kernel - Add nfs rpc packet sanity check
[dragonfly.git] / sys / vfs / nfs / nfs_socket.c
1 /*
2  * Copyright (c) 1989, 1991, 1993, 1995
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Rick Macklem at The University of Guelph.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *      This product includes software developed by the University of
19  *      California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *      @(#)nfs_socket.c        8.5 (Berkeley) 3/30/95
37  * $FreeBSD: src/sys/nfs/nfs_socket.c,v 1.60.2.6 2003/03/26 01:44:46 alfred Exp $
38  * $DragonFly: src/sys/vfs/nfs/nfs_socket.c,v 1.45 2007/05/18 17:05:13 dillon Exp $
39  */
40
41 /*
42  * Socket operations for use by nfs
43  */
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/malloc.h>
49 #include <sys/mount.h>
50 #include <sys/kernel.h>
51 #include <sys/mbuf.h>
52 #include <sys/vnode.h>
53 #include <sys/fcntl.h>
54 #include <sys/protosw.h>
55 #include <sys/resourcevar.h>
56 #include <sys/socket.h>
57 #include <sys/socketvar.h>
58 #include <sys/socketops.h>
59 #include <sys/syslog.h>
60 #include <sys/thread.h>
61 #include <sys/tprintf.h>
62 #include <sys/sysctl.h>
63 #include <sys/signalvar.h>
64 #include <sys/mutex.h>
65
66 #include <sys/signal2.h>
67 #include <sys/mutex2.h>
68
69 #include <netinet/in.h>
70 #include <netinet/tcp.h>
71 #include <sys/thread2.h>
72
73 #include "rpcv2.h"
74 #include "nfsproto.h"
75 #include "nfs.h"
76 #include "xdr_subs.h"
77 #include "nfsm_subs.h"
78 #include "nfsmount.h"
79 #include "nfsnode.h"
80 #include "nfsrtt.h"
81
82 #define TRUE    1
83 #define FALSE   0
84
85 /*
86  * RTT calculations are scaled by 256 (8 bits).  A proper fractional
87  * RTT will still be calculated even with a slow NFS timer.
88  */
89 #define NFS_SRTT(r)     (r)->r_nmp->nm_srtt[proct[(r)->r_procnum]]
90 #define NFS_SDRTT(r)    (r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum]]
91 #define NFS_RTT_SCALE_BITS      8       /* bits */
92 #define NFS_RTT_SCALE           256     /* value */
93
94 /*
95  * Defines which timer to use for the procnum.
96  * 0 - default
97  * 1 - getattr
98  * 2 - lookup
99  * 3 - read
100  * 4 - write
101  */
102 static int proct[NFS_NPROCS] = {
103         0, 1, 0, 2, 1, 3, 3, 4, 0, 0,   /* 00-09        */
104         0, 0, 0, 0, 0, 0, 3, 3, 0, 0,   /* 10-19        */
105         0, 5, 0, 0, 0, 0,               /* 20-29        */
106 };
107
108 static int multt[NFS_NPROCS] = {
109         1, 1, 1, 1, 1, 1, 1, 1, 1, 1,   /* 00-09        */
110         1, 1, 1, 1, 1, 1, 1, 1, 1, 1,   /* 10-19        */
111         1, 2, 1, 1, 1, 1,               /* 20-29        */
112 };
113
114 static int nfs_backoff[8] = { 2, 3, 5, 8, 13, 21, 34, 55 };
115 static int nfs_realign_test;
116 static int nfs_realign_count;
117 static int nfs_showrtt;
118 static int nfs_showrexmit;
119 int nfs_maxasyncbio = NFS_MAXASYNCBIO;
120
121 SYSCTL_DECL(_vfs_nfs);
122
123 SYSCTL_INT(_vfs_nfs, OID_AUTO, realign_test, CTLFLAG_RW, &nfs_realign_test, 0, "");
124 SYSCTL_INT(_vfs_nfs, OID_AUTO, realign_count, CTLFLAG_RW, &nfs_realign_count, 0, "");
125 SYSCTL_INT(_vfs_nfs, OID_AUTO, showrtt, CTLFLAG_RW, &nfs_showrtt, 0, "");
126 SYSCTL_INT(_vfs_nfs, OID_AUTO, showrexmit, CTLFLAG_RW, &nfs_showrexmit, 0, "");
127 SYSCTL_INT(_vfs_nfs, OID_AUTO, maxasyncbio, CTLFLAG_RW, &nfs_maxasyncbio, 0, "");
128
129 static int nfs_request_setup(nfsm_info_t info);
130 static int nfs_request_auth(struct nfsreq *rep);
131 static int nfs_request_try(struct nfsreq *rep);
132 static int nfs_request_waitreply(struct nfsreq *rep);
133 static int nfs_request_processreply(nfsm_info_t info, int);
134
135 int nfsrtton = 0;
136 struct nfsrtt nfsrtt;
137 struct callout  nfs_timer_handle;
138
139 static int      nfs_msg (struct thread *,char *,char *);
140 static int      nfs_rcvlock (struct nfsmount *nmp, struct nfsreq *myreq);
141 static void     nfs_rcvunlock (struct nfsmount *nmp);
142 static void     nfs_realign (struct mbuf **pm, int hsiz);
143 static int      nfs_receive (struct nfsmount *nmp, struct nfsreq *rep,
144                                 struct sockaddr **aname, struct mbuf **mp);
145 static void     nfs_softterm (struct nfsreq *rep, int islocked);
146 static void     nfs_hardterm (struct nfsreq *rep, int islocked);
147 static int      nfs_reconnect (struct nfsmount *nmp, struct nfsreq *rep);
148 #ifndef NFS_NOSERVER 
149 static int      nfsrv_getstream (struct nfssvc_sock *, int, int *);
150 static void     nfs_timer_req(struct nfsreq *req);
151 static void     nfs_checkpkt(struct mbuf *m, int len);
152
153 int (*nfsrv3_procs[NFS_NPROCS]) (struct nfsrv_descript *nd,
154                                     struct nfssvc_sock *slp,
155                                     struct thread *td,
156                                     struct mbuf **mreqp) = {
157         nfsrv_null,
158         nfsrv_getattr,
159         nfsrv_setattr,
160         nfsrv_lookup,
161         nfsrv3_access,
162         nfsrv_readlink,
163         nfsrv_read,
164         nfsrv_write,
165         nfsrv_create,
166         nfsrv_mkdir,
167         nfsrv_symlink,
168         nfsrv_mknod,
169         nfsrv_remove,
170         nfsrv_rmdir,
171         nfsrv_rename,
172         nfsrv_link,
173         nfsrv_readdir,
174         nfsrv_readdirplus,
175         nfsrv_statfs,
176         nfsrv_fsinfo,
177         nfsrv_pathconf,
178         nfsrv_commit,
179         nfsrv_noop,
180         nfsrv_noop,
181         nfsrv_noop,
182         nfsrv_noop
183 };
184 #endif /* NFS_NOSERVER */
185
186 /*
187  * Initialize sockets and congestion for a new NFS connection.
188  * We do not free the sockaddr if error.
189  */
190 int
191 nfs_connect(struct nfsmount *nmp, struct nfsreq *rep)
192 {
193         struct socket *so;
194         int error;
195         struct sockaddr *saddr;
196         struct sockaddr_in *sin;
197         struct thread *td = &thread0; /* only used for socreate and sobind */
198
199         nmp->nm_so = so = NULL;
200         if (nmp->nm_flag & NFSMNT_FORCE)
201                 return (EINVAL);
202         saddr = nmp->nm_nam;
203         error = socreate(saddr->sa_family, &so, nmp->nm_sotype,
204                 nmp->nm_soproto, td);
205         if (error)
206                 goto bad;
207         nmp->nm_soflags = so->so_proto->pr_flags;
208
209         /*
210          * Some servers require that the client port be a reserved port number.
211          */
212         if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) {
213                 struct sockopt sopt;
214                 int ip;
215                 struct sockaddr_in ssin;
216
217                 bzero(&sopt, sizeof sopt);
218                 ip = IP_PORTRANGE_LOW;
219                 sopt.sopt_level = IPPROTO_IP;
220                 sopt.sopt_name = IP_PORTRANGE;
221                 sopt.sopt_val = (void *)&ip;
222                 sopt.sopt_valsize = sizeof(ip);
223                 sopt.sopt_td = NULL;
224                 error = sosetopt(so, &sopt);
225                 if (error)
226                         goto bad;
227                 bzero(&ssin, sizeof ssin);
228                 sin = &ssin;
229                 sin->sin_len = sizeof (struct sockaddr_in);
230                 sin->sin_family = AF_INET;
231                 sin->sin_addr.s_addr = INADDR_ANY;
232                 sin->sin_port = htons(0);
233                 error = sobind(so, (struct sockaddr *)sin, td);
234                 if (error)
235                         goto bad;
236                 bzero(&sopt, sizeof sopt);
237                 ip = IP_PORTRANGE_DEFAULT;
238                 sopt.sopt_level = IPPROTO_IP;
239                 sopt.sopt_name = IP_PORTRANGE;
240                 sopt.sopt_val = (void *)&ip;
241                 sopt.sopt_valsize = sizeof(ip);
242                 sopt.sopt_td = NULL;
243                 error = sosetopt(so, &sopt);
244                 if (error)
245                         goto bad;
246         }
247
248         /*
249          * Protocols that do not require connections may be optionally left
250          * unconnected for servers that reply from a port other than NFS_PORT.
251          */
252         if (nmp->nm_flag & NFSMNT_NOCONN) {
253                 if (nmp->nm_soflags & PR_CONNREQUIRED) {
254                         error = ENOTCONN;
255                         goto bad;
256                 }
257         } else {
258                 error = soconnect(so, nmp->nm_nam, td);
259                 if (error)
260                         goto bad;
261
262                 /*
263                  * Wait for the connection to complete. Cribbed from the
264                  * connect system call but with the wait timing out so
265                  * that interruptible mounts don't hang here for a long time.
266                  */
267                 crit_enter();
268                 while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
269                         (void) tsleep((caddr_t)&so->so_timeo, 0,
270                                 "nfscon", 2 * hz);
271                         if ((so->so_state & SS_ISCONNECTING) &&
272                             so->so_error == 0 && rep &&
273                             (error = nfs_sigintr(nmp, rep, rep->r_td)) != 0){
274                                 so->so_state &= ~SS_ISCONNECTING;
275                                 crit_exit();
276                                 goto bad;
277                         }
278                 }
279                 if (so->so_error) {
280                         error = so->so_error;
281                         so->so_error = 0;
282                         crit_exit();
283                         goto bad;
284                 }
285                 crit_exit();
286         }
287         so->so_rcv.ssb_timeo = (5 * hz);
288         so->so_snd.ssb_timeo = (5 * hz);
289
290         /*
291          * Get buffer reservation size from sysctl, but impose reasonable
292          * limits.
293          */
294         if (nmp->nm_sotype == SOCK_STREAM) {
295                 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
296                         struct sockopt sopt;
297                         int val;
298
299                         bzero(&sopt, sizeof sopt);
300                         sopt.sopt_level = SOL_SOCKET;
301                         sopt.sopt_name = SO_KEEPALIVE;
302                         sopt.sopt_val = &val;
303                         sopt.sopt_valsize = sizeof val;
304                         val = 1;
305                         sosetopt(so, &sopt);
306                 }
307                 if (so->so_proto->pr_protocol == IPPROTO_TCP) {
308                         struct sockopt sopt;
309                         int val;
310
311                         bzero(&sopt, sizeof sopt);
312                         sopt.sopt_level = IPPROTO_TCP;
313                         sopt.sopt_name = TCP_NODELAY;
314                         sopt.sopt_val = &val;
315                         sopt.sopt_valsize = sizeof val;
316                         val = 1;
317                         sosetopt(so, &sopt);
318                 }
319         }
320         error = soreserve(so, nfs_soreserve, nfs_soreserve, NULL);
321         if (error)
322                 goto bad;
323         atomic_set_int(&so->so_rcv.ssb_flags, SSB_NOINTR);
324         atomic_set_int(&so->so_snd.ssb_flags, SSB_NOINTR);
325
326         /* Initialize other non-zero congestion variables */
327         nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] = 
328                 nmp->nm_srtt[3] = (NFS_TIMEO << NFS_RTT_SCALE_BITS);
329         nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] =
330                 nmp->nm_sdrtt[3] = 0;
331         nmp->nm_maxasync_scaled = NFS_MINASYNC_SCALED;
332         nmp->nm_timeouts = 0;
333
334         /*
335          * Assign nm_so last.  The moment nm_so is assigned the nfs_timer()
336          * can mess with the socket.
337          */
338         nmp->nm_so = so;
339         return (0);
340
341 bad:
342         if (so) {
343                 soshutdown(so, SHUT_RDWR);
344                 soclose(so, FNONBLOCK);
345         }
346         return (error);
347 }
348
349 /*
350  * Reconnect routine:
351  * Called when a connection is broken on a reliable protocol.
352  * - clean up the old socket
353  * - nfs_connect() again
354  * - set R_NEEDSXMIT for all outstanding requests on mount point
355  * If this fails the mount point is DEAD!
356  * nb: Must be called with the nfs_sndlock() set on the mount point.
357  */
358 static int
359 nfs_reconnect(struct nfsmount *nmp, struct nfsreq *rep)
360 {
361         struct nfsreq *req;
362         int error;
363
364         nfs_disconnect(nmp);
365         if (nmp->nm_rxstate >= NFSSVC_STOPPING)
366                 return (EINTR);
367         while ((error = nfs_connect(nmp, rep)) != 0) {
368                 if (error == EINTR || error == ERESTART)
369                         return (EINTR);
370                 if (error == EINVAL)
371                         return (error);
372                 if (nmp->nm_rxstate >= NFSSVC_STOPPING)
373                         return (EINTR);
374                 (void) tsleep((caddr_t)&lbolt, 0, "nfscon", 0);
375         }
376
377         /*
378          * Loop through outstanding request list and fix up all requests
379          * on old socket.
