binutils220: Update vendor branch to version 2.20.1
[dragonfly.git] / contrib / binutils-2.20 / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <utility>
30 #include <fcntl.h>
31 #include <unistd.h>
32 #include "libiberty.h"
33 #include "md5.h"
34 #include "sha1.h"
35
36 #include "parameters.h"
37 #include "options.h"
38 #include "mapfile.h"
39 #include "script.h"
40 #include "script-sections.h"
41 #include "output.h"
42 #include "symtab.h"
43 #include "dynobj.h"
44 #include "ehframe.h"
45 #include "compressed_output.h"
46 #include "reduced_debug_output.h"
47 #include "reloc.h"
48 #include "descriptors.h"
49 #include "plugin.h"
50 #include "incremental.h"
51 #include "layout.h"
52
53 namespace gold
54 {
55
56 // Layout::Relaxation_debug_check methods.
57
58 // Check that sections and special data are in reset states.
59 // We do not save states for Output_sections and special Output_data.
60 // So we check that they have not assigned any addresses or offsets.
61 // clean_up_after_relaxation simply resets their addresses and offsets.
62 void
63 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
64     const Layout::Section_list& sections,
65     const Layout::Data_list& special_outputs)
66 {
67   for(Layout::Section_list::const_iterator p = sections.begin();
68       p != sections.end();
69       ++p)
70     gold_assert((*p)->address_and_file_offset_have_reset_values());
71
72   for(Layout::Data_list::const_iterator p = special_outputs.begin();
73       p != special_outputs.end();
74       ++p)
75     gold_assert((*p)->address_and_file_offset_have_reset_values());
76 }
77   
78 // Save information of SECTIONS for checking later.
79
80 void
81 Layout::Relaxation_debug_check::read_sections(
82     const Layout::Section_list& sections)
83 {
84   for(Layout::Section_list::const_iterator p = sections.begin();
85       p != sections.end();
86       ++p)
87     {
88       Output_section* os = *p;
89       Section_info info;
90       info.output_section = os;
91       info.address = os->is_address_valid() ? os->address() : 0;
92       info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
93       info.offset = os->is_offset_valid()? os->offset() : -1 ;
94       this->section_infos_.push_back(info);
95     }
96 }
97
98 // Verify SECTIONS using previously recorded information.
99
100 void
101 Layout::Relaxation_debug_check::verify_sections(
102     const Layout::Section_list& sections)
103 {
104   size_t i = 0;
105   for(Layout::Section_list::const_iterator p = sections.begin();
106       p != sections.end();
107       ++p, ++i)
108     {
109       Output_section* os = *p;
110       uint64_t address = os->is_address_valid() ? os->address() : 0;
111       off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
112       off_t offset = os->is_offset_valid()? os->offset() : -1 ;
113
114       if (i >= this->section_infos_.size())
115         {
116           gold_fatal("Section_info of %s missing.\n", os->name());
117         }
118       const Section_info& info = this->section_infos_[i];
119       if (os != info.output_section)
120         gold_fatal("Section order changed.  Expecting %s but see %s\n",
121                    info.output_section->name(), os->name());
122       if (address != info.address
123           || data_size != info.data_size
124           || offset != info.offset)
125         gold_fatal("Section %s changed.\n", os->name());
126     }
127 }
128
129 // Layout_task_runner methods.
130
131 // Lay out the sections.  This is called after all the input objects
132 // have been read.
133
134 void
135 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
136 {
137   off_t file_size = this->layout_->finalize(this->input_objects_,
138                                             this->symtab_,
139                                             this->target_,
140                                             task);
141
142   // Now we know the final size of the output file and we know where
143   // each piece of information goes.
144
145   if (this->mapfile_ != NULL)
146     {
147       this->mapfile_->print_discarded_sections(this->input_objects_);
148       this->layout_->print_to_mapfile(this->mapfile_);
149     }
150
151   Output_file* of = new Output_file(parameters->options().output_file_name());
152   if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
153     of->set_is_temporary();
154   of->open(file_size);
155
156   // Queue up the final set of tasks.
157   gold::queue_final_tasks(this->options_, this->input_objects_,
158                           this->symtab_, this->layout_, workqueue, of);
159 }
160
161 // Layout methods.
162
163 Layout::Layout(int number_of_input_files, Script_options* script_options)
164   : number_of_input_files_(number_of_input_files),
165     script_options_(script_options),
166     namepool_(),
167     sympool_(),
168     dynpool_(),
169     signatures_(),
170     section_name_map_(),
171     segment_list_(),
172     section_list_(),
173     unattached_section_list_(),
174     special_output_list_(),
175     section_headers_(NULL),
176     tls_segment_(NULL),
177     relro_segment_(NULL),
178     symtab_section_(NULL),
179     symtab_xindex_(NULL),
180     dynsym_section_(NULL),
181     dynsym_xindex_(NULL),
182     dynamic_section_(NULL),
183     dynamic_data_(NULL),
184     eh_frame_section_(NULL),
185     eh_frame_data_(NULL),
186     added_eh_frame_data_(false),
187     eh_frame_hdr_section_(NULL),
188     build_id_note_(NULL),
189     debug_abbrev_(NULL),
190     debug_info_(NULL),
191     group_signatures_(),
192     output_file_size_(-1),
193     sections_are_attached_(false),
194     input_requires_executable_stack_(false),
195     input_with_gnu_stack_note_(false),
196     input_without_gnu_stack_note_(false),
197     has_static_tls_(false),
198     any_postprocessing_sections_(false),
199     resized_signatures_(false),
200     have_stabstr_section_(false),
201     incremental_inputs_(NULL),
202     record_output_section_data_from_script_(false),
203     script_output_section_data_list_(),
204     segment_states_(NULL),
205     relaxation_debug_check_(NULL)
206 {
207   // Make space for more than enough segments for a typical file.
208   // This is just for efficiency--it's OK if we wind up needing more.
209   this->segment_list_.reserve(12);
210
211   // We expect two unattached Output_data objects: the file header and
212   // the segment headers.
213   this->special_output_list_.reserve(2);
214
215   // Initialize structure needed for an incremental build.
216   if (parameters->options().incremental())
217     this->incremental_inputs_ = new Incremental_inputs;
218
219   // The section name pool is worth optimizing in all cases, because
220   // it is small, but there are often overlaps due to .rel sections.
221   this->namepool_.set_optimize();
222 }
223
224 // Hash a key we use to look up an output section mapping.
225
226 size_t
227 Layout::Hash_key::operator()(const Layout::Key& k) const
228 {
229  return k.first + k.second.first + k.second.second;
230 }
231
232 // Returns whether the given section is in the list of
233 // debug-sections-used-by-some-version-of-gdb.  Currently,
234 // we've checked versions of gdb up to and including 6.7.1.
235
236 static const char* gdb_sections[] =
237 { ".debug_abbrev",
238   // ".debug_aranges",   // not used by gdb as of 6.7.1
239   ".debug_frame",
240   ".debug_info",
241   ".debug_line",
242   ".debug_loc",
243   ".debug_macinfo",
244   // ".debug_pubnames",  // not used by gdb as of 6.7.1
245   ".debug_ranges",
246   ".debug_str",
247 };
248
249 static const char* lines_only_debug_sections[] =
250 { ".debug_abbrev",
251   // ".debug_aranges",   // not used by gdb as of 6.7.1
252   // ".debug_frame",
253   ".debug_info",
254   ".debug_line",
255   // ".debug_loc",
256   // ".debug_macinfo",
257   // ".debug_pubnames",  // not used by gdb as of 6.7.1
258   // ".debug_ranges",
259   ".debug_str",
260 };
261
262 static inline bool
263 is_gdb_debug_section(const char* str)
264 {
265   // We can do this faster: binary search or a hashtable.  But why bother?
266   for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
267     if (strcmp(str, gdb_sections[i]) == 0)
268       return true;
269   return false;
270 }
271
272 static inline bool
273 is_lines_only_debug_section(const char* str)
274 {
275   // We can do this faster: binary search or a hashtable.  But why bother?
276   for (size_t i = 0;
277        i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
278        ++i)
279     if (strcmp(str, lines_only_debug_sections[i]) == 0)
280       return true;
281   return false;
282 }
283
284 // Whether to include this section in the link.
285
286 template<int size, bool big_endian>
287 bool
288 Layout::include_section(Sized_relobj<size, big_endian>*, const char* name,
289                         const elfcpp::Shdr<size, big_endian>& shdr)
290 {
291   if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
292     return false;
293
294   switch (shdr.get_sh_type())
295     {
296     case elfcpp::SHT_NULL:
297     case elfcpp::SHT_SYMTAB:
298     case elfcpp::SHT_DYNSYM:
299     case elfcpp::SHT_HASH:
300     case elfcpp::SHT_DYNAMIC:
301     case elfcpp::SHT_SYMTAB_SHNDX:
302       return false;
303
304     case elfcpp::SHT_STRTAB:
305       // Discard the sections which have special meanings in the ELF
306       // ABI.  Keep others (e.g., .stabstr).  We could also do this by
307       // checking the sh_link fields of the appropriate sections.
308       return (strcmp(name, ".dynstr") != 0
309               && strcmp(name, ".strtab") != 0
310               && strcmp(name, ".shstrtab") != 0);
311
312     case elfcpp::SHT_RELA:
313     case elfcpp::SHT_REL:
314     case elfcpp::SHT_GROUP:
315       // If we are emitting relocations these should be handled
316       // elsewhere.
317       gold_assert(!parameters->options().relocatable()
318                   && !parameters->options().emit_relocs());
319       return false;
320
321     case elfcpp::SHT_PROGBITS:
322       if (parameters->options().strip_debug()
323           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
324         {
325           if (is_debug_info_section(name))
326             return false;
327         }
328       if (parameters->options().strip_debug_non_line()
329           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
330         {
331           // Debugging sections can only be recognized by name.
332           if (is_prefix_of(".debug", name)
333               && !is_lines_only_debug_section(name))
334             return false;
335         }
336       if (parameters->options().strip_debug_gdb()
337           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
338         {
339           // Debugging sections can only be recognized by name.
340           if (is_prefix_of(".debug", name)
341               && !is_gdb_debug_section(name))
342             return false;
343         }
344       if (parameters->options().strip_lto_sections()
345           && !parameters->options().relocatable()
346           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
347         {
348           // Ignore LTO sections containing intermediate code.
349           if (is_prefix_of(".gnu.lto_", name))
350             return false;
351         }
352       // The GNU linker strips .gnu_debuglink sections, so we do too.
353       // This is a feature used to keep debugging information in
354       // separate files.
