Remove sys/mplock2.h from more files.
[dragonfly.git] / sys / vm / vm_pageout.c
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * The Mach Operating System project at Carnegie-Mellon University.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49  *
50  * Permission to use, copy, modify and distribute this software and
51  * its documentation is hereby granted, provided that both the copyright
52  * notice and this permission notice appear in all copies of the
53  * software, derivative works or modified versions, and any portions
54  * thereof, and that both notices appear in supporting documentation.
55  *
56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59  *
60  * Carnegie Mellon requests users of this software to return to
61  *
62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63  *  School of Computer Science
64  *  Carnegie Mellon University
65  *  Pittsburgh PA 15213-3890
66  *
67  * any improvements or extensions that they make and grant Carnegie the
68  * rights to redistribute these changes.
69  *
70  * $FreeBSD: src/sys/vm/vm_pageout.c,v 1.151.2.15 2002/12/29 18:21:04 dillon Exp $
71  * $DragonFly: src/sys/vm/vm_pageout.c,v 1.36 2008/07/01 02:02:56 dillon Exp $
72  */
73
74 /*
75  *      The proverbial page-out daemon.
76  */
77
78 #include "opt_vm.h"
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/proc.h>
83 #include <sys/kthread.h>
84 #include <sys/resourcevar.h>
85 #include <sys/signalvar.h>
86 #include <sys/vnode.h>
87 #include <sys/vmmeter.h>
88 #include <sys/sysctl.h>
89
90 #include <vm/vm.h>
91 #include <vm/vm_param.h>
92 #include <sys/lock.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_page.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_pageout.h>
97 #include <vm/vm_pager.h>
98 #include <vm/swap_pager.h>
99 #include <vm/vm_extern.h>
100
101 #include <sys/thread2.h>
102 #include <vm/vm_page2.h>
103
104 /*
105  * System initialization
106  */
107
108 /* the kernel process "vm_pageout"*/
109 static int vm_pageout_clean (vm_page_t);
110 static int vm_pageout_scan (int pass);
111 static int vm_pageout_free_page_calc (vm_size_t count);
112 struct thread *pagethread;
113
114 #if !defined(NO_SWAPPING)
115 /* the kernel process "vm_daemon"*/
116 static void vm_daemon (void);
117 static struct   thread *vmthread;
118
119 static struct kproc_desc vm_kp = {
120         "vmdaemon",
121         vm_daemon,
122         &vmthread
123 };
124 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
125 #endif
126
127
128 int vm_pages_needed=0;          /* Event on which pageout daemon sleeps */
129 int vm_pageout_deficit=0;       /* Estimated number of pages deficit */
130 int vm_pageout_pages_needed=0;  /* flag saying that the pageout daemon needs pages */
131
132 #if !defined(NO_SWAPPING)
133 static int vm_pageout_req_swapout;      /* XXX */
134 static int vm_daemon_needed;
135 #endif
136 static int vm_max_launder = 32;
137 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
138 static int vm_pageout_full_stats_interval = 0;
139 static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
140 static int defer_swap_pageouts=0;
141 static int disable_swap_pageouts=0;
142
143 #if defined(NO_SWAPPING)
144 static int vm_swap_enabled=0;
145 static int vm_swap_idle_enabled=0;
146 #else
147 static int vm_swap_enabled=1;
148 static int vm_swap_idle_enabled=0;
149 #endif
150
151 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
152         CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
153
154 SYSCTL_INT(_vm, OID_AUTO, max_launder,
155         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
156
157 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
158         CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
159
160 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
161         CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
162
163 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
164         CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
165
166 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
167         CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
168
169 #if defined(NO_SWAPPING)
170 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
171         CTLFLAG_RD, &vm_swap_enabled, 0, "");
172 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
173         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
174 #else
175 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
176         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
177 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
178         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
179 #endif
180
181 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
182         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
183
184 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
185         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
186
187 static int pageout_lock_miss;
188 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
189         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
190
191 int vm_load;
192 SYSCTL_INT(_vm, OID_AUTO, vm_load,
193         CTLFLAG_RD, &vm_load, 0, "load on the VM system");
194 int vm_load_enable = 1;
195 SYSCTL_INT(_vm, OID_AUTO, vm_load_enable,
196         CTLFLAG_RW, &vm_load_enable, 0, "enable vm_load rate limiting");
197 #ifdef INVARIANTS
198 int vm_load_debug;
199 SYSCTL_INT(_vm, OID_AUTO, vm_load_debug,
200         CTLFLAG_RW, &vm_load_debug, 0, "debug vm_load");
201 #endif
202
203 #define VM_PAGEOUT_PAGE_COUNT 16
204 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
205
206 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
207
208 #if !defined(NO_SWAPPING)
209 typedef void freeer_fcn_t (vm_map_t, vm_object_t, vm_pindex_t, int);
210 static void vm_pageout_map_deactivate_pages (vm_map_t, vm_pindex_t);
211 static freeer_fcn_t vm_pageout_object_deactivate_pages;
212 static void vm_req_vmdaemon (void);
213 #endif
214 static void vm_pageout_page_stats(void);
215
216 /*
217  * Update vm_load to slow down faulting processes.
218  *
219  * SMP races ok.
220  * No requirements.
221  */
222 void
223 vm_fault_ratecheck(void)
224 {
225         if (vm_pages_needed) {
226                 if (vm_load < 1000)
227                         ++vm_load;
228         } else {
229                 if (vm_load > 0)
230                         --vm_load;
231         }
232 }
233
234 /*
235  * vm_pageout_clean:
236  *
237  * Clean the page and remove it from the laundry.  The page must not be
238  * busy on-call.
239  * 
240  * We set the busy bit to cause potential page faults on this page to
241  * block.  Note the careful timing, however, the busy bit isn't set till
242  * late and we cannot do anything that will mess with the page.
243  *
244  * The caller must hold vm_token.
245  */
246 static int
247 vm_pageout_clean(vm_page_t m)
248 {
249         vm_object_t object;
250         vm_page_t mc[2*vm_pageout_page_count];
251         int pageout_count;
252         int ib, is, page_base;
253         vm_pindex_t pindex = m->pindex;
254
255         object = m->object;
256
257         /*
258          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
259          * with the new swapper, but we could have serious problems paging
260          * out other object types if there is insufficient memory.  
261          *
262          * Unfortunately, checking free memory here is far too late, so the
263          * check has been moved up a procedural level.
264          */
265
266         /*
267          * Don't mess with the page if it's busy, held, or special
268          */
269         if ((m->hold_count != 0) ||
270             ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
271                 return 0;
272         }
273
274         mc[vm_pageout_page_count] = m;
275         pageout_count = 1;
276         page_base = vm_pageout_page_count;
277         ib = 1;
278         is = 1;
279
280         /*
281          * Scan object for clusterable pages.
282          *
283          * We can cluster ONLY if: ->> the page is NOT
284          * clean, wired, busy, held, or mapped into a
285          * buffer, and one of the following:
286          * 1) The page is inactive, or a seldom used
287          *    active page.
288          * -or-
289          * 2) we force the issue.
290          *
291          * During heavy mmap/modification loads the pageout
292          * daemon can really fragment the underlying file
293          * due to flushing pages out of order and not trying
294          * align the clusters (which leave sporatic out-of-order
295          * holes).  To solve this problem we do the reverse scan
296          * first and attempt to align our cluster, then do a 
297          * forward scan if room remains.