380          */
381         crit_enter();
382         TAILQ_FOREACH(req, &nmp->nm_reqq, r_chain) {
383                 KKASSERT(req->r_nmp == nmp);
384                 req->r_flags |= R_NEEDSXMIT;
385         }
386         crit_exit();
387         return (0);
388 }
389
390 /*
391  * NFS disconnect. Clean up and unlink.
392  */
393 void
394 nfs_disconnect(struct nfsmount *nmp)
395 {
396         struct socket *so;
397
398         if (nmp->nm_so) {
399                 so = nmp->nm_so;
400                 nmp->nm_so = NULL;
401                 soshutdown(so, SHUT_RDWR);
402                 soclose(so, FNONBLOCK);
403         }
404 }
405
406 void
407 nfs_safedisconnect(struct nfsmount *nmp)
408 {
409         nfs_rcvlock(nmp, NULL);
410         nfs_disconnect(nmp);
411         nfs_rcvunlock(nmp);
412 }
413
414 /*
415  * This is the nfs send routine. For connection based socket types, it
416  * must be called with an nfs_sndlock() on the socket.
417  * "rep == NULL" indicates that it has been called from a server.
418  * For the client side:
419  * - return EINTR if the RPC is terminated, 0 otherwise
420  * - set R_NEEDSXMIT if the send fails for any reason
421  * - do any cleanup required by recoverable socket errors (?)
422  * For the server side:
423  * - return EINTR or ERESTART if interrupted by a signal
424  * - return EPIPE if a connection is lost for connection based sockets (TCP...)
425  * - do any cleanup required by recoverable socket errors (?)
426  */
427 int
428 nfs_send(struct socket *so, struct sockaddr *nam, struct mbuf *top,
429          struct nfsreq *rep)
430 {
431         struct sockaddr *sendnam;
432         int error, soflags, flags;
433
434         if (rep) {
435                 if (rep->r_flags & R_SOFTTERM) {
436                         m_freem(top);
437                         return (EINTR);
438                 }
439                 if ((so = rep->r_nmp->nm_so) == NULL) {
440                         rep->r_flags |= R_NEEDSXMIT;
441                         m_freem(top);
442                         return (0);
443                 }
444                 rep->r_flags &= ~R_NEEDSXMIT;
445                 soflags = rep->r_nmp->nm_soflags;
446         } else {
447                 soflags = so->so_proto->pr_flags;
448         }
449         if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED))
450                 sendnam = NULL;
451         else
452                 sendnam = nam;
453         if (so->so_type == SOCK_SEQPACKET)
454                 flags = MSG_EOR;
455         else
456                 flags = 0;
457
458         /*
459          * calls pru_sosend -> sosend -> so_pru_send -> netrpc
460          */
461         error = so_pru_sosend(so, sendnam, NULL, top, NULL, flags,
462                               curthread /*XXX*/);
463         /*
464          * ENOBUFS for dgram sockets is transient and non fatal.
465          * No need to log, and no need to break a soft mount.
466          */
467         if (error == ENOBUFS && so->so_type == SOCK_DGRAM) {
468                 error = 0;
469                 /*
470                  * do backoff retransmit on client
471                  */
472                 if (rep) {
473                         if ((rep->r_nmp->nm_state & NFSSTA_SENDSPACE) == 0) {
474                                 rep->r_nmp->nm_state |= NFSSTA_SENDSPACE;
475                                 kprintf("Warning: NFS: Insufficient sendspace "
476                                         "(%lu),\n"
477                                         "\t You must increase vfs.nfs.soreserve"
478                                         "or decrease vfs.nfs.maxasyncbio\n",
479                                         so->so_snd.ssb_hiwat);
480                         }
481                         rep->r_flags |= R_NEEDSXMIT;
482                 }
483         }
484
485         if (error) {
486                 if (rep) {
487                         log(LOG_INFO, "nfs send error %d for server %s\n",error,
488                             rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
489                         /*
490                          * Deal with errors for the client side.
491                          */
492                         if (rep->r_flags & R_SOFTTERM)
493                                 error = EINTR;
494                         else
495                                 rep->r_flags |= R_NEEDSXMIT;
496                 } else {
497                         log(LOG_INFO, "nfsd send error %d\n", error);
498                 }
499
500                 /*
501                  * Handle any recoverable (soft) socket errors here. (?)
502                  */
503                 if (error != EINTR && error != ERESTART &&
504                         error != EWOULDBLOCK && error != EPIPE)
505                         error = 0;
506         }
507         return (error);
508 }
509
510 /*
511  * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all
512  * done by soreceive(), but for SOCK_STREAM we must deal with the Record
513  * Mark and consolidate the data into a new mbuf list.
514  * nb: Sometimes TCP passes the data up to soreceive() in long lists of
515  *     small mbufs.
516  * For SOCK_STREAM we must be very careful to read an entire record once
517  * we have read any of it, even if the system call has been interrupted.
518  */
519 static int
520 nfs_receive(struct nfsmount *nmp, struct nfsreq *rep,
521             struct sockaddr **aname, struct mbuf **mp)
522 {
523         struct socket *so;
524         struct sockbuf sio;
525         struct uio auio;
526         struct iovec aio;
527         struct mbuf *m;
528         struct mbuf *control;
529         u_int32_t len;
530         struct sockaddr **getnam;
531         int error, sotype, rcvflg;
532         struct thread *td = curthread;  /* XXX */
533
534         /*
535          * Set up arguments for soreceive()
536          */
537         *mp = NULL;
538         *aname = NULL;
539         sotype = nmp->nm_sotype;
540
541         /*
542          * For reliable protocols, lock against other senders/receivers
543          * in case a reconnect is necessary.
544          * For SOCK_STREAM, first get the Record Mark to find out how much
545          * more there is to get.
546          * We must lock the socket against other receivers
547          * until we have an entire rpc request/reply.
548          */
549         if (sotype != SOCK_DGRAM) {
550                 error = nfs_sndlock(nmp, rep);
551                 if (error)
552                         return (error);
553 tryagain:
554                 /*
555                  * Check for fatal errors and resending request.
556                  */
557                 /*
558                  * Ugh: If a reconnect attempt just happened, nm_so
559                  * would have changed. NULL indicates a failed
560                  * attempt that has essentially shut down this
561                  * mount point.
562                  */
563                 if (rep && (rep->r_mrep || (rep->r_flags & R_SOFTTERM))) {
564                         nfs_sndunlock(nmp);
565                         return (EINTR);
566                 }
567                 so = nmp->nm_so;
568                 if (so == NULL) {
569                         error = nfs_reconnect(nmp, rep);
570                         if (error) {
571                                 nfs_sndunlock(nmp);
572                                 return (error);
573                         }
574                         goto tryagain;
575                 }
576                 while (rep && (rep->r_flags & R_NEEDSXMIT)) {
577                         m = m_copym(rep->r_mreq, 0, M_COPYALL, MB_WAIT);
578                         nfsstats.rpcretries++;
579                         error = nfs_send(so, rep->r_nmp->nm_nam, m, rep);
580                         if (error) {
581                                 if (error == EINTR || error == ERESTART ||
582                                     (error = nfs_reconnect(nmp, rep)) != 0) {
583                                         nfs_sndunlock(nmp);
584                                         return (error);
585                                 }
586                                 goto tryagain;
587                         }
588                 }
589                 nfs_sndunlock(nmp);
590                 if (sotype == SOCK_STREAM) {
591                         /*
592                          * Get the length marker from the stream
593                          */
594                         aio.iov_base = (caddr_t)&len;
595                         aio.iov_len = sizeof(u_int32_t);
596                         auio.uio_iov = &aio;
597                         auio.uio_iovcnt = 1;
598                         auio.uio_segflg = UIO_SYSSPACE;
599                         auio.uio_rw = UIO_READ;
600                         auio.uio_offset = 0;
601                         auio.uio_resid = sizeof(u_int32_t);
602                         auio.uio_td = td;
603                         do {
604                            rcvflg = MSG_WAITALL;
605                            error = so_pru_soreceive(so, NULL, &auio, NULL,
606                                                     NULL, &rcvflg);
607                            if (error == EWOULDBLOCK && rep) {
608                                 if (rep->r_flags & R_SOFTTERM)
609                                         return (EINTR);
610                            }
611                         } while (error == EWOULDBLOCK);
612
613                         if (error == 0 && auio.uio_resid > 0) {
614                             /*
615                              * Only log short packets if not EOF
616                              */
617                             if (auio.uio_resid != sizeof(u_int32_t))
618                             log(LOG_INFO,
619                                  "short receive (%d/%d) from nfs server %s\n",
620                                  (int)(sizeof(u_int32_t) - auio.uio_resid),
621                                  (int)sizeof(u_int32_t),
622                                  nmp->nm_mountp->mnt_stat.f_mntfromname);
623                             error = EPIPE;
624                         }
625                         if (error)
626                                 goto errout;
627                         len = ntohl(len) & ~0x80000000;
628                         /*
629                          * This is SERIOUS! We are out of sync with the sender
630                          * and forcing a disconnect/reconnect is all I can do.
631                          */
632                         if (len > NFS_MAXPACKET) {
633                             log(LOG_ERR, "%s (%d) from nfs server %s\n",
634                                 "impossible packet length",
635                                 len,
636                                 nmp->nm_mountp->mnt_stat.f_mntfromname);
637                             error = EFBIG;
638                             goto errout;
639                         }
640
641                         /*
642                          * Get the rest of the packet as an mbuf chain
643                          */
644                         sbinit(&sio, len);
645                         do {
646                             rcvflg = MSG_WAITALL;
647                             error = so_pru_soreceive(so, NULL, NULL, &sio,
648                                                      NULL, &rcvflg);
649                         } while (error == EWOULDBLOCK || error == EINTR ||
650                                  error == ERESTART);
651                         if (error == 0 && sio.sb_cc != len) {
652                             if (sio.sb_cc != 0)
653                             log(LOG_INFO,
654                                 "short receive (%zu/%d) from nfs server %s\n",
655                                 (size_t)len - auio.uio_resid, len,
656                                 nmp->nm_mountp->mnt_stat.f_mntfromname);
657                             error = EPIPE;
658                         }
659                         *mp = sio.sb_mb;
660                 } else {
661                         /*
662                          * Non-stream, so get the whole packet by not
663                          * specifying MSG_WAITALL and by specifying a large
664                          * length.
665                          *
666                          * We have no use for control msg., but must grab them
667                          * and then throw them away so we know what is going
668                          * on.
669                          */
670                         sbinit(&sio, 100000000);
671                         do {
672                             rcvflg = 0;
673                             error =  so_pru_soreceive(so, NULL, NULL, &sio,
674                                                       &control, &rcvflg);
675                             if (control)
676                                 m_freem(control);
677                             if (error == EWOULDBLOCK && rep) {
678                                 if (rep->r_flags & R_SOFTTERM) {
679                                         m_freem(sio.sb_mb);
680                                         return (EINTR);
681                                 }
682                             }
683                         } while (error == EWOULDBLOCK ||
684                                  (error == 0 && sio.sb_mb == NULL && control));
685                         if ((rcvflg & MSG_EOR) == 0)
686                                 kprintf("Egad!!\n");
687                         if (error == 0 && sio.sb_mb == NULL)
688                                 error = EPIPE;
689                         len = sio.sb_cc;
690                         *mp = sio.sb_mb;
691                 }
692 errout:
693                 if (error && error != EINTR && error != ERESTART) {
694                         m_freem(*mp);
695                         *mp = NULL;
696                         if (error != EPIPE) {
697                                 log(LOG_INFO,
698                                     "receive error %d from nfs server %s\n",
699                                     error,
700                                  nmp->nm_mountp->mnt_stat.f_mntfromname);
701                         }
702                         error = nfs_sndlock(nmp, rep);
703                         if (!error) {
704                                 error = nfs_reconnect(nmp, rep);
705                                 if (!error)
706                                         goto tryagain;
707                                 else
708                                         nfs_sndunlock(nmp);
709                         }
710                 }
711         } else {
712                 if ((so = nmp->nm_so) == NULL)
713                         return (EACCES);
714                 if (so->so_state & SS_ISCONNECTED)
715                         getnam = NULL;
716                 else
717                         getnam = aname;
718                 sbinit(&sio, 100000000);
719                 do {
720                         rcvflg = 0;
721                         error =  so_pru_soreceive(so, getnam, NULL, &sio,
722                                                   NULL, &rcvflg);
723                         if (error == EWOULDBLOCK && rep &&
724                             (rep->r_flags & R_SOFTTERM)) {
725                                 m_freem(sio.sb_mb);
726                                 return (EINTR);
727                         }
728                 } while (error == EWOULDBLOCK);
729
730                 len = sio.sb_cc;
731                 *mp = sio.sb_mb;
732
733                 /*
734                  * A shutdown may result in no error and no mbuf.
735                  * Convert to EPIPE.
736                  */
737                 if (*mp == NULL && error == 0)
738                         error = EPIPE;
739         }
740         if (error) {
741                 m_freem(*mp);
742                 *mp = NULL;
743         }
744
745         /*
746          * Search for any mbufs that are not a multiple of 4 bytes long
747          * or with m_data not longword aligned.
748          * These could cause pointer alignment problems, so copy them to
749          * well aligned mbufs.
750          */
751         nfs_realign(mp, 5 * NFSX_UNSIGNED);
752         return (error);
753 }
754
755 /*
756  * Implement receipt of reply on a socket.
757  *
758  * We must search through the list of received datagrams matching them
759  * with outstanding requests using the xid, until ours is found.