355       if (strcmp(name, ".gnu_debuglink") == 0)
356         return false;
357       return true;
358
359     default:
360       return true;
361     }
362 }
363
364 // Return an output section named NAME, or NULL if there is none.
365
366 Output_section*
367 Layout::find_output_section(const char* name) const
368 {
369   for (Section_list::const_iterator p = this->section_list_.begin();
370        p != this->section_list_.end();
371        ++p)
372     if (strcmp((*p)->name(), name) == 0)
373       return *p;
374   return NULL;
375 }
376
377 // Return an output segment of type TYPE, with segment flags SET set
378 // and segment flags CLEAR clear.  Return NULL if there is none.
379
380 Output_segment*
381 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
382                             elfcpp::Elf_Word clear) const
383 {
384   for (Segment_list::const_iterator p = this->segment_list_.begin();
385        p != this->segment_list_.end();
386        ++p)
387     if (static_cast<elfcpp::PT>((*p)->type()) == type
388         && ((*p)->flags() & set) == set
389         && ((*p)->flags() & clear) == 0)
390       return *p;
391   return NULL;
392 }
393
394 // Return the output section to use for section NAME with type TYPE
395 // and section flags FLAGS.  NAME must be canonicalized in the string
396 // pool, and NAME_KEY is the key.  IS_INTERP is true if this is the
397 // .interp section.  IS_DYNAMIC_LINKER_SECTION is true if this section
398 // is used by the dynamic linker.
399
400 Output_section*
401 Layout::get_output_section(const char* name, Stringpool::Key name_key,
402                            elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
403                            bool is_interp, bool is_dynamic_linker_section)
404 {
405   elfcpp::Elf_Xword lookup_flags = flags;
406
407   // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
408   // read-write with read-only sections.  Some other ELF linkers do
409   // not do this.  FIXME: Perhaps there should be an option
410   // controlling this.
411   lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
412
413   const Key key(name_key, std::make_pair(type, lookup_flags));
414   const std::pair<Key, Output_section*> v(key, NULL);
415   std::pair<Section_name_map::iterator, bool> ins(
416     this->section_name_map_.insert(v));
417
418   if (!ins.second)
419     return ins.first->second;
420   else
421     {
422       // This is the first time we've seen this name/type/flags
423       // combination.  For compatibility with the GNU linker, we
424       // combine sections with contents and zero flags with sections
425       // with non-zero flags.  This is a workaround for cases where
426       // assembler code forgets to set section flags.  FIXME: Perhaps
427       // there should be an option to control this.
428       Output_section* os = NULL;
429
430       if (type == elfcpp::SHT_PROGBITS)
431         {
432           if (flags == 0)
433             {
434               Output_section* same_name = this->find_output_section(name);
435               if (same_name != NULL
436                   && same_name->type() == elfcpp::SHT_PROGBITS
437                   && (same_name->flags() & elfcpp::SHF_TLS) == 0)
438                 os = same_name;
439             }
440           else if ((flags & elfcpp::SHF_TLS) == 0)
441             {
442               elfcpp::Elf_Xword zero_flags = 0;
443               const Key zero_key(name_key, std::make_pair(type, zero_flags));
444               Section_name_map::iterator p =
445                   this->section_name_map_.find(zero_key);
446               if (p != this->section_name_map_.end())
447                 os = p->second;
448             }
449         }
450
451       if (os == NULL)
452         os = this->make_output_section(name, type, flags, is_interp,
453                                        is_dynamic_linker_section);
454       ins.first->second = os;
455       return os;
456     }
457 }
458
459 // Pick the output section to use for section NAME, in input file
460 // RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
461 // linker created section.  IS_INPUT_SECTION is true if we are
462 // choosing an output section for an input section found in a input
463 // file.  IS_INTERP is true if this is the .interp section.
464 // IS_DYNAMIC_LINKER_SECTION is true if this section is used by the
465 // dynamic linker.  This will return NULL if the input section should
466 // be discarded.
467
468 Output_section*
469 Layout::choose_output_section(const Relobj* relobj, const char* name,
470                               elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
471                               bool is_input_section, bool is_interp,
472                               bool is_dynamic_linker_section)
473 {
474   // We should not see any input sections after we have attached
475   // sections to segments.
476   gold_assert(!is_input_section || !this->sections_are_attached_);
477
478   // Some flags in the input section should not be automatically
479   // copied to the output section.
480   flags &= ~ (elfcpp::SHF_INFO_LINK
481               | elfcpp::SHF_LINK_ORDER
482               | elfcpp::SHF_GROUP
483               | elfcpp::SHF_MERGE
484               | elfcpp::SHF_STRINGS);
485
486   if (this->script_options_->saw_sections_clause())
487     {
488       // We are using a SECTIONS clause, so the output section is
489       // chosen based only on the name.
490
491       Script_sections* ss = this->script_options_->script_sections();
492       const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
493       Output_section** output_section_slot;
494       name = ss->output_section_name(file_name, name, &output_section_slot);
495       if (name == NULL)
496         {
497           // The SECTIONS clause says to discard this input section.
498           return NULL;
499         }
500
501       // If this is an orphan section--one not mentioned in the linker
502       // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
503       // default processing below.
504
505       if (output_section_slot != NULL)
506         {
507           if (*output_section_slot != NULL)
508             {
509               (*output_section_slot)->update_flags_for_input_section(flags);
510               return *output_section_slot;
511             }
512
513           // We don't put sections found in the linker script into
514           // SECTION_NAME_MAP_.  That keeps us from getting confused
515           // if an orphan section is mapped to a section with the same
516           // name as one in the linker script.
517
518           name = this->namepool_.add(name, false, NULL);
519
520           Output_section* os =
521             this->make_output_section(name, type, flags, is_interp,
522                                       is_dynamic_linker_section);
523           os->set_found_in_sections_clause();
524           *output_section_slot = os;
525           return os;
526         }
527     }
528
529   // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
530
531   // Turn NAME from the name of the input section into the name of the
532   // output section.
533
534   size_t len = strlen(name);
535   if (is_input_section
536       && !this->script_options_->saw_sections_clause()
537       && !parameters->options().relocatable())
538     name = Layout::output_section_name(name, &len);
539
540   Stringpool::Key name_key;
541   name = this->namepool_.add_with_length(name, len, true, &name_key);
542
543   // Find or make the output section.  The output section is selected
544   // based on the section name, type, and flags.
545   return this->get_output_section(name, name_key, type, flags, is_interp,
546                                   is_dynamic_linker_section);
547 }
548
549 // Return the output section to use for input section SHNDX, with name
550 // NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
551 // index of a relocation section which applies to this section, or 0
552 // if none, or -1U if more than one.  RELOC_TYPE is the type of the
553 // relocation section if there is one.  Set *OFF to the offset of this
554 // input section without the output section.  Return NULL if the
555 // section should be discarded.  Set *OFF to -1 if the section
556 // contents should not be written directly to the output file, but
557 // will instead receive special handling.
558
559 template<int size, bool big_endian>
560 Output_section*
561 Layout::layout(Sized_relobj<size, big_endian>* object, unsigned int shndx,
562                const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
563                unsigned int reloc_shndx, unsigned int, off_t* off)
564 {
565   *off = 0;
566
567   if (!this->include_section(object, name, shdr))
568     return NULL;
569
570   Output_section* os;
571
572   // In a relocatable link a grouped section must not be combined with
573   // any other sections.
574   if (parameters->options().relocatable()
575       && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
576     {
577       name = this->namepool_.add(name, true, NULL);
578       os = this->make_output_section(name, shdr.get_sh_type(),
579                                      shdr.get_sh_flags(), false, false);
580     }
581   else
582     {
583       os = this->choose_output_section(object, name, shdr.get_sh_type(),
584                                        shdr.get_sh_flags(), true, false,
585                                        false);
586       if (os == NULL)
587         return NULL;
588     }
589
590   // By default the GNU linker sorts input sections whose names match
591   // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*.  The sections
592   // are sorted by name.  This is used to implement constructor
593   // priority ordering.  We are compatible.
594   if (!this->script_options_->saw_sections_clause()
595       && (is_prefix_of(".ctors.", name)
596           || is_prefix_of(".dtors.", name)
597           || is_prefix_of(".init_array.", name)
598           || is_prefix_of(".fini_array.", name)))
599     os->set_must_sort_attached_input_sections();
600
601   // FIXME: Handle SHF_LINK_ORDER somewhere.
602
603   *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
604                                this->script_options_->saw_sections_clause());
605
606   return os;
607 }
608
609 // Handle a relocation section when doing a relocatable link.
610
611 template<int size, bool big_endian>
612 Output_section*
613 Layout::layout_reloc(Sized_relobj<size, big_endian>* object,
614                      unsigned int,
615                      const elfcpp::Shdr<size, big_endian>& shdr,
616                      Output_section* data_section,
617                      Relocatable_relocs* rr)
618 {
619   gold_assert(parameters->options().relocatable()
620               || parameters->options().emit_relocs());
621
622   int sh_type = shdr.get_sh_type();
623
624   std::string name;
625   if (sh_type == elfcpp::SHT_REL)
626     name = ".rel";
627   else if (sh_type == elfcpp::SHT_RELA)
628     name = ".rela";
629   else
630     gold_unreachable();
631   name += data_section->name();
632
633   Output_section* os = this->choose_output_section(object, name.c_str(),
634                                                    sh_type,
635                                                    shdr.get_sh_flags(),
636                                                    false, false, false);
637
638   os->set_should_link_to_symtab();
639   os->set_info_section(data_section);
640
641   Output_section_data* posd;
642   if (sh_type == elfcpp::SHT_REL)
643     {
644       os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
645       posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
646                                            size,
647                                            big_endian>(rr);
648     }
649   else if (sh_type == elfcpp::SHT_RELA)
650     {
651       os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
652       posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
653                                            size,
654                                            big_endian>(rr);
655     }
656   else
657     gold_unreachable();
658
659   os->add_output_section_data(posd);
660   rr->set_output_data(posd);
661
662   return os;
663 }
664
665 // Handle a group section when doing a relocatable link.
666
667 template<int size, bool big_endian>
668 void
669 Layout::layout_group(Symbol_table* symtab,
670                      Sized_relobj<size, big_endian>* object,
671                      unsigned int,
672                      const char* group_section_name,
673                      const char* signature,
674                      const elfcpp::Shdr<size, big_endian>& shdr,
675                      elfcpp::Elf_Word flags,
676                      std::vector<unsigned int>* shndxes)
677 {
678   gold_assert(parameters->options().relocatable());
679   gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
680   group_section_name = this->namepool_.add(group_section_name, true, NULL);
681   Output_section* os = this->make_output_section(group_section_name,
682                                                  elfcpp::SHT_GROUP,
683                                                  shdr.get_sh_flags(),
684                                                  false, false);
685
686   // We need to find a symbol with the signature in the symbol table.
