Import pre-release gcc-5.0 to new vendor branch
[dragonfly.git] / contrib / gcc-5.0 / gcc / bitmap.h
1 /* Functions to support general ended bitmaps.
2    Copyright (C) 1997-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19
20 #ifndef GCC_BITMAP_H
21 #define GCC_BITMAP_H
22
23 /* Implementation of sparse integer sets as a linked list.
24
25    This sparse set representation is suitable for sparse sets with an
26    unknown (a priori) universe.  The set is represented as a double-linked
27    list of container nodes (struct bitmap_element).  Each node consists
28    of an index for the first member that could be held in the container,
29    a small array of integers that represent the members in the container,
30    and pointers to the next and previous element in the linked list.  The
31    elements in the list are sorted in ascending order, i.e. the head of
32    the list holds the element with the smallest member of the set.
33
34    For a given member I in the set:
35      - the element for I will have index is I / (bits per element)
36      - the position for I within element is I % (bits per element)
37
38    This representation is very space-efficient for large sparse sets, and
39    the size of the set can be changed dynamically without much overhead.
40    An important parameter is the number of bits per element.  In this
41    implementation, there are 128 bits per element.  This results in a
42    high storage overhead *per element*, but a small overall overhead if
43    the set is very sparse.
44
45    The downside is that many operations are relatively slow because the
46    linked list has to be traversed to test membership (i.e. member_p/
47    add_member/remove_member).  To improve the performance of this set
48    representation, the last accessed element and its index are cached.
49    For membership tests on members close to recently accessed members,
50    the cached last element improves membership test to a constant-time
51    operation.
52
53    The following operations can always be performed in O(1) time:
54
55      * clear                    : bitmap_clear
56      * choose_one               : (not implemented, but could be
57                                    implemented in constant time)
58
59    The following operations can be performed in O(E) time worst-case (with
60    E the number of elements in the linked list), but in O(1) time with a
61    suitable access patterns:
62
63      * member_p                 : bitmap_bit_p
64      * add_member               : bitmap_set_bit
65      * remove_member            : bitmap_clear_bit
66
67    The following operations can be performed in O(E) time:
68
69      * cardinality              : bitmap_count_bits
70      * set_size                 : bitmap_last_set_bit (but this could
71                                   in constant time with a pointer to
72                                   the last element in the chain)
73
74    Additionally, the linked-list sparse set representation supports
75    enumeration of the members in O(E) time:
76
77      * forall                   : EXECUTE_IF_SET_IN_BITMAP
78      * set_copy                 : bitmap_copy
79      * set_intersection         : bitmap_intersect_p /
80                                   bitmap_and / bitmap_and_into /
81                                   EXECUTE_IF_AND_IN_BITMAP
82      * set_union                : bitmap_ior / bitmap_ior_into
83      * set_difference           : bitmap_intersect_compl_p /
84                                   bitmap_and_comp / bitmap_and_comp_into /
85                                   EXECUTE_IF_AND_COMPL_IN_BITMAP
86      * set_disjuction           : bitmap_xor_comp / bitmap_xor_comp_into
87      * set_compare              : bitmap_equal_p
88
89    Some operations on 3 sets that occur frequently in in data flow problems
90    are also implemented:
91
92      * A | (B & C)              : bitmap_ior_and_into
93      * A | (B & ~C)             : bitmap_ior_and_compl /
94                                   bitmap_ior_and_compl_into
95
96    The storage requirements for linked-list sparse sets are O(E), with E->N
97    in the worst case (a sparse set with large distances between the values
98    of the set members).
99
100    The linked-list set representation works well for problems involving very
101    sparse sets.  The canonical example in GCC is, of course, the "set of
102    sets" for some CFG-based data flow problems (liveness analysis, dominance
103    frontiers, etc.).
104    
105    This representation also works well for data flow problems where the size
106    of the set may grow dynamically, but care must be taken that the member_p,
107    add_member, and remove_member operations occur with a suitable access
108    pattern.
