refer directly to a
1792   // MIPS16 function rather than to a hard-float stub.  This is only valid
1793   // after do_read_symbols is called.
1794   bool
1795   section_allows_mips16_refs(unsigned int shndx)
1796   {
1797     return (this->is_mips16_stub_section(shndx) || shndx == this->pdr_shndx_);
1798   }
1799
1800   // Whether a section SHDNX is a MIPS16 fn stub section.  This is only valid
1801   // after do_read_symbols is called.
1802   bool
1803   is_mips16_fn_stub_section(unsigned int shndx)
1804   {
1805     gold_assert(shndx < this->section_is_mips16_fn_stub_.size());
1806     return this->section_is_mips16_fn_stub_[shndx];
1807   }
1808
1809   // Whether a section SHDNX is a MIPS16 call stub section.  This is only valid
1810   // after do_read_symbols is called.
1811   bool
1812   is_mips16_call_stub_section(unsigned int shndx)
1813   {
1814     gold_assert(shndx < this->section_is_mips16_call_stub_.size());
1815     return this->section_is_mips16_call_stub_[shndx];
1816   }
1817
1818   // Whether a section SHDNX is a MIPS16 call_fp stub section.  This is only
1819   // valid after do_read_symbols is called.
1820   bool
1821   is_mips16_call_fp_stub_section(unsigned int shndx)
1822   {
1823     gold_assert(shndx < this->section_is_mips16_call_fp_stub_.size());
1824     return this->section_is_mips16_call_fp_stub_[shndx];
1825   }
1826
1827   // Discard MIPS16 stub secions that are not needed.
1828   void
1829   discard_mips16_stub_sections(Symbol_table* symtab);
1830
1831   // Return whether there is a .reginfo section.
1832   bool
1833   has_reginfo_section() const
1834   { return this->has_reginfo_section_; }
1835
1836   // Return gprmask from the .reginfo section of this object.
1837   Valtype
1838   gprmask() const
1839   { return this->gprmask_; }
1840
1841   // Return cprmask1 from the .reginfo section of this object.
1842   Valtype
1843   cprmask1() const
1844   { return this->cprmask1_; }
1845
1846   // Return cprmask2 from the .reginfo section of this object.
1847   Valtype
1848   cprmask2() const
1849   { return this->cprmask2_; }
1850
1851   // Return cprmask3 from the .reginfo section of this object.
1852   Valtype
1853   cprmask3() const
1854   { return this->cprmask3_; }
1855
1856   // Return cprmask4 from the .reginfo section of this object.
1857   Valtype
1858   cprmask4() const
1859   { return this->cprmask4_; }
1860
1861   // This is the contents of the .MIPS.abiflags section if there is one.
1862   Mips_abiflags<big_endian>*
1863   abiflags()
1864   { return this->abiflags_; }
1865
1866   // This is the contents of the .gnu.attribute section if there is one.
1867   const Attributes_section_data*
1868   attributes_section_data() const
1869   { return this->attributes_section_data_; }
1870
1871  protected:
1872   // Count the local symbols.
1873   void
1874   do_count_local_symbols(Stringpool_template<char>*,
1875                          Stringpool_template<char>*);
1876
1877   // Read the symbol information.
1878   void
1879   do_read_symbols(Read_symbols_data* sd);
1880
1881  private:
1882   // The name of the options section.
1883   const char* mips_elf_options_section_name()
1884   { return this->is_newabi() ? ".MIPS.options" : ".options"; }
1885
1886   // processor-specific flags in ELF file header.
1887   elfcpp::Elf_Word processor_specific_flags_;
1888
1889   // Bit vector to tell if a local symbol is a MIPS16 symbol or not.
1890   // This is only valid after do_count_local_symbol is called.
1891   std::vector<bool> local_symbol_is_mips16_;
1892
1893   // Bit vector to tell if a local symbol is a microMIPS symbol or not.
1894   // This is only valid after do_count_local_symbol is called.
1895   std::vector<bool> local_symbol_is_micromips_;
1896
1897   // Map from section index to the MIPS16 stub for that section.  This contains
1898   // all stubs found in this object.
1899   Mips16_stubs_int_map mips16_stub_sections_;
1900
1901   // Local symbols that have "non 16-bit" call relocation.  This relocation
1902   // would need to refer to a MIPS16 fn stub, if there is one.
1903   std::set<unsigned int> local_non_16bit_calls_;
1904
1905   // Local symbols that have 16-bit call relocation R_MIPS16_26.  Local MIPS16
1906   // call or call_fp stubs will only be needed if there is some R_MIPS16_26
1907   // relocation that refers to the stub symbol.
1908   std::set<unsigned int> local_16bit_calls_;
1909
1910   // Map from local symbol index to the MIPS16 fn stub for that symbol.
1911   // This contains only the stubs that we decided not to discard.
1912   Mips16_stubs_int_map local_mips16_fn_stubs_;
1913
1914   // Map from local symbol index to the MIPS16 call stub for that symbol.
1915   // This contains only the stubs that we decided not to discard.
1916   Mips16_stubs_int_map local_mips16_call_stubs_;
1917
1918   // gp value that was used to create this object.
1919   Mips_address gp_;
1920   // Whether the object is a PIC object.
1921   bool is_pic_ : 1;
1922   // Whether the object uses N32 ABI.
1923   bool is_n32_ : 1;
1924   // Whether the object contains a .reginfo section.
1925   bool has_reginfo_section_ : 1;
1926   // The Mips_got_info for this object.
1927   Mips_got_info<size, big_endian>* got_info_;
1928
1929   // Bit vector to tell if a section is a MIPS16 fn stub section or not.
1930   // This is only valid after do_read_symbols is called.
1931   std::vector<bool> section_is_mips16_fn_stub_;
1932
1933   // Bit vector to tell if a section is a MIPS16 call stub section or not.
1934   // This is only valid after do_read_symbols is called.
1935   std::vector<bool> section_is_mips16_call_stub_;
1936
1937   // Bit vector to tell if a section is a MIPS16 call_fp stub section or not.
1938   // This is only valid after do_read_symbols is called.
1939   std::vector<bool> section_is_mips16_call_fp_stub_;
1940
1941   // .pdr section index.
1942   unsigned int pdr_shndx_;
1943
1944   // Object attributes if there is a .gnu.attributes section or NULL.
1945   Attributes_section_data* attributes_section_data_;
1946
1947   // Object abiflags if there is a .MIPS.abiflags section or NULL.
1948   Mips_abiflags<big_endian>* abiflags_;
1949
1950   // gprmask from the .reginfo section of this object.
1951   Valtype gprmask_;
1952   // cprmask1 from the .reginfo section of this object.
1953   Valtype cprmask1_;
1954   // cprmask2 from the .reginfo section of this object.
1955   Valtype cprmask2_;
1956   // cprmask3 from the .reginfo section of this object.
1957   Valtype cprmask3_;
1958   // cprmask4 from the .reginfo section of this object.
1959   Valtype cprmask4_;
1960 };
1961
1962 // Mips_output_data_got class.
1963
1964 template<int size, bool big_endian>
1965 class Mips_output_data_got : public Output_data_got<size, big_endian>
1966 {
1967   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1968   typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
1969     Reloc_section;
1970   typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1971
1972  public:
1973   Mips_output_data_got(Target_mips<size, big_endian>* target,
1974       Symbol_table* symtab, Layout* layout)
1975     : Output_data_got<size, big_endian>(), target_(target),
1976       symbol_table_(symtab), layout_(layout), static_relocs_(), got_view_(NULL),
1977       first_global_got_dynsym_index_(-1U), primary_got_(NULL),
1978       secondary_got_relocs_()
1979   {
1980     this->master_got_info_ = new Mips_got_info<size, big_endian>();
1981     this->set_addralign(16);
1982   }
1983
1984   // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
1985   // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
1986   void
1987   record_local_got_symbol(Mips_relobj<size, big_endian>* object,
1988                           unsigned int symndx, Mips_address addend,
1989                           unsigned int r_type, unsigned int shndx,
1990                           bool is_section_symbol)
1991   {
1992     this->master_got_info_->record_local_got_symbol(object, symndx, addend,
1993                                                     r_type, shndx,
1994                                                     is_section_symbol);
1995   }
1996
1997   // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
1998   // in OBJECT.  FOR_CALL is true if the caller is only interested in
1999   // using the GOT entry for calls.  DYN_RELOC is true if R_TYPE is a dynamic
2000   // relocation.
2001   void
2002   record_global_got_symbol(Mips_symbol<size>* mips_sym,
2003                            Mips_relobj<size, big_endian>* object,
2004                            unsigned int r_type, bool dyn_reloc, bool for_call)
2005   {
2006     this->master_got_info_->record_global_got_symbol(mips_sym, object, r_type,
2007                                                      dyn_reloc, for_call);
2008   }
2009
2010   // Record that OBJECT has a page relocation against symbol SYMNDX and
2011   // that ADDEND is the addend for that relocation.
2012   void
2013   record_got_page_entry(Mips_relobj<size, big_endian>* object,
2014                         unsigned int symndx, int addend)
2015   { this->master_got_info_->record_got_page_entry(object, symndx, addend); }
2016
2017   // Add a static entry for the GOT entry at OFFSET.  GSYM is a global
2018   // symbol and R_TYPE is the code of a dynamic relocation that needs to be
2019   // applied in a static link.
2020   void
2021   add_static_reloc(unsigned int got_offset, unsigned int r_type,
2022                    Mips_symbol<size>* gsym)
2023   { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
2024
2025   // Add a static reloc for the GOT entry at OFFSET.  RELOBJ is an object
2026   // defining a local symbol with INDEX.  R_TYPE is the code of a dynamic
2027   // relocation that needs to be applied in a static link.
2028   void
2029   add_static_reloc(unsigned int got_offset, unsigned int r_type,
2030                    Sized_relobj_file<size, big_endian>* relobj,
2031                    unsigned int index)
2032   {
2033     this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
2034                                                 index));
2035   }
2036
2037   // Record that global symbol GSYM has R_TYPE dynamic relocation in the
2038   // secondary GOT at OFFSET.
2039   void
2040   add_secondary_got_reloc(unsigned int got_offset, unsigned int r_type,
2041                           Mips_symbol<size>* gsym)
2042   {
2043     this->secondary_got_relocs_.push_back(Static_reloc(got_offset,
2044                                                        r_type, gsym));
2045   }
2046
2047   // Update GOT entry at OFFSET with VALUE.
2048   void
2049   update_got_entry(unsigned int offset, Mips_address value)
2050   {
2051     elfcpp::Swap<size, big_endian>::writeval(this->got_view_ + offset, value);
2052   }
2053
2054   // Return the number of entries in local part of the GOT.  This includes
2055   // local entries, page entries and 2 reserved entries.
2056   unsigned int
2057   get_local_gotno() const
2058   {
2059     if (!this->multi_got())
2060       {
2061         return (2 + this->master_got_info_->local_gotno()
2062                 + this->master_got_info_->page_gotno());
2063       }
2064     else
2065       return 2 + this->primary_got_->local_gotno() + this->primary_got_->page_gotno();
2066   }
2067
2068   // Return dynamic symbol table index of the first symbol with global GOT
2069   // entry.
2070   unsigned int
2071   first_global_got_dynsym_index() const
2072   { return this->first_global_got_dynsym_index_; }
2073
2074   // Set dynamic symbol table index of the first symbol with global GOT entry.
2075   void
2076   set_first_global_got_dynsym_index(unsigned int index)
2077   { this->first_global_got_dynsym_index_ = index; }
2078
2079   // Lay out the GOT.  Add local, global and TLS entries.  If GOT is
2080   // larger than 64K, create multi-GOT.
2081   void
2082   lay_out_got(Layout* layout, Symbol_table* symtab,
2083               const Input_objects* input_objects);
2084
2085   // Create multi-GOT.  For every GOT, add local, global and TLS entries.
2086   void
2087   lay_out_multi_got(Layout* layout, const Input_objects* input_objects);
2088
2089   // Attempt to merge GOTs of different input objects.
2090   void
2091   merge_gots(const Input_objects* input_objects);
2092
2093   // Consider merging FROM, which is OBJECT's GOT, into TO.  Return false if
2094   // this would lead to overflow, true if they were merged successfully.
2095   bool
2096   merge_got_with(Mips_got_info<size, big_endian>* from,
2097                  Mips_relobj<size, big_endian>* object,
2098                  Mips_got_info<size, big_endian>* to);
2099
2100   // Return the offset of GOT page entry for VALUE.  For multi-GOT links,
2101   // use OBJECT's GOT.
2102   unsigned int
2103   get_got_page_offset(Mips_address value,
2104                       const Mips_relobj<size, big_endian>* object)
2105   {
2106     Mips_got_info<size, big_endian>* g = (!this->multi_got()
2107                                           ? this->master_got_info_
2108                                           : object->get_got_info());
2109     gold_assert(g != NULL);
2110     return g->get_got_page_offset(value, this);
2111   }
2112
2113   // Return the GOT offset of type GOT_TYPE of the global symbol
2114   // GSYM.  For multi-GOT links, use OBJECT's GOT.
2115   unsigned int got_offset(const Symbol* gsym, unsigned int got_type,
2116                           Mips_relobj<size, big_endian>* object) const
2117   {
2118     if (!this->multi_got())
2119       return gsym->got_offset(got_type);
2120     else
2121       {
2122         Mips_got_info<size, big_endian>* g = object->get_got_info();
2123         gold_assert(g != NULL);
2124         return gsym->got_offset(g->multigot_got_type(got_type));
2125       }
2126   }
2127
2128   // Return the GOT offset of type GOT_TYPE of the local symbol
2129   // SYMNDX.
2130   unsigned int
2131   got_offset(unsigned int symndx, unsigned int got_type,
2132              Sized_relobj_file<size, big_endian>* object,
2133              uint64_t addend) const
2134   { return object->local_got_offset(symndx, got_type, addend); }
2135
2136   // Return the offset of TLS LDM entry.  For multi-GOT links, use OBJECT's GOT.
2137   unsigned int
2138   tls_ldm_offset(Mips_relobj<size, big_endian>* object) const
2139   {
2140     Mips_got_info<size, big_endian>* g = (!this->multi_got()
2141                                           ? this->master_got_info_
2142                                           : object->get_got_info());
2143     gold_assert(g != NULL);
2144     return g->tls_ldm_offset();
2145   }
2146
2147   // Set the offset of TLS LDM entry.  For multi-GOT links, use OBJECT's GOT.
2148   void
2149   set_tls_ldm_offset(unsigned int tls_ldm_offset,
2150                      Mips_relobj<size, big_endian>* object)
2151   {
2152     Mips_got_info<size, big_endian>* g = (!this->multi_got()
2153                                           ? this->master_got_info_
2154                                           : object->get_got_info());
2155     gold_assert(g != NULL);
2156     g->set_tls_ldm_offset(tls_ldm_offset);
2157   }
2158
2159   // Return true for multi-GOT links.
2160   bool
2161   multi_got() const
2162   { return this->primary_got_ != NULL; }
2163
2164   // Return the offset of OBJECT's GOT from the start of .got section.
2165   unsigned int
2166   get_got_offset(const Mips_relobj<size, big_endian>* object)
2167   {
2168     if (!this->multi_got())
2169       return 0;
2170     else
2171       {
2172         Mips_got_info<size, big_endian>* g = object->get_got_info();
2173         return g != NULL ? g->offset() : 0;
2174       }
2175   }
2176
2177   // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
2178   void
2179   add_reloc_only_entries()
2180   { this->master_got_info_->add_reloc_only_entries(this); }
2181
2182   // Return offset of the primary GOT's entry for global symbol.
2183   unsigned int
2184   get_primary_got_offset(const Mips_symbol<size>* sym) const
2185   {
2186     gold_assert(sym->global_got_area() != GGA_NONE);
2187     return (this->get_local_gotno() + sym->dynsym_index()
2188             - this->first_global_got_dynsym_index()) * size/8;
2189   }
2190
2191   // For the entry at offset GOT_OFFSET, return its offset from the gp.
2192   // Input argument GOT_OFFSET is always global offset from the start of
2193   // .got section, for both single and multi-GOT links.
2194   // For single GOT links, this returns GOT_OFFSET - 0x7FF0.  For multi-GOT
2195   // links, the return value is object_got_offset - 0x7FF0, where
2196   // object_got_offset is offset in the OBJECT's GOT.
2197   int
2198   gp_offset(unsigned int got_offset,
2199             const Mips_relobj<size, big_endian>* object) const
2200   {
2201     return (this->address() + got_offset
2202             - this->target_->adjusted_gp_value(object));
2203   }
2204
2205  protected:
2206   // Write out the GOT table.
2207   void
2208   do_write(Output_file*);
2209
2210  private:
2211
2212   // This class represent dynamic relocations that need to be applied by
2213   // gold because we are using TLS relocations in a static link.
2214   class Static_reloc
2215   {
2216    public:
2217     Static_reloc(unsigned int got_offset, unsigned int r_type,
2218                  Mips_symbol<size>* gsym)
2219       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
2220     { this->u_.global.symbol = gsym; }
2221
2222     Static_reloc(unsigned int got_offset, unsigned int r_type,
2223           Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
2224       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
2225     {
2226       this->u_.local.relobj = relobj;
2227       this->u_.local.index = index;
2228     }
2229
2230     // Return the GOT offset.
2231     unsigned int
2232     got_offset() const
2233     { return this->got_offset_; }
2234
2235     // Relocation type.
2236     unsigned int
2237     r_type() const
2238     { return this->r_type_; }
2239
2240     // Whether the symbol is global or not.
2241     bool
2242     symbol_is_global() const
2243     { return this->symbol_is_global_; }
2244
2245     // For a relocation against a global symbol, the global symbol.
2246     Mips_symbol<size>*
2247     symbol() const
2248     {
2249       gold_assert(this->symbol_is_global_);
2250       return this->u_.global.symbol;
2251     }
2252
2253     // For a relocation against a local symbol, the defining object.
2254     Sized_relobj_file<size, big_endian>*
2255     relobj() const
2256     {
2257       gold_assert(!this->symbol_is_global_);
2258       return this->u_.local.relobj;
2259     }
2260
2261     // For a relocation against a local symbol, the local symbol index.
2262     unsigned int
2263     index() const
2264     {
2265       gold_assert(!this->symbol_is_global_);
2266       return this->u_.local.index;
2267     }
2268
2269    private:
2270     // GOT offset of the entry to which this relocation is applied.
2271     unsigned int got_offset_;
2272     // Type of relocation.
2273     unsigned int r_type_;
2274     // Whether this relocation is against a global symbol.
2275     bool symbol_is_global_;
2276     // A global or local symbol.
2277     union
2278     {
2279       struct
2280       {
2281         // For a global symbol, the symbol itself.
2282         Mips_symbol<size>* symbol;
2283       } global;
2284       struct
2285       {
2286         // For a local symbol, the object defining object.
2287         Sized_relobj_file<size, big_endian>* relobj;
2288         // For a local symbol, the symbol index.
2289         unsigned int index;
2290       } local;
2291     } u_;
2292   };
2293
2294   // The target.
2295   Target_mips<size, big_endian>* target_;
2296   // The symbol table.
2297   Symbol_table* symbol_table_;
2298   // The layout.
2299   Layout* layout_;
2300   // Static relocs to be applied to the GOT.
2301   std::vector<Static_reloc> static_relocs_;
2302   // .got section view.
2303   unsigned char* got_view_;
2304   // The dynamic symbol table index of the first symbol with global GOT entry.
2305   unsigned int first_global_got_dynsym_index_;
2306   // The master GOT information.
2307   Mips_got_info<size, big_endian>* master_got_info_;
2308   // The  primary GOT information.
2309   Mips_got_info<size, big_endian>* primary_got_;
2310   // Secondary GOT fixups.
2311   std::vector<Static_reloc> secondary_got_relocs_;
2312 };
2313
2314 // A class to handle LA25 stubs - non-PIC interface to a PIC function. There are
2315 // two ways of creating these interfaces.  The first is to add:
2316 //
2317 //      lui     $25,%hi(func)
2318 //      j       func
2319 //      addiu   $25,$25,%lo(func)
2320 //
2321 // to a separate trampoline section.  The second is to add:
2322 //
2323 //      lui     $25,%hi(func)
2324 //      addiu   $25,$25,%lo(func)
2325 //
2326 // immediately before a PIC function "func", but only if a function is at the
2327 // beginning of the section, and the section is not too heavily aligned (i.e we
2328 // would need to add no more than 2 nops before the stub.)
2329 //
2330 // We only create stubs of the first type.
2331
2332 template<int size, bool big_endian>
2333 class Mips_output_data_la25_stub : public Output_section_data
2334 {
2335   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2336
2337  public:
2338   Mips_output_data_la25_stub()
2339   : Output_section_data(size == 32 ? 4 : 8), symbols_()
2340   { }
2341
2342   // Create LA25 stub for a symbol.
2343   void
2344   create_la25_stub(Symbol_table* symtab, Target_mips<size, big_endian>* target,
2345                    Mips_symbol<size>* gsym);
2346
2347   // Return output address of a stub.
2348   Mips_address
2349   stub_address(const Mips_symbol<size>* sym) const
2350   {
2351     gold_assert(sym->has_la25_stub());
2352     return this->address() + sym->la25_stub_offset();
2353   }
2354
2355  protected:
2356   void
2357   do_adjust_output_section(Output_section* os)
2358   { os->set_entsize(0); }
2359
2360  private:
2361   // Template for standard LA25 stub.
2362   static const uint32_t la25_stub_entry[];
2363   // Template for microMIPS LA25 stub.
2364   static const uint32_t la25_stub_micromips_entry[];
2365
2366   // Set the final size.
2367   void
2368   set_final_data_size()
2369   { this->set_data_size(this->symbols_.size() * 16); }
2370
2371   // Create a symbol for SYM stub's value and size, to help make the
2372   // disassembly easier to read.
2373   void
2374   create_stub_symbol(Mips_symbol<size>* sym, Symbol_table* symtab,
2375                      Target_mips<size, big_endian>* target, uint64_t symsize);
2376
2377   // Write to a map file.
2378   void
2379   do_print_to_mapfile(Mapfile* mapfile) const
2380   { mapfile->print_output_data(this, _(".LA25.stubs")); }
2381
2382   // Write out the LA25 stub section.
2383   void
2384   do_write(Output_file*);
2385
2386   // Symbols that have LA25 stubs.
2387   std::vector<Mips_symbol<size>*> symbols_;
2388 };
2389
2390 // MIPS-specific relocation writer.
2391
2392 template<int sh_type, bool dynamic, int size, bool big_endian>
2393 struct Mips_output_reloc_writer;
2394
2395 template<int sh_type, bool dynamic, bool big_endian>
2396 struct Mips_output_reloc_writer<sh_type, dynamic, 32, big_endian>
2397 {
2398   typedef Output_reloc<sh_type, dynamic, 32, big_endian> Output_reloc_type;
2399   typedef std::vector<Output_reloc_type> Relocs;
2400
2401   static void
2402   write(typename Relocs::const_iterator p, unsigned char* pov)
2403   { p->write(pov); }
2404 };
2405
2406 template<int sh_type, bool dynamic, bool big_endian>
2407 struct Mips_output_reloc_writer<sh_type, dynamic, 64, big_endian>
2408 {
2409   typedef Output_reloc<sh_type, dynamic, 64, big_endian> Output_reloc_type;
2410   typedef std::vector<Output_reloc_type> Relocs;
2411
2412   static void
2413   write(typename Relocs::const_iterator p, unsigned char* pov)
2414   {
2415     elfcpp::Mips64_rel_write<big_endian> orel(pov);
2416     orel.put_r_offset(p->get_address());
2417     orel.put_r_sym(p->get_symbol_index());
2418     orel.put_r_ssym(RSS_UNDEF);
2419     orel.put_r_type(p->type());
2420     if (p->type() == elfcpp::R_MIPS_REL32)
2421       orel.put_r_type2(elfcpp::R_MIPS_64);
2422     else
2423       orel.put_r_type2(elfcpp::R_MIPS_NONE);
2424     orel.put_r_type3(elfcpp::R_MIPS_NONE);
2425   }
2426 };
2427
2428 template<int sh_type, bool dynamic, int size, bool big_endian>
2429 class Mips_output_data_reloc : public Output_data_reloc<sh_type, dynamic,
2430                                                         size, big_endian>
2431 {
2432  public:
2433   Mips_output_data_reloc(bool sort_relocs)
2434     : Output_data_reloc<sh_type, dynamic, size, big_endian>(sort_relocs)
2435   { }
2436
2437  protected:
2438   // Write out the data.
2439   void
2440   do_write(Output_file* of)
2441   {
2442     typedef Mips_output_reloc_writer<sh_type, dynamic, size,
2443         big_endian> Writer;
2444     this->template do_write_generic<Writer>(of);
2445   }
2446 };
2447
2448
2449 // A class to handle the PLT data.
2450
2451 template<int size, bool big_endian>
2452 class Mips_output_data_plt : public Output_section_data
2453 {
2454   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2455   typedef Mips_output_data_reloc<elfcpp::SHT_REL, true,
2456                                  size, big_endian> Reloc_section;
2457
2458  public:
2459   // Create the PLT section.  The ordinary .got section is an argument,
2460   // since we need to refer to the start.
2461   Mips_output_data_plt(Layout* layout, Output_data_space* got_plt,
2462                        Target_mips<size, big_endian>* target)
2463     : Output_section_data(size == 32 ? 4 : 8), got_plt_(got_plt), symbols_(),
2464       plt_mips_offset_(0), plt_comp_offset_(0), plt_header_size_(0),
2465       target_(target)
2466   {
2467     this->rel_ = new Reloc_section(false);
2468     layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
2469                                     elfcpp::SHF_ALLOC, this->rel_,
2470                                     ORDER_DYNAMIC_PLT_RELOCS, false);
2471   }
2472
2473   // Add an entry to the PLT for a symbol referenced by r_type relocation.
2474   void
2475   add_entry(Mips_symbol<size>* gsym, unsigned int r_type);
2476
2477   // Return the .rel.plt section data.
2478   const Reloc_section*
2479   rel_plt() const
2480   { return this->rel_; }
2481
2482   // Return the number of PLT entries.
2483   unsigned int
2484   entry_count() const
2485   { return this->symbols_.size(); }
2486
2487   // Return the offset of the first non-reserved PLT entry.
2488   unsigned int
2489   first_plt_entry_offset() const
2490   { return sizeof(plt0_entry_o32); }
2491
2492   // Return the size of a PLT entry.
2493   unsigned int
2494   plt_entry_size() const
2495   { return sizeof(plt_entry); }
2496
2497   // Set final PLT offsets.  For each symbol, determine whether standard or
2498   // compressed (MIPS16 or microMIPS) PLT entry is used.
2499   void
2500   set_plt_offsets();
2501
2502   // Return the offset of the first standard PLT entry.
2503   unsigned int
2504   first_mips_plt_offset() const
2505   { return this->plt_header_size_; }
2506
2507   // Return the offset of the first compressed PLT entry.
2508   unsigned int
2509   first_comp_plt_offset() const
2510   { return this->plt_header_size_ + this->plt_mips_offset_; }
2511
2512   // Return whether there are any standard PLT entries.
2513   bool
2514   has_standard_entries() const
2515   { return this->plt_mips_offset_ > 0; }
2516
2517   // Return the output address of standard PLT entry.
2518   Mips_address
2519   mips_entry_address(const Mips_symbol<size>* sym) const
2520   {
2521     gold_assert (sym->has_mips_plt_offset());
2522     return (this->address() + this->first_mips_plt_offset()
2523             + sym->mips_plt_offset());
2524   }
2525
2526   // Return the output address of compressed (MIPS16 or microMIPS) PLT entry.
2527   Mips_address
2528   comp_entry_address(const Mips_symbol<size>* sym) const
2529   {
2530     gold_assert (sym->has_comp_plt_offset());
2531     return (this->address() + this->first_comp_plt_offset()
2532             + sym->comp_plt_offset());
2533   }
2534
2535  protected:
2536   void
2537   do_adjust_output_section(Output_section* os)
2538   { os->set_entsize(0); }
2539
2540   // Write to a map file.
2541   void
2542   do_print_to_mapfile(Mapfile* mapfile) const
2543   { mapfile->print_output_data(this, _(".plt")); }
2544
2545  private:
2546   // Template for the first PLT entry.
2547   static const uint32_t plt0_entry_o32[];
2548   static const uint32_t plt0_entry_n32[];
2549   static const uint32_t plt0_entry_n64[];
2550   static const uint32_t plt0_entry_micromips_o32[];
2551   static const uint32_t plt0_entry_micromips32_o32[];
2552
2553   // Template for subsequent PLT entries.
2554   static const uint32_t plt_entry[];
2555   static const uint32_t plt_entry_r6[];
2556   static const uint32_t plt_entry_mips16_o32[];
2557   static const uint32_t plt_entry_micromips_o32[];
2558   static const uint32_t plt_entry_micromips32_o32[];
2559
2560   // Set the final size.
2561   void
2562   set_final_data_size()
2563   {
2564     this->set_data_size(this->plt_header_size_ + this->plt_mips_offset_
2565                         + this->plt_comp_offset_);
2566   }
2567
2568   // Write out the PLT data.
2569   void
2570   do_write(Output_file*);
2571
2572   // Return whether the plt header contains microMIPS code.  For the sake of
2573   // cache alignment always use a standard header whenever any standard entries
2574   // are present even if microMIPS entries are present as well.  This also lets
2575   // the microMIPS header rely on the value of $v0 only set by microMIPS
2576   // entries, for a small size reduction.
2577   bool
2578   is_plt_header_compressed() const
2579   {
2580     gold_assert(this->plt_mips_offset_ + this->plt_comp_offset_ != 0);
2581     return this->target_->is_output_micromips() && this->plt_mips_offset_ == 0;
2582   }
2583
2584   // Return the size of the PLT header.
2585   unsigned int
2586   get_plt_header_size() const
2587   {
2588     if (this->target_->is_output_n64())
2589       return 4 * sizeof(plt0_entry_n64) / sizeof(plt0_entry_n64[0]);
2590     else if (this->target_->is_output_n32())
2591       return 4 * sizeof(plt0_entry_n32) / sizeof(plt0_entry_n32[0]);
2592     else if (!this->is_plt_header_compressed())
2593       return 4 * sizeof(plt0_entry_o32) / sizeof(plt0_entry_o32[0]);
2594     else if (this->target_->use_32bit_micromips_instructions())
2595       return (2 * sizeof(plt0_entry_micromips32_o32)
2596               / sizeof(plt0_entry_micromips32_o32[0]));
2597     else
2598       return (2 * sizeof(plt0_entry_micromips_o32)
2599               / sizeof(plt0_entry_micromips_o32[0]));
2600   }
2601
2602   // Return the PLT header entry.
2603   const uint32_t*
2604   get_plt_header_entry() const
2605   {
2606     if (this->target_->is_output_n64())
2607       return plt0_entry_n64;
2608     else if (this->target_->is_output_n32())
2609       return plt0_entry_n32;
2610     else if (!this->is_plt_header_compressed())
2611       return plt0_entry_o32;
2612     else if (this->target_->use_32bit_micromips_instructions())
2613       return plt0_entry_micromips32_o32;
2614     else
2615       return plt0_entry_micromips_o32;
2616   }
2617
2618   // Return the size of the standard PLT entry.
2619   unsigned int
2620   standard_plt_entry_size() const
2621   { return 4 * sizeof(plt_entry) / sizeof(plt_entry[0]); }
2622
2623   // Return the size of the compressed PLT entry.
2624   unsigned int
2625   compressed_plt_entry_size() const
2626   {
2627     gold_assert(!this->target_->is_output_newabi());
2628
2629     if (!this->target_->is_output_micromips())
2630       return (2 * sizeof(plt_entry_mips16_o32)
2631               / sizeof(plt_entry_mips16_o32[0]));
2632     else if (this->target_->use_32bit_micromips_instructions())
2633       return (2 * sizeof(plt_entry_micromips32_o32)
2634               / sizeof(plt_entry_micromips32_o32[0]));
2635     else
2636       return (2 * sizeof(plt_entry_micromips_o32)
2637               / sizeof(plt_entry_micromips_o32[0]));
2638   }
2639
2640   // The reloc section.
2641   Reloc_section* rel_;
2642   // The .got.plt section.
2643   Output_data_space* got_plt_;
2644   // Symbols that have PLT entry.
2645   std::vector<Mips_symbol<size>*> symbols_;
2646   // The offset of the next standard PLT entry to create.
2647   unsigned int plt_mips_offset_;
2648   // The offset of the next compressed PLT entry to create.
2649   unsigned int plt_comp_offset_;
2650   // The size of the PLT header in bytes.
2651   unsigned int plt_header_size_;
2652   // The target.
2653   Target_mips<size, big_endian>* target_;
2654 };
2655
2656 // A class to handle the .MIPS.stubs data.
2657
2658 template<int size, bool big_endian>
2659 class Mips_output_data_mips_stubs : public Output_section_data
2660 {
2661   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2662
2663   // Unordered set of .MIPS.stubs entries.
2664   typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
2665       Mips_stubs_entry_set;
2666
2667  public:
2668    Mips_output_data_mips_stubs(Target_mips<size, big_endian>* target)
2669      : Output_section_data(size == 32 ? 4 : 8), symbols_(), dynsym_count_(-1U),
2670        stub_offsets_are_set_(false), target_(target)
2671    { }
2672
2673   // Create entry for a symbol.
2674   void
2675   make_entry(Mips_symbol<size>*);
2676
2677   // Remove entry for a symbol.
2678   void
2679   remove_entry(Mips_symbol<size>* gsym);
2680
2681   // Set stub offsets for symbols.  This method expects that the number of
2682   // entries in dynamic symbol table is set.
2683   void
2684   set_lazy_stub_offsets();
2685
2686   void
2687   set_needs_dynsym_value();
2688
2689    // Set the number of entries in dynamic symbol table.
2690   void
2691   set_dynsym_count(unsigned int dynsym_count)
2692   { this->dynsym_count_ = dynsym_count; }
2693
2694   // Return maximum size of the stub, ie. the stub size if the dynamic symbol
2695   // count is greater than 0x10000.  If the dynamic symbol count is less than
2696   // 0x10000, the stub will be 4 bytes smaller.
2697   // There's no disadvantage from using microMIPS code here, so for the sake of
2698   // pure-microMIPS binaries we prefer it whenever there's any microMIPS code in
2699   // output produced at all.  This has a benefit of stubs being shorter by
2700   // 4 bytes each too, unless in the insn32 mode.
2701   unsigned int
2702   stub_max_size() const
2703   {
2704     if (!this->target_->is_output_micromips()
2705         || this->target_->use_32bit_micromips_instructions())
2706       return 20;
2707     else
2708       return 16;
2709   }
2710
2711   // Return the size of the stub.  This method expects that the final dynsym
2712   // count is set.
2713   unsigned int
2714   stub_size() const
2715   {
2716     gold_assert(this->dynsym_count_ != -1U);
2717     if (this->dynsym_count_ > 0x10000)
2718       return this->stub_max_size();
2719     else
2720       return this->stub_max_size() - 4;
2721   }
2722
2723   // Return output address of a stub.
2724   Mips_address
2725   stub_address(const Mips_symbol<size>* sym) const
2726   {
2727     gold_assert(sym->has_lazy_stub());
2728     return this->address() + sym->lazy_stub_offset();
2729   }
2730
2731  protected:
2732   void
2733   do_adjust_output_section(Output_section* os)
2734   { os->set_entsize(0); }
2735
2736   // Write to a map file.
2737   void
2738   do_print_to_mapfile(Mapfile* mapfile) const
2739   { mapfile->print_output_data(this, _(".MIPS.stubs")); }
2740
2741  private:
2742   static const uint32_t lazy_stub_normal_1[];
2743   static const uint32_t lazy_stub_normal_1_n64[];
2744   static const uint32_t lazy_stub_normal_2[];
2745   static const uint32_t lazy_stub_normal_2_n64[];
2746   static const uint32_t lazy_stub_big[];
2747   static const uint32_t lazy_stub_big_n64[];
2748
2749   static const uint32_t lazy_stub_micromips_normal_1[];
2750   static const uint32_t lazy_stub_micromips_normal_1_n64[];
2751   static const uint32_t lazy_stub_micromips_normal_2[];
2752   static const uint32_t lazy_stub_micromips_normal_2_n64[];
2753   static const uint32_t lazy_stub_micromips_big[];
2754   static const uint32_t lazy_stub_micromips_big_n64[];
2755
2756   static const uint32_t lazy_stub_micromips32_normal_1[];
2757   static const uint32_t lazy_stub_micromips32_normal_1_n64[];
2758   static const uint32_t lazy_stub_micromips32_normal_2[];
2759   static const uint32_t lazy_stub_micromips32_normal_2_n64[];
2760   static const uint32_t lazy_stub_micromips32_big[];
2761   static const uint32_t lazy_stub_micromips32_big_n64[];
2762
2763   // Set the final size.
2764   void
2765   set_final_data_size()
2766   { this->set_data_size(this->symbols_.size() * this->stub_max_size()); }
2767
2768   // Write out the .MIPS.stubs data.
2769   void
2770   do_write(Output_file*);
2771
2772   // .MIPS.stubs symbols
2773   Mips_stubs_entry_set symbols_;
2774   // Number of entries in dynamic symbol table.
2775   unsigned int dynsym_count_;
2776   // Whether the stub offsets are set.
2777   bool stub_offsets_are_set_;
2778   // The target.
2779   Target_mips<size, big_endian>* target_;
2780 };
2781
2782 // This class handles Mips .reginfo output section.
2783
2784 template<int size, bool big_endian>
2785 class Mips_output_section_reginfo : public Output_section_data
2786 {
2787   typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
2788
2789  public:
2790   Mips_output_section_reginfo(Target_mips<size, big_endian>* target,
2791                               Valtype gprmask, Valtype cprmask1,
2792                               Valtype cprmask2, Valtype cprmask3,
2793                               Valtype cprmask4)
2794     : Output_section_data(24, 4, true), target_(target),
2795       gprmask_(gprmask), cprmask1_(cprmask1), cprmask2_(cprmask2),
2796       cprmask3_(cprmask3), cprmask4_(cprmask4)
2797   { }
2798
2799  protected:
2800   // Write to a map file.
2801   void
2802   do_print_to_mapfile(Mapfile* mapfile) const
2803   { mapfile->print_output_data(this, _(".reginfo")); }
2804
2805   // Write out reginfo section.
2806   void
2807   do_write(Output_file* of);
2808
2809  private:
2810   Target_mips<size, big_endian>* target_;
2811
2812   // gprmask of the output .reginfo section.
2813   Valtype gprmask_;
2814   // cprmask1 of the output .reginfo section.
2815   Valtype cprmask1_;
2816   // cprmask2 of the output .reginfo section.
2817   Valtype cprmask2_;
2818   // cprmask3 of the output .reginfo section.
2819   Valtype cprmask3_;
2820   // cprmask4 of the output .reginfo section.
2821   Valtype cprmask4_;
2822 };
2823
2824 // This class handles .MIPS.abiflags output section.
2825
2826 template<int size, bool big_endian>
2827 class Mips_output_section_abiflags : public Output_section_data
2828 {
2829  public:
2830   Mips_output_section_abiflags(const Mips_abiflags<big_endian>& abiflags)
2831     : Output_section_data(24, 8, true), abiflags_(abiflags)
2832   { }
2833
2834  protected:
2835   // Write to a map file.
2836   void
2837   do_print_to_mapfile(Mapfile* mapfile) const
2838   { mapfile->print_output_data(this, _(".MIPS.abiflags")); }
2839
2840   void
2841   do_write(Output_file* of);
2842
2843  private:
2844   const Mips_abiflags<big_endian>& abiflags_;
2845 };
2846
2847 // The MIPS target has relocation types which default handling of relocatable
2848 // relocation cannot process.  So we have to extend the default code.
2849
2850 template<bool big_endian, typename Classify_reloc>
2851 class Mips_scan_relocatable_relocs :
2852   public Default_scan_relocatable_relocs<Classify_reloc>
2853 {
2854  public:
2855   // Return the strategy to use for a local symbol which is a section
2856   // symbol, given the relocation type.
2857   inline Relocatable_relocs::Reloc_strategy
2858   local_section_strategy(unsigned int r_type, Relobj* object)
2859   {
2860     if (Classify_reloc::sh_type == elfcpp::SHT_RELA)
2861       return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2862     else
2863       {
2864         switch (r_type)
2865           {
2866           case elfcpp::R_MIPS_26:
2867             return Relocatable_relocs::RELOC_SPECIAL;
2868
2869           default:
2870             return Default_scan_relocatable_relocs<Classify_reloc>::
2871                 local_section_strategy(r_type, object);
2872           }
2873       }
2874   }
2875 };
2876
2877 // Mips_copy_relocs class.  The only difference from the base class is the
2878 // method emit_mips, which should be called instead of Copy_reloc_entry::emit.
2879 // Mips cannot convert all relocation types to dynamic relocs.  If a reloc
2880 // cannot be made dynamic, a COPY reloc is emitted.
2881
2882 template<int sh_type, int size, bool big_endian>
2883 class Mips_copy_relocs : public Copy_relocs<sh_type, size, big_endian>
2884 {
2885  public:
2886   Mips_copy_relocs()
2887     : Copy_relocs<sh_type, size, big_endian>(elfcpp::R_MIPS_COPY)
2888   { }
2889
2890   // Emit any saved relocations which turn out to be needed.  This is
2891   // called after all the relocs have been scanned.
2892   void
2893   emit_mips(Output_data_reloc<sh_type, true, size, big_endian>*,
2894             Symbol_table*, Layout*, Target_mips<size, big_endian>*);
2895
2896  private:
2897   typedef typename Copy_relocs<sh_type, size, big_endian>::Copy_reloc_entry
2898     Copy_reloc_entry;
2899
2900   // Emit this reloc if appropriate.  This is called after we have
2901   // scanned all the relocations, so we know whether we emitted a
2902   // COPY relocation for SYM_.
2903   void
2904   emit_entry(Copy_reloc_entry& entry,
2905              Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
2906              Symbol_table* symtab, Layout* layout,
2907              Target_mips<size, big_endian>* target);
2908 };
2909
2910
2911 // Return true if the symbol SYM should be considered to resolve local
2912 // to the current module, and false otherwise.  The logic is taken from
2913 // GNU ld's method _bfd_elf_symbol_refs_local_p.
2914 static bool
2915 symbol_refs_local(const Symbol* sym, bool has_dynsym_entry,
2916                   bool local_protected)
2917 {
2918   // If it's a local sym, of course we resolve locally.
2919   if (sym == NULL)
2920     return true;
2921
2922   // STV_HIDDEN or STV_INTERNAL ones must be local.
2923   if (sym->visibility() == elfcpp::STV_HIDDEN
2924       || sym->visibility() == elfcpp::STV_INTERNAL)
2925     return true;
2926
2927   // If we don't have a definition in a regular file, then we can't
2928   // resolve locally.  The sym is either undefined or dynamic.
2929   if (sym->source() != Symbol::FROM_OBJECT || sym->object()->is_dynamic()
2930       || sym->is_undefined())
2931     return false;
2932
2933   // Forced local symbols resolve locally.
2934   if (sym->is_forced_local())
2935     return true;
2936
2937   // As do non-dynamic symbols.
2938   if (!has_dynsym_entry)
2939     return true;
2940
2941   // At this point, we know the symbol is defined and dynamic.  In an
2942   // executable it must resolve locally, likewise when building symbolic
2943   // shared libraries.
2944   if (parameters->options().output_is_executable()
2945       || parameters->options().Bsymbolic())
2946     return true;
2947
2948   // Now deal with defined dynamic symbols in shared libraries.  Ones
2949   // with default visibility might not resolve locally.
2950   if (sym->visibility() == elfcpp::STV_DEFAULT)
2951     return false;
2952
2953   // STV_PROTECTED non-function symbols are local.
2954   if (sym->type() != elfcpp::STT_FUNC)
2955     return true;
2956
2957   // Function pointer equality tests may require that STV_PROTECTED
2958   // symbols be treated as dynamic symbols.  If the address of a
2959   // function not defined in an executable is set to that function's
2960   // plt entry in the executable, then the address of the function in
2961   // a shared library must also be the plt entry in the executable.
2962   return local_protected;
2963 }
2964
2965 // Return TRUE if references to this symbol always reference the symbol in this
2966 // object.
2967 static bool
2968 symbol_references_local(const Symbol* sym, bool has_dynsym_entry)
2969 {
2970   return symbol_refs_local(sym, has_dynsym_entry, false);
2971 }
2972
2973 // Return TRUE if calls to this symbol always call the version in this object.
2974 static bool
2975 symbol_calls_local(const Symbol* sym, bool has_dynsym_entry)
2976 {
2977   return symbol_refs_local(sym, has_dynsym_entry, true);
2978 }
2979
2980 // Compare GOT offsets of two symbols.
2981
2982 template<int size, bool big_endian>
2983 static bool
2984 got_offset_compare(Symbol* sym1, Symbol* sym2)
2985 {
2986   Mips_symbol<size>* mips_sym1 = Mips_symbol<size>::as_mips_sym(sym1);
2987   Mips_symbol<size>* mips_sym2 = Mips_symbol<size>::as_mips_sym(sym2);
2988   unsigned int area1 = mips_sym1->global_got_area();
2989   unsigned int area2 = mips_sym2->global_got_area();
2990   gold_assert(area1 != GGA_NONE && area1 != GGA_NONE);
2991
2992   // GGA_NORMAL entries always come before GGA_RELOC_ONLY.
2993   if (area1 != area2)
2994     return area1 < area2;
2995
2996   return mips_sym1->global_gotoffset() < mips_sym2->global_gotoffset();
2997 }
2998
2999 // This method divides dynamic symbols into symbols that have GOT entry, and
3000 // symbols that don't have GOT entry.  It also sorts symbols with the GOT entry.
3001 // Mips ABI requires that symbols with the GOT entry must be at the end of
3002 // dynamic symbol table, and the order in dynamic symbol table must match the
3003 // order in GOT.
3004
3005 template<int size, bool big_endian>
3006 static void
3007 reorder_dyn_symbols(std::vector<Symbol*>* dyn_symbols,
3008                     std::vector<Symbol*>* non_got_symbols,
3009                     std::vector<Symbol*>* got_symbols)
3010 {
3011   for (std::vector<Symbol*>::iterator p = dyn_symbols->begin();
3012        p != dyn_symbols->end();
3013        ++p)
3014     {
3015       Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(*p);
3016       if (mips_sym->global_got_area() == GGA_NORMAL
3017           || mips_sym->global_got_area() == GGA_RELOC_ONLY)
3018         got_symbols->push_back(mips_sym);
3019       else
3020         non_got_symbols->push_back(mips_sym);
3021     }
3022
3023   std::sort(got_symbols->begin(), got_symbols->end(),
3024             got_offset_compare<size, big_endian>);
3025 }
3026
3027 // Functor class for processing the global symbol table.
3028
3029 template<int size, bool big_endian>
3030 class Symbol_visitor_check_symbols
3031 {
3032  public:
3033   Symbol_visitor_check_symbols(Target_mips<size, big_endian>* target,
3034     Layout* layout, Symbol_table* symtab)
3035     : target_(target), layout_(layout), symtab_(symtab)
3036   { }
3037
3038   void
3039   operator()(Sized_symbol<size>* sym)
3040   {
3041     Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
3042     if (local_pic_function<size, big_endian>(mips_sym))
3043       {
3044         // SYM is a function that might need $25 to be valid on entry.
3045         // If we're creating a non-PIC relocatable object, mark SYM as
3046         // being PIC.  If we're creating a non-relocatable object with
3047         // non-PIC branches and jumps to SYM, make sure that SYM has an la25
3048         // stub.
3049         if (parameters->options().relocatable())
3050           {
3051             if (!parameters->options().output_is_position_independent())
3052               mips_sym->set_pic();
3053           }
3054         else if (mips_sym->has_nonpic_branches())
3055           {
3056             this->target_->la25_stub_section(layout_)
3057                 ->create_la25_stub(this->symtab_, this->target_, mips_sym);
3058           }
3059       }
3060   }
3061
3062  private:
3063   Target_mips<size, big_endian>* target_;
3064   Layout* layout_;
3065   Symbol_table* symtab_;
3066 };
3067
3068 // Relocation types, parameterized by SHT_REL vs. SHT_RELA, size,
3069 // and endianness. The relocation format for MIPS-64 is non-standard.
3070
3071 template<int sh_type, int size, bool big_endian>
3072 struct Mips_reloc_types;
3073
3074 template<bool big_endian>
3075 struct Mips_reloc_types<elfcpp::SHT_REL, 32, big_endian>
3076 {
3077   typedef typename elfcpp::Rel<32, big_endian> Reloc;
3078   typedef typename elfcpp::Rel_write<32, big_endian> Reloc_write;
3079
3080   static typename elfcpp::Elf_types<32>::Elf_Swxword
3081   get_r_addend(const Reloc*)
3082   { return 0; }
3083
3084   static inline void
3085   set_reloc_addend(Reloc_write*,
3086                    typename elfcpp::Elf_types<32>::Elf_Swxword)
3087   { gold_unreachable(); }
3088 };
3089
3090 template<bool big_endian>
3091 struct Mips_reloc_types<elfcpp::SHT_RELA, 32, big_endian>
3092 {
3093   typedef typename elfcpp::Rela<32, big_endian> Reloc;
3094   typedef typename elfcpp::Rela_write<32, big_endian> Reloc_write;
3095
3096   static typename elfcpp::Elf_types<32>::Elf_Swxword
3097   get_r_addend(const Reloc* reloc)
3098   { return reloc->get_r_addend(); }
3099
3100   static inline void
3101   set_reloc_addend(Reloc_write* p,
3102                    typename elfcpp::Elf_types<32>::Elf_Swxword val)
3103   { p->put_r_addend(val); }
3104 };
3105
3106 template<bool big_endian>
3107 struct Mips_reloc_types<elfcpp::SHT_REL, 64, big_endian>
3108 {
3109   typedef typename elfcpp::Mips64_rel<big_endian> Reloc;
3110   typedef typename elfcpp::Mips64_rel_write<big_endian> Reloc_write;
3111
3112   static typename elfcpp::Elf_types<64>::Elf_Swxword
3113   get_r_addend(const Reloc*)
3114   { return 0; }
3115
3116   static inline void
3117   set_reloc_addend(Reloc_write*,
3118                    typename elfcpp::Elf_types<64>::Elf_Swxword)
3119   { gold_unreachable(); }
3120 };
3121
3122 template<bool big_endian>
3123 struct Mips_reloc_types<elfcpp::SHT_RELA, 64, big_endian>
3124 {
3125   typedef typename elfcpp::Mips64_rela<big_endian> Reloc;
3126   typedef typename elfcpp::Mips64_rela_write<big_endian> Reloc_write;
3127
3128   static typename elfcpp::Elf_types<64>::Elf_Swxword
3129   get_r_addend(const Reloc* reloc)
3130   { return reloc->get_r_addend(); }
3131
3132   static inline void
3133   set_reloc_addend(Reloc_write* p,
3134                    typename elfcpp::Elf_types<64>::Elf_Swxword val)
3135   { p->put_r_addend(val); }
3136 };
3137
3138 // Forward declaration.
3139 static unsigned int
3140 mips_get_size_for_reloc(unsigned int, Relobj*);
3141
3142 // A class for inquiring about properties of a relocation,
3143 // used while scanning relocs during a relocatable link and
3144 // garbage collection.
3145
3146 template<int sh_type_, int size, bool big_endian>
3147 class Mips_classify_reloc;
3148
3149 template<int sh_type_, bool big_endian>
3150 class Mips_classify_reloc<sh_type_, 32, big_endian> :
3151     public gold::Default_classify_reloc<sh_type_, 32, big_endian>
3152 {
3153  public:
3154   typedef typename Mips_reloc_types<sh_type_, 32, big_endian>::Reloc
3155       Reltype;
3156   typedef typename Mips_reloc_types<sh_type_, 32, big_endian>::Reloc_write
3157       Reltype_write;
3158
3159   // Return the symbol referred to by the relocation.
