1 /* $FreeBSD: src/sys/opencrypto/xform.c,v 1.10 2008/10/23 15:53:51 des Exp $ */
2 /* $OpenBSD: xform.c,v 1.16 2001/08/28 12:20:43 ben Exp $ */
4 * The authors of this code are John Ioannidis (ji@tla.org),
5 * Angelos D. Keromytis (kermit@csd.uch.gr) and
6 * Niels Provos (provos@physnet.uni-hamburg.de).
8 * This code was written by John Ioannidis for BSD/OS in Athens, Greece,
11 * Ported to OpenBSD and NetBSD, with additional transforms, in December 1996,
12 * by Angelos D. Keromytis.
14 * Additional transforms and features in 1997 and 1998 by Angelos D. Keromytis
17 * Additional features in 1999 by Angelos D. Keromytis.
19 * Copyright (C) 1995, 1996, 1997, 1998, 1999 by John Ioannidis,
20 * Angelos D. Keromytis and Niels Provos.
22 * Copyright (C) 2001, Angelos D. Keromytis.
24 * Permission to use, copy, and modify this software with or without fee
25 * is hereby granted, provided that this entire notice is included in
26 * all copies of any software which is or includes a copy or
27 * modification of this software.
28 * You may use this code under the GNU public license if you so wish. Please
29 * contribute changes back to the authors under this freer than GPL license
30 * so that we may further the use of strong encryption without limitations to
33 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
34 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
35 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
36 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/malloc.h>
43 #include <sys/sysctl.h>
44 #include <sys/errno.h>
46 #include <sys/kernel.h>
47 #include <machine/cpu.h>
49 #include <crypto/blowfish/blowfish.h>
50 #include <crypto/des/des.h>
51 #include <crypto/rijndael/rijndael.h>
52 #include <crypto/camellia/camellia.h>
53 #include <crypto/sha1.h>
55 #include <opencrypto/cast.h>
56 #include <opencrypto/deflate.h>
57 #include <opencrypto/rmd160.h>
58 #include <opencrypto/skipjack.h>
62 #include <opencrypto/cryptodev.h>
63 #include <opencrypto/xform.h>
65 static void null_encrypt(caddr_t, u_int8_t *, u_int8_t *);
66 static void null_decrypt(caddr_t, u_int8_t *, u_int8_t *);
67 static int null_setkey(u_int8_t **, u_int8_t *, int);
68 static void null_zerokey(u_int8_t **);
70 static int des1_setkey(u_int8_t **, u_int8_t *, int);
71 static int des3_setkey(u_int8_t **, u_int8_t *, int);
72 static int blf_setkey(u_int8_t **, u_int8_t *, int);
73 static int cast5_setkey(u_int8_t **, u_int8_t *, int);
74 static int skipjack_setkey(u_int8_t **, u_int8_t *, int);
75 static int rijndael128_setkey(u_int8_t **, u_int8_t *, int);
76 static int aes_xts_setkey(u_int8_t **, u_int8_t *, int);
77 static int aes_ctr_setkey(u_int8_t **, u_int8_t *, int);
78 static int cml_setkey(u_int8_t **, u_int8_t *, int);
79 static void des1_encrypt(caddr_t, u_int8_t *, u_int8_t *);
80 static void des3_encrypt(caddr_t, u_int8_t *, u_int8_t *);
81 static void blf_encrypt(caddr_t, u_int8_t *, u_int8_t *);
82 static void cast5_encrypt(caddr_t, u_int8_t *, u_int8_t *);
