/* * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved. * * This code is derived from software contributed to The DragonFly Project * by Matthew Dillon * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name of The DragonFly Project nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific, prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * ---------------------------------------------------------------------------- * "THE BEER-WARE LICENSE" (Revision 42): * wrote this file. As long as you retain this notice you * can do whatever you want with this stuff. If we meet some day, and you think * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp * ---------------------------------------------------------------------------- * * Copyright (c) 1982, 1986, 1988, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ufs_disksubr.c 8.5 (Berkeley) 1/21/94 * $FreeBSD: src/sys/kern/subr_disk.c,v 1.20.2.6 2001/10/05 07:14:57 peter Exp $ * $FreeBSD: src/sys/ufs/ufs/ufs_disksubr.c,v 1.44.2.3 2001/03/05 05:42:19 obrien Exp $ * $DragonFly: src/sys/kern/subr_disk.c,v 1.37 2007/06/17 23:50:16 dillon Exp $ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static MALLOC_DEFINE(M_DISK, "disk", "disk data"); static d_open_t diskopen; static d_close_t diskclose; static d_ioctl_t diskioctl; static d_strategy_t diskstrategy; static d_psize_t diskpsize; static d_clone_t diskclone; static d_dump_t diskdump; static LIST_HEAD(, disk) disklist = LIST_HEAD_INITIALIZER(&disklist); static struct dev_ops disk_ops = { { "disk" }, .d_open = diskopen, .d_close = diskclose, .d_read = physread, .d_write = physwrite, .d_ioctl = diskioctl, .d_strategy = diskstrategy, .d_dump = diskdump, .d_psize = diskpsize, .d_clone = diskclone }; /* * Create a raw device for the dev_ops template (which is returned). Also * create a slice and unit managed disk and overload the user visible * device space with it. * * NOTE: The returned raw device is NOT a slice and unit managed device. * It is an actual raw device representing the raw disk as specified by * the passed dev_ops. The disk layer not only returns such a raw device, * it also uses it internally when passing (modified) commands through. */ cdev_t disk_create(int unit, struct disk *dp, struct dev_ops *raw_ops) { cdev_t rawdev; struct dev_ops *dev_ops; /* * Create the raw backing device */ compile_dev_ops(raw_ops); rawdev = make_dev(raw_ops, dkmakewholedisk(unit), UID_ROOT, GID_OPERATOR, 0640, "%s%d", raw_ops->head.name, unit); bzero(dp, sizeof(*dp)); /* * We install a custom cdevsw rather then the passed cdevsw, * and save our disk structure in d_data so we can get at it easily * without any complex cloning code. */ dev_ops = dev_ops_add_override(rawdev, &disk_ops, dkunitmask(), dkmakeunit(unit)); dev_ops->head.data = dp; dp->d_rawdev = rawdev; dp->d_raw_ops = raw_ops; dp->d_dev_ops = dev_ops; dp->d_cdev = make_dev(dev_ops, dkmakewholedisk(unit), UID_ROOT, GID_OPERATOR, 0640, "%s%d", dev_ops->head.name, unit); LIST_INSERT_HEAD(&disklist, dp, d_list); return (dp->d_rawdev); } /* * Disk drivers must call this routine when media parameters are available * or have changed. */ void disk_setdiskinfo(struct disk *disk, struct disk_info *info) { bcopy(info, &disk->d_info, sizeof(disk->d_info)); info = &disk->d_info; KKASSERT(info->d_media_size == 0 || info->d_media_blksize == 0); if (info->d_media_size == 0 && info->d_media_blocks) { info->d_media_size = (u_int64_t)info->d_media_blocks * info->d_media_blksize; } else if (info->d_media_size && info->d_media_blocks == 0 && info->d_media_blksize) { info->d_media_blocks = info->d_media_size / info->d_media_blksize; } } /* * This routine is called when an adapter detaches. The higher level * managed disk device is destroyed while the lower level raw device is * released. */ void disk_destroy(struct disk *disk) { if (disk->d_dev_ops) { dev_ops_remove(disk->d_dev_ops, dkunitmask(), dkmakeunit(dkunit(disk->d_cdev))); LIST_REMOVE(disk, d_list); } if (disk->d_raw_ops) { destroy_all_devs(disk->d_raw_ops, dkunitmask(), dkmakeunit(dkunit(disk->d_rawdev))); } bzero(disk, sizeof(*disk)); } int disk_dumpcheck(cdev_t dev, u_int64_t *count, u_int64_t *blkno, u_int *secsize) { struct partinfo pinfo; int error; bzero(&pinfo, sizeof(pinfo)); error = dev_dioctl(dev, DIOCGPART, (void *)&pinfo, 0, proc0.p_ucred); if (error) return (error); if (pinfo.media_blksize == 0) return (ENXIO); *count = (u_int64_t)Maxmem * PAGE_SIZE / pinfo.media_blksize; if (dumplo64 < pinfo.reserved_blocks || dumplo64 + *count > pinfo.media_blocks) { return (ENOSPC); } *blkno = dumplo64 + pinfo.media_offset / pinfo.media_blksize; *secsize = pinfo.media_blksize; return (0); } void disk_invalidate (struct disk *disk) { if (disk->d_slice) dsgone(&disk->d_slice); } struct disk * disk_enumerate(struct disk *disk) { if (!disk) return (LIST_FIRST(&disklist)); else return (LIST_NEXT(disk, d_list)); } static int sysctl_disks(SYSCTL_HANDLER_ARGS) { struct disk *disk; int error, first; disk = NULL; first = 1; while ((disk = disk_enumerate(disk))) { if (!first) { error = SYSCTL_OUT(req, " ", 1); if (error) return error; } else { first = 0; } error = SYSCTL_OUT(req, disk->d_rawdev->si_name, strlen(disk->d_rawdev->si_name)); if (error) return error; } error = SYSCTL_OUT(req, "", 1); return error; } SYSCTL_PROC(_kern, OID_AUTO, disks, CTLTYPE_STRING | CTLFLAG_RD, 0, NULL, sysctl_disks, "A", "names of available disks"); /* * Open a disk device or partition. */ static int diskopen(struct dev_open_args *ap) { cdev_t dev = ap->a_head.a_dev; struct disk *dp; int error; /* * dp can't be NULL here XXX. */ dp = dev->si_disk; if (dp == NULL) return (ENXIO); error = 0; /* * Deal with open races */ while (dp->d_flags & DISKFLAG_LOCK) { dp->d_flags |= DISKFLAG_WANTED; error = tsleep(dp, PCATCH, "diskopen", hz); if (error) return (error); } dp->d_flags |= DISKFLAG_LOCK; /* * Open the underlying raw device. */ if (!dsisopen(dp->d_slice)) { #if 0 if (!pdev->si_iosize_max) pdev->si_iosize_max = dev->si_iosize_max; #endif error = dev_dopen(dp->d_rawdev, ap->a_oflags, ap->a_devtype, ap->a_cred); } /* * Inherit properties from the underlying device now that it is * open. */ dev_dclone(dev); if (error) goto out; error = dsopen(dev, ap->a_devtype, dp->d_info.d_dsflags, &dp->d_slice, &dp->d_info); if (!dsisopen(dp->d_slice)) dev_dclose(dp->d_rawdev, ap->a_oflags, ap->a_devtype); out: dp->d_flags &= ~DISKFLAG_LOCK; if (dp->d_flags & DISKFLAG_WANTED) { dp->d_flags &= ~DISKFLAG_WANTED; wakeup(dp); } return(error); } /* * Close a disk device or partition */ static int diskclose(struct dev_close_args *ap) { cdev_t dev = ap->a_head.a_dev; struct disk *dp; int error; error = 0; dp = dev->si_disk; dsclose(dev, ap->a_devtype, dp->d_slice); if (!dsisopen(dp->d_slice)) error = dev_dclose(dp->d_rawdev, ap->a_fflag, ap->a_devtype); return (error); } /* * First execute the ioctl on the disk device, and if it isn't supported * try running it on the backing device. */ static int diskioctl(struct dev_ioctl_args *ap) { cdev_t dev = ap->a_head.a_dev; struct disk *dp; int error; dp = dev->si_disk; if (dp == NULL) return (ENXIO); error = dsioctl(dev, ap->a_cmd, ap->a_data, ap->a_fflag, &dp->d_slice, &dp->d_info); if (error == ENOIOCTL) { error = dev_dioctl(dp->d_rawdev, ap->a_cmd, ap->a_data, ap->a_fflag, ap->a_cred); } return (error); } /* * Execute strategy routine */ static int diskstrategy(struct dev_strategy_args *ap) { cdev_t dev = ap->a_head.a_dev; struct bio *bio = ap->a_bio; struct bio *nbio; struct disk *dp; dp = dev->si_disk; if (dp == NULL) { bio->bio_buf->b_error = ENXIO; bio->bio_buf->b_flags |= B_ERROR; biodone(bio); return(0); } KKASSERT(dev->si_disk == dp); /* * The dscheck() function will also transform the slice relative * block number i.e. bio->bio_offset into a block number that can be * passed directly to the underlying raw device. If dscheck() * returns NULL it will have handled the bio for us (e.g. EOF * or error due to being beyond the device size). */ if ((nbio = dscheck(dev, bio, dp->d_slice)) != NULL) dev_dstrategy(dp->d_rawdev, nbio); else biodone(bio); return(0); } /* * Return the partition size in ?blocks? */ static int diskpsize(struct dev_psize_args *ap) { cdev_t dev = ap->a_head.a_dev; struct disk *dp; dp = dev->si_disk; if (dp == NULL) return(ENODEV); ap->a_result = dssize(dev, &dp->d_slice); return(0); } /* * When new device entries are instantiated, make sure they inherit our * si_disk structure and block and iosize limits from the raw device. * * This routine is always called synchronously in the context of the * client. * * XXX The various io and block size constraints are not always initialized * properly by devices. */ static int diskclone(struct dev_clone_args *ap) { cdev_t dev = ap->a_head.a_dev; struct disk *dp; dp = dev->si_ops->head.data; KKASSERT(dp != NULL); dev->si_disk = dp; dev->si_iosize_max = dp->d_rawdev->si_iosize_max; dev->si_bsize_phys = dp->d_rawdev->si_bsize_phys; dev->si_bsize_best = dp->d_rawdev->si_bsize_best; return(0); } int diskdump(struct dev_dump_args *ap) { cdev_t dev = ap->a_head.a_dev; struct disk *dp = dev->si_ops->head.data; int error; error = disk_dumpcheck(dev, &ap->a_count, &ap->a_blkno, &ap->a_secsize); if (error == 0) { ap->a_head.a_dev = dp->d_rawdev; error = dev_doperate(&ap->a_head); } return(error); } SYSCTL_INT(_debug_sizeof, OID_AUTO, diskslices, CTLFLAG_RD, 0, sizeof(struct diskslices), "sizeof(struct diskslices)"); SYSCTL_INT(_debug_sizeof, OID_AUTO, disk, CTLFLAG_RD, 0, sizeof(struct disk), "sizeof(struct disk)"); /* * Seek sort for disks. * * The bio_queue keep two queues, sorted in ascending block order. The first * queue holds those requests which are positioned after the current block * (in the first request); the second, which starts at queue->switch_point, * holds requests which came in after their block number was passed. Thus * we implement a one way scan, retracting after reaching the end of the drive * to the first request on the second queue, at which time it becomes the * first queue. * * A one-way scan is natural because of the way UNIX read-ahead blocks are * allocated. */ void bioqdisksort(struct bio_queue_head *bioq, struct bio *bio) { struct bio *bq; struct bio *bn; struct bio *be; be = TAILQ_LAST(&bioq->queue, bio_queue); /* * If the queue is empty or we are an * ordered transaction, then it's easy. */ if ((bq = bioq_first(bioq)) == NULL || (bio->bio_buf->b_flags & B_ORDERED) != 0) { bioq_insert_tail(bioq, bio); return; } else if (bioq->insert_point != NULL) { /* * A certain portion of the list is * "locked" to preserve ordering, so * we can only insert after the insert * point. */ bq = bioq->insert_point; } else { /* * If we lie before the last removed (currently active) * request, and are not inserting ourselves into the * "locked" portion of the list, then we must add ourselves * to the second request list. */ if (bio->bio_offset < bioq->last_offset) { bq = bioq->switch_point; /* * If we are starting a new secondary list, * then it's easy. */ if (bq == NULL) { bioq->switch_point = bio; bioq_insert_tail(bioq, bio); return; } /* * If we lie ahead of the current switch point, * insert us before the switch point and move * the switch point. */ if (bio->bio_offset < bq->bio_offset) { bioq->switch_point = bio; TAILQ_INSERT_BEFORE(bq, bio, bio_act); return; } } else { if (bioq->switch_point != NULL) be = TAILQ_PREV(bioq->switch_point, bio_queue, bio_act); /* * If we lie between last_offset and bq, * insert before bq. */ if (bio->bio_offset < bq->bio_offset) { TAILQ_INSERT_BEFORE(bq, bio, bio_act); return; } } } /* * Request is at/after our current position in the list. * Optimize for sequential I/O by seeing if we go at the tail. */ if (bio->bio_offset > be->bio_offset) { TAILQ_INSERT_AFTER(&bioq->queue, be, bio, bio_act); return; } /* Otherwise, insertion sort */ while ((bn = TAILQ_NEXT(bq, bio_act)) != NULL) { /* * We want to go after the current request if it is the end * of the first request list, or if the next request is a * larger cylinder than our request. */ if (bn == bioq->switch_point || bio->bio_offset < bn->bio_offset) break; bq = bn; } TAILQ_INSERT_AFTER(&bioq->queue, bq, bio, bio_act); } /* * Disk error is the preface to plaintive error messages * about failing disk transfers. It prints messages of the form hp0g: hard error reading fsbn 12345 of 12344-12347 (hp0 bn %d cn %d tn %d sn %d) * if the offset of the error in the transfer and a disk label * are both available. blkdone should be -1 if the position of the error * is unknown; the disklabel pointer may be null from drivers that have not * been converted to use them. The message is printed with kprintf * if pri is LOG_PRINTF, otherwise it uses log at the specified priority. * The message should be completed (with at least a newline) with kprintf * or log(-1, ...), respectively. There is no trailing space. */ void diskerr(struct bio *bio, cdev_t dev, const char *what, int pri, int donecnt) { struct buf *bp = bio->bio_buf; int unit = dkunit(dev); int slice = dkslice(dev); int part = dkpart(dev); char partname[2]; char *sname; const char *term; switch(bp->b_cmd) { case BUF_CMD_READ: term = "read"; break; case BUF_CMD_WRITE: term = "write"; break; default: term = "access"; break; } sname = dsname(dev, unit, slice, part, partname); kprintf("%s%s: %s %sing ", sname, partname, what, term); kprintf("offset %012llx for %d", bio->bio_offset, bp->b_bcount); if (donecnt) kprintf(" (%d bytes completed)", donecnt); }