3160   static inline unsigned int
3161   get_r_sym(const Reltype* reloc)
3162   { return elfcpp::elf_r_sym<32>(reloc->get_r_info()); }
3163
3164   // Return the type of the relocation.
3165   static inline unsigned int
3166   get_r_type(const Reltype* reloc)
3167   { return elfcpp::elf_r_type<32>(reloc->get_r_info()); }
3168
3169   static inline unsigned int
3170   get_r_type2(const Reltype*)
3171   { return 0; }
3172
3173   static inline unsigned int
3174   get_r_type3(const Reltype*)
3175   { return 0; }
3176
3177   static inline unsigned int
3178   get_r_ssym(const Reltype*)
3179   { return 0; }
3180
3181   // Return the explicit addend of the relocation (return 0 for SHT_REL).
3182   static inline unsigned int
3183   get_r_addend(const Reltype* reloc)
3184   {
3185     if (sh_type_ == elfcpp::SHT_REL)
3186       return 0;
3187     return Mips_reloc_types<sh_type_, 32, big_endian>::get_r_addend(reloc);
3188   }
3189
3190   // Write the r_info field to a new reloc, using the r_info field from
3191   // the original reloc, replacing the r_sym field with R_SYM.
3192   static inline void
3193   put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
3194   {
3195     unsigned int r_type = elfcpp::elf_r_type<32>(reloc->get_r_info());
3196     new_reloc->put_r_info(elfcpp::elf_r_info<32>(r_sym, r_type));
3197   }
3198
3199   // Write the r_addend field to a new reloc.
3200   static inline void
3201   put_r_addend(Reltype_write* to,
3202                typename elfcpp::Elf_types<32>::Elf_Swxword addend)
3203   { Mips_reloc_types<sh_type_, 32, big_endian>::set_reloc_addend(to, addend); }
3204
3205   // Return the size of the addend of the relocation (only used for SHT_REL).
3206   static unsigned int
3207   get_size_for_reloc(unsigned int r_type, Relobj* obj)
3208   { return mips_get_size_for_reloc(r_type, obj); }
3209 };
3210
3211 template<int sh_type_, bool big_endian>
3212 class Mips_classify_reloc<sh_type_, 64, big_endian> :
3213     public gold::Default_classify_reloc<sh_type_, 64, big_endian>
3214 {
3215  public:
3216   typedef typename Mips_reloc_types<sh_type_, 64, big_endian>::Reloc
3217       Reltype;
3218   typedef typename Mips_reloc_types<sh_type_, 64, big_endian>::Reloc_write
3219       Reltype_write;
3220
3221   // Return the symbol referred to by the relocation.
3222   static inline unsigned int
3223   get_r_sym(const Reltype* reloc)
3224   { return reloc->get_r_sym(); }
3225
3226   // Return the r_type of the relocation.
3227   static inline unsigned int
3228   get_r_type(const Reltype* reloc)
3229   { return reloc->get_r_type(); }
3230
3231   // Return the r_type2 of the relocation.
3232   static inline unsigned int
3233   get_r_type2(const Reltype* reloc)
3234   { return reloc->get_r_type2(); }
3235
3236   // Return the r_type3 of the relocation.
3237   static inline unsigned int
3238   get_r_type3(const Reltype* reloc)
3239   { return reloc->get_r_type3(); }
3240
3241   // Return the special symbol of the relocation.
3242   static inline unsigned int
3243   get_r_ssym(const Reltype* reloc)
3244   { return reloc->get_r_ssym(); }
3245
3246   // Return the explicit addend of the relocation (return 0 for SHT_REL).
3247   static inline typename elfcpp::Elf_types<64>::Elf_Swxword
3248   get_r_addend(const Reltype* reloc)
3249   {
3250     if (sh_type_ == elfcpp::SHT_REL)
3251       return 0;
3252     return Mips_reloc_types<sh_type_, 64, big_endian>::get_r_addend(reloc);
3253   }
3254
3255   // Write the r_info field to a new reloc, using the r_info field from
3256   // the original reloc, replacing the r_sym field with R_SYM.
3257   static inline void
3258   put_r_info(Reltype_write* new_reloc, Reltype* reloc, unsigned int r_sym)
3259   {
3260     new_reloc->put_r_sym(r_sym);
3261     new_reloc->put_r_ssym(reloc->get_r_ssym());
3262     new_reloc->put_r_type3(reloc->get_r_type3());
3263     new_reloc->put_r_type2(reloc->get_r_type2());
3264     new_reloc->put_r_type(reloc->get_r_type());
3265   }
3266
3267   // Write the r_addend field to a new reloc.
3268   static inline void
3269   put_r_addend(Reltype_write* to,
3270                typename elfcpp::Elf_types<64>::Elf_Swxword addend)
3271   { Mips_reloc_types<sh_type_, 64, big_endian>::set_reloc_addend(to, addend); }
3272
3273   // Return the size of the addend of the relocation (only used for SHT_REL).
3274   static unsigned int
3275   get_size_for_reloc(unsigned int r_type, Relobj* obj)
3276   { return mips_get_size_for_reloc(r_type, obj); }
3277 };
3278
3279 template<int size, bool big_endian>
3280 class Target_mips : public Sized_target<size, big_endian>
3281 {
3282   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
3283   typedef Mips_output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
3284     Reloc_section;
3285   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
3286   typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
3287   typedef typename Mips_reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
3288       Reltype;
3289   typedef typename Mips_reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
3290       Relatype;
3291
3292  public:
3293   Target_mips(const Target::Target_info* info = &mips_info)
3294     : Sized_target<size, big_endian>(info), got_(NULL), gp_(NULL), plt_(NULL),
3295       got_plt_(NULL), rel_dyn_(NULL), rld_map_(NULL), copy_relocs_(),
3296       dyn_relocs_(), la25_stub_(NULL), mips_mach_extensions_(),
3297       mips_stubs_(NULL), attributes_section_data_(NULL), abiflags_(NULL),
3298       mach_(0), layout_(NULL), got16_addends_(), has_abiflags_section_(false),
3299       entry_symbol_is_compressed_(false), insn32_(false)
3300   {
3301     this->add_machine_extensions();
3302   }
3303
3304   // The offset of $gp from the beginning of the .got section.
3305   static const unsigned int MIPS_GP_OFFSET = 0x7ff0;
3306
3307   // The maximum size of the GOT for it to be addressable using 16-bit
3308   // offsets from $gp.
3309   static const unsigned int MIPS_GOT_MAX_SIZE = MIPS_GP_OFFSET + 0x7fff;
3310
3311   // Make a new symbol table entry for the Mips target.
3312   Sized_symbol<size>*
3313   make_symbol(const char*, elfcpp::STT, Object*, unsigned int, uint64_t)
3314   { return new Mips_symbol<size>(); }
3315
3316   // Process the relocations to determine unreferenced sections for
3317   // garbage collection.
3318   void
3319   gc_process_relocs(Symbol_table* symtab,
3320                     Layout* layout,
3321                     Sized_relobj_file<size, big_endian>* object,
3322                     unsigned int data_shndx,
3323                     unsigned int sh_type,
3324                     const unsigned char* prelocs,
3325                     size_t reloc_count,
3326                     Output_section* output_section,
3327                     bool needs_special_offset_handling,
3328                     size_t local_symbol_count,
3329                     const unsigned char* plocal_symbols);
3330
3331   // Scan the relocations to look for symbol adjustments.
3332   void
3333   scan_relocs(Symbol_table* symtab,
3334               Layout* layout,
3335               Sized_relobj_file<size, big_endian>* object,
3336               unsigned int data_shndx,
3337               unsigned int sh_type,
3338               const unsigned char* prelocs,
3339               size_t reloc_count,
3340               Output_section* output_section,
3341               bool needs_special_offset_handling,
3342               size_t local_symbol_count,
3343               const unsigned char* plocal_symbols);
3344
3345   // Finalize the sections.
3346   void
3347   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
3348
3349   // Relocate a section.
3350   void
3351   relocate_section(const Relocate_info<size, big_endian>*,
3352                    unsigned int sh_type,
3353                    const unsigned char* prelocs,
3354                    size_t reloc_count,
3355                    Output_section* output_section,
3356                    bool needs_special_offset_handling,
3357                    unsigned char* view,
3358                    Mips_address view_address,
3359                    section_size_type view_size,
3360                    const Reloc_symbol_changes*);
3361
3362   // Scan the relocs during a relocatable link.
3363   void
3364   scan_relocatable_relocs(Symbol_table* symtab,
3365                           Layout* layout,
3366                           Sized_relobj_file<size, big_endian>* object,
3367                           unsigned int data_shndx,
3368                           unsigned int sh_type,
3369                           const unsigned char* prelocs,
3370                           size_t reloc_count,
3371                           Output_section* output_section,
3372                           bool needs_special_offset_handling,
3373                           size_t local_symbol_count,
3374                           const unsigned char* plocal_symbols,
3375                           Relocatable_relocs*);
3376
3377   // Scan the relocs for --emit-relocs.
3378   void
3379   emit_relocs_scan(Symbol_table* symtab,
3380                    Layout* layout,
3381                    Sized_relobj_file<size, big_endian>* object,
3382                    unsigned int data_shndx,
3383                    unsigned int sh_type,
3384                    const unsigned char* prelocs,
3385                    size_t reloc_count,
3386                    Output_section* output_section,
3387                    bool needs_special_offset_handling,
3388                    size_t local_symbol_count,
3389                    const unsigned char* plocal_syms,
3390                    Relocatable_relocs* rr);
3391
3392   // Emit relocations for a section.
3393   void
3394   relocate_relocs(const Relocate_info<size, big_endian>*,
3395                   unsigned int sh_type,
3396                   const unsigned char* prelocs,
3397                   size_t reloc_count,
3398                   Output_section* output_section,
3399                   typename elfcpp::Elf_types<size>::Elf_Off
3400                     offset_in_output_section,
3401                   unsigned char* view,
3402                   Mips_address view_address,
3403                   section_size_type view_size,
3404                   unsigned char* reloc_view,
3405                   section_size_type reloc_view_size);
3406
3407   // Perform target-specific processing in a relocatable link.  This is
3408   // only used if we use the relocation strategy RELOC_SPECIAL.
3409   void
3410   relocate_special_relocatable(const Relocate_info<size, big_endian>* relinfo,
3411                                unsigned int sh_type,
3412                                const unsigned char* preloc_in,
3413                                size_t relnum,
3414                                Output_section* output_section,
3415                                typename elfcpp::Elf_types<size>::Elf_Off
3416                                  offset_in_output_section,
3417                                unsigned char* view,
3418                                Mips_address view_address,
3419                                section_size_type view_size,
3420                                unsigned char* preloc_out);
3421
3422   // Return whether SYM is defined by the ABI.
3423   bool
3424   do_is_defined_by_abi(const Symbol* sym) const
3425   {
3426     return ((strcmp(sym->name(), "__gnu_local_gp") == 0)
3427             || (strcmp(sym->name(), "_gp_disp") == 0)
3428             || (strcmp(sym->name(), "___tls_get_addr") == 0));
3429   }
3430
3431   // Return the number of entries in the GOT.
3432   unsigned int
3433   got_entry_count() const
3434   {
3435     if (!this->has_got_section())
3436       return 0;
3437     return this->got_size() / (size/8);
3438   }
3439
3440   // Return the number of entries in the PLT.
3441   unsigned int
3442   plt_entry_count() const
3443   {
3444     if (this->plt_ == NULL)
3445       return 0;
3446     return this->plt_->entry_count();
3447   }
3448
3449   // Return the offset of the first non-reserved PLT entry.
3450   unsigned int
3451   first_plt_entry_offset() const
3452   { return this->plt_->first_plt_entry_offset(); }
3453
3454   // Return the size of each PLT entry.
3455   unsigned int
3456   plt_entry_size() const
3457   { return this->plt_->plt_entry_size(); }
3458
3459   // Get the GOT section, creating it if necessary.
3460   Mips_output_data_got<size, big_endian>*
3461   got_section(Symbol_table*, Layout*);
3462
3463   // Get the GOT section.
3464   Mips_output_data_got<size, big_endian>*
3465   got_section() const
3466   {
3467     gold_assert(this->got_ != NULL);
3468     return this->got_;
3469   }
3470
3471   // Get the .MIPS.stubs section, creating it if necessary.
3472   Mips_output_data_mips_stubs<size, big_endian>*
3473   mips_stubs_section(Layout* layout);
3474
3475   // Get the .MIPS.stubs section.
3476   Mips_output_data_mips_stubs<size, big_endian>*
3477   mips_stubs_section() const
3478   {
3479     gold_assert(this->mips_stubs_ != NULL);
3480     return this->mips_stubs_;
3481   }
3482
3483   // Get the LA25 stub section, creating it if necessary.
3484   Mips_output_data_la25_stub<size, big_endian>*
3485   la25_stub_section(Layout*);
3486
3487   // Get the LA25 stub section.
3488   Mips_output_data_la25_stub<size, big_endian>*
3489   la25_stub_section()
3490   {
3491     gold_assert(this->la25_stub_ != NULL);
3492     return this->la25_stub_;
3493   }
3494
3495   // Get gp value.  It has the value of .got + 0x7FF0.
3496   Mips_address
3497   gp_value() const
3498   {
3499     if (this->gp_ != NULL)
3500       return this->gp_->value();
3501     return 0;
3502   }
3503
3504   // Get gp value.  It has the value of .got + 0x7FF0.  Adjust it for
3505   // multi-GOT links so that OBJECT's GOT + 0x7FF0 is returned.
3506   Mips_address
3507   adjusted_gp_value(const Mips_relobj<size, big_endian>* object)
3508   {
3509     if (this->gp_ == NULL)
3510       return 0;
3511
3512     bool multi_got = false;
3513     if (this->has_got_section())
3514       multi_got = this->got_section()->multi_got();
3515     if (!multi_got)
3516       return this->gp_->value();
3517     else
3518       return this->gp_->value() + this->got_section()->get_got_offset(object);
3519   }
3520
3521   // Get the dynamic reloc section, creating it if necessary.
3522   Reloc_section*
3523   rel_dyn_section(Layout*);
3524
3525   bool
3526   do_has_custom_set_dynsym_indexes() const
3527   { return true; }
3528
3529   // Don't emit input .reginfo/.MIPS.abiflags sections to
3530   // output .reginfo/.MIPS.abiflags.
3531   bool
3532   do_should_include_section(elfcpp::Elf_Word sh_type) const
3533   {
3534     return ((sh_type != elfcpp::SHT_MIPS_REGINFO)
3535              && (sh_type != elfcpp::SHT_MIPS_ABIFLAGS));
3536   }
3537
3538   // Set the dynamic symbol indexes.  INDEX is the index of the first
3539   // global dynamic symbol.  Pointers to the symbols are stored into the
3540   // vector SYMS.  The names are added to DYNPOOL.  This returns an
3541   // updated dynamic symbol index.
3542   unsigned int
3543   do_set_dynsym_indexes(std::vector<Symbol*>* dyn_symbols, unsigned int index,
3544                         std::vector<Symbol*>* syms, Stringpool* dynpool,
3545                         Versions* versions, Symbol_table* symtab) const;
3546
3547   // Remove .MIPS.stubs entry for a symbol.
3548   void
3549   remove_lazy_stub_entry(Mips_symbol<size>* sym)
3550   {
3551     if (this->mips_stubs_ != NULL)
3552       this->mips_stubs_->remove_entry(sym);
3553   }
3554
3555   // The value to write into got[1] for SVR4 targets, to identify it is
3556   // a GNU object.  The dynamic linker can then use got[1] to store the
3557   // module pointer.
3558   uint64_t
3559   mips_elf_gnu_got1_mask()
3560   {
3561     if (this->is_output_n64())
3562       return (uint64_t)1 << 63;
3563     else
3564       return 1 << 31;
3565   }
3566
3567   // Whether the output has microMIPS code.  This is valid only after
3568   // merge_obj_e_flags() is called.
3569   bool
3570   is_output_micromips() const
3571   {
3572     gold_assert(this->are_processor_specific_flags_set());
3573     return elfcpp::is_micromips(this->processor_specific_flags());
3574   }
3575
3576   // Whether the output uses N32 ABI.  This is valid only after
3577   // merge_obj_e_flags() is called.
3578   bool
3579   is_output_n32() const
3580   {
3581     gold_assert(this->are_processor_specific_flags_set());
3582     return elfcpp::abi_n32(this->processor_specific_flags());
3583   }
3584
3585   // Whether the output uses R6 ISA.  This is valid only after
3586   // merge_obj_e_flags() is called.
3587   bool
3588   is_output_r6() const
3589   {
3590     gold_assert(this->are_processor_specific_flags_set());
3591     return elfcpp::r6_isa(this->processor_specific_flags());
3592   }
3593
3594   // Whether the output uses N64 ABI.
3595   bool
3596   is_output_n64() const
3597   { return size == 64; }
3598
3599   // Whether the output uses NEWABI.  This is valid only after
3600   // merge_obj_e_flags() is called.
3601   bool
3602   is_output_newabi() const
3603   { return this->is_output_n32() || this->is_output_n64(); }
3604
3605   // Whether we can only use 32-bit microMIPS instructions.
3606   bool
3607   use_32bit_micromips_instructions() const
3608   { return this->insn32_; }
3609
3610   // Return the r_sym field from a relocation.
3611   unsigned int
3612   get_r_sym(const unsigned char* preloc) const
3613   {
3614     // Since REL and RELA relocs share the same structure through
3615     // the r_info field, we can just use REL here.
3616     Reltype rel(preloc);
3617     return Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
3618         get_r_sym(&rel);
3619   }
3620
3621  protected:
3622   // Return the value to use for a dynamic symbol which requires special
3623   // treatment.  This is how we support equality comparisons of function
3624   // pointers across shared library boundaries, as described in the
3625   // processor specific ABI supplement.
3626   uint64_t
3627   do_dynsym_value(const Symbol* gsym) const;
3628
3629   // Make an ELF object.
3630   Object*
3631   do_make_elf_object(const std::string&, Input_file*, off_t,
3632                      const elfcpp::Ehdr<size, big_endian>& ehdr);
3633
3634   Object*
3635   do_make_elf_object(const std::string&, Input_file*, off_t,
3636                      const elfcpp::Ehdr<size, !big_endian>&)
3637   { gold_unreachable(); }
3638
3639   // Adjust ELF file header.
3640   void
3641   do_adjust_elf_header(unsigned char* view, int len);
3642
3643   // Get the custom dynamic tag value.
3644   unsigned int
3645   do_dynamic_tag_custom_value(elfcpp::DT) const;
3646
3647   // Adjust the value written to the dynamic symbol table.
3648   virtual void
3649   do_adjust_dyn_symbol(const Symbol* sym, unsigned char* view) const
3650   {
3651     elfcpp::Sym<size, big_endian> isym(view);
3652     elfcpp::Sym_write<size, big_endian> osym(view);
3653     const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
3654
3655     // Keep dynamic compressed symbols odd.  This allows the dynamic linker
3656     // to treat compressed symbols like any other.
3657     Mips_address value = isym.get_st_value();
3658     if (mips_sym->is_mips16() && value != 0)
3659       {
3660         if (!mips_sym->has_mips16_fn_stub())
3661           value |= 1;
3662         else
3663           {
3664             // If we have a MIPS16 function with a stub, the dynamic symbol
3665             // must refer to the stub, since only the stub uses the standard
3666             // calling conventions.  Stub contains MIPS32 code, so don't add +1
3667             // in this case.
3668
3669             // There is a code which does this in the method
3670             // Target_mips::do_dynsym_value, but that code will only be
3671             // executed if the symbol is from dynobj.
3672             // TODO(sasa): GNU ld also changes the value in non-dynamic symbol
3673             // table.
3674
3675             Mips16_stub_section<size, big_endian>* fn_stub =
3676               mips_sym->template get_mips16_fn_stub<big_endian>();
3677             value = fn_stub->output_address();
3678             osym.put_st_size(fn_stub->section_size());
3679           }
3680
3681         osym.put_st_value(value);
3682         osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3683                           mips_sym->nonvis() - (elfcpp::STO_MIPS16 >> 2)));
3684       }
3685     else if ((mips_sym->is_micromips()
3686               // Stubs are always microMIPS if there is any microMIPS code in
3687               // the output.
3688               || (this->is_output_micromips() && mips_sym->has_lazy_stub()))
3689              && value != 0)
3690       {
3691         osym.put_st_value(value | 1);
3692         osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3693                           mips_sym->nonvis() - (elfcpp::STO_MICROMIPS >> 2)));
3694       }
3695   }
3696
3697  private:
3698   // The class which scans relocations.
3699   class Scan
3700   {
3701    public:
3702     Scan()
3703     { }
3704
3705     static inline int
3706     get_reference_flags(unsigned int r_type);
3707
3708     inline void
3709     local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3710           Sized_relobj_file<size, big_endian>* object,
3711           unsigned int data_shndx,
3712           Output_section* output_section,
3713           const Reltype& reloc, unsigned int r_type,
3714           const elfcpp::Sym<size, big_endian>& lsym,
3715           bool is_discarded);
3716
3717     inline void
3718     local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3719           Sized_relobj_file<size, big_endian>* object,
3720           unsigned int data_shndx,
3721           Output_section* output_section,
3722           const Relatype& reloc, unsigned int r_type,
3723           const elfcpp::Sym<size, big_endian>& lsym,
3724           bool is_discarded);
3725
3726     inline void
3727     local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3728           Sized_relobj_file<size, big_endian>* object,
3729           unsigned int data_shndx,
3730           Output_section* output_section,
3731           const Relatype* rela,
3732           const Reltype* rel,
3733           unsigned int rel_type,
3734           unsigned int r_type,
3735           const elfcpp::Sym<size, big_endian>& lsym,
3736           bool is_discarded);
3737
3738     inline void
3739     global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3740            Sized_relobj_file<size, big_endian>* object,
3741            unsigned int data_shndx,
3742            Output_section* output_section,
3743            const Reltype& reloc, unsigned int r_type,
3744            Symbol* gsym);
3745
3746     inline void
3747     global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3748            Sized_relobj_file<size, big_endian>* object,
3749            unsigned int data_shndx,
3750            Output_section* output_section,
3751            const Relatype& reloc, unsigned int r_type,
3752            Symbol* gsym);
3753
3754     inline void
3755     global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3756            Sized_relobj_file<size, big_endian>* object,
3757            unsigned int data_shndx,
3758            Output_section* output_section,
3759            const Relatype* rela,
3760            const Reltype* rel,
3761            unsigned int rel_type,
3762            unsigned int r_type,
3763            Symbol* gsym);
3764
3765     inline bool
3766     local_reloc_may_be_function_pointer(Symbol_table* , Layout*,
3767                                         Target_mips*,
3768                                         Sized_relobj_file<size, big_endian>*,
3769                                         unsigned int,
3770                                         Output_section*,
3771                                         const Reltype&,
3772                                         unsigned int,
3773                                         const elfcpp::Sym<size, big_endian>&)
3774     { return false; }
3775
3776     inline bool
3777     global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3778                                          Target_mips*,
3779                                          Sized_relobj_file<size, big_endian>*,
3780                                          unsigned int,
3781                                          Output_section*,
3782                                          const Reltype&,
3783                                          unsigned int, Symbol*)
3784     { return false; }
3785
3786     inline bool
3787     local_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3788                                         Target_mips*,
3789                                         Sized_relobj_file<size, big_endian>*,
3790                                         unsigned int,
3791                                         Output_section*,
3792                                         const Relatype&,
3793                                         unsigned int,
3794                                         const elfcpp::Sym<size, big_endian>&)
3795     { return false; }
3796
3797     inline bool
3798     global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3799                                          Target_mips*,
3800                                          Sized_relobj_file<size, big_endian>*,
3801                                          unsigned int,
3802                                          Output_section*,
3803                                          const Relatype&,
3804                                          unsigned int, Symbol*)
3805     { return false; }
3806    private:
3807     static void
3808     unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
3809                             unsigned int r_type);
3810
3811     static void
3812     unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
3813                              unsigned int r_type, Symbol*);
3814   };
3815
3816   // The class which implements relocation.
3817   class Relocate
3818   {
3819    public:
3820     Relocate()
3821     { }
3822
3823     ~Relocate()
3824     { }
3825
3826     // Return whether a R_MIPS_32/R_MIPS_64 relocation needs to be applied.
3827     inline bool
3828     should_apply_static_reloc(const Mips_symbol<size>* gsym,
3829                               unsigned int r_type,
3830                               Output_section* output_section,
3831                               Target_mips* target);
3832
3833     // Do a relocation.  Return false if the caller should not issue
3834     // any warnings about this relocation.
3835     inline bool
3836     relocate(const Relocate_info<size, big_endian>*, unsigned int,
3837              Target_mips*, Output_section*, size_t, const unsigned char*,
3838              const Sized_symbol<size>*, const Symbol_value<size>*,
3839              unsigned char*, Mips_address, section_size_type);
3840   };
3841
3842   // This POD class holds the dynamic relocations that should be emitted instead
3843   // of R_MIPS_32, R_MIPS_REL32 and R_MIPS_64 relocations.  We will emit these
3844   // relocations if it turns out that the symbol does not have static
3845   // relocations.
3846   class Dyn_reloc
3847   {
3848    public:
3849     Dyn_reloc(Mips_symbol<size>* sym, unsigned int r_type,
3850               Mips_relobj<size, big_endian>* relobj, unsigned int shndx,
3851               Output_section* output_section, Mips_address r_offset)
3852       : sym_(sym), r_type_(r_type), relobj_(relobj),
3853         shndx_(shndx), output_section_(output_section),
3854         r_offset_(r_offset)
3855     { }
3856
3857     // Emit this reloc if appropriate.  This is called after we have
3858     // scanned all the relocations, so we know whether the symbol has
3859     // static relocations.
3860     void
3861     emit(Reloc_section* rel_dyn, Mips_output_data_got<size, big_endian>* got,
3862          Symbol_table* symtab)
3863     {
3864       if (!this->sym_->has_static_relocs())
3865         {
3866           got->record_global_got_symbol(this->sym_, this->relobj_,
3867                                         this->r_type_, true, false);
3868           if (!symbol_references_local(this->sym_,
3869                                 this->sym_->should_add_dynsym_entry(symtab)))
3870             rel_dyn->add_global(this->sym_, this->r_type_,
3871                                 this->output_section_, this->relobj_,
3872                                 this->shndx_, this->r_offset_);
3873           else
3874             rel_dyn->add_symbolless_global_addend(this->sym_, this->r_type_,
3875                                           this->output_section_, this->relobj_,
3876                                           this->shndx_, this->r_offset_);
3877         }
3878     }
3879
3880    private:
3881     Mips_symbol<size>* sym_;
3882     unsigned int r_type_;
3883     Mips_relobj<size, big_endian>* relobj_;
3884     unsigned int shndx_;
3885     Output_section* output_section_;
3886     Mips_address r_offset_;
3887   };
3888
3889   // Adjust TLS relocation type based on the options and whether this
3890   // is a local symbol.
3891   static tls::Tls_optimization
3892   optimize_tls_reloc(bool is_final, int r_type);
3893
3894   // Return whether there is a GOT section.
3895   bool
3896   has_got_section() const
3897   { return this->got_ != NULL; }
3898
3899   // Check whether the given ELF header flags describe a 32-bit binary.
3900   bool
3901   mips_32bit_flags(elfcpp::Elf_Word);
3902
3903   enum Mips_mach {
3904     mach_mips3000             = 3000,
3905     mach_mips3900             = 3900,
3906     mach_mips4000             = 4000,
3907     mach_mips4010             = 4010,
3908     mach_mips4100             = 4100,
3909     mach_mips4111             = 4111,
3910     mach_mips4120             = 4120,
3911     mach_mips4300             = 4300,
3912     mach_mips4400             = 4400,
3913     mach_mips4600             = 4600,
3914     mach_mips4650             = 4650,
3915     mach_mips5000             = 5000,
3916     mach_mips5400             = 5400,
3917     mach_mips5500             = 5500,
3918     mach_mips5900             = 5900,
3919     mach_mips6000             = 6000,
3920     mach_mips7000             = 7000,
3921     mach_mips8000             = 8000,
3922     mach_mips9000             = 9000,
3923     mach_mips10000            = 10000,
3924     mach_mips12000            = 12000,
3925     mach_mips14000            = 14000,
3926     mach_mips16000            = 16000,
3927     mach_mips16               = 16,
3928     mach_mips5                = 5,
3929     mach_mips_loongson_2e     = 3001,
3930     mach_mips_loongson_2f     = 3002,
3931     mach_mips_loongson_3a     = 3003,
3932     mach_mips_sb1             = 12310201, // octal 'SB', 01
3933     mach_mips_octeon          = 6501,
3934     mach_mips_octeonp         = 6601,
3935     mach_mips_octeon2         = 6502,
3936     mach_mips_octeon3         = 6503,
3937     mach_mips_xlr             = 887682,   // decimal 'XLR'
3938     mach_mipsisa32            = 32,
3939     mach_mipsisa32r2          = 33,
3940     mach_mipsisa32r3          = 34,
3941     mach_mipsisa32r5          = 36,
3942     mach_mipsisa32r6          = 37,
3943     mach_mipsisa64            = 64,
3944     mach_mipsisa64r2          = 65,
3945     mach_mipsisa64r3          = 66,
3946     mach_mipsisa64r5          = 68,
3947     mach_mipsisa64r6          = 69,
3948     mach_mips_micromips       = 96
3949   };
3950
3951   // Return the MACH for a MIPS e_flags value.
3952   unsigned int
3953   elf_mips_mach(elfcpp::Elf_Word);
3954
3955   // Return the MACH for each .MIPS.abiflags ISA Extension.
3956   unsigned int
3957   mips_isa_ext_mach(unsigned int);
3958
3959   // Return the .MIPS.abiflags value representing each ISA Extension.
3960   unsigned int
3961   mips_isa_ext(unsigned int);
3962
3963   // Update the isa_level, isa_rev, isa_ext fields of abiflags.
3964   void
3965   update_abiflags_isa(const std::string&, elfcpp::Elf_Word,
3966                       Mips_abiflags<big_endian>*);
3967
3968   // Infer the content of the ABI flags based on the elf header.
3969   void
3970   infer_abiflags(Mips_relobj<size, big_endian>*, Mips_abiflags<big_endian>*);
3971
3972   // Create abiflags from elf header or from .MIPS.abiflags section.
3973   void
3974   create_abiflags(Mips_relobj<size, big_endian>*, Mips_abiflags<big_endian>*);
3975
3976   // Return the meaning of fp_abi, or "unknown" if not known.
3977   const char*
3978   fp_abi_string(int);
3979
3980   // Select fp_abi.
3981   int
3982   select_fp_abi(const std::string&, int, int);
3983
3984   // Merge attributes from input object.
3985   void
3986   merge_obj_attributes(const std::string&, const Attributes_section_data*);
3987
3988   // Merge abiflags from input object.
3989   void
3990   merge_obj_abiflags(const std::string&, Mips_abiflags<big_endian>*);
3991
3992   // Check whether machine EXTENSION is an extension of machine BASE.
3993   bool
3994   mips_mach_extends(unsigned int, unsigned int);
3995
3996   // Merge file header flags from input object.
3997   void
3998   merge_obj_e_flags(const std::string&, elfcpp::Elf_Word);
3999
4000   // Encode ISA level and revision as a single value.
4001   int
4002   level_rev(unsigned char isa_level, unsigned char isa_rev) const
4003   { return (isa_level << 3) | isa_rev; }
4004
4005   // True if we are linking for CPUs that are faster if JAL is converted to BAL.
4006   static inline bool
4007   jal_to_bal()
4008   { return false; }
4009
4010   // True if we are linking for CPUs that are faster if JALR is converted to
4011   // BAL.  This should be safe for all architectures.  We enable this predicate
4012   // for all CPUs.
4013   static inline bool
4014   jalr_to_bal()
4015   { return true; }
4016
4017   // True if we are linking for CPUs that are faster if JR is converted to B.
4018   // This should be safe for all architectures.  We enable this predicate for
4019   // all CPUs.
4020   static inline bool
4021   jr_to_b()
4022   { return true; }
4023
4024   // Return the size of the GOT section.
4025   section_size_type
4026   got_size() const
4027   {
4028     gold_assert(this->got_ != NULL);
4029     return this->got_->data_size();
4030   }
4031
4032   // Create a PLT entry for a global symbol referenced by r_type relocation.
4033   void
4034   make_plt_entry(Symbol_table*, Layout*, Mips_symbol<size>*,
4035                  unsigned int r_type);
4036
4037   // Get the PLT section.
4038   Mips_output_data_plt<size, big_endian>*
4039   plt_section() const
4040   {
4041     gold_assert(this->plt_ != NULL);
4042     return this->plt_;
4043   }
4044
4045   // Get the GOT PLT section.
4046   const Mips_output_data_plt<size, big_endian>*
4047   got_plt_section() const
4048   {
4049     gold_assert(this->got_plt_ != NULL);
4050     return this->got_plt_;
4051   }
4052
4053   // Copy a relocation against a global symbol.
4054   void
4055   copy_reloc(Symbol_table* symtab, Layout* layout,
4056              Sized_relobj_file<size, big_endian>* object,
4057              unsigned int shndx, Output_section* output_section,
4058              Symbol* sym, unsigned int r_type, Mips_address r_offset)
4059   {
4060     this->copy_relocs_.copy_reloc(symtab, layout,
4061                                   symtab->get_sized_symbol<size>(sym),
4062                                   object, shndx, output_section,
4063                                   r_type, r_offset, 0,
4064                                   this->rel_dyn_section(layout));
4065   }
4066
4067   void
4068   dynamic_reloc(Mips_symbol<size>* sym, unsigned int r_type,
4069                 Mips_relobj<size, big_endian>* relobj,
4070                 unsigned int shndx, Output_section* output_section,
4071                 Mips_address r_offset)
4072   {
4073     this->dyn_relocs_.push_back(Dyn_reloc(sym, r_type, relobj, shndx,
4074                                           output_section, r_offset));
4075   }
4076
4077   // Calculate value of _gp symbol.
4078   void
4079   set_gp(Layout*, Symbol_table*);
4080
4081   const char*
4082   elf_mips_abi_name(elfcpp::Elf_Word e_flags);
4083   const char*
4084   elf_mips_mach_name(elfcpp::Elf_Word e_flags);
4085
4086   // Adds entries that describe how machines relate to one another.  The entries
4087   // are ordered topologically with MIPS I extensions listed last.  First
4088   // element is extension, second element is base.
4089   void
4090   add_machine_extensions()
4091   {
4092     // MIPS64r2 extensions.
4093     this->add_extension(mach_mips_octeon3, mach_mips_octeon2);
4094     this->add_extension(mach_mips_octeon2, mach_mips_octeonp);
4095     this->add_extension(mach_mips_octeonp, mach_mips_octeon);
4096     this->add_extension(mach_mips_octeon, mach_mipsisa64r2);
4097     this->add_extension(mach_mips_loongson_3a, mach_mipsisa64r2);
4098
4099     // MIPS64 extensions.
4100     this->add_extension(mach_mipsisa64r2, mach_mipsisa64);
4101     this->add_extension(mach_mips_sb1, mach_mipsisa64);
4102     this->add_extension(mach_mips_xlr, mach_mipsisa64);
4103
4104     // MIPS V extensions.
4105     this->add_extension(mach_mipsisa64, mach_mips5);
4106
4107     // R10000 extensions.
4108     this->add_extension(mach_mips12000, mach_mips10000);
4109     this->add_extension(mach_mips14000, mach_mips10000);
4110     this->add_extension(mach_mips16000, mach_mips10000);
4111
4112     // R5000 extensions.  Note: the vr5500 ISA is an extension of the core
4113     // vr5400 ISA, but doesn't include the multimedia stuff.  It seems
4114     // better to allow vr5400 and vr5500 code to be merged anyway, since
4115     // many libraries will just use the core ISA.  Perhaps we could add
4116     // some sort of ASE flag if this ever proves a problem.
4117     this->add_extension(mach_mips5500, mach_mips5400);
4118     this->add_extension(mach_mips5400, mach_mips5000);
4119
4120     // MIPS IV extensions.
4121     this->add_extension(mach_mips5, mach_mips8000);
4122     this->add_extension(mach_mips10000, mach_mips8000);
4123     this->add_extension(mach_mips5000, mach_mips8000);
4124     this->add_extension(mach_mips7000, mach_mips8000);
4125     this->add_extension(mach_mips9000, mach_mips8000);
4126
4127     // VR4100 extensions.
4128     this->add_extension(mach_mips4120, mach_mips4100);
4129     this->add_extension(mach_mips4111, mach_mips4100);
4130
4131     // MIPS III extensions.
4132     this->add_extension(mach_mips_loongson_2e, mach_mips4000);
4133     this->add_extension(mach_mips_loongson_2f, mach_mips4000);
4134     this->add_extension(mach_mips8000, mach_mips4000);
4135     this->add_extension(mach_mips4650, mach_mips4000);
4136     this->add_extension(mach_mips4600, mach_mips4000);
4137     this->add_extension(mach_mips4400, mach_mips4000);
4138     this->add_extension(mach_mips4300, mach_mips4000);
4139     this->add_extension(mach_mips4100, mach_mips4000);
4140     this->add_extension(mach_mips4010, mach_mips4000);
4141     this->add_extension(mach_mips5900, mach_mips4000);
4142
4143     // MIPS32 extensions.
4144     this->add_extension(mach_mipsisa32r2, mach_mipsisa32);
4145
4146     // MIPS II extensions.
4147     this->add_extension(mach_mips4000, mach_mips6000);
4148     this->add_extension(mach_mipsisa32, mach_mips6000);
4149
4150     // MIPS I extensions.
4151     this->add_extension(mach_mips6000, mach_mips3000);
4152     this->add_extension(mach_mips3900, mach_mips3000);
4153   }
4154
4155   // Add value to MIPS extenstions.
4156   void
4157   add_extension(unsigned int base, unsigned int extension)
4158   {
4159     std::pair<unsigned int, unsigned int> ext(base, extension);
4160     this->mips_mach_extensions_.push_back(ext);
4161   }
4162
4163   // Return the number of entries in the .dynsym section.
4164   unsigned int get_dt_mips_symtabno() const
4165   {
4166     return ((unsigned int)(this->layout_->dynsym_section()->data_size()
4167                            / elfcpp::Elf_sizes<size>::sym_size));
4168     // TODO(sasa): Entry size is MIPS_ELF_SYM_SIZE.
4169   }
4170
4171   // Information about this specific target which we pass to the
4172   // general Target structure.
4173   static const Target::Target_info mips_info;
4174   // The GOT section.
4175   Mips_output_data_got<size, big_endian>* got_;
4176   // gp symbol.  It has the value of .got + 0x7FF0.
4177   Sized_symbol<size>* gp_;
4178   // The PLT section.
4179   Mips_output_data_plt<size, big_endian>* plt_;
4180   // The GOT PLT section.
4181   Output_data_space* got_plt_;
4182   // The dynamic reloc section.
4183   Reloc_section* rel_dyn_;
4184   // The .rld_map section.
4185   Output_data_zero_fill* rld_map_;
4186   // Relocs saved to avoid a COPY reloc.
4187   Mips_copy_relocs<elfcpp::SHT_REL, size, big_endian> copy_relocs_;
4188
4189   // A list of dyn relocs to be saved.
4190   std::vector<Dyn_reloc> dyn_relocs_;
4191
4192   // The LA25 stub section.
4193   Mips_output_data_la25_stub<size, big_endian>* la25_stub_;
4194   // Architecture extensions.
4195   std::vector<std::pair<unsigned int, unsigned int> > mips_mach_extensions_;
4196   // .MIPS.stubs
4197   Mips_output_data_mips_stubs<size, big_endian>* mips_stubs_;
4198
4199   // Attributes section data in output.
4200   Attributes_section_data* attributes_section_data_;
4201   // .MIPS.abiflags section data in output.
4202   Mips_abiflags<big_endian>* abiflags_;
4203
4204   unsigned int mach_;
4205   Layout* layout_;
4206
4207   typename std::list<got16_addend<size, big_endian> > got16_addends_;
4208
4209   // Whether there is an input .MIPS.abiflags section.
4210   bool has_abiflags_section_;
4211
4212   // Whether the entry symbol is mips16 or micromips.
4213   bool entry_symbol_is_compressed_;
4214
4215   // Whether we can use only 32-bit microMIPS instructions.
4216   // TODO(sasa): This should be a linker option.
4217   bool insn32_;
4218 };
4219
4220 // Helper structure for R_MIPS*_HI16/LO16 and R_MIPS*_GOT16/LO16 relocations.
4221 // It records high part of the relocation pair.
4222
4223 template<int size, bool big_endian>
4224 struct reloc_high
4225 {
4226   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
4227
4228   reloc_high(unsigned char* _view, const Mips_relobj<size, big_endian>* _object,
4229              const Symbol_value<size>* _psymval, Mips_address _addend,
4230              unsigned int _r_type, unsigned int _r_sym, bool _extract_addend,
4231              Mips_address _address = 0, bool _gp_disp = false)
4232     : view(_view), object(_object), psymval(_psymval), addend(_addend),
4233       r_type(_r_type), r_sym(_r_sym), extract_addend(_extract_addend),
4234       address(_address), gp_disp(_gp_disp)
4235   { }
4236
4237   unsigned char* view;
4238   const Mips_relobj<size, big_endian>* object;
4239   const Symbol_value<size>* psymval;
4240   Mips_address addend;
4241   unsigned int r_type;
4242   unsigned int r_sym;
4243   bool extract_addend;
4244   Mips_address address;
4245   bool gp_disp;
4246 };
4247
4248 template<int size, bool big_endian>
4249 class Mips_relocate_functions : public Relocate_functions<size, big_endian>
4250 {
4251   typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
4252   typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
4253   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
4254   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
4255   typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype64;
4256
4257  public:
4258   typedef enum
4259   {
4260     STATUS_OKAY,            // No error during relocation.
4261     STATUS_OVERFLOW,        // Relocation overflow.
4262     STATUS_BAD_RELOC,       // Relocation cannot be applied.
4263     STATUS_PCREL_UNALIGNED  // Unaligned PC-relative relocation.
4264   } Status;
4265
4266  private:
4267   typedef Relocate_functions<size, big_endian> Base;
4268   typedef Mips_relocate_functions<size, big_endian> This;
4269
4270   static typename std::list<reloc_high<size, big_endian> > hi16_relocs;
4271   static typename std::list<reloc_high<size, big_endian> > got16_relocs;
4272   static typename std::list<reloc_high<size, big_endian> > pchi16_relocs;
4273
4274   template<int valsize>
4275   static inline typename This::Status
4276   check_overflow(Valtype value)
4277   {
4278     if (size == 32)
4279       return (Bits<valsize>::has_overflow32(value)
4280               ? This::STATUS_OVERFLOW
4281               : This::STATUS_OKAY);
4282
4283     return (Bits<valsize>::has_overflow(value)
4284             ? This::STATUS_OVERFLOW
4285             : This::STATUS_OKAY);
4286   }
4287
4288   static inline bool
4289   should_shuffle_micromips_reloc(unsigned int r_type)
4290   {
4291     return (micromips_reloc(r_type)
4292             && r_type != elfcpp::R_MICROMIPS_PC7_S1
4293             && r_type != elfcpp::R_MICROMIPS_PC10_S1);
4294   }
4295
4296  public:
4297   //   R_MIPS16_26 is used for the mips16 jal and jalx instructions.
4298   //   Most mips16 instructions are 16 bits, but these instructions
4299   //   are 32 bits.
4300   //
4301   //   The format of these instructions is:
4302   //
4303   //   +--------------+--------------------------------+
4304   //   |     JALX     | X|   Imm 20:16  |   Imm 25:21  |
4305   //   +--------------+--------------------------------+
4306   //   |                Immediate  15:0                |
4307   //   +-----------------------------------------------+
4308   //
4309   //   JALX is the 5-bit value 00011.  X is 0 for jal, 1 for jalx.
4310   //   Note that the immediate value in the first word is swapped.
4311   //
4312   //   When producing a relocatable object file, R_MIPS16_26 is
4313   //   handled mostly like R_MIPS_26.  In particular, the addend is
4314   //   stored as a straight 26-bit value in a 32-bit instruction.
4315   //   (gas makes life simpler for itself by never adjusting a
4316   //   R_MIPS16_26 reloc to be against a section, so the addend is
4317   //   always zero).  However, the 32 bit instruction is stored as 2
4318   //   16-bit values, rather than a single 32-bit value.  In a
4319   //   big-endian file, the result is the same; in a little-endian
4320   //   file, the two 16-bit halves of the 32 bit value are swapped.
4321   //   This is so that a disassembler can recognize the jal
4322   //   instruction.
4323   //
4324   //   When doing a final link, R_MIPS16_26 is treated as a 32 bit
4325   //   instruction stored as two 16-bit values.  The addend A is the
4326   //   contents of the targ26 field.  The calculation is the same as
4327   //   R_MIPS_26.  When storing the calculated value, reorder the
4328   //   immediate value as shown above, and don't forget to store the
4329   //   value as two 16-bit values.
4330   //
4331   //   To put it in MIPS ABI terms, the relocation field is T-targ26-16,
4332   //   defined as
4333   //
4334   //   big-endian:
4335   //   +--------+----------------------+
4336   //   |        |                      |
4337   //   |        |    targ26-16         |
4338   //   |31    26|25                   0|
4339   //   +--------+----------------------+
4340   //
4341   //   little-endian:
4342   //   +----------+------+-------------+
4343   //   |          |      |             |
4344   //   |  sub1    |      |     sub2    |
4345   //   |0        9|10  15|16         31|
4346   //   +----------+--------------------+
4347   //   where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
4348   //   ((sub1 << 16) | sub2)).
4349   //
4350   //   When producing a relocatable object file, the calculation is
4351   //   (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
4352   //   When producing a fully linked file, the calculation is
4353   //   let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
4354   //   ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
4355   //
4356   //   The table below lists the other MIPS16 instruction relocations.
4357   //   Each one is calculated in the same way as the non-MIPS16 relocation
4358   //   given on the right, but using the extended MIPS16 layout of 16-bit
4359   //   immediate fields:
4360   //
4361   //      R_MIPS16_GPREL          R_MIPS_GPREL16
4362   //      R_MIPS16_GOT16          R_MIPS_GOT16
4363   //      R_MIPS16_CALL16         R_MIPS_CALL16
4364   //      R_MIPS16_HI16           R_MIPS_HI16
4365   //      R_MIPS16_LO16           R_MIPS_LO16
4366   //
4367   //   A typical instruction will have a format like this:
4368   //
4369   //   +--------------+--------------------------------+
4370   //   |    EXTEND    |     Imm 10:5    |   Imm 15:11  |
4371   //   +--------------+--------------------------------+
4372   //   |    Major     |   rx   |   ry   |   Imm  4:0   |
4373   //   +--------------+--------------------------------+
4374   //
4375   //   EXTEND is the five bit value 11110.  Major is the instruction
4376   //   opcode.
4377   //
4378   //   All we need to do here is shuffle the bits appropriately.
4379   //   As above, the two 16-bit halves must be swapped on a
4380   //   little-endian system.
4381
4382   // Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
4383   // on a little-endian system.  This does not apply to R_MICROMIPS_PC7_S1
4384   // and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions.
4385
4386   static void
4387   mips_reloc_unshuffle(unsigned char* view, unsigned int r_type,
4388                        bool jal_shuffle)
4389   {
4390     if (!mips16_reloc(r_type)
4391         && !should_shuffle_micromips_reloc(r_type))
4392       return;
4393
4394     // Pick up the first and second halfwords of the instruction.
4395     Valtype16 first = elfcpp::Swap<16, big_endian>::readval(view);
4396     Valtype16 second = elfcpp::Swap<16, big_endian>::readval(view + 2);
4397     Valtype32 val;
4398
4399     if (micromips_reloc(r_type)
4400         || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
4401       val = first << 16 | second;
4402     else if (r_type != elfcpp::R_MIPS16_26)
4403       val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
4404              | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
4405     else
4406       val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
4407              | ((first & 0x1f) << 21) | second);
4408
4409     elfcpp::Swap<32, big_endian>::writeval(view, val);
4410   }
4411
4412   static void
4413   mips_reloc_shuffle(unsigned char* view, unsigned int r_type, bool jal_shuffle)
4414   {
4415     if (!mips16_reloc(r_type)
4416         && !should_shuffle_micromips_reloc(r_type))
4417       return;
4418
4419     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
4420     Valtype16 first, second;
4421
4422     if (micromips_reloc(r_type)
4423         || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
4424       {
4425         second = val & 0xffff;
4426         first = val >> 16;
4427       }
4428     else if (r_type != elfcpp::R_MIPS16_26)
4429       {
4430         second = ((val >> 11) & 0xffe0) | (val & 0x1f);
4431         first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
4432       }
4433     else
4434       {
4435         second = val & 0xffff;
4436         first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
4437                  | ((val >> 21) & 0x1f);
4438       }
4439
4440     elfcpp::Swap<16, big_endian>::writeval(view + 2, second);
4441     elfcpp::Swap<16, big_endian>::writeval(view, first);
4442   }
4443
4444   // R_MIPS_16: S + sign-extend(A)
4445   static inline typename This::Status
4446   rel16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4447         const Symbol_value<size>* psymval, Mips_address addend_a,
4448         bool extract_addend, bool calculate_only, Valtype* calculated_value)
4449   {
4450     Valtype16* wv = reinterpret_cast<Valtype16*>(view);
4451     Valtype16 val = elfcpp::Swap<16, big_endian>::readval(wv);
4452
4453     Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val)
4454                                      : addend_a);
4455
4456     Valtype x = psymval->value(object, addend);
4457     val = Bits<16>::bit_select32(val, x, 0xffffU);
4458
4459     if (calculate_only)
4460       {
4461         *calculated_value = x;
4462         return This::STATUS_OKAY;
4463       }
4464     else
4465       elfcpp::Swap<16, big_endian>::writeval(wv, val);
4466
4467     return check_overflow<16>(x);
4468   }
4469
4470   // R_MIPS_32: S + A
4471   static inline typename This::Status
4472   rel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4473         const Symbol_value<size>* psymval, Mips_address addend_a,
4474         bool extract_addend, bool calculate_only, Valtype* calculated_value)
4475   {
4476     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4477     Valtype addend = (extract_addend
4478                         ? elfcpp::Swap<32, big_endian>::readval(wv)
4479                         : addend_a);
4480     Valtype x = psymval->value(object, addend);
4481
4482     if (calculate_only)
4483       *calculated_value = x;
4484     else
4485       elfcpp::Swap<32, big_endian>::writeval(wv, x);
4486
4487     return This::STATUS_OKAY;
4488   }
4489
4490   // R_MIPS_JALR, R_MICROMIPS_JALR
4491   static inline typename This::Status
4492   reljalr(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4493           const Symbol_value<size>* psymval, Mips_address address,
4494           Mips_address addend_a, bool extract_addend, bool cross_mode_jump,
4495           unsigned int r_type, bool jalr_to_bal, bool jr_to_b,
4496           bool calculate_only, Valtype* calculated_value)
4497   {
4498     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4499     Valtype addend = extract_addend ? 0 : addend_a;
4500     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4501
4502     // Try converting J(AL)R to B(AL), if the target is in range.