109    
110    For random-access sets with a known, relatively small universe size, the
111    SparseSet or simple bitmap representations may be more efficient than a
112    linked-list set.  For random-access sets of unknown universe, a hash table
113    or a balanced binary tree representation is likely to be a more suitable
114    choice.
115
116    Traversing linked lists is usually cache-unfriendly, even with the last
117    accessed element cached.
118    
119    Cache performance can be improved by keeping the elements in the set
120    grouped together in memory, using a dedicated obstack for a set (or group
121    of related sets).  Elements allocated on obstacks are released to a
122    free-list and taken off the free list.  If multiple sets are allocated on
123    the same obstack, elements freed from one set may be re-used for one of
124    the other sets.  This usually helps avoid cache misses.
125
126    A single free-list is used for all sets allocated in GGC space.  This is
127    bad for persistent sets, so persistent sets should be allocated on an
128    obstack whenever possible.  */
129
130 #include "hashtab.h"
131 #include "statistics.h"
132 #include "obstack.h"
133
134 /* Fundamental storage type for bitmap.  */
135
136 typedef unsigned long BITMAP_WORD;
137 /* BITMAP_WORD_BITS needs to be unsigned, but cannot contain casts as
138    it is used in preprocessor directives -- hence the 1u.  */
139 #define BITMAP_WORD_BITS (CHAR_BIT * SIZEOF_LONG * 1u)
140
141 /* Number of words to use for each element in the linked list.  */
142
143 #ifndef BITMAP_ELEMENT_WORDS
144 #define BITMAP_ELEMENT_WORDS ((128 + BITMAP_WORD_BITS - 1) / BITMAP_WORD_BITS)
145 #endif
146
147 /* Number of bits in each actual element of a bitmap.  */
148
149 #define BITMAP_ELEMENT_ALL_BITS (BITMAP_ELEMENT_WORDS * BITMAP_WORD_BITS)
150
151 /* Obstack for allocating bitmaps and elements from.  */
152 struct GTY (()) bitmap_obstack {
153   struct bitmap_element *elements;
154   struct bitmap_head *heads;
155   struct obstack GTY ((skip)) obstack;
156 };
157
158 /* Bitmap set element.  We use a linked list to hold only the bits that
159    are set.  This allows for use to grow the bitset dynamically without
160    having to realloc and copy a giant bit array.
161
162    The free list is implemented as a list of lists.  There is one
163    outer list connected together by prev fields.  Each element of that
164    outer is an inner list (that may consist only of the outer list
165    element) that are connected by the next fields.  The prev pointer
166    is undefined for interior elements.  This allows
167    bitmap_elt_clear_from to be implemented in unit time rather than
168    linear in the number of elements to be freed.  */
169
170 struct GTY((chain_next ("%h.next"), chain_prev ("%h.prev"))) bitmap_element {
171   struct bitmap_element *next;  /* Next element.  */
172   struct bitmap_element *prev;  /* Previous element.  */
173   unsigned int indx;                    /* regno/BITMAP_ELEMENT_ALL_BITS.  */
174   BITMAP_WORD bits[BITMAP_ELEMENT_WORDS]; /* Bits that are set.  */
175 };
176
177 /* Head of bitmap linked list.  The 'current' member points to something
178    already pointed to by the chain started by first, so GTY((skip)) it.  */
179
180 struct GTY(()) bitmap_head {
181   unsigned int indx;                    /* Index of last element looked at.  */
182   unsigned int descriptor_id;           /* Unique identifier for the allocation
183                                            site of this bitmap, for detailed
184                                            statistics gathering.  */
185   bitmap_element *first;                /* First element in linked list.  */
186   bitmap_element * GTY((skip(""))) current; /* Last element looked at.  */
187   bitmap_obstack *obstack;              /* Obstack to allocate elements from.