298          */
299
300 more:
301         while (ib && pageout_count < vm_pageout_page_count) {
302                 vm_page_t p;
303
304                 if (ib > pindex) {
305                         ib = 0;
306                         break;
307                 }
308
309                 if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
310                         ib = 0;
311                         break;
312                 }
313                 if (((p->queue - p->pc) == PQ_CACHE) ||
314                     (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
315                         ib = 0;
316                         break;
317                 }
318                 vm_page_test_dirty(p);
319                 if ((p->dirty & p->valid) == 0 ||
320                     p->queue != PQ_INACTIVE ||
321                     p->wire_count != 0 ||       /* may be held by buf cache */
322                     p->hold_count != 0) {       /* may be undergoing I/O */
323                         ib = 0;
324                         break;
325                 }
326                 mc[--page_base] = p;
327                 ++pageout_count;
328                 ++ib;
329                 /*
330                  * alignment boundry, stop here and switch directions.  Do
331                  * not clear ib.
332                  */
333                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
334                         break;
335         }
336
337         while (pageout_count < vm_pageout_page_count && 
338             pindex + is < object->size) {
339                 vm_page_t p;
340
341                 if ((p = vm_page_lookup(object, pindex + is)) == NULL)
342                         break;
343                 if (((p->queue - p->pc) == PQ_CACHE) ||
344                     (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
345                         break;
346                 }
347                 vm_page_test_dirty(p);
348                 if ((p->dirty & p->valid) == 0 ||
349                     p->queue != PQ_INACTIVE ||
350                     p->wire_count != 0 ||       /* may be held by buf cache */
351                     p->hold_count != 0) {       /* may be undergoing I/O */
352                         break;
353                 }
354                 mc[page_base + pageout_count] = p;
355                 ++pageout_count;
356                 ++is;
357         }
358
359         /*
360          * If we exhausted our forward scan, continue with the reverse scan
361          * when possible, even past a page boundry.  This catches boundry
362          * conditions.
363          */
364         if (ib && pageout_count < vm_pageout_page_count)
365                 goto more;
366
367         /*
368          * we allow reads during pageouts...
369          */
370         return vm_pageout_flush(&mc[page_base], pageout_count, 0);
371 }
372
373 /*
374  * vm_pageout_flush() - launder the given pages
375  *
376  *      The given pages are laundered.  Note that we setup for the start of
377  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
378  *      reference count all in here rather then in the parent.  If we want
379  *      the parent to do more sophisticated things we may have to change
380  *      the ordering.
381  *
382  * The caller must hold vm_token.
383  */
384 int
385 vm_pageout_flush(vm_page_t *mc, int count, int flags)
386 {
387         vm_object_t object;
388         int pageout_status[count];
389         int numpagedout = 0;
390         int i;
391
392         ASSERT_LWKT_TOKEN_HELD(&vm_token);
393
394         /*
395          * Initiate I/O.  Bump the vm_page_t->busy counter.
396          */
397         for (i = 0; i < count; i++) {
398                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
399                 vm_page_io_start(mc[i]);
400         }
401
402         /*
403          * We must make the pages read-only.  This will also force the
404          * modified bit in the related pmaps to be cleared.  The pager
405          * cannot clear the bit for us since the I/O completion code
406          * typically runs from an interrupt.  The act of making the page
407          * read-only handles the case for us.
408          */
409         for (i = 0; i < count; i++) {
410                 vm_page_protect(mc[i], VM_PROT_READ);
411         }
412
413         object = mc[0]->object;
414         vm_object_pip_add(object, count);
415
416         vm_pager_put_pages(object, mc, count,
417             (flags | ((object == &kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
418             pageout_status);
419
420         for (i = 0; i < count; i++) {
421                 vm_page_t mt = mc[i];
422
423                 switch (pageout_status[i]) {
424                 case VM_PAGER_OK:
425                         numpagedout++;
426                         break;
427                 case VM_PAGER_PEND:
428                         numpagedout++;
429                         break;
430                 case VM_PAGER_BAD:
431                         /*
432                          * Page outside of range of object. Right now we
433                          * essentially lose the changes by pretending it
434                          * worked.
435                          */
436                         pmap_clear_modify(mt);
437                         vm_page_undirty(mt);
438                         break;
439                 case VM_PAGER_ERROR:
440                 case VM_PAGER_FAIL:
441                         /*
442                          * A page typically cannot be paged out when we
443                          * have run out of swap.  We leave the page
444                          * marked inactive and will try to page it out
445                          * again later.
446                          *
447                          * Starvation of the active page list is used to
448                          * determine when the system is massively memory
449                          * starved.
450                          */
451                         break;
452                 case VM_PAGER_AGAIN:
453                         break;
454                 }
455
456                 /*
457                  * If the operation is still going, leave the page busy to
458                  * block all other accesses. Also, leave the paging in
459                  * progress indicator set so that we don't attempt an object
460                  * collapse.
461                  *
462                  * For any pages which have completed synchronously, 
463                  * deactivate the page if we are under a severe deficit.
464                  * Do not try to enter them into the cache, though, they
465                  * might still be read-heavy.
466                  */
467                 if (pageout_status[i] != VM_PAGER_PEND) {
468                         if (vm_page_count_severe())
469                                 vm_page_deactivate(mt);
470 #if 0
471                         if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
472                                 vm_page_protect(mt, VM_PROT_READ);
473 #endif
474                         vm_page_io_finish(mt);
475                         vm_object_pip_wakeup(object);
476                 }
477         }
478         return numpagedout;
479 }
480
481 #if !defined(NO_SWAPPING)
482 /*
483  *      vm_pageout_object_deactivate_pages
484  *
485  *      deactivate enough pages to satisfy the inactive target
486  *      requirements or if vm_page_proc_limit is set, then
487  *      deactivate all of the pages in the object and its
488  *      backing_objects.
489  *
490  * The map must be locked.
491  * The caller must hold vm_token.
492  */
493 static int vm_pageout_object_deactivate_pages_callback(vm_page_t, void *);
494
495 static void
496 vm_pageout_object_deactivate_pages(vm_map_t map, vm_object_t object,
497                                    vm_pindex_t desired, int map_remove_only)
498 {
499         struct rb_vm_page_scan_info info;
500         int remove_mode;
501
502         if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
503                 return;
504
505         while (object) {
506                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
507                         return;
508                 if (object->paging_in_progress)
509                         return;
510
511                 remove_mode = map_remove_only;
512                 if (object->shadow_count > 1)
513                         remove_mode = 1;
514
515                 /*
516                  * scan the objects entire memory queue.  spl protection is
517                  * required to avoid an interrupt unbusy/free race against
518                  * our busy check.
519                  */
520                 crit_enter();
521                 info.limit = remove_mode;
522                 info.map = map;
523                 info.desired = desired;
524                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
525                                 vm_pageout_object_deactivate_pages_callback,
526                                 &info
527                 );
528                 crit_exit();
529                 object = object->backing_object;
530         }
531 }
532
533 /*
534  * The caller must hold vm_token.