687   // If we don't find one now, we need to look again later.
688   Symbol* sym = symtab->lookup(signature, NULL);
689   if (sym != NULL)
690     os->set_info_symndx(sym);
691   else
692     {
693       // Reserve some space to minimize reallocations.
694       if (this->group_signatures_.empty())
695         this->group_signatures_.reserve(this->number_of_input_files_ * 16);
696
697       // We will wind up using a symbol whose name is the signature.
698       // So just put the signature in the symbol name pool to save it.
699       signature = symtab->canonicalize_name(signature);
700       this->group_signatures_.push_back(Group_signature(os, signature));
701     }
702
703   os->set_should_link_to_symtab();
704   os->set_entsize(4);
705
706   section_size_type entry_count =
707     convert_to_section_size_type(shdr.get_sh_size() / 4);
708   Output_section_data* posd =
709     new Output_data_group<size, big_endian>(object, entry_count, flags,
710                                             shndxes);
711   os->add_output_section_data(posd);
712 }
713
714 // Special GNU handling of sections name .eh_frame.  They will
715 // normally hold exception frame data as defined by the C++ ABI
716 // (http://codesourcery.com/cxx-abi/).
717
718 template<int size, bool big_endian>
719 Output_section*
720 Layout::layout_eh_frame(Sized_relobj<size, big_endian>* object,
721                         const unsigned char* symbols,
722                         off_t symbols_size,
723                         const unsigned char* symbol_names,
724                         off_t symbol_names_size,
725                         unsigned int shndx,
726                         const elfcpp::Shdr<size, big_endian>& shdr,
727                         unsigned int reloc_shndx, unsigned int reloc_type,
728                         off_t* off)
729 {
730   gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
731   gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
732
733   const char* const name = ".eh_frame";
734   Output_section* os = this->choose_output_section(object,
735                                                    name,
736                                                    elfcpp::SHT_PROGBITS,
737                                                    elfcpp::SHF_ALLOC,
738                                                    false, false, false);
739   if (os == NULL)
740     return NULL;
741
742   if (this->eh_frame_section_ == NULL)
743     {
744       this->eh_frame_section_ = os;
745       this->eh_frame_data_ = new Eh_frame();
746
747       if (parameters->options().eh_frame_hdr())
748         {
749           Output_section* hdr_os =
750             this->choose_output_section(NULL,
751                                         ".eh_frame_hdr",
752                                         elfcpp::SHT_PROGBITS,
753                                         elfcpp::SHF_ALLOC,
754                                         false, false, false);
755
756           if (hdr_os != NULL)
757             {
758               Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
759                                                         this->eh_frame_data_);
760               hdr_os->add_output_section_data(hdr_posd);
761
762               hdr_os->set_after_input_sections();
763
764               if (!this->script_options_->saw_phdrs_clause())
765                 {
766                   Output_segment* hdr_oseg;
767                   hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
768                                                        elfcpp::PF_R);
769                   hdr_oseg->add_output_section(hdr_os, elfcpp::PF_R, false);
770                 }
771
772               this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
773             }
774         }
775     }
776
777   gold_assert(this->eh_frame_section_ == os);
778
779   if (this->eh_frame_data_->add_ehframe_input_section(object,
780                                                       symbols,
781                                                       symbols_size,
782                                                       symbol_names,
783                                                       symbol_names_size,
784                                                       shndx,
785                                                       reloc_shndx,
786                                                       reloc_type))
787     {
788       os->update_flags_for_input_section(shdr.get_sh_flags());
789
790       // We found a .eh_frame section we are going to optimize, so now
791       // we can add the set of optimized sections to the output
792       // section.  We need to postpone adding this until we've found a
793       // section we can optimize so that the .eh_frame section in
794       // crtbegin.o winds up at the start of the output section.
795       if (!this->added_eh_frame_data_)
796         {
797           os->add_output_section_data(this->eh_frame_data_);
798           this->added_eh_frame_data_ = true;
799         }
800       *off = -1;
801     }
802   else
803     {
804       // We couldn't handle this .eh_frame section for some reason.
805       // Add it as a normal section.
806       bool saw_sections_clause = this->script_options_->saw_sections_clause();
807       *off = os->add_input_section(object, shndx, name, shdr, reloc_shndx,
808                                    saw_sections_clause);
809     }
810
811   return os;
812 }
813
814 // Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
815 // the output section.
816
817 Output_section*
818 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
819                                 elfcpp::Elf_Xword flags,
820                                 Output_section_data* posd,
821                                 bool is_dynamic_linker_section)
822 {
823   Output_section* os = this->choose_output_section(NULL, name, type, flags,
824                                                    false, false,
825                                                    is_dynamic_linker_section);
826   if (os != NULL)
827     os->add_output_section_data(posd);
828   return os;
829 }
830
831 // Map section flags to segment flags.
832
833 elfcpp::Elf_Word
834 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
835 {
836   elfcpp::Elf_Word ret = elfcpp::PF_R;
837   if ((flags & elfcpp::SHF_WRITE) != 0)
838     ret |= elfcpp::PF_W;
839   if ((flags & elfcpp::SHF_EXECINSTR) != 0)
840     ret |= elfcpp::PF_X;
841   return ret;
842 }
843
844 // Sometimes we compress sections.  This is typically done for
845 // sections that are not part of normal program execution (such as
846 // .debug_* sections), and where the readers of these sections know
847 // how to deal with compressed sections.  This routine doesn't say for
848 // certain whether we'll compress -- it depends on commandline options
849 // as well -- just whether this section is a candidate for compression.
850 // (The Output_compressed_section class decides whether to compress
851 // a given section, and picks the name of the compressed section.)
852
853 static bool
854 is_compressible_debug_section(const char* secname)
855 {
856   return (strncmp(secname, ".debug", sizeof(".debug") - 1) == 0);
857 }
858
859 // Make a new Output_section, and attach it to segments as
860 // appropriate.  IS_INTERP is true if this is the .interp section.
861 // IS_DYNAMIC_LINKER_SECTION is true if this section is used by the
862 // dynamic linker.
863
864 Output_section*
865 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
866                             elfcpp::Elf_Xword flags, bool is_interp,
867                             bool is_dynamic_linker_section)
868 {
869   Output_section* os;
870   if ((flags & elfcpp::SHF_ALLOC) == 0
871       && strcmp(parameters->options().compress_debug_sections(), "none") != 0
872       && is_compressible_debug_section(name))
873     os = new Output_compressed_section(&parameters->options(), name, type,
874                                        flags);
875   else if ((flags & elfcpp::SHF_ALLOC) == 0
876            && parameters->options().strip_debug_non_line()
877            && strcmp(".debug_abbrev", name) == 0)
878     {
879       os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
880           name, type, flags);
881       if (this->debug_info_)
882         this->debug_info_->set_abbreviations(this->debug_abbrev_);
883     }
884   else if ((flags & elfcpp::SHF_ALLOC) == 0
885            && parameters->options().strip_debug_non_line()
886            && strcmp(".debug_info", name) == 0)
887     {
888       os = this->debug_info_ = new Output_reduced_debug_info_section(
889           name, type, flags);
890       if (this->debug_abbrev_)
891         this->debug_info_->set_abbreviations(this->debug_abbrev_);
892     }
893  else
894     {
895       // FIXME: const_cast is ugly.
896       Target* target = const_cast<Target*>(&parameters->target());
897       os = target->make_output_section(name, type, flags);
898     }
899
900   if (is_interp)
901     os->set_is_interp();
902   if (is_dynamic_linker_section)
903     os->set_is_dynamic_linker_section();
904
905   parameters->target().new_output_section(os);
906
907   this->section_list_.push_back(os);
908
909   // The GNU linker by default sorts some sections by priority, so we
910   // do the same.  We need to know that this might happen before we
911   // attach any input sections.
912   if (!this->script_options_->saw_sections_clause()
913       && (strcmp(name, ".ctors") == 0
914           || strcmp(name, ".dtors") == 0
915           || strcmp(name, ".init_array") == 0
916           || strcmp(name, ".fini_array") == 0))
917     os->set_may_sort_attached_input_sections();
918
919   // With -z relro, we have to recognize the special sections by name.
920   // There is no other way.
921   if (!this->script_options_->saw_sections_clause()
922       && parameters->options().relro()
923       && type == elfcpp::SHT_PROGBITS
924       && (flags & elfcpp::SHF_ALLOC) != 0
925       && (flags & elfcpp::SHF_WRITE) != 0)
926     {
927       if (strcmp(name, ".data.rel.ro") == 0)
928         os->set_is_relro();
929       else if (strcmp(name, ".data.rel.ro.local") == 0)
930         {
931           os->set_is_relro();
932           os->set_is_relro_local();
933         }
934     }
935
936   // Check for .stab*str sections, as .stab* sections need to link to
937   // them.
938   if (type == elfcpp::SHT_STRTAB
939       && !this->have_stabstr_section_
940       && strncmp(name, ".stab", 5) == 0
941       && strcmp(name + strlen(name) - 3, "str") == 0)
942     this->have_stabstr_section_ = true;
943
944   // If we have already attached the sections to segments, then we
945   // need to attach this one now.  This happens for sections created
946   // directly by the linker.
947   if (this->sections_are_attached_)
948     this->attach_section_to_segment(os);
949
950   return os;
951 }
952
953 // Attach output sections to segments.  This is called after we have
954 // seen all the input sections.
955
956 void
957 Layout::attach_sections_to_segments()
958 {
959   for (Section_list::iterator p = this->section_list_.begin();
960        p != this->section_list_.end();
961        ++p)
962     this->attach_section_to_segment(*p);
963
964   this->sections_are_attached_ = true;
965 }
966
967 // Attach an output section to a segment.
968
969 void
970 Layout::attach_section_to_segment(Output_section* os)
971 {
972   if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
973     this->unattached_section_list_.push_back(os);
974   else
975     this->attach_allocated_section_to_segment(os);
976 }
977
978 // Attach an allocated output section to a segment.
979
980 void
981 Layout::attach_allocated_section_to_segment(Output_section* os)
982 {
983   elfcpp::Elf_Xword flags = os->flags();
984   gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
985
986   if (parameters->options().relocatable())
987     return;
988
989   // If we have a SECTIONS clause, we can't handle the attachment to
990   // segments until after we've seen all the sections.