760  *
761  * If myrep is NULL we process packets on the socket until
762  * interrupted or until nm_reqrxq is non-empty.
763  */
764 /* ARGSUSED */
765 int
766 nfs_reply(struct nfsmount *nmp, struct nfsreq *myrep)
767 {
768         struct nfsreq *rep;
769         struct sockaddr *nam;
770         u_int32_t rxid;
771         u_int32_t *tl;
772         int error;
773         struct nfsm_info info;
774
775         /*
776          * Loop around until we get our own reply
777          */
778         for (;;) {
779                 /*
780                  * Lock against other receivers so that I don't get stuck in
781                  * sbwait() after someone else has received my reply for me.
782                  * Also necessary for connection based protocols to avoid
783                  * race conditions during a reconnect.
784                  *
785                  * If nfs_rcvlock() returns EALREADY, that means that
786                  * the reply has already been recieved by another
787                  * process and we can return immediately.  In this
788                  * case, the lock is not taken to avoid races with
789                  * other processes.
790                  */
791                 info.mrep = NULL;
792
793                 error = nfs_rcvlock(nmp, myrep);
794                 if (error == EALREADY)
795                         return (0);
796                 if (error)
797                         return (error);
798
799                 /*
800                  * If myrep is NULL we are the receiver helper thread.
801                  * Stop waiting for incoming replies if there are
802                  * messages sitting on reqrxq that we need to process,
803                  * or if a shutdown request is pending.
804                  */
805                 if (myrep == NULL && (TAILQ_FIRST(&nmp->nm_reqrxq) ||
806                     nmp->nm_rxstate > NFSSVC_PENDING)) {
807                         nfs_rcvunlock(nmp);
808                         return(EWOULDBLOCK);
809                 }
810
811                 /*
812                  * Get the next Rpc reply off the socket
813                  *
814                  * We cannot release the receive lock until we've
815                  * filled in rep->r_mrep, otherwise a waiting
816                  * thread may deadlock in soreceive with no incoming
817                  * packets expected.
818                  */
819                 error = nfs_receive(nmp, myrep, &nam, &info.mrep);
820                 if (error) {
821                         /*
822                          * Ignore routing errors on connectionless protocols??
823                          */
824                         nfs_rcvunlock(nmp);
825                         if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
826                                 if (nmp->nm_so == NULL)
827                                         return (error);
828                                 nmp->nm_so->so_error = 0;
829                                 continue;
830                         }
831                         return (error);
832                 }
833                 if (nam)
834                         FREE(nam, M_SONAME);
835
836                 /*
837                  * Get the xid and check that it is an rpc reply
838                  */
839                 info.md = info.mrep;
840                 info.dpos = mtod(info.md, caddr_t);
841                 NULLOUT(tl = nfsm_dissect(&info, 2*NFSX_UNSIGNED));
842                 rxid = *tl++;
843                 if (*tl != rpc_reply) {
844                         nfsstats.rpcinvalid++;
845                         m_freem(info.mrep);
846                         info.mrep = NULL;
847 nfsmout:
848                         nfs_rcvunlock(nmp);
849                         continue;
850                 }
851
852                 /*
853                  * Loop through the request list to match up the reply
854                  * Iff no match, just drop the datagram.  On match, set
855                  * r_mrep atomically to prevent the timer from messing
856                  * around with the request after we have exited the critical
857                  * section.
858                  */
859                 crit_enter();
860                 TAILQ_FOREACH(rep, &nmp->nm_reqq, r_chain) {
861                         if (rep->r_mrep == NULL && rxid == rep->r_xid)
862                                 break;
863                 }
864
865                 /*
866                  * Fill in the rest of the reply if we found a match.
867                  *
868                  * Deal with duplicate responses if there was no match.
869                  */
870                 if (rep) {
871                         rep->r_md = info.md;
872                         rep->r_dpos = info.dpos;
873                         if (nfsrtton) {
874                                 struct rttl *rt;
875
876                                 rt = &nfsrtt.rttl[nfsrtt.pos];
877                                 rt->proc = rep->r_procnum;
878                                 rt->rto = 0;
879                                 rt->sent = 0;
880                                 rt->cwnd = nmp->nm_maxasync_scaled;
881                                 rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1];
882                                 rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1];
883                                 rt->fsid = nmp->nm_mountp->mnt_stat.f_fsid;
884                                 getmicrotime(&rt->tstamp);
885                                 if (rep->r_flags & R_TIMING)
886                                         rt->rtt = rep->r_rtt;
887                                 else
888                                         rt->rtt = 1000000;
889                                 nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ;
890                         }
891
892                         /*
893                          * New congestion control is based only on async
894                          * requests.
895                          */
896                         if (nmp->nm_maxasync_scaled < NFS_MAXASYNC_SCALED)
897                                 ++nmp->nm_maxasync_scaled;
898                         if (rep->r_flags & R_SENT) {
899                                 rep->r_flags &= ~R_SENT;
900                         }
901                         /*
902                          * Update rtt using a gain of 0.125 on the mean
903                          * and a gain of 0.25 on the deviation.
904                          *
905                          * NOTE SRTT/SDRTT are only good if R_TIMING is set.
906                          */
907                         if ((rep->r_flags & R_TIMING) && rep->r_rexmit == 0) {
908                                 /*
909                                  * Since the timer resolution of
910                                  * NFS_HZ is so course, it can often
911                                  * result in r_rtt == 0. Since
912                                  * r_rtt == N means that the actual
913                                  * rtt is between N+dt and N+2-dt ticks,
914                                  * add 1.
915                                  */
916                                 int n;
917                                 int d;
918
919 #define NFSRSB  NFS_RTT_SCALE_BITS
920                                 n = ((NFS_SRTT(rep) * 7) +
921                                      (rep->r_rtt << NFSRSB)) >> 3;
922                                 d = n - NFS_SRTT(rep);
923                                 NFS_SRTT(rep) = n;
924
925                                 /*
926                                  * Don't let the jitter calculation decay
927                                  * too quickly, but we want a fast rampup.
928                                  */
929                                 if (d < 0)
930                                         d = -d;
931                                 d <<= NFSRSB;
932                                 if (d < NFS_SDRTT(rep))
933                                         n = ((NFS_SDRTT(rep) * 15) + d) >> 4;
934                                 else
935                                         n = ((NFS_SDRTT(rep) * 3) + d) >> 2;
936                                 NFS_SDRTT(rep) = n;
937 #undef NFSRSB
938                         }
939                         nmp->nm_timeouts = 0;
940                         rep->r_mrep = info.mrep;
941                         nfs_hardterm(rep, 0);
942                 } else {
943                         /*
944                          * Extract vers, prog, nfsver, procnum.  A duplicate
945                          * response means we didn't wait long enough so
946                          * we increase the SRTT to avoid future spurious
947                          * timeouts.
948                          */
949                         u_int procnum = nmp->nm_lastreprocnum;
950                         int n;
951
952                         if (procnum < NFS_NPROCS && proct[procnum]) {
953                                 if (nfs_showrexmit)
954                                         kprintf("D");
955                                 n = nmp->nm_srtt[proct[procnum]];
956                                 n += NFS_ASYSCALE * NFS_HZ;
957                                 if (n < NFS_ASYSCALE * NFS_HZ * 10)
958                                         n = NFS_ASYSCALE * NFS_HZ * 10;
959                                 nmp->nm_srtt[proct[procnum]] = n;
960                         }
961                 }
962                 nfs_rcvunlock(nmp);
963                 crit_exit();
964
965                 /*
966                  * If not matched to a request, drop it.
967                  * If it's mine, get out.
968                  */
969                 if (rep == NULL) {
970                         nfsstats.rpcunexpected++;
971                         m_freem(info.mrep);
972                         info.mrep = NULL;
973                 } else if (rep == myrep) {
974                         if (rep->r_mrep == NULL)
975                                 panic("nfsreply nil");
976                         return (0);
977                 }
978         }
979 }
980
981 /*
982  * Run the request state machine until the target state is reached
983  * or a fatal error occurs.  The target state is not run.  Specifying
984  * a target of NFSM_STATE_DONE runs the state machine until the rpc
985  * is complete.
986  *
987  * EINPROGRESS is returned for all states other then the DONE state,
988  * indicating that the rpc is still in progress.
989  */
990 int
991 nfs_request(struct nfsm_info *info, nfsm_state_t bstate, nfsm_state_t estate)
992 {
993         struct nfsreq *req;
994
995         while (info->state >= bstate && info->state < estate) {
996                 switch(info->state) {
997                 case NFSM_STATE_SETUP:
998                         /*
999                          * Setup the nfsreq.  Any error which occurs during
1000                          * this state is fatal.
1001                          */
1002                         info->error = nfs_request_setup(info);
1003                         if (info->error) {
1004                                 info->state = NFSM_STATE_DONE;
1005                                 return (info->error);
1006                         } else {
1007                                 req = info->req;
1008                                 req->r_mrp = &info->mrep;
1009                                 req->r_mdp = &info->md;
1010                                 req->r_dposp = &info->dpos;
1011                                 info->state = NFSM_STATE_AUTH;
1012                         }
1013                         break;
1014                 case NFSM_STATE_AUTH:
1015                         /*
1016                          * Authenticate the nfsreq.  Any error which occurs
1017                          * during this state is fatal.
1018                          */
1019                         info->error = nfs_request_auth(info->req);
1020                         if (info->error) {
1021                                 info->state = NFSM_STATE_DONE;
1022                                 return (info->error);
1023                         } else {
1024                                 info->state = NFSM_STATE_TRY;
1025                         }
1026                         break;
1027                 case NFSM_STATE_TRY:
1028                         /*
1029                          * Transmit or retransmit attempt.  An error in this
1030                          * state is ignored and we always move on to the
1031                          * next state.
1032                          *
1033                          * This can trivially race the receiver if the
1034                          * request is asynchronous.  nfs_request_try()
1035                          * will thus set the state for us and we
1036                          * must also return immediately if we are
1037                          * running an async state machine, because
1038                          * info can become invalid due to races after
1039                          * try() returns.
1040                          */
1041                         if (info->req->r_flags & R_ASYNC) {
1042                                 nfs_request_try(info->req);
1043                                 if (estate == NFSM_STATE_WAITREPLY)
1044                                         return (EINPROGRESS);
1045                         } else {
1046                                 nfs_request_try(info->req);
1047                                 info->state = NFSM_STATE_WAITREPLY;
1048                         }
1049                         break;
1050                 case NFSM_STATE_WAITREPLY:
1051                         /*
1052                          * Wait for a reply or timeout and move on to the
1053                          * next state.  The error returned by this state
1054                          * is passed to the processing code in the next
1055                          * state.
1056                          */
1057                         info->error = nfs_request_waitreply(info->req);
1058                         info->state = NFSM_STATE_PROCESSREPLY;
1059                         break;
1060                 case NFSM_STATE_PROCESSREPLY:
1061                         /*
1062                          * Process the reply or timeout.  Errors which occur
1063                          * in this state may cause the state machine to
1064                          * go back to an earlier state, and are fatal
1065                          * otherwise.
1066                          */
1067                         info->error = nfs_request_processreply(info,
1068                                                                info->error);
1069                         switch(info->error) {
1070                         case ENEEDAUTH:
1071                                 info->state = NFSM_STATE_AUTH;
1072                                 break;
1073                         case EAGAIN:
1074                                 info->state = NFSM_STATE_TRY;
1075                                 break;
1076                         default:
1077                                 /*
1078                                  * Operation complete, with or without an
1079                                  * error.  We are done.
1080                                  */
1081                                 info->req = NULL;
1082                                 info->state = NFSM_STATE_DONE;
1083                                 return (info->error);
1084                         }
1085                         break;
1086                 case NFSM_STATE_DONE:
1087                         /*
1088                          * Shouldn't be reached
1089                          */
1090                         return (info->error);
1091                         /* NOT REACHED */
1092                 }
1093         }
1094
1095         /*
1096          * If we are done return the error code (if any).
1097          * Otherwise return EINPROGRESS.
1098          */
1099         if (info->state == NFSM_STATE_DONE)
1100                 return (info->error);
1101         return (EINPROGRESS);
1102 }
1103
1104 /*
1105  * nfs_request - goes something like this
1106  *      - fill in request struct
1107  *      - links it into list
1108  *      - calls nfs_send() for first transmit
1109  *      - calls nfs_receive() to get reply
1110  *      - break down rpc header and return with nfs reply pointed to
1111  *        by mrep or error
1112  * nb: always frees up mreq mbuf list
1113  */
1114 static int
1115 nfs_request_setup(nfsm_info_t info)
1116 {
1117         struct nfsreq *req;
1118         struct nfsmount *nmp;
1119         struct mbuf *m;
1120         int i;
1121
1122         /*
1123          * Reject requests while attempting a forced unmount.
1124          */
1125         if (info->vp->v_mount->mnt_kern_flag & MNTK_UNMOUNTF) {
1126                 m_freem(info->mreq);
1127                 info->mreq = NULL;
1128                 return (ESTALE);
1129         }
1130         nmp = VFSTONFS(info->vp->v_mount);
1131         req = kmalloc(sizeof(struct nfsreq), M_NFSREQ, M_WAITOK);
1132         req->r_nmp = nmp;
1133         req->r_vp = info->vp;
1134         req->r_td = info->td;
1135         req->r_procnum = info->procnum;
1136         req->r_mreq = NULL;
1137         req->r_cred = info->cred;
1138
1139         i = 0;
1140         m = info->mreq;
1141         while (m) {
1142                 i += m->m_len;
1143                 m = m->m_next;
1144         }
1145         req->r_mrest = info->mreq;
1146         req->r_mrest_len = i;
1147
1148         /*
1149          * The presence of a non-NULL r_info in req indicates
1150          * async completion via our helper threads.  See the receiver
1151          * code.