535  */
536 static int
537 vm_pageout_object_deactivate_pages_callback(vm_page_t p, void *data)
538 {
539         struct rb_vm_page_scan_info *info = data;
540         int actcount;
541
542         if (pmap_resident_count(vm_map_pmap(info->map)) <= info->desired) {
543                 return(-1);
544         }
545         mycpu->gd_cnt.v_pdpages++;
546         if (p->wire_count != 0 || p->hold_count != 0 || p->busy != 0 ||
547             (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
548             !pmap_page_exists_quick(vm_map_pmap(info->map), p)) {
549                 return(0);
550         }
551
552         actcount = pmap_ts_referenced(p);
553         if (actcount) {
554                 vm_page_flag_set(p, PG_REFERENCED);
555         } else if (p->flags & PG_REFERENCED) {
556                 actcount = 1;
557         }
558
559         if ((p->queue != PQ_ACTIVE) &&
560                 (p->flags & PG_REFERENCED)) {
561                 vm_page_activate(p);
562                 p->act_count += actcount;
563                 vm_page_flag_clear(p, PG_REFERENCED);
564         } else if (p->queue == PQ_ACTIVE) {
565                 if ((p->flags & PG_REFERENCED) == 0) {
566                         p->act_count -= min(p->act_count, ACT_DECLINE);
567                         if (!info->limit && (vm_pageout_algorithm || (p->act_count == 0))) {
568                                 vm_page_busy(p);
569                                 vm_page_protect(p, VM_PROT_NONE);
570                                 vm_page_deactivate(p);
571                                 vm_page_wakeup(p);
572                         } else {
573                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
574                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
575                         }
576                 } else {
577                         vm_page_activate(p);
578                         vm_page_flag_clear(p, PG_REFERENCED);
579                         if (p->act_count < (ACT_MAX - ACT_ADVANCE))
580                                 p->act_count += ACT_ADVANCE;
581                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
582                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
583                 }
584         } else if (p->queue == PQ_INACTIVE) {
585                 vm_page_busy(p);
586                 vm_page_protect(p, VM_PROT_NONE);
587                 vm_page_wakeup(p);
588         }
589         return(0);
590 }
591
592 /*
593  * Deactivate some number of pages in a map, try to do it fairly, but
594  * that is really hard to do.
595  *
596  * The caller must hold vm_token.
597  */
598 static void
599 vm_pageout_map_deactivate_pages(vm_map_t map, vm_pindex_t desired)
600 {
601         vm_map_entry_t tmpe;
602         vm_object_t obj, bigobj;
603         int nothingwired;
604
605         if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT)) {
606                 return;
607         }
608
609         bigobj = NULL;
610         nothingwired = TRUE;
611
612         /*
613          * first, search out the biggest object, and try to free pages from
614          * that.
615          */
616         tmpe = map->header.next;
617         while (tmpe != &map->header) {
618                 switch(tmpe->maptype) {
619                 case VM_MAPTYPE_NORMAL:
620                 case VM_MAPTYPE_VPAGETABLE:
621                         obj = tmpe->object.vm_object;
622                         if ((obj != NULL) && (obj->shadow_count <= 1) &&
623                                 ((bigobj == NULL) ||
624                                  (bigobj->resident_page_count < obj->resident_page_count))) {
625                                 bigobj = obj;
626                         }
627                         break;
628                 default:
629                         break;
630                 }
631                 if (tmpe->wired_count > 0)
632                         nothingwired = FALSE;
633                 tmpe = tmpe->next;
634         }
635
636         if (bigobj)
637                 vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
638
639         /*
640          * Next, hunt around for other pages to deactivate.  We actually
641          * do this search sort of wrong -- .text first is not the best idea.
642          */
643         tmpe = map->header.next;
644         while (tmpe != &map->header) {
645                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
646                         break;
647                 switch(tmpe->maptype) {
648                 case VM_MAPTYPE_NORMAL:
649                 case VM_MAPTYPE_VPAGETABLE:
650                         obj = tmpe->object.vm_object;
651                         if (obj)
652                                 vm_pageout_object_deactivate_pages(map, obj, desired, 0);
653                         break;
654                 default:
655                         break;
656                 }
657                 tmpe = tmpe->next;
658         };
659
660         /*
661          * Remove all mappings if a process is swapped out, this will free page
662          * table pages.
663          */
664         if (desired == 0 && nothingwired)
665                 pmap_remove(vm_map_pmap(map),
666                             VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
667         vm_map_unlock(map);
668 }
669 #endif
670
671 /*
672  * Don't try to be fancy - being fancy can lead to vnode deadlocks.   We
673  * only do it for OBJT_DEFAULT and OBJT_SWAP objects which we know can
674  * be trivially freed.
675  *
676  * The caller must hold vm_token.
677  *
678  * WARNING: vm_object_reference() can block.
679  */
680 static void
681 vm_pageout_page_free(vm_page_t m) 
682 {
683         vm_object_t object = m->object;
684         int type = object->type;
685
686         vm_page_busy(m);
687         if (type == OBJT_SWAP || type == OBJT_DEFAULT)
688                 vm_object_reference(object);
689         vm_page_protect(m, VM_PROT_NONE);
690         vm_page_free(m);
691         if (type == OBJT_SWAP || type == OBJT_DEFAULT)
692                 vm_object_deallocate(object);
693 }
694
695 /*
696  * vm_pageout_scan does the dirty work for the pageout daemon.
697  */
698 struct vm_pageout_scan_info {
699         struct proc *bigproc;
700         vm_offset_t bigsize;
701 };
702
703 static int vm_pageout_scan_callback(struct proc *p, void *data);
704
705 /*
706  * The caller must hold vm_token.
707  */
708 static int
709 vm_pageout_scan(int pass)
710 {
711         struct vm_pageout_scan_info info;
712         vm_page_t m, next;
713         struct vm_page marker;
714         struct vnode *vpfailed;         /* warning, allowed to be stale */
715         int maxscan, pcount;
716         int recycle_count;
717         int inactive_shortage, active_shortage;
718         int inactive_original_shortage;
719         vm_object_t object;
720         int actcount;
721         int vnodes_skipped = 0;
722         int maxlaunder;
723
724         /*
725          * Do whatever cleanup that the pmap code can.
726          */
727         pmap_collect();
728
729         /*
730          * Calculate our target for the number of free+cache pages we
731          * want to get to.  This is higher then the number that causes
732          * allocations to stall (severe) in order to provide hysteresis,
733          * and if we don't make it all the way but get to the minimum
734          * we're happy.
735          */
736         inactive_shortage = vm_paging_target() + vm_pageout_deficit;
737         inactive_original_shortage = inactive_shortage;
738         vm_pageout_deficit = 0;
739
740         /*
741          * Initialize our marker
742          */
743         bzero(&marker, sizeof(marker));
744         marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
745         marker.queue = PQ_INACTIVE;
746         marker.wire_count = 1;
747
748         /*
749          * Start scanning the inactive queue for pages we can move to the
750          * cache or free.  The scan will stop when the target is reached or
751          * we have scanned the entire inactive queue.  Note that m->act_count
752          * is not used to form decisions for the inactive queue, only for the
753          * active queue.
754          *
755          * maxlaunder limits the number of dirty pages we flush per scan.
