Import xz-5.0.3.
[dragonfly.git] / contrib / xz / src / liblzma / lzma / lzma2_encoder.c
1 ///////////////////////////////////////////////////////////////////////////////
2 //
3 /// \file       lzma2_encoder.c
4 /// \brief      LZMA2 encoder
5 ///
6 //  Authors:    Igor Pavlov
7 //              Lasse Collin
8 //
9 //  This file has been put into the public domain.
10 //  You can do whatever you want with this file.
11 //
12 ///////////////////////////////////////////////////////////////////////////////
13
14 #include "lz_encoder.h"
15 #include "lzma_encoder.h"
16 #include "fastpos.h"
17 #include "lzma2_encoder.h"
18
19
20 struct lzma_coder_s {
21         enum {
22                 SEQ_INIT,
23                 SEQ_LZMA_ENCODE,
24                 SEQ_LZMA_COPY,
25                 SEQ_UNCOMPRESSED_HEADER,
26                 SEQ_UNCOMPRESSED_COPY,
27         } sequence;
28
29         /// LZMA encoder
30         lzma_coder *lzma;
31
32         /// LZMA options currently in use.
33         lzma_options_lzma opt_cur;
34
35         bool need_properties;
36         bool need_state_reset;
37         bool need_dictionary_reset;
38
39         /// Uncompressed size of a chunk
40         size_t uncompressed_size;
41
42         /// Compressed size of a chunk (excluding headers); this is also used
43         /// to indicate the end of buf[] in SEQ_LZMA_COPY.
44         size_t compressed_size;
45
46         /// Read position in buf[]
47         size_t buf_pos;
48
49         /// Buffer to hold the chunk header and LZMA compressed data
50         uint8_t buf[LZMA2_HEADER_MAX + LZMA2_CHUNK_MAX];
51 };
52
53
54 static void
55 lzma2_header_lzma(lzma_coder *coder)
56 {
57         assert(coder->uncompressed_size > 0);
58         assert(coder->uncompressed_size <= LZMA2_UNCOMPRESSED_MAX);
59         assert(coder->compressed_size > 0);
60         assert(coder->compressed_size <= LZMA2_CHUNK_MAX);
61
62         size_t pos;
63
64         if (coder->need_properties) {
65                 pos = 0;
66
67                 if (coder->need_dictionary_reset)
68                         coder->buf[pos] = 0x80 + (3 << 5);
69                 else
70                         coder->buf[pos] = 0x80 + (2 << 5);
71         } else {
72                 pos = 1;
73
74                 if (coder->need_state_reset)
75                         coder->buf[pos] = 0x80 + (1 << 5);
76                 else
77                         coder->buf[pos] = 0x80;
78         }
79
80         // Set the start position for copying.
81         coder->buf_pos = pos;
82
83         // Uncompressed size
84         size_t size = coder->uncompressed_size - 1;
85         coder->buf[pos++] += size >> 16;
86         coder->buf[pos++] = (size >> 8) & 0xFF;
87         coder->buf[pos++] = size & 0xFF;
88
89         // Compressed size
90         size = coder->compressed_size - 1;
91         coder->buf[pos++] = size >> 8;
92         coder->buf[pos++] = size & 0xFF;
93
94         // Properties, if needed
95         if (coder->need_properties)
96                 lzma_lzma_lclppb_encode(&coder->opt_cur, coder->buf + pos);
97
98         coder->need_properties = false;
99         coder->need_state_reset = false;
100         coder->need_dictionary_reset = false;
101
102         // The copying code uses coder->compressed_size to indicate the end
103         // of coder->buf[], so we need add the maximum size of the header here.
104         coder->compressed_size += LZMA2_HEADER_MAX;
105
106         return;
107 }
108
109
110 static void
111 lzma2_header_uncompressed(lzma_coder *coder)
112 {
113         assert(coder->uncompressed_size > 0);
114         assert(coder->uncompressed_size <= LZMA2_CHUNK_MAX);
115
116         // If this is the first chunk, we need to include dictionary
117         // reset indicator.
118         if (coder->need_dictionary_reset)
119                 coder->buf[0] = 1;
120         else
121                 coder->buf[0] = 2;
122
123         coder->need_dictionary_reset = false;
124
125         // "Compressed" size
126         coder->buf[1] = (coder->uncompressed_size - 1) >> 8;
127         coder->buf[2] = (coder->uncompressed_size - 1) & 0xFF;
128
129         // Set the start position for copying.
130         coder->buf_pos = 0;
131         return;
132 }
133
134
135 static lzma_ret
136 lzma2_encode(lzma_coder *restrict coder, lzma_mf *restrict mf,
137                 uint8_t *restrict out, size_t *restrict out_pos,
138                 size_t out_size)
139 {
140         while (*out_pos < out_size)
141         switch (coder->sequence) {
142         case SEQ_INIT:
143                 // If there's no input left and we are flushing or finishing,
144                 // don't start a new chunk.