188                                            If NULL, then use GGC allocation.  */
189 };
190
191 /* Global data */
192 extern bitmap_element bitmap_zero_bits; /* Zero bitmap element */
193 extern bitmap_obstack bitmap_default_obstack;   /* Default bitmap obstack */
194
195 /* Clear a bitmap by freeing up the linked list.  */
196 extern void bitmap_clear (bitmap);
197
198 /* Copy a bitmap to another bitmap.  */
199 extern void bitmap_copy (bitmap, const_bitmap);
200
201 /* True if two bitmaps are identical.  */
202 extern bool bitmap_equal_p (const_bitmap, const_bitmap);
203
204 /* True if the bitmaps intersect (their AND is non-empty).  */
205 extern bool bitmap_intersect_p (const_bitmap, const_bitmap);
206
207 /* True if the complement of the second intersects the first (their
208    AND_COMPL is non-empty).  */
209 extern bool bitmap_intersect_compl_p (const_bitmap, const_bitmap);
210
211 /* True if MAP is an empty bitmap.  */
212 inline bool bitmap_empty_p (const_bitmap map)
213 {
214   return !map->first;
215 }
216
217 /* True if the bitmap has only a single bit set.  */
218 extern bool bitmap_single_bit_set_p (const_bitmap);
219
220 /* Count the number of bits set in the bitmap.  */
221 extern unsigned long bitmap_count_bits (const_bitmap);
222
223 /* Boolean operations on bitmaps.  The _into variants are two operand
224    versions that modify the first source operand.  The other variants
225    are three operand versions that to not destroy the source bitmaps.
226    The operations supported are &, & ~, |, ^.  */
227 extern void bitmap_and (bitmap, const_bitmap, const_bitmap);
228 extern bool bitmap_and_into (bitmap, const_bitmap);
229 extern bool bitmap_and_compl (bitmap, const_bitmap, const_bitmap);
230 extern bool bitmap_and_compl_into (bitmap, const_bitmap);
231 #define bitmap_compl_and(DST, A, B) bitmap_and_compl (DST, B, A)
232 extern void bitmap_compl_and_into (bitmap, const_bitmap);
233 extern void bitmap_clear_range (bitmap, unsigned int, unsigned int);
234 extern void bitmap_set_range (bitmap, unsigned int, unsigned int);
235 extern bool bitmap_ior (bitmap, const_bitmap, const_bitmap);
236 extern bool bitmap_ior_into (bitmap, const_bitmap);
237 extern void bitmap_xor (bitmap, const_bitmap, const_bitmap);
238 extern void bitmap_xor_into (bitmap, const_bitmap);
239
240 /* DST = A | (B & C).  Return true if DST changes.  */
241 extern bool bitmap_ior_and_into (bitmap DST, const_bitmap B, const_bitmap C);
242 /* DST = A | (B & ~C).  Return true if DST changes.  */
243 extern bool bitmap_ior_and_compl (bitmap DST, const_bitmap A,
244                                   const_bitmap B, const_bitmap C);
245 /* A |= (B & ~C).  Return true if A changes.  */
246 extern bool bitmap_ior_and_compl_into (bitmap A,
247                                        const_bitmap B, const_bitmap C);
248
249 /* Clear a single bit in a bitmap.  Return true if the bit changed.  */
250 extern bool bitmap_clear_bit (bitmap, int);
251
252 /* Set a single bit in a bitmap.  Return true if the bit changed.  */
253 extern bool bitmap_set_bit (bitmap, int);
254
255 /* Return true if a register is set in a register set.  */
256 extern int bitmap_bit_p (bitmap, int);
257
258 /* Debug functions to print a bitmap linked list.  */
259 extern void debug_bitmap (const_bitmap);
260 extern void debug_bitmap_file (FILE *, const_bitmap);
261
262 /* Print a bitmap.  */
263 extern void bitmap_print (FILE *, const_bitmap, const char *, const char *);
264
265 /* Initialize and release a bitmap obstack.  */
266 extern void bitmap_obstack_initialize (bitmap_obstack *);
267 extern void bitmap_obstack_release (bitmap_obstack *);
268 extern void bitmap_register (bitmap MEM_STAT_DECL);
269 extern void dump_bitmap_statistics (void);
270
271 /* Initialize a bitmap header.  OBSTACK indicates the bitmap obstack
272    to allocate from, NULL for GC'd bitmap.  */