1152          */
1153         if (info->bio) {
1154                 req->r_info = info;
1155                 req->r_flags = R_ASYNC;
1156         } else {
1157                 req->r_info = NULL;
1158                 req->r_flags = 0;
1159         }
1160         info->req = req;
1161         return(0);
1162 }
1163
1164 static int
1165 nfs_request_auth(struct nfsreq *rep)
1166 {
1167         struct nfsmount *nmp = rep->r_nmp;
1168         struct mbuf *m;
1169         char nickv[RPCX_NICKVERF];
1170         int error = 0, auth_len, auth_type;
1171         int verf_len;
1172         u_int32_t xid;
1173         char *auth_str, *verf_str;
1174         struct ucred *cred;
1175
1176         cred = rep->r_cred;
1177         rep->r_failed_auth = 0;
1178
1179         /*
1180          * Get the RPC header with authorization.
1181          */
1182         verf_str = auth_str = NULL;
1183         if (nmp->nm_flag & NFSMNT_KERB) {
1184                 verf_str = nickv;
1185                 verf_len = sizeof (nickv);
1186                 auth_type = RPCAUTH_KERB4;
1187                 bzero((caddr_t)rep->r_key, sizeof(rep->r_key));
1188                 if (rep->r_failed_auth ||
1189                     nfs_getnickauth(nmp, cred, &auth_str, &auth_len,
1190                                     verf_str, verf_len)) {
1191                         error = nfs_getauth(nmp, rep, cred, &auth_str,
1192                                 &auth_len, verf_str, &verf_len, rep->r_key);
1193                         if (error) {
1194                                 m_freem(rep->r_mrest);
1195                                 rep->r_mrest = NULL;
1196                                 kfree((caddr_t)rep, M_NFSREQ);
1197                                 return (error);
1198                         }
1199                 }
1200         } else {
1201                 auth_type = RPCAUTH_UNIX;
1202                 if (cred->cr_ngroups < 1)
1203                         panic("nfsreq nogrps");
1204                 auth_len = ((((cred->cr_ngroups - 1) > nmp->nm_numgrps) ?
1205                         nmp->nm_numgrps : (cred->cr_ngroups - 1)) << 2) +
1206                         5 * NFSX_UNSIGNED;
1207         }
1208         if (rep->r_mrest)
1209                 nfs_checkpkt(rep->r_mrest, rep->r_mrest_len);
1210         m = nfsm_rpchead(cred, nmp->nm_flag, rep->r_procnum, auth_type,
1211                         auth_len, auth_str, verf_len, verf_str,
1212                         rep->r_mrest, rep->r_mrest_len, &rep->r_mheadend, &xid);
1213         rep->r_mrest = NULL;
1214         if (auth_str)
1215                 kfree(auth_str, M_TEMP);
1216
1217         /*
1218          * For stream protocols, insert a Sun RPC Record Mark.
1219          */
1220         if (nmp->nm_sotype == SOCK_STREAM) {
1221                 M_PREPEND(m, NFSX_UNSIGNED, MB_WAIT);
1222                 if (m == NULL) {
1223                         kfree(rep, M_NFSREQ);
1224                         return (ENOBUFS);
1225                 }
1226                 *mtod(m, u_int32_t *) = htonl(0x80000000 |
1227                          (m->m_pkthdr.len - NFSX_UNSIGNED));
1228         }
1229
1230         nfs_checkpkt(m, m->m_pkthdr.len);
1231
1232         rep->r_mreq = m;
1233         rep->r_xid = xid;
1234         return (0);
1235 }
1236
1237 static int
1238 nfs_request_try(struct nfsreq *rep)
1239 {
1240         struct nfsmount *nmp = rep->r_nmp;
1241         struct mbuf *m2;
1242         int error;
1243
1244         /*
1245          * Request is not on any queue, only the owner has access to it
1246          * so it should not be locked by anyone atm.
1247          *
1248          * Interlock to prevent races.  While locked the only remote
1249          * action possible is for r_mrep to be set (once we enqueue it).
1250          */
1251         if (rep->r_flags == 0xdeadc0de) {
1252                 print_backtrace(-1);
1253                 panic("flags nbad\n");
1254         }
1255         KKASSERT((rep->r_flags & (R_LOCKED | R_ONREQQ)) == 0);
1256         if (nmp->nm_flag & NFSMNT_SOFT)
1257                 rep->r_retry = nmp->nm_retry;
1258         else
1259                 rep->r_retry = NFS_MAXREXMIT + 1;       /* past clip limit */
1260         rep->r_rtt = rep->r_rexmit = 0;
1261         if (proct[rep->r_procnum] > 0)
1262                 rep->r_flags |= R_TIMING | R_LOCKED;
1263         else
1264                 rep->r_flags |= R_LOCKED;
1265         rep->r_mrep = NULL;
1266
1267         /*
1268          * Do the client side RPC.
1269          */
1270         nfsstats.rpcrequests++;
1271
1272         if (nmp->nm_flag & NFSMNT_FORCE) {
1273                 rep->r_flags |= R_SOFTTERM;
1274                 rep->r_flags &= ~R_LOCKED;
1275                 return (0);
1276         }
1277
1278         /*
1279          * Chain request into list of outstanding requests. Be sure
1280          * to put it LAST so timer finds oldest requests first.  Note
1281          * that our control of R_LOCKED prevents the request from
1282          * getting ripped out from under us or transmitted by the
1283          * timer code.
1284          *
1285          * For requests with info structures we must atomically set the
1286          * info's state because the structure could become invalid upon
1287          * return due to races (i.e., if async)
1288          */
1289         crit_enter();
1290         mtx_link_init(&rep->r_link);
1291         TAILQ_INSERT_TAIL(&nmp->nm_reqq, rep, r_chain);
1292         rep->r_flags |= R_ONREQQ;
1293         ++nmp->nm_reqqlen;
1294         if (rep->r_flags & R_ASYNC)
1295                 rep->r_info->state = NFSM_STATE_WAITREPLY;
1296         crit_exit();
1297
1298         error = 0;
1299
1300         /*
1301          * Send if we can.  Congestion control is not handled here any more
1302          * becausing trying to defer the initial send based on the nfs_timer
1303          * requires having a very fast nfs_timer, which is silly.
1304          */
1305         if (nmp->nm_so) {
1306                 if (nmp->nm_soflags & PR_CONNREQUIRED)
1307                         error = nfs_sndlock(nmp, rep);
1308                 if (error == 0) {
1309                         m2 = m_copym(rep->r_mreq, 0, M_COPYALL, MB_WAIT);
1310                         error = nfs_send(nmp->nm_so, nmp->nm_nam, m2, rep);
1311                         if (nmp->nm_soflags & PR_CONNREQUIRED)
1312                                 nfs_sndunlock(nmp);
1313                         rep->r_flags &= ~R_NEEDSXMIT;
1314                         if ((rep->r_flags & R_SENT) == 0) {
1315                                 rep->r_flags |= R_SENT;
1316                         }
1317                 } else {
1318                         rep->r_flags |= R_NEEDSXMIT;
1319                 }
1320         } else {
1321                 rep->r_flags |= R_NEEDSXMIT;
1322                 rep->r_rtt = -1;
1323         }
1324         if (error == EPIPE)
1325                 error = 0;
1326
1327         /*
1328          * Release the lock.  The only remote action that may have occurred
1329          * would have been the setting of rep->r_mrep.  If this occured
1330          * and the request was async we have to move it to the reader
1331          * thread's queue for action.
1332          *
1333          * For async requests also make sure the reader is woken up so
1334          * it gets on the socket to read responses.
1335          */
1336         crit_enter();
1337         if (rep->r_flags & R_ASYNC) {
1338                 if (rep->r_mrep)
1339                         nfs_hardterm(rep, 1);
1340                 rep->r_flags &= ~R_LOCKED;
1341                 nfssvc_iod_reader_wakeup(nmp);
1342         } else {
1343                 rep->r_flags &= ~R_LOCKED;
1344         }
1345         if (rep->r_flags & R_WANTED) {
1346                 rep->r_flags &= ~R_WANTED;
1347                 wakeup(rep);
1348         }
1349         crit_exit();
1350         return (error);
1351 }
1352
1353 /*
1354  * This code is only called for synchronous requests.  Completed synchronous
1355  * requests are left on reqq and we remove them before moving on to the
1356  * processing state.
1357  */
1358 static int
1359 nfs_request_waitreply(struct nfsreq *rep)
1360 {
1361         struct nfsmount *nmp = rep->r_nmp;
1362         int error;
1363
1364         KKASSERT((rep->r_flags & R_ASYNC) == 0);
1365
1366         /*
1367          * Wait until the request is finished.
1368          */
1369         error = nfs_reply(nmp, rep);
1370
1371         /*
1372          * RPC done, unlink the request, but don't rip it out from under
1373          * the callout timer.
1374          *
1375          * Once unlinked no other receiver or the timer will have
1376          * visibility, so we do not have to set R_LOCKED.
1377          */
1378         crit_enter();
1379         while (rep->r_flags & R_LOCKED) {
1380                 rep->r_flags |= R_WANTED;
1381                 tsleep(rep, 0, "nfstrac", 0);
1382         }
1383         KKASSERT(rep->r_flags & R_ONREQQ);
1384         TAILQ_REMOVE(&nmp->nm_reqq, rep, r_chain);
1385         rep->r_flags &= ~R_ONREQQ;
1386         --nmp->nm_reqqlen;
1387         if (TAILQ_FIRST(&nmp->nm_bioq) &&
1388             nmp->nm_reqqlen <= nfs_maxasyncbio * 2 / 3) {
1389                 nfssvc_iod_writer_wakeup(nmp);
1390         }
1391         crit_exit();
1392
1393         /*
1394          * Decrement the outstanding request count.
1395          */
1396         if (rep->r_flags & R_SENT) {
1397                 rep->r_flags &= ~R_SENT;
1398         }
1399         return (error);
1400 }
1401
1402 /*
1403  * Process reply with error returned from nfs_requet_waitreply().
1404  *
1405  * Returns EAGAIN if it wants us to loop up to nfs_request_try() again.
1406  * Returns ENEEDAUTH if it wants us to loop up to nfs_request_auth() again.
1407  */
1408 static int
1409 nfs_request_processreply(nfsm_info_t info, int error)
1410 {
1411         struct nfsreq *req = info->req;
1412         struct nfsmount *nmp = req->r_nmp;
1413         u_int32_t *tl;
1414         int verf_type;
1415         int i;
1416
1417         /*
1418          * If there was a successful reply and a tprintf msg.
1419          * tprintf a response.
1420          */
1421         if (error == 0 && (req->r_flags & R_TPRINTFMSG)) {
1422                 nfs_msg(req->r_td, nmp->nm_mountp->mnt_stat.f_mntfromname,
1423                     "is alive again");
1424         }
1425         info->mrep = req->r_mrep;
1426         info->md = req->r_md;
1427         info->dpos = req->r_dpos;
1428         if (error) {
1429                 m_freem(req->r_mreq);
1430                 req->r_mreq = NULL;
1431                 kfree(req, M_NFSREQ);
1432                 info->req = NULL;
1433                 return (error);
1434         }
1435
1436         /*
1437          * break down the rpc header and check if ok
1438          */
1439         NULLOUT(tl = nfsm_dissect(info, 3 * NFSX_UNSIGNED));
1440         if (*tl++ == rpc_msgdenied) {
1441                 if (*tl == rpc_mismatch) {
1442                         error = EOPNOTSUPP;
1443                 } else if ((nmp->nm_flag & NFSMNT_KERB) &&
1444                            *tl++ == rpc_autherr) {
1445                         if (req->r_failed_auth == 0) {
1446                                 req->r_failed_auth++;
1447                                 req->r_mheadend->m_next = NULL;
1448                                 m_freem(info->mrep);
1449                                 info->mrep = NULL;
1450                                 m_freem(req->r_mreq);
1451                                 req->r_mreq = NULL;
1452                                 return (ENEEDAUTH);
1453                         } else {
1454                                 error = EAUTH;
1455                         }
1456                 } else {
1457                         error = EACCES;
1458                 }
1459                 m_freem(info->mrep);
1460                 info->mrep = NULL;
1461                 m_freem(req->r_mreq);
1462                 req->r_mreq = NULL;
1463                 kfree(req, M_NFSREQ);
1464                 info->req = NULL;
1465                 return (error);
1466         }
1467
1468         /*
1469          * Grab any Kerberos verifier, otherwise just throw it away.
1470          */
1471         verf_type = fxdr_unsigned(int, *tl++);
1472         i = fxdr_unsigned(int32_t, *tl);
1473         if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) {
1474                 error = nfs_savenickauth(nmp, req->r_cred, i, req->r_key,
1475                                          &info->md, &info->dpos, info->mrep);
1476                 if (error)
1477                         goto nfsmout;
1478         } else if (i > 0) {
1479                 ERROROUT(nfsm_adv(info, nfsm_rndup(i)));
1480         }
1481         NULLOUT(tl = nfsm_dissect(info, NFSX_UNSIGNED));
1482         /* 0 == ok */
1483         if (*tl == 0) {
1484                 NULLOUT(tl = nfsm_dissect(info, NFSX_UNSIGNED));
1485                 if (*tl != 0) {
1486                         error = fxdr_unsigned(int, *tl);
1487
1488                         /*
1489                          * Does anyone even implement this?  Just impose
1490                          * a 1-second delay.
1491                          */
1492                         if ((nmp->nm_flag & NFSMNT_NFSV3) &&
1493                                 error == NFSERR_TRYLATER) {
1494                                 m_freem(info->mrep);
1495                                 info->mrep = NULL;
1496                                 error = 0;
1497
1498                                 tsleep((caddr_t)&lbolt, 0, "nqnfstry", 0);
1499                                 return (EAGAIN);        /* goto tryagain */
1500                         }
1501
1502                         /*
1503                          * If the File Handle was stale, invalidate the
1504                          * lookup cache, just in case.