83 static void skipjack_encrypt(caddr_t, u_int8_t *, u_int8_t *);
84 static void rijndael128_encrypt(caddr_t, u_int8_t *, u_int8_t *);
85 static void aes_xts_encrypt(caddr_t, u_int8_t *, u_int8_t *);
86 static void cml_encrypt(caddr_t, u_int8_t *, u_int8_t *);
87 static void des1_decrypt(caddr_t, u_int8_t *, u_int8_t *);
88 static void des3_decrypt(caddr_t, u_int8_t *, u_int8_t *);
89 static void blf_decrypt(caddr_t, u_int8_t *, u_int8_t *);
90 static void cast5_decrypt(caddr_t, u_int8_t *, u_int8_t *);
91 static void skipjack_decrypt(caddr_t, u_int8_t *, u_int8_t *);
92 static void rijndael128_decrypt(caddr_t, u_int8_t *, u_int8_t *);
93 static void aes_xts_decrypt(caddr_t, u_int8_t *, u_int8_t *);
94 static void cml_decrypt(caddr_t, u_int8_t *, u_int8_t *);
95 static void des1_zerokey(u_int8_t **);
96 static void des3_zerokey(u_int8_t **);
97 static void blf_zerokey(u_int8_t **);
98 static void cast5_zerokey(u_int8_t **);
99 static void skipjack_zerokey(u_int8_t **);
100 static void rijndael128_zerokey(u_int8_t **);
101 static void aes_xts_zerokey(u_int8_t **);
102 static void aes_ctr_zerokey(u_int8_t **);
103 static void cml_zerokey(u_int8_t **);
105 static void aes_ctr_crypt(caddr_t, u_int8_t *, u_int8_t *);
107 static void aes_ctr_reinit(caddr_t, u_int8_t *);
108 static void aes_xts_reinit(caddr_t, u_int8_t *);
110 static void null_init(void *);
111 static int null_update(void *, u_int8_t *, u_int16_t);
112 static void null_final(u_int8_t *, void *);
113 static int MD5Update_int(void *, u_int8_t *, u_int16_t);
114 static void SHA1Init_int(void *);
115 static int SHA1Update_int(void *, u_int8_t *, u_int16_t);
116 static void SHA1Final_int(u_int8_t *, void *);
117 static int RMD160Update_int(void *, u_int8_t *, u_int16_t);
118 static int SHA256Update_int(void *, u_int8_t *, u_int16_t);
119 static int SHA384Update_int(void *, u_int8_t *, u_int16_t);
120 static int SHA512Update_int(void *, u_int8_t *, u_int16_t);
122 static u_int32_t deflate_compress(u_int8_t *, u_int32_t, u_int8_t **);
123 static u_int32_t deflate_decompress(u_int8_t *, u_int32_t, u_int8_t **);
127 static void aes_xts_crypt(struct aes_xts_ctx *, u_int8_t *, u_int8_t *, u_int);
129 MALLOC_DEFINE(M_XDATA, "xform", "xform data buffers");
131 /* Encryption instances */
132 struct enc_xform enc_xform_null = {
133 CRYPTO_NULL_CBC, "NULL",
134 /* NB: blocksize of 4 is to generate a properly aligned ESP header */
135 NULL_BLOCK_LEN, NULL_BLOCK_LEN, 0, 256, /* 2048 bits, max key */
143 struct enc_xform enc_xform_des = {
144 CRYPTO_DES_CBC, "DES",
145 DES_BLOCK_LEN, DES_BLOCK_LEN, 8, 8,
153 struct enc_xform enc_xform_3des = {
154 CRYPTO_3DES_CBC, "3DES",
155 DES3_BLOCK_LEN, DES3_BLOCK_LEN, 24, 24,
163 struct enc_xform enc_xform_blf = {
164 CRYPTO_BLF_CBC, "Blowfish",
165 BLOWFISH_BLOCK_LEN, BLOWFISH_BLOCK_LEN, 5, 56 /* 448 bits, max key */,
173 struct enc_xform enc_xform_cast5 = {
174 CRYPTO_CAST_CBC, "CAST-128",
175 CAST128_BLOCK_LEN, CAST128_BLOCK_LEN, 5, 16,