4503     if (!parameters->options().relocatable()
4504         && r_type == elfcpp::R_MIPS_JALR
4505         && !cross_mode_jump
4506         && ((jalr_to_bal && val == 0x0320f809)    // jalr t9
4507             || (jr_to_b && val == 0x03200008)))   // jr t9
4508       {
4509         int offset = psymval->value(object, addend) - (address + 4);
4510         if (!Bits<18>::has_overflow32(offset))
4511           {
4512             if (val == 0x03200008)   // jr t9
4513               val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff);  // b addr
4514             else
4515               val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4516           }
4517       }
4518
4519     if (calculate_only)
4520       *calculated_value = val;
4521     else
4522       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4523
4524     return This::STATUS_OKAY;
4525   }
4526
4527   // R_MIPS_PC32: S + A - P
4528   static inline typename This::Status
4529   relpc32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4530           const Symbol_value<size>* psymval, Mips_address address,
4531           Mips_address addend_a, bool extract_addend, bool calculate_only,
4532           Valtype* calculated_value)
4533   {
4534     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4535     Valtype addend = (extract_addend
4536                         ? elfcpp::Swap<32, big_endian>::readval(wv)
4537                         : addend_a);
4538     Valtype x = psymval->value(object, addend) - address;
4539
4540     if (calculate_only)
4541        *calculated_value = x;
4542     else
4543       elfcpp::Swap<32, big_endian>::writeval(wv, x);
4544
4545     return This::STATUS_OKAY;
4546   }
4547
4548   // R_MIPS_26, R_MIPS16_26, R_MICROMIPS_26_S1
4549   static inline typename This::Status
4550   rel26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4551         const Symbol_value<size>* psymval, Mips_address address,
4552         bool local, Mips_address addend_a, bool extract_addend,
4553         const Symbol* gsym, bool cross_mode_jump, unsigned int r_type,
4554         bool jal_to_bal, bool calculate_only, Valtype* calculated_value)
4555   {
4556     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4557     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4558
4559     Valtype addend;
4560     if (extract_addend)
4561       {
4562         if (r_type == elfcpp::R_MICROMIPS_26_S1)
4563           addend = (val & 0x03ffffff) << 1;
4564         else
4565           addend = (val & 0x03ffffff) << 2;
4566       }
4567     else
4568       addend = addend_a;
4569
4570     // Make sure the target of JALX is word-aligned.  Bit 0 must be
4571     // the correct ISA mode selector and bit 1 must be 0.
4572     if (!calculate_only && cross_mode_jump
4573         && (psymval->value(object, 0) & 3) != (r_type == elfcpp::R_MIPS_26))
4574       {
4575         gold_warning(_("JALX to a non-word-aligned address"));
4576         return This::STATUS_BAD_RELOC;
4577       }
4578
4579     // Shift is 2, unusually, for microMIPS JALX.
4580     unsigned int shift =
4581         (!cross_mode_jump && r_type == elfcpp::R_MICROMIPS_26_S1) ? 1 : 2;
4582
4583     Valtype x;
4584     if (local)
4585       x = addend | ((address + 4) & (0xfc000000 << shift));
4586     else
4587       {
4588         if (shift == 1)
4589           x = Bits<27>::sign_extend32(addend);
4590         else
4591           x = Bits<28>::sign_extend32(addend);
4592       }
4593     x = psymval->value(object, x) >> shift;
4594
4595     if (!calculate_only && !local && !gsym->is_weak_undefined())
4596       {
4597         if ((x >> 26) != ((address + 4) >> (26 + shift)))
4598           {
4599             gold_error(_("relocation truncated to fit: %u against '%s'"),
4600                        r_type, gsym->name());
4601             return This::STATUS_OVERFLOW;
4602           }
4603       }
4604
4605     val = Bits<32>::bit_select32(val, x, 0x03ffffff);
4606
4607     // If required, turn JAL into JALX.
4608     if (cross_mode_jump)
4609       {
4610         bool ok;
4611         Valtype32 opcode = val >> 26;
4612         Valtype32 jalx_opcode;
4613
4614         // Check to see if the opcode is already JAL or JALX.
4615         if (r_type == elfcpp::R_MIPS16_26)
4616           {
4617             ok = (opcode == 0x6) || (opcode == 0x7);
4618             jalx_opcode = 0x7;
4619           }
4620         else if (r_type == elfcpp::R_MICROMIPS_26_S1)
4621           {
4622             ok = (opcode == 0x3d) || (opcode == 0x3c);
4623             jalx_opcode = 0x3c;
4624           }
4625         else
4626           {
4627             ok = (opcode == 0x3) || (opcode == 0x1d);
4628             jalx_opcode = 0x1d;
4629           }
4630
4631         // If the opcode is not JAL or JALX, there's a problem.  We cannot
4632         // convert J or JALS to JALX.
4633         if (!calculate_only && !ok)
4634           {
4635             gold_error(_("Unsupported jump between ISA modes; consider "
4636                          "recompiling with interlinking enabled."));
4637             return This::STATUS_BAD_RELOC;
4638           }
4639
4640         // Make this the JALX opcode.
4641         val = (val & ~(0x3f << 26)) | (jalx_opcode << 26);
4642       }
4643
4644     // Try converting JAL to BAL, if the target is in range.
4645     if (!parameters->options().relocatable()
4646         && !cross_mode_jump
4647         && ((jal_to_bal
4648             && r_type == elfcpp::R_MIPS_26
4649             && (val >> 26) == 0x3)))    // jal addr
4650       {
4651         Valtype32 dest = (x << 2) | (((address + 4) >> 28) << 28);
4652         int offset = dest - (address + 4);
4653         if (!Bits<18>::has_overflow32(offset))
4654           {
4655             if (val == 0x03200008)   // jr t9
4656               val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff);  // b addr
4657             else
4658               val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4659           }
4660       }
4661
4662     if (calculate_only)
4663       *calculated_value = val;
4664     else
4665       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4666
4667     return This::STATUS_OKAY;
4668   }
4669
4670   // R_MIPS_PC16
4671   static inline typename This::Status
4672   relpc16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4673           const Symbol_value<size>* psymval, Mips_address address,
4674           Mips_address addend_a, bool extract_addend, bool calculate_only,
4675           Valtype* calculated_value)
4676   {
4677     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4678     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4679
4680     Valtype addend = (extract_addend
4681                       ? Bits<18>::sign_extend32((val & 0xffff) << 2)
4682                       : addend_a);
4683
4684     Valtype x = psymval->value(object, addend) - address;
4685     val = Bits<16>::bit_select32(val, x >> 2, 0xffff);
4686
4687     if (calculate_only)
4688       {
4689         *calculated_value = x >> 2;
4690         return This::STATUS_OKAY;
4691       }
4692     else
4693       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4694
4695     if (psymval->value(object, addend) & 3)
4696       return This::STATUS_PCREL_UNALIGNED;
4697
4698     return check_overflow<18>(x);
4699   }
4700
4701   // R_MIPS_PC21_S2
4702   static inline typename This::Status
4703   relpc21(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4704           const Symbol_value<size>* psymval, Mips_address address,
4705           Mips_address addend_a, bool extract_addend, bool calculate_only,
4706           Valtype* calculated_value)
4707   {
4708     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4709     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4710
4711     Valtype addend = (extract_addend
4712                       ? Bits<23>::sign_extend32((val & 0x1fffff) << 2)
4713                       : addend_a);
4714
4715     Valtype x = psymval->value(object, addend) - address;
4716     val = Bits<21>::bit_select32(val, x >> 2, 0x1fffff);
4717
4718     if (calculate_only)
4719       {
4720         *calculated_value = x >> 2;
4721         return This::STATUS_OKAY;
4722       }
4723     else
4724       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4725
4726     if (psymval->value(object, addend) & 3)
4727       return This::STATUS_PCREL_UNALIGNED;
4728
4729     return check_overflow<23>(x);
4730   }
4731
4732   // R_MIPS_PC26_S2
4733   static inline typename This::Status
4734   relpc26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4735           const Symbol_value<size>* psymval, Mips_address address,
4736           Mips_address addend_a, bool extract_addend, bool calculate_only,
4737           Valtype* calculated_value)
4738   {
4739     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4740     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4741
4742     Valtype addend = (extract_addend
4743                       ? Bits<28>::sign_extend32((val & 0x3ffffff) << 2)
4744                       : addend_a);
4745
4746     Valtype x = psymval->value(object, addend) - address;
4747     val = Bits<26>::bit_select32(val, x >> 2, 0x3ffffff);
4748
4749     if (calculate_only)
4750       {
4751         *calculated_value = x >> 2;
4752         return This::STATUS_OKAY;
4753       }
4754     else
4755       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4756
4757     if (psymval->value(object, addend) & 3)
4758       return This::STATUS_PCREL_UNALIGNED;
4759
4760     return check_overflow<28>(x);
4761   }
4762
4763   // R_MIPS_PC18_S3
4764   static inline typename This::Status
4765   relpc18(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4766           const Symbol_value<size>* psymval, Mips_address address,
4767           Mips_address addend_a, bool extract_addend, bool calculate_only,
4768           Valtype* calculated_value)
4769   {
4770     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4771     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4772
4773     Valtype addend = (extract_addend
4774                       ? Bits<21>::sign_extend32((val & 0x3ffff) << 3)
4775                       : addend_a);
4776
4777     Valtype x = psymval->value(object, addend) - ((address | 7) ^ 7);
4778     val = Bits<18>::bit_select32(val, x >> 3, 0x3ffff);
4779
4780     if (calculate_only)
4781       {
4782         *calculated_value = x >> 3;
4783         return This::STATUS_OKAY;
4784       }
4785     else
4786       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4787
4788     if (psymval->value(object, addend) & 7)
4789       return This::STATUS_PCREL_UNALIGNED;
4790
4791     return check_overflow<21>(x);
4792   }
4793
4794   // R_MIPS_PC19_S2
4795   static inline typename This::Status
4796   relpc19(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4797           const Symbol_value<size>* psymval, Mips_address address,
4798           Mips_address addend_a, bool extract_addend, bool calculate_only,
4799           Valtype* calculated_value)
4800   {
4801     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4802     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4803
4804     Valtype addend = (extract_addend
4805                       ? Bits<21>::sign_extend32((val & 0x7ffff) << 2)
4806                       : addend_a);
4807
4808     Valtype x = psymval->value(object, addend) - address;
4809     val = Bits<19>::bit_select32(val, x >> 2, 0x7ffff);
4810
4811     if (calculate_only)
4812       {
4813         *calculated_value = x >> 2;
4814         return This::STATUS_OKAY;
4815       }
4816     else
4817       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4818
4819     if (psymval->value(object, addend) & 3)
4820       return This::STATUS_PCREL_UNALIGNED;
4821
4822     return check_overflow<21>(x);
4823   }
4824
4825   // R_MIPS_PCHI16
4826   static inline typename This::Status
4827   relpchi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4828             const Symbol_value<size>* psymval, Mips_address addend,
4829             Mips_address address, unsigned int r_sym, bool extract_addend)
4830   {
4831     // Record the relocation.  It will be resolved when we find pclo16 part.
4832     pchi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
4833                             addend, 0, r_sym, extract_addend, address));
4834     return This::STATUS_OKAY;
4835   }
4836
4837   // R_MIPS_PCHI16
4838   static inline typename This::Status
4839   do_relpchi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4840              const Symbol_value<size>* psymval, Mips_address addend_hi,
4841              Mips_address address, bool extract_addend, Valtype32 addend_lo,
4842              bool calculate_only, Valtype* calculated_value)
4843   {
4844     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4845     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4846
4847     Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
4848                                        : addend_hi);
4849
4850     Valtype value = psymval->value(object, addend) - address;
4851     Valtype x = ((value + 0x8000) >> 16) & 0xffff;
4852     val = Bits<32>::bit_select32(val, x, 0xffff);
4853
4854     if (calculate_only)
4855       *calculated_value = x;
4856     else
4857       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4858
4859     return This::STATUS_OKAY;
4860   }
4861
4862   // R_MIPS_PCLO16
4863   static inline typename This::Status
4864   relpclo16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4865             const Symbol_value<size>* psymval, Mips_address addend_a,
4866             bool extract_addend, Mips_address address, unsigned int r_sym,
4867             unsigned int rel_type, bool calculate_only,
4868             Valtype* calculated_value)
4869   {
4870     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4871     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4872
4873     Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
4874                                      : addend_a);
4875
4876     if (rel_type == elfcpp::SHT_REL)
4877       {
4878         // Resolve pending R_MIPS_PCHI16 relocations.
4879         typename std::list<reloc_high<size, big_endian> >::iterator it =
4880             pchi16_relocs.begin();
4881         while (it != pchi16_relocs.end())
4882           {
4883             reloc_high<size, big_endian> pchi16 = *it;
4884             if (pchi16.r_sym == r_sym)
4885               {
4886                 do_relpchi16(pchi16.view, pchi16.object, pchi16.psymval,
4887                              pchi16.addend, pchi16.address,
4888                              pchi16.extract_addend, addend, calculate_only,
4889                              calculated_value);
4890                 it = pchi16_relocs.erase(it);
4891               }
4892             else
4893               ++it;
4894           }
4895       }
4896
4897     // Resolve R_MIPS_PCLO16 relocation.
4898     Valtype x = psymval->value(object, addend) - address;
4899     val = Bits<32>::bit_select32(val, x, 0xffff);
4900
4901     if (calculate_only)
4902       *calculated_value = x;
4903     else
4904       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4905
4906     return This::STATUS_OKAY;
4907   }
4908
4909   // R_MICROMIPS_PC7_S1
4910   static inline typename This::Status
4911   relmicromips_pc7_s1(unsigned char* view,
4912                       const Mips_relobj<size, big_endian>* object,
4913                       const Symbol_value<size>* psymval, Mips_address address,
4914                       Mips_address addend_a, bool extract_addend,
4915                       bool calculate_only, Valtype* calculated_value)
4916   {
4917     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4918     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4919
4920     Valtype addend = extract_addend ? Bits<8>::sign_extend32((val & 0x7f) << 1)
4921                                     : addend_a;
4922
4923     Valtype x = psymval->value(object, addend) - address;
4924     val = Bits<16>::bit_select32(val, x >> 1, 0x7f);
4925
4926     if (calculate_only)
4927       {
4928         *calculated_value = x >> 1;
4929         return This::STATUS_OKAY;
4930       }
4931     else
4932       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4933
4934     return check_overflow<8>(x);
4935   }
4936
4937   // R_MICROMIPS_PC10_S1
4938   static inline typename This::Status
4939   relmicromips_pc10_s1(unsigned char* view,
4940                        const Mips_relobj<size, big_endian>* object,
4941                        const Symbol_value<size>* psymval, Mips_address address,
4942                        Mips_address addend_a, bool extract_addend,
4943                        bool calculate_only, Valtype* calculated_value)
4944   {
4945     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4946     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4947
4948     Valtype addend = (extract_addend
4949                       ? Bits<11>::sign_extend32((val & 0x3ff) << 1)
4950                       : addend_a);
4951
4952     Valtype x = psymval->value(object, addend) - address;
4953     val = Bits<16>::bit_select32(val, x >> 1, 0x3ff);
4954
4955     if (calculate_only)
4956       {
4957         *calculated_value = x >> 1;
4958         return This::STATUS_OKAY;
4959       }
4960     else
4961       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4962
4963     return check_overflow<11>(x);
4964   }
4965
4966   // R_MICROMIPS_PC16_S1
4967   static inline typename This::Status
4968   relmicromips_pc16_s1(unsigned char* view,
4969                        const Mips_relobj<size, big_endian>* object,
4970                        const Symbol_value<size>* psymval, Mips_address address,
4971                        Mips_address addend_a, bool extract_addend,
4972                        bool calculate_only, Valtype* calculated_value)
4973   {
4974     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4975     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4976
4977     Valtype addend = (extract_addend
4978                       ? Bits<17>::sign_extend32((val & 0xffff) << 1)
4979                       : addend_a);
4980
4981     Valtype x = psymval->value(object, addend) - address;
4982     val = Bits<16>::bit_select32(val, x >> 1, 0xffff);
4983
4984     if (calculate_only)
4985       {
4986         *calculated_value = x >> 1;
4987         return This::STATUS_OKAY;
4988       }
4989     else
4990       elfcpp::Swap<32, big_endian>::writeval(wv, val);
4991
4992     return check_overflow<17>(x);
4993   }
4994
4995   // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
4996   static inline typename This::Status
4997   relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4998           const Symbol_value<size>* psymval, Mips_address addend,
4999           Mips_address address, bool gp_disp, unsigned int r_type,
5000           unsigned int r_sym, bool extract_addend)
5001   {
5002     // Record the relocation.  It will be resolved when we find lo16 part.
5003     hi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
5004                           addend, r_type, r_sym, extract_addend, address,
5005                           gp_disp));
5006     return This::STATUS_OKAY;
5007   }
5008
5009   // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
5010   static inline typename This::Status
5011   do_relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5012              const Symbol_value<size>* psymval, Mips_address addend_hi,
5013              Mips_address address, bool is_gp_disp, unsigned int r_type,
5014              bool extract_addend, Valtype32 addend_lo,
5015              Target_mips<size, big_endian>* target, bool calculate_only,
5016              Valtype* calculated_value)
5017   {
5018     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5019     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5020
5021     Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
5022                                        : addend_hi);
5023
5024     Valtype32 value;
5025     if (!is_gp_disp)
5026       value = psymval->value(object, addend);
5027     else
5028       {
5029         // For MIPS16 ABI code we generate this sequence
5030         //    0: li      $v0,%hi(_gp_disp)
5031         //    4: addiupc $v1,%lo(_gp_disp)
5032         //    8: sll     $v0,16
5033         //   12: addu    $v0,$v1
5034         //   14: move    $gp,$v0
5035         // So the offsets of hi and lo relocs are the same, but the
5036         // base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5037         // ADDIUPC clears the low two bits of the instruction address,
5038         // so the base is ($t9 + 4) & ~3.
5039         Valtype32 gp_disp;
5040         if (r_type == elfcpp::R_MIPS16_HI16)
5041           gp_disp = (target->adjusted_gp_value(object)
5042                      - ((address + 4) & ~0x3));
5043         // The microMIPS .cpload sequence uses the same assembly
5044         // instructions as the traditional psABI version, but the
5045         // incoming $t9 has the low bit set.
5046         else if (r_type == elfcpp::R_MICROMIPS_HI16)
5047           gp_disp = target->adjusted_gp_value(object) - address - 1;
5048         else
5049           gp_disp = target->adjusted_gp_value(object) - address;
5050         value = gp_disp + addend;
5051       }
5052     Valtype x = ((value + 0x8000) >> 16) & 0xffff;
5053     val = Bits<32>::bit_select32(val, x, 0xffff);
5054
5055     if (calculate_only)
5056       {
5057         *calculated_value = x;
5058         return This::STATUS_OKAY;
5059       }
5060     else
5061       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5062
5063     return (is_gp_disp ? check_overflow<16>(x)
5064                        : This::STATUS_OKAY);
5065   }
5066
5067   // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5068   static inline typename This::Status
5069   relgot16_local(unsigned char* view,
5070                  const Mips_relobj<size, big_endian>* object,
5071                  const Symbol_value<size>* psymval, Mips_address addend_a,
5072                  bool extract_addend, unsigned int r_type, unsigned int r_sym)
5073   {
5074     // Record the relocation.  It will be resolved when we find lo16 part.
5075     got16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
5076                            addend_a, r_type, r_sym, extract_addend));
5077     return This::STATUS_OKAY;
5078   }
5079
5080   // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5081   static inline typename This::Status
5082   do_relgot16_local(unsigned char* view,
5083                     const Mips_relobj<size, big_endian>* object,
5084                     const Symbol_value<size>* psymval, Mips_address addend_hi,
5085                     bool extract_addend, Valtype32 addend_lo,
5086                     Target_mips<size, big_endian>* target, bool calculate_only,
5087                     Valtype* calculated_value)
5088   {
5089     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5090     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5091
5092     Valtype addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
5093                                        : addend_hi);
5094
5095     // Find GOT page entry.
5096     Mips_address value = ((psymval->value(object, addend) + 0x8000) >> 16)
5097                           & 0xffff;
5098     value <<= 16;
5099     unsigned int got_offset =
5100       target->got_section()->get_got_page_offset(value, object);
5101
5102     // Resolve the relocation.
5103     Valtype x = target->got_section()->gp_offset(got_offset, object);
5104     val = Bits<32>::bit_select32(val, x, 0xffff);
5105
5106     if (calculate_only)
5107       {
5108         *calculated_value = x;
5109         return This::STATUS_OKAY;
5110       }
5111     else
5112       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5113
5114     return check_overflow<16>(x);
5115   }
5116
5117   // R_MIPS_LO16, R_MIPS16_LO16, R_MICROMIPS_LO16, R_MICROMIPS_HI0_LO16
5118   static inline typename This::Status
5119   rello16(Target_mips<size, big_endian>* target, unsigned char* view,
5120           const Mips_relobj<size, big_endian>* object,
5121           const Symbol_value<size>* psymval, Mips_address addend_a,
5122           bool extract_addend, Mips_address address, bool is_gp_disp,
5123           unsigned int r_type, unsigned int r_sym, unsigned int rel_type,
5124           bool calculate_only, Valtype* calculated_value)
5125   {
5126     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5127     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5128
5129     Valtype addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
5130                                      : addend_a);
5131
5132     if (rel_type == elfcpp::SHT_REL)
5133       {
5134         typename This::Status reloc_status = This::STATUS_OKAY;
5135         // Resolve pending R_MIPS_HI16 relocations.
5136         typename std::list<reloc_high<size, big_endian> >::iterator it =
5137           hi16_relocs.begin();
5138         while (it != hi16_relocs.end())
5139           {
5140             reloc_high<size, big_endian> hi16 = *it;
5141             if (hi16.r_sym == r_sym
5142                 && is_matching_lo16_reloc(hi16.r_type, r_type))
5143               {
5144                 mips_reloc_unshuffle(hi16.view, hi16.r_type, false);
5145                 reloc_status = do_relhi16(hi16.view, hi16.object, hi16.psymval,
5146                                        hi16.addend, hi16.address, hi16.gp_disp,
5147                                        hi16.r_type, hi16.extract_addend, addend,
5148                                        target, calculate_only, calculated_value);
5149                 mips_reloc_shuffle(hi16.view, hi16.r_type, false);
5150                 if (reloc_status == This::STATUS_OVERFLOW)
5151                   return This::STATUS_OVERFLOW;
5152                 it = hi16_relocs.erase(it);
5153               }
5154             else
5155               ++it;
5156           }
5157
5158         // Resolve pending local R_MIPS_GOT16 relocations.
5159         typename std::list<reloc_high<size, big_endian> >::iterator it2 =
5160           got16_relocs.begin();
5161         while (it2 != got16_relocs.end())
5162           {
5163             reloc_high<size, big_endian> got16 = *it2;
5164             if (got16.r_sym == r_sym
5165                 && is_matching_lo16_reloc(got16.r_type, r_type))
5166               {
5167                 mips_reloc_unshuffle(got16.view, got16.r_type, false);
5168
5169                 reloc_status = do_relgot16_local(got16.view, got16.object,
5170                                      got16.psymval, got16.addend,
5171                                      got16.extract_addend, addend, target,
5172                                      calculate_only, calculated_value);
5173
5174                 mips_reloc_shuffle(got16.view, got16.r_type, false);
5175                 if (reloc_status == This::STATUS_OVERFLOW)
5176                   return This::STATUS_OVERFLOW;
5177                 it2 = got16_relocs.erase(it2);
5178               }
5179             else
5180               ++it2;
5181           }
5182       }
5183
5184     // Resolve R_MIPS_LO16 relocation.
5185     Valtype x;
5186     if (!is_gp_disp)
5187       x = psymval->value(object, addend);
5188     else
5189       {
5190         // See the comment for R_MIPS16_HI16 above for the reason
5191         // for this conditional.
5192         Valtype32 gp_disp;
5193         if (r_type == elfcpp::R_MIPS16_LO16)
5194           gp_disp = target->adjusted_gp_value(object) - (address & ~0x3);
5195         else if (r_type == elfcpp::R_MICROMIPS_LO16
5196                  || r_type == elfcpp::R_MICROMIPS_HI0_LO16)
5197           gp_disp = target->adjusted_gp_value(object) - address + 3;
5198         else
5199           gp_disp = target->adjusted_gp_value(object) - address + 4;
5200         // The MIPS ABI requires checking the R_MIPS_LO16 relocation
5201         // for overflow.  Relocations against _gp_disp are normally
5202         // generated from the .cpload pseudo-op.  It generates code
5203         // that normally looks like this:
5204
5205         //   lui    $gp,%hi(_gp_disp)
5206         //   addiu  $gp,$gp,%lo(_gp_disp)
5207         //   addu   $gp,$gp,$t9
5208
5209         // Here $t9 holds the address of the function being called,
5210         // as required by the MIPS ELF ABI.  The R_MIPS_LO16
5211         // relocation can easily overflow in this situation, but the
5212         // R_MIPS_HI16 relocation will handle the overflow.
5213         // Therefore, we consider this a bug in the MIPS ABI, and do
5214         // not check for overflow here.
5215         x = gp_disp + addend;
5216       }
5217     val = Bits<32>::bit_select32(val, x, 0xffff);
5218
5219     if (calculate_only)
5220       *calculated_value = x;
5221     else
5222       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5223
5224     return This::STATUS_OKAY;
5225   }
5226
5227   // R_MIPS_CALL16, R_MIPS16_CALL16, R_MICROMIPS_CALL16
5228   // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
5229   // R_MIPS_TLS_GD, R_MIPS16_TLS_GD, R_MICROMIPS_TLS_GD
5230   // R_MIPS_TLS_GOTTPREL, R_MIPS16_TLS_GOTTPREL, R_MICROMIPS_TLS_GOTTPREL
5231   // R_MIPS_TLS_LDM, R_MIPS16_TLS_LDM, R_MICROMIPS_TLS_LDM
5232   // R_MIPS_GOT_DISP, R_MICROMIPS_GOT_DISP
5233   static inline typename This::Status
5234   relgot(unsigned char* view, int gp_offset, bool calculate_only,
5235          Valtype* calculated_value)
5236   {
5237     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5238     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5239     Valtype x = gp_offset;
5240     val = Bits<32>::bit_select32(val, x, 0xffff);
5241
5242     if (calculate_only)
5243       {
5244         *calculated_value = x;
5245         return This::STATUS_OKAY;
5246       }
5247     else
5248       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5249
5250     return check_overflow<16>(x);
5251   }
5252
5253   // R_MIPS_EH
5254   static inline typename This::Status
5255   releh(unsigned char* view, int gp_offset, bool calculate_only,
5256         Valtype* calculated_value)
5257   {
5258     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5259     Valtype x = gp_offset;
5260
5261     if (calculate_only)
5262       {
5263         *calculated_value = x;
5264         return This::STATUS_OKAY;
5265       }
5266     else
5267       elfcpp::Swap<32, big_endian>::writeval(wv, x);
5268
5269     return check_overflow<32>(x);
5270   }
5271
5272   // R_MIPS_GOT_PAGE, R_MICROMIPS_GOT_PAGE
5273   static inline typename This::Status
5274   relgotpage(Target_mips<size, big_endian>* target, unsigned char* view,
5275              const Mips_relobj<size, big_endian>* object,
5276              const Symbol_value<size>* psymval, Mips_address addend_a,
5277              bool extract_addend, bool calculate_only,
5278              Valtype* calculated_value)
5279   {
5280     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5281     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
5282     Valtype addend = extract_addend ? val & 0xffff : addend_a;
5283
5284     // Find a GOT page entry that points to within 32KB of symbol + addend.
5285     Mips_address value = (psymval->value(object, addend) + 0x8000) & ~0xffff;
5286     unsigned int  got_offset =
5287       target->got_section()->get_got_page_offset(value, object);
5288
5289     Valtype x = target->got_section()->gp_offset(got_offset, object);
5290     val = Bits<32>::bit_select32(val, x, 0xffff);
5291
5292     if (calculate_only)
5293       {
5294         *calculated_value = x;
5295         return This::STATUS_OKAY;
5296       }
5297     else
5298       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5299
5300     return check_overflow<16>(x);
5301   }
5302
5303   // R_MIPS_GOT_OFST, R_MICROMIPS_GOT_OFST
5304   static inline typename This::Status
5305   relgotofst(Target_mips<size, big_endian>* target, unsigned char* view,
5306              const Mips_relobj<size, big_endian>* object,
5307              const Symbol_value<size>* psymval, Mips_address addend_a,
5308              bool extract_addend, bool local, bool calculate_only,
5309              Valtype* calculated_value)
5310   {
5311     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5312     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
5313     Valtype addend = extract_addend ? val & 0xffff : addend_a;
5314
5315     // For a local symbol, find a GOT page entry that points to within 32KB of
5316     // symbol + addend.  Relocation value is the offset of the GOT page entry's
5317     // value from symbol + addend.
5318     // For a global symbol, relocation value is addend.
5319     Valtype x;
5320     if (local)
5321       {
5322         // Find GOT page entry.
5323         Mips_address value = ((psymval->value(object, addend) + 0x8000)
5324                               & ~0xffff);
5325         target->got_section()->get_got_page_offset(value, object);
5326
5327         x = psymval->value(object, addend) - value;
5328       }
5329     else
5330       x = addend;
5331     val = Bits<32>::bit_select32(val, x, 0xffff);
5332
5333     if (calculate_only)
5334       {
5335         *calculated_value = x;
5336         return This::STATUS_OKAY;
5337       }
5338     else
5339       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5340
5341     return check_overflow<16>(x);
5342   }
5343
5344   // R_MIPS_GOT_HI16, R_MIPS_CALL_HI16,
5345   // R_MICROMIPS_GOT_HI16, R_MICROMIPS_CALL_HI16
5346   static inline typename This::Status
5347   relgot_hi16(unsigned char* view, int gp_offset, bool calculate_only,
5348               Valtype* calculated_value)
5349   {
5350     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5351     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5352     Valtype x = gp_offset;
5353     x = ((x + 0x8000) >> 16) & 0xffff;
5354     val = Bits<32>::bit_select32(val, x, 0xffff);
5355
5356     if (calculate_only)
5357       *calculated_value = x;
5358     else
5359       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5360
5361     return This::STATUS_OKAY;
5362   }
5363
5364   // R_MIPS_GOT_LO16, R_MIPS_CALL_LO16,
5365   // R_MICROMIPS_GOT_LO16, R_MICROMIPS_CALL_LO16
5366   static inline typename This::Status
5367   relgot_lo16(unsigned char* view, int gp_offset, bool calculate_only,
5368               Valtype* calculated_value)
5369   {
5370     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5371     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5372     Valtype x = gp_offset;
5373     val = Bits<32>::bit_select32(val, x, 0xffff);
5374
5375     if (calculate_only)
5376       *calculated_value = x;
5377     else
5378       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5379
5380     return This::STATUS_OKAY;
5381   }
5382
5383   // R_MIPS_GPREL16, R_MIPS16_GPREL, R_MIPS_LITERAL, R_MICROMIPS_LITERAL
5384   // R_MICROMIPS_GPREL7_S2, R_MICROMIPS_GPREL16
5385   static inline typename This::Status
5386   relgprel(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5387            const Symbol_value<size>* psymval, Mips_address gp,
5388            Mips_address addend_a, bool extract_addend, bool local,
5389            unsigned int r_type, bool calculate_only,
5390            Valtype* calculated_value)
5391   {
5392     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5393     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5394
5395     Valtype addend;
5396     if (extract_addend)
5397       {
5398         if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
5399           addend = (val & 0x7f) << 2;
5400         else
5401           addend = val & 0xffff;
5402         // Only sign-extend the addend if it was extracted from the
5403         // instruction.  If the addend was separate, leave it alone,
5404         // otherwise we may lose significant bits.
5405         addend = Bits<16>::sign_extend32(addend);
5406       }
5407     else
5408       addend = addend_a;
5409
5410     Valtype x = psymval->value(object, addend) - gp;
5411
5412     // If the symbol was local, any earlier relocatable links will
5413     // have adjusted its addend with the gp offset, so compensate
5414     // for that now.  Don't do it for symbols forced local in this
5415     // link, though, since they won't have had the gp offset applied
5416     // to them before.
5417     if (local)
5418       x += object->gp_value();
5419
5420     if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
5421       val = Bits<32>::bit_select32(val, x, 0x7f);
5422     else
5423       val = Bits<32>::bit_select32(val, x, 0xffff);
5424
5425     if (calculate_only)
5426       {
5427         *calculated_value = x;
5428         return This::STATUS_OKAY;
5429       }
5430     else
5431       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5432
5433     if (check_overflow<16>(x) == This::STATUS_OVERFLOW)
5434       {
5435         gold_error(_("small-data section exceeds 64KB; lower small-data size "
5436                      "limit (see option -G)"));
5437         return This::STATUS_OVERFLOW;
5438       }
5439     return This::STATUS_OKAY;
5440   }
5441
5442   // R_MIPS_GPREL32
5443   static inline typename This::Status
5444   relgprel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5445              const Symbol_value<size>* psymval, Mips_address gp,
5446              Mips_address addend_a, bool extract_addend, bool calculate_only,
5447              Valtype* calculated_value)
5448   {
5449     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5450     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5451     Valtype addend = extract_addend ? val : addend_a;
5452
5453     // R_MIPS_GPREL32 relocations are defined for local symbols only.
5454     Valtype x = psymval->value(object, addend) + object->gp_value() - gp;
5455
5456     if (calculate_only)
5457       *calculated_value = x;
5458     else
5459       elfcpp::Swap<32, big_endian>::writeval(wv, x);
5460
5461     return This::STATUS_OKAY;
5462  }
5463
5464   // R_MIPS_TLS_TPREL_HI16, R_MIPS16_TLS_TPREL_HI16, R_MICROMIPS_TLS_TPREL_HI16
5465   // R_MIPS_TLS_DTPREL_HI16, R_MIPS16_TLS_DTPREL_HI16,
5466   // R_MICROMIPS_TLS_DTPREL_HI16
5467   static inline typename This::Status
5468   tlsrelhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5469              const Symbol_value<size>* psymval, Valtype32 tp_offset,
5470              Mips_address addend_a, bool extract_addend, bool calculate_only,
5471              Valtype* calculated_value)
5472   {
5473     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5474     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5475     Valtype addend = extract_addend ? val & 0xffff : addend_a;
5476
5477     // tls symbol values are relative to tls_segment()->vaddr()
5478     Valtype x = ((psymval->value(object, addend) - tp_offset) + 0x8000) >> 16;
5479     val = Bits<32>::bit_select32(val, x, 0xffff);
5480
5481     if (calculate_only)
5482       *calculated_value = x;
5483     else
5484       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5485
5486     return This::STATUS_OKAY;
5487   }
5488
5489   // R_MIPS_TLS_TPREL_LO16, R_MIPS16_TLS_TPREL_LO16, R_MICROMIPS_TLS_TPREL_LO16,
5490   // R_MIPS_TLS_DTPREL_LO16, R_MIPS16_TLS_DTPREL_LO16,
5491   // R_MICROMIPS_TLS_DTPREL_LO16,
5492   static inline typename This::Status
5493   tlsrello16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5494              const Symbol_value<size>* psymval, Valtype32 tp_offset,
5495              Mips_address addend_a, bool extract_addend, bool calculate_only,
5496              Valtype* calculated_value)
5497   {
5498     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5499     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5500     Valtype addend = extract_addend ? val & 0xffff : addend_a;
5501
5502     // tls symbol values are relative to tls_segment()->vaddr()
5503     Valtype x = psymval->value(object, addend) - tp_offset;
5504     val = Bits<32>::bit_select32(val, x, 0xffff);
5505
5506     if (calculate_only)
5507       *calculated_value = x;
5508     else
5509       elfcpp::Swap<32, big_endian>::writeval(wv, val);
5510
5511     return This::STATUS_OKAY;
5512   }
5513
5514   // R_MIPS_TLS_TPREL32, R_MIPS_TLS_TPREL64,
5515   // R_MIPS_TLS_DTPREL32, R_MIPS_TLS_DTPREL64
5516   static inline typename This::Status
5517   tlsrel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5518            const Symbol_value<size>* psymval, Valtype32 tp_offset,
5519            Mips_address addend_a, bool extract_addend, bool calculate_only,
5520            Valtype* calculated_value)
5521   {
5522     Valtype32* wv = reinterpret_cast<Valtype32*>(view);
5523     Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
5524     Valtype addend = extract_addend ? val : addend_a;
5525
5526     // tls symbol values are relative to tls_segment()->vaddr()
5527     Valtype x = psymval->value(object, addend) - tp_offset;
5528
5529     if (calculate_only)
5530       *calculated_value = x;
5531     else
5532       elfcpp::Swap<32, big_endian>::writeval(wv, x);
5533
5534     return This::STATUS_OKAY;
5535   }
5536
5537   // R_MIPS_SUB, R_MICROMIPS_SUB
5538   static inline typename This::Status
5539   relsub(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5540          const Symbol_value<size>* psymval, Mips_address addend_a,
5541          bool extract_addend, bool calculate_only, Valtype* calculated_value)
5542   {
5543     Valtype64* wv = reinterpret_cast<Valtype64*>(view);
5544     Valtype64 addend = (extract_addend
5545                         ? elfcpp::Swap<64, big_endian>::readval(wv)
5546                         : addend_a);
5547
5548     Valtype64 x = psymval->value(object, -addend);
5549     if (calculate_only)
5550       *calculated_value = x;
5551     else
5552       elfcpp::Swap<64, big_endian>::writeval(wv, x);
5553
5554     return This::STATUS_OKAY;
5555   }
5556
5557   // R_MIPS_64: S + A
5558   static inline typename This::Status
5559   rel64(unsigned char* view, const Mips_relobj<size, big_endian>* object,
5560         const Symbol_value<size>* psymval, Mips_address addend_a,
5561         bool extract_addend, bool calculate_only, Valtype* calculated_value,
5562         bool apply_addend_only)
5563   {
5564     Valtype64* wv = reinterpret_cast<Valtype64*>(view);
5565     Valtype64 addend = (extract_addend
5566                         ? elfcpp::Swap<64, big_endian>::readval(wv)
5567                         : addend_a);
5568
5569     Valtype64 x = psymval->value(object, addend);
5570     if (calculate_only)
5571       *calculated_value = x;
5572     else
5573       {
5574         if (apply_addend_only)
5575           x = addend;
5576         elfcpp::Swap<64, big_endian>::writeval(wv, x);
5577       }
5578
5579     return This::STATUS_OKAY;
5580   }
5581
5582 };
5583
5584 template<int size, bool big_endian>
5585 typename std::list<reloc_high<size, big_endian> >
5586     Mips_relocate_functions<size, big_endian>::hi16_relocs;
5587
5588 template<int size, bool big_endian>
5589 typename std::list<reloc_high<size, big_endian> >
5590     Mips_relocate_functions<size, big_endian>::got16_relocs;
5591
5592 template<int size, bool big_endian>
5593 typename std::list<reloc_high<size, big_endian> >
5594     Mips_relocate_functions<size, big_endian>::pchi16_relocs;
5595
5596 // Mips_got_info methods.
5597
5598 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
5599 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
5600
5601 template<int size, bool big_endian>
5602 void
5603 Mips_got_info<size, big_endian>::record_local_got_symbol(
5604     Mips_relobj<size, big_endian>* object, unsigned int symndx,
5605     Mips_address addend, unsigned int r_type, unsigned int shndx,
5606     bool is_section_symbol)
5607 {
5608   Mips_got_entry<size, big_endian>* entry =
5609     new Mips_got_entry<size, big_endian>(object, symndx, addend,
5610                                          mips_elf_reloc_tls_type(r_type),
5611                                          shndx, is_section_symbol);
5612   this->record_got_entry(entry, object);
5613 }
5614
5615 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
5616 // in OBJECT.  FOR_CALL is true if the caller is only interested in
5617 // using the GOT entry for calls.  DYN_RELOC is true if R_TYPE is a dynamic
5618 // relocation.
5619
5620 template<int size, bool big_endian>
5621 void
5622 Mips_got_info<size, big_endian>::record_global_got_symbol(
5623     Mips_symbol<size>* mips_sym, Mips_relobj<size, big_endian>* object,
5624     unsigned int r_type, bool dyn_reloc, bool for_call)
5625 {
5626   if (!for_call)
5627     mips_sym->set_got_not_only_for_calls();
5628
5629   // A global symbol in the GOT must also be in the dynamic symbol table.
5630   if (!mips_sym->needs_dynsym_entry())
5631     {
5632       switch (mips_sym->visibility())
5633         {
5634         case elfcpp::STV_INTERNAL:
5635         case elfcpp::STV_HIDDEN:
5636           mips_sym->set_is_forced_local();
5637           break;
5638         default:
5639           mips_sym->set_needs_dynsym_entry();
5640           break;
5641         }
5642     }
5643
5644   unsigned char tls_type = mips_elf_reloc_tls_type(r_type);
5645   if (tls_type == GOT_TLS_NONE)
5646     this->global_got_symbols_.insert(mips_sym);
5647
5648   if (dyn_reloc)
5649     {
5650       if (mips_sym->global_got_area() == GGA_NONE)
5651         mips_sym->set_global_got_area(GGA_RELOC_ONLY);
5652       return;
5653     }
5654
5655   Mips_got_entry<size, big_endian>* entry =
5656     new Mips_got_entry<size, big_endian>(mips_sym, tls_type);
5657
5658   this->record_got_entry(entry, object);
5659 }
5660
5661 // Add ENTRY to master GOT and to OBJECT's GOT.
5662
5663 template<int size, bool big_endian>
5664 void
5665 Mips_got_info<size, big_endian>::record_got_entry(
5666     Mips_got_entry<size, big_endian>* entry,
5667     Mips_relobj<size, big_endian>* object)
5668 {
5669   this->got_entries_.insert(entry);
5670
5671   // Create the GOT entry for the OBJECT's GOT.
5672   Mips_got_info<size, big_endian>* g = object->get_or_create_got_info();
5673   Mips_got_entry<size, big_endian>* entry2 =
5674     new Mips_got_entry<size, big_endian>(*entry);
5675
5676   g->got_entries_.insert(entry2);
5677 }
5678
5679 // Record that OBJECT has a page relocation against symbol SYMNDX and
5680 // that ADDEND is the addend for that relocation.
5681 // This function creates an upper bound on the number of GOT slots
5682 // required; no attempt is made to combine references to non-overridable
5683 // global symbols across multiple input files.
5684
5685 template<int size, bool big_endian>
5686 void
5687 Mips_got_info<size, big_endian>::record_got_page_entry(
5688     Mips_relobj<size, big_endian>* object, unsigned int symndx, int addend)
5689 {
5690   struct Got_page_range **range_ptr, *range;
5691   int old_pages, new_pages;
5692
5693   // Find the Got_page_entry for this symbol.
5694   Got_page_entry* entry = new Got_page_entry(object, symndx);
5695   typename Got_page_entry_set::iterator it =
5696     this->got_page_entries_.find(entry);
5697   if (it != this->got_page_entries_.end())
5698     entry = *it;
5699   else
5700     this->got_page_entries_.insert(entry);
5701
5702   // Add the same entry to the OBJECT's GOT.
5703   Got_page_entry* entry2 = NULL;
5704   Mips_got_info<size, big_endian>* g2 = object->get_or_create_got_info();
5705   if (g2->got_page_entries_.find(entry) == g2->got_page_entries_.end())
5706     {
5707       entry2 = new Got_page_entry(*entry);
5708       g2->got_page_entries_.insert(entry2);
5709     }
5710
5711   // Skip over ranges whose maximum extent cannot share a page entry
5712   // with ADDEND.
5713   range_ptr = &entry->ranges;
5714   while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
5715     range_ptr = &(*range_ptr)->next;
5716
5717   // If we scanned to the end of the list, or found a range whose
5718   // minimum extent cannot share a page entry with ADDEND, create
5719   // a new singleton range.
5720   range = *range_ptr;
5721   if (!range || addend < range->min_addend - 0xffff)
5722     {
5723       range = new Got_page_range();
5724       range->next = *range_ptr;
5725       range->min_addend = addend;
5726       range->max_addend = addend;
5727
5728       *range_ptr = range;
5729       ++entry->num_pages;
5730       if (entry2 != NULL)
5731         ++entry2->num_pages;
5732       ++this->page_gotno_;
5733       ++g2->page_gotno_;
5734       return;
5735     }
5736
5737   // Remember how many pages the old range contributed.
5738   old_pages = range->get_max_pages();
5739
5740   // Update the ranges.
5741   if (addend < range->min_addend)
5742     range->min_addend = addend;
5743   else if (addend > range->max_addend)
5744     {
5745       if (range->next && addend >= range->next->min_addend - 0xffff)
5746         {
5747           old_pages += range->next->get_max_pages();
5748           range->max_addend = range->next->max_addend;
5749           range->next = range->next->next;
5750         }
5751       else
5752         range->max_addend = addend;
5753     }
5754
5755   // Record any change in the total estimate.
5756   new_pages = range->get_max_pages();
5757   if (old_pages != new_pages)
5758     {
5759       entry->num_pages += new_pages - old_pages;
5760       if (entry2 != NULL)
5761         entry2->num_pages += new_pages - old_pages;
5762       this->page_gotno_ += new_pages - old_pages;
5763       g2->page_gotno_ += new_pages - old_pages;
5764     }
5765 }
5766
5767 // Create all entries that should be in the local part of the GOT.
5768
5769 template<int size, bool big_endian>
5770 void
5771 Mips_got_info<size, big_endian>::add_local_entries(
5772     Target_mips<size, big_endian>* target, Layout* layout)
5773 {
5774   Mips_output_data_got<size, big_endian>* got = target->got_section();
5775   // First two GOT entries are reserved.  The first entry will be filled at
5776   // runtime.  The second entry will be used by some runtime loaders.
5777   got->add_constant(0);
5778   got->add_constant(target->mips_elf_gnu_got1_mask());
5779
5780   for (typename Got_entry_set::iterator
5781        p = this->got_entries_.begin();
5782        p != this->got_entries_.end();
5783        ++p)
5784     {
5785       Mips_got_entry<size, big_endian>* entry = *p;
5786       if (entry->is_for_local_symbol() && !entry->is_tls_entry())
5787         {
5788           got->add_local(entry->object(), entry->symndx(),
5789                          GOT_TYPE_STANDARD, entry->addend());
5790           unsigned int got_offset = entry->object()->local_got_offset(
5791               entry->symndx(), GOT_TYPE_STANDARD, entry->addend());
5792           if (got->multi_got() && this->index_ > 0
5793               && parameters->options().output_is_position_independent())
5794           {
5795             if (!entry->is_section_symbol())
5796               target->rel_dyn_section(layout)->add_local(entry->object(),
5797                   entry->symndx(), elfcpp::R_MIPS_REL32, got, got_offset);
5798             else
5799               target->rel_dyn_section(layout)->add_symbolless_local_addend(
5800                   entry->object(), entry->symndx(), elfcpp::R_MIPS_REL32,
5801                   got, got_offset);
5802           }
5803         }
5804     }
5805
5806   this->add_page_entries(target, layout);
5807
5808   // Add global entries that should be in the local area.
5809   for (typename Got_entry_set::iterator
5810        p = this->got_entries_.begin();
5811        p != this->got_entries_.end();
5812        ++p)
5813     {
5814       Mips_got_entry<size, big_endian>* entry = *p;
5815       if (!entry->is_for_global_symbol())
5816         continue;
5817
5818       Mips_symbol<size>* mips_sym = entry->sym();
5819       if (mips_sym->global_got_area() == GGA_NONE && !entry->is_tls_entry())
5820         {
5821           unsigned int got_type;
5822           if (!got->multi_got())
5823             got_type = GOT_TYPE_STANDARD;
5824           else
5825             got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
5826           if (got->add_global(mips_sym, got_type))
5827             {
5828               mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5829               if (got->multi_got() && this->index_ > 0
5830                   && parameters->options().output_is_position_independent())
5831                 target->rel_dyn_section(layout)->add_symbolless_global_addend(
5832                     mips_sym, elfcpp::R_MIPS_REL32, got,
5833                     mips_sym->got_offset(got_type));
5834             }
5835         }
5836     }
5837 }
5838
5839 // Create GOT page entries.
5840
5841 template<int size, bool big_endian>
5842 void
5843 Mips_got_info<size, big_endian>::add_page_entries(
5844     Target_mips<size, big_endian>* target, Layout* layout)
5845 {
5846   if (this->page_gotno_ == 0)
5847     return;
5848
5849   Mips_output_data_got<size, big_endian>* got = target->got_section();
5850   this->got_page_offset_start_ = got->add_constant(0);
5851   if (got->multi_got() && this->index_ > 0
5852       && parameters->options().output_is_position_independent())
5853     target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
5854                                                   this->got_page_offset_start_);
5855   int num_entries = this->page_gotno_;
5856   unsigned int prev_offset = this->got_page_offset_start_;
5857   while (--num_entries > 0)
5858     {
5859       unsigned int next_offset = got->add_constant(0);
5860       if (got->multi_got() && this->index_ > 0
5861           && parameters->options().output_is_position_independent())
5862         target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
5863                                                       next_offset);
5864       gold_assert(next_offset == prev_offset + size/8);
5865       prev_offset = next_offset;
5866     }
5867   this->got_page_offset_next_ = this->got_page_offset_start_;
5868 }
5869
5870 // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
5871
5872 template<int size, bool big_endian>
5873 void
5874 Mips_got_info<size, big_endian>::add_global_entries(
5875     Target_mips<size, big_endian>* target, Layout* layout,
5876     unsigned int non_reloc_only_global_gotno)
5877 {
5878   Mips_output_data_got<size, big_endian>* got = target->got_section();
5879   // Add GGA_NORMAL entries.
5880   unsigned int count = 0;
5881   for (typename Got_entry_set::iterator
5882        p = this->got_entries_.begin();
5883        p != this->got_entries_.end();
5884        ++p)
5885     {
5886       Mips_got_entry<size, big_endian>* entry = *p;
5887       if (!entry->is_for_global_symbol())
5888         continue;
5889
5890       Mips_symbol<size>* mips_sym = entry->sym();
5891       if (mips_sym->global_got_area() != GGA_NORMAL)
5892         continue;
5893
5894       unsigned int got_type;
5895       if (!got->multi_got())
5896         got_type = GOT_TYPE_STANDARD;
5897       else
5898         // In multi-GOT links, global symbol can be in both primary and
5899         // secondary GOT(s).  By creating custom GOT type
5900         // (GOT_TYPE_STANDARD_MULTIGOT + got_index) we ensure that symbol
5901         // is added to secondary GOT(s).
5902         got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
5903       if (!got->add_global(mips_sym, got_type))
5904         continue;
5905
5906       mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5907       if (got->multi_got() && this->index_ == 0)
5908         count++;
5909       if (got->multi_got() && this->index_ > 0)
5910         {
5911           if (parameters->options().output_is_position_independent()
5912               || (!parameters->doing_static_link()
5913                   && mips_sym->is_from_dynobj() && !mips_sym->is_undefined()))
5914             {
5915               target->rel_dyn_section(layout)->add_global(
5916                   mips_sym, elfcpp::R_MIPS_REL32, got,
5917                   mips_sym->got_offset(got_type));
5918               got->add_secondary_got_reloc(mips_sym->got_offset(got_type),
5919                                            elfcpp::R_MIPS_REL32, mips_sym);
5920             }
5921         }
5922     }
5923
5924   if (!got->multi_got() || this->index_ == 0)
5925     {
5926       if (got->multi_got())
5927         {
5928           // We need to allocate space in the primary GOT for GGA_NORMAL entries
5929           // of secondary GOTs, to ensure that GOT offsets of GGA_RELOC_ONLY
5930           // entries correspond to dynamic symbol indexes.
5931           while (count < non_reloc_only_global_gotno)
5932             {
5933               got->add_constant(0);
5934               ++count;
5935             }
5936         }
5937
5938       // Add GGA_RELOC_ONLY entries.
5939       got->add_reloc_only_entries();
5940     }
5941 }
5942
5943 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
5944
5945 template<int size, bool big_endian>
5946 void
5947 Mips_got_info<size, big_endian>::add_reloc_only_entries(
5948     Mips_output_data_got<size, big_endian>* got)
5949 {
5950   for (typename Global_got_entry_set::iterator
5951        p = this->global_got_symbols_.begin();
5952        p != this->global_got_symbols_.end();
5953        ++p)
5954     {
5955       Mips_symbol<size>* mips_sym = *p;
5956       if (mips_sym->global_got_area() == GGA_RELOC_ONLY)
5957         {
5958           unsigned int got_type;
5959           if (!got->multi_got())
5960             got_type = GOT_TYPE_STANDARD;
5961           else
5962             got_type = GOT_TYPE_STANDARD_MULTIGOT;
5963           if (got->add_global(mips_sym, got_type))
5964             mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5965         }
5966     }
5967 }
5968
5969 // Create TLS GOT entries.