273
274 static inline void
275 bitmap_initialize_stat (bitmap head, bitmap_obstack *obstack MEM_STAT_DECL)
276 {
277   head->first = head->current = NULL;
278   head->obstack = obstack;
279   if (GATHER_STATISTICS)
280     bitmap_register (head PASS_MEM_STAT);
281 }
282 #define bitmap_initialize(h,o) bitmap_initialize_stat (h,o MEM_STAT_INFO)
283
284 /* Allocate and free bitmaps from obstack, malloc and gc'd memory.  */
285 extern bitmap bitmap_obstack_alloc_stat (bitmap_obstack *obstack MEM_STAT_DECL);
286 #define bitmap_obstack_alloc(t) bitmap_obstack_alloc_stat (t MEM_STAT_INFO)
287 extern bitmap bitmap_gc_alloc_stat (ALONE_MEM_STAT_DECL);
288 #define bitmap_gc_alloc() bitmap_gc_alloc_stat (ALONE_MEM_STAT_INFO)
289 extern void bitmap_obstack_free (bitmap);
290
291 /* A few compatibility/functions macros for compatibility with sbitmaps */
292 inline void dump_bitmap (FILE *file, const_bitmap map)
293 {
294   bitmap_print (file, map, "", "\n");
295 }
296 extern void debug (const bitmap_head &ref);
297 extern void debug (const bitmap_head *ptr);
298
299 extern unsigned bitmap_first_set_bit (const_bitmap);
300 extern unsigned bitmap_last_set_bit (const_bitmap);
301
302 /* Compute bitmap hash (for purposes of hashing etc.)  */
303 extern hashval_t bitmap_hash (const_bitmap);
304
305 /* Allocate a bitmap from a bit obstack.  */
306 #define BITMAP_ALLOC(OBSTACK) bitmap_obstack_alloc (OBSTACK)
307
308 /* Allocate a gc'd bitmap.  */
309 #define BITMAP_GGC_ALLOC() bitmap_gc_alloc ()
310
311 /* Do any cleanup needed on a bitmap when it is no longer used.  */
312 #define BITMAP_FREE(BITMAP) \
313        ((void) (bitmap_obstack_free ((bitmap) BITMAP), (BITMAP) = (bitmap) NULL))
314
315 /* Iterator for bitmaps.  */
316
317 struct bitmap_iterator
318 {
319   /* Pointer to the current bitmap element.  */
320   bitmap_element *elt1;
321
322   /* Pointer to 2nd bitmap element when two are involved.  */
323   bitmap_element *elt2;
324
325   /* Word within the current element.  */
326   unsigned word_no;
327
328   /* Contents of the actually processed word.  When finding next bit
329      it is shifted right, so that the actual bit is always the least
330      significant bit of ACTUAL.  */
331   BITMAP_WORD bits;
332 };
333
334 /* Initialize a single bitmap iterator.  START_BIT is the first bit to
335    iterate from.  */
336
337 static inline void
338 bmp_iter_set_init (bitmap_iterator *bi, const_bitmap map,
339                    unsigned start_bit, unsigned *bit_no)
340 {
341   bi->elt1 = map->first;
342   bi->elt2 = NULL;
343
344   /* Advance elt1 until it is not before the block containing start_bit.  */
345   while (1)
346     {
347       if (!bi->elt1)
348         {
349           bi->elt1 = &bitmap_zero_bits;
350           break;
351         }
352
353       if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
354         break;
355       bi->elt1 = bi->elt1->next;
356     }
357
358   /* We might have gone past the start bit, so reinitialize it.  */
359   if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
360     start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
361
362   /* Initialize for what is now start_bit.  */
363   bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
364   bi->bits = bi->elt1->bits[bi->word_no];
365   bi->bits >>= start_bit % BITMAP_WORD_BITS;
366
367   /* If this word is zero, we must make sure we're not pointing at the
368      first bit, otherwise our incrementing to the next word boundary
369      will fail.  It won't matter if this increment moves us into the
370      next word.  */
371   start_bit += !bi->bits;
372
373   *bit_no = start_bit;
374 }
375
376 /* Initialize an iterator to iterate over the intersection of two
377    bitmaps.  START_BIT is the bit to commence from.  */
378
379 static inline void