183 struct enc_xform enc_xform_skipjack = {
184 CRYPTO_SKIPJACK_CBC, "Skipjack",
185 SKIPJACK_BLOCK_LEN, SKIPJACK_BLOCK_LEN, 10, 10,
193 struct enc_xform enc_xform_rijndael128 = {
194 CRYPTO_RIJNDAEL128_CBC, "Rijndael-128/AES",
195 RIJNDAEL128_BLOCK_LEN, RIJNDAEL128_BLOCK_LEN, 8, 32,
203 struct enc_xform enc_xform_aes_xts = {
204 CRYPTO_AES_XTS, "AES-XTS",
205 AES_XTS_BLOCK_LEN, AES_XTS_IV_LEN, 32, 64,
213 struct enc_xform enc_xform_aes_ctr = {
214 CRYPTO_AES_CTR, "AES-CTR",
215 AESCTR_BLOCK_LEN, AESCTR_IV_LEN, 16+4, 32+4,
223 struct enc_xform enc_xform_arc4 = {
233 struct enc_xform enc_xform_camellia = {
234 CRYPTO_CAMELLIA_CBC, "Camellia",
235 CAMELLIA_BLOCK_LEN, CAMELLIA_BLOCK_LEN, 8, 32,
243 /* Authentication instances */
244 struct auth_hash auth_hash_null = {
245 CRYPTO_NULL_HMAC, "NULL-HMAC",
246 0, NULL_HASH_LEN, NULL_HMAC_BLOCK_LEN, sizeof(int), /* NB: context isn't used */
247 null_init, null_update, null_final
250 struct auth_hash auth_hash_hmac_md5 = {
251 CRYPTO_MD5_HMAC, "HMAC-MD5",
252 16, MD5_HASH_LEN, MD5_HMAC_BLOCK_LEN, sizeof(MD5_CTX),
253 (void (*) (void *)) MD5Init, MD5Update_int,
254 (void (*) (u_int8_t *, void *)) MD5Final
257 struct auth_hash auth_hash_hmac_sha1 = {
258 CRYPTO_SHA1_HMAC, "HMAC-SHA1",
259 20, SHA1_HASH_LEN, SHA1_HMAC_BLOCK_LEN, sizeof(SHA1_CTX),
260 SHA1Init_int, SHA1Update_int, SHA1Final_int
263 struct auth_hash auth_hash_hmac_ripemd_160 = {
264 CRYPTO_RIPEMD160_HMAC, "HMAC-RIPEMD-160",
265 20, RIPEMD160_HASH_LEN, RIPEMD160_HMAC_BLOCK_LEN, sizeof(RMD160_CTX),
266 (void (*)(void *)) RMD160Init, RMD160Update_int,
267 (void (*)(u_int8_t *, void *)) RMD160Final
270 struct auth_hash auth_hash_key_md5 = {
271 CRYPTO_MD5_KPDK, "Keyed MD5",
272 0, MD5_KPDK_HASH_LEN, 0, sizeof(MD5_CTX),
273 (void (*)(void *)) MD5Init, MD5Update_int,
274 (void (*)(u_int8_t *, void *)) MD5Final
277 struct auth_hash auth_hash_key_sha1 = {
278 CRYPTO_SHA1_KPDK, "Keyed SHA1",
279 0, SHA1_KPDK_HASH_LEN, 0, sizeof(SHA1_CTX),
280 SHA1Init_int, SHA1Update_int, SHA1Final_int
283 struct auth_hash auth_hash_hmac_sha2_256 = {
284 CRYPTO_SHA2_256_HMAC, "HMAC-SHA2-256",
285 32, SHA2_256_HASH_LEN, SHA2_256_HMAC_BLOCK_LEN, sizeof(SHA256_CTX),
286 (void (*)(void *)) SHA256_Init, SHA256Update_int,
287 (void (*)(u_int8_t *, void *)) SHA256_Final
290 struct auth_hash auth_hash_hmac_sha2_384 = {
291 CRYPTO_SHA2_384_HMAC, "HMAC-SHA2-384",
292 48, SHA2_384_HASH_LEN, SHA2_384_HMAC_BLOCK_LEN, sizeof(SHA384_CTX),
293 (void (*)(void *)) SHA384_Init, SHA384Update_int,
294 (void (*)(u_int8_t *, void *)) SHA384_Final
297 struct auth_hash auth_hash_hmac_sha2_512 = {
298 CRYPTO_SHA2_512_HMAC, "HMAC-SHA2-512",
299 64, SHA2_512_HASH_LEN, SHA2_512_HMAC_BLOCK_LEN, sizeof(SHA512_CTX),
300 (void (*)(void *)) SHA512_Init, SHA512Update_int,
301 (void (*)(u_int8_t *, void *)) SHA512_Final
304 /* Compression instance */
305 struct comp_algo comp_algo_deflate = {
306 CRYPTO_DEFLATE_COMP, "Deflate",
307 90, deflate_compress,
312 * Encryption wrapper routines.