5970
5971 template<int size, bool big_endian>
5972 void
5973 Mips_got_info<size, big_endian>::add_tls_entries(
5974     Target_mips<size, big_endian>* target, Layout* layout)
5975 {
5976   Mips_output_data_got<size, big_endian>* got = target->got_section();
5977   // Add local tls entries.
5978   for (typename Got_entry_set::iterator
5979        p = this->got_entries_.begin();
5980        p != this->got_entries_.end();
5981        ++p)
5982     {
5983       Mips_got_entry<size, big_endian>* entry = *p;
5984       if (!entry->is_tls_entry() || !entry->is_for_local_symbol())
5985         continue;
5986
5987       if (entry->tls_type() == GOT_TLS_GD)
5988         {
5989           unsigned int got_type = GOT_TYPE_TLS_PAIR;
5990           unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
5991                                              : elfcpp::R_MIPS_TLS_DTPMOD64);
5992           unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
5993                                              : elfcpp::R_MIPS_TLS_DTPREL64);
5994
5995           if (!parameters->doing_static_link())
5996             {
5997               got->add_local_pair_with_rel(entry->object(), entry->symndx(),
5998                                            entry->shndx(), got_type,
5999                                            target->rel_dyn_section(layout),
6000                                            r_type1, entry->addend());
6001               unsigned int got_offset =
6002                 entry->object()->local_got_offset(entry->symndx(), got_type,
6003                                                   entry->addend());
6004               got->add_static_reloc(got_offset + size/8, r_type2,
6005                                     entry->object(), entry->symndx());
6006             }
6007           else
6008             {
6009               // We are doing a static link.  Mark it as belong to module 1,
6010               // the executable.
6011               unsigned int got_offset = got->add_constant(1);
6012               entry->object()->set_local_got_offset(entry->symndx(), got_type,
6013                                                     got_offset,
6014                                                     entry->addend());
6015               got->add_constant(0);
6016               got->add_static_reloc(got_offset + size/8, r_type2,
6017                                     entry->object(), entry->symndx());
6018             }
6019         }
6020       else if (entry->tls_type() == GOT_TLS_IE)
6021         {
6022           unsigned int got_type = GOT_TYPE_TLS_OFFSET;
6023           unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
6024                                             : elfcpp::R_MIPS_TLS_TPREL64);
6025           if (!parameters->doing_static_link())
6026             got->add_local_with_rel(entry->object(), entry->symndx(), got_type,
6027                                     target->rel_dyn_section(layout), r_type,
6028                                     entry->addend());
6029           else
6030             {
6031               got->add_local(entry->object(), entry->symndx(), got_type,
6032                              entry->addend());
6033               unsigned int got_offset =
6034                   entry->object()->local_got_offset(entry->symndx(), got_type,
6035                                                     entry->addend());
6036               got->add_static_reloc(got_offset, r_type, entry->object(),
6037                                     entry->symndx());
6038             }
6039         }
6040       else if (entry->tls_type() == GOT_TLS_LDM)
6041         {
6042           unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6043                                             : elfcpp::R_MIPS_TLS_DTPMOD64);
6044           unsigned int got_offset;
6045           if (!parameters->doing_static_link())
6046             {
6047               got_offset = got->add_constant(0);
6048               target->rel_dyn_section(layout)->add_local(
6049                   entry->object(), 0, r_type, got, got_offset);
6050             }
6051           else
6052             // We are doing a static link.  Just mark it as belong to module 1,
6053             // the executable.
6054             got_offset = got->add_constant(1);
6055
6056           got->add_constant(0);
6057           got->set_tls_ldm_offset(got_offset, entry->object());
6058         }
6059       else
6060         gold_unreachable();
6061     }
6062
6063   // Add global tls entries.
6064   for (typename Got_entry_set::iterator
6065        p = this->got_entries_.begin();
6066        p != this->got_entries_.end();
6067        ++p)
6068     {
6069       Mips_got_entry<size, big_endian>* entry = *p;
6070       if (!entry->is_tls_entry() || !entry->is_for_global_symbol())
6071         continue;
6072
6073       Mips_symbol<size>* mips_sym = entry->sym();
6074       if (entry->tls_type() == GOT_TLS_GD)
6075         {
6076           unsigned int got_type;
6077           if (!got->multi_got())
6078             got_type = GOT_TYPE_TLS_PAIR;
6079           else
6080             got_type = GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
6081           unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
6082                                              : elfcpp::R_MIPS_TLS_DTPMOD64);
6083           unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
6084                                              : elfcpp::R_MIPS_TLS_DTPREL64);
6085           if (!parameters->doing_static_link())
6086             got->add_global_pair_with_rel(mips_sym, got_type,
6087                              target->rel_dyn_section(layout), r_type1, r_type2);
6088           else
6089             {
6090               // Add a GOT pair for for R_MIPS_TLS_GD.  The creates a pair of
6091               // GOT entries.  The first one is initialized to be 1, which is the
6092               // module index for the main executable and the second one 0.  A
6093               // reloc of the type R_MIPS_TLS_DTPREL32/64 will be created for
6094               // the second GOT entry and will be applied by gold.
6095               unsigned int got_offset = got->add_constant(1);
6096               mips_sym->set_got_offset(got_type, got_offset);
6097               got->add_constant(0);
6098               got->add_static_reloc(got_offset + size/8, r_type2, mips_sym);
6099             }
6100         }
6101       else if (entry->tls_type() == GOT_TLS_IE)
6102         {
6103           unsigned int got_type;
6104           if (!got->multi_got())
6105             got_type = GOT_TYPE_TLS_OFFSET;
6106           else
6107             got_type = GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
6108           unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
6109                                             : elfcpp::R_MIPS_TLS_TPREL64);
6110           if (!parameters->doing_static_link())
6111             got->add_global_with_rel(mips_sym, got_type,
6112                                      target->rel_dyn_section(layout), r_type);
6113           else
6114             {
6115               got->add_global(mips_sym, got_type);
6116               unsigned int got_offset = mips_sym->got_offset(got_type);
6117               got->add_static_reloc(got_offset, r_type, mips_sym);
6118             }
6119         }
6120       else
6121         gold_unreachable();
6122     }
6123 }
6124
6125 // Decide whether the symbol needs an entry in the global part of the primary
6126 // GOT, setting global_got_area accordingly.  Count the number of global
6127 // symbols that are in the primary GOT only because they have dynamic
6128 // relocations R_MIPS_REL32 against them (reloc_only_gotno).
6129
6130 template<int size, bool big_endian>
6131 void
6132 Mips_got_info<size, big_endian>::count_got_symbols(Symbol_table* symtab)
6133 {
6134   for (typename Global_got_entry_set::iterator
6135        p = this->global_got_symbols_.begin();
6136        p != this->global_got_symbols_.end();
6137        ++p)
6138     {
6139       Mips_symbol<size>* sym = *p;
6140       // Make a final decision about whether the symbol belongs in the
6141       // local or global GOT.  Symbols that bind locally can (and in the
6142       // case of forced-local symbols, must) live in the local GOT.
6143       // Those that are aren't in the dynamic symbol table must also
6144       // live in the local GOT.
6145
6146       if (!sym->should_add_dynsym_entry(symtab)
6147           || (sym->got_only_for_calls()
6148               ? symbol_calls_local(sym, sym->should_add_dynsym_entry(symtab))
6149               : symbol_references_local(sym,
6150                                         sym->should_add_dynsym_entry(symtab))))
6151         // The symbol belongs in the local GOT.  We no longer need this
6152         // entry if it was only used for relocations; those relocations
6153         // will be against the null or section symbol instead.
6154         sym->set_global_got_area(GGA_NONE);
6155       else if (sym->global_got_area() == GGA_RELOC_ONLY)
6156         {
6157           ++this->reloc_only_gotno_;
6158           ++this->global_gotno_ ;
6159         }
6160     }
6161 }
6162
6163 // Return the offset of GOT page entry for VALUE.  Initialize the entry with
6164 // VALUE if it is not initialized.
6165
6166 template<int size, bool big_endian>
6167 unsigned int
6168 Mips_got_info<size, big_endian>::get_got_page_offset(Mips_address value,
6169     Mips_output_data_got<size, big_endian>* got)
6170 {
6171   typename Got_page_offsets::iterator it = this->got_page_offsets_.find(value);
6172   if (it != this->got_page_offsets_.end())
6173     return it->second;
6174
6175   gold_assert(this->got_page_offset_next_ < this->got_page_offset_start_
6176               + (size/8) * this->page_gotno_);
6177
6178   unsigned int got_offset = this->got_page_offset_next_;
6179   this->got_page_offsets_[value] = got_offset;
6180   this->got_page_offset_next_ += size/8;
6181   got->update_got_entry(got_offset, value);
6182   return got_offset;
6183 }
6184
6185 // Remove lazy-binding stubs for global symbols in this GOT.
6186
6187 template<int size, bool big_endian>
6188 void
6189 Mips_got_info<size, big_endian>::remove_lazy_stubs(
6190     Target_mips<size, big_endian>* target)
6191 {
6192   for (typename Got_entry_set::iterator
6193        p = this->got_entries_.begin();
6194        p != this->got_entries_.end();
6195        ++p)
6196     {
6197       Mips_got_entry<size, big_endian>* entry = *p;
6198       if (entry->is_for_global_symbol())
6199         target->remove_lazy_stub_entry(entry->sym());
6200     }
6201 }
6202
6203 // Count the number of GOT entries required.
6204
6205 template<int size, bool big_endian>
6206 void
6207 Mips_got_info<size, big_endian>::count_got_entries()
6208 {
6209   for (typename Got_entry_set::iterator
6210        p = this->got_entries_.begin();
6211        p != this->got_entries_.end();
6212        ++p)
6213     {
6214       this->count_got_entry(*p);
6215     }
6216 }
6217
6218 // Count the number of GOT entries required by ENTRY.  Accumulate the result.
6219
6220 template<int size, bool big_endian>
6221 void
6222 Mips_got_info<size, big_endian>::count_got_entry(
6223     Mips_got_entry<size, big_endian>* entry)
6224 {
6225   if (entry->is_tls_entry())
6226     this->tls_gotno_ += mips_tls_got_entries(entry->tls_type());
6227   else if (entry->is_for_local_symbol()
6228            || entry->sym()->global_got_area() == GGA_NONE)
6229     ++this->local_gotno_;
6230   else
6231     ++this->global_gotno_;
6232 }
6233
6234 // Add FROM's GOT entries.
6235
6236 template<int size, bool big_endian>
6237 void
6238 Mips_got_info<size, big_endian>::add_got_entries(
6239     Mips_got_info<size, big_endian>* from)
6240 {
6241   for (typename Got_entry_set::iterator
6242        p = from->got_entries_.begin();
6243        p != from->got_entries_.end();
6244        ++p)
6245     {
6246       Mips_got_entry<size, big_endian>* entry = *p;
6247       if (this->got_entries_.find(entry) == this->got_entries_.end())
6248         {
6249           Mips_got_entry<size, big_endian>* entry2 =
6250             new Mips_got_entry<size, big_endian>(*entry);
6251           this->got_entries_.insert(entry2);
6252           this->count_got_entry(entry);
6253         }
6254     }
6255 }
6256
6257 // Add FROM's GOT page entries.
6258
6259 template<int size, bool big_endian>
6260 void
6261 Mips_got_info<size, big_endian>::add_got_page_entries(
6262     Mips_got_info<size, big_endian>* from)
6263 {
6264   for (typename Got_page_entry_set::iterator
6265        p = from->got_page_entries_.begin();
6266        p != from->got_page_entries_.end();
6267        ++p)
6268     {
6269       Got_page_entry* entry = *p;
6270       if (this->got_page_entries_.find(entry) == this->got_page_entries_.end())
6271         {
6272           Got_page_entry* entry2 = new Got_page_entry(*entry);
6273           this->got_page_entries_.insert(entry2);
6274           this->page_gotno_ += entry->num_pages;
6275         }
6276     }
6277 }
6278
6279 // Mips_output_data_got methods.
6280
6281 // Lay out the GOT.  Add local, global and TLS entries.  If GOT is
6282 // larger than 64K, create multi-GOT.
6283
6284 template<int size, bool big_endian>
6285 void
6286 Mips_output_data_got<size, big_endian>::lay_out_got(Layout* layout,
6287     Symbol_table* symtab, const Input_objects* input_objects)
6288 {
6289   // Decide which symbols need to go in the global part of the GOT and
6290   // count the number of reloc-only GOT symbols.
6291   this->master_got_info_->count_got_symbols(symtab);
6292
6293   // Count the number of GOT entries.
6294   this->master_got_info_->count_got_entries();
6295
6296   unsigned int got_size = this->master_got_info_->got_size();
6297   if (got_size > Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE)
6298     this->lay_out_multi_got(layout, input_objects);
6299   else
6300     {
6301       // Record that all objects use single GOT.
6302       for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
6303            p != input_objects->relobj_end();
6304            ++p)
6305         {
6306           Mips_relobj<size, big_endian>* object =
6307             Mips_relobj<size, big_endian>::as_mips_relobj(*p);
6308           if (object->get_got_info() != NULL)
6309             object->set_got_info(this->master_got_info_);
6310         }
6311
6312       this->master_got_info_->add_local_entries(this->target_, layout);
6313       this->master_got_info_->add_global_entries(this->target_, layout,
6314                                                  /*not used*/-1U);
6315       this->master_got_info_->add_tls_entries(this->target_, layout);
6316     }
6317 }
6318
6319 // Create multi-GOT.  For every GOT, add local, global and TLS entries.
6320
6321 template<int size, bool big_endian>
6322 void
6323 Mips_output_data_got<size, big_endian>::lay_out_multi_got(Layout* layout,
6324     const Input_objects* input_objects)
6325 {
6326   // Try to merge the GOTs of input objects together, as long as they
6327   // don't seem to exceed the maximum GOT size, choosing one of them
6328   // to be the primary GOT.
6329   this->merge_gots(input_objects);
6330
6331   // Every symbol that is referenced in a dynamic relocation must be
6332   // present in the primary GOT.
6333   this->primary_got_->set_global_gotno(this->master_got_info_->global_gotno());
6334
6335   // Add GOT entries.
6336   unsigned int i = 0;
6337   unsigned int offset = 0;
6338   Mips_got_info<size, big_endian>* g = this->primary_got_;
6339   do
6340     {
6341       g->set_index(i);
6342       g->set_offset(offset);
6343
6344       g->add_local_entries(this->target_, layout);
6345       if (i == 0)
6346         g->add_global_entries(this->target_, layout,
6347                               (this->master_got_info_->global_gotno()
6348                                - this->master_got_info_->reloc_only_gotno()));
6349       else
6350         g->add_global_entries(this->target_, layout, /*not used*/-1U);
6351       g->add_tls_entries(this->target_, layout);
6352
6353       // Forbid global symbols in every non-primary GOT from having
6354       // lazy-binding stubs.
6355       if (i > 0)
6356         g->remove_lazy_stubs(this->target_);
6357
6358       ++i;
6359       offset += g->got_size();
6360       g = g->next();
6361     }
6362   while (g);
6363 }
6364
6365 // Attempt to merge GOTs of different input objects.  Try to use as much as
6366 // possible of the primary GOT, since it doesn't require explicit dynamic
6367 // relocations, but don't use objects that would reference global symbols
6368 // out of the addressable range.  Failing the primary GOT, attempt to merge
6369 // with the current GOT, or finish the current GOT and then make make the new
6370 // GOT current.
6371
6372 template<int size, bool big_endian>
6373 void
6374 Mips_output_data_got<size, big_endian>::merge_gots(
6375     const Input_objects* input_objects)
6376 {
6377   gold_assert(this->primary_got_ == NULL);
6378   Mips_got_info<size, big_endian>* current = NULL;
6379
6380   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
6381        p != input_objects->relobj_end();
6382        ++p)
6383     {
6384       Mips_relobj<size, big_endian>* object =
6385         Mips_relobj<size, big_endian>::as_mips_relobj(*p);
6386
6387       Mips_got_info<size, big_endian>* g = object->get_got_info();
6388       if (g == NULL)
6389         continue;
6390
6391       g->count_got_entries();
6392
6393       // Work out the number of page, local and TLS entries.
6394       unsigned int estimate = this->master_got_info_->page_gotno();
6395       if (estimate > g->page_gotno())
6396         estimate = g->page_gotno();
6397       estimate += g->local_gotno() + g->tls_gotno();
6398
6399       // We place TLS GOT entries after both locals and globals.  The globals
6400       // for the primary GOT may overflow the normal GOT size limit, so be
6401       // sure not to merge a GOT which requires TLS with the primary GOT in that
6402       // case.  This doesn't affect non-primary GOTs.
6403       estimate += (g->tls_gotno() > 0 ? this->master_got_info_->global_gotno()
6404                                       : g->global_gotno());
6405
6406       unsigned int max_count =
6407         Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
6408       if (estimate <= max_count)
6409         {
6410           // If we don't have a primary GOT, use it as
6411           // a starting point for the primary GOT.
6412           if (!this->primary_got_)
6413             {
6414               this->primary_got_ = g;
6415               continue;
6416             }
6417
6418           // Try merging with the primary GOT.
6419           if (this->merge_got_with(g, object, this->primary_got_))
6420             continue;
6421         }
6422
6423       // If we can merge with the last-created GOT, do it.
6424       if (current && this->merge_got_with(g, object, current))
6425         continue;
6426
6427       // Well, we couldn't merge, so create a new GOT.  Don't check if it
6428       // fits; if it turns out that it doesn't, we'll get relocation
6429       // overflows anyway.
6430       g->set_next(current);
6431       current = g;
6432     }
6433
6434   // If we do not find any suitable primary GOT, create an empty one.
6435   if (this->primary_got_ == NULL)
6436     this->primary_got_ = new Mips_got_info<size, big_endian>();
6437
6438   // Link primary GOT with secondary GOTs.
6439   this->primary_got_->set_next(current);
6440 }
6441
6442 // Consider merging FROM, which is OBJECT's GOT, into TO.  Return false if
6443 // this would lead to overflow, true if they were merged successfully.
6444
6445 template<int size, bool big_endian>
6446 bool
6447 Mips_output_data_got<size, big_endian>::merge_got_with(
6448     Mips_got_info<size, big_endian>* from,
6449     Mips_relobj<size, big_endian>* object,
6450     Mips_got_info<size, big_endian>* to)
6451 {
6452   // Work out how many page entries we would need for the combined GOT.
6453   unsigned int estimate = this->master_got_info_->page_gotno();
6454   if (estimate >= from->page_gotno() + to->page_gotno())
6455     estimate = from->page_gotno() + to->page_gotno();
6456
6457   // Conservatively estimate how many local and TLS entries would be needed.
6458   estimate += from->local_gotno() + to->local_gotno();
6459   estimate += from->tls_gotno() + to->tls_gotno();
6460
6461   // If we're merging with the primary got, any TLS relocations will
6462   // come after the full set of global entries.  Otherwise estimate those
6463   // conservatively as well.
6464   if (to == this->primary_got_ && (from->tls_gotno() + to->tls_gotno()) > 0)
6465     estimate += this->master_got_info_->global_gotno();
6466   else
6467     estimate += from->global_gotno() + to->global_gotno();
6468
6469   // Bail out if the combined GOT might be too big.
6470   unsigned int max_count =
6471     Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
6472   if (estimate > max_count)
6473     return false;
6474
6475   // Transfer the object's GOT information from FROM to TO.
6476   to->add_got_entries(from);
6477   to->add_got_page_entries(from);
6478
6479   // Record that OBJECT should use output GOT TO.
6480   object->set_got_info(to);
6481
6482   return true;
6483 }
6484
6485 // Write out the GOT.
6486
6487 template<int size, bool big_endian>
6488 void
6489 Mips_output_data_got<size, big_endian>::do_write(Output_file* of)
6490 {
6491   typedef Unordered_set<Mips_symbol<size>*, Mips_symbol_hash<size> >
6492       Mips_stubs_entry_set;
6493
6494   // Call parent to write out GOT.
6495   Output_data_got<size, big_endian>::do_write(of);
6496
6497   const off_t offset = this->offset();
6498   const section_size_type oview_size =
6499     convert_to_section_size_type(this->data_size());
6500   unsigned char* const oview = of->get_output_view(offset, oview_size);
6501
6502   // Needed for fixing values of .got section.
6503   this->got_view_ = oview;
6504
6505   // Write lazy stub addresses.
6506   for (typename Mips_stubs_entry_set::iterator
6507        p = this->master_got_info_->global_got_symbols().begin();
6508        p != this->master_got_info_->global_got_symbols().end();
6509        ++p)
6510     {
6511       Mips_symbol<size>* mips_sym = *p;
6512       if (mips_sym->has_lazy_stub())
6513         {
6514           Valtype* wv = reinterpret_cast<Valtype*>(
6515             oview + this->get_primary_got_offset(mips_sym));
6516           Valtype value =
6517             this->target_->mips_stubs_section()->stub_address(mips_sym);
6518           elfcpp::Swap<size, big_endian>::writeval(wv, value);
6519         }
6520     }
6521
6522   // Add +1 to GGA_NONE nonzero MIPS16 and microMIPS entries.
6523   for (typename Mips_stubs_entry_set::iterator
6524        p = this->master_got_info_->global_got_symbols().begin();
6525        p != this->master_got_info_->global_got_symbols().end();
6526        ++p)
6527     {
6528       Mips_symbol<size>* mips_sym = *p;
6529       if (!this->multi_got()
6530           && (mips_sym->is_mips16() || mips_sym->is_micromips())
6531           && mips_sym->global_got_area() == GGA_NONE
6532           && mips_sym->has_got_offset(GOT_TYPE_STANDARD))
6533         {
6534           Valtype* wv = reinterpret_cast<Valtype*>(
6535             oview + mips_sym->got_offset(GOT_TYPE_STANDARD));
6536           Valtype value = elfcpp::Swap<size, big_endian>::readval(wv);
6537           if (value != 0)
6538             {
6539               value |= 1;
6540               elfcpp::Swap<size, big_endian>::writeval(wv, value);
6541             }
6542         }
6543     }
6544
6545   if (!this->secondary_got_relocs_.empty())
6546     {
6547       // Fixup for the secondary GOT R_MIPS_REL32 relocs.  For global
6548       // secondary GOT entries with non-zero initial value copy the value
6549       // to the corresponding primary GOT entry, and set the secondary GOT
6550       // entry to zero.
6551       // TODO(sasa): This is workaround.  It needs to be investigated further.
6552
6553       for (size_t i = 0; i < this->secondary_got_relocs_.size(); ++i)
6554         {
6555           Static_reloc& reloc(this->secondary_got_relocs_[i]);
6556           if (reloc.symbol_is_global())
6557             {
6558               Mips_symbol<size>* gsym = reloc.symbol();
6559               gold_assert(gsym != NULL);
6560
6561               unsigned got_offset = reloc.got_offset();
6562               gold_assert(got_offset < oview_size);
6563
6564               // Find primary GOT entry.
6565               Valtype* wv_prim = reinterpret_cast<Valtype*>(
6566                 oview + this->get_primary_got_offset(gsym));
6567
6568               // Find secondary GOT entry.
6569               Valtype* wv_sec = reinterpret_cast<Valtype*>(oview + got_offset);
6570
6571               Valtype value = elfcpp::Swap<size, big_endian>::readval(wv_sec);
6572               if (value != 0)
6573                 {
6574                   elfcpp::Swap<size, big_endian>::writeval(wv_prim, value);
6575                   elfcpp::Swap<size, big_endian>::writeval(wv_sec, 0);
6576                   gsym->set_applied_secondary_got_fixup();
6577                 }
6578             }
6579         }
6580
6581       of->write_output_view(offset, oview_size, oview);
6582     }
6583
6584   // We are done if there is no fix up.
6585   if (this->static_relocs_.empty())
6586     return;
6587
6588   Output_segment* tls_segment = this->layout_->tls_segment();
6589   gold_assert(tls_segment != NULL);
6590
6591   for (size_t i = 0; i < this->static_relocs_.size(); ++i)
6592     {
6593       Static_reloc& reloc(this->static_relocs_[i]);
6594
6595       Mips_address value;
6596       if (!reloc.symbol_is_global())
6597         {
6598           Sized_relobj_file<size, big_endian>* object = reloc.relobj();
6599           const Symbol_value<size>* psymval =
6600             object->local_symbol(reloc.index());
6601
6602           // We are doing static linking.  Issue an error and skip this
6603           // relocation if the symbol is undefined or in a discarded_section.
6604           bool is_ordinary;
6605           unsigned int shndx = psymval->input_shndx(&is_ordinary);
6606           if ((shndx == elfcpp::SHN_UNDEF)
6607               || (is_ordinary
6608                   && shndx != elfcpp::SHN_UNDEF
6609                   && !object->is_section_included(shndx)
6610                   && !this->symbol_table_->is_section_folded(object, shndx)))
6611             {
6612               gold_error(_("undefined or discarded local symbol %u from "
6613                            " object %s in GOT"),
6614                          reloc.index(), reloc.relobj()->name().c_str());
6615               continue;
6616             }
6617
6618           value = psymval->value(object, 0);
6619         }
6620       else
6621         {
6622           const Mips_symbol<size>* gsym = reloc.symbol();
6623           gold_assert(gsym != NULL);
6624
6625           // We are doing static linking.  Issue an error and skip this
6626           // relocation if the symbol is undefined or in a discarded_section
6627           // unless it is a weakly_undefined symbol.
6628           if ((gsym->is_defined_in_discarded_section() || gsym->is_undefined())
6629               && !gsym->is_weak_undefined())
6630             {
6631               gold_error(_("undefined or discarded symbol %s in GOT"),
6632                          gsym->name());
6633               continue;
6634             }
6635
6636           if (!gsym->is_weak_undefined())
6637             value = gsym->value();
6638           else
6639             value = 0;
6640         }
6641
6642       unsigned got_offset = reloc.got_offset();
6643       gold_assert(got_offset < oview_size);
6644
6645       Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
6646       Valtype x;
6647
6648       switch (reloc.r_type())
6649         {
6650         case elfcpp::R_MIPS_TLS_DTPMOD32:
6651         case elfcpp::R_MIPS_TLS_DTPMOD64:
6652           x = value;
6653           break;
6654         case elfcpp::R_MIPS_TLS_DTPREL32:
6655         case elfcpp::R_MIPS_TLS_DTPREL64:
6656           x = value - elfcpp::DTP_OFFSET;
6657           break;
6658         case elfcpp::R_MIPS_TLS_TPREL32:
6659         case elfcpp::R_MIPS_TLS_TPREL64:
6660           x = value - elfcpp::TP_OFFSET;
6661           break;
6662         default:
6663           gold_unreachable();
6664           break;
6665         }
6666
6667       elfcpp::Swap<size, big_endian>::writeval(wv, x);
6668     }
6669
6670   of->write_output_view(offset, oview_size, oview);
6671 }
6672
6673 // Mips_relobj methods.
6674
6675 // Count the local symbols.  The Mips backend needs to know if a symbol
6676 // is a MIPS16 or microMIPS function or not.  For global symbols, it is easy
6677 // because the Symbol object keeps the ELF symbol type and st_other field.
6678 // For local symbol it is harder because we cannot access this information.
6679 // So we override the do_count_local_symbol in parent and scan local symbols to
6680 // mark MIPS16 and microMIPS functions.  This is not the most efficient way but
6681 // I do not want to slow down other ports by calling a per symbol target hook
6682 // inside Sized_relobj_file<size, big_endian>::do_count_local_symbols.
6683
6684 template<int size, bool big_endian>
6685 void
6686 Mips_relobj<size, big_endian>::do_count_local_symbols(
6687     Stringpool_template<char>* pool,
6688     Stringpool_template<char>* dynpool)
6689 {
6690   // Ask parent to count the local symbols.
6691   Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool);
6692   const unsigned int loccount = this->local_symbol_count();
6693   if (loccount == 0)
6694     return;
6695
6696   // Initialize the mips16 and micromips function bit-vector.
6697   this->local_symbol_is_mips16_.resize(loccount, false);
6698   this->local_symbol_is_micromips_.resize(loccount, false);
6699
6700   // Read the symbol table section header.
6701   const unsigned int symtab_shndx = this->symtab_shndx();
6702   elfcpp::Shdr<size, big_endian>
6703     symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
6704   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
6705
6706   // Read the local symbols.
6707   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
6708   gold_assert(loccount == symtabshdr.get_sh_info());
6709   off_t locsize = loccount * sym_size;
6710   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
6711                                               locsize, true, true);
6712
6713   // Loop over the local symbols and mark any MIPS16 or microMIPS local symbols.
6714
6715   // Skip the first dummy symbol.
6716   psyms += sym_size;
6717   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
6718     {
6719       elfcpp::Sym<size, big_endian> sym(psyms);
6720       unsigned char st_other = sym.get_st_other();
6721       this->local_symbol_is_mips16_[i] = elfcpp::elf_st_is_mips16(st_other);
6722       this->local_symbol_is_micromips_[i] =
6723         elfcpp::elf_st_is_micromips(st_other);
6724     }
6725 }
6726
6727 // Read the symbol information.
6728
6729 template<int size, bool big_endian>
6730 void
6731 Mips_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
6732 {
6733   // Call parent class to read symbol information.
6734   this->base_read_symbols(sd);
6735
6736   // Read processor-specific flags in ELF file header.
6737   const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
6738                                             elfcpp::Elf_sizes<size>::ehdr_size,
6739                                             true, false);
6740   elfcpp::Ehdr<size, big_endian> ehdr(pehdr);
6741   this->processor_specific_flags_ = ehdr.get_e_flags();
6742
6743   // Get the section names.
6744   const unsigned char* pnamesu = sd->section_names->data();
6745   const char* pnames = reinterpret_cast<const char*>(pnamesu);
6746
6747   // Initialize the mips16 stub section bit-vectors.
6748   this->section_is_mips16_fn_stub_.resize(this->shnum(), false);
6749   this->section_is_mips16_call_stub_.resize(this->shnum(), false);
6750   this->section_is_mips16_call_fp_stub_.resize(this->shnum(), false);
6751
6752   const size_t shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
6753   const unsigned char* pshdrs = sd->section_headers->data();
6754   const unsigned char* ps = pshdrs + shdr_size;
6755   for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
6756     {
6757       elfcpp::Shdr<size, big_endian> shdr(ps);
6758
6759       if (shdr.get_sh_type() == elfcpp::SHT_MIPS_REGINFO)
6760         {
6761           this->has_reginfo_section_ = true;
6762           // Read the gp value that was used to create this object.  We need the
6763           // gp value while processing relocs.  The .reginfo section is not used
6764           // in the 64-bit MIPS ELF ABI.
6765           section_offset_type section_offset = shdr.get_sh_offset();
6766           section_size_type section_size =
6767             convert_to_section_size_type(shdr.get_sh_size());
6768           const unsigned char* view =
6769              this->get_view(section_offset, section_size, true, false);
6770
6771           this->gp_ = elfcpp::Swap<size, big_endian>::readval(view + 20);
6772
6773           // Read the rest of .reginfo.
6774           this->gprmask_ = elfcpp::Swap<size, big_endian>::readval(view);
6775           this->cprmask1_ = elfcpp::Swap<size, big_endian>::readval(view + 4);
6776           this->cprmask2_ = elfcpp::Swap<size, big_endian>::readval(view + 8);
6777           this->cprmask3_ = elfcpp::Swap<size, big_endian>::readval(view + 12);
6778           this->cprmask4_ = elfcpp::Swap<size, big_endian>::readval(view + 16);
6779         }
6780
6781       if (shdr.get_sh_type() == elfcpp::SHT_GNU_ATTRIBUTES)
6782         {
6783           gold_assert(this->attributes_section_data_ == NULL);
6784           section_offset_type section_offset = shdr.get_sh_offset();
6785           section_size_type section_size =
6786             convert_to_section_size_type(shdr.get_sh_size());
6787           const unsigned char* view =
6788             this->get_view(section_offset, section_size, true, false);
6789           this->attributes_section_data_ =
6790             new Attributes_section_data(view, section_size);
6791         }
6792
6793       if (shdr.get_sh_type() == elfcpp::SHT_MIPS_ABIFLAGS)
6794         {
6795           gold_assert(this->abiflags_ == NULL);
6796           section_offset_type section_offset = shdr.get_sh_offset();
6797           section_size_type section_size =
6798             convert_to_section_size_type(shdr.get_sh_size());
6799           const unsigned char* view =
6800             this->get_view(section_offset, section_size, true, false);
6801           this->abiflags_ = new Mips_abiflags<big_endian>();
6802
6803           this->abiflags_->version =
6804             elfcpp::Swap<16, big_endian>::readval(view);
6805           if (this->abiflags_->version != 0)
6806             {
6807               gold_error(_("%s: .MIPS.abiflags section has "
6808                            "unsupported version %u"),
6809                          this->name().c_str(),
6810                          this->abiflags_->version);
6811               break;
6812             }
6813           this->abiflags_->isa_level =
6814             elfcpp::Swap<8, big_endian>::readval(view + 2);
6815           this->abiflags_->isa_rev =
6816             elfcpp::Swap<8, big_endian>::readval(view + 3);
6817           this->abiflags_->gpr_size =
6818             elfcpp::Swap<8, big_endian>::readval(view + 4);
6819           this->abiflags_->cpr1_size =
6820             elfcpp::Swap<8, big_endian>::readval(view + 5);
6821           this->abiflags_->cpr2_size =
6822             elfcpp::Swap<8, big_endian>::readval(view + 6);
6823           this->abiflags_->fp_abi =
6824             elfcpp::Swap<8, big_endian>::readval(view + 7);
6825           this->abiflags_->isa_ext =
6826             elfcpp::Swap<32, big_endian>::readval(view + 8);
6827           this->abiflags_->ases =
6828             elfcpp::Swap<32, big_endian>::readval(view + 12);
6829           this->abiflags_->flags1 =
6830             elfcpp::Swap<32, big_endian>::readval(view + 16);
6831           this->abiflags_->flags2 =
6832             elfcpp::Swap<32, big_endian>::readval(view + 20);
6833         }
6834
6835       // In the 64-bit ABI, .MIPS.options section holds register information.
6836       // A SHT_MIPS_OPTIONS section contains a series of options, each of which
6837       // starts with this header:
6838       //
6839       // typedef struct
6840       // {
6841       //   // Type of option.
6842       //   unsigned char kind[1];
6843       //   // Size of option descriptor, including header.
6844       //   unsigned char size[1];
6845       //   // Section index of affected section, or 0 for global option.
6846       //   unsigned char section[2];
6847       //   // Information specific to this kind of option.
6848       //   unsigned char info[4];
6849       // };
6850       //
6851       // For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and set
6852       // the gp value based on what we find.  We may see both SHT_MIPS_REGINFO
6853       // and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, they should agree.
6854
6855       if (shdr.get_sh_type() == elfcpp::SHT_MIPS_OPTIONS)
6856         {
6857           section_offset_type section_offset = shdr.get_sh_offset();
6858           section_size_type section_size =
6859             convert_to_section_size_type(shdr.get_sh_size());
6860           const unsigned char* view =
6861              this->get_view(section_offset, section_size, true, false);
6862           const unsigned char* end = view + section_size;
6863
6864           while (view + 8 <= end)
6865             {
6866               unsigned char kind = elfcpp::Swap<8, big_endian>::readval(view);
6867               unsigned char sz = elfcpp::Swap<8, big_endian>::readval(view + 1);
6868               if (sz < 8)
6869                 {
6870                   gold_error(_("%s: Warning: bad `%s' option size %u smaller "
6871                                "than its header"),
6872                              this->name().c_str(),
6873                              this->mips_elf_options_section_name(), sz);
6874                   break;
6875                 }
6876
6877               if (this->is_n64() && kind == elfcpp::ODK_REGINFO)
6878                 {
6879                   // In the 64 bit ABI, an ODK_REGINFO option is the following
6880                   // structure.  The info field of the options header is not
6881                   // used.
6882                   //
6883                   // typedef struct
6884                   // {
6885                   //   // Mask of general purpose registers used.
6886                   //   unsigned char ri_gprmask[4];
6887                   //   // Padding.
6888                   //   unsigned char ri_pad[4];
6889                   //   // Mask of co-processor registers used.
6890                   //   unsigned char ri_cprmask[4][4];
6891                   //   // GP register value for this object file.
6892                   //   unsigned char ri_gp_value[8];
6893                   // };
6894
6895                   this->gp_ = elfcpp::Swap<size, big_endian>::readval(view
6896                                                                       + 32);
6897                 }
6898               else if (kind == elfcpp::ODK_REGINFO)
6899                 {
6900                   // In the 32 bit ABI, an ODK_REGINFO option is the following
6901                   // structure.  The info field of the options header is not
6902                   // used.  The same structure is used in .reginfo section.
6903                   //
6904                   // typedef struct
6905                   // {
6906                   //   unsigned char ri_gprmask[4];
6907                   //   unsigned char ri_cprmask[4][4];
6908                   //   unsigned char ri_gp_value[4];
6909                   // };
6910
6911                   this->gp_ = elfcpp::Swap<size, big_endian>::readval(view
6912                                                                       + 28);
6913                 }
6914               view += sz;
6915             }
6916         }
6917
6918       const char* name = pnames + shdr.get_sh_name();
6919       this->section_is_mips16_fn_stub_[i] = is_prefix_of(".mips16.fn", name);
6920       this->section_is_mips16_call_stub_[i] =
6921         is_prefix_of(".mips16.call.", name);
6922       this->section_is_mips16_call_fp_stub_[i] =
6923         is_prefix_of(".mips16.call.fp.", name);
6924
6925       if (strcmp(name, ".pdr") == 0)
6926         {
6927           gold_assert(this->pdr_shndx_ == -1U);
6928           this->pdr_shndx_ = i;
6929         }
6930     }
6931 }
6932
6933 // Discard MIPS16 stub secions that are not needed.
6934
6935 template<int size, bool big_endian>
6936 void
6937 Mips_relobj<size, big_endian>::discard_mips16_stub_sections(Symbol_table* symtab)
6938 {
6939   for (typename Mips16_stubs_int_map::const_iterator
6940        it = this->mips16_stub_sections_.begin();
6941        it != this->mips16_stub_sections_.end(); ++it)
6942     {
6943       Mips16_stub_section<size, big_endian>* stub_section = it->second;
6944       if (!stub_section->is_target_found())
6945         {
6946           gold_error(_("no relocation found in mips16 stub section '%s'"),
6947                      stub_section->object()
6948                        ->section_name(stub_section->shndx()).c_str());
6949         }
6950
6951       bool discard = false;
6952       if (stub_section->is_for_local_function())
6953         {
6954           if (stub_section->is_fn_stub())
6955             {
6956               // This stub is for a local symbol.  This stub will only
6957               // be needed if there is some relocation in this object,
6958               // other than a 16 bit function call, which refers to this
6959               // symbol.
6960               if (!this->has_local_non_16bit_call_relocs(stub_section->r_sym()))
6961                 discard = true;
6962               else
6963                 this->add_local_mips16_fn_stub(stub_section);
6964             }
6965           else
6966             {
6967               // This stub is for a local symbol.  This stub will only
6968               // be needed if there is some relocation (R_MIPS16_26) in
6969               // this object that refers to this symbol.
6970               gold_assert(stub_section->is_call_stub()
6971                           || stub_section->is_call_fp_stub());
6972               if (!this->has_local_16bit_call_relocs(stub_section->r_sym()))
6973                 discard = true;
6974               else
6975                 this->add_local_mips16_call_stub(stub_section);
6976             }
6977         }
6978       else
6979         {
6980           Mips_symbol<size>* gsym = stub_section->gsym();
6981           if (stub_section->is_fn_stub())
6982             {
6983               if (gsym->has_mips16_fn_stub())
6984                 // We already have a stub for this function.
6985                 discard = true;
6986               else
6987                 {
6988                   gsym->set_mips16_fn_stub(stub_section);
6989                   if (gsym->should_add_dynsym_entry(symtab))
6990                     {
6991                       // If we have a MIPS16 function with a stub, the
6992                       // dynamic symbol must refer to the stub, since only
6993                       // the stub uses the standard calling conventions.
6994                       gsym->set_need_fn_stub();
6995                       if (gsym->is_from_dynobj())
6996                         gsym->set_needs_dynsym_value();
6997                     }
6998                 }
6999               if (!gsym->need_fn_stub())
7000                 discard = true;
7001             }
7002           else if (stub_section->is_call_stub())
7003             {
7004               if (gsym->is_mips16())
7005                 // We don't need the call_stub; this is a 16 bit
7006                 // function, so calls from other 16 bit functions are
7007                 // OK.
7008                 discard = true;
7009               else if (gsym->has_mips16_call_stub())
7010                 // We already have a stub for this function.
7011                 discard = true;
7012               else
7013                 gsym->set_mips16_call_stub(stub_section);
7014             }
7015           else
7016             {
7017               gold_assert(stub_section->is_call_fp_stub());
7018               if (gsym->is_mips16())
7019                 // We don't need the call_stub; this is a 16 bit
7020                 // function, so calls from other 16 bit functions are
7021                 // OK.
7022                 discard = true;
7023               else if (gsym->has_mips16_call_fp_stub())
7024                 // We already have a stub for this function.
7025                 discard = true;
7026               else
7027                 gsym->set_mips16_call_fp_stub(stub_section);
7028             }
7029         }
7030       if (discard)
7031         this->set_output_section(stub_section->shndx(), NULL);
7032    }
7033 }
7034
7035 // Mips_output_data_la25_stub methods.
7036
7037 // Template for standard LA25 stub.
7038 template<int size, bool big_endian>
7039 const uint32_t
7040 Mips_output_data_la25_stub<size, big_endian>::la25_stub_entry[] =
7041 {
7042   0x3c190000,           // lui $25,%hi(func)
7043   0x08000000,           // j func
7044   0x27390000,           // add $25,$25,%lo(func)
7045   0x00000000            // nop
7046 };
7047
7048 // Template for microMIPS LA25 stub.
7049 template<int size, bool big_endian>
7050 const uint32_t
7051 Mips_output_data_la25_stub<size, big_endian>::la25_stub_micromips_entry[] =
7052 {
7053   0x41b9, 0x0000,       // lui t9,%hi(func)
7054   0xd400, 0x0000,       // j func
7055   0x3339, 0x0000,       // addiu t9,t9,%lo(func)
7056   0x0000, 0x0000        // nop
7057 };
7058
7059 // Create la25 stub for a symbol.
7060
7061 template<int size, bool big_endian>
7062 void
7063 Mips_output_data_la25_stub<size, big_endian>::create_la25_stub(
7064     Symbol_table* symtab, Target_mips<size, big_endian>* target,
7065     Mips_symbol<size>* gsym)
7066 {
7067   if (!gsym->has_la25_stub())
7068     {
7069       gsym->set_la25_stub_offset(this->symbols_.size() * 16);
7070       this->symbols_.push_back(gsym);
7071       this->create_stub_symbol(gsym, symtab, target, 16);
7072     }
7073 }
7074
7075 // Create a symbol for SYM stub's value and size, to help make the disassembly
7076 // easier to read.
7077
7078 template<int size, bool big_endian>
7079 void
7080 Mips_output_data_la25_stub<size, big_endian>::create_stub_symbol(
7081     Mips_symbol<size>* sym, Symbol_table* symtab,
7082     Target_mips<size, big_endian>* target, uint64_t symsize)
7083 {
7084   std::string name(".pic.");
7085   name += sym->name();
7086
7087   unsigned int offset = sym->la25_stub_offset();
7088   if (sym->is_micromips())
7089     offset |= 1;
7090
7091   // Make it a local function.
7092   Symbol* new_sym = symtab->define_in_output_data(name.c_str(), NULL,
7093                                       Symbol_table::PREDEFINED,
7094                                       target->la25_stub_section(),
7095                                       offset, symsize, elfcpp::STT_FUNC,
7096                                       elfcpp::STB_LOCAL,
7097                                       elfcpp::STV_DEFAULT, 0,
7098                                       false, false);
7099   new_sym->set_is_forced_local();
7100 }
7101
7102 // Write out la25 stubs.  This uses the hand-coded instructions above,
7103 // and adjusts them as needed.
7104
7105 template<int size, bool big_endian>
7106 void
7107 Mips_output_data_la25_stub<size, big_endian>::do_write(Output_file* of)
7108 {
7109   const off_t offset = this->offset();
7110   const section_size_type oview_size =
7111     convert_to_section_size_type(this->data_size());
7112   unsigned char* const oview = of->get_output_view(offset, oview_size);
7113
7114   for (typename std::vector<Mips_symbol<size>*>::iterator
7115        p = this->symbols_.begin();
7116        p != this->symbols_.end();
7117        ++p)
7118     {
7119       Mips_symbol<size>* sym = *p;
7120       unsigned char* pov = oview + sym->la25_stub_offset();
7121
7122       Mips_address target = sym->value();
7123       if (!sym->is_micromips())
7124         {
7125           elfcpp::Swap<32, big_endian>::writeval(pov,
7126               la25_stub_entry[0] | (((target + 0x8000) >> 16) & 0xffff));
7127           elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7128               la25_stub_entry[1] | ((target >> 2) & 0x3ffffff));
7129           elfcpp::Swap<32, big_endian>::writeval(pov + 8,
7130               la25_stub_entry[2] | (target & 0xffff));
7131           elfcpp::Swap<32, big_endian>::writeval(pov + 12, la25_stub_entry[3]);
7132         }
7133       else
7134         {
7135           target |= 1;
7136           // First stub instruction.  Paste high 16-bits of the target.
7137           elfcpp::Swap<16, big_endian>::writeval(pov,
7138                                                  la25_stub_micromips_entry[0]);
7139           elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7140               ((target + 0x8000) >> 16) & 0xffff);
7141           // Second stub instruction.  Paste low 26-bits of the target, shifted
7142           // right by 1.
7143           elfcpp::Swap<16, big_endian>::writeval(pov + 4,
7144               la25_stub_micromips_entry[2] | ((target >> 17) & 0x3ff));
7145           elfcpp::Swap<16, big_endian>::writeval(pov + 6,
7146               la25_stub_micromips_entry[3] | ((target >> 1) & 0xffff));
7147           // Third stub instruction.  Paste low 16-bits of the target.
7148           elfcpp::Swap<16, big_endian>::writeval(pov + 8,
7149                                                  la25_stub_micromips_entry[4]);
7150           elfcpp::Swap<16, big_endian>::writeval(pov + 10, target & 0xffff);
7151           // Fourth stub instruction.
7152           elfcpp::Swap<16, big_endian>::writeval(pov + 12,
7153                                                  la25_stub_micromips_entry[6]);
7154           elfcpp::Swap<16, big_endian>::writeval(pov + 14,
7155                                                  la25_stub_micromips_entry[7]);
7156         }
7157     }
7158
7159   of->write_output_view(offset, oview_size, oview);
7160 }
7161
7162 // Mips_output_data_plt methods.
7163
7164 // The format of the first PLT entry in an O32 executable.
7165 template<int size, bool big_endian>
7166 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_o32[] =
7167 {
7168   0x3c1c0000,         // lui $28, %hi(&GOTPLT[0])
7169   0x8f990000,         // lw $25, %lo(&GOTPLT[0])($28)
7170   0x279c0000,         // addiu $28, $28, %lo(&GOTPLT[0])
7171   0x031cc023,         // subu $24, $24, $28
7172   0x03e07825,         // or $15, $31, zero
7173   0x0018c082,         // srl $24, $24, 2
7174   0x0320f809,         // jalr $25
7175   0x2718fffe          // subu $24, $24, 2
7176 };
7177
7178 // The format of the first PLT entry in an N32 executable.  Different
7179 // because gp ($28) is not available; we use t2 ($14) instead.
7180 template<int size, bool big_endian>
7181 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n32[] =
7182 {
7183   0x3c0e0000,         // lui $14, %hi(&GOTPLT[0])
7184   0x8dd90000,         // lw $25, %lo(&GOTPLT[0])($14)
7185   0x25ce0000,         // addiu $14, $14, %lo(&GOTPLT[0])
7186   0x030ec023,         // subu $24, $24, $14
7187   0x03e07825,         // or $15, $31, zero
7188   0x0018c082,         // srl $24, $24, 2
7189   0x0320f809,         // jalr $25
7190   0x2718fffe          // subu $24, $24, 2
7191 };
7192
7193 // The format of the first PLT entry in an N64 executable.  Different
7194 // from N32 because of the increased size of GOT entries.
7195 template<int size, bool big_endian>
7196 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n64[] =
7197 {
7198   0x3c0e0000,         // lui $14, %hi(&GOTPLT[0])
7199   0xddd90000,         // ld $25, %lo(&GOTPLT[0])($14)
7200   0x25ce0000,         // addiu $14, $14, %lo(&GOTPLT[0])
7201   0x030ec023,         // subu $24, $24, $14
7202   0x03e07825,         // or $15, $31, zero
7203   0x0018c0c2,         // srl $24, $24, 3
7204   0x0320f809,         // jalr $25
7205   0x2718fffe          // subu $24, $24, 2
7206 };
7207
7208 // The format of the microMIPS first PLT entry in an O32 executable.
7209 // We rely on v0 ($2) rather than t8 ($24) to contain the address
7210 // of the GOTPLT entry handled, so this stub may only be used when
7211 // all the subsequent PLT entries are microMIPS code too.
7212 //
7213 // The trailing NOP is for alignment and correct disassembly only.
7214 template<int size, bool big_endian>
7215 const uint32_t Mips_output_data_plt<size, big_endian>::
7216 plt0_entry_micromips_o32[] =
7217 {
7218   0x7980, 0x0000,      // addiupc $3, (&GOTPLT[0]) - .
7219   0xff23, 0x0000,      // lw $25, 0($3)
7220   0x0535,              // subu $2, $2, $3
7221   0x2525,              // srl $2, $2, 2
7222   0x3302, 0xfffe,      // subu $24, $2, 2
7223   0x0dff,              // move $15, $31
7224   0x45f9,              // jalrs $25
7225   0x0f83,              // move $28, $3
7226   0x0c00               // nop
7227 };
7228
7229 // The format of the microMIPS first PLT entry in an O32 executable
7230 // in the insn32 mode.
7231 template<int size, bool big_endian>
7232 const uint32_t Mips_output_data_plt<size, big_endian>::
7233 plt0_entry_micromips32_o32[] =
7234 {
7235   0x41bc, 0x0000,      // lui $28, %hi(&GOTPLT[0])
7236   0xff3c, 0x0000,      // lw $25, %lo(&GOTPLT[0])($28)
7237   0x339c, 0x0000,      // addiu $28, $28, %lo(&GOTPLT[0])
7238   0x0398, 0xc1d0,      // subu $24, $24, $28
7239   0x001f, 0x7a90,      // or $15, $31, zero
7240   0x0318, 0x1040,      // srl $24, $24, 2
7241   0x03f9, 0x0f3c,      // jalr $25
7242   0x3318, 0xfffe       // subu $24, $24, 2
7243 };
7244
7245 // The format of subsequent standard entries in the PLT.
7246 template<int size, bool big_endian>
7247 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry[] =
7248 {
7249   0x3c0f0000,           // lui $15, %hi(.got.plt entry)
7250   0x01f90000,           // l[wd] $25, %lo(.got.plt entry)($15)
7251   0x03200008,           // jr $25
7252   0x25f80000            // addiu $24, $15, %lo(.got.plt entry)
7253 };
7254
7255 // The format of subsequent R6 PLT entries.
7256 template<int size, bool big_endian>
7257 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_r6[] =
7258 {
7259   0x3c0f0000,           // lui $15, %hi(.got.plt entry)
7260   0x01f90000,           // l[wd] $25, %lo(.got.plt entry)($15)
7261   0x03200009,           // jr $25
7262   0x25f80000            // addiu $24, $15, %lo(.got.plt entry)
7263 };
7264
7265 // The format of subsequent MIPS16 o32 PLT entries.  We use v1 ($3) as a
7266 // temporary because t8 ($24) and t9 ($25) are not directly addressable.
7267 // Note that this differs from the GNU ld which uses both v0 ($2) and v1 ($3).
7268 // We cannot use v0 because MIPS16 call stubs from the CS toolchain expect
7269 // target function address in register v0.