756          * For most systems a smaller value (16 or 32) is more robust under
757          * extreme memory and disk pressure because any unnecessary writes
758          * to disk can result in extreme performance degredation.  However,
759          * systems with excessive dirty pages (especially when MAP_NOSYNC is
760          * used) will die horribly with limited laundering.  If the pageout
761          * daemon cannot clean enough pages in the first pass, we let it go
762          * all out in succeeding passes.
763          */
764         if ((maxlaunder = vm_max_launder) <= 1)
765                 maxlaunder = 1;
766         if (pass)
767                 maxlaunder = 10000;
768
769         /*
770          * We will generally be in a critical section throughout the 
771          * scan, but we can release it temporarily when we are sitting on a
772          * non-busy page without fear.  this is required to prevent an
773          * interrupt from unbusying or freeing a page prior to our busy
774          * check, leaving us on the wrong queue or checking the wrong
775          * page.
776          */
777         crit_enter();
778 rescan0:
779         vpfailed = NULL;
780         maxscan = vmstats.v_inactive_count;
781         for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
782              m != NULL && maxscan-- > 0 && inactive_shortage > 0;
783              m = next
784          ) {
785                 mycpu->gd_cnt.v_pdpages++;
786
787                 /*
788                  * Give interrupts a chance
789                  */
790                 crit_exit();
791                 crit_enter();
792
793                 /*
794                  * It's easier for some of the conditions below to just loop
795                  * and catch queue changes here rather then check everywhere
796                  * else.
797                  */
798                 if (m->queue != PQ_INACTIVE)
799                         goto rescan0;
800                 next = TAILQ_NEXT(m, pageq);
801
802                 /*
803                  * skip marker pages
804                  */
805                 if (m->flags & PG_MARKER)
806                         continue;
807
808                 /*
809                  * A held page may be undergoing I/O, so skip it.
810                  */
811                 if (m->hold_count) {
812                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
813                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
814                         ++vm_swapcache_inactive_heuristic;
815                         continue;
816                 }
817
818                 /*
819                  * Dont mess with busy pages, keep in the front of the
820                  * queue, most likely are being paged out.
821                  */
822                 if (m->busy || (m->flags & PG_BUSY)) {
823                         continue;
824                 }
825
826                 if (m->object->ref_count == 0) {
827                         /*
828                          * If the object is not being used, we ignore previous 
829                          * references.
830                          */
831                         vm_page_flag_clear(m, PG_REFERENCED);
832                         pmap_clear_reference(m);
833
834                 } else if (((m->flags & PG_REFERENCED) == 0) &&
835                             (actcount = pmap_ts_referenced(m))) {
836                         /*
837                          * Otherwise, if the page has been referenced while 
838                          * in the inactive queue, we bump the "activation
839                          * count" upwards, making it less likely that the
840                          * page will be added back to the inactive queue
841                          * prematurely again.  Here we check the page tables
842                          * (or emulated bits, if any), given the upper level
843                          * VM system not knowing anything about existing 
844                          * references.
845                          */
846                         vm_page_activate(m);
847                         m->act_count += (actcount + ACT_ADVANCE);
848                         continue;
849                 }
850
851                 /*
852                  * If the upper level VM system knows about any page 
853                  * references, we activate the page.  We also set the 
854                  * "activation count" higher than normal so that we will less 
855                  * likely place pages back onto the inactive queue again.
856                  */
857                 if ((m->flags & PG_REFERENCED) != 0) {
858                         vm_page_flag_clear(m, PG_REFERENCED);
859                         actcount = pmap_ts_referenced(m);
860                         vm_page_activate(m);
861                         m->act_count += (actcount + ACT_ADVANCE + 1);
862                         continue;
863                 }
864
865                 /*
866                  * If the upper level VM system doesn't know anything about 
867                  * the page being dirty, we have to check for it again.  As 
868                  * far as the VM code knows, any partially dirty pages are 
869                  * fully dirty.
870                  *
871                  * Pages marked PG_WRITEABLE may be mapped into the user
872                  * address space of a process running on another cpu.  A
873                  * user process (without holding the MP lock) running on
874                  * another cpu may be able to touch the page while we are
875                  * trying to remove it.  vm_page_cache() will handle this
876                  * case for us.
877                  */
878                 if (m->dirty == 0) {
879                         vm_page_test_dirty(m);
880                 } else {
881                         vm_page_dirty(m);
882                 }
883
884                 if (m->valid == 0) {
885                         /*
886                          * Invalid pages can be easily freed
887                          */
888                         vm_pageout_page_free(m);
889                         mycpu->gd_cnt.v_dfree++;
890                         --inactive_shortage;
891                 } else if (m->dirty == 0) {
892                         /*
893                          * Clean pages can be placed onto the cache queue.
894                          * This effectively frees them.
895                          */
896                         vm_page_busy(m);
897                         vm_page_cache(m);
898                         --inactive_shortage;
899                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
900                         /*
901                          * Dirty pages need to be paged out, but flushing
902                          * a page is extremely expensive verses freeing
903                          * a clean page.  Rather then artificially limiting
904                          * the number of pages we can flush, we instead give
905                          * dirty pages extra priority on the inactive queue
906                          * by forcing them to be cycled through the queue
907                          * twice before being flushed, after which the 
908                          * (now clean) page will cycle through once more
909                          * before being freed.  This significantly extends
910                          * the thrash point for a heavily loaded machine.
911                          */
912                         vm_page_flag_set(m, PG_WINATCFLS);
913                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
914                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
915                         ++vm_swapcache_inactive_heuristic;
916                 } else if (maxlaunder > 0) {
917                         /*
918                          * We always want to try to flush some dirty pages if
919                          * we encounter them, to keep the system stable.
920                          * Normally this number is small, but under extreme
921                          * pressure where there are insufficient clean pages
922                          * on the inactive queue, we may have to go all out.
923                          */
924                         int swap_pageouts_ok;
925                         struct vnode *vp = NULL;
926
927                         object = m->object;
928
929                         if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
930                                 swap_pageouts_ok = 1;
931                         } else {
932                                 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
933                                 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
934                                 vm_page_count_min(0));
935                                                                                 
936                         }
937
938                         /*
939                          * We don't bother paging objects that are "dead".  
940                          * Those objects are in a "rundown" state.
941                          */
942                         if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
943                                 TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
944                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
945                                 ++vm_swapcache_inactive_heuristic;
946                                 continue;
947                         }
948
949                         /*
950                          * The object is already known NOT to be dead.   It
951                          * is possible for the vget() to block the whole
952                          * pageout daemon, but the new low-memory handling
953                          * code should prevent it.
954                          *
955                          * The previous code skipped locked vnodes and, worse,
956                          * reordered pages in the queue.  This results in
957                          * completely non-deterministic operation because,
958                          * quite often, a vm_fault has initiated an I/O and
959                          * is holding a locked vnode at just the point where
960                          * the pageout daemon is woken up.
961                          *
962                          * We can't wait forever for the vnode lock, we might
963                          * deadlock due to a vn_read() getting stuck in
964                          * vm_wait while holding this vnode.  We skip the 
965                          * vnode if we can't get it in a reasonable amount
966                          * of time.
967                          *
968                          * vpfailed is used to (try to) avoid the case where
969                          * a large number of pages are associated with a
970                          * locked vnode, which could cause the pageout daemon
971                          * to stall for an excessive amount of time.