145                 if (mf_unencoded(mf) == 0) {
146                         // Write end of payload marker if finishing.
147                         if (mf->action == LZMA_FINISH)
148                                 out[(*out_pos)++] = 0;
149
150                         return mf->action == LZMA_RUN
151                                         ? LZMA_OK : LZMA_STREAM_END;
152                 }
153
154                 if (coder->need_state_reset)
155                         return_if_error(lzma_lzma_encoder_reset(
156                                         coder->lzma, &coder->opt_cur));
157
158                 coder->uncompressed_size = 0;
159                 coder->compressed_size = 0;
160                 coder->sequence = SEQ_LZMA_ENCODE;
161
162         // Fall through
163
164         case SEQ_LZMA_ENCODE: {
165                 // Calculate how much more uncompressed data this chunk
166                 // could accept.
167                 const uint32_t left = LZMA2_UNCOMPRESSED_MAX
168                                 - coder->uncompressed_size;
169                 uint32_t limit;
170
171                 if (left < mf->match_len_max) {
172                         // Must flush immediately since the next LZMA symbol
173                         // could make the uncompressed size of the chunk too
174                         // big.
175                         limit = 0;
176                 } else {
177                         // Calculate maximum read_limit that is OK from point
178                         // of view of LZMA2 chunk size.
179                         limit = mf->read_pos - mf->read_ahead
180                                         + left - mf->match_len_max;
181                 }
182
183                 // Save the start position so that we can update
184                 // coder->uncompressed_size.
185                 const uint32_t read_start = mf->read_pos - mf->read_ahead;
186
187                 // Call the LZMA encoder until the chunk is finished.
188                 const lzma_ret ret = lzma_lzma_encode(coder->lzma, mf,
189                                 coder->buf + LZMA2_HEADER_MAX,
190                                 &coder->compressed_size,
191                                 LZMA2_CHUNK_MAX, limit);
192
193                 coder->uncompressed_size += mf->read_pos - mf->read_ahead
194                                 - read_start;
195
196                 assert(coder->compressed_size <= LZMA2_CHUNK_MAX);
197                 assert(coder->uncompressed_size <= LZMA2_UNCOMPRESSED_MAX);
198
199                 if (ret != LZMA_STREAM_END)
200                         return LZMA_OK;
201
202                 // See if the chunk compressed. If it didn't, we encode it
203                 // as uncompressed chunk. This saves a few bytes of space
204                 // and makes decoding faster.
205                 if (coder->compressed_size >= coder->uncompressed_size) {
206                         coder->uncompressed_size += mf->read_ahead;
207                         assert(coder->uncompressed_size
208                                         <= LZMA2_UNCOMPRESSED_MAX);
209                         mf->read_ahead = 0;
210                         lzma2_header_uncompressed(coder);
211                         coder->need_state_reset = true;
212                         coder->sequence = SEQ_UNCOMPRESSED_HEADER;
213                         break;
214                 }
215
216                 // The chunk did compress at least by one byte, so we store
217                 // the chunk as LZMA.
218                 lzma2_header_lzma(coder);
219
220                 coder->sequence = SEQ_LZMA_COPY;
221         }
222
223         // Fall through
224
225         case SEQ_LZMA_COPY:
226                 // Copy the compressed chunk along its headers to the
227                 // output buffer.
228                 lzma_bufcpy(coder->buf, &coder->buf_pos,
229                                 coder->compressed_size,
230                                 out, out_pos, out_size);
231                 if (coder->buf_pos != coder->compressed_size)
232                         return LZMA_OK;
233
234                 coder->sequence = SEQ_INIT;
235                 break;
236
237         case SEQ_UNCOMPRESSED_HEADER:
238                 // Copy the three-byte header to indicate uncompressed chunk.
239                 lzma_bufcpy(coder->buf, &coder->buf_pos,
240                                 LZMA2_HEADER_UNCOMPRESSED,
241                                 out, out_pos, out_size);
242                 if (coder->buf_pos != LZMA2_HEADER_UNCOMPRESSED)
243                         return LZMA_OK;
244
245                 coder->sequence = SEQ_UNCOMPRESSED_COPY;
246
247         // Fall through
248
249         case SEQ_UNCOMPRESSED_COPY:
250                 // Copy the uncompressed data as is from the dictionary
251                 // to the output buffer.
252                 mf_read(mf, out, out_pos, out_size, &coder->uncompressed_size);
253                 if (coder->uncompressed_size != 0)
254                         return LZMA_OK;
255
256                 coder->sequence = SEQ_INIT;
257                 break;
258         }
259
260         return LZMA_OK;
261 }
262
263
264 static void
265 lzma2_encoder_end(lzma_coder *coder, lzma_allocator *allocator)
266 {
267         lzma_free(coder->lzma, allocator);
268         lzma_free(coder, allocator);
269         return;
270 }
271
272
273 static lzma_ret
274 lzma2_encoder_options_update(lzma_coder *coder, const lzma_filter *filter)
275 {
276         // New options can be set only when there is no incomplete chunk.