7270 template<int size, bool big_endian>
7271 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_mips16_o32[] =
7272 {
7273   0xb303,              // lw $3, 12($pc)
7274   0x651b,              // move $24, $3
7275   0x9b60,              // lw $3, 0($3)
7276   0xeb00,              // jr $3
7277   0x653b,              // move $25, $3
7278   0x6500,              // nop
7279   0x0000, 0x0000       // .word (.got.plt entry)
7280 };
7281
7282 // The format of subsequent microMIPS o32 PLT entries.  We use v0 ($2)
7283 // as a temporary because t8 ($24) is not addressable with ADDIUPC.
7284 template<int size, bool big_endian>
7285 const uint32_t Mips_output_data_plt<size, big_endian>::
7286 plt_entry_micromips_o32[] =
7287 {
7288   0x7900, 0x0000,      // addiupc $2, (.got.plt entry) - .
7289   0xff22, 0x0000,      // lw $25, 0($2)
7290   0x4599,              // jr $25
7291   0x0f02               // move $24, $2
7292 };
7293
7294 // The format of subsequent microMIPS o32 PLT entries in the insn32 mode.
7295 template<int size, bool big_endian>
7296 const uint32_t Mips_output_data_plt<size, big_endian>::
7297 plt_entry_micromips32_o32[] =
7298 {
7299   0x41af, 0x0000,      // lui $15, %hi(.got.plt entry)
7300   0xff2f, 0x0000,      // lw $25, %lo(.got.plt entry)($15)
7301   0x0019, 0x0f3c,      // jr $25
7302   0x330f, 0x0000       // addiu $24, $15, %lo(.got.plt entry)
7303 };
7304
7305 // Add an entry to the PLT for a symbol referenced by r_type relocation.
7306
7307 template<int size, bool big_endian>
7308 void
7309 Mips_output_data_plt<size, big_endian>::add_entry(Mips_symbol<size>* gsym,
7310                                                   unsigned int r_type)
7311 {
7312   gold_assert(!gsym->has_plt_offset());
7313
7314   // Final PLT offset for a symbol will be set in method set_plt_offsets().
7315   gsym->set_plt_offset(this->entry_count() * sizeof(plt_entry)
7316                        + sizeof(plt0_entry_o32));
7317   this->symbols_.push_back(gsym);
7318
7319   // Record whether the relocation requires a standard MIPS
7320   // or a compressed code entry.
7321   if (jal_reloc(r_type))
7322    {
7323      if (r_type == elfcpp::R_MIPS_26)
7324        gsym->set_needs_mips_plt(true);
7325      else
7326        gsym->set_needs_comp_plt(true);
7327    }
7328
7329   section_offset_type got_offset = this->got_plt_->current_data_size();
7330
7331   // Every PLT entry needs a GOT entry which points back to the PLT
7332   // entry (this will be changed by the dynamic linker, normally
7333   // lazily when the function is called).
7334   this->got_plt_->set_current_data_size(got_offset + size/8);
7335
7336   gsym->set_needs_dynsym_entry();
7337   this->rel_->add_global(gsym, elfcpp::R_MIPS_JUMP_SLOT, this->got_plt_,
7338                          got_offset);
7339 }
7340
7341 // Set final PLT offsets.  For each symbol, determine whether standard or
7342 // compressed (MIPS16 or microMIPS) PLT entry is used.
7343
7344 template<int size, bool big_endian>
7345 void
7346 Mips_output_data_plt<size, big_endian>::set_plt_offsets()
7347 {
7348   // The sizes of individual PLT entries.
7349   unsigned int plt_mips_entry_size = this->standard_plt_entry_size();
7350   unsigned int plt_comp_entry_size = (!this->target_->is_output_newabi()
7351                                       ? this->compressed_plt_entry_size() : 0);
7352
7353   for (typename std::vector<Mips_symbol<size>*>::const_iterator
7354        p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
7355     {
7356       Mips_symbol<size>* mips_sym = *p;
7357
7358       // There are no defined MIPS16 or microMIPS PLT entries for n32 or n64,
7359       // so always use a standard entry there.
7360       //
7361       // If the symbol has a MIPS16 call stub and gets a PLT entry, then
7362       // all MIPS16 calls will go via that stub, and there is no benefit
7363       // to having a MIPS16 entry.  And in the case of call_stub a
7364       // standard entry actually has to be used as the stub ends with a J
7365       // instruction.
7366       if (this->target_->is_output_newabi()
7367           || mips_sym->has_mips16_call_stub()
7368           || mips_sym->has_mips16_call_fp_stub())
7369         {
7370           mips_sym->set_needs_mips_plt(true);
7371           mips_sym->set_needs_comp_plt(false);
7372         }
7373
7374       // Otherwise, if there are no direct calls to the function, we
7375       // have a free choice of whether to use standard or compressed
7376       // entries.  Prefer microMIPS entries if the object is known to
7377       // contain microMIPS code, so that it becomes possible to create
7378       // pure microMIPS binaries.  Prefer standard entries otherwise,
7379       // because MIPS16 ones are no smaller and are usually slower.
7380       if (!mips_sym->needs_mips_plt() && !mips_sym->needs_comp_plt())
7381         {
7382           if (this->target_->is_output_micromips())
7383             mips_sym->set_needs_comp_plt(true);
7384           else
7385             mips_sym->set_needs_mips_plt(true);
7386         }
7387
7388       if (mips_sym->needs_mips_plt())
7389         {
7390           mips_sym->set_mips_plt_offset(this->plt_mips_offset_);
7391           this->plt_mips_offset_ += plt_mips_entry_size;
7392         }
7393       if (mips_sym->needs_comp_plt())
7394         {
7395           mips_sym->set_comp_plt_offset(this->plt_comp_offset_);
7396           this->plt_comp_offset_ += plt_comp_entry_size;
7397         }
7398     }
7399
7400     // Figure out the size of the PLT header if we know that we are using it.
7401     if (this->plt_mips_offset_ + this->plt_comp_offset_ != 0)
7402       this->plt_header_size_ = this->get_plt_header_size();
7403 }
7404
7405 // Write out the PLT.  This uses the hand-coded instructions above,
7406 // and adjusts them as needed.
7407
7408 template<int size, bool big_endian>
7409 void
7410 Mips_output_data_plt<size, big_endian>::do_write(Output_file* of)
7411 {
7412   const off_t offset = this->offset();
7413   const section_size_type oview_size =
7414     convert_to_section_size_type(this->data_size());
7415   unsigned char* const oview = of->get_output_view(offset, oview_size);
7416
7417   const off_t gotplt_file_offset = this->got_plt_->offset();
7418   const section_size_type gotplt_size =
7419     convert_to_section_size_type(this->got_plt_->data_size());
7420   unsigned char* const gotplt_view = of->get_output_view(gotplt_file_offset,
7421                                                          gotplt_size);
7422   unsigned char* pov = oview;
7423
7424   Mips_address plt_address = this->address();
7425
7426   // Calculate the address of .got.plt.
7427   Mips_address gotplt_addr = this->got_plt_->address();
7428   Mips_address gotplt_addr_high = ((gotplt_addr + 0x8000) >> 16) & 0xffff;
7429   Mips_address gotplt_addr_low = gotplt_addr & 0xffff;
7430
7431   // The PLT sequence is not safe for N64 if .got.plt's address can
7432   // not be loaded in two instructions.
7433   gold_assert((gotplt_addr & ~(Mips_address) 0x7fffffff) == 0
7434               || ~(gotplt_addr | 0x7fffffff) == 0);
7435
7436   // Write the PLT header.
7437   const uint32_t* plt0_entry = this->get_plt_header_entry();
7438   if (plt0_entry == plt0_entry_micromips_o32)
7439     {
7440       // Write microMIPS PLT header.
7441       gold_assert(gotplt_addr % 4 == 0);
7442
7443       Mips_address gotpc_offset = gotplt_addr - ((plt_address | 3) ^ 3);
7444
7445       // ADDIUPC has a span of +/-16MB, check we're in range.
7446       if (gotpc_offset + 0x1000000 >= 0x2000000)
7447        {
7448          gold_error(_(".got.plt offset of %ld from .plt beyond the range of "
7449                     "ADDIUPC"), (long)gotpc_offset);
7450          return;
7451        }
7452
7453       elfcpp::Swap<16, big_endian>::writeval(pov,
7454                  plt0_entry[0] | ((gotpc_offset >> 18) & 0x7f));
7455       elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7456                                              (gotpc_offset >> 2) & 0xffff);
7457       pov += 4;
7458       for (unsigned int i = 2;
7459            i < (sizeof(plt0_entry_micromips_o32)
7460                 / sizeof(plt0_entry_micromips_o32[0]));
7461            i++)
7462         {
7463           elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
7464           pov += 2;
7465         }
7466     }
7467   else if (plt0_entry == plt0_entry_micromips32_o32)
7468     {
7469       // Write microMIPS PLT header in insn32 mode.
7470       elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[0]);
7471       elfcpp::Swap<16, big_endian>::writeval(pov + 2, gotplt_addr_high);
7472       elfcpp::Swap<16, big_endian>::writeval(pov + 4, plt0_entry[2]);
7473       elfcpp::Swap<16, big_endian>::writeval(pov + 6, gotplt_addr_low);
7474       elfcpp::Swap<16, big_endian>::writeval(pov + 8, plt0_entry[4]);
7475       elfcpp::Swap<16, big_endian>::writeval(pov + 10, gotplt_addr_low);
7476       pov += 12;
7477       for (unsigned int i = 6;
7478            i < (sizeof(plt0_entry_micromips32_o32)
7479                 / sizeof(plt0_entry_micromips32_o32[0]));
7480            i++)
7481         {
7482           elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
7483           pov += 2;
7484         }
7485     }
7486   else
7487     {
7488       // Write standard PLT header.
7489       elfcpp::Swap<32, big_endian>::writeval(pov,
7490                                              plt0_entry[0] | gotplt_addr_high);
7491       elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7492                                              plt0_entry[1] | gotplt_addr_low);
7493       elfcpp::Swap<32, big_endian>::writeval(pov + 8,
7494                                              plt0_entry[2] | gotplt_addr_low);
7495       pov += 12;
7496       for (int i = 3; i < 8; i++)
7497         {
7498           elfcpp::Swap<32, big_endian>::writeval(pov, plt0_entry[i]);
7499           pov += 4;
7500         }
7501     }
7502
7503
7504   unsigned char* gotplt_pov = gotplt_view;
7505   unsigned int got_entry_size = size/8; // TODO(sasa): MIPS_ELF_GOT_SIZE
7506
7507   // The first two entries in .got.plt are reserved.
7508   elfcpp::Swap<size, big_endian>::writeval(gotplt_pov, 0);
7509   elfcpp::Swap<size, big_endian>::writeval(gotplt_pov + got_entry_size, 0);
7510
7511   unsigned int gotplt_offset = 2 * got_entry_size;
7512   gotplt_pov += 2 * got_entry_size;
7513
7514   // Calculate the address of the PLT header.
7515   Mips_address header_address = (plt_address
7516                                  + (this->is_plt_header_compressed() ? 1 : 0));
7517
7518   // Initialize compressed PLT area view.
7519   unsigned char* pov2 = pov + this->plt_mips_offset_;
7520
7521   // Write the PLT entries.
7522   for (typename std::vector<Mips_symbol<size>*>::const_iterator
7523        p = this->symbols_.begin();
7524        p != this->symbols_.end();
7525        ++p, gotplt_pov += got_entry_size, gotplt_offset += got_entry_size)
7526     {
7527       Mips_symbol<size>* mips_sym = *p;
7528
7529       // Calculate the address of the .got.plt entry.
7530       uint32_t gotplt_entry_addr = (gotplt_addr + gotplt_offset);
7531       uint32_t gotplt_entry_addr_hi = (((gotplt_entry_addr + 0x8000) >> 16)
7532                                        & 0xffff);
7533       uint32_t gotplt_entry_addr_lo = gotplt_entry_addr & 0xffff;
7534
7535       // Initially point the .got.plt entry at the PLT header.
7536       if (this->target_->is_output_n64())
7537         elfcpp::Swap<64, big_endian>::writeval(gotplt_pov, header_address);
7538       else
7539         elfcpp::Swap<32, big_endian>::writeval(gotplt_pov, header_address);
7540
7541       // Now handle the PLT itself.  First the standard entry.
7542       if (mips_sym->has_mips_plt_offset())
7543         {
7544           // Pick the load opcode (LW or LD).
7545           uint64_t load = this->target_->is_output_n64() ? 0xdc000000
7546                                                          : 0x8c000000;
7547
7548           const uint32_t* entry = this->target_->is_output_r6() ? plt_entry_r6
7549                                                                 : plt_entry;
7550
7551           // Fill in the PLT entry itself.
7552           elfcpp::Swap<32, big_endian>::writeval(pov,
7553               entry[0] | gotplt_entry_addr_hi);
7554           elfcpp::Swap<32, big_endian>::writeval(pov + 4,
7555               entry[1] | gotplt_entry_addr_lo | load);
7556           elfcpp::Swap<32, big_endian>::writeval(pov + 8, entry[2]);
7557           elfcpp::Swap<32, big_endian>::writeval(pov + 12,
7558               entry[3] | gotplt_entry_addr_lo);
7559           pov += 16;
7560         }
7561
7562       // Now the compressed entry.  They come after any standard ones.
7563       if (mips_sym->has_comp_plt_offset())
7564         {
7565           if (!this->target_->is_output_micromips())
7566             {
7567               // Write MIPS16 PLT entry.
7568               const uint32_t* plt_entry = plt_entry_mips16_o32;
7569
7570               elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
7571               elfcpp::Swap<16, big_endian>::writeval(pov2 + 2, plt_entry[1]);
7572               elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7573               elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
7574               elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7575               elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7576               elfcpp::Swap<32, big_endian>::writeval(pov2 + 12,
7577                                                      gotplt_entry_addr);
7578               pov2 += 16;
7579             }
7580           else if (this->target_->use_32bit_micromips_instructions())
7581             {
7582               // Write microMIPS PLT entry in insn32 mode.
7583               const uint32_t* plt_entry = plt_entry_micromips32_o32;
7584
7585               elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
7586               elfcpp::Swap<16, big_endian>::writeval(pov2 + 2,
7587                                                      gotplt_entry_addr_hi);
7588               elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7589               elfcpp::Swap<16, big_endian>::writeval(pov2 + 6,
7590                                                      gotplt_entry_addr_lo);
7591               elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7592               elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7593               elfcpp::Swap<16, big_endian>::writeval(pov2 + 12, plt_entry[6]);
7594               elfcpp::Swap<16, big_endian>::writeval(pov2 + 14,
7595                                                      gotplt_entry_addr_lo);
7596               pov2 += 16;
7597             }
7598           else
7599             {
7600               // Write microMIPS PLT entry.
7601               const uint32_t* plt_entry = plt_entry_micromips_o32;
7602
7603               gold_assert(gotplt_entry_addr % 4 == 0);
7604
7605               Mips_address loc_address = plt_address + pov2 - oview;
7606               int gotpc_offset = gotplt_entry_addr - ((loc_address | 3) ^ 3);
7607
7608               // ADDIUPC has a span of +/-16MB, check we're in range.
7609               if (gotpc_offset + 0x1000000 >= 0x2000000)
7610                 {
7611                   gold_error(_(".got.plt offset of %ld from .plt beyond the "
7612                              "range of ADDIUPC"), (long)gotpc_offset);
7613                   return;
7614                 }
7615
7616               elfcpp::Swap<16, big_endian>::writeval(pov2,
7617                           plt_entry[0] | ((gotpc_offset >> 18) & 0x7f));
7618               elfcpp::Swap<16, big_endian>::writeval(
7619                   pov2 + 2, (gotpc_offset >> 2) & 0xffff);
7620               elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
7621               elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
7622               elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
7623               elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
7624               pov2 += 12;
7625             }
7626         }
7627     }
7628
7629   // Check the number of bytes written for standard entries.
7630   gold_assert(static_cast<section_size_type>(
7631       pov - oview - this->plt_header_size_) == this->plt_mips_offset_);
7632   // Check the number of bytes written for compressed entries.
7633   gold_assert((static_cast<section_size_type>(pov2 - pov)
7634                == this->plt_comp_offset_));
7635   // Check the total number of bytes written.
7636   gold_assert(static_cast<section_size_type>(pov2 - oview) == oview_size);
7637
7638   gold_assert(static_cast<section_size_type>(gotplt_pov - gotplt_view)
7639               == gotplt_size);
7640
7641   of->write_output_view(offset, oview_size, oview);
7642   of->write_output_view(gotplt_file_offset, gotplt_size, gotplt_view);
7643 }
7644
7645 // Mips_output_data_mips_stubs methods.
7646
7647 // The format of the lazy binding stub when dynamic symbol count is less than
7648 // 64K, dynamic symbol index is less than 32K, and ABI is not N64.
7649 template<int size, bool big_endian>
7650 const uint32_t
7651 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1[4] =
7652 {
7653   0x8f998010,         // lw t9,0x8010(gp)
7654   0x03e07825,         // or t7,ra,zero
7655   0x0320f809,         // jalr t9,ra
7656   0x24180000          // addiu t8,zero,DYN_INDEX sign extended
7657 };
7658
7659 // The format of the lazy binding stub when dynamic symbol count is less than
7660 // 64K, dynamic symbol index is less than 32K, and ABI is N64.
7661 template<int size, bool big_endian>
7662 const uint32_t
7663 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1_n64[4] =
7664 {
7665   0xdf998010,         // ld t9,0x8010(gp)
7666   0x03e07825,         // or t7,ra,zero
7667   0x0320f809,         // jalr t9,ra
7668   0x64180000          // daddiu t8,zero,DYN_INDEX sign extended
7669 };
7670
7671 // The format of the lazy binding stub when dynamic symbol count is less than
7672 // 64K, dynamic symbol index is between 32K and 64K, and ABI is not N64.
7673 template<int size, bool big_endian>
7674 const uint32_t
7675 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2[4] =
7676 {
7677   0x8f998010,         // lw t9,0x8010(gp)
7678   0x03e07825,         // or t7,ra,zero
7679   0x0320f809,         // jalr t9,ra
7680   0x34180000          // ori t8,zero,DYN_INDEX unsigned
7681 };
7682
7683 // The format of the lazy binding stub when dynamic symbol count is less than
7684 // 64K, dynamic symbol index is between 32K and 64K, and ABI is N64.
7685 template<int size, bool big_endian>
7686 const uint32_t
7687 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2_n64[4] =
7688 {
7689   0xdf998010,         // ld t9,0x8010(gp)
7690   0x03e07825,         // or t7,ra,zero
7691   0x0320f809,         // jalr t9,ra
7692   0x34180000          // ori t8,zero,DYN_INDEX unsigned
7693 };
7694
7695 // The format of the lazy binding stub when dynamic symbol count is greater than
7696 // 64K, and ABI is not N64.
7697 template<int size, bool big_endian>
7698 const uint32_t Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big[5] =
7699 {
7700   0x8f998010,         // lw t9,0x8010(gp)
7701   0x03e07825,         // or t7,ra,zero
7702   0x3c180000,         // lui t8,DYN_INDEX
7703   0x0320f809,         // jalr t9,ra
7704   0x37180000          // ori t8,t8,DYN_INDEX
7705 };
7706
7707 // The format of the lazy binding stub when dynamic symbol count is greater than
7708 // 64K, and ABI is N64.
7709 template<int size, bool big_endian>
7710 const uint32_t
7711 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big_n64[5] =
7712 {
7713   0xdf998010,         // ld t9,0x8010(gp)
7714   0x03e07825,         // or t7,ra,zero
7715   0x3c180000,         // lui t8,DYN_INDEX
7716   0x0320f809,         // jalr t9,ra
7717   0x37180000          // ori t8,t8,DYN_INDEX
7718 };
7719
7720 // microMIPS stubs.
7721
7722 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7723 // less than 64K, dynamic symbol index is less than 32K, and ABI is not N64.
7724 template<int size, bool big_endian>
7725 const uint32_t
7726 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_1[] =
7727 {
7728   0xff3c, 0x8010,     // lw t9,0x8010(gp)
7729   0x0dff,             // move t7,ra
7730   0x45d9,             // jalr t9
7731   0x3300, 0x0000      // addiu t8,zero,DYN_INDEX sign extended
7732 };
7733
7734 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7735 // less than 64K, dynamic symbol index is less than 32K, and ABI is N64.
7736 template<int size, bool big_endian>
7737 const uint32_t
7738 Mips_output_data_mips_stubs<size, big_endian>::
7739 lazy_stub_micromips_normal_1_n64[] =
7740 {
7741   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
7742   0x0dff,             // move t7,ra
7743   0x45d9,             // jalr t9
7744   0x5f00, 0x0000      // daddiu t8,zero,DYN_INDEX sign extended
7745 };
7746
7747 // The format of the microMIPS lazy binding stub when dynamic symbol
7748 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7749 // and ABI is not N64.
7750 template<int size, bool big_endian>
7751 const uint32_t
7752 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_2[] =
7753 {
7754   0xff3c, 0x8010,     // lw t9,0x8010(gp)
7755   0x0dff,             // move t7,ra
7756   0x45d9,             // jalr t9
7757   0x5300, 0x0000      // ori t8,zero,DYN_INDEX unsigned
7758 };
7759
7760 // The format of the microMIPS lazy binding stub when dynamic symbol
7761 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7762 // and ABI is N64.
7763 template<int size, bool big_endian>
7764 const uint32_t
7765 Mips_output_data_mips_stubs<size, big_endian>::
7766 lazy_stub_micromips_normal_2_n64[] =
7767 {
7768   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
7769   0x0dff,             // move t7,ra
7770   0x45d9,             // jalr t9
7771   0x5300, 0x0000      // ori t8,zero,DYN_INDEX unsigned
7772 };
7773
7774 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7775 // greater than 64K, and ABI is not N64.
7776 template<int size, bool big_endian>
7777 const uint32_t
7778 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big[] =
7779 {
7780   0xff3c, 0x8010,     // lw t9,0x8010(gp)
7781   0x0dff,             // move t7,ra
7782   0x41b8, 0x0000,     // lui t8,DYN_INDEX
7783   0x45d9,             // jalr t9
7784   0x5318, 0x0000      // ori t8,t8,DYN_INDEX
7785 };
7786
7787 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7788 // greater than 64K, and ABI is N64.
7789 template<int size, bool big_endian>
7790 const uint32_t
7791 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big_n64[] =
7792 {
7793   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
7794   0x0dff,             // move t7,ra
7795   0x41b8, 0x0000,     // lui t8,DYN_INDEX
7796   0x45d9,             // jalr t9
7797   0x5318, 0x0000      // ori t8,t8,DYN_INDEX
7798 };
7799
7800 // 32-bit microMIPS stubs.
7801
7802 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7803 // less than 64K, dynamic symbol index is less than 32K, ABI is not N64, and we
7804 // can use only 32-bit instructions.
7805 template<int size, bool big_endian>
7806 const uint32_t
7807 Mips_output_data_mips_stubs<size, big_endian>::
7808 lazy_stub_micromips32_normal_1[] =
7809 {
7810   0xff3c, 0x8010,     // lw t9,0x8010(gp)
7811   0x001f, 0x7a90,     // or t7,ra,zero
7812   0x03f9, 0x0f3c,     // jalr ra,t9
7813   0x3300, 0x0000      // addiu t8,zero,DYN_INDEX sign extended
7814 };
7815
7816 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7817 // less than 64K, dynamic symbol index is less than 32K, ABI is N64, and we can
7818 // use only 32-bit instructions.
7819 template<int size, bool big_endian>
7820 const uint32_t
7821 Mips_output_data_mips_stubs<size, big_endian>::
7822 lazy_stub_micromips32_normal_1_n64[] =
7823 {
7824   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
7825   0x001f, 0x7a90,     // or t7,ra,zero
7826   0x03f9, 0x0f3c,     // jalr ra,t9
7827   0x5f00, 0x0000      // daddiu t8,zero,DYN_INDEX sign extended
7828 };
7829
7830 // The format of the microMIPS lazy binding stub when dynamic symbol
7831 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7832 // ABI is not N64, and we can use only 32-bit instructions.
7833 template<int size, bool big_endian>
7834 const uint32_t
7835 Mips_output_data_mips_stubs<size, big_endian>::
7836 lazy_stub_micromips32_normal_2[] =
7837 {
7838   0xff3c, 0x8010,     // lw t9,0x8010(gp)
7839   0x001f, 0x7a90,     // or t7,ra,zero
7840   0x03f9, 0x0f3c,     // jalr ra,t9
7841   0x5300, 0x0000      // ori t8,zero,DYN_INDEX unsigned
7842 };
7843
7844 // The format of the microMIPS lazy binding stub when dynamic symbol
7845 // count is less than 64K, dynamic symbol index is between 32K and 64K,
7846 // ABI is N64, and we can use only 32-bit instructions.
7847 template<int size, bool big_endian>
7848 const uint32_t
7849 Mips_output_data_mips_stubs<size, big_endian>::
7850 lazy_stub_micromips32_normal_2_n64[] =
7851 {
7852   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
7853   0x001f, 0x7a90,     // or t7,ra,zero
7854   0x03f9, 0x0f3c,     // jalr ra,t9
7855   0x5300, 0x0000      // ori t8,zero,DYN_INDEX unsigned
7856 };
7857
7858 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7859 // greater than 64K, ABI is not N64, and we can use only 32-bit instructions.
7860 template<int size, bool big_endian>
7861 const uint32_t
7862 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big[] =
7863 {
7864   0xff3c, 0x8010,     // lw t9,0x8010(gp)
7865   0x001f, 0x7a90,     // or t7,ra,zero
7866   0x41b8, 0x0000,     // lui t8,DYN_INDEX
7867   0x03f9, 0x0f3c,     // jalr ra,t9
7868   0x5318, 0x0000      // ori t8,t8,DYN_INDEX
7869 };
7870
7871 // The format of the microMIPS lazy binding stub when dynamic symbol count is
7872 // greater than 64K, ABI is N64, and we can use only 32-bit instructions.
7873 template<int size, bool big_endian>
7874 const uint32_t
7875 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big_n64[] =
7876 {
7877   0xdf3c, 0x8010,     // ld t9,0x8010(gp)
7878   0x001f, 0x7a90,     // or t7,ra,zero
7879   0x41b8, 0x0000,     // lui t8,DYN_INDEX
7880   0x03f9, 0x0f3c,     // jalr ra,t9
7881   0x5318, 0x0000      // ori t8,t8,DYN_INDEX
7882 };
7883
7884 // Create entry for a symbol.
7885
7886 template<int size, bool big_endian>
7887 void
7888 Mips_output_data_mips_stubs<size, big_endian>::make_entry(
7889     Mips_symbol<size>* gsym)
7890 {
7891   if (!gsym->has_lazy_stub() && !gsym->has_plt_offset())
7892     {
7893       this->symbols_.insert(gsym);
7894       gsym->set_has_lazy_stub(true);
7895     }
7896 }
7897
7898 // Remove entry for a symbol.
7899
7900 template<int size, bool big_endian>
7901 void
7902 Mips_output_data_mips_stubs<size, big_endian>::remove_entry(
7903     Mips_symbol<size>* gsym)
7904 {
7905   if (gsym->has_lazy_stub())
7906     {
7907       this->symbols_.erase(gsym);
7908       gsym->set_has_lazy_stub(false);
7909     }
7910 }
7911
7912 // Set stub offsets for symbols.  This method expects that the number of
7913 // entries in dynamic symbol table is set.
7914
7915 template<int size, bool big_endian>
7916 void
7917 Mips_output_data_mips_stubs<size, big_endian>::set_lazy_stub_offsets()
7918 {
7919   gold_assert(this->dynsym_count_ != -1U);
7920
7921   if (this->stub_offsets_are_set_)
7922     return;
7923
7924   unsigned int stub_size = this->stub_size();
7925   unsigned int offset = 0;
7926   for (typename Mips_stubs_entry_set::const_iterator
7927        p = this->symbols_.begin();
7928        p != this->symbols_.end();
7929        ++p, offset += stub_size)
7930     {
7931       Mips_symbol<size>* mips_sym = *p;
7932       mips_sym->set_lazy_stub_offset(offset);
7933     }
7934   this->stub_offsets_are_set_ = true;
7935 }
7936
7937 template<int size, bool big_endian>
7938 void
7939 Mips_output_data_mips_stubs<size, big_endian>::set_needs_dynsym_value()
7940 {
7941   for (typename Mips_stubs_entry_set::const_iterator
7942        p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
7943     {
7944       Mips_symbol<size>* sym = *p;
7945       if (sym->is_from_dynobj())
7946         sym->set_needs_dynsym_value();
7947     }
7948 }
7949
7950 // Write out the .MIPS.stubs.  This uses the hand-coded instructions and
7951 // adjusts them as needed.
7952
7953 template<int size, bool big_endian>
7954 void
7955 Mips_output_data_mips_stubs<size, big_endian>::do_write(Output_file* of)
7956 {
7957   const off_t offset = this->offset();
7958   const section_size_type oview_size =
7959     convert_to_section_size_type(this->data_size());
7960   unsigned char* const oview = of->get_output_view(offset, oview_size);
7961
7962   bool big_stub = this->dynsym_count_ > 0x10000;
7963
7964   unsigned char* pov = oview;
7965   for (typename Mips_stubs_entry_set::const_iterator
7966        p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
7967     {
7968       Mips_symbol<size>* sym = *p;
7969       const uint32_t* lazy_stub;
7970       bool n64 = this->target_->is_output_n64();
7971
7972       if (!this->target_->is_output_micromips())
7973         {
7974           // Write standard (non-microMIPS) stub.
7975           if (!big_stub)
7976             {
7977               if (sym->dynsym_index() & ~0x7fff)
7978                 // Dynsym index is between 32K and 64K.
7979                 lazy_stub = n64 ? lazy_stub_normal_2_n64 : lazy_stub_normal_2;
7980               else
7981                 // Dynsym index is less than 32K.
7982                 lazy_stub = n64 ? lazy_stub_normal_1_n64 : lazy_stub_normal_1;
7983             }
7984           else
7985             lazy_stub = n64 ? lazy_stub_big_n64 : lazy_stub_big;
7986
7987           unsigned int i = 0;
7988           elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
7989           elfcpp::Swap<32, big_endian>::writeval(pov + 4, lazy_stub[i + 1]);
7990           pov += 8;
7991
7992           i += 2;
7993           if (big_stub)
7994             {
7995               // LUI instruction of the big stub.  Paste high 16 bits of the
7996               // dynsym index.
7997               elfcpp::Swap<32, big_endian>::writeval(pov,
7998                   lazy_stub[i] | ((sym->dynsym_index() >> 16) & 0x7fff));
7999               pov += 4;
8000               i += 1;
8001             }
8002           elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
8003           // Last stub instruction.  Paste low 16 bits of the dynsym index.
8004           elfcpp::Swap<32, big_endian>::writeval(pov + 4,
8005               lazy_stub[i + 1] | (sym->dynsym_index() & 0xffff));
8006           pov += 8;
8007         }
8008       else if (this->target_->use_32bit_micromips_instructions())
8009         {
8010           // Write microMIPS stub in insn32 mode.
8011           if (!big_stub)
8012             {
8013               if (sym->dynsym_index() & ~0x7fff)
8014                 // Dynsym index is between 32K and 64K.
8015                 lazy_stub = n64 ? lazy_stub_micromips32_normal_2_n64
8016                                 : lazy_stub_micromips32_normal_2;
8017               else
8018                 // Dynsym index is less than 32K.
8019                 lazy_stub = n64 ? lazy_stub_micromips32_normal_1_n64
8020                                 : lazy_stub_micromips32_normal_1;
8021             }
8022           else
8023             lazy_stub = n64 ? lazy_stub_micromips32_big_n64
8024                             : lazy_stub_micromips32_big;
8025
8026           unsigned int i = 0;
8027           // First stub instruction.  We emit 32-bit microMIPS instructions by
8028           // emitting two 16-bit parts because on microMIPS the 16-bit part of
8029           // the instruction where the opcode is must always come first, for
8030           // both little and big endian.
8031           elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8032           elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8033           // Second stub instruction.
8034           elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8035           elfcpp::Swap<16, big_endian>::writeval(pov + 6, lazy_stub[i + 3]);
8036           pov += 8;
8037           i += 4;
8038           if (big_stub)
8039             {
8040               // LUI instruction of the big stub.  Paste high 16 bits of the
8041               // dynsym index.
8042               elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8043               elfcpp::Swap<16, big_endian>::writeval(pov + 2,
8044                   (sym->dynsym_index() >> 16) & 0x7fff);
8045               pov += 4;
8046               i += 2;
8047             }
8048           elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8049           elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8050           // Last stub instruction.  Paste low 16 bits of the dynsym index.
8051           elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8052           elfcpp::Swap<16, big_endian>::writeval(pov + 6,
8053               sym->dynsym_index() & 0xffff);
8054           pov += 8;
8055         }
8056       else
8057         {
8058           // Write microMIPS stub.
8059           if (!big_stub)
8060             {
8061               if (sym->dynsym_index() & ~0x7fff)
8062                 // Dynsym index is between 32K and 64K.
8063                 lazy_stub = n64 ? lazy_stub_micromips_normal_2_n64
8064                                 : lazy_stub_micromips_normal_2;
8065               else
8066                 // Dynsym index is less than 32K.
8067                 lazy_stub = n64 ? lazy_stub_micromips_normal_1_n64
8068                                 : lazy_stub_micromips_normal_1;
8069             }
8070           else
8071             lazy_stub = n64 ? lazy_stub_micromips_big_n64
8072                             : lazy_stub_micromips_big;
8073
8074           unsigned int i = 0;
8075           // First stub instruction.  We emit 32-bit microMIPS instructions by
8076           // emitting two 16-bit parts because on microMIPS the 16-bit part of
8077           // the instruction where the opcode is must always come first, for
8078           // both little and big endian.
8079           elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8080           elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8081           // Second stub instruction.
8082           elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
8083           pov += 6;
8084           i += 3;
8085           if (big_stub)
8086             {
8087               // LUI instruction of the big stub.  Paste high 16 bits of the
8088               // dynsym index.
8089               elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8090               elfcpp::Swap<16, big_endian>::writeval(pov + 2,
8091                   (sym->dynsym_index() >> 16) & 0x7fff);
8092               pov += 4;
8093               i += 2;
8094             }
8095           elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
8096           // Last stub instruction.  Paste low 16 bits of the dynsym index.
8097           elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
8098           elfcpp::Swap<16, big_endian>::writeval(pov + 4,
8099               sym->dynsym_index() & 0xffff);
8100           pov += 6;
8101         }
8102     }
8103
8104   // We always allocate 20 bytes for every stub, because final dynsym count is
8105   // not known in method do_finalize_sections.  There are 4 unused bytes per
8106   // stub if final dynsym count is less than 0x10000.
8107   unsigned int used = pov - oview;
8108   unsigned int unused = big_stub ? 0 : this->symbols_.size() * 4;
8109   gold_assert(static_cast<section_size_type>(used + unused) == oview_size);
8110
8111   // Fill the unused space with zeroes.
8112   // TODO(sasa): Can we strip unused bytes during the relaxation?
8113   if (unused > 0)
8114     memset(pov, 0, unused);
8115
8116   of->write_output_view(offset, oview_size, oview);
8117 }
8118
8119 // Mips_output_section_reginfo methods.
8120
8121 template<int size, bool big_endian>
8122 void
8123 Mips_output_section_reginfo<size, big_endian>::do_write(Output_file* of)
8124 {
8125   off_t offset = this->offset();
8126   off_t data_size = this->data_size();
8127
8128   unsigned char* view = of->get_output_view(offset, data_size);
8129   elfcpp::Swap<size, big_endian>::writeval(view, this->gprmask_);
8130   elfcpp::Swap<size, big_endian>::writeval(view + 4, this->cprmask1_);
8131   elfcpp::Swap<size, big_endian>::writeval(view + 8, this->cprmask2_);
8132   elfcpp::Swap<size, big_endian>::writeval(view + 12, this->cprmask3_);
8133   elfcpp::Swap<size, big_endian>::writeval(view + 16, this->cprmask4_);
8134   // Write the gp value.
8135   elfcpp::Swap<size, big_endian>::writeval(view + 20,
8136                                            this->target_->gp_value());
8137
8138   of->write_output_view(offset, data_size, view);
8139 }
8140
8141 // Mips_output_section_abiflags methods.
8142
8143 template<int size, bool big_endian>
8144 void
8145 Mips_output_section_abiflags<size, big_endian>::do_write(Output_file* of)
8146 {
8147   off_t offset = this->offset();
8148   off_t data_size = this->data_size();
8149
8150   unsigned char* view = of->get_output_view(offset, data_size);
8151   elfcpp::Swap<16, big_endian>::writeval(view, this->abiflags_.version);
8152   elfcpp::Swap<8, big_endian>::writeval(view + 2, this->abiflags_.isa_level);
8153   elfcpp::Swap<8, big_endian>::writeval(view + 3, this->abiflags_.isa_rev);
8154   elfcpp::Swap<8, big_endian>::writeval(view + 4, this->abiflags_.gpr_size);
8155   elfcpp::Swap<8, big_endian>::writeval(view + 5, this->abiflags_.cpr1_size);
8156   elfcpp::Swap<8, big_endian>::writeval(view + 6, this->abiflags_.cpr2_size);
8157   elfcpp::Swap<8, big_endian>::writeval(view + 7, this->abiflags_.fp_abi);
8158   elfcpp::Swap<32, big_endian>::writeval(view + 8, this->abiflags_.isa_ext);
8159   elfcpp::Swap<32, big_endian>::writeval(view + 12, this->abiflags_.ases);
8160   elfcpp::Swap<32, big_endian>::writeval(view + 16, this->abiflags_.flags1);
8161   elfcpp::Swap<32, big_endian>::writeval(view + 20, this->abiflags_.flags2);
8162
8163   of->write_output_view(offset, data_size, view);
8164 }
8165
8166 // Mips_copy_relocs methods.
8167
8168 // Emit any saved relocs.
8169
8170 template<int sh_type, int size, bool big_endian>
8171 void
8172 Mips_copy_relocs<sh_type, size, big_endian>::emit_mips(
8173     Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
8174     Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
8175 {
8176   for (typename Copy_relocs<sh_type, size, big_endian>::
8177        Copy_reloc_entries::iterator p = this->entries_.begin();
8178        p != this->entries_.end();
8179        ++p)
8180     emit_entry(*p, reloc_section, symtab, layout, target);
8181
8182   // We no longer need the saved information.
8183   this->entries_.clear();
8184 }
8185
8186 // Emit the reloc if appropriate.
8187
8188 template<int sh_type, int size, bool big_endian>
8189 void
8190 Mips_copy_relocs<sh_type, size, big_endian>::emit_entry(
8191     Copy_reloc_entry& entry,
8192     Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
8193     Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
8194 {
8195   // If the symbol is no longer defined in a dynamic object, then we
8196   // emitted a COPY relocation, and we do not want to emit this
8197   // dynamic relocation.
8198   if (!entry.sym_->is_from_dynobj())
8199     return;
8200
8201   bool can_make_dynamic = (entry.reloc_type_ == elfcpp::R_MIPS_32
8202                            || entry.reloc_type_ == elfcpp::R_MIPS_REL32
8203                            || entry.reloc_type_ == elfcpp::R_MIPS_64);
8204
8205   Mips_symbol<size>* sym = Mips_symbol<size>::as_mips_sym(entry.sym_);
8206   if (can_make_dynamic && !sym->has_static_relocs())
8207     {
8208       Mips_relobj<size, big_endian>* object =
8209         Mips_relobj<size, big_endian>::as_mips_relobj(entry.relobj_);
8210       target->got_section(symtab, layout)->record_global_got_symbol(
8211                           sym, object, entry.reloc_type_, true, false);
8212       if (!symbol_references_local(sym, sym->should_add_dynsym_entry(symtab)))
8213         target->rel_dyn_section(layout)->add_global(sym, elfcpp::R_MIPS_REL32,
8214             entry.output_section_, entry.relobj_, entry.shndx_, entry.address_);
8215       else
8216         target->rel_dyn_section(layout)->add_symbolless_global_addend(
8217             sym, elfcpp::R_MIPS_REL32, entry.output_section_, entry.relobj_,
8218             entry.shndx_, entry.address_);
8219     }
8220   else
8221     this->make_copy_reloc(symtab, layout,
8222                           static_cast<Sized_symbol<size>*>(entry.sym_),
8223                           entry.relobj_,
8224                           reloc_section);
8225 }
8226
8227 // Target_mips methods.
8228
8229 // Return the value to use for a dynamic symbol which requires special
8230 // treatment.  This is how we support equality comparisons of function
8231 // pointers across shared library boundaries, as described in the
8232 // processor specific ABI supplement.
8233
8234 template<int size, bool big_endian>
8235 uint64_t
8236 Target_mips<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8237 {
8238   uint64_t value = 0;
8239   const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
8240
8241   if (!mips_sym->has_lazy_stub())
8242     {
8243       if (mips_sym->has_plt_offset())
8244         {
8245           // We distinguish between PLT entries and lazy-binding stubs by
8246           // giving the former an st_other value of STO_MIPS_PLT.  Set the
8247           // value to the stub address if there are any relocations in the
8248           // binary where pointer equality matters.
8249           if (mips_sym->pointer_equality_needed())
8250             {
8251               // Prefer a standard MIPS PLT entry.
8252               if (mips_sym->has_mips_plt_offset())
8253                 value = this->plt_section()->mips_entry_address(mips_sym);
8254               else
8255                 value = this->plt_section()->comp_entry_address(mips_sym) + 1;
8256             }
8257           else
8258             value = 0;
8259         }
8260     }
8261   else
8262     {
8263       // First, set stub offsets for symbols.  This method expects that the
8264       // number of entries in dynamic symbol table is set.
8265       this->mips_stubs_section()->set_lazy_stub_offsets();
8266
8267       // The run-time linker uses the st_value field of the symbol
8268       // to reset the global offset table entry for this external
8269       // to its stub address when unlinking a shared object.
8270       value = this->mips_stubs_section()->stub_address(mips_sym);
8271     }
8272
8273   if (mips_sym->has_mips16_fn_stub())
8274     {
8275       // If we have a MIPS16 function with a stub, the dynamic symbol must
8276       // refer to the stub, since only the stub uses the standard calling
8277       // conventions.
8278       value = mips_sym->template
8279               get_mips16_fn_stub<big_endian>()->output_address();
8280     }
8281
8282   return value;
8283 }
8284
8285 // Get the dynamic reloc section, creating it if necessary.  It's always
8286 // .rel.dyn, even for MIPS64.
8287
8288 template<int size, bool big_endian>
8289 typename Target_mips<size, big_endian>::Reloc_section*
8290 Target_mips<size, big_endian>::rel_dyn_section(Layout* layout)
8291 {
8292   if (this->rel_dyn_ == NULL)
8293     {
8294       gold_assert(layout != NULL);
8295       this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
8296       layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
8297                                       elfcpp::SHF_ALLOC, this->rel_dyn_,
8298                                       ORDER_DYNAMIC_RELOCS, false);
8299
8300       // First entry in .rel.dyn has to be null.
8301       // This is hack - we define dummy output data and set its address to 0,
8302       // and define absolute R_MIPS_NONE relocation with offset 0 against it.
8303       // This ensures that the entry is null.
8304       Output_data* od = new Output_data_zero_fill(0, 0);
8305       od->set_address(0);
8306       this->rel_dyn_->add_absolute(elfcpp::R_MIPS_NONE, od, 0);
8307     }
8308   return this->rel_dyn_;
8309 }
8310
8311 // Get the GOT section, creating it if necessary.
8312
8313 template<int size, bool big_endian>
8314 Mips_output_data_got<size, big_endian>*
8315 Target_mips<size, big_endian>::got_section(Symbol_table* symtab,
8316                                            Layout* layout)
8317 {
8318   if (this->got_ == NULL)
8319     {
8320       gold_assert(symtab != NULL && layout != NULL);
8321
8322       this->got_ = new Mips_output_data_got<size, big_endian>(this, symtab,
8323                                                               layout);
8324       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
8325                                       (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE |
8326                                       elfcpp::SHF_MIPS_GPREL),
8327                                       this->got_, ORDER_DATA, false);
8328
8329       // Define _GLOBAL_OFFSET_TABLE_ at the start of the .got section.
8330       symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
8331                                     Symbol_table::PREDEFINED,
8332                                     this->got_,
8333                                     0, 0, elfcpp::STT_OBJECT,
8334                                     elfcpp::STB_GLOBAL,
8335                                     elfcpp::STV_DEFAULT, 0,
8336                                     false, false);
8337     }
8338
8339   return this->got_;
8340 }
8341
8342 // Calculate value of _gp symbol.
8343
8344 template<int size, bool big_endian>
8345 void
8346 Target_mips<size, big_endian>::set_gp(Layout* layout, Symbol_table* symtab)
8347 {
8348   if (this->gp_ != NULL)
8349     return;
8350
8351   Output_data* section = layout->find_output_section(".got");
8352   if (section == NULL)
8353     {
8354       // If there is no .got section, gp should be based on .sdata.
8355       // TODO(sasa): This is probably not needed.  This was needed for older
8356       // MIPS architectures which accessed both GOT and .sdata section using
8357       // gp-relative addressing.  Modern Mips Linux ELF architectures don't
8358       // access .sdata using gp-relative addressing.
8359       for (Layout::Section_list::const_iterator
8360            p = layout->section_list().begin();
8361            p != layout->section_list().end();
8362            ++p)
8363         {
8364           if (strcmp((*p)->name(), ".sdata") == 0)
8365             {
8366               section = *p;
8367               break;
8368             }
8369         }
8370     }
8371
8372   Sized_symbol<size>* gp =
8373     static_cast<Sized_symbol<size>*>(symtab->lookup("_gp"));
8374   if (gp != NULL)
8375     {
8376       if (gp->source() != Symbol::IS_CONSTANT && section != NULL)
8377         gp->init_output_data(gp->name(), NULL, section, MIPS_GP_OFFSET, 0,
8378                              elfcpp::STT_OBJECT,
8379                              elfcpp::STB_GLOBAL,
8380                              elfcpp::STV_DEFAULT, 0,
8381                              false, false);
8382       this->gp_ = gp;
8383     }
8384   else if (section != NULL)
8385     {
8386       gp = static_cast<Sized_symbol<size>*>(symtab->define_in_output_data(
8387                                       "_gp", NULL, Symbol_table::PREDEFINED,
8388                                       section, MIPS_GP_OFFSET, 0,
8389                                       elfcpp::STT_OBJECT,
8390                                       elfcpp::STB_GLOBAL,
8391                                       elfcpp::STV_DEFAULT,
8392                                       0, false, false));
8393       this->gp_ = gp;
8394     }
8395 }
8396
8397 // Set the dynamic symbol indexes.  INDEX is the index of the first
8398 // global dynamic symbol.  Pointers to the symbols are stored into the
8399 // vector SYMS.  The names are added to DYNPOOL.  This returns an
8400 // updated dynamic symbol index.
8401
8402 template<int size, bool big_endian>
8403 unsigned int
8404 Target_mips<size, big_endian>::do_set_dynsym_indexes(
8405     std::vector<Symbol*>* dyn_symbols, unsigned int index,
8406     std::vector<Symbol*>* syms, Stringpool* dynpool,
8407     Versions* versions, Symbol_table* symtab) const
8408 {
8409   std::vector<Symbol*> non_got_symbols;
8410   std::vector<Symbol*> got_symbols;
8411
8412   reorder_dyn_symbols<size, big_endian>(dyn_symbols, &non_got_symbols,
8413                                         &got_symbols);
8414
8415   for (std::vector<Symbol*>::iterator p = non_got_symbols.begin();
8416        p != non_got_symbols.end();
8417        ++p)
8418     {
8419       Symbol* sym = *p;
8420
8421       // Note that SYM may already have a dynamic symbol index, since
8422       // some symbols appear more than once in the symbol table, with
8423       // and without a version.
8424
8425       if (!sym->has_dynsym_index())
8426         {
8427           sym->set_dynsym_index(index);
8428           ++index;
8429           syms->push_back(sym);
8430           dynpool->add(sym->name(), false, NULL);
8431
8432           // Record any version information.
8433           if (sym->version() != NULL)
8434             versions->record_version(symtab, dynpool, sym);
8435
8436           // If the symbol is defined in a dynamic object and is
8437           // referenced in a regular object, then mark the dynamic
8438           // object as needed.  This is used to implement --as-needed.
8439           if (sym->is_from_dynobj() && sym->in_reg())
8440             sym->object()->set_is_needed();
8441         }
8442     }
8443
8444   for (std::vector<Symbol*>::iterator p = got_symbols.begin();
8445        p != got_symbols.end();
8446        ++p)
8447     {
8448       Symbol* sym = *p;
8449       if (!sym->has_dynsym_index())
8450         {
8451           // Record any version information.
8452           if (sym->version() != NULL)
8453             versions->record_version(symtab, dynpool, sym);
8454         }
8455     }
8456
8457   index = versions->finalize(symtab, index, syms);
8458
8459   int got_sym_count = 0;
8460   for (std::vector<Symbol*>::iterator p = got_symbols.begin();
8461        p != got_symbols.end();
8462        ++p)
8463     {
8464       Symbol* sym = *p;
8465
8466       if (!sym->has_dynsym_index())
8467         {
8468           ++got_sym_count;
8469           sym->set_dynsym_index(index);
8470           ++index;
8471           syms->push_back(sym);
8472           dynpool->add(sym->name(), false, NULL);
8473
8474           // If the symbol is defined in a dynamic object and is
8475           // referenced in a regular object, then mark the dynamic
8476           // object as needed.  This is used to implement --as-needed.
8477           if (sym->is_from_dynobj() && sym->in_reg())
8478             sym->object()->set_is_needed();
8479         }
8480     }
8481
8482   // Set index of the first symbol that has .got entry.
8483   this->got_->set_first_global_got_dynsym_index(
8484     got_sym_count > 0 ? index - got_sym_count : -1U);
8485
8486   if (this->mips_stubs_ != NULL)
8487     this->mips_stubs_->set_dynsym_count(index);
8488
8489   return index;
8490 }
8491
8492 // Create a PLT entry for a global symbol referenced by r_type relocation.
8493
8494 template<int size, bool big_endian>
8495 void
8496 Target_mips<size, big_endian>::make_plt_entry(Symbol_table* symtab,
8497                                               Layout* layout,
8498                                               Mips_symbol<size>* gsym,
8499                                               unsigned int r_type)
8500 {
8501   if (gsym->has_lazy_stub() || gsym->has_plt_offset())
8502     return;
8503
8504   if (this->plt_ == NULL)
8505     {
8506       // Create the GOT section first.
8507       this->got_section(symtab, layout);
8508
8509       this->got_plt_ = new Output_data_space(4, "** GOT PLT");
8510       layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
8511                                       (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
8512                                       this->got_plt_, ORDER_DATA, false);
8513
8514       // The first two entries are reserved.
8515       this->got_plt_->set_current_data_size(2 * size/8);
8516
8517       this->plt_ = new Mips_output_data_plt<size, big_endian>(layout,
8518                                                               this->got_plt_,
8519                                                               this);
8520       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
8521                                       (elfcpp::SHF_ALLOC
8522                                        | elfcpp::SHF_EXECINSTR),
8523                                       this->plt_, ORDER_PLT, false);
8524     }
8525
8526   this->plt_->add_entry(gsym, r_type);
8527 }
8528
8529
8530 // Get the .MIPS.stubs section, creating it if necessary.
8531
8532 template<int size, bool big_endian>
8533 Mips_output_data_mips_stubs<size, big_endian>*
8534 Target_mips<size, big_endian>::mips_stubs_section(Layout* layout)
8535 {
8536   if (this->mips_stubs_ == NULL)
8537     {
8538       this->mips_stubs_ =
8539         new Mips_output_data_mips_stubs<size, big_endian>(this);
8540       layout->add_output_section_data(".MIPS.stubs", elfcpp::SHT_PROGBITS,
8541                                       (elfcpp::SHF_ALLOC
8542                                        | elfcpp::SHF_EXECINSTR),
8543                                       this->mips_stubs_, ORDER_PLT, false);
8544     }
8545   return this->mips_stubs_;
8546 }
8547
8548 // Get the LA25 stub section, creating it if necessary.