1505                          *
1506                          * To avoid namecache<->vnode deadlocks we must
1507                          * release the vnode lock if we hold it.
1508                          */
1509                         if (error == ESTALE) {
1510                                 struct vnode *vp = req->r_vp;
1511                                 int ltype;
1512
1513                                 ltype = lockstatus(&vp->v_lock, curthread);
1514                                 if (ltype == LK_EXCLUSIVE || ltype == LK_SHARED)
1515                                         lockmgr(&vp->v_lock, LK_RELEASE);
1516                                 cache_inval_vp(vp, CINV_CHILDREN);
1517                                 if (ltype == LK_EXCLUSIVE || ltype == LK_SHARED)
1518                                         lockmgr(&vp->v_lock, ltype);
1519                         }
1520                         if (nmp->nm_flag & NFSMNT_NFSV3) {
1521                                 KKASSERT(*req->r_mrp == info->mrep);
1522                                 KKASSERT(*req->r_mdp == info->md);
1523                                 KKASSERT(*req->r_dposp == info->dpos);
1524                                 error |= NFSERR_RETERR;
1525                         } else {
1526                                 m_freem(info->mrep);
1527                                 info->mrep = NULL;
1528                         }
1529                         m_freem(req->r_mreq);
1530                         req->r_mreq = NULL;
1531                         kfree(req, M_NFSREQ);
1532                         info->req = NULL;
1533                         return (error);
1534                 }
1535
1536                 KKASSERT(*req->r_mrp == info->mrep);
1537                 KKASSERT(*req->r_mdp == info->md);
1538                 KKASSERT(*req->r_dposp == info->dpos);
1539                 m_freem(req->r_mreq);
1540                 req->r_mreq = NULL;
1541                 FREE(req, M_NFSREQ);
1542                 return (0);
1543         }
1544         m_freem(info->mrep);
1545         info->mrep = NULL;
1546         error = EPROTONOSUPPORT;
1547 nfsmout:
1548         m_freem(req->r_mreq);
1549         req->r_mreq = NULL;
1550         kfree(req, M_NFSREQ);
1551         info->req = NULL;
1552         return (error);
1553 }
1554
1555 #ifndef NFS_NOSERVER
1556 /*
1557  * Generate the rpc reply header
1558  * siz arg. is used to decide if adding a cluster is worthwhile
1559  */
1560 int
1561 nfs_rephead(int siz, struct nfsrv_descript *nd, struct nfssvc_sock *slp,
1562             int err, struct mbuf **mrq, struct mbuf **mbp, caddr_t *bposp)
1563 {
1564         u_int32_t *tl;
1565         struct nfsm_info info;
1566
1567         siz += RPC_REPLYSIZ;
1568         info.mb = m_getl(max_hdr + siz, MB_WAIT, MT_DATA, M_PKTHDR, NULL);
1569         info.mreq = info.mb;
1570         info.mreq->m_pkthdr.len = 0;
1571         /*
1572          * If this is not a cluster, try and leave leading space
1573          * for the lower level headers.
1574          */
1575         if ((max_hdr + siz) < MINCLSIZE)
1576                 info.mreq->m_data += max_hdr;
1577         tl = mtod(info.mreq, u_int32_t *);
1578         info.mreq->m_len = 6 * NFSX_UNSIGNED;
1579         info.bpos = ((caddr_t)tl) + info.mreq->m_len;
1580         *tl++ = txdr_unsigned(nd->nd_retxid);
1581         *tl++ = rpc_reply;
1582         if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) {
1583                 *tl++ = rpc_msgdenied;
1584                 if (err & NFSERR_AUTHERR) {
1585                         *tl++ = rpc_autherr;
1586                         *tl = txdr_unsigned(err & ~NFSERR_AUTHERR);
1587                         info.mreq->m_len -= NFSX_UNSIGNED;
1588                         info.bpos -= NFSX_UNSIGNED;
1589                 } else {
1590                         *tl++ = rpc_mismatch;
1591                         *tl++ = txdr_unsigned(RPC_VER2);
1592                         *tl = txdr_unsigned(RPC_VER2);
1593                 }
1594         } else {
1595                 *tl++ = rpc_msgaccepted;
1596
1597                 /*
1598                  * For Kerberos authentication, we must send the nickname
1599                  * verifier back, otherwise just RPCAUTH_NULL.
1600                  */
1601                 if (nd->nd_flag & ND_KERBFULL) {
1602                     struct nfsuid *nuidp;
1603                     struct timeval ktvin, ktvout;
1604
1605                     for (nuidp = NUIDHASH(slp, nd->nd_cr.cr_uid)->lh_first;
1606                         nuidp != 0; nuidp = nuidp->nu_hash.le_next) {
1607                         if (nuidp->nu_cr.cr_uid == nd->nd_cr.cr_uid &&
1608                             (!nd->nd_nam2 || netaddr_match(NU_NETFAM(nuidp),
1609                              &nuidp->nu_haddr, nd->nd_nam2)))
1610                             break;
1611                     }
1612                     if (nuidp) {
1613                         ktvin.tv_sec =
1614                             txdr_unsigned(nuidp->nu_timestamp.tv_sec - 1);
1615                         ktvin.tv_usec =
1616                             txdr_unsigned(nuidp->nu_timestamp.tv_usec);
1617
1618                         /*
1619                          * Encrypt the timestamp in ecb mode using the
1620                          * session key.
1621                          */
1622 #ifdef NFSKERB
1623                         XXX
1624 #else
1625                         ktvout.tv_sec = 0;
1626                         ktvout.tv_usec = 0;
1627 #endif
1628
1629                         *tl++ = rpc_auth_kerb;
1630                         *tl++ = txdr_unsigned(3 * NFSX_UNSIGNED);
1631                         *tl = ktvout.tv_sec;
1632                         tl = nfsm_build(&info, 3 * NFSX_UNSIGNED);
1633                         *tl++ = ktvout.tv_usec;
1634                         *tl++ = txdr_unsigned(nuidp->nu_cr.cr_uid);
1635                     } else {
1636                         *tl++ = 0;
1637                         *tl++ = 0;
1638                     }
1639                 } else {
1640                         *tl++ = 0;
1641                         *tl++ = 0;
1642                 }
1643                 switch (err) {
1644                 case EPROGUNAVAIL:
1645                         *tl = txdr_unsigned(RPC_PROGUNAVAIL);
1646                         break;
1647                 case EPROGMISMATCH:
1648                         *tl = txdr_unsigned(RPC_PROGMISMATCH);
1649                         tl = nfsm_build(&info, 2 * NFSX_UNSIGNED);
1650                         *tl++ = txdr_unsigned(2);
1651                         *tl = txdr_unsigned(3);
1652                         break;
1653                 case EPROCUNAVAIL:
1654                         *tl = txdr_unsigned(RPC_PROCUNAVAIL);
1655                         break;
1656                 case EBADRPC:
1657                         *tl = txdr_unsigned(RPC_GARBAGE);
1658                         break;
1659                 default:
1660                         *tl = 0;
1661                         if (err != NFSERR_RETVOID) {
1662                                 tl = nfsm_build(&info, NFSX_UNSIGNED);
1663                                 if (err)
1664                                     *tl = txdr_unsigned(nfsrv_errmap(nd, err));
1665                                 else
1666                                     *tl = 0;
1667                         }
1668                         break;
1669                 };
1670         }
1671
1672         if (mrq != NULL)
1673             *mrq = info.mreq;
1674         *mbp = info.mb;
1675         *bposp = info.bpos;
1676         if (err != 0 && err != NFSERR_RETVOID)
1677                 nfsstats.srvrpc_errs++;
1678         return (0);
1679 }
1680
1681
1682 #endif /* NFS_NOSERVER */
1683
1684 /*
1685  * Nfs timer routine.
1686  *
1687  * Scan the nfsreq list and retranmit any requests that have timed out
1688  * To avoid retransmission attempts on STREAM sockets (in the future) make
1689  * sure to set the r_retry field to 0 (implies nm_retry == 0).
1690  *
1691  * Requests with attached responses, terminated requests, and
1692  * locked requests are ignored.  Locked requests will be picked up
1693  * in a later timer call.
1694  */
1695 void
1696 nfs_timer(void *arg /* never used */)
1697 {
1698         struct nfsmount *nmp;
1699         struct nfsreq *req;
1700 #ifndef NFS_NOSERVER
1701         struct nfssvc_sock *slp;
1702         u_quad_t cur_usec;
1703 #endif /* NFS_NOSERVER */
1704
1705         crit_enter();
1706         TAILQ_FOREACH(nmp, &nfs_mountq, nm_entry) {
1707                 TAILQ_FOREACH(req, &nmp->nm_reqq, r_chain) {
1708                         KKASSERT(nmp == req->r_nmp);
1709                         if (req->r_mrep)
1710                                 continue;
1711                         if (req->r_flags & (R_SOFTTERM | R_LOCKED))
1712                                 continue;
1713                         req->r_flags |= R_LOCKED;
1714                         if (nfs_sigintr(nmp, req, req->r_td)) {
1715                                 nfs_softterm(req, 1);
1716                         } else {
1717                                 nfs_timer_req(req);
1718                         }
1719                         req->r_flags &= ~R_LOCKED;
1720                         if (req->r_flags & R_WANTED) {
1721                                 req->r_flags &= ~R_WANTED;
1722                                 wakeup(req);
1723                         }
1724                 }
1725         }
1726 #ifndef NFS_NOSERVER
1727
1728         /*
1729          * Scan the write gathering queues for writes that need to be
1730          * completed now.
1731          */
1732         cur_usec = nfs_curusec();
1733         TAILQ_FOREACH(slp, &nfssvc_sockhead, ns_chain) {
1734             if (slp->ns_tq.lh_first && slp->ns_tq.lh_first->nd_time<=cur_usec)
1735                 nfsrv_wakenfsd(slp, 1);
1736         }
1737 #endif /* NFS_NOSERVER */
1738         crit_exit();
1739         callout_reset(&nfs_timer_handle, nfs_ticks, nfs_timer, NULL);
1740 }
1741
1742 static
1743 void
1744 nfs_timer_req(struct nfsreq *req)
1745 {
1746         struct thread *td = &thread0; /* XXX for creds, will break if sleep */
1747         struct nfsmount *nmp = req->r_nmp;
1748         struct mbuf *m;
1749         struct socket *so;
1750         int timeo;
1751         int error;
1752
1753         /*
1754          * rtt ticks and timeout calculation.  Return if the timeout
1755          * has not been reached yet, unless the packet is flagged
1756          * for an immediate send.
1757          *
1758          * The mean rtt doesn't help when we get random I/Os, we have
1759          * to multiply by fairly large numbers.
1760          */
1761         if (req->r_rtt >= 0) {
1762                 /*
1763                  * Calculate the timeout to test against.
1764                  */
1765                 req->r_rtt++;
1766                 if (nmp->nm_flag & NFSMNT_DUMBTIMR) {
1767                         timeo = nmp->nm_timeo << NFS_RTT_SCALE_BITS;
1768                 } else if (req->r_flags & R_TIMING) {
1769                         timeo = NFS_SRTT(req) + NFS_SDRTT(req);
1770                 } else {
1771                         timeo = nmp->nm_timeo << NFS_RTT_SCALE_BITS;
1772                 }
1773                 timeo *= multt[req->r_procnum];
1774                 /* timeo is still scaled by SCALE_BITS */
1775
1776 #define NFSFS   (NFS_RTT_SCALE * NFS_HZ)
1777                 if (req->r_flags & R_TIMING) {
1778                         static long last_time;
1779                         if (nfs_showrtt && last_time != time_second) {
1780                                 kprintf("rpccmd %d NFS SRTT %d SDRTT %d "
1781                                         "timeo %d.%03d\n",
1782                                         proct[req->r_procnum],
1783                                         NFS_SRTT(req), NFS_SDRTT(req),
1784                                         timeo / NFSFS,
1785                                         timeo % NFSFS * 1000 /  NFSFS);
1786                                 last_time = time_second;
1787                         }
1788                 }
1789 #undef NFSFS
1790
1791                 /*
1792                  * deal with nfs_timer jitter.
1793                  */
1794                 timeo = (timeo >> NFS_RTT_SCALE_BITS) + 1;
1795                 if (timeo < 2)
1796                         timeo = 2;
1797
1798                 if (nmp->nm_timeouts > 0)
1799                         timeo *= nfs_backoff[nmp->nm_timeouts - 1];
1800                 if (timeo > NFS_MAXTIMEO)
1801                         timeo = NFS_MAXTIMEO;
1802                 if (req->r_rtt <= timeo) {
1803                         if ((req->r_flags & R_NEEDSXMIT) == 0)
1804                                 return;
1805                 } else if (nmp->nm_timeouts < 8) {
1806                         nmp->nm_timeouts++;
1807                 }
1808         }
1809
1810         /*
1811          * Check for server not responding
1812          */
1813         if ((req->r_flags & R_TPRINTFMSG) == 0 &&
1814              req->r_rexmit > nmp->nm_deadthresh) {
1815                 nfs_msg(req->r_td, nmp->nm_mountp->mnt_stat.f_mntfromname,
1816                         "not responding");
1817                 req->r_flags |= R_TPRINTFMSG;
1818         }
1819         if (req->r_rexmit >= req->r_retry) {    /* too many */
1820                 nfsstats.rpctimeouts++;
1821                 nfs_softterm(req, 1);
1822                 return;
1823         }
1824
1825         /*
1826          * Generally disable retransmission on reliable sockets,
1827          * unless the request is flagged for immediate send.