991   if (this->script_options_->saw_sections_clause())
992     return;
993
994   gold_assert(!this->script_options_->saw_phdrs_clause());
995
996   // This output section goes into a PT_LOAD segment.
997
998   elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
999
1000   bool sort_sections = !this->script_options_->saw_sections_clause();
1001
1002   // In general the only thing we really care about for PT_LOAD
1003   // segments is whether or not they are writable, so that is how we
1004   // search for them.  Large data sections also go into their own
1005   // PT_LOAD segment.  People who need segments sorted on some other
1006   // basis will have to use a linker script.
1007
1008   Segment_list::const_iterator p;
1009   for (p = this->segment_list_.begin();
1010        p != this->segment_list_.end();
1011        ++p)
1012     {
1013       if ((*p)->type() != elfcpp::PT_LOAD)
1014         continue;
1015       if (!parameters->options().omagic()
1016           && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1017         continue;
1018       // If -Tbss was specified, we need to separate the data and BSS
1019       // segments.
1020       if (parameters->options().user_set_Tbss())
1021         {
1022           if ((os->type() == elfcpp::SHT_NOBITS)
1023               == (*p)->has_any_data_sections())
1024             continue;
1025         }
1026       if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1027         continue;
1028
1029       (*p)->add_output_section(os, seg_flags, sort_sections);
1030       break;
1031     }
1032
1033   if (p == this->segment_list_.end())
1034     {
1035       Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1036                                                        seg_flags);
1037       if (os->is_large_data_section())
1038         oseg->set_is_large_data_segment();
1039       oseg->add_output_section(os, seg_flags, sort_sections);
1040     }
1041
1042   // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1043   // segment.
1044   if (os->type() == elfcpp::SHT_NOTE)
1045     {
1046       // See if we already have an equivalent PT_NOTE segment.
1047       for (p = this->segment_list_.begin();
1048            p != segment_list_.end();
1049            ++p)
1050         {
1051           if ((*p)->type() == elfcpp::PT_NOTE
1052               && (((*p)->flags() & elfcpp::PF_W)
1053                   == (seg_flags & elfcpp::PF_W)))
1054             {
1055               (*p)->add_output_section(os, seg_flags, false);
1056               break;
1057             }
1058         }
1059
1060       if (p == this->segment_list_.end())
1061         {
1062           Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1063                                                            seg_flags);
1064           oseg->add_output_section(os, seg_flags, false);
1065         }
1066     }
1067
1068   // If we see a loadable SHF_TLS section, we create a PT_TLS
1069   // segment.  There can only be one such segment.
1070   if ((flags & elfcpp::SHF_TLS) != 0)
1071     {
1072       if (this->tls_segment_ == NULL)
1073         this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1074       this->tls_segment_->add_output_section(os, seg_flags, false);
1075     }
1076
1077   // If -z relro is in effect, and we see a relro section, we create a
1078   // PT_GNU_RELRO segment.  There can only be one such segment.
1079   if (os->is_relro() && parameters->options().relro())
1080     {
1081       gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1082       if (this->relro_segment_ == NULL)
1083         this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1084       this->relro_segment_->add_output_section(os, seg_flags, false);
1085     }
1086 }
1087
1088 // Make an output section for a script.
1089
1090 Output_section*
1091 Layout::make_output_section_for_script(const char* name)
1092 {
1093   name = this->namepool_.add(name, false, NULL);
1094   Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1095                                                  elfcpp::SHF_ALLOC, false,
1096                                                  false);
1097   os->set_found_in_sections_clause();
1098   return os;
1099 }
1100
1101 // Return the number of segments we expect to see.
1102
1103 size_t
1104 Layout::expected_segment_count() const
1105 {
1106   size_t ret = this->segment_list_.size();
1107
1108   // If we didn't see a SECTIONS clause in a linker script, we should
1109   // already have the complete list of segments.  Otherwise we ask the
1110   // SECTIONS clause how many segments it expects, and add in the ones
1111   // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1112
1113   if (!this->script_options_->saw_sections_clause())
1114     return ret;
1115   else
1116     {
1117       const Script_sections* ss = this->script_options_->script_sections();
1118       return ret + ss->expected_segment_count(this);
1119     }
1120 }
1121
1122 // Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
1123 // is whether we saw a .note.GNU-stack section in the object file.
1124 // GNU_STACK_FLAGS is the section flags.  The flags give the
1125 // protection required for stack memory.  We record this in an
1126 // executable as a PT_GNU_STACK segment.  If an object file does not
1127 // have a .note.GNU-stack segment, we must assume that it is an old
1128 // object.  On some targets that will force an executable stack.
1129
1130 void
1131 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags)
1132 {
1133   if (!seen_gnu_stack)
1134     this->input_without_gnu_stack_note_ = true;
1135   else
1136     {
1137       this->input_with_gnu_stack_note_ = true;
1138       if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1139         this->input_requires_executable_stack_ = true;
1140     }
1141 }
1142
1143 // Create automatic note sections.
1144
1145 void
1146 Layout::create_notes()
1147 {
1148   this->create_gold_note();
1149   this->create_executable_stack_info();
1150   this->create_build_id();
1151 }
1152
1153 // Create the dynamic sections which are needed before we read the
1154 // relocs.
1155
1156 void
1157 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1158 {
1159   if (parameters->doing_static_link())
1160     return;
1161
1162   this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1163                                                        elfcpp::SHT_DYNAMIC,
1164                                                        (elfcpp::SHF_ALLOC
1165                                                         | elfcpp::SHF_WRITE),
1166                                                        false, false, true);
1167   this->dynamic_section_->set_is_relro();
1168
1169   symtab->define_in_output_data("_DYNAMIC", NULL, this->dynamic_section_, 0, 0,
1170                                 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1171                                 elfcpp::STV_HIDDEN, 0, false, false);
1172
1173   this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);
1174
1175   this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1176 }
1177
1178 // For each output section whose name can be represented as C symbol,
1179 // define __start and __stop symbols for the section.  This is a GNU
1180 // extension.
1181
1182 void
1183 Layout::define_section_symbols(Symbol_table* symtab)
1184 {
1185   for (Section_list::const_iterator p = this->section_list_.begin();
1186        p != this->section_list_.end();
1187        ++p)
1188     {
1189       const char* const name = (*p)->name();
1190       if (name[strspn(name,
1191                       ("0123456789"
1192                        "ABCDEFGHIJKLMNOPWRSTUVWXYZ"
1193                        "abcdefghijklmnopqrstuvwxyz"
1194                        "_"))]
1195           == '\0')
1196         {
1197           const std::string name_string(name);
1198           const std::string start_name("__start_" + name_string);
1199           const std::string stop_name("__stop_" + name_string);
1200
1201           symtab->define_in_output_data(start_name.c_str(),
1202                                         NULL, // version
1203                                         *p,
1204                                         0, // value
1205                                         0, // symsize
1206                                         elfcpp::STT_NOTYPE,
1207                                         elfcpp::STB_GLOBAL,
1208                                         elfcpp::STV_DEFAULT,
1209                                         0, // nonvis
1210                                         false, // offset_is_from_end
1211                                         true); // only_if_ref
1212
1213           symtab->define_in_output_data(stop_name.c_str(),
1214                                         NULL, // version
1215                                         *p,
1216                                         0, // value
1217                                         0, // symsize
1218                                         elfcpp::STT_NOTYPE,
1219                                         elfcpp::STB_GLOBAL,
1220                                         elfcpp::STV_DEFAULT,
1221                                         0, // nonvis
1222                                         true, // offset_is_from_end
1223                                         true); // only_if_ref
1224         }
1225     }
1226 }
1227
1228 // Define symbols for group signatures.
1229
1230 void
1231 Layout::define_group_signatures(Symbol_table* symtab)
1232 {
1233   for (Group_signatures::iterator p = this->group_signatures_.begin();
1234        p != this->group_signatures_.end();
1235        ++p)
1236     {
1237       Symbol* sym = symtab->lookup(p->signature, NULL);
1238       if (sym != NULL)
1239         p->section->set_info_symndx(sym);
1240       else
1241         {
1242           // Force the name of the group section to the group
1243           // signature, and use the group's section symbol as the
1244           // signature symbol.
1245           if (strcmp(p->section->name(), p->signature) != 0)
1246             {
1247               const char* name = this->namepool_.add(p->signature,
1248                                                      true, NULL);
1249               p->section->set_name(name);
1250             }
1251           p->section->set_needs_symtab_index();
1252           p->section->set_info_section_symndx(p->section);
1253         }
1254     }
1255
1256   this->group_signatures_.clear();
1257 }
1258
1259 // Find the first read-only PT_LOAD segment, creating one if
1260 // necessary.
1261
1262 Output_segment*
1263 Layout::find_first_load_seg()
1264 {
1265   for (Segment_list::const_iterator p = this->segment_list_.begin();
1266        p != this->segment_list_.end();
1267        ++p)
1268     {
1269       if ((*p)->type() == elfcpp::PT_LOAD
1270           && ((*p)->flags() & elfcpp::PF_R) != 0
1271           && (parameters->options().omagic()
1272               || ((*p)->flags() & elfcpp::PF_W) == 0))
1273         return *p;
1274     }
1275
1276   gold_assert(!this->script_options_->saw_phdrs_clause());
1277
1278   Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1279                                                        elfcpp::PF_R);
1280   return load_seg;
1281 }
1282
1283 // Save states of all current output segments.  Store saved states
1284 // in SEGMENT_STATES.
1285
1286 void
1287 Layout::save_segments(Segment_states* segment_states)
1288 {
1289   for (Segment_list::const_iterator p = this->segment_list_.begin();
1290        p != this->segment_list_.end();
1291        ++p)
1292     {
1293       Output_segment* segment = *p;
1294       // Shallow copy.
1295       Output_segment* copy = new Output_segment(*segment);
1296       (*segment_states)[segment] = copy;
1297     }
1298 }
1299
1300 // Restore states of output segments and delete any segment not found in
1301 // SEGMENT_STATES.
1302
1303 void
1304 Layout::restore_segments(const Segment_states* segment_states)
1305 {
1306   // Go through the segment list and remove any segment added in the
1307   // relaxation loop.
1308   this->tls_segment_ = NULL;
1309   this->relro_segment_ = NULL;
1310   Segment_list::iterator list_iter = this->segment_list_.begin();
1311   while (list_iter != this->segment_list_.end())
1312     {
1313       Output_segment* segment = *list_iter;
1314       Segment_states::const_iterator states_iter =
1315           segment_states->find(segment);
1316       if (states_iter != segment_states->end())
1317         {
1318           const Output_segment* copy = states_iter->second;
1319           // Shallow copy to restore states.