8549
8550 template<int size, bool big_endian>
8551 Mips_output_data_la25_stub<size, big_endian>*
8552 Target_mips<size, big_endian>::la25_stub_section(Layout* layout)
8553 {
8554   if (this->la25_stub_ == NULL)
8555     {
8556       this->la25_stub_ = new Mips_output_data_la25_stub<size, big_endian>();
8557       layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
8558                                       (elfcpp::SHF_ALLOC
8559                                        | elfcpp::SHF_EXECINSTR),
8560                                       this->la25_stub_, ORDER_TEXT, false);
8561     }
8562   return this->la25_stub_;
8563 }
8564
8565 // Process the relocations to determine unreferenced sections for
8566 // garbage collection.
8567
8568 template<int size, bool big_endian>
8569 void
8570 Target_mips<size, big_endian>::gc_process_relocs(
8571                         Symbol_table* symtab,
8572                         Layout* layout,
8573                         Sized_relobj_file<size, big_endian>* object,
8574                         unsigned int data_shndx,
8575                         unsigned int sh_type,
8576                         const unsigned char* prelocs,
8577                         size_t reloc_count,
8578                         Output_section* output_section,
8579                         bool needs_special_offset_handling,
8580                         size_t local_symbol_count,
8581                         const unsigned char* plocal_symbols)
8582 {
8583   typedef Target_mips<size, big_endian> Mips;
8584
8585   if (sh_type == elfcpp::SHT_REL)
8586     {
8587       typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
8588           Classify_reloc;
8589
8590       gold::gc_process_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8591         symtab,
8592         layout,
8593         this,
8594         object,
8595         data_shndx,
8596         prelocs,
8597         reloc_count,
8598         output_section,
8599         needs_special_offset_handling,
8600         local_symbol_count,
8601         plocal_symbols);
8602     }
8603   else if (sh_type == elfcpp::SHT_RELA)
8604     {
8605       typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8606           Classify_reloc;
8607
8608       gold::gc_process_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8609         symtab,
8610         layout,
8611         this,
8612         object,
8613         data_shndx,
8614         prelocs,
8615         reloc_count,
8616         output_section,
8617         needs_special_offset_handling,
8618         local_symbol_count,
8619         plocal_symbols);
8620     }
8621   else
8622     gold_unreachable();
8623 }
8624
8625 // Scan relocations for a section.
8626
8627 template<int size, bool big_endian>
8628 void
8629 Target_mips<size, big_endian>::scan_relocs(
8630                         Symbol_table* symtab,
8631                         Layout* layout,
8632                         Sized_relobj_file<size, big_endian>* object,
8633                         unsigned int data_shndx,
8634                         unsigned int sh_type,
8635                         const unsigned char* prelocs,
8636                         size_t reloc_count,
8637                         Output_section* output_section,
8638                         bool needs_special_offset_handling,
8639                         size_t local_symbol_count,
8640                         const unsigned char* plocal_symbols)
8641 {
8642   typedef Target_mips<size, big_endian> Mips;
8643
8644   if (sh_type == elfcpp::SHT_REL)
8645     {
8646       typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
8647           Classify_reloc;
8648
8649       gold::scan_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8650         symtab,
8651         layout,
8652         this,
8653         object,
8654         data_shndx,
8655         prelocs,
8656         reloc_count,
8657         output_section,
8658         needs_special_offset_handling,
8659         local_symbol_count,
8660         plocal_symbols);
8661     }
8662   else if (sh_type == elfcpp::SHT_RELA)
8663     {
8664       typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8665           Classify_reloc;
8666
8667       gold::scan_relocs<size, big_endian, Mips, Scan, Classify_reloc>(
8668         symtab,
8669         layout,
8670         this,
8671         object,
8672         data_shndx,
8673         prelocs,
8674         reloc_count,
8675         output_section,
8676         needs_special_offset_handling,
8677         local_symbol_count,
8678         plocal_symbols);
8679     }
8680 }
8681
8682 template<int size, bool big_endian>
8683 bool
8684 Target_mips<size, big_endian>::mips_32bit_flags(elfcpp::Elf_Word flags)
8685 {
8686   return ((flags & elfcpp::EF_MIPS_32BITMODE) != 0
8687           || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_O32
8688           || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_EABI32
8689           || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_1
8690           || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_2
8691           || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32
8692           || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32R2
8693           || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32R6);
8694 }
8695
8696 // Return the MACH for a MIPS e_flags value.
8697 template<int size, bool big_endian>
8698 unsigned int
8699 Target_mips<size, big_endian>::elf_mips_mach(elfcpp::Elf_Word flags)
8700 {
8701   switch (flags & elfcpp::EF_MIPS_MACH)
8702     {
8703     case elfcpp::E_MIPS_MACH_3900:
8704       return mach_mips3900;
8705
8706     case elfcpp::E_MIPS_MACH_4010:
8707       return mach_mips4010;
8708
8709     case elfcpp::E_MIPS_MACH_4100:
8710       return mach_mips4100;
8711
8712     case elfcpp::E_MIPS_MACH_4111:
8713       return mach_mips4111;
8714
8715     case elfcpp::E_MIPS_MACH_4120:
8716       return mach_mips4120;
8717
8718     case elfcpp::E_MIPS_MACH_4650:
8719       return mach_mips4650;
8720
8721     case elfcpp::E_MIPS_MACH_5400:
8722       return mach_mips5400;
8723
8724     case elfcpp::E_MIPS_MACH_5500:
8725       return mach_mips5500;
8726
8727     case elfcpp::E_MIPS_MACH_5900:
8728       return mach_mips5900;
8729
8730     case elfcpp::E_MIPS_MACH_9000:
8731       return mach_mips9000;
8732
8733     case elfcpp::E_MIPS_MACH_SB1:
8734       return mach_mips_sb1;
8735
8736     case elfcpp::E_MIPS_MACH_LS2E:
8737       return mach_mips_loongson_2e;
8738
8739     case elfcpp::E_MIPS_MACH_LS2F:
8740       return mach_mips_loongson_2f;
8741
8742     case elfcpp::E_MIPS_MACH_LS3A:
8743       return mach_mips_loongson_3a;
8744
8745     case elfcpp::E_MIPS_MACH_OCTEON3:
8746       return mach_mips_octeon3;
8747
8748     case elfcpp::E_MIPS_MACH_OCTEON2:
8749       return mach_mips_octeon2;
8750
8751     case elfcpp::E_MIPS_MACH_OCTEON:
8752       return mach_mips_octeon;
8753
8754     case elfcpp::E_MIPS_MACH_XLR:
8755       return mach_mips_xlr;
8756
8757     default:
8758       switch (flags & elfcpp::EF_MIPS_ARCH)
8759         {
8760         default:
8761         case elfcpp::E_MIPS_ARCH_1:
8762           return mach_mips3000;
8763
8764         case elfcpp::E_MIPS_ARCH_2:
8765           return mach_mips6000;
8766
8767         case elfcpp::E_MIPS_ARCH_3:
8768           return mach_mips4000;
8769
8770         case elfcpp::E_MIPS_ARCH_4:
8771           return mach_mips8000;
8772
8773         case elfcpp::E_MIPS_ARCH_5:
8774           return mach_mips5;
8775
8776         case elfcpp::E_MIPS_ARCH_32:
8777           return mach_mipsisa32;
8778
8779         case elfcpp::E_MIPS_ARCH_64:
8780           return mach_mipsisa64;
8781
8782         case elfcpp::E_MIPS_ARCH_32R2:
8783           return mach_mipsisa32r2;
8784
8785         case elfcpp::E_MIPS_ARCH_32R6:
8786           return mach_mipsisa32r6;
8787
8788         case elfcpp::E_MIPS_ARCH_64R2:
8789           return mach_mipsisa64r2;
8790
8791         case elfcpp::E_MIPS_ARCH_64R6:
8792           return mach_mipsisa64r6;
8793         }
8794     }
8795
8796   return 0;
8797 }
8798
8799 // Return the MACH for each .MIPS.abiflags ISA Extension.
8800
8801 template<int size, bool big_endian>
8802 unsigned int
8803 Target_mips<size, big_endian>::mips_isa_ext_mach(unsigned int isa_ext)
8804 {
8805   switch (isa_ext)
8806     {
8807     case elfcpp::AFL_EXT_3900:
8808       return mach_mips3900;
8809
8810     case elfcpp::AFL_EXT_4010:
8811       return mach_mips4010;
8812
8813     case elfcpp::AFL_EXT_4100:
8814       return mach_mips4100;
8815
8816     case elfcpp::AFL_EXT_4111:
8817       return mach_mips4111;
8818
8819     case elfcpp::AFL_EXT_4120:
8820       return mach_mips4120;
8821
8822     case elfcpp::AFL_EXT_4650:
8823       return mach_mips4650;
8824
8825     case elfcpp::AFL_EXT_5400:
8826       return mach_mips5400;
8827
8828     case elfcpp::AFL_EXT_5500:
8829       return mach_mips5500;
8830
8831     case elfcpp::AFL_EXT_5900:
8832       return mach_mips5900;
8833
8834     case elfcpp::AFL_EXT_10000:
8835       return mach_mips10000;
8836
8837     case elfcpp::AFL_EXT_LOONGSON_2E:
8838       return mach_mips_loongson_2e;
8839
8840     case elfcpp::AFL_EXT_LOONGSON_2F:
8841       return mach_mips_loongson_2f;
8842
8843     case elfcpp::AFL_EXT_LOONGSON_3A:
8844       return mach_mips_loongson_3a;
8845
8846     case elfcpp::AFL_EXT_SB1:
8847       return mach_mips_sb1;
8848
8849     case elfcpp::AFL_EXT_OCTEON:
8850       return mach_mips_octeon;
8851
8852     case elfcpp::AFL_EXT_OCTEONP:
8853       return mach_mips_octeonp;
8854
8855     case elfcpp::AFL_EXT_OCTEON2:
8856       return mach_mips_octeon2;
8857
8858     case elfcpp::AFL_EXT_XLR:
8859       return mach_mips_xlr;
8860
8861     default:
8862       return mach_mips3000;
8863     }
8864 }
8865
8866 // Return the .MIPS.abiflags value representing each ISA Extension.
8867
8868 template<int size, bool big_endian>
8869 unsigned int
8870 Target_mips<size, big_endian>::mips_isa_ext(unsigned int mips_mach)
8871 {
8872   switch (mips_mach)
8873     {
8874     case mach_mips3900:
8875       return elfcpp::AFL_EXT_3900;
8876
8877     case mach_mips4010:
8878       return elfcpp::AFL_EXT_4010;
8879
8880     case mach_mips4100:
8881       return elfcpp::AFL_EXT_4100;
8882
8883     case mach_mips4111:
8884       return elfcpp::AFL_EXT_4111;
8885
8886     case mach_mips4120:
8887       return elfcpp::AFL_EXT_4120;
8888
8889     case mach_mips4650:
8890       return elfcpp::AFL_EXT_4650;
8891
8892     case mach_mips5400:
8893       return elfcpp::AFL_EXT_5400;
8894
8895     case mach_mips5500:
8896       return elfcpp::AFL_EXT_5500;
8897
8898     case mach_mips5900:
8899       return elfcpp::AFL_EXT_5900;
8900
8901     case mach_mips10000:
8902       return elfcpp::AFL_EXT_10000;
8903
8904     case mach_mips_loongson_2e:
8905       return elfcpp::AFL_EXT_LOONGSON_2E;
8906
8907     case mach_mips_loongson_2f:
8908       return elfcpp::AFL_EXT_LOONGSON_2F;
8909
8910     case mach_mips_loongson_3a:
8911       return elfcpp::AFL_EXT_LOONGSON_3A;
8912
8913     case mach_mips_sb1:
8914       return elfcpp::AFL_EXT_SB1;
8915
8916     case mach_mips_octeon:
8917       return elfcpp::AFL_EXT_OCTEON;
8918
8919     case mach_mips_octeonp:
8920       return elfcpp::AFL_EXT_OCTEONP;
8921
8922     case mach_mips_octeon3:
8923       return elfcpp::AFL_EXT_OCTEON3;
8924
8925     case mach_mips_octeon2:
8926       return elfcpp::AFL_EXT_OCTEON2;
8927
8928     case mach_mips_xlr:
8929       return elfcpp::AFL_EXT_XLR;
8930
8931     default:
8932       return 0;
8933     }
8934 }
8935
8936 // Update the isa_level, isa_rev, isa_ext fields of abiflags.
8937
8938 template<int size, bool big_endian>
8939 void
8940 Target_mips<size, big_endian>::update_abiflags_isa(const std::string& name,
8941     elfcpp::Elf_Word e_flags, Mips_abiflags<big_endian>* abiflags)
8942 {
8943   int new_isa = 0;
8944   switch (e_flags & elfcpp::EF_MIPS_ARCH)
8945     {
8946     case elfcpp::E_MIPS_ARCH_1:
8947       new_isa = this->level_rev(1, 0);
8948       break;
8949     case elfcpp::E_MIPS_ARCH_2:
8950       new_isa = this->level_rev(2, 0);
8951       break;
8952     case elfcpp::E_MIPS_ARCH_3:
8953       new_isa = this->level_rev(3, 0);
8954       break;
8955     case elfcpp::E_MIPS_ARCH_4:
8956       new_isa = this->level_rev(4, 0);
8957       break;
8958     case elfcpp::E_MIPS_ARCH_5:
8959       new_isa = this->level_rev(5, 0);
8960       break;
8961     case elfcpp::E_MIPS_ARCH_32:
8962       new_isa = this->level_rev(32, 1);
8963       break;
8964     case elfcpp::E_MIPS_ARCH_32R2:
8965       new_isa = this->level_rev(32, 2);
8966       break;
8967     case elfcpp::E_MIPS_ARCH_32R6:
8968       new_isa = this->level_rev(32, 6);
8969       break;
8970     case elfcpp::E_MIPS_ARCH_64:
8971       new_isa = this->level_rev(64, 1);
8972       break;
8973     case elfcpp::E_MIPS_ARCH_64R2:
8974       new_isa = this->level_rev(64, 2);
8975       break;
8976     case elfcpp::E_MIPS_ARCH_64R6:
8977       new_isa = this->level_rev(64, 6);
8978       break;
8979     default:
8980       gold_error(_("%s: Unknown architecture %s"), name.c_str(),
8981                  this->elf_mips_mach_name(e_flags));
8982     }
8983
8984   if (new_isa > this->level_rev(abiflags->isa_level, abiflags->isa_rev))
8985     {
8986       // Decode a single value into level and revision.
8987       abiflags->isa_level = new_isa >> 3;
8988       abiflags->isa_rev = new_isa & 0x7;
8989     }
8990
8991   // Update the isa_ext if needed.
8992   if (this->mips_mach_extends(this->mips_isa_ext_mach(abiflags->isa_ext),
8993       this->elf_mips_mach(e_flags)))
8994     abiflags->isa_ext = this->mips_isa_ext(this->elf_mips_mach(e_flags));
8995 }
8996
8997 // Infer the content of the ABI flags based on the elf header.
8998
8999 template<int size, bool big_endian>
9000 void
9001 Target_mips<size, big_endian>::infer_abiflags(
9002     Mips_relobj<size, big_endian>* relobj, Mips_abiflags<big_endian>* abiflags)
9003 {
9004   const Attributes_section_data* pasd = relobj->attributes_section_data();
9005   int attr_fp_abi = elfcpp::Val_GNU_MIPS_ABI_FP_ANY;
9006   elfcpp::Elf_Word e_flags = relobj->processor_specific_flags();
9007
9008   this->update_abiflags_isa(relobj->name(), e_flags, abiflags);
9009   if (pasd != NULL)
9010     {
9011       // Read fp_abi from the .gnu.attribute section.
9012       const Object_attribute* attr =
9013         pasd->known_attributes(Object_attribute::OBJ_ATTR_GNU);
9014       attr_fp_abi = attr[elfcpp::Tag_GNU_MIPS_ABI_FP].int_value();
9015     }
9016
9017   abiflags->fp_abi = attr_fp_abi;
9018   abiflags->cpr1_size = elfcpp::AFL_REG_NONE;
9019   abiflags->cpr2_size = elfcpp::AFL_REG_NONE;
9020   abiflags->gpr_size = this->mips_32bit_flags(e_flags) ? elfcpp::AFL_REG_32
9021                                                        : elfcpp::AFL_REG_64;
9022
9023   if (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_SINGLE
9024       || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9025       || (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9026       && abiflags->gpr_size == elfcpp::AFL_REG_32))
9027     abiflags->cpr1_size = elfcpp::AFL_REG_32;
9028   else if (abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9029            || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64
9030            || abiflags->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64A)
9031     abiflags->cpr1_size = elfcpp::AFL_REG_64;
9032
9033   if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_MDMX)
9034     abiflags->ases |= elfcpp::AFL_ASE_MDMX;
9035   if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_M16)
9036     abiflags->ases |= elfcpp::AFL_ASE_MIPS16;
9037   if (e_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS)
9038     abiflags->ases |= elfcpp::AFL_ASE_MICROMIPS;
9039
9040   if (abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_ANY
9041       && abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_SOFT
9042       && abiflags->fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_64A
9043       && abiflags->isa_level >= 32
9044       && abiflags->isa_ext != elfcpp::AFL_EXT_LOONGSON_3A)
9045     abiflags->flags1 |= elfcpp::AFL_FLAGS1_ODDSPREG;
9046 }
9047
9048 // Create abiflags from elf header or from .MIPS.abiflags section.
9049
9050 template<int size, bool big_endian>
9051 void
9052 Target_mips<size, big_endian>::create_abiflags(
9053     Mips_relobj<size, big_endian>* relobj,
9054     Mips_abiflags<big_endian>* abiflags)
9055 {
9056   Mips_abiflags<big_endian>* sec_abiflags = relobj->abiflags();
9057   Mips_abiflags<big_endian> header_abiflags;
9058
9059   this->infer_abiflags(relobj, &header_abiflags);
9060
9061   if (sec_abiflags == NULL)
9062     {
9063       // If there is no input .MIPS.abiflags section, use abiflags created
9064       // from elf header.
9065       *abiflags = header_abiflags;
9066       return;
9067     }
9068
9069   this->has_abiflags_section_ = true;
9070
9071   // It is not possible to infer the correct ISA revision for R3 or R5
9072   // so drop down to R2 for the checks.
9073   unsigned char isa_rev = sec_abiflags->isa_rev;
9074   if (isa_rev == 3 || isa_rev == 5)
9075     isa_rev = 2;
9076
9077   // Check compatibility between abiflags created from elf header
9078   // and abiflags from .MIPS.abiflags section in this object file.
9079   if (this->level_rev(sec_abiflags->isa_level, isa_rev)
9080       < this->level_rev(header_abiflags.isa_level, header_abiflags.isa_rev))
9081     gold_warning(_("%s: Inconsistent ISA between e_flags and .MIPS.abiflags"),
9082                  relobj->name().c_str());
9083   if (header_abiflags.fp_abi != elfcpp::Val_GNU_MIPS_ABI_FP_ANY
9084       && sec_abiflags->fp_abi != header_abiflags.fp_abi)
9085     gold_warning(_("%s: Inconsistent FP ABI between .gnu.attributes and "
9086                    ".MIPS.abiflags"), relobj->name().c_str());
9087   if ((sec_abiflags->ases & header_abiflags.ases) != header_abiflags.ases)
9088     gold_warning(_("%s: Inconsistent ASEs between e_flags and .MIPS.abiflags"),
9089                  relobj->name().c_str());
9090   // The isa_ext is allowed to be an extension of what can be inferred
9091   // from e_flags.
9092   if (!this->mips_mach_extends(this->mips_isa_ext_mach(header_abiflags.isa_ext),
9093                                this->mips_isa_ext_mach(sec_abiflags->isa_ext)))
9094     gold_warning(_("%s: Inconsistent ISA extensions between e_flags and "
9095                    ".MIPS.abiflags"), relobj->name().c_str());
9096   if (sec_abiflags->flags2 != 0)
9097     gold_warning(_("%s: Unexpected flag in the flags2 field of "
9098                    ".MIPS.abiflags (0x%x)"), relobj->name().c_str(),
9099                                              sec_abiflags->flags2);
9100   // Use abiflags from .MIPS.abiflags section.
9101   *abiflags = *sec_abiflags;
9102 }
9103
9104 // Return the meaning of fp_abi, or "unknown" if not known.
9105
9106 template<int size, bool big_endian>
9107 const char*
9108 Target_mips<size, big_endian>::fp_abi_string(int fp)
9109 {
9110   switch (fp)
9111     {
9112     case elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE:
9113       return "-mdouble-float";
9114     case elfcpp::Val_GNU_MIPS_ABI_FP_SINGLE:
9115       return "-msingle-float";
9116     case elfcpp::Val_GNU_MIPS_ABI_FP_SOFT:
9117       return "-msoft-float";
9118     case elfcpp::Val_GNU_MIPS_ABI_FP_OLD_64:
9119       return _("-mips32r2 -mfp64 (12 callee-saved)");
9120     case elfcpp::Val_GNU_MIPS_ABI_FP_XX:
9121       return "-mfpxx";
9122     case elfcpp::Val_GNU_MIPS_ABI_FP_64:
9123       return "-mgp32 -mfp64";
9124     case elfcpp::Val_GNU_MIPS_ABI_FP_64A:
9125       return "-mgp32 -mfp64 -mno-odd-spreg";
9126     default:
9127       return "unknown";
9128     }
9129 }
9130
9131 // Select fp_abi.
9132
9133 template<int size, bool big_endian>
9134 int
9135 Target_mips<size, big_endian>::select_fp_abi(const std::string& name, int in_fp,
9136                                              int out_fp)
9137 {
9138   if (in_fp == out_fp)
9139     return out_fp;
9140
9141   if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_ANY)
9142     return in_fp;
9143   else if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9144            && (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9145                || in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64
9146                || in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9147     return in_fp;
9148   else if (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_XX
9149            && (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_DOUBLE
9150                || out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64
9151                || out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9152     return out_fp; // Keep the current setting.
9153   else if (out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A
9154            && in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64)
9155     return in_fp;
9156   else if (in_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64A
9157            && out_fp == elfcpp::Val_GNU_MIPS_ABI_FP_64)
9158     return out_fp; // Keep the current setting.
9159   else if (in_fp != elfcpp::Val_GNU_MIPS_ABI_FP_ANY)
9160     gold_warning(_("%s: FP ABI %s is incompatible with %s"), name.c_str(),
9161                  fp_abi_string(in_fp), fp_abi_string(out_fp));
9162   return out_fp;
9163 }
9164
9165 // Merge attributes from input object.
9166
9167 template<int size, bool big_endian>
9168 void
9169 Target_mips<size, big_endian>::merge_obj_attributes(const std::string& name,
9170     const Attributes_section_data* pasd)
9171 {
9172   // Return if there is no attributes section data.
9173   if (pasd == NULL)
9174     return;
9175
9176   // If output has no object attributes, just copy.
9177   if (this->attributes_section_data_ == NULL)
9178     {
9179       this->attributes_section_data_ = new Attributes_section_data(*pasd);
9180       return;
9181     }
9182
9183   Object_attribute* out_attr = this->attributes_section_data_->known_attributes(
9184       Object_attribute::OBJ_ATTR_GNU);
9185
9186   out_attr[elfcpp::Tag_GNU_MIPS_ABI_FP].set_type(1);
9187   out_attr[elfcpp::Tag_GNU_MIPS_ABI_FP].set_int_value(this->abiflags_->fp_abi);
9188
9189   // Merge Tag_compatibility attributes and any common GNU ones.
9190   this->attributes_section_data_->merge(name.c_str(), pasd);
9191 }
9192
9193 // Merge abiflags from input object.
9194
9195 template<int size, bool big_endian>
9196 void
9197 Target_mips<size, big_endian>::merge_obj_abiflags(const std::string& name,
9198     Mips_abiflags<big_endian>* in_abiflags)
9199 {
9200   // If output has no abiflags, just copy.
9201   if (this->abiflags_ == NULL)
9202   {
9203     this->abiflags_ = new Mips_abiflags<big_endian>(*in_abiflags);
9204     return;
9205   }
9206
9207   this->abiflags_->fp_abi = this->select_fp_abi(name, in_abiflags->fp_abi,
9208                                                 this->abiflags_->fp_abi);
9209
9210   // Merge abiflags.
9211   this->abiflags_->isa_level = std::max(this->abiflags_->isa_level,
9212                                         in_abiflags->isa_level);
9213   this->abiflags_->isa_rev = std::max(this->abiflags_->isa_rev,
9214                                       in_abiflags->isa_rev);
9215   this->abiflags_->gpr_size = std::max(this->abiflags_->gpr_size,
9216                                        in_abiflags->gpr_size);
9217   this->abiflags_->cpr1_size = std::max(this->abiflags_->cpr1_size,
9218                                         in_abiflags->cpr1_size);
9219   this->abiflags_->cpr2_size = std::max(this->abiflags_->cpr2_size,
9220                                         in_abiflags->cpr2_size);
9221   this->abiflags_->ases |= in_abiflags->ases;
9222   this->abiflags_->flags1 |= in_abiflags->flags1;
9223 }
9224
9225 // Check whether machine EXTENSION is an extension of machine BASE.
9226 template<int size, bool big_endian>
9227 bool
9228 Target_mips<size, big_endian>::mips_mach_extends(unsigned int base,
9229                                                  unsigned int extension)
9230 {
9231   if (extension == base)
9232     return true;
9233
9234   if ((base == mach_mipsisa32)
9235       && this->mips_mach_extends(mach_mipsisa64, extension))
9236     return true;
9237
9238   if ((base == mach_mipsisa32r2)
9239       && this->mips_mach_extends(mach_mipsisa64r2, extension))
9240     return true;
9241
9242   for (unsigned int i = 0; i < this->mips_mach_extensions_.size(); ++i)
9243     if (extension == this->mips_mach_extensions_[i].first)
9244       {
9245         extension = this->mips_mach_extensions_[i].second;
9246         if (extension == base)
9247           return true;
9248       }
9249
9250   return false;
9251 }
9252
9253 // Merge file header flags from input object.
9254
9255 template<int size, bool big_endian>
9256 void
9257 Target_mips<size, big_endian>::merge_obj_e_flags(const std::string& name,
9258                                                  elfcpp::Elf_Word in_flags)
9259 {
9260   // If flags are not set yet, just copy them.
9261   if (!this->are_processor_specific_flags_set())
9262     {
9263       this->set_processor_specific_flags(in_flags);
9264       this->mach_ = this->elf_mips_mach(in_flags);
9265       return;
9266     }
9267
9268   elfcpp::Elf_Word new_flags = in_flags;
9269   elfcpp::Elf_Word old_flags = this->processor_specific_flags();
9270   elfcpp::Elf_Word merged_flags = this->processor_specific_flags();
9271   merged_flags |= new_flags & elfcpp::EF_MIPS_NOREORDER;
9272
9273   // Check flag compatibility.
9274   new_flags &= ~elfcpp::EF_MIPS_NOREORDER;
9275   old_flags &= ~elfcpp::EF_MIPS_NOREORDER;
9276
9277   // Some IRIX 6 BSD-compatibility objects have this bit set.  It
9278   // doesn't seem to matter.
9279   new_flags &= ~elfcpp::EF_MIPS_XGOT;
9280   old_flags &= ~elfcpp::EF_MIPS_XGOT;
9281
9282   // MIPSpro generates ucode info in n64 objects.  Again, we should
9283   // just be able to ignore this.
9284   new_flags &= ~elfcpp::EF_MIPS_UCODE;
9285   old_flags &= ~elfcpp::EF_MIPS_UCODE;
9286
9287   if (new_flags == old_flags)
9288     {
9289       this->set_processor_specific_flags(merged_flags);
9290       return;
9291     }
9292
9293   if (((new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0)
9294       != ((old_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0))
9295     gold_warning(_("%s: linking abicalls files with non-abicalls files"),
9296                  name.c_str());
9297
9298   if (new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
9299     merged_flags |= elfcpp::EF_MIPS_CPIC;
9300   if (!(new_flags & elfcpp::EF_MIPS_PIC))
9301     merged_flags &= ~elfcpp::EF_MIPS_PIC;
9302
9303   new_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
9304   old_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
9305
9306   // Compare the ISAs.
9307   if (mips_32bit_flags(old_flags) != mips_32bit_flags(new_flags))
9308     gold_error(_("%s: linking 32-bit code with 64-bit code"), name.c_str());
9309   else if (!this->mips_mach_extends(this->elf_mips_mach(in_flags), this->mach_))
9310     {
9311       // Output ISA isn't the same as, or an extension of, input ISA.
9312       if (this->mips_mach_extends(this->mach_, this->elf_mips_mach(in_flags)))
9313         {
9314           // Copy the architecture info from input object to output.  Also copy
9315           // the 32-bit flag (if set) so that we continue to recognise
9316           // output as a 32-bit binary.
9317           this->mach_ = this->elf_mips_mach(in_flags);
9318           merged_flags &= ~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH);
9319           merged_flags |= (new_flags & (elfcpp::EF_MIPS_ARCH
9320                            | elfcpp::EF_MIPS_MACH | elfcpp::EF_MIPS_32BITMODE));
9321
9322           // Update the ABI flags isa_level, isa_rev, isa_ext fields.
9323           this->update_abiflags_isa(name, merged_flags, this->abiflags_);
9324
9325           // Copy across the ABI flags if output doesn't use them
9326           // and if that was what caused us to treat input object as 32-bit.
9327           if ((old_flags & elfcpp::EF_MIPS_ABI) == 0
9328               && this->mips_32bit_flags(new_flags)
9329               && !this->mips_32bit_flags(new_flags & ~elfcpp::EF_MIPS_ABI))
9330             merged_flags |= new_flags & elfcpp::EF_MIPS_ABI;
9331         }
9332       else
9333         // The ISAs aren't compatible.
9334         gold_error(_("%s: linking %s module with previous %s modules"),
9335                    name.c_str(), this->elf_mips_mach_name(in_flags),
9336                    this->elf_mips_mach_name(merged_flags));
9337     }
9338
9339   new_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
9340                 | elfcpp::EF_MIPS_32BITMODE));
9341   old_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
9342                 | elfcpp::EF_MIPS_32BITMODE));
9343
9344   // Compare ABIs.
9345   if ((new_flags & elfcpp::EF_MIPS_ABI) != (old_flags & elfcpp::EF_MIPS_ABI))
9346     {
9347       // Only error if both are set (to different values).
9348       if ((new_flags & elfcpp::EF_MIPS_ABI)
9349            && (old_flags & elfcpp::EF_MIPS_ABI))
9350         gold_error(_("%s: ABI mismatch: linking %s module with "
9351                      "previous %s modules"), name.c_str(),
9352                    this->elf_mips_abi_name(in_flags),
9353                    this->elf_mips_abi_name(merged_flags));
9354
9355       new_flags &= ~elfcpp::EF_MIPS_ABI;
9356       old_flags &= ~elfcpp::EF_MIPS_ABI;
9357     }
9358
9359   // Compare ASEs.  Forbid linking MIPS16 and microMIPS ASE modules together
9360   // and allow arbitrary mixing of the remaining ASEs (retain the union).
9361   if ((new_flags & elfcpp::EF_MIPS_ARCH_ASE)
9362       != (old_flags & elfcpp::EF_MIPS_ARCH_ASE))
9363     {
9364       int old_micro = old_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
9365       int new_micro = new_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
9366       int old_m16 = old_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
9367       int new_m16 = new_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
9368       int micro_mis = old_m16 && new_micro;
9369       int m16_mis = old_micro && new_m16;
9370
9371       if (m16_mis || micro_mis)
9372         gold_error(_("%s: ASE mismatch: linking %s module with "
9373                      "previous %s modules"), name.c_str(),
9374                    m16_mis ? "MIPS16" : "microMIPS",
9375                    m16_mis ? "microMIPS" : "MIPS16");
9376
9377       merged_flags |= new_flags & elfcpp::EF_MIPS_ARCH_ASE;
9378
9379       new_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
9380       old_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
9381     }
9382
9383   // Compare NaN encodings.
9384   if ((new_flags & elfcpp::EF_MIPS_NAN2008) != (old_flags & elfcpp::EF_MIPS_NAN2008))
9385     {
9386       gold_error(_("%s: linking %s module with previous %s modules"),
9387                  name.c_str(),
9388                  (new_flags & elfcpp::EF_MIPS_NAN2008
9389                   ? "-mnan=2008" : "-mnan=legacy"),
9390                  (old_flags & elfcpp::EF_MIPS_NAN2008
9391                   ? "-mnan=2008" : "-mnan=legacy"));
9392
9393       new_flags &= ~elfcpp::EF_MIPS_NAN2008;
9394       old_flags &= ~elfcpp::EF_MIPS_NAN2008;
9395     }
9396
9397   // Compare FP64 state.
9398   if ((new_flags & elfcpp::EF_MIPS_FP64) != (old_flags & elfcpp::EF_MIPS_FP64))
9399     {
9400       gold_error(_("%s: linking %s module with previous %s modules"),
9401                  name.c_str(),
9402                  (new_flags & elfcpp::EF_MIPS_FP64
9403                   ? "-mfp64" : "-mfp32"),
9404                  (old_flags & elfcpp::EF_MIPS_FP64
9405                   ? "-mfp64" : "-mfp32"));
9406
9407       new_flags &= ~elfcpp::EF_MIPS_FP64;
9408       old_flags &= ~elfcpp::EF_MIPS_FP64;
9409     }
9410
9411   // Warn about any other mismatches.
9412   if (new_flags != old_flags)
9413     gold_error(_("%s: uses different e_flags (0x%x) fields than previous "
9414                  "modules (0x%x)"), name.c_str(), new_flags, old_flags);
9415
9416   this->set_processor_specific_flags(merged_flags);
9417 }
9418
9419 // Adjust ELF file header.
9420
9421 template<int size, bool big_endian>
9422 void
9423 Target_mips<size, big_endian>::do_adjust_elf_header(
9424     unsigned char* view,
9425     int len)
9426 {
9427   gold_assert(len == elfcpp::Elf_sizes<size>::ehdr_size);
9428
9429   elfcpp::Ehdr<size, big_endian> ehdr(view);
9430   unsigned char e_ident[elfcpp::EI_NIDENT];
9431   elfcpp::Elf_Word flags = this->processor_specific_flags();
9432   memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
9433
9434   unsigned char ei_abiversion = 0;
9435   elfcpp::Elf_Half type = ehdr.get_e_type();
9436   if (type == elfcpp::ET_EXEC
9437       && parameters->options().copyreloc()
9438       && (flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
9439           == elfcpp::EF_MIPS_CPIC)
9440     ei_abiversion = 1;
9441
9442   if (this->abiflags_ != NULL
9443       && (this->abiflags_->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64
9444           || this->abiflags_->fp_abi == elfcpp::Val_GNU_MIPS_ABI_FP_64A))
9445     ei_abiversion = 3;
9446
9447   e_ident[elfcpp::EI_ABIVERSION] = ei_abiversion;
9448   elfcpp::Ehdr_write<size, big_endian> oehdr(view);
9449   oehdr.put_e_ident(e_ident);
9450
9451   if (this->entry_symbol_is_compressed_)
9452     oehdr.put_e_entry(ehdr.get_e_entry() + 1);
9453 }
9454
9455 // do_make_elf_object to override the same function in the base class.
9456 // We need to use a target-specific sub-class of
9457 // Sized_relobj_file<size, big_endian> to store Mips specific information.
9458 // Hence we need to have our own ELF object creation.
9459
9460 template<int size, bool big_endian>
9461 Object*
9462 Target_mips<size, big_endian>::do_make_elf_object(
9463     const std::string& name,
9464     Input_file* input_file,
9465     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
9466 {
9467   int et = ehdr.get_e_type();
9468   // ET_EXEC files are valid input for --just-symbols/-R,
9469   // and we treat them as relocatable objects.
9470   if (et == elfcpp::ET_REL
9471       || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
9472     {
9473       Mips_relobj<size, big_endian>* obj =
9474         new Mips_relobj<size, big_endian>(name, input_file, offset, ehdr);
9475       obj->setup();
9476       return obj;
9477     }
9478   else if (et == elfcpp::ET_DYN)
9479     {
9480       // TODO(sasa): Should we create Mips_dynobj?
9481       return Target::do_make_elf_object(name, input_file, offset, ehdr);
9482     }
9483   else
9484     {
9485       gold_error(_("%s: unsupported ELF file type %d"),
9486                  name.c_str(), et);
9487       return NULL;
9488     }
9489 }
9490
9491 // Finalize the sections.
9492
9493 template <int size, bool big_endian>
9494 void
9495 Target_mips<size, big_endian>::do_finalize_sections(Layout* layout,
9496                                         const Input_objects* input_objects,
9497                                         Symbol_table* symtab)
9498 {
9499   // Add +1 to MIPS16 and microMIPS init_ and _fini symbols so that DT_INIT and
9500   // DT_FINI have correct values.
9501   Mips_symbol<size>* init = static_cast<Mips_symbol<size>*>(
9502       symtab->lookup(parameters->options().init()));
9503   if (init != NULL && (init->is_mips16() || init->is_micromips()))
9504     init->set_value(init->value() | 1);
9505   Mips_symbol<size>* fini = static_cast<Mips_symbol<size>*>(
9506       symtab->lookup(parameters->options().fini()));
9507   if (fini != NULL && (fini->is_mips16() || fini->is_micromips()))
9508     fini->set_value(fini->value() | 1);
9509
9510   // Check whether the entry symbol is mips16 or micromips.  This is needed to
9511   // adjust entry address in ELF header.
9512   Mips_symbol<size>* entry =
9513     static_cast<Mips_symbol<size>*>(symtab->lookup(this->entry_symbol_name()));
9514   this->entry_symbol_is_compressed_ = (entry != NULL && (entry->is_mips16()
9515                                        || entry->is_micromips()));
9516
9517   if (!parameters->doing_static_link()
9518       && (strcmp(parameters->options().hash_style(), "gnu") == 0
9519           || strcmp(parameters->options().hash_style(), "both") == 0))
9520     {
9521       // .gnu.hash and the MIPS ABI require .dynsym to be sorted in different
9522       // ways.  .gnu.hash needs symbols to be grouped by hash code whereas the
9523       // MIPS ABI requires a mapping between the GOT and the symbol table.
9524       gold_error(".gnu.hash is incompatible with the MIPS ABI");
9525     }
9526
9527   // Check whether the final section that was scanned has HI16 or GOT16
9528   // relocations without the corresponding LO16 part.
9529   if (this->got16_addends_.size() > 0)
9530       gold_error("Can't find matching LO16 reloc");
9531
9532   // Set _gp value.
9533   this->set_gp(layout, symtab);
9534
9535   // Check for any mips16 stub sections that we can discard.
9536   if (!parameters->options().relocatable())
9537     {
9538       for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
9539           p != input_objects->relobj_end();
9540           ++p)
9541         {
9542           Mips_relobj<size, big_endian>* object =
9543             Mips_relobj<size, big_endian>::as_mips_relobj(*p);
9544           object->discard_mips16_stub_sections(symtab);
9545         }
9546     }
9547
9548   Valtype gprmask = 0;
9549   Valtype cprmask1 = 0;
9550   Valtype cprmask2 = 0;
9551   Valtype cprmask3 = 0;
9552   Valtype cprmask4 = 0;
9553   bool has_reginfo_section = false;
9554
9555   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
9556        p != input_objects->relobj_end();
9557        ++p)
9558     {
9559       Mips_relobj<size, big_endian>* relobj =
9560         Mips_relobj<size, big_endian>::as_mips_relobj(*p);
9561
9562       // Merge .reginfo contents of input objects.
9563       if (relobj->has_reginfo_section())
9564         {
9565           has_reginfo_section = true;
9566           gprmask |= relobj->gprmask();
9567           cprmask1 |= relobj->cprmask1();
9568           cprmask2 |= relobj->cprmask2();
9569           cprmask3 |= relobj->cprmask3();
9570           cprmask4 |= relobj->cprmask4();
9571         }
9572
9573       Input_file::Format format = relobj->input_file()->format();
9574       if (format != Input_file::FORMAT_ELF)
9575         continue;
9576
9577       // If all input sections will be discarded, don't use this object
9578       // file for merging processor specific flags.
9579       bool should_merge_processor_specific_flags = false;
9580
9581       for (unsigned int i = 1; i < relobj->shnum(); ++i)
9582         if (relobj->output_section(i) != NULL)
9583           {
9584             should_merge_processor_specific_flags = true;
9585             break;
9586           }
9587
9588       if (!should_merge_processor_specific_flags)
9589         continue;
9590
9591       // Merge processor specific flags.
9592       Mips_abiflags<big_endian> in_abiflags;
9593
9594       this->create_abiflags(relobj, &in_abiflags);
9595       this->merge_obj_e_flags(relobj->name(),
9596                               relobj->processor_specific_flags());
9597       this->merge_obj_abiflags(relobj->name(), &in_abiflags);
9598       this->merge_obj_attributes(relobj->name(),
9599                                  relobj->attributes_section_data());
9600     }
9601
9602   // Create a .gnu.attributes section if we have merged any attributes
9603   // from inputs.
9604   if (this->attributes_section_data_ != NULL)
9605     {
9606       Output_attributes_section_data* attributes_section =
9607         new Output_attributes_section_data(*this->attributes_section_data_);
9608       layout->add_output_section_data(".gnu.attributes",
9609                                       elfcpp::SHT_GNU_ATTRIBUTES, 0,
9610                                       attributes_section, ORDER_INVALID, false);
9611     }
9612
9613   // Create .MIPS.abiflags output section if there is an input section.
9614   if (this->has_abiflags_section_)
9615     {
9616       Mips_output_section_abiflags<size, big_endian>* abiflags_section =
9617         new Mips_output_section_abiflags<size, big_endian>(*this->abiflags_);
9618
9619       Output_section* os =
9620         layout->add_output_section_data(".MIPS.abiflags",
9621                                         elfcpp::SHT_MIPS_ABIFLAGS,
9622                                         elfcpp::SHF_ALLOC,
9623                                         abiflags_section, ORDER_INVALID, false);
9624
9625       if (!parameters->options().relocatable() && os != NULL)
9626         {
9627           Output_segment* abiflags_segment =
9628             layout->make_output_segment(elfcpp::PT_MIPS_ABIFLAGS, elfcpp::PF_R);
9629           abiflags_segment->add_output_section_to_nonload(os, elfcpp::PF_R);
9630         }
9631     }
9632
9633   if (has_reginfo_section && !parameters->options().gc_sections())
9634     {
9635       // Create .reginfo output section.
9636       Mips_output_section_reginfo<size, big_endian>* reginfo_section =
9637         new Mips_output_section_reginfo<size, big_endian>(this, gprmask,
9638                                                           cprmask1, cprmask2,
9639                                                           cprmask3, cprmask4);
9640
9641       Output_section* os =
9642         layout->add_output_section_data(".reginfo", elfcpp::SHT_MIPS_REGINFO,
9643                                         elfcpp::SHF_ALLOC, reginfo_section,
9644                                         ORDER_INVALID, false);
9645
9646       if (!parameters->options().relocatable() && os != NULL)
9647         {
9648           Output_segment* reginfo_segment =
9649             layout->make_output_segment(elfcpp::PT_MIPS_REGINFO,
9650                                         elfcpp::PF_R);
9651           reginfo_segment->add_output_section_to_nonload(os, elfcpp::PF_R);
9652         }
9653     }
9654
9655   if (this->plt_ != NULL)
9656     {
9657       // Set final PLT offsets for symbols.
9658       this->plt_section()->set_plt_offsets();
9659
9660       // Define _PROCEDURE_LINKAGE_TABLE_ at the start of the .plt section.
9661       // Set STO_MICROMIPS flag if the output has microMIPS code, but only if
9662       // there are no standard PLT entries present.
9663       unsigned char nonvis = 0;
9664       if (this->is_output_micromips()
9665           && !this->plt_section()->has_standard_entries())
9666         nonvis = elfcpp::STO_MICROMIPS >> 2;
9667       symtab->define_in_output_data("_PROCEDURE_LINKAGE_TABLE_", NULL,
9668                                     Symbol_table::PREDEFINED,
9669                                     this->plt_,
9670                                     0, 0, elfcpp::STT_FUNC,
9671                                     elfcpp::STB_LOCAL,
9672                                     elfcpp::STV_DEFAULT, nonvis,
9673                                     false, false);
9674     }
9675
9676   if (this->mips_stubs_ != NULL)
9677     {
9678       // Define _MIPS_STUBS_ at the start of the .MIPS.stubs section.
9679       unsigned char nonvis = 0;
9680       if (this->is_output_micromips())
9681         nonvis = elfcpp::STO_MICROMIPS >> 2;
9682       symtab->define_in_output_data("_MIPS_STUBS_", NULL,
9683                                     Symbol_table::PREDEFINED,
9684                                     this->mips_stubs_,
9685                                     0, 0, elfcpp::STT_FUNC,
9686                                     elfcpp::STB_LOCAL,
9687                                     elfcpp::STV_DEFAULT, nonvis,
9688                                     false, false);
9689     }
9690
9691   if (!parameters->options().relocatable() && !parameters->doing_static_link())
9692     // In case there is no .got section, create one.
9693     this->got_section(symtab, layout);
9694
9695   // Emit any relocs we saved in an attempt to avoid generating COPY
9696   // relocs.
9697   if (this->copy_relocs_.any_saved_relocs())
9698     this->copy_relocs_.emit_mips(this->rel_dyn_section(layout), symtab, layout,
9699                                  this);
9700
9701   // Emit dynamic relocs.
9702   for (typename std::vector<Dyn_reloc>::iterator p = this->dyn_relocs_.begin();
9703        p != this->dyn_relocs_.end();
9704        ++p)
9705     p->emit(this->rel_dyn_section(layout), this->got_section(), symtab);
9706
9707   if (this->has_got_section())
9708     this->got_section()->lay_out_got(layout, symtab, input_objects);
9709
9710   if (this->mips_stubs_ != NULL)
9711     this->mips_stubs_->set_needs_dynsym_value();
9712
9713   // Check for functions that might need $25 to be valid on entry.
9714   // TODO(sasa): Can we do this without iterating over all symbols?
9715   typedef Symbol_visitor_check_symbols<size, big_endian> Symbol_visitor;
9716   symtab->for_all_symbols<size, Symbol_visitor>(Symbol_visitor(this, layout,
9717                                                                symtab));
9718
9719   // Add NULL segment.
9720   if (!parameters->options().relocatable())
9721     layout->make_output_segment(elfcpp::PT_NULL, 0);
9722
9723   // Fill in some more dynamic tags.
9724   // TODO(sasa): Add more dynamic tags.
9725   const Reloc_section* rel_plt = (this->plt_ == NULL
9726                                   ? NULL : this->plt_->rel_plt());
9727   layout->add_target_dynamic_tags(true, this->got_, rel_plt,
9728                                   this->rel_dyn_, true, false);
9729
9730   Output_data_dynamic* const odyn = layout->dynamic_data();
9731   if (odyn != NULL
9732       && !parameters->options().relocatable()
9733       && !parameters->doing_static_link())
9734   {
9735     unsigned int d_val;
9736     // This element holds a 32-bit version id for the Runtime
9737     // Linker Interface.  This will start at integer value 1.
9738     d_val = 0x01;
9739     odyn->add_constant(elfcpp::DT_MIPS_RLD_VERSION, d_val);
9740
9741     // Dynamic flags
9742     d_val = elfcpp::RHF_NOTPOT;
9743     odyn->add_constant(elfcpp::DT_MIPS_FLAGS, d_val);
9744
9745     // Save layout for using when emiting custom dynamic tags.
9746     this->layout_ = layout;
9747
9748     // This member holds the base address of the segment.
9749     odyn->add_custom(elfcpp::DT_MIPS_BASE_ADDRESS);
9750
9751     // This member holds the number of entries in the .dynsym section.
9752     odyn->add_custom(elfcpp::DT_MIPS_SYMTABNO);
9753
9754     // This member holds the index of the first dynamic symbol
9755     // table entry that corresponds to an entry in the global offset table.
9756     odyn->add_custom(elfcpp::DT_MIPS_GOTSYM);
9757
9758     // This member holds the number of local GOT entries.
9759     odyn->add_constant(elfcpp::DT_MIPS_LOCAL_GOTNO,
9760                        this->got_->get_local_gotno());
9761
9762     if (this->plt_ != NULL)
9763       // DT_MIPS_PLTGOT dynamic tag
9764       odyn->add_section_address(elfcpp::DT_MIPS_PLTGOT, this->got_plt_);
9765
9766     if (!parameters->options().shared())
9767       {
9768         this->rld_map_ = new Output_data_zero_fill(size / 8, size / 8);
9769
9770         layout->add_output_section_data(".rld_map", elfcpp::SHT_PROGBITS,
9771                                         (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
9772                                         this->rld_map_, ORDER_INVALID, false);
9773
9774         // __RLD_MAP will be filled in by the runtime loader to contain
9775         // a pointer to the _r_debug structure.
9776         Symbol* rld_map = symtab->define_in_output_data("__RLD_MAP", NULL,
9777                                             Symbol_table::PREDEFINED,
9778                                             this->rld_map_,
9779                                             0, 0, elfcpp::STT_OBJECT,
9780                                             elfcpp::STB_GLOBAL,
9781                                             elfcpp::STV_DEFAULT, 0,
9782                                             false, false);
9783
9784         rld_map->set_needs_dynsym_entry();
9785
9786         if (!parameters->options().pie())
9787           // This member holds the absolute address of the debug pointer.
9788           odyn->add_section_address(elfcpp::DT_MIPS_RLD_MAP, this->rld_map_);
9789         else
9790           // This member holds the offset to the debug pointer,
9791           // relative to the address of the tag.
9792           odyn->add_custom(elfcpp::DT_MIPS_RLD_MAP_REL);
9793       }
9794   }
9795 }
9796
9797 // Get the custom dynamic tag value.
9798 template<int size, bool big_endian>
9799 unsigned int
9800 Target_mips<size, big_endian>::do_dynamic_tag_custom_value(elfcpp::DT tag) const
9801 {
9802   switch (tag)
9803     {
9804     case elfcpp::DT_MIPS_BASE_ADDRESS:
9805       {
9806         // The base address of the segment.
9807         // At this point, the segment list has been sorted into final order,
9808         // so just return vaddr of the first readable PT_LOAD segment.
9809         Output_segment* seg =
9810           this->layout_->find_output_segment(elfcpp::PT_LOAD, elfcpp::PF_R, 0);
9811         gold_assert(seg != NULL);
9812         return seg->vaddr();
9813       }
9814
9815     case elfcpp::DT_MIPS_SYMTABNO:
9816       // The number of entries in the .dynsym section.
9817       return this->get_dt_mips_symtabno();
9818
9819     case elfcpp::DT_MIPS_GOTSYM:
9820       {
9821         // The index of the first dynamic symbol table entry that corresponds
9822         // to an entry in the GOT.
9823         if (this->got_->first_global_got_dynsym_index() != -1U)
9824           return this->got_->first_global_got_dynsym_index();
9825         else
9826           // In case if we don't have global GOT symbols we default to setting
9827           // DT_MIPS_GOTSYM to the same value as DT_MIPS_SYMTABNO.
9828           return this->get_dt_mips_symtabno();
9829       }
9830
9831     case elfcpp::DT_MIPS_RLD_MAP_REL:
9832       {
9833         // The MIPS_RLD_MAP_REL tag stores the offset to the debug pointer,
9834         // relative to the address of the tag.
9835         Output_data_dynamic* const odyn = this->layout_->dynamic_data();
9836         unsigned int entry_offset =
9837           odyn->get_entry_offset(elfcpp::DT_MIPS_RLD_MAP_REL);
9838         gold_assert(entry_offset != -1U);
9839         return this->rld_map_->address() - (odyn->address() + entry_offset);
9840       }
9841     default:
9842       gold_error(_("Unknown dynamic tag 0x%x"), (unsigned int)tag);
9843     }
9844
9845   return (unsigned int)-1;
9846 }
9847
9848 // Relocate section data.