1828          */
1829         if (nmp->nm_sotype != SOCK_DGRAM) {
1830                 if (++req->r_rexmit > NFS_MAXREXMIT)
1831                         req->r_rexmit = NFS_MAXREXMIT;
1832                 if ((req->r_flags & R_NEEDSXMIT) == 0)
1833                         return;
1834         }
1835
1836         /*
1837          * Stop here if we do not have a socket!
1838          */
1839         if ((so = nmp->nm_so) == NULL)
1840                 return;
1841
1842         /*
1843          * If there is enough space and the window allows.. resend it.
1844          *
1845          * r_rtt is left intact in case we get an answer after the
1846          * retry that was a reply to the original packet.
1847          *
1848          * NOTE: so_pru_send()
1849          */
1850         if (ssb_space(&so->so_snd) >= req->r_mreq->m_pkthdr.len &&
1851             (req->r_flags & (R_SENT | R_NEEDSXMIT)) &&
1852            (m = m_copym(req->r_mreq, 0, M_COPYALL, MB_DONTWAIT))){
1853                 if ((nmp->nm_flag & NFSMNT_NOCONN) == 0)
1854                     error = so_pru_send(so, 0, m, NULL, NULL, td);
1855                 else
1856                     error = so_pru_send(so, 0, m, nmp->nm_nam, NULL, td);
1857                 if (error) {
1858                         if (NFSIGNORE_SOERROR(nmp->nm_soflags, error))
1859                                 so->so_error = 0;
1860                         req->r_flags |= R_NEEDSXMIT;
1861                 } else if (req->r_mrep == NULL) {
1862                         /*
1863                          * Iff first send, start timing
1864                          * else turn timing off, backoff timer
1865                          * and divide congestion window by 2.
1866                          *
1867                          * It is possible for the so_pru_send() to
1868                          * block and for us to race a reply so we
1869                          * only do this if the reply field has not
1870                          * been filled in.  R_LOCKED will prevent
1871                          * the request from being ripped out from under
1872                          * us entirely.
1873                          *
1874                          * Record the last resent procnum to aid us
1875                          * in duplicate detection on receive.
1876                          */
1877                         if ((req->r_flags & R_NEEDSXMIT) == 0) {
1878                                 if (nfs_showrexmit)
1879                                         kprintf("X");
1880                                 if (++req->r_rexmit > NFS_MAXREXMIT)
1881                                         req->r_rexmit = NFS_MAXREXMIT;
1882                                 nmp->nm_maxasync_scaled >>= 1;
1883                                 if (nmp->nm_maxasync_scaled < NFS_MINASYNC_SCALED)
1884                                         nmp->nm_maxasync_scaled = NFS_MINASYNC_SCALED;
1885                                 nfsstats.rpcretries++;
1886                                 nmp->nm_lastreprocnum = req->r_procnum;
1887                         } else {
1888                                 req->r_flags |= R_SENT;
1889                                 req->r_flags &= ~R_NEEDSXMIT;
1890                         }
1891                 }
1892         }
1893 }
1894
1895 /*
1896  * Mark all of an nfs mount's outstanding requests with R_SOFTTERM and
1897  * wait for all requests to complete. This is used by forced unmounts
1898  * to terminate any outstanding RPCs.
1899  *
1900  * Locked requests cannot be canceled but will be marked for
1901  * soft-termination.
1902  */
1903 int
1904 nfs_nmcancelreqs(struct nfsmount *nmp)
1905 {
1906         struct nfsreq *req;
1907         int i;
1908
1909         crit_enter();
1910         TAILQ_FOREACH(req, &nmp->nm_reqq, r_chain) {
1911                 if (req->r_mrep != NULL || (req->r_flags & R_SOFTTERM))
1912                         continue;
1913                 nfs_softterm(req, 0);
1914         }
1915         /* XXX  the other two queues as well */
1916         crit_exit();
1917
1918         for (i = 0; i < 30; i++) {
1919                 crit_enter();
1920                 TAILQ_FOREACH(req, &nmp->nm_reqq, r_chain) {
1921                         if (nmp == req->r_nmp)
1922                                 break;
1923                 }
1924                 crit_exit();
1925                 if (req == NULL)
1926                         return (0);
1927                 tsleep(&lbolt, 0, "nfscancel", 0);
1928         }
1929         return (EBUSY);
1930 }
1931
1932 /*
1933  * Soft-terminate a request, effectively marking it as failed.
1934  *
1935  * Must be called from within a critical section.
1936  */
1937 static void
1938 nfs_softterm(struct nfsreq *rep, int islocked)
1939 {
1940         rep->r_flags |= R_SOFTTERM;
1941         nfs_hardterm(rep, islocked);
1942 }
1943
1944 /*
1945  * Hard-terminate a request, typically after getting a response.
1946  *
1947  * The state machine can still decide to re-issue it later if necessary.
1948  *
1949  * Must be called from within a critical section.
1950  */
1951 static void
1952 nfs_hardterm(struct nfsreq *rep, int islocked)
1953 {
1954         struct nfsmount *nmp = rep->r_nmp;
1955
1956         /*
1957          * The nm_send count is decremented now to avoid deadlocks
1958          * when the process in soreceive() hasn't yet managed to send
1959          * its own request.
1960          */
1961         if (rep->r_flags & R_SENT) {
1962                 rep->r_flags &= ~R_SENT;
1963         }
1964
1965         /*
1966          * If we locked the request or nobody else has locked the request,
1967          * and the request is async, we can move it to the reader thread's
1968          * queue now and fix up the state.
1969          *
1970          * If we locked the request or nobody else has locked the request,
1971          * we can wake up anyone blocked waiting for a response on the
1972          * request.
1973          */
1974         if (islocked || (rep->r_flags & R_LOCKED) == 0) {
1975                 if ((rep->r_flags & (R_ONREQQ | R_ASYNC)) ==
1976                     (R_ONREQQ | R_ASYNC)) {
1977                         rep->r_flags &= ~R_ONREQQ;
1978                         TAILQ_REMOVE(&nmp->nm_reqq, rep, r_chain);
1979                         --nmp->nm_reqqlen;
1980                         TAILQ_INSERT_TAIL(&nmp->nm_reqrxq, rep, r_chain);
1981                         KKASSERT(rep->r_info->state == NFSM_STATE_TRY ||
1982                                  rep->r_info->state == NFSM_STATE_WAITREPLY);
1983                         rep->r_info->state = NFSM_STATE_PROCESSREPLY;
1984                         nfssvc_iod_reader_wakeup(nmp);
1985                         if (TAILQ_FIRST(&nmp->nm_bioq) &&
1986                             nmp->nm_reqqlen <= nfs_maxasyncbio * 2 / 3) {
1987                                 nfssvc_iod_writer_wakeup(nmp);
1988                         }
1989                 }
1990                 mtx_abort_ex_link(&nmp->nm_rxlock, &rep->r_link);
1991         }
1992 }
1993
1994 /*
1995  * Test for a termination condition pending on the process.
1996  * This is used for NFSMNT_INT mounts.
1997  */
1998 int
1999 nfs_sigintr(struct nfsmount *nmp, struct nfsreq *rep, struct thread *td)
2000 {
2001         sigset_t tmpset;
2002         struct proc *p;
2003         struct lwp *lp;
2004
2005         if (rep && (rep->r_flags & R_SOFTTERM))
2006                 return (EINTR);
2007         /* Terminate all requests while attempting a forced unmount. */
2008         if (nmp->nm_mountp->mnt_kern_flag & MNTK_UNMOUNTF)
2009                 return (EINTR);
2010         if (!(nmp->nm_flag & NFSMNT_INT))
2011                 return (0);
2012         /* td might be NULL YYY */
2013         if (td == NULL || (p = td->td_proc) == NULL)
2014                 return (0);
2015
2016         lp = td->td_lwp;
2017         tmpset = lwp_sigpend(lp);
2018         SIGSETNAND(tmpset, lp->lwp_sigmask);
2019         SIGSETNAND(tmpset, p->p_sigignore);
2020         if (SIGNOTEMPTY(tmpset) && NFSINT_SIGMASK(tmpset))
2021                 return (EINTR);
2022
2023         return (0);
2024 }
2025
2026 /*
2027  * Lock a socket against others.
2028  * Necessary for STREAM sockets to ensure you get an entire rpc request/reply
2029  * and also to avoid race conditions between the processes with nfs requests
2030  * in progress when a reconnect is necessary.
2031  */
2032 int
2033 nfs_sndlock(struct nfsmount *nmp, struct nfsreq *rep)
2034 {
2035         mtx_t mtx = &nmp->nm_txlock;
2036         struct thread *td;
2037         int slptimeo;
2038         int slpflag;
2039         int error;
2040
2041         slpflag = 0;
2042         slptimeo = 0;
2043         td = rep ? rep->r_td : NULL;
2044         if (nmp->nm_flag & NFSMNT_INT)
2045                 slpflag = PCATCH;
2046
2047         while ((error = mtx_lock_ex_try(mtx)) != 0) {
2048                 if (nfs_sigintr(nmp, rep, td)) {
2049                         error = EINTR;
2050                         break;
2051                 }
2052                 error = mtx_lock_ex(mtx, "nfsndlck", slpflag, slptimeo);
2053                 if (error == 0)
2054                         break;
2055                 if (slpflag == PCATCH) {
2056                         slpflag = 0;
2057                         slptimeo = 2 * hz;
2058                 }
2059         }
2060         /* Always fail if our request has been cancelled. */
2061         if (rep && (rep->r_flags & R_SOFTTERM)) {
2062                 if (error == 0)
2063                         mtx_unlock(mtx);
2064                 error = EINTR;
2065         }
2066         return (error);
2067 }
2068
2069 /*
2070  * Unlock the stream socket for others.
2071  */
2072 void
2073 nfs_sndunlock(struct nfsmount *nmp)
2074 {
2075         mtx_unlock(&nmp->nm_txlock);
2076 }
2077
2078 /*
2079  * Lock the receiver side of the socket.
2080  *
2081  * rep may be NULL.
2082  */
2083 static int
2084 nfs_rcvlock(struct nfsmount *nmp, struct nfsreq *rep)
2085 {
2086         mtx_t mtx = &nmp->nm_rxlock;
2087         int slpflag;
2088         int slptimeo;
2089         int error;
2090
2091         /*
2092          * Unconditionally check for completion in case another nfsiod
2093          * get the packet while the caller was blocked, before the caller
2094          * called us.  Packet reception is handled by mainline code which
2095          * is protected by the BGL at the moment.
2096          *
2097          * We do not strictly need the second check just before the
2098          * tsleep(), but it's good defensive programming.
2099          */
2100         if (rep && rep->r_mrep != NULL)
2101                 return (EALREADY);
2102
2103         if (nmp->nm_flag & NFSMNT_INT)
2104                 slpflag = PCATCH;
2105         else
2106                 slpflag = 0;
2107         slptimeo = 0;
2108
2109         while ((error = mtx_lock_ex_try(mtx)) != 0) {
2110                 if (nfs_sigintr(nmp, rep, (rep ? rep->r_td : NULL))) {
2111                         error = EINTR;
2112                         break;
2113                 }
2114                 if (rep && rep->r_mrep != NULL) {
2115                         error = EALREADY;
2116                         break;
2117                 }
2118
2119                 /*
2120                  * NOTE: can return ENOLCK, but in that case rep->r_mrep
2121                  *       will already be set.
2122                  */
2123                 if (rep) {
2124                         error = mtx_lock_ex_link(mtx, &rep->r_link,
2125                                                  "nfsrcvlk",
2126                                                  slpflag, slptimeo);
2127                 } else {
2128                         error = mtx_lock_ex(mtx, "nfsrcvlk", slpflag, slptimeo);
2129                 }
2130                 if (error == 0)
2131                         break;
2132
2133                 /*
2134                  * If our reply was recieved while we were sleeping,
2135                  * then just return without taking the lock to avoid a
2136                  * situation where a single iod could 'capture' the
2137                  * recieve lock.
2138                  */
2139                 if (rep && rep->r_mrep != NULL) {
2140                         error = EALREADY;
2141                         break;
2142                 }
2143                 if (slpflag == PCATCH) {
2144                         slpflag = 0;
2145                         slptimeo = 2 * hz;
2146                 }
2147         }
2148         if (error == 0) {
2149                 if (rep && rep->r_mrep != NULL) {
2150                         error = EALREADY;
2151                         mtx_unlock(mtx);
2152                 }
2153         }
2154         return (error);
2155 }
2156
2157 /*
2158  * Unlock the stream socket for others.
2159  */
2160 static void
2161 nfs_rcvunlock(struct nfsmount *nmp)
2162 {
2163         mtx_unlock(&nmp->nm_rxlock);
2164 }
2165
2166 /*
2167  * nfs_realign:
2168  *
2169  * Check for badly aligned mbuf data and realign by copying the unaligned
2170  * portion of the data into a new mbuf chain and freeing the portions
2171  * of the old chain that were replaced.
2172  *
2173  * We cannot simply realign the data within the existing mbuf chain
2174  * because the underlying buffers may contain other rpc commands and
2175  * we cannot afford to overwrite them.
2176  *
2177  * We would prefer to avoid this situation entirely.  The situation does
2178  * not occur with NFS/UDP and is supposed to only occassionally occur
2179  * with TCP.  Use vfs.nfs.realign_count and realign_test to check this.
2180  *
2181  * NOTE!  MB_DONTWAIT cannot be used here.  The mbufs must be acquired
2182  *        because the rpc request OR reply cannot be thrown away.  TCP NFS
2183  *        mounts do not retry their RPCs unless the TCP connection itself
2184  *        is dropped so throwing away a RPC will basically cause the NFS
2185  *        operation to lockup indefinitely.