277         // This is the case at the beginning of the raw stream and right
278         // after LZMA_SYNC_FLUSH.
279         if (filter->options == NULL || coder->sequence != SEQ_INIT)
280                 return LZMA_PROG_ERROR;
281
282         // Look if there are new options. At least for now,
283         // only lc/lp/pb can be changed.
284         const lzma_options_lzma *opt = filter->options;
285         if (coder->opt_cur.lc != opt->lc || coder->opt_cur.lp != opt->lp
286                         || coder->opt_cur.pb != opt->pb) {
287                 // Validate the options.
288                 if (opt->lc > LZMA_LCLP_MAX || opt->lp > LZMA_LCLP_MAX
289                                 || opt->lc + opt->lp > LZMA_LCLP_MAX
290                                 || opt->pb > LZMA_PB_MAX)
291                         return LZMA_OPTIONS_ERROR;
292
293                 // The new options will be used when the encoder starts
294                 // a new LZMA2 chunk.
295                 coder->opt_cur.lc = opt->lc;
296                 coder->opt_cur.lp = opt->lp;
297                 coder->opt_cur.pb = opt->pb;
298                 coder->need_properties = true;
299                 coder->need_state_reset = true;
300         }
301
302         return LZMA_OK;
303 }
304
305
306 static lzma_ret
307 lzma2_encoder_init(lzma_lz_encoder *lz, lzma_allocator *allocator,
308                 const void *options, lzma_lz_options *lz_options)
309 {
310         if (options == NULL)
311                 return LZMA_PROG_ERROR;
312
313         if (lz->coder == NULL) {
314                 lz->coder = lzma_alloc(sizeof(lzma_coder), allocator);
315                 if (lz->coder == NULL)
316                         return LZMA_MEM_ERROR;
317
318                 lz->code = &lzma2_encode;
319                 lz->end = &lzma2_encoder_end;
320                 lz->options_update = &lzma2_encoder_options_update;
321
322                 lz->coder->lzma = NULL;
323         }
324
325         lz->coder->opt_cur = *(const lzma_options_lzma *)(options);
326
327         lz->coder->sequence = SEQ_INIT;
328         lz->coder->need_properties = true;
329         lz->coder->need_state_reset = false;
330         lz->coder->need_dictionary_reset
331                         = lz->coder->opt_cur.preset_dict == NULL
332                         || lz->coder->opt_cur.preset_dict_size == 0;
333
334         // Initialize LZMA encoder
335         return_if_error(lzma_lzma_encoder_create(&lz->coder->lzma, allocator,
336                         &lz->coder->opt_cur, lz_options));
337
338         // Make sure that we will always have enough history available in
339         // case we need to use uncompressed chunks. They are used when the
340         // compressed size of a chunk is not smaller than the uncompressed
341         // size, so we need to have at least LZMA2_COMPRESSED_MAX bytes
342         // history available.
343         if (lz_options->before_size + lz_options->dict_size < LZMA2_CHUNK_MAX)
344                 lz_options->before_size
345                                 = LZMA2_CHUNK_MAX - lz_options->dict_size;
346
347         return LZMA_OK;
348 }
349
350
351 extern lzma_ret
352 lzma_lzma2_encoder_init(lzma_next_coder *next, lzma_allocator *allocator,
353                 const lzma_filter_info *filters)
354 {
355         return lzma_lz_encoder_init(
356                         next, allocator, filters, &lzma2_encoder_init);
357 }
358
359
360 extern uint64_t
361 lzma_lzma2_encoder_memusage(const void *options)
362 {
363         const uint64_t lzma_mem = lzma_lzma_encoder_memusage(options);
364         if (lzma_mem == UINT64_MAX)
365                 return UINT64_MAX;
366
367         return sizeof(lzma_coder) + lzma_mem;
368 }
369
370
371 extern lzma_ret
372 lzma_lzma2_props_encode(const void *options, uint8_t *out)
373 {
374         const lzma_options_lzma *const opt = options;
375         uint32_t d = my_max(opt->dict_size, LZMA_DICT_SIZE_MIN);
376
377         // Round up to the next 2^n - 1 or 2^n + 2^(n - 1) - 1 depending
378         // on which one is the next:
379         --d;
380         d |= d >> 2;
381         d |= d >> 3;
382         d |= d >> 4;
383         d |= d >> 8;
384         d |= d >> 16;
385
386         // Get the highest two bits using the proper encoding:
387         if (d == UINT32_MAX)
388                 out[0] = 40;
389         else
390                 out[0] = get_pos_slot(d + 1) - 24;
391
392         return LZMA_OK;
393 }