315 null_encrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
319 null_decrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
323 null_setkey(u_int8_t **sched, u_int8_t *key, int len)
329 null_zerokey(u_int8_t **sched)
335 des1_encrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
337 des_cblock *cb = (des_cblock *) blk;
338 des_key_schedule *p = (des_key_schedule *) key;
340 des_ecb_encrypt(cb, cb, p[0], DES_ENCRYPT);
344 des1_decrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
346 des_cblock *cb = (des_cblock *) blk;
347 des_key_schedule *p = (des_key_schedule *) key;
349 des_ecb_encrypt(cb, cb, p[0], DES_DECRYPT);
353 des1_setkey(u_int8_t **sched, u_int8_t *key, int len)
358 p = kmalloc(sizeof (des_key_schedule),
359 M_CRYPTO_DATA, M_INTWAIT | M_ZERO);
361 des_set_key((des_cblock *) key, p[0]);
365 *sched = (u_int8_t *) p;
370 des1_zerokey(u_int8_t **sched)
372 bzero(*sched, sizeof (des_key_schedule));
373 kfree(*sched, M_CRYPTO_DATA);
378 des3_encrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
380 des_cblock *cb = (des_cblock *) blk;
381 des_key_schedule *p = (des_key_schedule *) key;
383 des_ecb3_encrypt(cb, cb, p[0], p[1], p[2], DES_ENCRYPT);
387 des3_decrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
389 des_cblock *cb = (des_cblock *) blk;
390 des_key_schedule *p = (des_key_schedule *) key;
392 des_ecb3_encrypt(cb, cb, p[0], p[1], p[2], DES_DECRYPT);
396 des3_setkey(u_int8_t **sched, u_int8_t *key, int len)
401 p = kmalloc(3 * sizeof(des_key_schedule),
402 M_CRYPTO_DATA, M_INTWAIT | M_ZERO);
404 des_set_key((des_cblock *)(key + 0), p[0]);
405 des_set_key((des_cblock *)(key + 8), p[1]);
406 des_set_key((des_cblock *)(key + 16), p[2]);
410 *sched = (u_int8_t *) p;
415 des3_zerokey(u_int8_t **sched)
417 bzero(*sched, 3*sizeof (des_key_schedule));
418 kfree(*sched, M_CRYPTO_DATA);
423 blf_encrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
427 memcpy(t, blk, sizeof (t));
430 /* NB: BF_encrypt expects the block in host order! */
431 BF_encrypt(t, (BF_KEY *) key);
434 memcpy(blk, t, sizeof (t));
438 blf_decrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
442 memcpy(t, blk, sizeof (t));
445 /* NB: BF_decrypt expects the block in host order! */
446 BF_decrypt(t, (BF_KEY *) key);
449 memcpy(blk, t, sizeof (t));
453 blf_setkey(u_int8_t **sched, u_int8_t *key, int len)
457 *sched = kmalloc(sizeof(BF_KEY), M_CRYPTO_DATA, M_INTWAIT | M_ZERO);
458 if (*sched != NULL) {
459 BF_set_key((BF_KEY *) *sched, len, key);
467 blf_zerokey(u_int8_t **sched)
469 bzero(*sched, sizeof(BF_KEY));
470 kfree(*sched, M_CRYPTO_DATA);
475 cast5_encrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
477 cast_encrypt((cast_key *) key, blk, blk);
481 cast5_decrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
483 cast_decrypt((cast_key *) key, blk, blk);
487 cast5_setkey(u_int8_t **sched, u_int8_t *key, int len)
491 *sched = kmalloc(sizeof(cast_key), M_CRYPTO_DATA, M_INTWAIT | M_ZERO);
492 if (*sched != NULL) {
493 cast_setkey((cast_key *)*sched, key, len);
501 cast5_zerokey(u_int8_t **sched)
503 bzero(*sched, sizeof(cast_key));
504 kfree(*sched, M_CRYPTO_DATA);
509 skipjack_encrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