380 bmp_iter_and_init (bitmap_iterator *bi, const_bitmap map1, const_bitmap map2,
381                    unsigned start_bit, unsigned *bit_no)
382 {
383   bi->elt1 = map1->first;
384   bi->elt2 = map2->first;
385
386   /* Advance elt1 until it is not before the block containing
387      start_bit.  */
388   while (1)
389     {
390       if (!bi->elt1)
391         {
392           bi->elt2 = NULL;
393           break;
394         }
395
396       if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
397         break;
398       bi->elt1 = bi->elt1->next;
399     }
400
401   /* Advance elt2 until it is not before elt1.  */
402   while (1)
403     {
404       if (!bi->elt2)
405         {
406           bi->elt1 = bi->elt2 = &bitmap_zero_bits;
407           break;
408         }
409
410       if (bi->elt2->indx >= bi->elt1->indx)
411         break;
412       bi->elt2 = bi->elt2->next;
413     }
414
415   /* If we're at the same index, then we have some intersecting bits.  */
416   if (bi->elt1->indx == bi->elt2->indx)
417     {
418       /* We might have advanced beyond the start_bit, so reinitialize
419          for that.  */
420       if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
421         start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
422
423       bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
424       bi->bits = bi->elt1->bits[bi->word_no] & bi->elt2->bits[bi->word_no];
425       bi->bits >>= start_bit % BITMAP_WORD_BITS;
426     }
427   else
428     {
429       /* Otherwise we must immediately advance elt1, so initialize for
430          that.  */
431       bi->word_no = BITMAP_ELEMENT_WORDS - 1;
432       bi->bits = 0;
433     }
434
435   /* If this word is zero, we must make sure we're not pointing at the
436      first bit, otherwise our incrementing to the next word boundary
437      will fail.  It won't matter if this increment moves us into the
438      next word.  */
439   start_bit += !bi->bits;
440
441   *bit_no = start_bit;
442 }
443
444 /* Initialize an iterator to iterate over the bits in MAP1 & ~MAP2.
445    */
446
447 static inline void
448 bmp_iter_and_compl_init (bitmap_iterator *bi,
449                          const_bitmap map1, const_bitmap map2,
450                          unsigned start_bit, unsigned *bit_no)
451 {
452   bi->elt1 = map1->first;
453   bi->elt2 = map2->first;
454
455   /* Advance elt1 until it is not before the block containing start_bit.  */
456   while (1)
457     {
458       if (!bi->elt1)
459         {
460           bi->elt1 = &bitmap_zero_bits;
461           break;
462         }
463
464       if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
465         break;
466       bi->elt1 = bi->elt1->next;
467     }
468
469   /* Advance elt2 until it is not before elt1.  */
470   while (bi->elt2 && bi->elt2->indx < bi->elt1->indx)
471     bi->elt2 = bi->elt2->next;
472
473   /* We might have advanced beyond the start_bit, so reinitialize for
474      that.  */
475   if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
476     start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
477
478   bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
479   bi->bits = bi->elt1->bits[bi->word_no];
480   if (bi->elt2 && bi->elt1->indx == bi->elt2->indx)
481     bi->bits &= ~bi->elt2->bits[bi->word_no];
482   bi->bits >>= start_bit % BITMAP_WORD_BITS;
483
484   /* If this word is zero, we must make sure we're not pointing at the
485      first bit, otherwise our incrementing to the next word boundary
486      will fail.  It won't matter if this increment moves us into the
487      next word.  */
488   start_bit += !bi->bits;
489
490   *bit_no = start_bit;
491 }
492
493 /* Advance to the next bit in BI.  We don't advance to the next
494    nonzero bit yet.  */
495
496 static inline void
497 bmp_iter_next (bitmap_iterator *bi, unsigned *bit_no)
498 {
499   bi->bits >>= 1;