972                          */
973                         if (object->type == OBJT_VNODE) {
974                                 int flags;
975
976                                 vp = object->handle;
977                                 flags = LK_EXCLUSIVE | LK_NOOBJ;
978                                 if (vp == vpfailed)
979                                         flags |= LK_NOWAIT;
980                                 else
981                                         flags |= LK_TIMELOCK;
982                                 if (vget(vp, flags) != 0) {
983                                         vpfailed = vp;
984                                         ++pageout_lock_miss;
985                                         if (object->flags & OBJ_MIGHTBEDIRTY)
986                                                     vnodes_skipped++;
987                                         continue;
988                                 }
989
990                                 /*
991                                  * The page might have been moved to another
992                                  * queue during potential blocking in vget()
993                                  * above.  The page might have been freed and
994                                  * reused for another vnode.  The object might
995                                  * have been reused for another vnode.
996                                  */
997                                 if (m->queue != PQ_INACTIVE ||
998                                     m->object != object ||
999                                     object->handle != vp) {
1000                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1001                                                 vnodes_skipped++;
1002                                         vput(vp);
1003                                         continue;
1004                                 }
1005         
1006                                 /*
1007                                  * The page may have been busied during the
1008                                  * blocking in vput();  We don't move the
1009                                  * page back onto the end of the queue so that
1010                                  * statistics are more correct if we don't.
1011                                  */
1012                                 if (m->busy || (m->flags & PG_BUSY)) {
1013                                         vput(vp);
1014                                         continue;
1015                                 }
1016
1017                                 /*
1018                                  * If the page has become held it might
1019                                  * be undergoing I/O, so skip it
1020                                  */
1021                                 if (m->hold_count) {
1022                                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1023                                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1024                                         ++vm_swapcache_inactive_heuristic;
1025                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1026                                                 vnodes_skipped++;
1027                                         vput(vp);
1028                                         continue;
1029                                 }
1030                         }
1031
1032                         /*
1033                          * If a page is dirty, then it is either being washed
1034                          * (but not yet cleaned) or it is still in the
1035                          * laundry.  If it is still in the laundry, then we
1036                          * start the cleaning operation. 
1037                          *
1038                          * This operation may cluster, invalidating the 'next'
1039                          * pointer.  To prevent an inordinate number of
1040                          * restarts we use our marker to remember our place.
1041                          *
1042                          * decrement inactive_shortage on success to account
1043                          * for the (future) cleaned page.  Otherwise we
1044                          * could wind up laundering or cleaning too many
1045                          * pages.
1046                          */
1047                         TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
1048                         if (vm_pageout_clean(m) != 0) {
1049                                 --inactive_shortage;
1050                                 --maxlaunder;
1051                         }
1052                         next = TAILQ_NEXT(&marker, pageq);
1053                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
1054                         if (vp != NULL)
1055                                 vput(vp);
1056                 }
1057         }
1058
1059         /*
1060          * We want to move pages from the active queue to the inactive
1061          * queue to get the inactive queue to the inactive target.  If
1062          * we still have a page shortage from above we try to directly free
1063          * clean pages instead of moving them.
1064          *
1065          * If we do still have a shortage we keep track of the number of
1066          * pages we free or cache (recycle_count) as a measure of thrashing
1067          * between the active and inactive queues.
1068          *
1069          * If we were able to completely satisfy the free+cache targets
1070          * from the inactive pool we limit the number of pages we move
1071          * from the active pool to the inactive pool to 2x the pages we
1072          * had removed from the inactive pool (with a minimum of 1/5 the
1073          * inactive target).  If we were not able to completely satisfy
1074          * the free+cache targets we go for the whole target aggressively.
1075          *
1076          * NOTE: Both variables can end up negative.
1077          * NOTE: We are still in a critical section.
1078          */
1079         active_shortage = vmstats.v_inactive_target - vmstats.v_inactive_count;
1080         if (inactive_original_shortage < vmstats.v_inactive_target / 10)
1081                 inactive_original_shortage = vmstats.v_inactive_target / 10;
1082         if (inactive_shortage <= 0 &&
1083             active_shortage > inactive_original_shortage * 2) {
1084                 active_shortage = inactive_original_shortage * 2;
1085         }
1086
1087         pcount = vmstats.v_active_count;
1088         recycle_count = 0;
1089         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1090
1091         while ((m != NULL) && (pcount-- > 0) &&
1092                (inactive_shortage > 0 || active_shortage > 0)
1093         ) {
1094                 /*
1095                  * Give interrupts a chance.
1096                  */
1097                 crit_exit();
1098                 crit_enter();
1099
1100                 /*
1101                  * If the page was ripped out from under us, just stop.
1102                  */
1103                 if (m->queue != PQ_ACTIVE)
1104                         break;
1105                 next = TAILQ_NEXT(m, pageq);
1106
1107                 /*
1108                  * Don't deactivate pages that are busy.
1109                  */
1110                 if ((m->busy != 0) ||
1111                     (m->flags & PG_BUSY) ||
1112                     (m->hold_count != 0)) {
1113                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1114                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1115                         m = next;
1116                         continue;
1117                 }
1118
1119                 /*
1120                  * The count for pagedaemon pages is done after checking the
1121                  * page for eligibility...
1122                  */
1123                 mycpu->gd_cnt.v_pdpages++;
1124
1125                 /*
1126                  * Check to see "how much" the page has been used and clear
1127                  * the tracking access bits.  If the object has no references
1128                  * don't bother paying the expense.
1129                  */
1130                 actcount = 0;
1131                 if (m->object->ref_count != 0) {
1132                         if (m->flags & PG_REFERENCED)
1133                                 ++actcount;
1134                         actcount += pmap_ts_referenced(m);
1135                         if (actcount) {
1136                                 m->act_count += ACT_ADVANCE + actcount;
1137                                 if (m->act_count > ACT_MAX)
1138                                         m->act_count = ACT_MAX;
1139                         }
1140                 }
1141                 vm_page_flag_clear(m, PG_REFERENCED);
1142
1143                 /*
1144                  * actcount is only valid if the object ref_count is non-zero.
1145                  */
1146                 if (actcount && m->object->ref_count != 0) {
1147                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1148                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1149                 } else {
1150                         m->act_count -= min(m->act_count, ACT_DECLINE);
1151                         if (vm_pageout_algorithm ||
1152                             m->object->ref_count == 0 ||
1153                             m->act_count < pass + 1
1154                         ) {
1155                                 /*
1156                                  * Deactivate the page.  If we had a
1157                                  * shortage from our inactive scan try to
1158                                  * free (cache) the page instead.
1159                                  *
1160                                  * Don't just blindly cache the page if
1161                                  * we do not have a shortage from the
1162                                  * inactive scan, that could lead to
1163                                  * gigabytes being moved.