1320           *segment = *copy;
1321
1322           // Also fix up TLS and RELRO segment pointers as appropriate.
1323           if (segment->type() == elfcpp::PT_TLS)
1324             this->tls_segment_ = segment;
1325           else if (segment->type() == elfcpp::PT_GNU_RELRO)
1326             this->relro_segment_ = segment;
1327
1328           ++list_iter;
1329         } 
1330       else
1331         {
1332           list_iter = this->segment_list_.erase(list_iter); 
1333           // This is a segment created during section layout.  It should be
1334           // safe to remove it since we should have removed all pointers to it.
1335           delete segment;
1336         }
1337     }
1338 }
1339
1340 // Clean up after relaxation so that sections can be laid out again.
1341
1342 void
1343 Layout::clean_up_after_relaxation()
1344 {
1345   // Restore the segments to point state just prior to the relaxation loop.
1346   Script_sections* script_section = this->script_options_->script_sections();
1347   script_section->release_segments();
1348   this->restore_segments(this->segment_states_);
1349
1350   // Reset section addresses and file offsets
1351   for (Section_list::iterator p = this->section_list_.begin();
1352        p != this->section_list_.end();
1353        ++p)
1354     {
1355       (*p)->reset_address_and_file_offset();
1356       (*p)->restore_states();
1357     }
1358   
1359   // Reset special output object address and file offsets.
1360   for (Data_list::iterator p = this->special_output_list_.begin();
1361        p != this->special_output_list_.end();
1362        ++p)
1363     (*p)->reset_address_and_file_offset();
1364
1365   // A linker script may have created some output section data objects.
1366   // They are useless now.
1367   for (Output_section_data_list::const_iterator p =
1368          this->script_output_section_data_list_.begin();
1369        p != this->script_output_section_data_list_.end();
1370        ++p)
1371     delete *p;
1372   this->script_output_section_data_list_.clear(); 
1373 }
1374
1375 // Prepare for relaxation.
1376
1377 void
1378 Layout::prepare_for_relaxation()
1379 {
1380   // Create an relaxation debug check if in debugging mode.
1381   if (is_debugging_enabled(DEBUG_RELAXATION))
1382     this->relaxation_debug_check_ = new Relaxation_debug_check();
1383
1384   // Save segment states.
1385   this->segment_states_ = new Segment_states();
1386   this->save_segments(this->segment_states_);
1387
1388   for(Section_list::const_iterator p = this->section_list_.begin();
1389       p != this->section_list_.end();
1390       ++p)
1391     (*p)->save_states();
1392
1393   if (is_debugging_enabled(DEBUG_RELAXATION))
1394     this->relaxation_debug_check_->check_output_data_for_reset_values(
1395         this->section_list_, this->special_output_list_);
1396
1397   // Also enable recording of output section data from scripts.
1398   this->record_output_section_data_from_script_ = true;
1399 }
1400
1401 // Relaxation loop body:  If target has no relaxation, this runs only once
1402 // Otherwise, the target relaxation hook is called at the end of
1403 // each iteration.  If the hook returns true, it means re-layout of
1404 // section is required.  
1405 //
1406 // The number of segments created by a linking script without a PHDRS
1407 // clause may be affected by section sizes and alignments.  There is
1408 // a remote chance that relaxation causes different number of PT_LOAD
1409 // segments are created and sections are attached to different segments.
1410 // Therefore, we always throw away all segments created during section
1411 // layout.  In order to be able to restart the section layout, we keep
1412 // a copy of the segment list right before the relaxation loop and use
1413 // that to restore the segments.
1414 // 
1415 // PASS is the current relaxation pass number. 
1416 // SYMTAB is a symbol table.
1417 // PLOAD_SEG is the address of a pointer for the load segment.
1418 // PHDR_SEG is a pointer to the PHDR segment.
1419 // SEGMENT_HEADERS points to the output segment header.
1420 // FILE_HEADER points to the output file header.
1421 // PSHNDX is the address to store the output section index.
1422
1423 off_t inline
1424 Layout::relaxation_loop_body(
1425     int pass,
1426     Target* target,
1427     Symbol_table* symtab,
1428     Output_segment** pload_seg,
1429     Output_segment* phdr_seg,
1430     Output_segment_headers* segment_headers,
1431     Output_file_header* file_header,
1432     unsigned int* pshndx)
1433 {
1434   // If this is not the first iteration, we need to clean up after
1435   // relaxation so that we can lay out the sections again.
1436   if (pass != 0)
1437     this->clean_up_after_relaxation();
1438
1439   // If there is a SECTIONS clause, put all the input sections into
1440   // the required order.
1441   Output_segment* load_seg;
1442   if (this->script_options_->saw_sections_clause())
1443     load_seg = this->set_section_addresses_from_script(symtab);
1444   else if (parameters->options().relocatable())
1445     load_seg = NULL;
1446   else
1447     load_seg = this->find_first_load_seg();
1448
1449   if (parameters->options().oformat_enum()
1450       != General_options::OBJECT_FORMAT_ELF)
1451     load_seg = NULL;
1452
1453   gold_assert(phdr_seg == NULL
1454               || load_seg != NULL
1455               || this->script_options_->saw_sections_clause());
1456
1457   // Lay out the segment headers.
1458   if (!parameters->options().relocatable())
1459     {
1460       gold_assert(segment_headers != NULL);
1461       if (load_seg != NULL)
1462         load_seg->add_initial_output_data(segment_headers);
1463       if (phdr_seg != NULL)
1464         phdr_seg->add_initial_output_data(segment_headers);
1465     }
1466
1467   // Lay out the file header.
1468   if (load_seg != NULL)
1469     load_seg->add_initial_output_data(file_header);
1470
1471   if (this->script_options_->saw_phdrs_clause()
1472       && !parameters->options().relocatable())
1473     {
1474       // Support use of FILEHDRS and PHDRS attachments in a PHDRS
1475       // clause in a linker script.
1476       Script_sections* ss = this->script_options_->script_sections();
1477       ss->put_headers_in_phdrs(file_header, segment_headers);
1478     }
1479
1480   // We set the output section indexes in set_segment_offsets and
1481   // set_section_indexes.
1482   *pshndx = 1;
1483
1484   // Set the file offsets of all the segments, and all the sections
1485   // they contain.
1486   off_t off;
1487   if (!parameters->options().relocatable())
1488     off = this->set_segment_offsets(target, load_seg, pshndx);
1489   else
1490     off = this->set_relocatable_section_offsets(file_header, pshndx);
1491
1492    // Verify that the dummy relaxation does not change anything.
1493   if (is_debugging_enabled(DEBUG_RELAXATION))
1494     {
1495       if (pass == 0)
1496         this->relaxation_debug_check_->read_sections(this->section_list_);
1497       else
1498         this->relaxation_debug_check_->verify_sections(this->section_list_);
1499     }
1500
1501   *pload_seg = load_seg;
1502   return off;
1503 }
1504
1505 // Finalize the layout.  When this is called, we have created all the
1506 // output sections and all the output segments which are based on
1507 // input sections.  We have several things to do, and we have to do
1508 // them in the right order, so that we get the right results correctly
1509 // and efficiently.
1510
1511 // 1) Finalize the list of output segments and create the segment
1512 // table header.
1513
1514 // 2) Finalize the dynamic symbol table and associated sections.
1515
1516 // 3) Determine the final file offset of all the output segments.
1517
1518 // 4) Determine the final file offset of all the SHF_ALLOC output
1519 // sections.
1520
1521 // 5) Create the symbol table sections and the section name table
1522 // section.
1523
1524 // 6) Finalize the symbol table: set symbol values to their final
1525 // value and make a final determination of which symbols are going
1526 // into the output symbol table.
1527
1528 // 7) Create the section table header.
1529
1530 // 8) Determine the final file offset of all the output sections which
1531 // are not SHF_ALLOC, including the section table header.
1532
1533 // 9) Finalize the ELF file header.
1534
1535 // This function returns the size of the output file.
1536
1537 off_t
1538 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
1539                  Target* target, const Task* task)
1540 {
1541   target->finalize_sections(this);
1542
1543   this->count_local_symbols(task, input_objects);
1544
1545   this->link_stabs_sections();
1546
1547   Output_segment* phdr_seg = NULL;
1548   if (!parameters->options().relocatable() && !parameters->doing_static_link())
1549     {
1550       // There was a dynamic object in the link.  We need to create
1551       // some information for the dynamic linker.
1552
1553       // Create the PT_PHDR segment which will hold the program
1554       // headers.
1555       if (!this->script_options_->saw_phdrs_clause())
1556         phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
1557
1558       // Create the dynamic symbol table, including the hash table.
1559       Output_section* dynstr;
1560       std::vector<Symbol*> dynamic_symbols;
1561       unsigned int local_dynamic_count;
1562       Versions versions(*this->script_options()->version_script_info(),
1563                         &this->dynpool_);
1564       this->create_dynamic_symtab(input_objects, symtab, &dynstr,
1565                                   &local_dynamic_count, &dynamic_symbols,
1566                                   &versions);
1567
1568       // Create the .interp section to hold the name of the
1569       // interpreter, and put it in a PT_INTERP segment.
1570       if (!parameters->options().shared())
1571         this->create_interp(target);
1572
1573       // Finish the .dynamic section to hold the dynamic data, and put
1574       // it in a PT_DYNAMIC segment.
1575       this->finish_dynamic_section(input_objects, symtab);
1576
1577       // We should have added everything we need to the dynamic string
1578       // table.
1579       this->dynpool_.set_string_offsets();
1580
1581       // Create the version sections.  We can't do this until the
1582       // dynamic string table is complete.
1583       this->create_version_sections(&versions, symtab, local_dynamic_count,
1584                                     dynamic_symbols, dynstr);
1585     }
1586   
1587   if (this->incremental_inputs_)
1588     {
1589       this->incremental_inputs_->finalize();
1590       this->create_incremental_info_sections();
1591     }
1592
1593   // Create segment headers.
1594   Output_segment_headers* segment_headers =
1595     (parameters->options().relocatable()
1596      ? NULL
1597      : new Output_segment_headers(this->segment_list_));
1598
1599   // Lay out the file header.
1600   Output_file_header* file_header
1601     = new Output_file_header(target, symtab, segment_headers,
1602                              parameters->options().entry());
1603
1604   this->special_output_list_.push_back(file_header);
1605   if (segment_headers != NULL)
1606     this->special_output_list_.push_back(segment_headers);
1607
1608   // Find approriate places for orphan output sections if we are using
1609   // a linker script.