511 skipjack_forwards(blk, blk, (u_int8_t **) key);
515 skipjack_decrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
517 skipjack_backwards(blk, blk, (u_int8_t **) key);
521 skipjack_setkey(u_int8_t **sched, u_int8_t *key, int len)
525 /* NB: allocate all the memory that's needed at once */
526 *sched = kmalloc(10 * (sizeof(u_int8_t *) + 0x100),
527 M_CRYPTO_DATA, M_INTWAIT | M_ZERO);
528 if (*sched != NULL) {
529 u_int8_t** key_tables = (u_int8_t**) *sched;
530 u_int8_t* table = (u_int8_t*) &key_tables[10];
533 for (k = 0; k < 10; k++) {
534 key_tables[k] = table;
537 subkey_table_gen(key, (u_int8_t **) *sched);
545 skipjack_zerokey(u_int8_t **sched)
547 bzero(*sched, 10 * (sizeof(u_int8_t *) + 0x100));
548 kfree(*sched, M_CRYPTO_DATA);
553 rijndael128_encrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
555 rijndael_encrypt((rijndael_ctx *) key, (u_char *) blk, (u_char *) blk);
559 rijndael128_decrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
561 rijndael_decrypt(((rijndael_ctx *) key), (u_char *) blk,
566 rijndael128_setkey(u_int8_t **sched, u_int8_t *key, int len)
570 if (len != 16 && len != 24 && len != 32)
572 *sched = kmalloc(sizeof(rijndael_ctx), M_CRYPTO_DATA,
574 if (*sched != NULL) {
575 rijndael_set_key((rijndael_ctx *) *sched, (u_char *) key,
584 rijndael128_zerokey(u_int8_t **sched)
586 bzero(*sched, sizeof(rijndael_ctx));
587 kfree(*sched, M_CRYPTO_DATA);
591 #define AES_XTS_ALPHA 0x87 /* GF(2^128) generator polynomial */
599 aes_xts_reinit(caddr_t key, u_int8_t *iv)
601 struct aes_xts_ctx *ctx = (struct aes_xts_ctx *)key;
609 * XXX: I've no idea why OpenBSD chose to make this dance of the moon
610 * around just copying the IV...
613 * Prepare tweak as E_k2(IV). IV is specified as LE representation
614 * of a 64-bit block number which we allow to be passed in directly.
616 bcopy(iv, &blocknum, AES_XTS_IV_LEN);
617 for (i = 0; i < AES_XTS_IV_LEN; i++) {
618 ctx->tweak[i] = blocknum & 0xff;
622 /* Last 64 bits of IV are always zero */
623 bzero(iv + AES_XTS_IV_LEN, AES_XTS_IV_LEN);
625 rijndael_encrypt(&ctx->key2, iv, iv);
629 aes_xts_crypt(struct aes_xts_ctx *ctx, u_int8_t *data, u_int8_t *iv, u_int do_encrypt)
631 u_int8_t block[AES_XTS_BLOCK_LEN];
632 u_int i, carry_in, carry_out;
634 for (i = 0; i < AES_XTS_BLOCK_LEN; i++)
635 block[i] = data[i] ^ iv[i];
638 rijndael_encrypt(&ctx->key1, block, data);
640 rijndael_decrypt(&ctx->key1, block, data);
642 for (i = 0; i < AES_XTS_BLOCK_LEN; i++)
645 /* Exponentiate tweak */
647 for (i = 0; i < AES_XTS_BLOCK_LEN; i++) {
648 carry_out = iv[i] & 0x80;
649 iv[i] = (iv[i] << 1) | (carry_in ? 1 : 0);
650 carry_in = carry_out;
653 iv[0] ^= AES_XTS_ALPHA;
654 bzero(block, sizeof(block));
658 aes_xts_encrypt(caddr_t key, u_int8_t *data, u_int8_t *iv)
660 aes_xts_crypt((struct aes_xts_ctx *)key, data, iv, 1);
664 aes_xts_decrypt(caddr_t key, u_int8_t *data, u_int8_t *iv)
666 aes_xts_crypt((struct aes_xts_ctx *)key, data, iv, 0);
670 aes_xts_setkey(u_int8_t **sched, u_int8_t *key, int len)
672 struct aes_xts_ctx *ctx;
674 if (len != 32 && len != 64)
677 *sched = kmalloc(sizeof(struct aes_xts_ctx), M_CRYPTO_DATA,
679 ctx = (struct aes_xts_ctx *)*sched;