500   *bit_no += 1;
501 }
502
503 /* Advance to first set bit in BI.  */
504
505 static inline void
506 bmp_iter_next_bit (bitmap_iterator * bi, unsigned *bit_no)
507 {
508 #if (GCC_VERSION >= 3004)
509   {
510     unsigned int n = __builtin_ctzl (bi->bits);
511     gcc_assert (sizeof (unsigned long) == sizeof (BITMAP_WORD));
512     bi->bits >>= n;
513     *bit_no += n;
514   }
515 #else
516   while (!(bi->bits & 1))
517     {
518       bi->bits >>= 1;
519       *bit_no += 1;
520     }
521 #endif
522 }
523
524 /* Advance to the next nonzero bit of a single bitmap, we will have
525    already advanced past the just iterated bit.  Return true if there
526    is a bit to iterate.  */
527
528 static inline bool
529 bmp_iter_set (bitmap_iterator *bi, unsigned *bit_no)
530 {
531   /* If our current word is nonzero, it contains the bit we want.  */
532   if (bi->bits)
533     {
534     next_bit:
535       bmp_iter_next_bit (bi, bit_no);
536       return true;
537     }
538
539   /* Round up to the word boundary.  We might have just iterated past
540      the end of the last word, hence the -1.  It is not possible for
541      bit_no to point at the beginning of the now last word.  */
542   *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
543              / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
544   bi->word_no++;
545
546   while (1)
547     {
548       /* Find the next nonzero word in this elt.  */
549       while (bi->word_no != BITMAP_ELEMENT_WORDS)
550         {
551           bi->bits = bi->elt1->bits[bi->word_no];
552           if (bi->bits)
553             goto next_bit;
554           *bit_no += BITMAP_WORD_BITS;
555           bi->word_no++;
556         }
557
558       /* Advance to the next element.  */
559       bi->elt1 = bi->elt1->next;
560       if (!bi->elt1)
561         return false;
562       *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
563       bi->word_no = 0;
564     }
565 }
566
567 /* Advance to the next nonzero bit of an intersecting pair of
568    bitmaps.  We will have already advanced past the just iterated bit.
569    Return true if there is a bit to iterate.  */
570
571 static inline bool
572 bmp_iter_and (bitmap_iterator *bi, unsigned *bit_no)
573 {
574   /* If our current word is nonzero, it contains the bit we want.  */
575   if (bi->bits)
576     {
577     next_bit:
578       bmp_iter_next_bit (bi, bit_no);
579       return true;
580     }
581
582   /* Round up to the word boundary.  We might have just iterated past
583      the end of the last word, hence the -1.  It is not possible for
584      bit_no to point at the beginning of the now last word.  */
585   *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
586              / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
587   bi->word_no++;
588
589   while (1)
590     {
591       /* Find the next nonzero word in this elt.  */
592       while (bi->word_no != BITMAP_ELEMENT_WORDS)
593         {
594           bi->bits = bi->elt1->bits[bi->word_no] & bi->elt2->bits[bi->word_no];
595           if (bi->bits)
596             goto next_bit;
597           *bit_no += BITMAP_WORD_BITS;
598           bi->word_no++;
599         }
600
601       /* Advance to the next identical element.  */
602       do
603         {
604           /* Advance elt1 while it is less than elt2.  We always want
605              to advance one elt.  */
606           do
607             {
608               bi->elt1 = bi->elt1->next;
609               if (!bi->elt1)
610                 return false;
611             }
612           while (bi->elt1->indx < bi->elt2->indx);
613
614           /* Advance elt2 to be no less than elt1.  This might not
615              advance.  */
616           while (bi->elt2->indx < bi->elt1->indx)
617             {
618               bi->elt2 = bi->elt2->next;
619               if (!bi->elt2)