1610   if (this->script_options_->saw_sections_clause())
1611     this->place_orphan_sections_in_script();
1612   
1613   Output_segment* load_seg;
1614   off_t off;
1615   unsigned int shndx;
1616   int pass = 0;
1617
1618   // Take a snapshot of the section layout as needed.
1619   if (target->may_relax())
1620     this->prepare_for_relaxation();
1621   
1622   // Run the relaxation loop to lay out sections.
1623   do
1624     {
1625       off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
1626                                        phdr_seg, segment_headers, file_header,
1627                                        &shndx);
1628       pass++;
1629     }
1630   while (target->may_relax()
1631          && target->relax(pass, input_objects, symtab, this));
1632
1633   // Set the file offsets of all the non-data sections we've seen so
1634   // far which don't have to wait for the input sections.  We need
1635   // this in order to finalize local symbols in non-allocated
1636   // sections.
1637   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1638
1639   // Set the section indexes of all unallocated sections seen so far,
1640   // in case any of them are somehow referenced by a symbol.
1641   shndx = this->set_section_indexes(shndx);
1642
1643   // Create the symbol table sections.
1644   this->create_symtab_sections(input_objects, symtab, shndx, &off);
1645   if (!parameters->doing_static_link())
1646     this->assign_local_dynsym_offsets(input_objects);
1647
1648   // Process any symbol assignments from a linker script.  This must
1649   // be called after the symbol table has been finalized.
1650   this->script_options_->finalize_symbols(symtab, this);
1651
1652   // Create the .shstrtab section.
1653   Output_section* shstrtab_section = this->create_shstrtab();
1654
1655   // Set the file offsets of the rest of the non-data sections which
1656   // don't have to wait for the input sections.
1657   off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
1658
1659   // Now that all sections have been created, set the section indexes
1660   // for any sections which haven't been done yet.
1661   shndx = this->set_section_indexes(shndx);
1662
1663   // Create the section table header.
1664   this->create_shdrs(shstrtab_section, &off);
1665
1666   // If there are no sections which require postprocessing, we can
1667   // handle the section names now, and avoid a resize later.
1668   if (!this->any_postprocessing_sections_)
1669     off = this->set_section_offsets(off,
1670                                     STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
1671
1672   file_header->set_section_info(this->section_headers_, shstrtab_section);
1673
1674   // Now we know exactly where everything goes in the output file
1675   // (except for non-allocated sections which require postprocessing).
1676   Output_data::layout_complete();
1677
1678   this->output_file_size_ = off;
1679
1680   return off;
1681 }
1682
1683 // Create a note header following the format defined in the ELF ABI.
1684 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
1685 // of the section to create, DESCSZ is the size of the descriptor.
1686 // ALLOCATE is true if the section should be allocated in memory.
1687 // This returns the new note section.  It sets *TRAILING_PADDING to
1688 // the number of trailing zero bytes required.
1689
1690 Output_section*
1691 Layout::create_note(const char* name, int note_type,
1692                     const char* section_name, size_t descsz,
1693                     bool allocate, size_t* trailing_padding)
1694 {
1695   // Authorities all agree that the values in a .note field should
1696   // be aligned on 4-byte boundaries for 32-bit binaries.  However,
1697   // they differ on what the alignment is for 64-bit binaries.
1698   // The GABI says unambiguously they take 8-byte alignment:
1699   //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
1700   // Other documentation says alignment should always be 4 bytes:
1701   //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
1702   // GNU ld and GNU readelf both support the latter (at least as of
1703   // version 2.16.91), and glibc always generates the latter for
1704   // .note.ABI-tag (as of version 1.6), so that's the one we go with
1705   // here.
1706 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
1707   const int size = parameters->target().get_size();
1708 #else
1709   const int size = 32;
1710 #endif
1711
1712   // The contents of the .note section.
1713   size_t namesz = strlen(name) + 1;
1714   size_t aligned_namesz = align_address(namesz, size / 8);
1715   size_t aligned_descsz = align_address(descsz, size / 8);
1716
1717   size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
1718
1719   unsigned char* buffer = new unsigned char[notehdrsz];
1720   memset(buffer, 0, notehdrsz);
1721
1722   bool is_big_endian = parameters->target().is_big_endian();
1723
1724   if (size == 32)
1725     {
1726       if (!is_big_endian)
1727         {
1728           elfcpp::Swap<32, false>::writeval(buffer, namesz);
1729           elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
1730           elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
1731         }
1732       else
1733         {
1734           elfcpp::Swap<32, true>::writeval(buffer, namesz);
1735           elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
1736           elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
1737         }
1738     }
1739   else if (size == 64)
1740     {
1741       if (!is_big_endian)
1742         {
1743           elfcpp::Swap<64, false>::writeval(buffer, namesz);
1744           elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
1745           elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
1746         }
1747       else
1748         {
1749           elfcpp::Swap<64, true>::writeval(buffer, namesz);
1750           elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
1751           elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
1752         }
1753     }
1754   else
1755     gold_unreachable();
1756
1757   memcpy(buffer + 3 * (size / 8), name, namesz);
1758
1759   elfcpp::Elf_Xword flags = 0;
1760   if (allocate)
1761     flags = elfcpp::SHF_ALLOC;
1762   Output_section* os = this->choose_output_section(NULL, section_name,
1763                                                    elfcpp::SHT_NOTE,
1764                                                    flags, false, false,
1765                                                    false);
1766   if (os == NULL)
1767     return NULL;
1768
1769   Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
1770                                                            size / 8,
1771                                                            "** note header");
1772   os->add_output_section_data(posd);
1773
1774   *trailing_padding = aligned_descsz - descsz;
1775
1776   return os;
1777 }
1778
1779 // For an executable or shared library, create a note to record the
1780 // version of gold used to create the binary.
1781
1782 void
1783 Layout::create_gold_note()
1784 {
1785   if (parameters->options().relocatable())
1786     return;
1787
1788   std::string desc = std::string("gold ") + gold::get_version_string();
1789
1790   size_t trailing_padding;
1791   Output_section *os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
1792                                          ".note.gnu.gold-version", desc.size(),
1793                                          false, &trailing_padding);
1794   if (os == NULL)
1795     return;
1796
1797   Output_section_data* posd = new Output_data_const(desc, 4);
1798   os->add_output_section_data(posd);
1799
1800   if (trailing_padding > 0)
1801     {
1802       posd = new Output_data_zero_fill(trailing_padding, 0);
1803       os->add_output_section_data(posd);
1804     }
1805 }
1806
1807 // Record whether the stack should be executable.  This can be set
1808 // from the command line using the -z execstack or -z noexecstack
1809 // options.  Otherwise, if any input file has a .note.GNU-stack
1810 // section with the SHF_EXECINSTR flag set, the stack should be
1811 // executable.  Otherwise, if at least one input file a
1812 // .note.GNU-stack section, and some input file has no .note.GNU-stack
1813 // section, we use the target default for whether the stack should be
1814 // executable.  Otherwise, we don't generate a stack note.  When
1815 // generating a object file, we create a .note.GNU-stack section with
1816 // the appropriate marking.  When generating an executable or shared
1817 // library, we create a PT_GNU_STACK segment.
1818
1819 void
1820 Layout::create_executable_stack_info()
1821 {
1822   bool is_stack_executable;
1823   if (parameters->options().is_execstack_set())
1824     is_stack_executable = parameters->options().is_stack_executable();
1825   else if (!this->input_with_gnu_stack_note_)
1826     return;
1827   else
1828     {
1829       if (this->input_requires_executable_stack_)
1830         is_stack_executable = true;
1831       else if (this->input_without_gnu_stack_note_)
1832         is_stack_executable =
1833           parameters->target().is_default_stack_executable();
1834       else
1835         is_stack_executable = false;
1836     }
1837
1838   if (parameters->options().relocatable())
1839     {
1840       const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
1841       elfcpp::Elf_Xword flags = 0;
1842       if (is_stack_executable)
1843         flags |= elfcpp::SHF_EXECINSTR;
1844       this->make_output_section(name, elfcpp::SHT_PROGBITS, flags, false,
1845                                 false);
1846     }
1847   else
1848     {
1849       if (this->script_options_->saw_phdrs_clause())
1850         return;
1851       int flags = elfcpp::PF_R | elfcpp::PF_W;
1852       if (is_stack_executable)
1853         flags |= elfcpp::PF_X;
1854       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
1855     }
1856 }
1857
1858 // If --build-id was used, set up the build ID note.
1859
1860 void
1861 Layout::create_build_id()
1862 {
1863   if (!parameters->options().user_set_build_id())
1864     return;
1865
1866   const char* style = parameters->options().build_id();
1867   if (strcmp(style, "none") == 0)
1868     return;
1869
1870   // Set DESCSZ to the size of the note descriptor.  When possible,
1871   // set DESC to the note descriptor contents.
1872   size_t descsz;
1873   std::string desc;
1874   if (strcmp(style, "md5") == 0)
1875     descsz = 128 / 8;
1876   else if (strcmp(style, "sha1") == 0)
1877     descsz = 160 / 8;
1878   else if (strcmp(style, "uuid") == 0)
1879     {
1880       const size_t uuidsz = 128 / 8;
1881
1882       char buffer[uuidsz];
1883       memset(buffer, 0, uuidsz);
1884
1885       int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
1886       if (descriptor < 0)
1887         gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
1888                    strerror(errno));
1889       else
1890         {
1891           ssize_t got = ::read(descriptor, buffer, uuidsz);
1892           release_descriptor(descriptor, true);
1893           if (got < 0)
1894             gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
1895           else if (static_cast<size_t>(got) != uuidsz)
1896             gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
1897                        uuidsz, got);
1898         }
1899
1900       desc.assign(buffer, uuidsz);
1901       descsz = uuidsz;
1902     }
1903   else if (strncmp(style, "0x", 2) == 0)
1904     {
1905       hex_init();
1906       const char* p = style + 2;
1907       while (*p != '\0')
1908         {
1909           if (hex_p(p[0]) && hex_p(p[1]))
1910             {
1911               char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
1912               desc += c;
1913               p += 2;
1914             }
1915           else if (*p == '-' || *p == ':')
1916             ++p;
1917           else
1918             gold_fatal(_("--build-id argument '%s' not a valid hex number"),
1919                        style);
1920         }
1921       descsz = desc.size();
1922     }
1923   else
1924     gold_fatal(_("unrecognized --build-id argument '%s'"), style);
1925
1926   // Create the note.
1927   size_t trailing_padding;
1928   Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
1929                                          ".note.gnu.build-id", descsz, true,
1930                                          &trailing_padding);
1931   if (os == NULL)
1932     return;
1933
1934   if (!desc.empty())
1935     {
1936       // We know the value already, so we fill it in now.