1164                                  */
1165                                 --active_shortage;
1166                                 if (inactive_shortage > 0 ||
1167                                     m->object->ref_count == 0) {
1168                                         if (inactive_shortage > 0)
1169                                                 ++recycle_count;
1170                                         vm_page_busy(m);
1171                                         vm_page_protect(m, VM_PROT_NONE);
1172                                         if (m->dirty == 0 &&
1173                                             inactive_shortage > 0) {
1174                                                 --inactive_shortage;
1175                                                 vm_page_cache(m);
1176                                         } else {
1177                                                 vm_page_deactivate(m);
1178                                                 vm_page_wakeup(m);
1179                                         }
1180                                 } else {
1181                                         vm_page_deactivate(m);
1182                                 }
1183                         } else {
1184                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1185                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1186                         }
1187                 }
1188                 m = next;
1189         }
1190
1191         /*
1192          * The number of actually free pages can drop down to v_free_reserved,
1193          * we try to build the free count back above v_free_min.  Note that
1194          * vm_paging_needed() also returns TRUE if v_free_count is not at
1195          * least v_free_min so that is the minimum we must build the free
1196          * count to.
1197          *
1198          * We use a slightly higher target to improve hysteresis,
1199          * ((v_free_target + v_free_min) / 2).  Since v_free_target
1200          * is usually the same as v_cache_min this maintains about
1201          * half the pages in the free queue as are in the cache queue,
1202          * providing pretty good pipelining for pageout operation.
1203          *
1204          * The system operator can manipulate vm.v_cache_min and
1205          * vm.v_free_target to tune the pageout demon.  Be sure
1206          * to keep vm.v_free_min < vm.v_free_target.
1207          *
1208          * Note that the original paging target is to get at least
1209          * (free_min + cache_min) into (free + cache).  The slightly
1210          * higher target will shift additional pages from cache to free
1211          * without effecting the original paging target in order to
1212          * maintain better hysteresis and not have the free count always
1213          * be dead-on v_free_min.
1214          *
1215          * NOTE: we are still in a critical section.
1216          *
1217          * Pages moved from PQ_CACHE to totally free are not counted in the
1218          * pages_freed counter.
1219          */
1220         while (vmstats.v_free_count <
1221                (vmstats.v_free_min + vmstats.v_free_target) / 2) {
1222                 /*
1223                  *
1224                  */
1225                 static int cache_rover = 0;
1226                 m = vm_page_list_find(PQ_CACHE, cache_rover, FALSE);
1227                 if (m == NULL)
1228                         break;
1229                 if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || 
1230                     m->busy || 
1231                     m->hold_count || 
1232                     m->wire_count) {
1233 #ifdef INVARIANTS
1234                         kprintf("Warning: busy page %p found in cache\n", m);
1235 #endif
1236                         vm_page_deactivate(m);
1237                         continue;
1238                 }
1239                 KKASSERT((m->flags & PG_MAPPED) == 0);
1240                 KKASSERT(m->dirty == 0);
1241                 cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1242                 vm_pageout_page_free(m);
1243                 mycpu->gd_cnt.v_dfree++;
1244         }
1245
1246         crit_exit();
1247
1248 #if !defined(NO_SWAPPING)
1249         /*
1250          * Idle process swapout -- run once per second.
1251          */
1252         if (vm_swap_idle_enabled) {
1253                 static long lsec;
1254                 if (time_second != lsec) {
1255                         vm_pageout_req_swapout |= VM_SWAP_IDLE;
1256                         vm_req_vmdaemon();
1257                         lsec = time_second;
1258                 }
1259         }
1260 #endif
1261                 
1262         /*
1263          * If we didn't get enough free pages, and we have skipped a vnode
1264          * in a writeable object, wakeup the sync daemon.  And kick swapout
1265          * if we did not get enough free pages.
1266          */
1267         if (vm_paging_target() > 0) {
1268                 if (vnodes_skipped && vm_page_count_min(0))
1269                         speedup_syncer();
1270 #if !defined(NO_SWAPPING)
1271                 if (vm_swap_enabled && vm_page_count_target()) {
1272                         vm_req_vmdaemon();
1273                         vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1274                 }
1275 #endif
1276         }
1277
1278         /*
1279          * Handle catastrophic conditions.  Under good conditions we should
1280          * be at the target, well beyond our minimum.  If we could not even
1281          * reach our minimum the system is under heavy stress.
1282          *
1283          * Determine whether we have run out of memory.  This occurs when
1284          * swap_pager_full is TRUE and the only pages left in the page
1285          * queues are dirty.  We will still likely have page shortages.
1286          *
1287          * - swap_pager_full is set if insufficient swap was
1288          *   available to satisfy a requested pageout.
1289          *
1290          * - the inactive queue is bloated (4 x size of active queue),
1291          *   meaning it is unable to get rid of dirty pages and.
1292          *
1293          * - vm_page_count_min() without counting pages recycled from the
1294          *   active queue (recycle_count) means we could not recover
1295          *   enough pages to meet bare minimum needs.  This test only
1296          *   works if the inactive queue is bloated.
1297          *
1298          * - due to a positive inactive_shortage we shifted the remaining
1299          *   dirty pages from the active queue to the inactive queue
1300          *   trying to find clean ones to free.
1301          */
1302         if (swap_pager_full && vm_page_count_min(recycle_count))
1303                 kprintf("Warning: system low on memory+swap!\n");
1304         if (swap_pager_full && vm_page_count_min(recycle_count) &&
1305             vmstats.v_inactive_count > vmstats.v_active_count * 4 &&
1306             inactive_shortage > 0) {
1307                 /*
1308                  * Kill something.
1309                  */
1310                 info.bigproc = NULL;
1311                 info.bigsize = 0;
1312                 allproc_scan(vm_pageout_scan_callback, &info);
1313                 if (info.bigproc != NULL) {
1314                         killproc(info.bigproc, "out of swap space");
1315                         info.bigproc->p_nice = PRIO_MIN;
1316                         info.bigproc->p_usched->resetpriority(
1317                                 FIRST_LWP_IN_PROC(info.bigproc));
1318                         wakeup(&vmstats.v_free_count);
1319                         PRELE(info.bigproc);
1320                 }
1321         }
1322         return(inactive_shortage);
1323 }
1324
1325 /*
1326  * The caller must hold vm_token and proc_token.
1327  */
1328 static int
1329 vm_pageout_scan_callback(struct proc *p, void *data)
1330 {
1331         struct vm_pageout_scan_info *info = data;
1332         vm_offset_t size;
1333
1334         /*
1335          * Never kill system processes or init.  If we have configured swap
1336          * then try to avoid killing low-numbered pids.
1337          */
1338         if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1339             ((p->p_pid < 48) && (vm_swap_size != 0))) {
1340                 return (0);
1341         }
1342
1343         /*
1344          * if the process is in a non-running type state,
1345          * don't touch it.
1346          */
1347         if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1348                 return (0);
1349
1350         /*
1351          * Get the approximate process size.  Note that anonymous pages
1352          * with backing swap will be counted twice, but there should not
1353          * be too many such pages due to the stress the VM system is
1354          * under at this point.
1355          */
1356         size = vmspace_anonymous_count(p->p_vmspace) +
1357                 vmspace_swap_count(p->p_vmspace);
1358
1359         /*
1360          * If the this process is bigger than the biggest one
1361          * remember it.
1362          */
1363         if (info->bigsize < size) {
1364                 if (info->bigproc)
1365                         PRELE(info->bigproc);
1366                 PHOLD(p);
1367                 info->bigproc = p;
1368                 info->bigsize = size;
1369         }
1370         return(0);
1371 }
1372
1373 /*
1374  * This routine tries to maintain the pseudo LRU active queue,
1375  * so that during long periods of time where there is no paging,
1376  * that some statistic accumulation still occurs.  This code
1377  * helps the situation where paging just starts to occur.