2186  */
2187 static void
2188 nfs_realign(struct mbuf **pm, int hsiz)
2189 {
2190         struct mbuf *m;
2191         struct mbuf *n = NULL;
2192
2193         /*
2194          * Check for misalignemnt
2195          */
2196         ++nfs_realign_test;
2197         while ((m = *pm) != NULL) {
2198                 if ((m->m_len & 0x3) || (mtod(m, intptr_t) & 0x3))
2199                         break;
2200                 pm = &m->m_next;
2201         }
2202
2203         /*
2204          * If misalignment found make a completely new copy.
2205          */
2206         if (m) {
2207                 ++nfs_realign_count;
2208                 n = m_dup_data(m, MB_WAIT);
2209                 m_freem(*pm);
2210                 *pm = n;
2211         }
2212 }
2213
2214 #ifndef NFS_NOSERVER
2215
2216 /*
2217  * Parse an RPC request
2218  * - verify it
2219  * - fill in the cred struct.
2220  */
2221 int
2222 nfs_getreq(struct nfsrv_descript *nd, struct nfsd *nfsd, int has_header)
2223 {
2224         int len, i;
2225         u_int32_t *tl;
2226         struct uio uio;
2227         struct iovec iov;
2228         caddr_t cp;
2229         u_int32_t nfsvers, auth_type;
2230         uid_t nickuid;
2231         int error = 0, ticklen;
2232         struct nfsuid *nuidp;
2233         struct timeval tvin, tvout;
2234         struct nfsm_info info;
2235 #if 0                           /* until encrypted keys are implemented */
2236         NFSKERBKEYSCHED_T keys; /* stores key schedule */
2237 #endif
2238
2239         info.mrep = nd->nd_mrep;
2240         info.md = nd->nd_md;
2241         info.dpos = nd->nd_dpos;
2242
2243         if (has_header) {
2244                 NULLOUT(tl = nfsm_dissect(&info, 10 * NFSX_UNSIGNED));
2245                 nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++);
2246                 if (*tl++ != rpc_call) {
2247                         m_freem(info.mrep);
2248                         return (EBADRPC);
2249                 }
2250         } else {
2251                 NULLOUT(tl = nfsm_dissect(&info, 8 * NFSX_UNSIGNED));
2252         }
2253         nd->nd_repstat = 0;
2254         nd->nd_flag = 0;
2255         if (*tl++ != rpc_vers) {
2256                 nd->nd_repstat = ERPCMISMATCH;
2257                 nd->nd_procnum = NFSPROC_NOOP;
2258                 return (0);
2259         }
2260         if (*tl != nfs_prog) {
2261                 nd->nd_repstat = EPROGUNAVAIL;
2262                 nd->nd_procnum = NFSPROC_NOOP;
2263                 return (0);
2264         }
2265         tl++;
2266         nfsvers = fxdr_unsigned(u_int32_t, *tl++);
2267         if (nfsvers < NFS_VER2 || nfsvers > NFS_VER3) {
2268                 nd->nd_repstat = EPROGMISMATCH;
2269                 nd->nd_procnum = NFSPROC_NOOP;
2270                 return (0);
2271         }
2272         if (nfsvers == NFS_VER3)
2273                 nd->nd_flag = ND_NFSV3;
2274         nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++);
2275         if (nd->nd_procnum == NFSPROC_NULL)
2276                 return (0);
2277         if (nd->nd_procnum >= NFS_NPROCS ||
2278                 (nd->nd_procnum >= NQNFSPROC_GETLEASE) ||
2279                 (!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) {
2280                 nd->nd_repstat = EPROCUNAVAIL;
2281                 nd->nd_procnum = NFSPROC_NOOP;
2282                 return (0);
2283         }
2284         if ((nd->nd_flag & ND_NFSV3) == 0)
2285                 nd->nd_procnum = nfsv3_procid[nd->nd_procnum];
2286         auth_type = *tl++;
2287         len = fxdr_unsigned(int, *tl++);
2288         if (len < 0 || len > RPCAUTH_MAXSIZ) {
2289                 m_freem(info.mrep);
2290                 return (EBADRPC);
2291         }
2292
2293         nd->nd_flag &= ~ND_KERBAUTH;
2294         /*
2295          * Handle auth_unix or auth_kerb.
2296          */
2297         if (auth_type == rpc_auth_unix) {
2298                 len = fxdr_unsigned(int, *++tl);
2299                 if (len < 0 || len > NFS_MAXNAMLEN) {
2300                         m_freem(info.mrep);
2301                         return (EBADRPC);
2302                 }
2303                 ERROROUT(nfsm_adv(&info, nfsm_rndup(len)));
2304                 NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2305                 bzero((caddr_t)&nd->nd_cr, sizeof (struct ucred));
2306                 nd->nd_cr.cr_ref = 1;
2307                 nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++);
2308                 nd->nd_cr.cr_ruid = nd->nd_cr.cr_svuid = nd->nd_cr.cr_uid;
2309                 nd->nd_cr.cr_gid = fxdr_unsigned(gid_t, *tl++);
2310                 nd->nd_cr.cr_rgid = nd->nd_cr.cr_svgid = nd->nd_cr.cr_gid;
2311                 len = fxdr_unsigned(int, *tl);
2312                 if (len < 0 || len > RPCAUTH_UNIXGIDS) {
2313                         m_freem(info.mrep);
2314                         return (EBADRPC);
2315                 }
2316                 NULLOUT(tl = nfsm_dissect(&info, (len + 2) * NFSX_UNSIGNED));
2317                 for (i = 1; i <= len; i++)
2318                     if (i < NGROUPS)
2319                         nd->nd_cr.cr_groups[i] = fxdr_unsigned(gid_t, *tl++);
2320                     else
2321                         tl++;
2322                 nd->nd_cr.cr_ngroups = (len >= NGROUPS) ? NGROUPS : (len + 1);
2323                 if (nd->nd_cr.cr_ngroups > 1)
2324                     nfsrvw_sort(nd->nd_cr.cr_groups, nd->nd_cr.cr_ngroups);
2325                 len = fxdr_unsigned(int, *++tl);
2326                 if (len < 0 || len > RPCAUTH_MAXSIZ) {
2327                         m_freem(info.mrep);
2328                         return (EBADRPC);
2329                 }
2330                 if (len > 0) {
2331                         ERROROUT(nfsm_adv(&info, nfsm_rndup(len)));
2332                 }
2333         } else if (auth_type == rpc_auth_kerb) {
2334                 switch (fxdr_unsigned(int, *tl++)) {
2335                 case RPCAKN_FULLNAME:
2336                         ticklen = fxdr_unsigned(int, *tl);
2337                         *((u_int32_t *)nfsd->nfsd_authstr) = *tl;
2338                         uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED;
2339                         nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED;
2340                         if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) {
2341                                 m_freem(info.mrep);
2342                                 return (EBADRPC);
2343                         }
2344                         uio.uio_offset = 0;
2345                         uio.uio_iov = &iov;
2346                         uio.uio_iovcnt = 1;
2347                         uio.uio_segflg = UIO_SYSSPACE;
2348                         iov.iov_base = (caddr_t)&nfsd->nfsd_authstr[4];
2349                         iov.iov_len = RPCAUTH_MAXSIZ - 4;
2350                         ERROROUT(nfsm_mtouio(&info, &uio, uio.uio_resid));
2351                         NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
2352                         if (*tl++ != rpc_auth_kerb ||
2353                                 fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) {
2354                                 kprintf("Bad kerb verifier\n");
2355                                 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2356                                 nd->nd_procnum = NFSPROC_NOOP;
2357                                 return (0);
2358                         }
2359                         NULLOUT(cp = nfsm_dissect(&info, 4 * NFSX_UNSIGNED));
2360                         tl = (u_int32_t *)cp;
2361                         if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) {
2362                                 kprintf("Not fullname kerb verifier\n");
2363                                 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2364                                 nd->nd_procnum = NFSPROC_NOOP;
2365                                 return (0);
2366                         }
2367                         cp += NFSX_UNSIGNED;
2368                         bcopy(cp, nfsd->nfsd_verfstr, 3 * NFSX_UNSIGNED);
2369                         nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED;
2370                         nd->nd_flag |= ND_KERBFULL;
2371                         nfsd->nfsd_flag |= NFSD_NEEDAUTH;
2372                         break;
2373                 case RPCAKN_NICKNAME:
2374                         if (len != 2 * NFSX_UNSIGNED) {
2375                                 kprintf("Kerb nickname short\n");
2376                                 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED);
2377                                 nd->nd_procnum = NFSPROC_NOOP;
2378                                 return (0);
2379                         }
2380                         nickuid = fxdr_unsigned(uid_t, *tl);
2381                         NULLOUT(tl = nfsm_dissect(&info, 2 * NFSX_UNSIGNED));
2382                         if (*tl++ != rpc_auth_kerb ||
2383                                 fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) {
2384                                 kprintf("Kerb nick verifier bad\n");
2385                                 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2386                                 nd->nd_procnum = NFSPROC_NOOP;
2387                                 return (0);
2388                         }
2389                         NULLOUT(tl = nfsm_dissect(&info, 3 * NFSX_UNSIGNED));
2390                         tvin.tv_sec = *tl++;
2391                         tvin.tv_usec = *tl;
2392
2393                         for (nuidp = NUIDHASH(nfsd->nfsd_slp,nickuid)->lh_first;
2394                             nuidp != 0; nuidp = nuidp->nu_hash.le_next) {
2395                                 if (nuidp->nu_cr.cr_uid == nickuid &&
2396                                     (!nd->nd_nam2 ||
2397                                      netaddr_match(NU_NETFAM(nuidp),
2398                                       &nuidp->nu_haddr, nd->nd_nam2)))
2399                                         break;
2400                         }
2401                         if (!nuidp) {
2402                                 nd->nd_repstat =
2403                                         (NFSERR_AUTHERR|AUTH_REJECTCRED);
2404                                 nd->nd_procnum = NFSPROC_NOOP;
2405                                 return (0);
2406                         }
2407
2408                         /*
2409                          * Now, decrypt the timestamp using the session key
2410                          * and validate it.
2411                          */
2412 #ifdef NFSKERB
2413                         XXX
2414 #else
2415                         tvout.tv_sec = 0;
2416                         tvout.tv_usec = 0;
2417 #endif
2418
2419                         tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec);
2420                         tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec);
2421                         if (nuidp->nu_expire < time_second ||
2422                             nuidp->nu_timestamp.tv_sec > tvout.tv_sec ||
2423                             (nuidp->nu_timestamp.tv_sec == tvout.tv_sec &&
2424                              nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) {
2425                                 nuidp->nu_expire = 0;
2426                                 nd->nd_repstat =
2427                                     (NFSERR_AUTHERR|AUTH_REJECTVERF);
2428                                 nd->nd_procnum = NFSPROC_NOOP;
2429                                 return (0);
2430                         }
2431                         nfsrv_setcred(&nuidp->nu_cr, &nd->nd_cr);
2432                         nd->nd_flag |= ND_KERBNICK;
2433                 };
2434         } else {
2435                 nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED);
2436                 nd->nd_procnum = NFSPROC_NOOP;
2437                 return (0);
2438         }
2439
2440         nd->nd_md = info.md;
2441         nd->nd_dpos = info.dpos;
2442         return (0);
2443 nfsmout:
2444         return (error);
2445 }
2446
2447 #endif
2448
2449 /*
2450  * Send a message to the originating process's terminal.  The thread and/or
2451  * process may be NULL.  YYY the thread should not be NULL but there may
2452  * still be some uio_td's that are still being passed as NULL through to
2453  * nfsm_request().
2454  */
2455 static int
2456 nfs_msg(struct thread *td, char *server, char *msg)
2457 {
2458         tpr_t tpr;
2459
2460         if (td && td->td_proc)
2461                 tpr = tprintf_open(td->td_proc);
2462         else
2463                 tpr = NULL;
2464         tprintf(tpr, "nfs server %s: %s\n", server, msg);
2465         tprintf_close(tpr);
2466         return (0);
2467 }
2468
2469 #ifndef NFS_NOSERVER
2470 /*
2471  * Socket upcall routine for the nfsd sockets.
2472  * The caddr_t arg is a pointer to the "struct nfssvc_sock".
2473  * Essentially do as much as possible non-blocking, else punt and it will
2474  * be called with MB_WAIT from an nfsd.
2475  */
2476 void
2477 nfsrv_rcv(struct socket *so, void *arg, int waitflag)
2478 {
2479         struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
2480         struct mbuf *m;
2481         struct sockaddr *nam;
2482         struct sockbuf sio;
2483         int flags, error;
2484         int nparallel_wakeup = 0;
2485
2486         if ((slp->ns_flag & SLP_VALID) == 0)
2487                 return;
2488
2489         /*
2490          * Do not allow an infinite number of completed RPC records to build 
2491          * up before we stop reading data from the socket.  Otherwise we could
2492          * end up holding onto an unreasonable number of mbufs for requests
2493          * waiting for service.
2494          *
2495          * This should give pretty good feedback to the TCP
2496          * layer and prevents a memory crunch for other protocols.
2497          *
2498          * Note that the same service socket can be dispatched to several
2499          * nfs servers simultaniously.
2500          *
2501          * the tcp protocol callback calls us with MB_DONTWAIT.  
2502          * nfsd calls us with MB_WAIT (typically).
2503          */
2504         if (waitflag == MB_DONTWAIT && slp->ns_numrec >= nfsd_waiting / 2 + 1) {
2505                 slp->ns_flag |= SLP_NEEDQ;
2506                 goto dorecs;
2507         }
2508
2509         /*
2510          * Handle protocol specifics to parse an RPC request.  We always
2511          * pull from the socket using non-blocking I/O.