9849
9850 template<int size, bool big_endian>
9851 void
9852 Target_mips<size, big_endian>::relocate_section(
9853                         const Relocate_info<size, big_endian>* relinfo,
9854                         unsigned int sh_type,
9855                         const unsigned char* prelocs,
9856                         size_t reloc_count,
9857                         Output_section* output_section,
9858                         bool needs_special_offset_handling,
9859                         unsigned char* view,
9860                         Mips_address address,
9861                         section_size_type view_size,
9862                         const Reloc_symbol_changes* reloc_symbol_changes)
9863 {
9864   typedef Target_mips<size, big_endian> Mips;
9865   typedef typename Target_mips<size, big_endian>::Relocate Mips_relocate;
9866
9867   if (sh_type == elfcpp::SHT_REL)
9868     {
9869       typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
9870           Classify_reloc;
9871
9872       gold::relocate_section<size, big_endian, Mips, Mips_relocate,
9873                              gold::Default_comdat_behavior, Classify_reloc>(
9874         relinfo,
9875         this,
9876         prelocs,
9877         reloc_count,
9878         output_section,
9879         needs_special_offset_handling,
9880         view,
9881         address,
9882         view_size,
9883         reloc_symbol_changes);
9884     }
9885   else if (sh_type == elfcpp::SHT_RELA)
9886     {
9887       typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
9888           Classify_reloc;
9889
9890       gold::relocate_section<size, big_endian, Mips, Mips_relocate,
9891                              gold::Default_comdat_behavior, Classify_reloc>(
9892         relinfo,
9893         this,
9894         prelocs,
9895         reloc_count,
9896         output_section,
9897         needs_special_offset_handling,
9898         view,
9899         address,
9900         view_size,
9901         reloc_symbol_changes);
9902     }
9903 }
9904
9905 // Return the size of a relocation while scanning during a relocatable
9906 // link.
9907
9908 unsigned int
9909 mips_get_size_for_reloc(unsigned int r_type, Relobj* object)
9910 {
9911   switch (r_type)
9912     {
9913     case elfcpp::R_MIPS_NONE:
9914     case elfcpp::R_MIPS_TLS_DTPMOD64:
9915     case elfcpp::R_MIPS_TLS_DTPREL64:
9916     case elfcpp::R_MIPS_TLS_TPREL64:
9917       return 0;
9918
9919     case elfcpp::R_MIPS_32:
9920     case elfcpp::R_MIPS_TLS_DTPMOD32:
9921     case elfcpp::R_MIPS_TLS_DTPREL32:
9922     case elfcpp::R_MIPS_TLS_TPREL32:
9923     case elfcpp::R_MIPS_REL32:
9924     case elfcpp::R_MIPS_PC32:
9925     case elfcpp::R_MIPS_GPREL32:
9926     case elfcpp::R_MIPS_JALR:
9927     case elfcpp::R_MIPS_EH:
9928       return 4;
9929
9930     case elfcpp::R_MIPS_16:
9931     case elfcpp::R_MIPS_HI16:
9932     case elfcpp::R_MIPS_LO16:
9933     case elfcpp::R_MIPS_GPREL16:
9934     case elfcpp::R_MIPS16_HI16:
9935     case elfcpp::R_MIPS16_LO16:
9936     case elfcpp::R_MIPS_PC16:
9937     case elfcpp::R_MIPS_PCHI16:
9938     case elfcpp::R_MIPS_PCLO16:
9939     case elfcpp::R_MIPS_GOT16:
9940     case elfcpp::R_MIPS16_GOT16:
9941     case elfcpp::R_MIPS_CALL16:
9942     case elfcpp::R_MIPS16_CALL16:
9943     case elfcpp::R_MIPS_GOT_HI16:
9944     case elfcpp::R_MIPS_CALL_HI16:
9945     case elfcpp::R_MIPS_GOT_LO16:
9946     case elfcpp::R_MIPS_CALL_LO16:
9947     case elfcpp::R_MIPS_TLS_DTPREL_HI16:
9948     case elfcpp::R_MIPS_TLS_DTPREL_LO16:
9949     case elfcpp::R_MIPS_TLS_TPREL_HI16:
9950     case elfcpp::R_MIPS_TLS_TPREL_LO16:
9951     case elfcpp::R_MIPS16_GPREL:
9952     case elfcpp::R_MIPS_GOT_DISP:
9953     case elfcpp::R_MIPS_LITERAL:
9954     case elfcpp::R_MIPS_GOT_PAGE:
9955     case elfcpp::R_MIPS_GOT_OFST:
9956     case elfcpp::R_MIPS_TLS_GD:
9957     case elfcpp::R_MIPS_TLS_LDM:
9958     case elfcpp::R_MIPS_TLS_GOTTPREL:
9959       return 2;
9960
9961     // These relocations are not byte sized
9962     case elfcpp::R_MIPS_26:
9963     case elfcpp::R_MIPS16_26:
9964     case elfcpp::R_MIPS_PC21_S2:
9965     case elfcpp::R_MIPS_PC26_S2:
9966     case elfcpp::R_MIPS_PC18_S3:
9967     case elfcpp::R_MIPS_PC19_S2:
9968       return 4;
9969
9970     case elfcpp::R_MIPS_COPY:
9971     case elfcpp::R_MIPS_JUMP_SLOT:
9972       object->error(_("unexpected reloc %u in object file"), r_type);
9973       return 0;
9974
9975     default:
9976       object->error(_("unsupported reloc %u in object file"), r_type);
9977       return 0;
9978   }
9979 }
9980
9981 // Scan the relocs during a relocatable link.
9982
9983 template<int size, bool big_endian>
9984 void
9985 Target_mips<size, big_endian>::scan_relocatable_relocs(
9986                         Symbol_table* symtab,
9987                         Layout* layout,
9988                         Sized_relobj_file<size, big_endian>* object,
9989                         unsigned int data_shndx,
9990                         unsigned int sh_type,
9991                         const unsigned char* prelocs,
9992                         size_t reloc_count,
9993                         Output_section* output_section,
9994                         bool needs_special_offset_handling,
9995                         size_t local_symbol_count,
9996                         const unsigned char* plocal_symbols,
9997                         Relocatable_relocs* rr)
9998 {
9999   if (sh_type == elfcpp::SHT_REL)
10000     {
10001       typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10002           Classify_reloc;
10003       typedef Mips_scan_relocatable_relocs<big_endian, Classify_reloc>
10004           Scan_relocatable_relocs;
10005
10006       gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
10007         symtab,
10008         layout,
10009         object,
10010         data_shndx,
10011         prelocs,
10012         reloc_count,
10013         output_section,
10014         needs_special_offset_handling,
10015         local_symbol_count,
10016         plocal_symbols,
10017         rr);
10018     }
10019   else if (sh_type == elfcpp::SHT_RELA)
10020     {
10021       typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10022           Classify_reloc;
10023       typedef Mips_scan_relocatable_relocs<big_endian, Classify_reloc>
10024           Scan_relocatable_relocs;
10025
10026       gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
10027         symtab,
10028         layout,
10029         object,
10030         data_shndx,
10031         prelocs,
10032         reloc_count,
10033         output_section,
10034         needs_special_offset_handling,
10035         local_symbol_count,
10036         plocal_symbols,
10037         rr);
10038     }
10039   else
10040     gold_unreachable();
10041 }
10042
10043 // Scan the relocs for --emit-relocs.
10044
10045 template<int size, bool big_endian>
10046 void
10047 Target_mips<size, big_endian>::emit_relocs_scan(
10048     Symbol_table* symtab,
10049     Layout* layout,
10050     Sized_relobj_file<size, big_endian>* object,
10051     unsigned int data_shndx,
10052     unsigned int sh_type,
10053     const unsigned char* prelocs,
10054     size_t reloc_count,
10055     Output_section* output_section,
10056     bool needs_special_offset_handling,
10057     size_t local_symbol_count,
10058     const unsigned char* plocal_syms,
10059     Relocatable_relocs* rr)
10060 {
10061   if (sh_type == elfcpp::SHT_REL)
10062     {
10063       typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10064           Classify_reloc;
10065       typedef gold::Default_emit_relocs_strategy<Classify_reloc>
10066           Emit_relocs_strategy;
10067
10068       gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
10069         symtab,
10070         layout,
10071         object,
10072         data_shndx,
10073         prelocs,
10074         reloc_count,
10075         output_section,
10076         needs_special_offset_handling,
10077         local_symbol_count,
10078         plocal_syms,
10079         rr);
10080     }
10081   else if (sh_type == elfcpp::SHT_RELA)
10082     {
10083       typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10084           Classify_reloc;
10085       typedef gold::Default_emit_relocs_strategy<Classify_reloc>
10086           Emit_relocs_strategy;
10087
10088       gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
10089         symtab,
10090         layout,
10091         object,
10092         data_shndx,
10093         prelocs,
10094         reloc_count,
10095         output_section,
10096         needs_special_offset_handling,
10097         local_symbol_count,
10098         plocal_syms,
10099         rr);
10100     }
10101   else
10102     gold_unreachable();
10103 }
10104
10105 // Emit relocations for a section.
10106
10107 template<int size, bool big_endian>
10108 void
10109 Target_mips<size, big_endian>::relocate_relocs(
10110                         const Relocate_info<size, big_endian>* relinfo,
10111                         unsigned int sh_type,
10112                         const unsigned char* prelocs,
10113                         size_t reloc_count,
10114                         Output_section* output_section,
10115                         typename elfcpp::Elf_types<size>::Elf_Off
10116                           offset_in_output_section,
10117                         unsigned char* view,
10118                         Mips_address view_address,
10119                         section_size_type view_size,
10120                         unsigned char* reloc_view,
10121                         section_size_type reloc_view_size)
10122 {
10123   if (sh_type == elfcpp::SHT_REL)
10124     {
10125       typedef Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>
10126           Classify_reloc;
10127
10128       gold::relocate_relocs<size, big_endian, Classify_reloc>(
10129         relinfo,
10130         prelocs,
10131         reloc_count,
10132         output_section,
10133         offset_in_output_section,
10134         view,
10135         view_address,
10136         view_size,
10137         reloc_view,
10138         reloc_view_size);
10139     }
10140   else if (sh_type == elfcpp::SHT_RELA)
10141     {
10142       typedef Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10143           Classify_reloc;
10144
10145       gold::relocate_relocs<size, big_endian, Classify_reloc>(
10146         relinfo,
10147         prelocs,
10148         reloc_count,
10149         output_section,
10150         offset_in_output_section,
10151         view,
10152         view_address,
10153         view_size,
10154         reloc_view,
10155         reloc_view_size);
10156     }
10157   else
10158     gold_unreachable();
10159 }
10160
10161 // Perform target-specific processing in a relocatable link.  This is
10162 // only used if we use the relocation strategy RELOC_SPECIAL.
10163
10164 template<int size, bool big_endian>
10165 void
10166 Target_mips<size, big_endian>::relocate_special_relocatable(
10167     const Relocate_info<size, big_endian>* relinfo,
10168     unsigned int sh_type,
10169     const unsigned char* preloc_in,
10170     size_t relnum,
10171     Output_section* output_section,
10172     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
10173     unsigned char* view,
10174     Mips_address view_address,
10175     section_size_type,
10176     unsigned char* preloc_out)
10177 {
10178   // We can only handle REL type relocation sections.
10179   gold_assert(sh_type == elfcpp::SHT_REL);
10180
10181   typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
10182     Reltype;
10183   typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc_write
10184     Reltype_write;
10185
10186   typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
10187
10188   const Mips_address invalid_address = static_cast<Mips_address>(0) - 1;
10189
10190   Mips_relobj<size, big_endian>* object =
10191     Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
10192   const unsigned int local_count = object->local_symbol_count();
10193
10194   Reltype reloc(preloc_in);
10195   Reltype_write reloc_write(preloc_out);
10196
10197   elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
10198   const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
10199   const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
10200
10201   // Get the new symbol index.
10202   // We only use RELOC_SPECIAL strategy in local relocations.
10203   gold_assert(r_sym < local_count);
10204
10205   // We are adjusting a section symbol.  We need to find
10206   // the symbol table index of the section symbol for
10207   // the output section corresponding to input section
10208   // in which this symbol is defined.
10209   bool is_ordinary;
10210   unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
10211   gold_assert(is_ordinary);
10212   Output_section* os = object->output_section(shndx);
10213   gold_assert(os != NULL);
10214   gold_assert(os->needs_symtab_index());
10215   unsigned int new_symndx = os->symtab_index();
10216
10217   // Get the new offset--the location in the output section where
10218   // this relocation should be applied.
10219
10220   Mips_address offset = reloc.get_r_offset();
10221   Mips_address new_offset;
10222   if (offset_in_output_section != invalid_address)
10223     new_offset = offset + offset_in_output_section;
10224   else
10225     {
10226       section_offset_type sot_offset =
10227         convert_types<section_offset_type, Mips_address>(offset);
10228       section_offset_type new_sot_offset =
10229         output_section->output_offset(object, relinfo->data_shndx,
10230                                       sot_offset);
10231       gold_assert(new_sot_offset != -1);
10232       new_offset = new_sot_offset;
10233     }
10234
10235   // In an object file, r_offset is an offset within the section.
10236   // In an executable or dynamic object, generated by
10237   // --emit-relocs, r_offset is an absolute address.
10238   if (!parameters->options().relocatable())
10239     {
10240       new_offset += view_address;
10241       if (offset_in_output_section != invalid_address)
10242         new_offset -= offset_in_output_section;
10243     }
10244
10245   reloc_write.put_r_offset(new_offset);
10246   reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
10247
10248   // Handle the reloc addend.
10249   // The relocation uses a section symbol in the input file.
10250   // We are adjusting it to use a section symbol in the output
10251   // file.  The input section symbol refers to some address in
10252   // the input section.  We need the relocation in the output
10253   // file to refer to that same address.  This adjustment to
10254   // the addend is the same calculation we use for a simple
10255   // absolute relocation for the input section symbol.
10256   Valtype calculated_value = 0;
10257   const Symbol_value<size>* psymval = object->local_symbol(r_sym);
10258
10259   unsigned char* paddend = view + offset;
10260   typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
10261   switch (r_type)
10262     {
10263     case elfcpp::R_MIPS_26:
10264       reloc_status = Reloc_funcs::rel26(paddend, object, psymval,
10265           offset_in_output_section, true, 0, sh_type == elfcpp::SHT_REL, NULL,
10266           false /*TODO(sasa): cross mode jump*/, r_type, this->jal_to_bal(),
10267           false, &calculated_value);
10268       break;
10269
10270     default:
10271       gold_unreachable();
10272     }
10273
10274   // Report any errors.
10275   switch (reloc_status)
10276     {
10277     case Reloc_funcs::STATUS_OKAY:
10278       break;
10279     case Reloc_funcs::STATUS_OVERFLOW:
10280       gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10281                              _("relocation overflow"));
10282       break;
10283     case Reloc_funcs::STATUS_BAD_RELOC:
10284       gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
10285         _("unexpected opcode while processing relocation"));
10286       break;
10287     default:
10288       gold_unreachable();
10289     }
10290 }
10291
10292 // Optimize the TLS relocation type based on what we know about the
10293 // symbol.  IS_FINAL is true if the final address of this symbol is
10294 // known at link time.
10295
10296 template<int size, bool big_endian>
10297 tls::Tls_optimization
10298 Target_mips<size, big_endian>::optimize_tls_reloc(bool, int)
10299 {
10300   // FIXME: Currently we do not do any TLS optimization.
10301   return tls::TLSOPT_NONE;
10302 }
10303
10304 // Scan a relocation for a local symbol.
10305
10306 template<int size, bool big_endian>
10307 inline void
10308 Target_mips<size, big_endian>::Scan::local(
10309                         Symbol_table* symtab,
10310                         Layout* layout,
10311                         Target_mips<size, big_endian>* target,
10312                         Sized_relobj_file<size, big_endian>* object,
10313                         unsigned int data_shndx,
10314                         Output_section* output_section,
10315                         const Relatype* rela,
10316                         const Reltype* rel,
10317                         unsigned int rel_type,
10318                         unsigned int r_type,
10319                         const elfcpp::Sym<size, big_endian>& lsym,
10320                         bool is_discarded)
10321 {
10322   if (is_discarded)
10323     return;
10324
10325   Mips_address r_offset;
10326   unsigned int r_sym;
10327   typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
10328
10329   if (rel_type == elfcpp::SHT_RELA)
10330     {
10331       r_offset = rela->get_r_offset();
10332       r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
10333           get_r_sym(rela);
10334       r_addend = rela->get_r_addend();
10335     }
10336   else
10337     {
10338       r_offset = rel->get_r_offset();
10339       r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
10340           get_r_sym(rel);
10341       r_addend = 0;
10342     }
10343
10344   Mips_relobj<size, big_endian>* mips_obj =
10345     Mips_relobj<size, big_endian>::as_mips_relobj(object);
10346
10347   if (mips_obj->is_mips16_stub_section(data_shndx))
10348     {
10349       mips_obj->get_mips16_stub_section(data_shndx)
10350               ->new_local_reloc_found(r_type, r_sym);
10351     }
10352
10353   if (r_type == elfcpp::R_MIPS_NONE)
10354     // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
10355     // mips16 stub.
10356     return;
10357
10358   if (!mips16_call_reloc(r_type)
10359       && !mips_obj->section_allows_mips16_refs(data_shndx))
10360     // This reloc would need to refer to a MIPS16 hard-float stub, if
10361     // there is one.  We ignore MIPS16 stub sections and .pdr section when
10362     // looking for relocs that would need to refer to MIPS16 stubs.
10363     mips_obj->add_local_non_16bit_call(r_sym);
10364
10365   if (r_type == elfcpp::R_MIPS16_26
10366       && !mips_obj->section_allows_mips16_refs(data_shndx))
10367     mips_obj->add_local_16bit_call(r_sym);
10368
10369   switch (r_type)
10370     {
10371     case elfcpp::R_MIPS_GOT16:
10372     case elfcpp::R_MIPS_CALL16:
10373     case elfcpp::R_MIPS_CALL_HI16:
10374     case elfcpp::R_MIPS_CALL_LO16:
10375     case elfcpp::R_MIPS_GOT_HI16:
10376     case elfcpp::R_MIPS_GOT_LO16:
10377     case elfcpp::R_MIPS_GOT_PAGE:
10378     case elfcpp::R_MIPS_GOT_OFST:
10379     case elfcpp::R_MIPS_GOT_DISP:
10380     case elfcpp::R_MIPS_TLS_GOTTPREL:
10381     case elfcpp::R_MIPS_TLS_GD:
10382     case elfcpp::R_MIPS_TLS_LDM:
10383     case elfcpp::R_MIPS16_GOT16:
10384     case elfcpp::R_MIPS16_CALL16:
10385     case elfcpp::R_MIPS16_TLS_GOTTPREL:
10386     case elfcpp::R_MIPS16_TLS_GD:
10387     case elfcpp::R_MIPS16_TLS_LDM:
10388     case elfcpp::R_MICROMIPS_GOT16:
10389     case elfcpp::R_MICROMIPS_CALL16:
10390     case elfcpp::R_MICROMIPS_CALL_HI16:
10391     case elfcpp::R_MICROMIPS_CALL_LO16:
10392     case elfcpp::R_MICROMIPS_GOT_HI16:
10393     case elfcpp::R_MICROMIPS_GOT_LO16:
10394     case elfcpp::R_MICROMIPS_GOT_PAGE:
10395     case elfcpp::R_MICROMIPS_GOT_OFST:
10396     case elfcpp::R_MICROMIPS_GOT_DISP:
10397     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10398     case elfcpp::R_MICROMIPS_TLS_GD:
10399     case elfcpp::R_MICROMIPS_TLS_LDM:
10400     case elfcpp::R_MIPS_EH:
10401       // We need a GOT section.
10402       target->got_section(symtab, layout);
10403       break;
10404
10405     default:
10406       break;
10407     }
10408
10409   if (call_lo16_reloc(r_type)
10410       || got_lo16_reloc(r_type)
10411       || got_disp_reloc(r_type)
10412       || eh_reloc(r_type))
10413     {
10414       // We may need a local GOT entry for this relocation.  We
10415       // don't count R_MIPS_GOT_PAGE because we can estimate the
10416       // maximum number of pages needed by looking at the size of
10417       // the segment.  Similar comments apply to R_MIPS*_GOT16 and
10418       // R_MIPS*_CALL16.  We don't count R_MIPS_GOT_HI16, or
10419       // R_MIPS_CALL_HI16 because these are always followed by an
10420       // R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.
10421       Mips_output_data_got<size, big_endian>* got =
10422         target->got_section(symtab, layout);
10423       bool is_section_symbol = lsym.get_st_type() == elfcpp::STT_SECTION;
10424       got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type, -1U,
10425                                    is_section_symbol);
10426     }
10427
10428   switch (r_type)
10429     {
10430     case elfcpp::R_MIPS_CALL16:
10431     case elfcpp::R_MIPS16_CALL16:
10432     case elfcpp::R_MICROMIPS_CALL16:
10433       gold_error(_("CALL16 reloc at 0x%lx not against global symbol "),
10434                  (unsigned long)r_offset);
10435       return;
10436
10437     case elfcpp::R_MIPS_GOT_PAGE:
10438     case elfcpp::R_MICROMIPS_GOT_PAGE:
10439     case elfcpp::R_MIPS16_GOT16:
10440     case elfcpp::R_MIPS_GOT16:
10441     case elfcpp::R_MIPS_GOT_HI16:
10442     case elfcpp::R_MIPS_GOT_LO16:
10443     case elfcpp::R_MICROMIPS_GOT16:
10444     case elfcpp::R_MICROMIPS_GOT_HI16:
10445     case elfcpp::R_MICROMIPS_GOT_LO16:
10446       {
10447         // This relocation needs a page entry in the GOT.
10448         // Get the section contents.
10449         section_size_type view_size = 0;
10450         const unsigned char* view = object->section_contents(data_shndx,
10451                                                              &view_size, false);
10452         view += r_offset;
10453
10454         Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
10455         Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
10456                                                         : r_addend);
10457
10458         if (rel_type == elfcpp::SHT_REL && got16_reloc(r_type))
10459           target->got16_addends_.push_back(got16_addend<size, big_endian>(
10460               object, data_shndx, r_type, r_sym, addend));
10461         else
10462           target->got_section()->record_got_page_entry(mips_obj, r_sym, addend);
10463         break;
10464       }
10465
10466     case elfcpp::R_MIPS_HI16:
10467     case elfcpp::R_MIPS_PCHI16:
10468     case elfcpp::R_MIPS16_HI16:
10469     case elfcpp::R_MICROMIPS_HI16:
10470       // Record the reloc so that we can check whether the corresponding LO16
10471       // part exists.
10472       if (rel_type == elfcpp::SHT_REL)
10473         target->got16_addends_.push_back(got16_addend<size, big_endian>(
10474             object, data_shndx, r_type, r_sym, 0));
10475       break;
10476
10477     case elfcpp::R_MIPS_LO16:
10478     case elfcpp::R_MIPS_PCLO16:
10479     case elfcpp::R_MIPS16_LO16:
10480     case elfcpp::R_MICROMIPS_LO16:
10481       {
10482         if (rel_type != elfcpp::SHT_REL)
10483           break;
10484
10485         // Find corresponding GOT16/HI16 relocation.
10486
10487         // According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
10488         // be immediately following.  However, for the IRIX6 ABI, the next
10489         // relocation may be a composed relocation consisting of several
10490         // relocations for the same address.  In that case, the R_MIPS_LO16
10491         // relocation may occur as one of these.  We permit a similar
10492         // extension in general, as that is useful for GCC.
10493
10494         // In some cases GCC dead code elimination removes the LO16 but
10495         // keeps the corresponding HI16.  This is strictly speaking a
10496         // violation of the ABI but not immediately harmful.
10497
10498         typename std::list<got16_addend<size, big_endian> >::iterator it =
10499           target->got16_addends_.begin();
10500         while (it != target->got16_addends_.end())
10501           {
10502             got16_addend<size, big_endian> _got16_addend = *it;
10503
10504             // TODO(sasa): Split got16_addends_ list into two lists - one for
10505             // GOT16 relocs and the other for HI16 relocs.
10506
10507             // Report an error if we find HI16 or GOT16 reloc from the
10508             // previous section without the matching LO16 part.
10509             if (_got16_addend.object != object
10510                 || _got16_addend.shndx != data_shndx)
10511               {
10512                 gold_error("Can't find matching LO16 reloc");
10513                 break;
10514               }
10515
10516             if (_got16_addend.r_sym != r_sym
10517                 || !is_matching_lo16_reloc(_got16_addend.r_type, r_type))
10518               {
10519                 ++it;
10520                 continue;
10521               }
10522
10523             // We found a matching HI16 or GOT16 reloc for this LO16 reloc.
10524             // For GOT16, we need to calculate combined addend and record GOT page
10525             // entry.
10526             if (got16_reloc(_got16_addend.r_type))
10527               {
10528
10529                 section_size_type view_size = 0;
10530                 const unsigned char* view = object->section_contents(data_shndx,
10531                                                                      &view_size,
10532                                                                      false);
10533                 view += r_offset;
10534
10535                 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
10536                 int32_t addend = Bits<16>::sign_extend32(val & 0xffff);
10537
10538                 addend = (_got16_addend.addend << 16) + addend;
10539                 target->got_section()->record_got_page_entry(mips_obj, r_sym,
10540                                                              addend);
10541               }
10542
10543             it = target->got16_addends_.erase(it);
10544           }
10545         break;
10546       }
10547     }
10548
10549   switch (r_type)
10550     {
10551     case elfcpp::R_MIPS_32:
10552     case elfcpp::R_MIPS_REL32:
10553     case elfcpp::R_MIPS_64:
10554       {
10555         if (parameters->options().output_is_position_independent())
10556           {
10557             // If building a shared library (or a position-independent
10558             // executable), we need to create a dynamic relocation for
10559             // this location.
10560             if (is_readonly_section(output_section))
10561               break;
10562             Reloc_section* rel_dyn = target->rel_dyn_section(layout);
10563             rel_dyn->add_symbolless_local_addend(object, r_sym,
10564                                                  elfcpp::R_MIPS_REL32,
10565                                                  output_section, data_shndx,
10566                                                  r_offset);
10567           }
10568         break;
10569       }
10570
10571     case elfcpp::R_MIPS_TLS_GOTTPREL:
10572     case elfcpp::R_MIPS16_TLS_GOTTPREL:
10573     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10574     case elfcpp::R_MIPS_TLS_LDM:
10575     case elfcpp::R_MIPS16_TLS_LDM:
10576     case elfcpp::R_MICROMIPS_TLS_LDM:
10577     case elfcpp::R_MIPS_TLS_GD:
10578     case elfcpp::R_MIPS16_TLS_GD:
10579     case elfcpp::R_MICROMIPS_TLS_GD:
10580       {
10581         bool output_is_shared = parameters->options().shared();
10582         const tls::Tls_optimization optimized_type
10583             = Target_mips<size, big_endian>::optimize_tls_reloc(
10584                                              !output_is_shared, r_type);
10585         switch (r_type)
10586           {
10587           case elfcpp::R_MIPS_TLS_GD:
10588           case elfcpp::R_MIPS16_TLS_GD:
10589           case elfcpp::R_MICROMIPS_TLS_GD:
10590             if (optimized_type == tls::TLSOPT_NONE)
10591               {
10592                 // Create a pair of GOT entries for the module index and
10593                 // dtv-relative offset.
10594                 Mips_output_data_got<size, big_endian>* got =
10595                   target->got_section(symtab, layout);
10596                 unsigned int shndx = lsym.get_st_shndx();
10597                 bool is_ordinary;
10598                 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
10599                 if (!is_ordinary)
10600                   {
10601                     object->error(_("local symbol %u has bad shndx %u"),
10602                                   r_sym, shndx);
10603                     break;
10604                   }
10605                 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
10606                                              shndx, false);
10607               }
10608             else
10609               {
10610                 // FIXME: TLS optimization not supported yet.
10611                 gold_unreachable();
10612               }
10613             break;
10614
10615           case elfcpp::R_MIPS_TLS_LDM:
10616           case elfcpp::R_MIPS16_TLS_LDM:
10617           case elfcpp::R_MICROMIPS_TLS_LDM:
10618             if (optimized_type == tls::TLSOPT_NONE)
10619               {
10620                 // We always record LDM symbols as local with index 0.
10621                 target->got_section()->record_local_got_symbol(mips_obj, 0,
10622                                                                r_addend, r_type,
10623                                                                -1U, false);
10624               }
10625             else
10626               {
10627                 // FIXME: TLS optimization not supported yet.
10628                 gold_unreachable();
10629               }
10630             break;
10631           case elfcpp::R_MIPS_TLS_GOTTPREL:
10632           case elfcpp::R_MIPS16_TLS_GOTTPREL:
10633           case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10634             layout->set_has_static_tls();
10635             if (optimized_type == tls::TLSOPT_NONE)
10636               {
10637                 // Create a GOT entry for the tp-relative offset.
10638                 Mips_output_data_got<size, big_endian>* got =
10639                   target->got_section(symtab, layout);
10640                 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
10641                                              -1U, false);
10642               }
10643             else
10644               {
10645                 // FIXME: TLS optimization not supported yet.
10646                 gold_unreachable();
10647               }
10648             break;
10649
10650           default:
10651             gold_unreachable();
10652         }
10653       }
10654       break;
10655
10656     default:
10657       break;
10658     }
10659
10660   // Refuse some position-dependent relocations when creating a
10661   // shared library.  Do not refuse R_MIPS_32 / R_MIPS_64; they're
10662   // not PIC, but we can create dynamic relocations and the result
10663   // will be fine.  Also do not refuse R_MIPS_LO16, which can be
10664   // combined with R_MIPS_GOT16.
10665   if (parameters->options().shared())
10666     {
10667       switch (r_type)
10668         {
10669         case elfcpp::R_MIPS16_HI16:
10670         case elfcpp::R_MIPS_HI16:
10671         case elfcpp::R_MICROMIPS_HI16:
10672           // Don't refuse a high part relocation if it's against
10673           // no symbol (e.g. part of a compound relocation).
10674           if (r_sym == 0)
10675             break;
10676
10677           // FALLTHROUGH
10678
10679         case elfcpp::R_MIPS16_26:
10680         case elfcpp::R_MIPS_26:
10681         case elfcpp::R_MICROMIPS_26_S1:
10682           gold_error(_("%s: relocation %u against `%s' can not be used when "
10683                        "making a shared object; recompile with -fPIC"),
10684                      object->name().c_str(), r_type, "a local symbol");
10685         default:
10686           break;
10687         }
10688     }
10689 }
10690
10691 template<int size, bool big_endian>
10692 inline void
10693 Target_mips<size, big_endian>::Scan::local(
10694                         Symbol_table* symtab,
10695                         Layout* layout,
10696                         Target_mips<size, big_endian>* target,
10697                         Sized_relobj_file<size, big_endian>* object,
10698                         unsigned int data_shndx,
10699                         Output_section* output_section,
10700                         const Reltype& reloc,
10701                         unsigned int r_type,
10702                         const elfcpp::Sym<size, big_endian>& lsym,
10703                         bool is_discarded)
10704 {
10705   if (is_discarded)
10706     return;
10707
10708   local(
10709     symtab,
10710     layout,
10711     target,
10712     object,
10713     data_shndx,
10714     output_section,
10715     (const Relatype*) NULL,
10716     &reloc,
10717     elfcpp::SHT_REL,
10718     r_type,
10719     lsym, is_discarded);
10720 }
10721
10722
10723 template<int size, bool big_endian>
10724 inline void
10725 Target_mips<size, big_endian>::Scan::local(
10726                         Symbol_table* symtab,
10727                         Layout* layout,
10728                         Target_mips<size, big_endian>* target,
10729                         Sized_relobj_file<size, big_endian>* object,
10730                         unsigned int data_shndx,
10731                         Output_section* output_section,
10732                         const Relatype& reloc,
10733                         unsigned int r_type,
10734                         const elfcpp::Sym<size, big_endian>& lsym,
10735                         bool is_discarded)
10736 {
10737   if (is_discarded)
10738     return;
10739
10740   local(
10741     symtab,
10742     layout,
10743     target,
10744     object,
10745     data_shndx,
10746     output_section,
10747     &reloc,
10748     (const Reltype*) NULL,
10749     elfcpp::SHT_RELA,
10750     r_type,
10751     lsym, is_discarded);
10752 }
10753
10754 // Scan a relocation for a global symbol.
10755
10756 template<int size, bool big_endian>
10757 inline void
10758 Target_mips<size, big_endian>::Scan::global(
10759                                 Symbol_table* symtab,
10760                                 Layout* layout,
10761                                 Target_mips<size, big_endian>* target,
10762                                 Sized_relobj_file<size, big_endian>* object,
10763                                 unsigned int data_shndx,
10764                                 Output_section* output_section,
10765                                 const Relatype* rela,
10766                                 const Reltype* rel,
10767                                 unsigned int rel_type,
10768                                 unsigned int r_type,
10769                                 Symbol* gsym)
10770 {
10771   Mips_address r_offset;
10772   unsigned int r_sym;
10773   typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
10774
10775   if (rel_type == elfcpp::SHT_RELA)
10776     {
10777       r_offset = rela->get_r_offset();
10778       r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
10779           get_r_sym(rela);
10780       r_addend = rela->get_r_addend();
10781     }
10782   else
10783     {
10784       r_offset = rel->get_r_offset();
10785       r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
10786           get_r_sym(rel);
10787       r_addend = 0;
10788     }
10789
10790   Mips_relobj<size, big_endian>* mips_obj =
10791     Mips_relobj<size, big_endian>::as_mips_relobj(object);
10792   Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
10793
10794   if (mips_obj->is_mips16_stub_section(data_shndx))
10795     {
10796       mips_obj->get_mips16_stub_section(data_shndx)
10797               ->new_global_reloc_found(r_type, mips_sym);
10798     }
10799
10800   if (r_type == elfcpp::R_MIPS_NONE)
10801     // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
10802     // mips16 stub.
10803     return;
10804
10805   if (!mips16_call_reloc(r_type)
10806       && !mips_obj->section_allows_mips16_refs(data_shndx))
10807     // This reloc would need to refer to a MIPS16 hard-float stub, if
10808     // there is one.  We ignore MIPS16 stub sections and .pdr section when
10809     // looking for relocs that would need to refer to MIPS16 stubs.
10810     mips_sym->set_need_fn_stub();
10811
10812   // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
10813   // section.  We check here to avoid creating a dynamic reloc against
10814   // _GLOBAL_OFFSET_TABLE_.
10815   if (!target->has_got_section()
10816       && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
10817     target->got_section(symtab, layout);
10818
10819   // We need PLT entries if there are static-only relocations against
10820   // an externally-defined function.  This can technically occur for
10821   // shared libraries if there are branches to the symbol, although it
10822   // is unlikely that this will be used in practice due to the short
10823   // ranges involved.  It can occur for any relative or absolute relocation
10824   // in executables; in that case, the PLT entry becomes the function's
10825   // canonical address.
10826   bool static_reloc = false;
10827
10828   // Set CAN_MAKE_DYNAMIC to true if we can convert this
10829   // relocation into a dynamic one.
10830   bool can_make_dynamic = false;
10831   switch (r_type)
10832     {
10833     case elfcpp::R_MIPS_GOT16:
10834     case elfcpp::R_MIPS_CALL16:
10835     case elfcpp::R_MIPS_CALL_HI16:
10836     case elfcpp::R_MIPS_CALL_LO16:
10837     case elfcpp::R_MIPS_GOT_HI16:
10838     case elfcpp::R_MIPS_GOT_LO16:
10839     case elfcpp::R_MIPS_GOT_PAGE:
10840     case elfcpp::R_MIPS_GOT_OFST:
10841     case elfcpp::R_MIPS_GOT_DISP:
10842     case elfcpp::R_MIPS_TLS_GOTTPREL:
10843     case elfcpp::R_MIPS_TLS_GD:
10844     case elfcpp::R_MIPS_TLS_LDM:
10845     case elfcpp::R_MIPS16_GOT16:
10846     case elfcpp::R_MIPS16_CALL16:
10847     case elfcpp::R_MIPS16_TLS_GOTTPREL:
10848     case elfcpp::R_MIPS16_TLS_GD:
10849     case elfcpp::R_MIPS16_TLS_LDM:
10850     case elfcpp::R_MICROMIPS_GOT16:
10851     case elfcpp::R_MICROMIPS_CALL16:
10852     case elfcpp::R_MICROMIPS_CALL_HI16:
10853     case elfcpp::R_MICROMIPS_CALL_LO16:
10854     case elfcpp::R_MICROMIPS_GOT_HI16:
10855     case elfcpp::R_MICROMIPS_GOT_LO16:
10856     case elfcpp::R_MICROMIPS_GOT_PAGE:
10857     case elfcpp::R_MICROMIPS_GOT_OFST:
10858     case elfcpp::R_MICROMIPS_GOT_DISP:
10859     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10860     case elfcpp::R_MICROMIPS_TLS_GD:
10861     case elfcpp::R_MICROMIPS_TLS_LDM:
10862     case elfcpp::R_MIPS_EH:
10863       // We need a GOT section.
10864       target->got_section(symtab, layout);
10865       break;
10866
10867     // This is just a hint; it can safely be ignored.  Don't set
10868     // has_static_relocs for the corresponding symbol.
10869     case elfcpp::R_MIPS_JALR:
10870     case elfcpp::R_MICROMIPS_JALR:
10871       break;
10872
10873     case elfcpp::R_MIPS_GPREL16:
10874     case elfcpp::R_MIPS_GPREL32:
10875     case elfcpp::R_MIPS16_GPREL:
10876     case elfcpp::R_MICROMIPS_GPREL16:
10877       // TODO(sasa)
10878       // GP-relative relocations always resolve to a definition in a
10879       // regular input file, ignoring the one-definition rule.  This is
10880       // important for the GP setup sequence in NewABI code, which
10881       // always resolves to a local function even if other relocations
10882       // against the symbol wouldn't.
10883       //constrain_symbol_p = FALSE;
10884       break;
10885
10886     case elfcpp::R_MIPS_32:
10887     case elfcpp::R_MIPS_REL32:
10888     case elfcpp::R_MIPS_64:
10889       if ((parameters->options().shared()
10890           || (strcmp(gsym->name(), "__gnu_local_gp") != 0
10891           && (!is_readonly_section(output_section)
10892           || mips_obj->is_pic())))
10893           && (output_section->flags() & elfcpp::SHF_ALLOC) != 0)
10894         {
10895           if (r_type != elfcpp::R_MIPS_REL32)
10896             mips_sym->set_pointer_equality_needed();
10897           can_make_dynamic = true;
10898           break;
10899         }
10900       // Fall through.
10901
10902     default:
10903       // Most static relocations require pointer equality, except
10904       // for branches.
10905       mips_sym->set_pointer_equality_needed();
10906
10907       // Fall through.
10908
10909     case elfcpp::R_MIPS_26:
10910     case elfcpp::R_MIPS_PC16:
10911     case elfcpp::R_MIPS_PC21_S2:
10912     case elfcpp::R_MIPS_PC26_S2:
10913     case elfcpp::R_MIPS16_26:
10914     case elfcpp::R_MICROMIPS_26_S1:
10915     case elfcpp::R_MICROMIPS_PC7_S1:
10916     case elfcpp::R_MICROMIPS_PC10_S1:
10917     case elfcpp::R_MICROMIPS_PC16_S1:
10918     case elfcpp::R_MICROMIPS_PC23_S2:
10919       static_reloc = true;
10920       mips_sym->set_has_static_relocs();
10921       break;
10922     }
10923
10924   // If there are call relocations against an externally-defined symbol,
10925   // see whether we can create a MIPS lazy-binding stub for it.  We can
10926   // only do this if all references to the function are through call
10927   // relocations, and in that case, the traditional lazy-binding stubs
10928   // are much more efficient than PLT entries.
10929   switch (r_type)
10930     {
10931     case elfcpp::R_MIPS16_CALL16:
10932     case elfcpp::R_MIPS_CALL16:
10933     case elfcpp::R_MIPS_CALL_HI16:
10934     case elfcpp::R_MIPS_CALL_LO16:
10935     case elfcpp::R_MIPS_JALR:
10936     case elfcpp::R_MICROMIPS_CALL16:
10937     case elfcpp::R_MICROMIPS_CALL_HI16:
10938     case elfcpp::R_MICROMIPS_CALL_LO16:
10939     case elfcpp::R_MICROMIPS_JALR:
10940       if (!mips_sym->no_lazy_stub())
10941         {
10942           if ((mips_sym->needs_plt_entry() && mips_sym->is_from_dynobj())
10943               // Calls from shared objects to undefined symbols of type
10944               // STT_NOTYPE need lazy-binding stub.
10945               || (mips_sym->is_undefined() && parameters->options().shared()))
10946             target->mips_stubs_section(layout)->make_entry(mips_sym);
10947         }
10948       break;
10949     default:
10950       {
10951         // We must not create a stub for a symbol that has relocations
10952         // related to taking the function's address.
10953         mips_sym->set_no_lazy_stub();
10954         target->remove_lazy_stub_entry(mips_sym);
10955         break;
10956       }
10957   }
10958
10959   if (relocation_needs_la25_stub<size, big_endian>(mips_obj, r_type,
10960                                                    mips_sym->is_mips16()))
10961     mips_sym->set_has_nonpic_branches();
10962
10963   // R_MIPS_HI16 against _gp_disp is used for $gp setup,
10964   // and has a special meaning.
10965   bool gp_disp_against_hi16 = (!mips_obj->is_newabi()
10966                                && strcmp(gsym->name(), "_gp_disp") == 0
10967                                && (hi16_reloc(r_type) || lo16_reloc(r_type)));
10968   if (static_reloc && gsym->needs_plt_entry())
10969     {
10970       target->make_plt_entry(symtab, layout, mips_sym, r_type);
10971
10972       // Since this is not a PC-relative relocation, we may be
10973       // taking the address of a function.  In that case we need to
10974       // set the entry in the dynamic symbol table to the address of
10975       // the PLT entry.
10976       if (gsym->is_from_dynobj() && !parameters->options().shared())
10977         {
10978           gsym->set_needs_dynsym_value();
10979           // We distinguish between PLT entries and lazy-binding stubs by
10980           // giving the former an st_other value of STO_MIPS_PLT.  Set the
10981           // flag if there are any relocations in the binary where pointer
10982           // equality matters.
10983           if (mips_sym->pointer_equality_needed())
10984             mips_sym->set_mips_plt();
10985         }
10986     }
10987   if ((static_reloc || can_make_dynamic) && !gp_disp_against_hi16)
10988     {
10989       // Absolute addressing relocations.
10990       // Make a dynamic relocation if necessary.
10991       if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
10992         {
10993           if (gsym->may_need_copy_reloc())
10994             {
10995               target->copy_reloc(symtab, layout, object, data_shndx,
10996                                  output_section, gsym, r_type, r_offset);
10997             }
10998           else if (can_make_dynamic)
10999             {
11000               // Create .rel.dyn section.
11001               target->rel_dyn_section(layout);
11002               target->dynamic_reloc(mips_sym, elfcpp::R_MIPS_REL32, mips_obj,
11003                                     data_shndx, output_section, r_offset);
11004             }
11005           else
11006             gold_error(_("non-dynamic relocations refer to dynamic symbol %s"),
11007                        gsym->name());
11008         }
11009     }
11010
11011   bool for_call = false;
11012   switch (r_type)
11013     {
11014     case elfcpp::R_MIPS_CALL16:
11015     case elfcpp::R_MIPS16_CALL16:
11016     case elfcpp::R_MICROMIPS_CALL16:
11017     case elfcpp::R_MIPS_CALL_HI16:
11018     case elfcpp::R_MIPS_CALL_LO16:
11019     case elfcpp::R_MICROMIPS_CALL_HI16:
11020     case elfcpp::R_MICROMIPS_CALL_LO16:
11021       for_call = true;
11022       // Fall through.
11023
11024     case elfcpp::R_MIPS16_GOT16:
11025     case elfcpp::R_MIPS_GOT16:
11026     case elfcpp::R_MIPS_GOT_HI16:
11027     case elfcpp::R_MIPS_GOT_LO16:
11028     case elfcpp::R_MICROMIPS_GOT16:
11029     case elfcpp::R_MICROMIPS_GOT_HI16:
11030     case elfcpp::R_MICROMIPS_GOT_LO16:
11031     case elfcpp::R_MIPS_GOT_DISP:
11032     case elfcpp::R_MICROMIPS_GOT_DISP:
11033     case elfcpp::R_MIPS_EH:
11034       {
11035         // The symbol requires a GOT entry.
11036         Mips_output_data_got<size, big_endian>* got =
11037           target->got_section(symtab, layout);
11038         got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11039                                       for_call);
11040         mips_sym->set_global_got_area(GGA_NORMAL);
11041       }
11042       break;
11043
11044     case elfcpp::R_MIPS_GOT_PAGE:
11045     case elfcpp::R_MICROMIPS_GOT_PAGE:
11046       {
11047         // This relocation needs a page entry in the GOT.
11048         // Get the section contents.
11049         section_size_type view_size = 0;
11050         const unsigned char* view =
11051           object->section_contents(data_shndx, &view_size, false);
11052         view += r_offset;
11053
11054         Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
11055         Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
11056                                                         : r_addend);
11057         Mips_output_data_got<size, big_endian>* got =
11058           target->got_section(symtab, layout);
11059         got->record_got_page_entry(mips_obj, r_sym, addend);
11060
11061         // If this is a global, overridable symbol, GOT_PAGE will
11062         // decay to GOT_DISP, so we'll need a GOT entry for it.
11063         bool def_regular = (mips_sym->source() == Symbol::FROM_OBJECT
11064                             && !mips_sym->object()->is_dynamic()
11065                             && !mips_sym->is_undefined());
11066         if (!def_regular
11067             || (parameters->options().output_is_position_independent()
11068                 && !parameters->options().Bsymbolic()
11069                 && !mips_sym->is_forced_local()))
11070           {
11071             got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11072                                           for_call);
11073             mips_sym->set_global_got_area(GGA_NORMAL);
11074           }
11075       }
11076       break;
11077
11078     case elfcpp::R_MIPS_TLS_GOTTPREL:
11079     case elfcpp::R_MIPS16_TLS_GOTTPREL:
11080     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
11081     case elfcpp::R_MIPS_TLS_LDM:
11082     case elfcpp::R_MIPS16_TLS_LDM:
11083     case elfcpp::R_MICROMIPS_TLS_LDM:
11084     case elfcpp::R_MIPS_TLS_GD:
11085     case elfcpp::R_MIPS16_TLS_GD:
11086     case elfcpp::R_MICROMIPS_TLS_GD:
11087       {
11088         const bool is_final = gsym->final_value_is_known();
11089         const tls::Tls_optimization optimized_type =
11090           Target_mips<size, big_endian>::optimize_tls_reloc(is_final, r_type);
11091
11092         switch (r_type)
11093           {
11094           case elfcpp::R_MIPS_TLS_GD:
11095           case elfcpp::R_MIPS16_TLS_GD:
11096           case elfcpp::R_MICROMIPS_TLS_GD:
11097             if (optimized_type == tls::TLSOPT_NONE)
11098               {
11099                 // Create a pair of GOT entries for the module index and
11100                 // dtv-relative offset.
11101                 Mips_output_data_got<size, big_endian>* got =
11102                   target->got_section(symtab, layout);
11103                 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11104                                               false);
11105               }
11106             else
11107               {
11108                 // FIXME: TLS optimization not supported yet.
11109                 gold_unreachable();
11110               }
11111             break;
11112
11113           case elfcpp::R_MIPS_TLS_LDM:
11114           case elfcpp::R_MIPS16_TLS_LDM:
11115           case elfcpp::R_MICROMIPS_TLS_LDM:
11116             if (optimized_type == tls::TLSOPT_NONE)
11117               {
11118                 // We always record LDM symbols as local with index 0.
11119                 target->got_section()->record_local_got_symbol(mips_obj, 0,
11120                                                                r_addend, r_type,
11121                                                                -1U, false);
11122               }
11123             else
11124               {
11125                 // FIXME: TLS optimization not supported yet.
11126                 gold_unreachable();
11127               }
11128             break;
11129           case elfcpp::R_MIPS_TLS_GOTTPREL:
11130           case elfcpp::R_MIPS16_TLS_GOTTPREL:
11131           case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
11132             layout->set_has_static_tls();
11133             if (optimized_type == tls::TLSOPT_NONE)
11134               {
11135                 // Create a GOT entry for the tp-relative offset.
11136                 Mips_output_data_got<size, big_endian>* got =
11137                   target->got_section(symtab, layout);
11138                 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
11139                                               false);
11140               }
11141             else
11142               {
11143                 // FIXME: TLS optimization not supported yet.
11144                 gold_unreachable();
11145               }
11146             break;
11147
11148           default:
11149             gold_unreachable();
11150         }
11151       }
11152       break;
11153     case elfcpp::R_MIPS_COPY:
11154     case elfcpp::R_MIPS_JUMP_SLOT:
11155       // These are relocations which should only be seen by the
11156       // dynamic linker, and should never be seen here.
11157       gold_error(_("%s: unexpected reloc %u in object file"),
11158                  object->name().c_str(), r_type);
11159       break;
11160
11161     default:
11162       break;
11163     }
11164
11165   // Refuse some position-dependent relocations when creating a
11166   // shared library.  Do not refuse R_MIPS_32 / R_MIPS_64; they're
11167   // not PIC, but we can create dynamic relocations and the result
11168   // will be fine.  Also do not refuse R_MIPS_LO16, which can be
11169   // combined with R_MIPS_GOT16.
11170   if (parameters->options().shared())
11171     {
11172       switch (r_type)
11173         {
11174         case elfcpp::R_MIPS16_HI16:
11175         case elfcpp::R_MIPS_HI16:
11176         case elfcpp::R_MICROMIPS_HI16:
11177           // Don't refuse a high part relocation if it's against
11178           // no symbol (e.g. part of a compound relocation).
11179           if (r_sym == 0)
11180             break;
11181
11182           // R_MIPS_HI16 against _gp_disp is used for $gp setup,
11183           // and has a special meaning.
11184           if (!mips_obj->is_newabi() && strcmp(gsym->name(), "_gp_disp") == 0)
11185             break;
11186
11187           // FALLTHROUGH
11188
11189         case elfcpp::R_MIPS16_26:
11190         case elfcpp::R_MIPS_26:
11191         case elfcpp::R_MICROMIPS_26_S1:
11192           gold_error(_("%s: relocation %u against `%s' can not be used when "
11193                        "making a shared object; recompile with -fPIC"),
11194                      object->name().c_str(), r_type, gsym->name());
11195         default:
11196           break;
11197         }
11198     }
11199 }
11200
11201 template<int size, bool big_endian>
11202 inline void
11203 Target_mips<size, big_endian>::Scan::global(
11204                                 Symbol_table* symtab,
11205                                 Layout* layout,
11206                                 Target_mips<size, big_endian>* target,
11207                                 Sized_relobj_file<size, big_endian>* object,
11208                                 unsigned int data_shndx,
11209                                 Output_section* output_section,
11210                                 const Relatype& reloc,
11211                                 unsigned int r_type,
11212                                 Symbol* gsym)
11213 {
11214   global(
11215     symtab,
11216     layout,
11217     target,
11218     object,
11219     data_shndx,
11220     output_section,
11221     &reloc,
11222     (const Reltype*) NULL,
11223     elfcpp::SHT_RELA,
11224     r_type,
11225     gsym);
11226 }
11227
11228 template<int size, bool big_endian>
11229 inline void
11230 Target_mips<size, big_endian>::Scan::global(
11231                                 Symbol_table* symtab,
11232                                 Layout* layout,
11233                                 Target_mips<size, big_endian>* target,
11234                                 Sized_relobj_file<size, big_endian>* object,
11235                                 unsigned int data_shndx,
11236                                 Output_section* output_section,
11237                                 const Reltype& reloc,
11238                                 unsigned int r_type,
11239                                 Symbol* gsym)
11240 {
11241   global(
11242     symtab,
11243     layout,
11244     target,
11245     object,
11246     data_shndx,
11247     output_section,
11248     (const Relatype*) NULL,
11249     &reloc,
11250     elfcpp::SHT_REL,
11251     r_type,
11252     gsym);
11253 }
11254
11255 // Return whether a R_MIPS_32/R_MIPS64 relocation needs to be applied.