620                 return false;
621             }
622         }
623       while (bi->elt1->indx != bi->elt2->indx);
624
625       *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
626       bi->word_no = 0;
627     }
628 }
629
630 /* Advance to the next nonzero bit in the intersection of
631    complemented bitmaps.  We will have already advanced past the just
632    iterated bit.  */
633
634 static inline bool
635 bmp_iter_and_compl (bitmap_iterator *bi, unsigned *bit_no)
636 {
637   /* If our current word is nonzero, it contains the bit we want.  */
638   if (bi->bits)
639     {
640     next_bit:
641       bmp_iter_next_bit (bi, bit_no);
642       return true;
643     }
644
645   /* Round up to the word boundary.  We might have just iterated past
646      the end of the last word, hence the -1.  It is not possible for
647      bit_no to point at the beginning of the now last word.  */
648   *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
649              / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
650   bi->word_no++;
651
652   while (1)
653     {
654       /* Find the next nonzero word in this elt.  */
655       while (bi->word_no != BITMAP_ELEMENT_WORDS)
656         {
657           bi->bits = bi->elt1->bits[bi->word_no];
658           if (bi->elt2 && bi->elt2->indx == bi->elt1->indx)
659             bi->bits &= ~bi->elt2->bits[bi->word_no];
660           if (bi->bits)
661             goto next_bit;
662           *bit_no += BITMAP_WORD_BITS;
663           bi->word_no++;
664         }
665
666       /* Advance to the next element of elt1.  */
667       bi->elt1 = bi->elt1->next;
668       if (!bi->elt1)
669         return false;
670
671       /* Advance elt2 until it is no less than elt1.  */
672       while (bi->elt2 && bi->elt2->indx < bi->elt1->indx)
673         bi->elt2 = bi->elt2->next;
674
675       *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
676       bi->word_no = 0;
677     }
678 }
679
680 /* Loop over all bits set in BITMAP, starting with MIN and setting
681    BITNUM to the bit number.  ITER is a bitmap iterator.  BITNUM
682    should be treated as a read-only variable as it contains loop
683    state.  */
684
685 #ifndef EXECUTE_IF_SET_IN_BITMAP
686 /* See sbitmap.h for the other definition of EXECUTE_IF_SET_IN_BITMAP.  */
687 #define EXECUTE_IF_SET_IN_BITMAP(BITMAP, MIN, BITNUM, ITER)             \
688   for (bmp_iter_set_init (&(ITER), (BITMAP), (MIN), &(BITNUM));         \
689        bmp_iter_set (&(ITER), &(BITNUM));                               \
690        bmp_iter_next (&(ITER), &(BITNUM)))
691 #endif
692
693 /* Loop over all the bits set in BITMAP1 & BITMAP2, starting with MIN
694    and setting BITNUM to the bit number.  ITER is a bitmap iterator.
695    BITNUM should be treated as a read-only variable as it contains
696    loop state.  */
697
698 #define EXECUTE_IF_AND_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER)   \
699   for (bmp_iter_and_init (&(ITER), (BITMAP1), (BITMAP2), (MIN),         \
700                           &(BITNUM));                                   \
701        bmp_iter_and (&(ITER), &(BITNUM));                               \
702        bmp_iter_next (&(ITER), &(BITNUM)))
703
704 /* Loop over all the bits set in BITMAP1 & ~BITMAP2, starting with MIN
705    and setting BITNUM to the bit number.  ITER is a bitmap iterator.
706    BITNUM should be treated as a read-only variable as it contains
707    loop state.  */
708
709 #define EXECUTE_IF_AND_COMPL_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER) \
710   for (bmp_iter_and_compl_init (&(ITER), (BITMAP1), (BITMAP2), (MIN),   \
711                                 &(BITNUM));                             \
712        bmp_iter_and_compl (&(ITER), &(BITNUM));                         \
713        bmp_iter_next (&(ITER), &(BITNUM)))
714
715 #endif /* GCC_BITMAP_H */