1937       gold_assert(desc.size() == descsz);
1938
1939       Output_section_data* posd = new Output_data_const(desc, 4);
1940       os->add_output_section_data(posd);
1941
1942       if (trailing_padding != 0)
1943         {
1944           posd = new Output_data_zero_fill(trailing_padding, 0);
1945           os->add_output_section_data(posd);
1946         }
1947     }
1948   else
1949     {
1950       // We need to compute a checksum after we have completed the
1951       // link.
1952       gold_assert(trailing_padding == 0);
1953       this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
1954       os->add_output_section_data(this->build_id_note_);
1955     }
1956 }
1957
1958 // If we have both .stabXX and .stabXXstr sections, then the sh_link
1959 // field of the former should point to the latter.  I'm not sure who
1960 // started this, but the GNU linker does it, and some tools depend
1961 // upon it.
1962
1963 void
1964 Layout::link_stabs_sections()
1965 {
1966   if (!this->have_stabstr_section_)
1967     return;
1968
1969   for (Section_list::iterator p = this->section_list_.begin();
1970        p != this->section_list_.end();
1971        ++p)
1972     {
1973       if ((*p)->type() != elfcpp::SHT_STRTAB)
1974         continue;
1975
1976       const char* name = (*p)->name();
1977       if (strncmp(name, ".stab", 5) != 0)
1978         continue;
1979
1980       size_t len = strlen(name);
1981       if (strcmp(name + len - 3, "str") != 0)
1982         continue;
1983
1984       std::string stab_name(name, len - 3);
1985       Output_section* stab_sec;
1986       stab_sec = this->find_output_section(stab_name.c_str());
1987       if (stab_sec != NULL)
1988         stab_sec->set_link_section(*p);
1989     }
1990 }
1991
1992 // Create .gnu_incremental_inputs and .gnu_incremental_strtab sections needed
1993 // for the next run of incremental linking to check what has changed.
1994
1995 void
1996 Layout::create_incremental_info_sections()
1997 {
1998   gold_assert(this->incremental_inputs_ != NULL);
1999
2000   // Add the .gnu_incremental_inputs section.
2001   const char *incremental_inputs_name =
2002     this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2003   Output_section* inputs_os =
2004     this->make_output_section(incremental_inputs_name,
2005                               elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2006                               false, false);
2007   Output_section_data* posd =
2008       this->incremental_inputs_->create_incremental_inputs_section_data();
2009   inputs_os->add_output_section_data(posd);
2010   
2011   // Add the .gnu_incremental_strtab section.
2012   const char *incremental_strtab_name =
2013     this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2014   Output_section* strtab_os = this->make_output_section(incremental_strtab_name,
2015                                                         elfcpp::SHT_STRTAB,
2016                                                         0, false, false);
2017   Output_data_strtab* strtab_data =
2018     new Output_data_strtab(this->incremental_inputs_->get_stringpool());
2019   strtab_os->add_output_section_data(strtab_data);
2020   
2021   inputs_os->set_link_section(strtab_data);
2022 }
2023
2024 // Return whether SEG1 should be before SEG2 in the output file.  This
2025 // is based entirely on the segment type and flags.  When this is
2026 // called the segment addresses has normally not yet been set.
2027
2028 bool
2029 Layout::segment_precedes(const Output_segment* seg1,
2030                          const Output_segment* seg2)
2031 {
2032   elfcpp::Elf_Word type1 = seg1->type();
2033   elfcpp::Elf_Word type2 = seg2->type();
2034
2035   // The single PT_PHDR segment is required to precede any loadable
2036   // segment.  We simply make it always first.
2037   if (type1 == elfcpp::PT_PHDR)
2038     {
2039       gold_assert(type2 != elfcpp::PT_PHDR);
2040       return true;
2041     }
2042   if (type2 == elfcpp::PT_PHDR)
2043     return false;
2044
2045   // The single PT_INTERP segment is required to precede any loadable
2046   // segment.  We simply make it always second.
2047   if (type1 == elfcpp::PT_INTERP)
2048     {
2049       gold_assert(type2 != elfcpp::PT_INTERP);
2050       return true;
2051     }
2052   if (type2 == elfcpp::PT_INTERP)
2053     return false;
2054
2055   // We then put PT_LOAD segments before any other segments.
2056   if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2057     return true;
2058   if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2059     return false;
2060
2061   // We put the PT_TLS segment last except for the PT_GNU_RELRO
2062   // segment, because that is where the dynamic linker expects to find
2063   // it (this is just for efficiency; other positions would also work
2064   // correctly).
2065   if (type1 == elfcpp::PT_TLS
2066       && type2 != elfcpp::PT_TLS
2067       && type2 != elfcpp::PT_GNU_RELRO)
2068     return false;
2069   if (type2 == elfcpp::PT_TLS
2070       && type1 != elfcpp::PT_TLS
2071       && type1 != elfcpp::PT_GNU_RELRO)
2072     return true;
2073
2074   // We put the PT_GNU_RELRO segment last, because that is where the
2075   // dynamic linker expects to find it (as with PT_TLS, this is just
2076   // for efficiency).
2077   if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2078     return false;
2079   if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2080     return true;
2081
2082   const elfcpp::Elf_Word flags1 = seg1->flags();
2083   const elfcpp::Elf_Word flags2 = seg2->flags();
2084
2085   // The order of non-PT_LOAD segments is unimportant.  We simply sort
2086   // by the numeric segment type and flags values.  There should not
2087   // be more than one segment with the same type and flags.
2088   if (type1 != elfcpp::PT_LOAD)
2089     {
2090       if (type1 != type2)
2091         return type1 < type2;
2092       gold_assert(flags1 != flags2);
2093       return flags1 < flags2;
2094     }
2095
2096   // If the addresses are set already, sort by load address.
2097   if (seg1->are_addresses_set())
2098     {
2099       if (!seg2->are_addresses_set())
2100         return true;
2101
2102       unsigned int section_count1 = seg1->output_section_count();
2103       unsigned int section_count2 = seg2->output_section_count();
2104       if (section_count1 == 0 && section_count2 > 0)
2105         return true;
2106       if (section_count1 > 0 && section_count2 == 0)
2107         return false;
2108
2109       uint64_t paddr1 = seg1->first_section_load_address();
2110       uint64_t paddr2 = seg2->first_section_load_address();
2111       if (paddr1 != paddr2)
2112         return paddr1 < paddr2;
2113     }
2114   else if (seg2->are_addresses_set())
2115     return false;
2116
2117   // A segment which holds large data comes after a segment which does
2118   // not hold large data.
2119   if (seg1->is_large_data_segment())
2120     {
2121       if (!seg2->is_large_data_segment())
2122         return false;
2123     }
2124   else if (seg2->is_large_data_segment())
2125     return true;
2126
2127   // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
2128   // segments come before writable segments.  Then writable segments
2129   // with data come before writable segments without data.  Then
2130   // executable segments come before non-executable segments.  Then
2131   // the unlikely case of a non-readable segment comes before the
2132   // normal case of a readable segment.  If there are multiple
2133   // segments with the same type and flags, we require that the
2134   // address be set, and we sort by virtual address and then physical
2135   // address.
2136   if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
2137     return (flags1 & elfcpp::PF_W) == 0;
2138   if ((flags1 & elfcpp::PF_W) != 0
2139       && seg1->has_any_data_sections() != seg2->has_any_data_sections())
2140     return seg1->has_any_data_sections();
2141   if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
2142     return (flags1 & elfcpp::PF_X) != 0;
2143   if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
2144     return (flags1 & elfcpp::PF_R) == 0;
2145
2146   // We shouldn't get here--we shouldn't create segments which we
2147   // can't distinguish.
2148   gold_unreachable();
2149 }
2150
2151 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2152
2153 static off_t
2154 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
2155 {
2156   uint64_t unsigned_off = off;
2157   uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
2158                           | (addr & (abi_pagesize - 1)));
2159   if (aligned_off < unsigned_off)
2160     aligned_off += abi_pagesize;
2161   return aligned_off;
2162 }
2163
2164 // Set the file offsets of all the segments, and all the sections they
2165 // contain.  They have all been created.  LOAD_SEG must be be laid out
2166 // first.  Return the offset of the data to follow.
2167
2168 off_t
2169 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
2170                             unsigned int *pshndx)
2171 {
2172   // Sort them into the final order.
2173   std::sort(this->segment_list_.begin(), this->segment_list_.end(),
2174             Layout::Compare_segments());
2175
2176   // Find the PT_LOAD segments, and set their addresses and offsets
2177   // and their section's addresses and offsets.
2178   uint64_t addr;
2179   if (parameters->options().user_set_Ttext())
2180     addr = parameters->options().Ttext();
2181   else if (parameters->options().output_is_position_independent())
2182     addr = 0;
2183   else
2184     addr = target->default_text_segment_address();
2185   off_t off = 0;
2186
2187   // If LOAD_SEG is NULL, then the file header and segment headers
2188   // will not be loadable.  But they still need to be at offset 0 in
2189   // the file.  Set their offsets now.
2190   if (load_seg == NULL)
2191     {
2192       for (Data_list::iterator p = this->special_output_list_.begin();
2193            p != this->special_output_list_.end();
2194            ++p)
2195         {
2196           off = align_address(off, (*p)->addralign());
2197           (*p)->set_address_and_file_offset(0, off);
2198           off += (*p)->data_size();
2199         }
2200     }
2201
2202   const bool check_sections = parameters->options().check_sections();
2203   Output_segment* last_load_segment = NULL;
2204
2205   bool was_readonly = false;
2206   for (Segment_list::iterator p = this->segment_list_.begin();
2207        p != this->segment_list_.end();
2208        ++p)
2209     {
2210       if ((*p)->type() == elfcpp::PT_LOAD)
2211         {
2212           if (load_seg != NULL && load_seg != *p)
2213             gold_unreachable();
2214           load_seg = NULL;
2215
2216           bool are_addresses_set = (*p)->are_addresses_set();
2217           if (are_addresses_set)
2218             {
2219               // When it comes to setting file offsets, we care about
2220               // the physical address.