11256 // In cases where Scan::local() or Scan::global() has created
11257 // a dynamic relocation, the addend of the relocation is carried
11258 // in the data, and we must not apply the static relocation.
11259
11260 template<int size, bool big_endian>
11261 inline bool
11262 Target_mips<size, big_endian>::Relocate::should_apply_static_reloc(
11263     const Mips_symbol<size>* gsym,
11264     unsigned int r_type,
11265     Output_section* output_section,
11266     Target_mips* target)
11267 {
11268   // If the output section is not allocated, then we didn't call
11269   // scan_relocs, we didn't create a dynamic reloc, and we must apply
11270   // the reloc here.
11271   if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
11272       return true;
11273
11274   if (gsym == NULL)
11275     return true;
11276   else
11277     {
11278       // For global symbols, we use the same helper routines used in the
11279       // scan pass.
11280       if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))
11281           && !gsym->may_need_copy_reloc())
11282         {
11283           // We have generated dynamic reloc (R_MIPS_REL32).
11284
11285           bool multi_got = false;
11286           if (target->has_got_section())
11287             multi_got = target->got_section()->multi_got();
11288           bool has_got_offset;
11289           if (!multi_got)
11290             has_got_offset = gsym->has_got_offset(GOT_TYPE_STANDARD);
11291           else
11292             has_got_offset = gsym->global_gotoffset() != -1U;
11293           if (!has_got_offset)
11294             return true;
11295           else
11296             // Apply the relocation only if the symbol is in the local got.
11297             // Do not apply the relocation if the symbol is in the global
11298             // got.
11299             return symbol_references_local(gsym, gsym->has_dynsym_index());
11300         }
11301       else
11302         // We have not generated dynamic reloc.
11303         return true;
11304     }
11305 }
11306
11307 // Perform a relocation.
11308
11309 template<int size, bool big_endian>
11310 inline bool
11311 Target_mips<size, big_endian>::Relocate::relocate(
11312                         const Relocate_info<size, big_endian>* relinfo,
11313                         unsigned int rel_type,
11314                         Target_mips* target,
11315                         Output_section* output_section,
11316                         size_t relnum,
11317                         const unsigned char* preloc,
11318                         const Sized_symbol<size>* gsym,
11319                         const Symbol_value<size>* psymval,
11320                         unsigned char* view,
11321                         Mips_address address,
11322                         section_size_type)
11323 {
11324   Mips_address r_offset;
11325   unsigned int r_sym;
11326   unsigned int r_type;
11327   unsigned int r_type2;
11328   unsigned int r_type3;
11329   unsigned char r_ssym;
11330   typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
11331
11332   if (rel_type == elfcpp::SHT_RELA)
11333     {
11334       const Relatype rela(preloc);
11335       r_offset = rela.get_r_offset();
11336       r_sym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11337           get_r_sym(&rela);
11338       r_type = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11339           get_r_type(&rela);
11340       r_type2 = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11341           get_r_type2(&rela);
11342       r_type3 = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11343           get_r_type3(&rela);
11344       r_ssym = Mips_classify_reloc<elfcpp::SHT_RELA, size, big_endian>::
11345           get_r_ssym(&rela);
11346       r_addend = rela.get_r_addend();
11347     }
11348   else
11349     {
11350       const Reltype rel(preloc);
11351       r_offset = rel.get_r_offset();
11352       r_sym = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
11353           get_r_sym(&rel);
11354       r_type = Mips_classify_reloc<elfcpp::SHT_REL, size, big_endian>::
11355           get_r_type(&rel);
11356       r_ssym = 0;
11357       r_type2 = 0;
11358       r_type3 = 0;
11359       r_addend = 0;
11360     }
11361
11362   typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
11363   typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
11364
11365   Mips_relobj<size, big_endian>* object =
11366       Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
11367
11368   bool target_is_16_bit_code = false;
11369   bool target_is_micromips_code = false;
11370   bool cross_mode_jump;
11371
11372   Symbol_value<size> symval;
11373
11374   const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
11375
11376   bool changed_symbol_value = false;
11377   if (gsym == NULL)
11378     {
11379       target_is_16_bit_code = object->local_symbol_is_mips16(r_sym);
11380       target_is_micromips_code = object->local_symbol_is_micromips(r_sym);
11381       if (target_is_16_bit_code || target_is_micromips_code)
11382         {
11383           // MIPS16/microMIPS text labels should be treated as odd.
11384           symval.set_output_value(psymval->value(object, 1));
11385           psymval = &symval;
11386           changed_symbol_value = true;
11387         }
11388     }
11389   else
11390     {
11391       target_is_16_bit_code = mips_sym->is_mips16();
11392       target_is_micromips_code = mips_sym->is_micromips();
11393
11394       // If this is a mips16/microMIPS text symbol, add 1 to the value to make
11395       // it odd.  This will cause something like .word SYM to come up with
11396       // the right value when it is loaded into the PC.
11397
11398       if ((mips_sym->is_mips16() || mips_sym->is_micromips())
11399           && psymval->value(object, 0) != 0)
11400         {
11401           symval.set_output_value(psymval->value(object, 0) | 1);
11402           psymval = &symval;
11403           changed_symbol_value = true;
11404         }
11405
11406       // Pick the value to use for symbols defined in shared objects.
11407       if (mips_sym->use_plt_offset(Scan::get_reference_flags(r_type))
11408           || mips_sym->has_lazy_stub())
11409         {
11410           Mips_address value;
11411           if (!mips_sym->has_lazy_stub())
11412             {
11413               // Prefer a standard MIPS PLT entry.
11414               if (mips_sym->has_mips_plt_offset())
11415                 {
11416                   value = target->plt_section()->mips_entry_address(mips_sym);
11417                   target_is_micromips_code = false;
11418                   target_is_16_bit_code = false;
11419                 }
11420               else
11421                 {
11422                   value = (target->plt_section()->comp_entry_address(mips_sym)
11423                            + 1);
11424                   if (target->is_output_micromips())
11425                     target_is_micromips_code = true;
11426                   else
11427                     target_is_16_bit_code = true;
11428                 }
11429             }
11430           else
11431             value = target->mips_stubs_section()->stub_address(mips_sym);
11432
11433           symval.set_output_value(value);
11434           psymval = &symval;
11435         }
11436     }
11437
11438   // TRUE if the symbol referred to by this relocation is "_gp_disp".
11439   // Note that such a symbol must always be a global symbol.
11440   bool gp_disp = (gsym != NULL && (strcmp(gsym->name(), "_gp_disp") == 0)
11441                   && !object->is_newabi());
11442
11443   // TRUE if the symbol referred to by this relocation is "__gnu_local_gp".
11444   // Note that such a symbol must always be a global symbol.
11445   bool gnu_local_gp = gsym && (strcmp(gsym->name(), "__gnu_local_gp") == 0);
11446
11447
11448   if (gp_disp)
11449     {
11450       if (!hi16_reloc(r_type) && !lo16_reloc(r_type))
11451         gold_error_at_location(relinfo, relnum, r_offset,
11452           _("relocations against _gp_disp are permitted only"
11453             " with R_MIPS_HI16 and R_MIPS_LO16 relocations."));
11454     }
11455   else if (gnu_local_gp)
11456     {
11457       // __gnu_local_gp is _gp symbol.
11458       symval.set_output_value(target->adjusted_gp_value(object));
11459       psymval = &symval;
11460     }
11461
11462   // If this is a reference to a 16-bit function with a stub, we need
11463   // to redirect the relocation to the stub unless:
11464   //
11465   // (a) the relocation is for a MIPS16 JAL;
11466   //
11467   // (b) the relocation is for a MIPS16 PIC call, and there are no
11468   //     non-MIPS16 uses of the GOT slot; or
11469   //
11470   // (c) the section allows direct references to MIPS16 functions.
11471   if (r_type != elfcpp::R_MIPS16_26
11472       && !parameters->options().relocatable()
11473       && ((mips_sym != NULL
11474            && mips_sym->has_mips16_fn_stub()
11475            && (r_type != elfcpp::R_MIPS16_CALL16 || mips_sym->need_fn_stub()))
11476           || (mips_sym == NULL
11477               && object->get_local_mips16_fn_stub(r_sym) != NULL))
11478       && !object->section_allows_mips16_refs(relinfo->data_shndx))
11479     {
11480       // This is a 32- or 64-bit call to a 16-bit function.  We should
11481       // have already noticed that we were going to need the
11482       // stub.
11483       Mips_address value;
11484       if (mips_sym == NULL)
11485         value = object->get_local_mips16_fn_stub(r_sym)->output_address();
11486       else
11487         {
11488           gold_assert(mips_sym->need_fn_stub());
11489           if (mips_sym->has_la25_stub())
11490             value = target->la25_stub_section()->stub_address(mips_sym);
11491           else
11492             {
11493               value = mips_sym->template
11494                       get_mips16_fn_stub<big_endian>()->output_address();
11495             }
11496           }
11497       symval.set_output_value(value);
11498       psymval = &symval;
11499       changed_symbol_value = true;
11500
11501       // The target is 16-bit, but the stub isn't.
11502       target_is_16_bit_code = false;
11503     }
11504   // If this is a MIPS16 call with a stub, that is made through the PLT or
11505   // to a standard MIPS function, we need to redirect the call to the stub.
11506   // Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
11507   // indirect calls should use an indirect stub instead.
11508   else if (r_type == elfcpp::R_MIPS16_26 && !parameters->options().relocatable()
11509            && ((mips_sym != NULL
11510                 && (mips_sym->has_mips16_call_stub()
11511                     || mips_sym->has_mips16_call_fp_stub()))
11512                || (mips_sym == NULL
11513                    && object->get_local_mips16_call_stub(r_sym) != NULL))
11514            && ((mips_sym != NULL && mips_sym->has_plt_offset())
11515                || !target_is_16_bit_code))
11516     {
11517       Mips16_stub_section<size, big_endian>* call_stub;
11518       if (mips_sym == NULL)
11519         call_stub = object->get_local_mips16_call_stub(r_sym);
11520       else
11521         {
11522           // If both call_stub and call_fp_stub are defined, we can figure
11523           // out which one to use by checking which one appears in the input
11524           // file.
11525           if (mips_sym->has_mips16_call_stub()
11526               && mips_sym->has_mips16_call_fp_stub())
11527             {
11528               call_stub = NULL;
11529               for (unsigned int i = 1; i < object->shnum(); ++i)
11530                 {
11531                   if (object->is_mips16_call_fp_stub_section(i))
11532                     {
11533                       call_stub = mips_sym->template
11534                                   get_mips16_call_fp_stub<big_endian>();
11535                       break;
11536                     }
11537
11538                 }
11539               if (call_stub == NULL)
11540                 call_stub =
11541                   mips_sym->template get_mips16_call_stub<big_endian>();
11542             }
11543           else if (mips_sym->has_mips16_call_stub())
11544             call_stub = mips_sym->template get_mips16_call_stub<big_endian>();
11545           else
11546             call_stub = mips_sym->template get_mips16_call_fp_stub<big_endian>();
11547         }
11548
11549       symval.set_output_value(call_stub->output_address());
11550       psymval = &symval;
11551       changed_symbol_value = true;
11552     }
11553   // If this is a direct call to a PIC function, redirect to the
11554   // non-PIC stub.
11555   else if (mips_sym != NULL
11556            && mips_sym->has_la25_stub()
11557            && relocation_needs_la25_stub<size, big_endian>(
11558                                        object, r_type, target_is_16_bit_code))
11559     {
11560       Mips_address value = target->la25_stub_section()->stub_address(mips_sym);
11561       if (mips_sym->is_micromips())
11562         value += 1;
11563       symval.set_output_value(value);
11564       psymval = &symval;
11565     }
11566   // For direct MIPS16 and microMIPS calls make sure the compressed PLT
11567   // entry is used if a standard PLT entry has also been made.
11568   else if ((r_type == elfcpp::R_MIPS16_26
11569             || r_type == elfcpp::R_MICROMIPS_26_S1)
11570           && !parameters->options().relocatable()
11571           && mips_sym != NULL
11572           && mips_sym->has_plt_offset()
11573           && mips_sym->has_comp_plt_offset()
11574           && mips_sym->has_mips_plt_offset())
11575     {
11576       Mips_address value = (target->plt_section()->comp_entry_address(mips_sym)
11577                             + 1);
11578       symval.set_output_value(value);
11579       psymval = &symval;
11580
11581       target_is_16_bit_code = !target->is_output_micromips();
11582       target_is_micromips_code = target->is_output_micromips();
11583     }
11584
11585   // Make sure MIPS16 and microMIPS are not used together.
11586   if ((r_type == elfcpp::R_MIPS16_26 && target_is_micromips_code)
11587       || (micromips_branch_reloc(r_type) && target_is_16_bit_code))
11588    {
11589       gold_error(_("MIPS16 and microMIPS functions cannot call each other"));
11590    }
11591
11592   // Calls from 16-bit code to 32-bit code and vice versa require the
11593   // mode change.  However, we can ignore calls to undefined weak symbols,
11594   // which should never be executed at runtime.  This exception is important
11595   // because the assembly writer may have "known" that any definition of the
11596   // symbol would be 16-bit code, and that direct jumps were therefore
11597   // acceptable.
11598   cross_mode_jump =
11599     (!parameters->options().relocatable()
11600      && !(gsym != NULL && gsym->is_weak_undefined())
11601      && ((r_type == elfcpp::R_MIPS16_26 && !target_is_16_bit_code)
11602          || (r_type == elfcpp::R_MICROMIPS_26_S1 && !target_is_micromips_code)
11603          || ((r_type == elfcpp::R_MIPS_26 || r_type == elfcpp::R_MIPS_JALR)
11604              && (target_is_16_bit_code || target_is_micromips_code))));
11605
11606   bool local = (mips_sym == NULL
11607                 || (mips_sym->got_only_for_calls()
11608                     ? symbol_calls_local(mips_sym, mips_sym->has_dynsym_index())
11609                     : symbol_references_local(mips_sym,
11610                                               mips_sym->has_dynsym_index())));
11611
11612   // Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
11613   // to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP.  The addend is applied by the
11614   // corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST.
11615   if (got_page_reloc(r_type) && !local)
11616     r_type = (micromips_reloc(r_type) ? elfcpp::R_MICROMIPS_GOT_DISP
11617                                       : elfcpp::R_MIPS_GOT_DISP);
11618
11619   unsigned int got_offset = 0;
11620   int gp_offset = 0;
11621
11622   bool calculate_only = false;
11623   Valtype calculated_value = 0;
11624   bool extract_addend = rel_type == elfcpp::SHT_REL;
11625   unsigned int r_types[3] = { r_type, r_type2, r_type3 };
11626
11627   Reloc_funcs::mips_reloc_unshuffle(view, r_type, false);
11628
11629   // For Mips64 N64 ABI, there may be up to three operations specified per
11630   // record, by the fields r_type, r_type2, and r_type3. The first operation
11631   // takes its addend from the relocation record. Each subsequent operation
11632   // takes as its addend the result of the previous operation.
11633   // The first operation in a record which references a symbol uses the symbol
11634   // implied by r_sym. The next operation in a record which references a symbol
11635   // uses the special symbol value given by the r_ssym field. A third operation
11636   // in a record which references a symbol will assume a NULL symbol,
11637   // i.e. value zero.
11638
11639   // TODO(Vladimir)
11640   // Check if a record references to a symbol.
11641   for (unsigned int i = 0; i < 3; ++i)
11642     {
11643       if (r_types[i] == elfcpp::R_MIPS_NONE)
11644         break;
11645
11646       // TODO(Vladimir)
11647       // Check if the next relocation is for the same instruction.
11648       calculate_only = i == 2 ? false
11649                               : r_types[i+1] != elfcpp::R_MIPS_NONE;
11650
11651       if (object->is_n64())
11652         {
11653           if (i == 1)
11654             {
11655               // Handle special symbol for r_type2 relocation type.
11656               switch (r_ssym)
11657                 {
11658                 case RSS_UNDEF:
11659                   symval.set_output_value(0);
11660                   break;
11661                 case RSS_GP:
11662                   symval.set_output_value(target->gp_value());
11663                   break;
11664                 case RSS_GP0:
11665                   symval.set_output_value(object->gp_value());
11666                   break;
11667                 case RSS_LOC:
11668                   symval.set_output_value(address);
11669                   break;
11670                 default:
11671                   gold_unreachable();
11672                 }
11673               psymval = &symval;
11674             }
11675           else if (i == 2)
11676            {
11677             // For r_type3 symbol value is 0.
11678             symval.set_output_value(0);
11679            }
11680         }
11681
11682       bool update_got_entry = false;
11683       switch (r_types[i])
11684         {
11685         case elfcpp::R_MIPS_NONE:
11686           break;
11687         case elfcpp::R_MIPS_16:
11688           reloc_status = Reloc_funcs::rel16(view, object, psymval, r_addend,
11689                                             extract_addend, calculate_only,
11690                                             &calculated_value);
11691           break;
11692
11693         case elfcpp::R_MIPS_32:
11694           if (should_apply_static_reloc(mips_sym, r_types[i], output_section,
11695                                         target))
11696             reloc_status = Reloc_funcs::rel32(view, object, psymval, r_addend,
11697                                               extract_addend, calculate_only,
11698                                               &calculated_value);
11699           if (mips_sym != NULL
11700               && (mips_sym->is_mips16() || mips_sym->is_micromips())
11701               && mips_sym->global_got_area() == GGA_RELOC_ONLY)
11702             {
11703               // If mips_sym->has_mips16_fn_stub() is false, symbol value is
11704               // already updated by adding +1.
11705               if (mips_sym->has_mips16_fn_stub())
11706                 {
11707                   gold_assert(mips_sym->need_fn_stub());
11708                   Mips16_stub_section<size, big_endian>* fn_stub =
11709                     mips_sym->template get_mips16_fn_stub<big_endian>();
11710
11711                   symval.set_output_value(fn_stub->output_address());
11712                   psymval = &symval;
11713                 }
11714               got_offset = mips_sym->global_gotoffset();
11715               update_got_entry = true;
11716             }
11717           break;
11718
11719         case elfcpp::R_MIPS_64:
11720           if (should_apply_static_reloc(mips_sym, r_types[i], output_section,
11721                                         target))
11722             reloc_status = Reloc_funcs::rel64(view, object, psymval, r_addend,
11723                                               extract_addend, calculate_only,
11724                                               &calculated_value, false);
11725           else if (target->is_output_n64() && r_addend != 0)
11726             // Only apply the addend.  The static relocation was RELA, but the
11727             // dynamic relocation is REL, so we need to apply the addend.
11728             reloc_status = Reloc_funcs::rel64(view, object, psymval, r_addend,
11729                                               extract_addend, calculate_only,
11730                                               &calculated_value, true);
11731           break;
11732         case elfcpp::R_MIPS_REL32:
11733           gold_unreachable();
11734
11735         case elfcpp::R_MIPS_PC32:
11736           reloc_status = Reloc_funcs::relpc32(view, object, psymval, address,
11737                                               r_addend, extract_addend,
11738                                               calculate_only,
11739                                               &calculated_value);
11740           break;
11741
11742         case elfcpp::R_MIPS16_26:
11743           // The calculation for R_MIPS16_26 is just the same as for an
11744           // R_MIPS_26.  It's only the storage of the relocated field into
11745           // the output file that's different.  So, we just fall through to the
11746           // R_MIPS_26 case here.
11747         case elfcpp::R_MIPS_26:
11748         case elfcpp::R_MICROMIPS_26_S1:
11749           reloc_status = Reloc_funcs::rel26(view, object, psymval, address,
11750               gsym == NULL, r_addend, extract_addend, gsym, cross_mode_jump,
11751               r_types[i], target->jal_to_bal(), calculate_only,
11752               &calculated_value);
11753           break;
11754
11755         case elfcpp::R_MIPS_HI16:
11756         case elfcpp::R_MIPS16_HI16:
11757         case elfcpp::R_MICROMIPS_HI16:
11758           if (rel_type == elfcpp::SHT_RELA)
11759             reloc_status = Reloc_funcs::do_relhi16(view, object, psymval,
11760                                                    r_addend, address,
11761                                                    gp_disp, r_types[i],
11762                                                    extract_addend, 0,
11763                                                    target, calculate_only,
11764                                                    &calculated_value);
11765           else if (rel_type == elfcpp::SHT_REL)
11766             reloc_status = Reloc_funcs::relhi16(view, object, psymval, r_addend,
11767                                                 address, gp_disp, r_types[i],
11768                                                 r_sym, extract_addend);
11769           else
11770             gold_unreachable();
11771           break;
11772
11773         case elfcpp::R_MIPS_LO16:
11774         case elfcpp::R_MIPS16_LO16:
11775         case elfcpp::R_MICROMIPS_LO16:
11776         case elfcpp::R_MICROMIPS_HI0_LO16:
11777           reloc_status = Reloc_funcs::rello16(target, view, object, psymval,
11778                                               r_addend, extract_addend, address,
11779                                               gp_disp, r_types[i], r_sym,
11780                                               rel_type, calculate_only,
11781                                               &calculated_value);
11782           break;
11783
11784         case elfcpp::R_MIPS_LITERAL:
11785         case elfcpp::R_MICROMIPS_LITERAL:
11786           // Because we don't merge literal sections, we can handle this
11787           // just like R_MIPS_GPREL16.  In the long run, we should merge
11788           // shared literals, and then we will need to additional work
11789           // here.
11790
11791           // Fall through.
11792
11793         case elfcpp::R_MIPS_GPREL16:
11794         case elfcpp::R_MIPS16_GPREL:
11795         case elfcpp::R_MICROMIPS_GPREL7_S2:
11796         case elfcpp::R_MICROMIPS_GPREL16:
11797           reloc_status = Reloc_funcs::relgprel(view, object, psymval,
11798                                              target->adjusted_gp_value(object),
11799                                              r_addend, extract_addend,
11800                                              gsym == NULL, r_types[i],
11801                                              calculate_only, &calculated_value);
11802           break;
11803
11804         case elfcpp::R_MIPS_PC16:
11805           reloc_status = Reloc_funcs::relpc16(view, object, psymval, address,
11806                                               r_addend, extract_addend,
11807                                               calculate_only,
11808                                               &calculated_value);
11809           break;
11810
11811         case elfcpp::R_MIPS_PC21_S2:
11812           reloc_status = Reloc_funcs::relpc21(view, object, psymval, address,
11813                                               r_addend, extract_addend,
11814                                               calculate_only,
11815                                               &calculated_value);
11816           break;
11817
11818         case elfcpp::R_MIPS_PC26_S2:
11819           reloc_status = Reloc_funcs::relpc26(view, object, psymval, address,
11820                                               r_addend, extract_addend,
11821                                               calculate_only,
11822                                               &calculated_value);
11823           break;
11824
11825         case elfcpp::R_MIPS_PC18_S3:
11826           reloc_status = Reloc_funcs::relpc18(view, object, psymval, address,
11827                                               r_addend, extract_addend,
11828                                               calculate_only,
11829                                               &calculated_value);
11830           break;
11831
11832         case elfcpp::R_MIPS_PC19_S2:
11833           reloc_status = Reloc_funcs::relpc19(view, object, psymval, address,
11834                                               r_addend, extract_addend,
11835                                               calculate_only,
11836                                               &calculated_value);
11837           break;
11838
11839         case elfcpp::R_MIPS_PCHI16:
11840           if (rel_type == elfcpp::SHT_RELA)
11841             reloc_status = Reloc_funcs::do_relpchi16(view, object, psymval,
11842                                                      r_addend, address,
11843                                                      extract_addend, 0,
11844                                                      calculate_only,
11845                                                      &calculated_value);
11846           else if (rel_type == elfcpp::SHT_REL)
11847             reloc_status = Reloc_funcs::relpchi16(view, object, psymval,
11848                                                   r_addend, address, r_sym,
11849                                                   extract_addend);
11850           else
11851             gold_unreachable();
11852           break;
11853
11854         case elfcpp::R_MIPS_PCLO16:
11855           reloc_status = Reloc_funcs::relpclo16(view, object, psymval, r_addend,
11856                                                 extract_addend, address, r_sym,
11857                                                 rel_type, calculate_only,
11858                                                 &calculated_value);
11859           break;
11860         case elfcpp::R_MICROMIPS_PC7_S1:
11861           reloc_status = Reloc_funcs::relmicromips_pc7_s1(view, object, psymval,
11862                                                         address, r_addend,
11863                                                         extract_addend,
11864                                                         calculate_only,
11865                                                         &calculated_value);
11866           break;
11867         case elfcpp::R_MICROMIPS_PC10_S1:
11868           reloc_status = Reloc_funcs::relmicromips_pc10_s1(view, object,
11869                                                        psymval, address,
11870                                                        r_addend, extract_addend,
11871                                                        calculate_only,
11872                                                        &calculated_value);
11873           break;
11874         case elfcpp::R_MICROMIPS_PC16_S1:
11875           reloc_status = Reloc_funcs::relmicromips_pc16_s1(view, object,
11876                                                        psymval, address,
11877                                                        r_addend, extract_addend,
11878                                                        calculate_only,
11879                                                        &calculated_value);
11880           break;
11881         case elfcpp::R_MIPS_GPREL32:
11882           reloc_status = Reloc_funcs::relgprel32(view, object, psymval,
11883                                               target->adjusted_gp_value(object),
11884                                               r_addend, extract_addend,
11885                                               calculate_only,
11886                                               &calculated_value);
11887           break;
11888         case elfcpp::R_MIPS_GOT_HI16:
11889         case elfcpp::R_MIPS_CALL_HI16:
11890         case elfcpp::R_MICROMIPS_GOT_HI16:
11891         case elfcpp::R_MICROMIPS_CALL_HI16:
11892           if (gsym != NULL)
11893             got_offset = target->got_section()->got_offset(gsym,
11894                                                            GOT_TYPE_STANDARD,
11895                                                            object);
11896           else
11897             got_offset = target->got_section()->got_offset(r_sym,
11898                                                            GOT_TYPE_STANDARD,
11899                                                            object, r_addend);
11900           gp_offset = target->got_section()->gp_offset(got_offset, object);
11901           reloc_status = Reloc_funcs::relgot_hi16(view, gp_offset,
11902                                                   calculate_only,
11903                                                   &calculated_value);
11904           update_got_entry = changed_symbol_value;
11905           break;
11906
11907         case elfcpp::R_MIPS_GOT_LO16:
11908         case elfcpp::R_MIPS_CALL_LO16:
11909         case elfcpp::R_MICROMIPS_GOT_LO16:
11910         case elfcpp::R_MICROMIPS_CALL_LO16:
11911           if (gsym != NULL)
11912             got_offset = target->got_section()->got_offset(gsym,
11913                                                            GOT_TYPE_STANDARD,
11914                                                            object);
11915           else
11916             got_offset = target->got_section()->got_offset(r_sym,
11917                                                            GOT_TYPE_STANDARD,
11918                                                            object, r_addend);
11919           gp_offset = target->got_section()->gp_offset(got_offset, object);
11920           reloc_status = Reloc_funcs::relgot_lo16(view, gp_offset,
11921                                                   calculate_only,
11922                                                   &calculated_value);
11923           update_got_entry = changed_symbol_value;
11924           break;
11925
11926         case elfcpp::R_MIPS_GOT_DISP:
11927         case elfcpp::R_MICROMIPS_GOT_DISP:
11928         case elfcpp::R_MIPS_EH:
11929           if (gsym != NULL)
11930             got_offset = target->got_section()->got_offset(gsym,
11931                                                            GOT_TYPE_STANDARD,
11932                                                            object);
11933           else
11934             got_offset = target->got_section()->got_offset(r_sym,
11935                                                            GOT_TYPE_STANDARD,
11936                                                            object, r_addend);
11937           gp_offset = target->got_section()->gp_offset(got_offset, object);
11938           if (eh_reloc(r_types[i]))
11939             reloc_status = Reloc_funcs::releh(view, gp_offset,
11940                                               calculate_only,
11941                                               &calculated_value);
11942           else
11943             reloc_status = Reloc_funcs::relgot(view, gp_offset,
11944                                                calculate_only,
11945                                                &calculated_value);
11946           break;
11947         case elfcpp::R_MIPS_CALL16:
11948         case elfcpp::R_MIPS16_CALL16:
11949         case elfcpp::R_MICROMIPS_CALL16:
11950           gold_assert(gsym != NULL);
11951           got_offset = target->got_section()->got_offset(gsym,
11952                                                          GOT_TYPE_STANDARD,
11953                                                          object);
11954           gp_offset = target->got_section()->gp_offset(got_offset, object);
11955           reloc_status = Reloc_funcs::relgot(view, gp_offset,
11956                                              calculate_only, &calculated_value);
11957           // TODO(sasa): We should also initialize update_got_entry
11958           // in other place swhere relgot is called.
11959           update_got_entry = changed_symbol_value;
11960           break;
11961
11962         case elfcpp::R_MIPS_GOT16:
11963         case elfcpp::R_MIPS16_GOT16:
11964         case elfcpp::R_MICROMIPS_GOT16:
11965           if (gsym != NULL)
11966             {
11967               got_offset = target->got_section()->got_offset(gsym,
11968                                                              GOT_TYPE_STANDARD,
11969                                                              object);
11970               gp_offset = target->got_section()->gp_offset(got_offset, object);
11971               reloc_status = Reloc_funcs::relgot(view, gp_offset,
11972                                                  calculate_only,
11973                                                  &calculated_value);
11974             }
11975           else
11976             {
11977               if (rel_type == elfcpp::SHT_RELA)
11978                 reloc_status = Reloc_funcs::do_relgot16_local(view, object,
11979                                                          psymval, r_addend,
11980                                                          extract_addend, 0,
11981                                                          target,
11982                                                          calculate_only,
11983                                                          &calculated_value);
11984               else if (rel_type == elfcpp::SHT_REL)
11985                 reloc_status = Reloc_funcs::relgot16_local(view, object,
11986                                                            psymval, r_addend,
11987                                                            extract_addend,
11988                                                            r_types[i], r_sym);
11989               else
11990                 gold_unreachable();
11991             }
11992           update_got_entry = changed_symbol_value;
11993           break;
11994
11995         case elfcpp::R_MIPS_TLS_GD:
11996         case elfcpp::R_MIPS16_TLS_GD:
11997         case elfcpp::R_MICROMIPS_TLS_GD:
11998           if (gsym != NULL)
11999             got_offset = target->got_section()->got_offset(gsym,
12000                                                            GOT_TYPE_TLS_PAIR,
12001                                                            object);
12002           else
12003             got_offset = target->got_section()->got_offset(r_sym,
12004                                                            GOT_TYPE_TLS_PAIR,
12005                                                            object, r_addend);
12006           gp_offset = target->got_section()->gp_offset(got_offset, object);
12007           reloc_status = Reloc_funcs::relgot(view, gp_offset, calculate_only,
12008                                              &calculated_value);
12009           break;
12010
12011         case elfcpp::R_MIPS_TLS_GOTTPREL:
12012         case elfcpp::R_MIPS16_TLS_GOTTPREL:
12013         case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
12014           if (gsym != NULL)
12015             got_offset = target->got_section()->got_offset(gsym,
12016                                                            GOT_TYPE_TLS_OFFSET,
12017                                                            object);
12018           else
12019             got_offset = target->got_section()->got_offset(r_sym,
12020                                                            GOT_TYPE_TLS_OFFSET,
12021                                                            object, r_addend);
12022           gp_offset = target->got_section()->gp_offset(got_offset, object);
12023           reloc_status = Reloc_funcs::relgot(view, gp_offset, calculate_only,
12024                                              &calculated_value);
12025           break;
12026
12027         case elfcpp::R_MIPS_TLS_LDM:
12028         case elfcpp::R_MIPS16_TLS_LDM:
12029         case elfcpp::R_MICROMIPS_TLS_LDM:
12030           // Relocate the field with the offset of the GOT entry for
12031           // the module index.
12032           got_offset = target->got_section()->tls_ldm_offset(object);
12033           gp_offset = target->got_section()->gp_offset(got_offset, object);
12034           reloc_status = Reloc_funcs::relgot(view, gp_offset, calculate_only,
12035                                              &calculated_value);
12036           break;
12037
12038         case elfcpp::R_MIPS_GOT_PAGE:
12039         case elfcpp::R_MICROMIPS_GOT_PAGE:
12040           reloc_status = Reloc_funcs::relgotpage(target, view, object, psymval,
12041                                                  r_addend, extract_addend,
12042                                                  calculate_only,
12043                                                  &calculated_value);
12044           break;
12045
12046         case elfcpp::R_MIPS_GOT_OFST:
12047         case elfcpp::R_MICROMIPS_GOT_OFST:
12048           reloc_status = Reloc_funcs::relgotofst(target, view, object, psymval,
12049                                                  r_addend, extract_addend,
12050                                                  local, calculate_only,
12051                                                  &calculated_value);
12052           break;
12053
12054         case elfcpp::R_MIPS_JALR:
12055         case elfcpp::R_MICROMIPS_JALR:
12056           // This relocation is only a hint.  In some cases, we optimize
12057           // it into a bal instruction.  But we don't try to optimize
12058           // when the symbol does not resolve locally.
12059           if (gsym == NULL
12060               || symbol_calls_local(gsym, gsym->has_dynsym_index()))
12061             reloc_status = Reloc_funcs::reljalr(view, object, psymval, address,
12062                                                 r_addend, extract_addend,
12063                                                 cross_mode_jump, r_types[i],
12064                                                 target->jalr_to_bal(),
12065                                                 target->jr_to_b(),
12066                                                 calculate_only,
12067                                                 &calculated_value);
12068           break;
12069
12070         case elfcpp::R_MIPS_TLS_DTPREL_HI16:
12071         case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
12072         case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
12073           reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
12074                                                  elfcpp::DTP_OFFSET, r_addend,
12075                                                  extract_addend, calculate_only,
12076                                                  &calculated_value);
12077           break;
12078         case elfcpp::R_MIPS_TLS_DTPREL_LO16:
12079         case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
12080         case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
12081           reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
12082                                                  elfcpp::DTP_OFFSET, r_addend,
12083                                                  extract_addend, calculate_only,
12084                                                  &calculated_value);
12085           break;
12086         case elfcpp::R_MIPS_TLS_DTPREL32:
12087         case elfcpp::R_MIPS_TLS_DTPREL64:
12088           reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
12089                                                elfcpp::DTP_OFFSET, r_addend,
12090                                                extract_addend, calculate_only,
12091                                                &calculated_value);
12092           break;
12093         case elfcpp::R_MIPS_TLS_TPREL_HI16:
12094         case elfcpp::R_MIPS16_TLS_TPREL_HI16:
12095         case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
12096           reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
12097                                                  elfcpp::TP_OFFSET, r_addend,
12098                                                  extract_addend, calculate_only,
12099                                                  &calculated_value);
12100           break;
12101         case elfcpp::R_MIPS_TLS_TPREL_LO16:
12102         case elfcpp::R_MIPS16_TLS_TPREL_LO16:
12103         case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
12104           reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
12105                                                  elfcpp::TP_OFFSET, r_addend,
12106                                                  extract_addend, calculate_only,
12107                                                  &calculated_value);
12108           break;
12109         case elfcpp::R_MIPS_TLS_TPREL32:
12110         case elfcpp::R_MIPS_TLS_TPREL64:
12111           reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
12112                                                elfcpp::TP_OFFSET, r_addend,
12113                                                extract_addend, calculate_only,
12114                                                &calculated_value);
12115           break;
12116         case elfcpp::R_MIPS_SUB:
12117         case elfcpp::R_MICROMIPS_SUB:
12118           reloc_status = Reloc_funcs::relsub(view, object, psymval, r_addend,
12119                                              extract_addend,
12120                                              calculate_only, &calculated_value);
12121           break;
12122         default:
12123           gold_error_at_location(relinfo, relnum, r_offset,
12124                                  _("unsupported reloc %u"), r_types[i]);
12125           break;
12126         }
12127
12128       if (update_got_entry)
12129         {
12130           Mips_output_data_got<size, big_endian>* got = target->got_section();
12131           if (mips_sym != NULL && mips_sym->get_applied_secondary_got_fixup())
12132             got->update_got_entry(got->get_primary_got_offset(mips_sym),
12133                                   psymval->value(object, 0));
12134           else
12135             got->update_got_entry(got_offset, psymval->value(object, 0));
12136         }
12137
12138       r_addend = calculated_value;
12139     }
12140
12141   bool jal_shuffle = jal_reloc(r_type) ? !parameters->options().relocatable()
12142                                        : false;
12143   Reloc_funcs::mips_reloc_shuffle(view, r_type, jal_shuffle);
12144
12145   // Report any errors.
12146   switch (reloc_status)
12147     {
12148     case Reloc_funcs::STATUS_OKAY:
12149       break;
12150     case Reloc_funcs::STATUS_OVERFLOW:
12151       gold_error_at_location(relinfo, relnum, r_offset,
12152                              _("relocation overflow"));
12153       break;
12154     case Reloc_funcs::STATUS_BAD_RELOC:
12155       gold_error_at_location(relinfo, relnum, r_offset,
12156         _("unexpected opcode while processing relocation"));
12157       break;
12158     case Reloc_funcs::STATUS_PCREL_UNALIGNED:
12159       gold_error_at_location(relinfo, relnum, r_offset,
12160         _("unaligned PC-relative relocation"));
12161       break;
12162     default:
12163       gold_unreachable();
12164     }
12165
12166   return true;
12167 }
12168
12169 // Get the Reference_flags for a particular relocation.
12170
12171 template<int size, bool big_endian>
12172 int
12173 Target_mips<size, big_endian>::Scan::get_reference_flags(
12174                        unsigned int r_type)
12175 {
12176   switch (r_type)
12177     {
12178     case elfcpp::R_MIPS_NONE:
12179       // No symbol reference.
12180       return 0;
12181
12182     case elfcpp::R_MIPS_16:
12183     case elfcpp::R_MIPS_32:
12184     case elfcpp::R_MIPS_64:
12185     case elfcpp::R_MIPS_HI16:
12186     case elfcpp::R_MIPS_LO16:
12187     case elfcpp::R_MIPS16_HI16:
12188     case elfcpp::R_MIPS16_LO16:
12189     case elfcpp::R_MICROMIPS_HI16:
12190     case elfcpp::R_MICROMIPS_LO16:
12191       return Symbol::ABSOLUTE_REF;
12192
12193     case elfcpp::R_MIPS_26:
12194     case elfcpp::R_MIPS16_26:
12195     case elfcpp::R_MICROMIPS_26_S1:
12196       return Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
12197
12198     case elfcpp::R_MIPS_PC18_S3:
12199     case elfcpp::R_MIPS_PC19_S2:
12200     case elfcpp::R_MIPS_PCHI16:
12201     case elfcpp::R_MIPS_PCLO16:
12202     case elfcpp::R_MIPS_GPREL32:
12203     case elfcpp::R_MIPS_GPREL16:
12204     case elfcpp::R_MIPS_REL32:
12205     case elfcpp::R_MIPS16_GPREL:
12206       return Symbol::RELATIVE_REF;
12207
12208     case elfcpp::R_MIPS_PC16:
12209     case elfcpp::R_MIPS_PC32:
12210     case elfcpp::R_MIPS_PC21_S2:
12211     case elfcpp::R_MIPS_PC26_S2:
12212     case elfcpp::R_MIPS_JALR:
12213     case elfcpp::R_MICROMIPS_JALR:
12214       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
12215
12216     case elfcpp::R_MIPS_GOT16:
12217     case elfcpp::R_MIPS_CALL16:
12218     case elfcpp::R_MIPS_GOT_DISP:
12219     case elfcpp::R_MIPS_GOT_HI16:
12220     case elfcpp::R_MIPS_GOT_LO16:
12221     case elfcpp::R_MIPS_CALL_HI16:
12222     case elfcpp::R_MIPS_CALL_LO16:
12223     case elfcpp::R_MIPS_LITERAL:
12224     case elfcpp::R_MIPS_GOT_PAGE:
12225     case elfcpp::R_MIPS_GOT_OFST:
12226     case elfcpp::R_MIPS16_GOT16:
12227     case elfcpp::R_MIPS16_CALL16:
12228     case elfcpp::R_MICROMIPS_GOT16:
12229     case elfcpp::R_MICROMIPS_CALL16:
12230     case elfcpp::R_MICROMIPS_GOT_HI16:
12231     case elfcpp::R_MICROMIPS_GOT_LO16:
12232     case elfcpp::R_MICROMIPS_CALL_HI16:
12233     case elfcpp::R_MICROMIPS_CALL_LO16:
12234     case elfcpp::R_MIPS_EH:
12235       // Absolute in GOT.
12236       return Symbol::RELATIVE_REF;
12237
12238     case elfcpp::R_MIPS_TLS_DTPMOD32:
12239     case elfcpp::R_MIPS_TLS_DTPREL32:
12240     case elfcpp::R_MIPS_TLS_DTPMOD64:
12241     case elfcpp::R_MIPS_TLS_DTPREL64:
12242     case elfcpp::R_MIPS_TLS_GD:
12243     case elfcpp::R_MIPS_TLS_LDM:
12244     case elfcpp::R_MIPS_TLS_DTPREL_HI16:
12245     case elfcpp::R_MIPS_TLS_DTPREL_LO16:
12246     case elfcpp::R_MIPS_TLS_GOTTPREL:
12247     case elfcpp::R_MIPS_TLS_TPREL32:
12248     case elfcpp::R_MIPS_TLS_TPREL64:
12249     case elfcpp::R_MIPS_TLS_TPREL_HI16:
12250     case elfcpp::R_MIPS_TLS_TPREL_LO16:
12251     case elfcpp::R_MIPS16_TLS_GD:
12252     case elfcpp::R_MIPS16_TLS_GOTTPREL:
12253     case elfcpp::R_MICROMIPS_TLS_GD:
12254     case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
12255     case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
12256     case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
12257       return Symbol::TLS_REF;
12258
12259     case elfcpp::R_MIPS_COPY:
12260     case elfcpp::R_MIPS_JUMP_SLOT:
12261     default:
12262       gold_unreachable();
12263       // Not expected.  We will give an error later.
12264       return 0;
12265     }
12266 }
12267
12268 // Report an unsupported relocation against a local symbol.
12269
12270 template<int size, bool big_endian>
12271 void
12272 Target_mips<size, big_endian>::Scan::unsupported_reloc_local(
12273                         Sized_relobj_file<size, big_endian>* object,
12274                         unsigned int r_type)
12275 {
12276   gold_error(_("%s: unsupported reloc %u against local symbol"),
12277              object->name().c_str(), r_type);
12278 }
12279
12280 // Report an unsupported relocation against a global symbol.
12281
12282 template<int size, bool big_endian>
12283 void
12284 Target_mips<size, big_endian>::Scan::unsupported_reloc_global(
12285                         Sized_relobj_file<size, big_endian>* object,
12286                         unsigned int r_type,
12287                         Symbol* gsym)
12288 {
12289   gold_error(_("%s: unsupported reloc %u against global symbol %s"),
12290              object->name().c_str(), r_type, gsym->demangled_name().c_str());
12291 }
12292
12293 // Return printable name for ABI.
12294 template<int size, bool big_endian>
12295 const char*
12296 Target_mips<size, big_endian>::elf_mips_abi_name(elfcpp::Elf_Word e_flags)
12297 {
12298   switch (e_flags & elfcpp::EF_MIPS_ABI)
12299     {
12300     case 0:
12301       if ((e_flags & elfcpp::EF_MIPS_ABI2) != 0)
12302         return "N32";
12303       else if (size == 64)
12304         return "64";
12305       else
12306         return "none";
12307     case elfcpp::E_MIPS_ABI_O32:
12308       return "O32";
12309     case elfcpp::E_MIPS_ABI_O64:
12310       return "O64";
12311     case elfcpp::E_MIPS_ABI_EABI32:
12312       return "EABI32";
12313     case elfcpp::E_MIPS_ABI_EABI64:
12314       return "EABI64";
12315     default:
12316       return "unknown abi";
12317     }
12318 }
12319
12320 template<int size, bool big_endian>
12321 const char*
12322 Target_mips<size, big_endian>::elf_mips_mach_name(elfcpp::Elf_Word e_flags)
12323 {
12324   switch (e_flags & elfcpp::EF_MIPS_MACH)
12325     {
12326     case elfcpp::E_MIPS_MACH_3900:
12327       return "mips:3900";
12328     case elfcpp::E_MIPS_MACH_4010:
12329       return "mips:4010";
12330     case elfcpp::E_MIPS_MACH_4100:
12331       return "mips:4100";
12332     case elfcpp::E_MIPS_MACH_4111:
12333       return "mips:4111";
12334     case elfcpp::E_MIPS_MACH_4120:
12335       return "mips:4120";
12336     case elfcpp::E_MIPS_MACH_4650:
12337       return "mips:4650";
12338     case elfcpp::E_MIPS_MACH_5400:
12339       return "mips:5400";
12340     case elfcpp::E_MIPS_MACH_5500:
12341       return "mips:5500";
12342     case elfcpp::E_MIPS_MACH_5900:
12343       return "mips:5900";
12344     case elfcpp::E_MIPS_MACH_SB1:
12345       return "mips:sb1";
12346     case elfcpp::E_MIPS_MACH_9000:
12347       return "mips:9000";
12348     case elfcpp::E_MIPS_MACH_LS2E:
12349       return "mips:loongson_2e";
12350     case elfcpp::E_MIPS_MACH_LS2F:
12351       return "mips:loongson_2f";
12352     case elfcpp::E_MIPS_MACH_LS3A:
12353       return "mips:loongson_3a";
12354     case elfcpp::E_MIPS_MACH_OCTEON:
12355       return "mips:octeon";
12356     case elfcpp::E_MIPS_MACH_OCTEON2:
12357       return "mips:octeon2";
12358     case elfcpp::E_MIPS_MACH_OCTEON3:
12359       return "mips:octeon3";
12360     case elfcpp::E_MIPS_MACH_XLR:
12361       return "mips:xlr";
12362     default:
12363       switch (e_flags & elfcpp::EF_MIPS_ARCH)
12364         {
12365         default:
12366         case elfcpp::E_MIPS_ARCH_1:
12367           return "mips:3000";
12368
12369         case elfcpp::E_MIPS_ARCH_2:
12370           return "mips:6000";
12371
12372         case elfcpp::E_MIPS_ARCH_3:
12373           return "mips:4000";
12374
12375         case elfcpp::E_MIPS_ARCH_4:
12376           return "mips:8000";
12377
12378         case elfcpp::E_MIPS_ARCH_5:
12379           return "mips:mips5";
12380
12381         case elfcpp::E_MIPS_ARCH_32:
12382           return "mips:isa32";
12383
12384         case elfcpp::E_MIPS_ARCH_64:
12385           return "mips:isa64";
12386
12387         case elfcpp::E_MIPS_ARCH_32R2:
12388           return "mips:isa32r2";
12389
12390         case elfcpp::E_MIPS_ARCH_32R6:
12391           return "mips:isa32r6";
12392
12393         case elfcpp::E_MIPS_ARCH_64R2:
12394           return "mips:isa64r2";
12395
12396         case elfcpp::E_MIPS_ARCH_64R6:
12397           return "mips:isa64r6";
12398         }
12399     }
12400     return "unknown CPU";
12401 }
12402
12403 template<int size, bool big_endian>
12404 const Target::Target_info Target_mips<size, big_endian>::mips_info =
12405 {
12406   size,                 // size
12407   big_endian,           // is_big_endian
12408   elfcpp::EM_MIPS,      // machine_code
12409   true,                 // has_make_symbol
12410   false,                // has_resolve
12411   false,                // has_code_fill
12412   true,                 // is_default_stack_executable
12413   false,                // can_icf_inline_merge_sections
12414   '\0',                 // wrap_char
12415   size == 32 ? "/lib/ld.so.1" : "/lib64/ld.so.1",      // dynamic_linker
12416   0x400000,             // default_text_segment_address
12417   64 * 1024,            // abi_pagesize (overridable by -z max-page-size)
12418   4 * 1024,             // common_pagesize (overridable by -z common-page-size)
12419   false,                // isolate_execinstr
12420   0,                    // rosegment_gap
12421   elfcpp::SHN_UNDEF,    // small_common_shndx
12422   elfcpp::SHN_UNDEF,    // large_common_shndx
12423   0,                    // small_common_section_flags
12424   0,                    // large_common_section_flags
12425   NULL,                 // attributes_section
12426   NULL,                 // attributes_vendor
12427   "__start",            // entry_symbol_name
12428   32,                   // hash_entry_size
12429 };
12430
12431 template<int size, bool big_endian>
12432 class Target_mips_nacl : public Target_mips<size, big_endian>
12433 {
12434  public:
12435   Target_mips_nacl()
12436     : Target_mips<size, big_endian>(&mips_nacl_info)
12437   { }
12438
12439  private:
12440   static const Target::Target_info mips_nacl_info;
12441 };
12442
12443 template<int size, bool big_endian>
12444 const Target::Target_info Target_mips_nacl<size, big_endian>::mips_nacl_info =
12445 {
12446   size,                 // size
12447   big_endian,           // is_big_endian
12448   elfcpp::EM_MIPS,      // machine_code
12449   true,                 // has_make_symbol
12450   false,                // has_resolve
12451   false,                // has_code_fill
12452   true,                 // is_default_stack_executable
12453   false,                // can_icf_inline_merge_sections
12454   '\0',                 // wrap_char
12455   "/lib/ld.so.1",       // dynamic_linker
12456   0x20000,              // default_text_segment_address
12457   0x10000,              // abi_pagesize (overridable by -z max-page-size)
12458   0x10000,              // common_pagesize (overridable by -z common-page-size)
12459   true,                 // isolate_execinstr
12460   0x10000000,           // rosegment_gap
12461   elfcpp::SHN_UNDEF,    // small_common_shndx
12462   elfcpp::SHN_UNDEF,    // large_common_shndx
12463   0,                    // small_common_section_flags
12464   0,                    // large_common_section_flags
12465   NULL,                 // attributes_section
12466   NULL,                 // attributes_vendor
12467   "_start",             // entry_symbol_name
12468   32,                   // hash_entry_size
12469 };
12470
12471 // Target selector for Mips.  Note this is never instantiated directly.
12472 // It's only used in Target_selector_mips_nacl, below.
12473
12474 template<int size, bool big_endian>
12475 class Target_selector_mips : public Target_selector
12476 {
12477 public:
12478   Target_selector_mips()
12479     : Target_selector(elfcpp::EM_MIPS, size, big_endian,
12480                 (size == 64 ?
12481                   (big_endian ? "elf64-tradbigmips" : "elf64-tradlittlemips") :
12482                   (big_endian ? "elf32-tradbigmips" : "elf32-tradlittlemips")),
12483                 (size == 64 ?
12484                   (big_endian ? "elf64btsmip" : "elf64ltsmip") :
12485                   (big_endian ? "elf32btsmip" : "elf32ltsmip")))
12486   { }
12487
12488   Target* do_instantiate_target()
12489   { return new Target_mips<size, big_endian>(); }
12490 };
12491
12492 template<int size, bool big_endian>
12493 class Target_selector_mips_nacl
12494   : public Target_selector_nacl<Target_selector_mips<size, big_endian>,
12495                                 Target_mips_nacl<size, big_endian> >
12496 {
12497  public:
12498   Target_selector_mips_nacl()
12499     : Target_selector_nacl<Target_selector_mips<size, big_endian>,
12500                            Target_mips_nacl<size, big_endian> >(
12501         // NaCl currently supports only MIPS32 little-endian.
12502         "mipsel", "elf32-tradlittlemips-nacl", "elf32-tradlittlemips-nacl")
12503   { }
12504 };
12505
12506 Target_selector_mips_nacl<32, true> target_selector_mips32;
12507 Target_selector_mips_nacl<32, false> target_selector_mips32el;
12508 Target_selector_mips_nacl<64, true> target_selector_mips64;
12509 Target_selector_mips_nacl<64, false> target_selector_mips64el;
12510
12511 } // End anonymous namespace.