1378  *
1379  * The caller must hold vm_token.
1380  */
1381 static void
1382 vm_pageout_page_stats(void)
1383 {
1384         vm_page_t m,next;
1385         int pcount,tpcount;             /* Number of pages to check */
1386         static int fullintervalcount = 0;
1387         int page_shortage;
1388
1389         page_shortage = 
1390             (vmstats.v_inactive_target + vmstats.v_cache_max + vmstats.v_free_min) -
1391             (vmstats.v_free_count + vmstats.v_inactive_count + vmstats.v_cache_count);
1392
1393         if (page_shortage <= 0)
1394                 return;
1395
1396         crit_enter();
1397
1398         pcount = vmstats.v_active_count;
1399         fullintervalcount += vm_pageout_stats_interval;
1400         if (fullintervalcount < vm_pageout_full_stats_interval) {
1401                 tpcount = (vm_pageout_stats_max * vmstats.v_active_count) / vmstats.v_page_count;
1402                 if (pcount > tpcount)
1403                         pcount = tpcount;
1404         } else {
1405                 fullintervalcount = 0;
1406         }
1407
1408         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1409         while ((m != NULL) && (pcount-- > 0)) {
1410                 int actcount;
1411
1412                 if (m->queue != PQ_ACTIVE) {
1413                         break;
1414                 }
1415
1416                 next = TAILQ_NEXT(m, pageq);
1417                 /*
1418                  * Don't deactivate pages that are busy.
1419                  */
1420                 if ((m->busy != 0) ||
1421                     (m->flags & PG_BUSY) ||
1422                     (m->hold_count != 0)) {
1423                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1424                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1425                         m = next;
1426                         continue;
1427                 }
1428
1429                 actcount = 0;
1430                 if (m->flags & PG_REFERENCED) {
1431                         vm_page_flag_clear(m, PG_REFERENCED);
1432                         actcount += 1;
1433                 }
1434
1435                 actcount += pmap_ts_referenced(m);
1436                 if (actcount) {
1437                         m->act_count += ACT_ADVANCE + actcount;
1438                         if (m->act_count > ACT_MAX)
1439                                 m->act_count = ACT_MAX;
1440                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1441                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1442                 } else {
1443                         if (m->act_count == 0) {
1444                                 /*
1445                                  * We turn off page access, so that we have
1446                                  * more accurate RSS stats.  We don't do this
1447                                  * in the normal page deactivation when the
1448                                  * system is loaded VM wise, because the
1449                                  * cost of the large number of page protect
1450                                  * operations would be higher than the value
1451                                  * of doing the operation.
1452                                  */
1453                                 vm_page_busy(m);
1454                                 vm_page_protect(m, VM_PROT_NONE);
1455                                 vm_page_deactivate(m);
1456                                 vm_page_wakeup(m);
1457                         } else {
1458                                 m->act_count -= min(m->act_count, ACT_DECLINE);
1459                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1460                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1461                         }
1462                 }
1463
1464                 m = next;
1465         }
1466         crit_exit();
1467 }
1468
1469 /*
1470  * The caller must hold vm_token.
1471  */
1472 static int
1473 vm_pageout_free_page_calc(vm_size_t count)
1474 {
1475         if (count < vmstats.v_page_count)
1476                  return 0;
1477         /*
1478          * free_reserved needs to include enough for the largest swap pager
1479          * structures plus enough for any pv_entry structs when paging.
1480          */
1481         if (vmstats.v_page_count > 1024)
1482                 vmstats.v_free_min = 4 + (vmstats.v_page_count - 1024) / 200;
1483         else
1484                 vmstats.v_free_min = 4;
1485         vmstats.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1486                 vmstats.v_interrupt_free_min;
1487         vmstats.v_free_reserved = vm_pageout_page_count +
1488                 vmstats.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1489         vmstats.v_free_severe = vmstats.v_free_min / 2;
1490         vmstats.v_free_min += vmstats.v_free_reserved;
1491         vmstats.v_free_severe += vmstats.v_free_reserved;
1492         return 1;
1493 }
1494
1495
1496 /*
1497  * vm_pageout is the high level pageout daemon.
1498  *
1499  * No requirements.
1500  */
1501 static void
1502 vm_pageout_thread(void)
1503 {
1504         int pass;
1505         int inactive_shortage;
1506
1507         /*
1508          * Permanently hold vm_token.
1509          */
1510         lwkt_gettoken(&vm_token);
1511
1512         /*
1513          * Initialize some paging parameters.
1514          */
1515         curthread->td_flags |= TDF_SYSTHREAD;
1516
1517         vmstats.v_interrupt_free_min = 2;
1518         if (vmstats.v_page_count < 2000)
1519                 vm_pageout_page_count = 8;
1520
1521         vm_pageout_free_page_calc(vmstats.v_page_count);
1522
1523         /*
1524          * v_free_target and v_cache_min control pageout hysteresis.  Note
1525          * that these are more a measure of the VM cache queue hysteresis
1526          * then the VM free queue.  Specifically, v_free_target is the
1527          * high water mark (free+cache pages).
1528          *
1529          * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1530          * low water mark, while v_free_min is the stop.  v_cache_min must
1531          * be big enough to handle memory needs while the pageout daemon
1532          * is signalled and run to free more pages.
1533          */
1534         if (vmstats.v_free_count > 6144)
1535                 vmstats.v_free_target = 4 * vmstats.v_free_min + vmstats.v_free_reserved;
1536         else
1537                 vmstats.v_free_target = 2 * vmstats.v_free_min + vmstats.v_free_reserved;
1538
1539         /*
1540          * NOTE: With the new buffer cache b_act_count we want the default
1541          *       inactive target to be a percentage of available memory.
1542          *
1543          *       The inactive target essentially determines the minimum
1544          *       number of 'temporary' pages capable of caching one-time-use
1545          *       files when the VM system is otherwise full of pages
1546          *       belonging to multi-time-use files or active program data.
1547          *
1548          * NOTE: The inactive target is aggressively persued only if the
1549          *       inactive queue becomes too small.  If the inactive queue
1550          *       is large enough to satisfy page movement to free+cache
1551          *       then it is repopulated more slowly from the active queue.
1552          *       This allows a general inactive_target default to be set.
1553          *
1554          *       There is an issue here for processes which sit mostly idle
1555          *       'overnight', such as sshd, tcsh, and X.  Any movement from
1556          *       the active queue will eventually cause such pages to
1557          *       recycle eventually causing a lot of paging in the morning.
1558          *       To reduce the incidence of this pages cycled out of the
1559          *       buffer cache are moved directly to the inactive queue if
1560          *       they were only used once or twice.
1561          *
1562          *       The vfs.vm_cycle_point sysctl can be used to adjust this.
1563          *       Increasing the value (up to 64) increases the number of
1564          *       buffer recyclements which go directly to the inactive queue.