681 rijndael_set_key(&ctx->key1, key, len * 4);
682 rijndael_set_key(&ctx->key2, key + (len / 2), len * 4);
688 aes_xts_zerokey(u_int8_t **sched)
690 bzero(*sched, sizeof(struct aes_xts_ctx));
691 kfree(*sched, M_CRYPTO_DATA);
695 #define AESCTR_NONCESIZE 4
698 u_int32_t ac_ek[4*(14 + 1)];
699 u_int8_t ac_block[AESCTR_BLOCK_LEN];
704 aes_ctr_reinit(caddr_t key, u_int8_t *iv)
706 struct aes_ctr_ctx *ctx;
708 ctx = (struct aes_ctr_ctx *)key;
709 bcopy(iv, iv + AESCTR_NONCESIZE, AESCTR_IV_LEN);
710 bcopy(ctx->ac_block, iv, AESCTR_NONCESIZE);
713 bzero(iv + AESCTR_NONCESIZE + AESCTR_IV_LEN, 4);
717 aes_ctr_crypt(caddr_t key, u_int8_t *data, u_int8_t *iv)
719 struct aes_ctr_ctx *ctx;
720 u_int8_t keystream[AESCTR_BLOCK_LEN];
723 ctx = (struct aes_ctr_ctx *)key;
724 /* increment counter */
725 for (i = AESCTR_BLOCK_LEN - 1;
726 i >= AESCTR_NONCESIZE + AESCTR_IV_LEN; i--)
727 if (++iv[i]) /* continue on overflow */
729 rijndaelEncrypt(ctx->ac_ek, ctx->ac_nr, iv, keystream);
730 for (i = 0; i < AESCTR_BLOCK_LEN; i++)
731 data[i] ^= keystream[i];
735 aes_ctr_setkey(u_int8_t **sched, u_int8_t *key, int len)
737 struct aes_ctr_ctx *ctx;
739 if (len < AESCTR_NONCESIZE)
742 *sched = kmalloc(sizeof(struct aes_ctr_ctx), M_CRYPTO_DATA,
744 ctx = (struct aes_ctr_ctx *)*sched;
745 ctx->ac_nr = rijndaelKeySetupEnc(ctx->ac_ek, (u_char *)key,
746 (len - AESCTR_NONCESIZE) * 8);
747 if (ctx->ac_nr == 0) {
748 aes_ctr_zerokey(sched);
751 bcopy(key + len - AESCTR_NONCESIZE, ctx->ac_block, AESCTR_NONCESIZE);
756 aes_ctr_zerokey(u_int8_t **sched)
758 bzero(*sched, sizeof(struct aes_ctr_ctx));
759 kfree(*sched, M_CRYPTO_DATA);
764 cml_encrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
766 camellia_encrypt((camellia_ctx *) key, (u_char *) blk, (u_char *) blk);
770 cml_decrypt(caddr_t key, u_int8_t *blk, u_int8_t *iv)
772 camellia_decrypt(((camellia_ctx *) key), (u_char *) blk,
777 cml_setkey(u_int8_t **sched, u_int8_t *key, int len)
781 if (len != 16 && len != 24 && len != 32)
783 *sched = kmalloc(sizeof(camellia_ctx), M_CRYPTO_DATA,
785 if (*sched != NULL) {
786 camellia_set_key((camellia_ctx *) *sched, (u_char *) key,
795 cml_zerokey(u_int8_t **sched)
797 bzero(*sched, sizeof(camellia_ctx));
798 kfree(*sched, M_CRYPTO_DATA);
812 null_update(void *ctx, u_int8_t *buf, u_int16_t len)
818 null_final(u_int8_t *buf, void *ctx)
825 RMD160Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
827 RMD160Update(ctx, buf, len);
832 MD5Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
834 MD5Update(ctx, buf, len);
839 SHA1Init_int(void *ctx)
845 SHA1Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
847 SHA1Update(ctx, buf, len);
852 SHA1Final_int(u_int8_t *blk, void *ctx)
858 SHA256Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
860 SHA256_Update(ctx, buf, len);
865 SHA384Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
867 SHA384_Update(ctx, buf, len);
872 SHA512Update_int(void *ctx, u_int8_t *buf, u_int16_t len)
874 SHA512_Update(ctx, buf, len);
883 deflate_compress(u_int8_t *data, u_int32_t size, u_int8_t **out)
885 return deflate_global(data, size, 0, out);
889 deflate_decompress(u_int8_t *data, u_int32_t size, u_int8_t **out)
891 return deflate_global(data, size, 1, out);