2512          */
2513         if (so->so_type == SOCK_STREAM) {
2514                 /*
2515                  * The data has to be read in an orderly fashion from a TCP
2516                  * stream, unlike a UDP socket.  It is possible for soreceive
2517                  * and/or nfsrv_getstream() to block, so make sure only one
2518                  * entity is messing around with the TCP stream at any given
2519                  * moment.  The receive sockbuf's lock in soreceive is not
2520                  * sufficient.
2521                  *
2522                  * Note that this procedure can be called from any number of
2523                  * NFS severs *OR* can be upcalled directly from a TCP
2524                  * protocol thread.
2525                  */
2526                 if (slp->ns_flag & SLP_GETSTREAM) {
2527                         slp->ns_flag |= SLP_NEEDQ;
2528                         goto dorecs;
2529                 }
2530                 slp->ns_flag |= SLP_GETSTREAM;
2531
2532                 /*
2533                  * Do soreceive().  Pull out as much data as possible without
2534                  * blocking.
2535                  */
2536                 sbinit(&sio, 1000000000);
2537                 flags = MSG_DONTWAIT;
2538                 error = so_pru_soreceive(so, &nam, NULL, &sio, NULL, &flags);
2539                 if (error || sio.sb_mb == NULL) {
2540                         if (error == EWOULDBLOCK)
2541                                 slp->ns_flag |= SLP_NEEDQ;
2542                         else
2543                                 slp->ns_flag |= SLP_DISCONN;
2544                         slp->ns_flag &= ~SLP_GETSTREAM;
2545                         goto dorecs;
2546                 }
2547                 m = sio.sb_mb;
2548                 if (slp->ns_rawend) {
2549                         slp->ns_rawend->m_next = m;
2550                         slp->ns_cc += sio.sb_cc;
2551                 } else {
2552                         slp->ns_raw = m;
2553                         slp->ns_cc = sio.sb_cc;
2554                 }
2555                 while (m->m_next)
2556                         m = m->m_next;
2557                 slp->ns_rawend = m;
2558
2559                 /*
2560                  * Now try and parse as many record(s) as we can out of the
2561                  * raw stream data.
2562                  */
2563                 error = nfsrv_getstream(slp, waitflag, &nparallel_wakeup);
2564                 if (error) {
2565                         if (error == EPERM)
2566                                 slp->ns_flag |= SLP_DISCONN;
2567                         else
2568                                 slp->ns_flag |= SLP_NEEDQ;
2569                 }
2570                 slp->ns_flag &= ~SLP_GETSTREAM;
2571         } else {
2572                 /*
2573                  * For UDP soreceive typically pulls just one packet, loop
2574                  * to get the whole batch.
2575                  */
2576                 do {
2577                         sbinit(&sio, 1000000000);
2578                         flags = MSG_DONTWAIT;
2579                         error = so_pru_soreceive(so, &nam, NULL, &sio,
2580                                                  NULL, &flags);
2581                         if (sio.sb_mb) {
2582                                 struct nfsrv_rec *rec;
2583                                 int mf = (waitflag & MB_DONTWAIT) ?
2584                                             M_NOWAIT : M_WAITOK;
2585                                 rec = kmalloc(sizeof(struct nfsrv_rec),
2586                                              M_NFSRVDESC, mf);
2587                                 if (!rec) {
2588                                         if (nam)
2589                                                 FREE(nam, M_SONAME);
2590                                         m_freem(sio.sb_mb);
2591                                         continue;
2592                                 }
2593                                 nfs_realign(&sio.sb_mb, 10 * NFSX_UNSIGNED);
2594                                 rec->nr_address = nam;
2595                                 rec->nr_packet = sio.sb_mb;
2596                                 STAILQ_INSERT_TAIL(&slp->ns_rec, rec, nr_link);
2597                                 ++slp->ns_numrec;
2598                                 ++nparallel_wakeup;
2599                         }
2600                         if (error) {
2601                                 if ((so->so_proto->pr_flags & PR_CONNREQUIRED)
2602                                         && error != EWOULDBLOCK) {
2603                                         slp->ns_flag |= SLP_DISCONN;
2604                                         goto dorecs;
2605                                 }
2606                         }
2607                 } while (sio.sb_mb);
2608         }
2609
2610         /*
2611          * If we were upcalled from the tcp protocol layer and we have
2612          * fully parsed records ready to go, or there is new data pending,
2613          * or something went wrong, try to wake up an nfsd thread to deal
2614          * with it.
2615          */
2616 dorecs:
2617         if (waitflag == MB_DONTWAIT && (slp->ns_numrec > 0
2618              || (slp->ns_flag & (SLP_NEEDQ | SLP_DISCONN)))) {
2619                 nfsrv_wakenfsd(slp, nparallel_wakeup);
2620         }
2621 }
2622
2623 /*
2624  * Try and extract an RPC request from the mbuf data list received on a
2625  * stream socket. The "waitflag" argument indicates whether or not it
2626  * can sleep.
2627  */
2628 static int
2629 nfsrv_getstream(struct nfssvc_sock *slp, int waitflag, int *countp)
2630 {
2631         struct mbuf *m, **mpp;
2632         char *cp1, *cp2;
2633         int len;
2634         struct mbuf *om, *m2, *recm;
2635         u_int32_t recmark;
2636
2637         for (;;) {
2638             if (slp->ns_reclen == 0) {
2639                 if (slp->ns_cc < NFSX_UNSIGNED)
2640                         return (0);
2641                 m = slp->ns_raw;
2642                 if (m->m_len >= NFSX_UNSIGNED) {
2643                         bcopy(mtod(m, caddr_t), (caddr_t)&recmark, NFSX_UNSIGNED);
2644                         m->m_data += NFSX_UNSIGNED;
2645                         m->m_len -= NFSX_UNSIGNED;
2646                 } else {
2647                         cp1 = (caddr_t)&recmark;
2648                         cp2 = mtod(m, caddr_t);
2649                         while (cp1 < ((caddr_t)&recmark) + NFSX_UNSIGNED) {
2650                                 while (m->m_len == 0) {
2651                                         m = m->m_next;
2652                                         cp2 = mtod(m, caddr_t);
2653                                 }
2654                                 *cp1++ = *cp2++;
2655                                 m->m_data++;
2656                                 m->m_len--;
2657                         }
2658                 }
2659                 slp->ns_cc -= NFSX_UNSIGNED;
2660                 recmark = ntohl(recmark);
2661                 slp->ns_reclen = recmark & ~0x80000000;
2662                 if (recmark & 0x80000000)
2663                         slp->ns_flag |= SLP_LASTFRAG;
2664                 else
2665                         slp->ns_flag &= ~SLP_LASTFRAG;
2666                 if (slp->ns_reclen > NFS_MAXPACKET || slp->ns_reclen <= 0) {
2667                         log(LOG_ERR, "%s (%d) from nfs client\n",
2668                             "impossible packet length",
2669                             slp->ns_reclen);
2670                         return (EPERM);
2671                 }
2672             }
2673
2674             /*
2675              * Now get the record part.
2676              *
2677              * Note that slp->ns_reclen may be 0.  Linux sometimes
2678              * generates 0-length RPCs
2679              */
2680             recm = NULL;
2681             if (slp->ns_cc == slp->ns_reclen) {
2682                 recm = slp->ns_raw;
2683                 slp->ns_raw = slp->ns_rawend = NULL;
2684                 slp->ns_cc = slp->ns_reclen = 0;
2685             } else if (slp->ns_cc > slp->ns_reclen) {
2686                 len = 0;
2687                 m = slp->ns_raw;
2688                 om = NULL;
2689
2690                 while (len < slp->ns_reclen) {
2691                         if ((len + m->m_len) > slp->ns_reclen) {
2692                                 m2 = m_copym(m, 0, slp->ns_reclen - len,
2693                                         waitflag);
2694                                 if (m2) {
2695                                         if (om) {
2696                                                 om->m_next = m2;
2697                                                 recm = slp->ns_raw;
2698                                         } else
2699                                                 recm = m2;
2700                                         m->m_data += slp->ns_reclen - len;
2701                                         m->m_len -= slp->ns_reclen - len;
2702                                         len = slp->ns_reclen;
2703                                 } else {
2704                                         return (EWOULDBLOCK);
2705                                 }
2706                         } else if ((len + m->m_len) == slp->ns_reclen) {
2707                                 om = m;
2708                                 len += m->m_len;
2709                                 m = m->m_next;
2710                                 recm = slp->ns_raw;
2711                                 om->m_next = NULL;
2712                         } else {
2713                                 om = m;
2714                                 len += m->m_len;
2715                                 m = m->m_next;
2716                         }
2717                 }
2718                 slp->ns_raw = m;
2719                 slp->ns_cc -= len;
2720                 slp->ns_reclen = 0;
2721             } else {
2722                 return (0);
2723             }
2724
2725             /*
2726              * Accumulate the fragments into a record.
2727              */
2728             mpp = &slp->ns_frag;
2729             while (*mpp)
2730                 mpp = &((*mpp)->m_next);
2731             *mpp = recm;
2732             if (slp->ns_flag & SLP_LASTFRAG) {
2733                 struct nfsrv_rec *rec;
2734                 int mf = (waitflag & MB_DONTWAIT) ? M_NOWAIT : M_WAITOK;
2735                 rec = kmalloc(sizeof(struct nfsrv_rec), M_NFSRVDESC, mf);
2736                 if (!rec) {
2737                     m_freem(slp->ns_frag);
2738                 } else {
2739                     nfs_realign(&slp->ns_frag, 10 * NFSX_UNSIGNED);
2740                     rec->nr_address = NULL;
2741                     rec->nr_packet = slp->ns_frag;
2742                     STAILQ_INSERT_TAIL(&slp->ns_rec, rec, nr_link);
2743                     ++slp->ns_numrec;
2744                     ++*countp;
2745                 }
2746                 slp->ns_frag = NULL;
2747             }
2748         }
2749 }
2750
2751 #ifdef INVARIANTS
2752
2753 /*
2754  * Sanity check our mbuf chain.
2755  */
2756 static void
2757 nfs_checkpkt(struct mbuf *m, int len)
2758 {
2759         int xlen = 0;
2760         while (m) {
2761                 xlen += m->m_len;
2762                 m = m->m_next;
2763         }
2764         if (xlen != len) {
2765                 panic("nfs_checkpkt: len mismatch %d/%d mbuf %p\n",
2766                         xlen, len, m);
2767         }
2768 }
2769
2770 #else
2771
2772 static void
2773 nfs_checkpkt(struct mbuf *m __unused, int len __unused)
2774 {
2775 }
2776
2777 #endif
2778
2779 /*
2780  * Parse an RPC header.
2781  */
2782 int
2783 nfsrv_dorec(struct nfssvc_sock *slp, struct nfsd *nfsd,
2784             struct nfsrv_descript **ndp)
2785 {
2786         struct nfsrv_rec *rec;
2787         struct mbuf *m;
2788         struct sockaddr *nam;
2789         struct nfsrv_descript *nd;
2790         int error;
2791
2792         *ndp = NULL;
2793         if ((slp->ns_flag & SLP_VALID) == 0 || !STAILQ_FIRST(&slp->ns_rec))
2794                 return (ENOBUFS);
2795         rec = STAILQ_FIRST(&slp->ns_rec);
2796         STAILQ_REMOVE_HEAD(&slp->ns_rec, nr_link);
2797         KKASSERT(slp->ns_numrec > 0);
2798         --slp->ns_numrec;
2799         nam = rec->nr_address;
2800         m = rec->nr_packet;
2801         kfree(rec, M_NFSRVDESC);
2802         MALLOC(nd, struct nfsrv_descript *, sizeof (struct nfsrv_descript),
2803                 M_NFSRVDESC, M_WAITOK);
2804         nd->nd_md = nd->nd_mrep = m;
2805         nd->nd_nam2 = nam;
2806         nd->nd_dpos = mtod(m, caddr_t);
2807         error = nfs_getreq(nd, nfsd, TRUE);
2808         if (error) {
2809                 if (nam) {
2810                         FREE(nam, M_SONAME);
2811                 }
2812                 kfree((caddr_t)nd, M_NFSRVDESC);
2813                 return (error);
2814         }
2815         *ndp = nd;
2816         nfsd->nfsd_nd = nd;
2817         return (0);
2818 }
2819
2820 /*
2821  * Try to assign service sockets to nfsd threads based on the number
2822  * of new rpc requests that have been queued on the service socket.
2823  *
2824  * If no nfsd's are available or additonal requests are pending, set the
2825  * NFSD_CHECKSLP flag so that one of the running nfsds will go look for
2826  * the work in the nfssvc_sock list when it is finished processing its
2827  * current work.  This flag is only cleared when an nfsd can not find
2828  * any new work to perform.
2829  */
2830 void
2831 nfsrv_wakenfsd(struct nfssvc_sock *slp, int nparallel)
2832 {
2833         struct nfsd *nd;
2834
2835         if ((slp->ns_flag & SLP_VALID) == 0)
2836                 return;
2837         if (nparallel <= 1)
2838                 nparallel = 1;
2839         TAILQ_FOREACH(nd, &nfsd_head, nfsd_chain) {
2840                 if (nd->nfsd_flag & NFSD_WAITING) {
2841                         nd->nfsd_flag &= ~NFSD_WAITING;
2842                         if (nd->nfsd_slp)
2843                                 panic("nfsd wakeup");
2844                         slp->ns_sref++;
2845                         nd->nfsd_slp = slp;
2846                         wakeup((caddr_t)nd);
2847                         if (--nparallel == 0)
2848                                 break;
2849                 }
2850         }
2851         if (nparallel) {
2852                 slp->ns_flag |= SLP_DOREC;
2853                 nfsd_head_flag |= NFSD_CHECKSLP;
2854         }
2855 }
2856 #endif /* NFS_NOSERVER */