1565          */
1566         if (vmstats.v_free_count > 2048) {
1567                 vmstats.v_cache_min = vmstats.v_free_target;
1568                 vmstats.v_cache_max = 2 * vmstats.v_cache_min;
1569         } else {
1570                 vmstats.v_cache_min = 0;
1571                 vmstats.v_cache_max = 0;
1572         }
1573         vmstats.v_inactive_target = vmstats.v_free_count / 4;
1574
1575         /* XXX does not really belong here */
1576         if (vm_page_max_wired == 0)
1577                 vm_page_max_wired = vmstats.v_free_count / 3;
1578
1579         if (vm_pageout_stats_max == 0)
1580                 vm_pageout_stats_max = vmstats.v_free_target;
1581
1582         /*
1583          * Set interval in seconds for stats scan.
1584          */
1585         if (vm_pageout_stats_interval == 0)
1586                 vm_pageout_stats_interval = 5;
1587         if (vm_pageout_full_stats_interval == 0)
1588                 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1589         
1590
1591         /*
1592          * Set maximum free per pass
1593          */
1594         if (vm_pageout_stats_free_max == 0)
1595                 vm_pageout_stats_free_max = 5;
1596
1597         swap_pager_swap_init();
1598         pass = 0;
1599
1600         /*
1601          * The pageout daemon is never done, so loop forever.
1602          */
1603         while (TRUE) {
1604                 int error;
1605
1606                 /*
1607                  * Wait for an action request.  If we timeout check to
1608                  * see if paging is needed (in case the normal wakeup
1609                  * code raced us).
1610                  */
1611                 if (vm_pages_needed == 0) {
1612                         error = tsleep(&vm_pages_needed,
1613                                        0, "psleep",
1614                                        vm_pageout_stats_interval * hz);
1615                         if (error &&
1616                             vm_paging_needed() == 0 &&
1617                             vm_pages_needed == 0) {
1618                                 vm_pageout_page_stats();
1619                                 continue;
1620                         }
1621                         vm_pages_needed = 1;
1622                 }
1623
1624                 mycpu->gd_cnt.v_pdwakeups++;
1625
1626                 /*
1627                  * Scan for pageout.  Try to avoid thrashing the system
1628                  * with activity.
1629                  */
1630                 inactive_shortage = vm_pageout_scan(pass);
1631                 if (inactive_shortage > 0) {
1632                         ++pass;
1633                         if (swap_pager_full) {
1634                                 /*
1635                                  * Running out of memory, catastrophic back-off
1636                                  * to one-second intervals.
1637                                  */
1638                                 tsleep(&vm_pages_needed, 0, "pdelay", hz);
1639                         } else if (pass < 10 && vm_pages_needed > 1) {
1640                                 /*
1641                                  * Normal operation, additional processes
1642                                  * have already kicked us.  Retry immediately.
1643                                  */
1644                         } else if (pass < 10) {
1645                                 /*
1646                                  * Normal operation, fewer processes.  Delay
1647                                  * a bit but allow wakeups.
1648                                  */
1649                                 vm_pages_needed = 0;
1650                                 tsleep(&vm_pages_needed, 0, "pdelay", hz / 10);
1651                                 vm_pages_needed = 1;
1652                         } else {
1653                                 /*
1654                                  * We've taken too many passes, forced delay.
1655                                  */
1656                                 tsleep(&vm_pages_needed, 0, "pdelay", hz / 10);
1657                         }
1658                 } else {
1659                         /*
1660                          * Interlocked wakeup of waiters (non-optional)
1661                          */
1662                         pass = 0;
1663                         if (vm_pages_needed && !vm_page_count_min(0)) {
1664                                 wakeup(&vmstats.v_free_count);
1665                                 vm_pages_needed = 0;
1666                         }
1667                 }
1668         }
1669 }
1670
1671 static struct kproc_desc page_kp = {
1672         "pagedaemon",
1673         vm_pageout_thread,
1674         &pagethread
1675 };
1676 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
1677
1678
1679 /*
1680  * Called after allocating a page out of the cache or free queue
1681  * to possibly wake the pagedaemon up to replentish our supply.
1682  *
1683  * We try to generate some hysteresis by waking the pagedaemon up
1684  * when our free+cache pages go below the free_min+cache_min level.
1685  * The pagedaemon tries to get the count back up to at least the
1686  * minimum, and through to the target level if possible.
1687  *
1688  * If the pagedaemon is already active bump vm_pages_needed as a hint
1689  * that there are even more requests pending.
1690  *
1691  * SMP races ok?
1692  * No requirements.
1693  */
1694 void
1695 pagedaemon_wakeup(void)
1696 {
1697         if (vm_paging_needed() && curthread != pagethread) {
1698                 if (vm_pages_needed == 0) {
1699                         vm_pages_needed = 1;    /* SMP race ok */
1700                         wakeup(&vm_pages_needed);
1701                 } else if (vm_page_count_min(0)) {
1702                         ++vm_pages_needed;      /* SMP race ok */
1703                 }
1704         }
1705 }
1706
1707 #if !defined(NO_SWAPPING)
1708
1709 /*
1710  * SMP races ok?
1711  * No requirements.
1712  */
1713 static void
1714 vm_req_vmdaemon(void)
1715 {
1716         static int lastrun = 0;
1717
1718         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1719                 wakeup(&vm_daemon_needed);
1720                 lastrun = ticks;
1721         }
1722 }
1723
1724 static int vm_daemon_callback(struct proc *p, void *data __unused);
1725
1726 /*
1727  * No requirements.
1728  */
1729 static void
1730 vm_daemon(void)
1731 {
1732         /*
1733          * Permanently hold vm_token.
1734          */
1735         lwkt_gettoken(&vm_token);
1736
1737         while (TRUE) {
1738                 tsleep(&vm_daemon_needed, 0, "psleep", 0);
1739                 if (vm_pageout_req_swapout) {
1740                         swapout_procs(vm_pageout_req_swapout);
1741                         vm_pageout_req_swapout = 0;
1742                 }
1743                 /*
1744                  * scan the processes for exceeding their rlimits or if
1745                  * process is swapped out -- deactivate pages
1746                  */
1747                 allproc_scan(vm_daemon_callback, NULL);
1748         }
1749 }
1750
1751 /*
1752  * Caller must hold vm_token and proc_token.
1753  */
1754 static int
1755 vm_daemon_callback(struct proc *p, void *data __unused)
1756 {
1757         vm_pindex_t limit, size;
1758
1759         /*
1760          * if this is a system process or if we have already
1761          * looked at this process, skip it.
1762          */
1763         if (p->p_flag & (P_SYSTEM | P_WEXIT))
1764                 return (0);
1765
1766         /*
1767          * if the process is in a non-running type state,
1768          * don't touch it.
1769          */
1770         if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1771                 return (0);
1772
1773         /*
1774          * get a limit
1775          */
1776         limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1777                                 p->p_rlimit[RLIMIT_RSS].rlim_max));
1778
1779         /*
1780          * let processes that are swapped out really be
1781          * swapped out.  Set the limit to nothing to get as
1782          * many pages out to swap as possible.
1783          */
1784         if (p->p_flag & P_SWAPPEDOUT)
1785                 limit = 0;
1786
1787         size = vmspace_resident_count(p->p_vmspace);
1788         if (limit >= 0 && size >= limit) {
1789                 vm_pageout_map_deactivate_pages(
1790                     &p->p_vmspace->vm_map, limit);
1791         }
1792         return (0);
1793 }
1794
1795 #endif