2221               addr = (*p)->paddr();
2222             }
2223           else if (parameters->options().user_set_Tdata()
2224                    && ((*p)->flags() & elfcpp::PF_W) != 0
2225                    && (!parameters->options().user_set_Tbss()
2226                        || (*p)->has_any_data_sections()))
2227             {
2228               addr = parameters->options().Tdata();
2229               are_addresses_set = true;
2230             }
2231           else if (parameters->options().user_set_Tbss()
2232                    && ((*p)->flags() & elfcpp::PF_W) != 0
2233                    && !(*p)->has_any_data_sections())
2234             {
2235               addr = parameters->options().Tbss();
2236               are_addresses_set = true;
2237             }
2238
2239           uint64_t orig_addr = addr;
2240           uint64_t orig_off = off;
2241
2242           uint64_t aligned_addr = 0;
2243           uint64_t abi_pagesize = target->abi_pagesize();
2244           uint64_t common_pagesize = target->common_pagesize();
2245
2246           if (!parameters->options().nmagic()
2247               && !parameters->options().omagic())
2248             (*p)->set_minimum_p_align(common_pagesize);
2249
2250           if (!are_addresses_set)
2251             {
2252               // If the last segment was readonly, and this one is
2253               // not, then skip the address forward one page,
2254               // maintaining the same position within the page.  This
2255               // lets us store both segments overlapping on a single
2256               // page in the file, but the loader will put them on
2257               // different pages in memory.
2258
2259               addr = align_address(addr, (*p)->maximum_alignment());
2260               aligned_addr = addr;
2261
2262               if (was_readonly && ((*p)->flags() & elfcpp::PF_W) != 0)
2263                 {
2264                   if ((addr & (abi_pagesize - 1)) != 0)
2265                     addr = addr + abi_pagesize;
2266                 }
2267
2268               off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2269             }
2270
2271           if (!parameters->options().nmagic()
2272               && !parameters->options().omagic())
2273             off = align_file_offset(off, addr, abi_pagesize);
2274           else if (load_seg == NULL)
2275             {
2276               // This is -N or -n with a section script which prevents
2277               // us from using a load segment.  We need to ensure that
2278               // the file offset is aligned to the alignment of the
2279               // segment.  This is because the linker script
2280               // implicitly assumed a zero offset.  If we don't align
2281               // here, then the alignment of the sections in the
2282               // linker script may not match the alignment of the
2283               // sections in the set_section_addresses call below,
2284               // causing an error about dot moving backward.
2285               off = align_address(off, (*p)->maximum_alignment());
2286             }
2287
2288           unsigned int shndx_hold = *pshndx;
2289           uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
2290                                                           &off, pshndx);
2291
2292           // Now that we know the size of this segment, we may be able
2293           // to save a page in memory, at the cost of wasting some
2294           // file space, by instead aligning to the start of a new
2295           // page.  Here we use the real machine page size rather than
2296           // the ABI mandated page size.
2297
2298           if (!are_addresses_set && aligned_addr != addr)
2299             {
2300               uint64_t first_off = (common_pagesize
2301                                     - (aligned_addr
2302                                        & (common_pagesize - 1)));
2303               uint64_t last_off = new_addr & (common_pagesize - 1);
2304               if (first_off > 0
2305                   && last_off > 0
2306                   && ((aligned_addr & ~ (common_pagesize - 1))
2307                       != (new_addr & ~ (common_pagesize - 1)))
2308                   && first_off + last_off <= common_pagesize)
2309                 {
2310                   *pshndx = shndx_hold;
2311                   addr = align_address(aligned_addr, common_pagesize);
2312                   addr = align_address(addr, (*p)->maximum_alignment());
2313                   off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2314                   off = align_file_offset(off, addr, abi_pagesize);
2315                   new_addr = (*p)->set_section_addresses(this, true, addr,
2316                                                          &off, pshndx);
2317                 }
2318             }
2319
2320           addr = new_addr;
2321
2322           if (((*p)->flags() & elfcpp::PF_W) == 0)
2323             was_readonly = true;
2324
2325           // Implement --check-sections.  We know that the segments
2326           // are sorted by LMA.
2327           if (check_sections && last_load_segment != NULL)
2328             {
2329               gold_assert(last_load_segment->paddr() <= (*p)->paddr());
2330               if (last_load_segment->paddr() + last_load_segment->memsz()
2331                   > (*p)->paddr())
2332                 {
2333                   unsigned long long lb1 = last_load_segment->paddr();
2334                   unsigned long long le1 = lb1 + last_load_segment->memsz();
2335                   unsigned long long lb2 = (*p)->paddr();
2336                   unsigned long long le2 = lb2 + (*p)->memsz();
2337                   gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
2338                                "[0x%llx -> 0x%llx]"),
2339                              lb1, le1, lb2, le2);
2340                 }
2341             }
2342           last_load_segment = *p;
2343         }
2344     }
2345
2346   // Handle the non-PT_LOAD segments, setting their offsets from their
2347   // section's offsets.
2348   for (Segment_list::iterator p = this->segment_list_.begin();
2349        p != this->segment_list_.end();
2350        ++p)
2351     {
2352       if ((*p)->type() != elfcpp::PT_LOAD)
2353         (*p)->set_offset();
2354     }
2355
2356   // Set the TLS offsets for each section in the PT_TLS segment.
2357   if (this->tls_segment_ != NULL)
2358     this->tls_segment_->set_tls_offsets();
2359
2360   return off;
2361 }
2362
2363 // Set the offsets of all the allocated sections when doing a
2364 // relocatable link.  This does the same jobs as set_segment_offsets,
2365 // only for a relocatable link.
2366
2367 off_t
2368 Layout::set_relocatable_section_offsets(Output_data* file_header,
2369                                         unsigned int *pshndx)
2370 {
2371   off_t off = 0;
2372
2373   file_header->set_address_and_file_offset(0, 0);
2374   off += file_header->data_size();
2375
2376   for (Section_list::iterator p = this->section_list_.begin();
2377        p != this->section_list_.end();
2378        ++p)
2379     {
2380       // We skip unallocated sections here, except that group sections
2381       // have to come first.
2382       if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
2383           && (*p)->type() != elfcpp::SHT_GROUP)
2384         continue;
2385
2386       off = align_address(off, (*p)->addralign());
2387
2388       // The linker script might have set the address.
2389       if (!(*p)->is_address_valid())
2390         (*p)->set_address(0);
2391       (*p)->set_file_offset(off);
2392       (*p)->finalize_data_size();
2393       off += (*p)->data_size();
2394
2395       (*p)->set_out_shndx(*pshndx);
2396       ++*pshndx;
2397     }
2398
2399   return off;
2400 }
2401
2402 // Set the file offset of all the sections not associated with a
2403 // segment.
2404
2405 off_t
2406 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
2407 {
2408   for (Section_list::iterator p = this->unattached_section_list_.begin();
2409        p != this->unattached_section_list_.end();
2410        ++p)
2411     {
2412       // The symtab section is handled in create_symtab_sections.
2413       if (*p == this->symtab_section_)
2414         continue;
2415
2416       // If we've already set the data size, don't set it again.
2417       if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
2418         continue;
2419
2420       if (pass == BEFORE_INPUT_SECTIONS_PASS
2421           && (*p)->requires_postprocessing())
2422         {
2423           (*p)->create_postprocessing_buffer();
2424           this->any_postprocessing_sections_ = true;
2425         }
2426
2427       if (pass == BEFORE_INPUT_SECTIONS_PASS
2428           && (*p)->after_input_sections())
2429         continue;
2430       else if (pass == POSTPROCESSING_SECTIONS_PASS
2431                && (!(*p)->after_input_sections()
2432                    || (*p)->type() == elfcpp::SHT_STRTAB))
2433         continue;
2434       else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
2435                && (!(*p)->after_input_sections()
2436                    || (*p)->type() != elfcpp::SHT_STRTAB))
2437         continue;
2438
2439       off = align_address(off, (*p)->addralign());
2440       (*p)->set_file_offset(off);
2441       (*p)->finalize_data_size();
2442       off += (*p)->data_size();
2443
2444       // At this point the name must be set.
2445       if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
2446         this->namepool_.add((*p)->name(), false, NULL);
2447     }
2448   return off;
2449 }
2450
2451 // Set the section indexes of all the sections not associated with a
2452 // segment.
2453
2454 unsigned int
2455 Layout::set_section_indexes(unsigned int shndx)
2456 {
2457   for (Section_list::iterator p = this->unattached_section_list_.begin();
2458        p != this->unattached_section_list_.end();
2459        ++p)
2460     {
2461       if (!(*p)->has_out_shndx())
2462         {
2463           (*p)->set_out_shndx(shndx);
2464           ++shndx;
2465         }
2466     }
2467   return shndx;
2468 }
2469
2470 // Set the section addresses according to the linker script.  This is
2471 // only called when we see a SECTIONS clause.  This returns the
2472 // program segment which should hold the file header and segment
2473 // headers, if any.  It will return NULL if they should not be in a
2474 // segment.
2475
2476 Output_segment*
2477 Layout::set_section_addresses_from_script(Symbol_table* symtab)
2478 {
2479   Script_sections* ss = this->script_options_->script_sections();
2480   gold_assert(ss->saw_sections_clause());
2481   return this->script_options_->set_section_addresses(symtab, this);
2482 }
2483
2484 // Place the orphan sections in the linker script.
2485
2486 void
2487 Layout::place_orphan_sections_in_script()
2488 {
2489   Script_sections* ss = this->script_options_->script_sections();
2490   gold_assert(ss->saw_sections_clause());
2491
2492   // Place each orphaned output section in the script.
2493   for (Section_list::iterator p = this->section_list_.begin();
2494        p != this->section_list_.end();
2495        ++p)
2496     {
2497       if (!(*p)->found_in_sections_clause())
2498         ss->place_orphan(*p);
2499     }
2500 }
2501
2502 // Count the local symbols in the regular symbol table and the dynamic
2503 // symbol table, and build the respective string pools.
2504
2505 void
2506 Layout::count_local_symbols(const Task* task,
2507                             const Input_objects* input_objects)
2508 {
2509   // First, figure out an upper bound on the number of symbols we'll
2510   // be inserting into each pool.  This helps us create the pools with
2511   // the right size, to avoid unnecessary hashtable resizing.
2512   unsigned int symbol_count = 0;
2513   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2514        p != input_objects->relobj_end();
2515        ++p)
2516     symbol_count += (*p)->local_symbol_count();
2517
2518   // Go from "upper bound" to "estimate."  We overcount for two
2519   // reasons: we double-count symbols that occur in more than one
2520   // object file, and we count symbols that are dropped from the
2521   // output.  Add it all together and assume we overcount by 100%.
2522   symbol_count /= 2;
2523
2524   // We assume all symbols will go into both the sympool and dynpool.
2525   this->sympool_.reserve(symbol_count);
2526   this->dynpool_.reserve(symbol_count);
2527
2528   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2529        p != input_objects->relobj_end();
2530        ++p)
2531     {
2532       Task_lock_obj<Object> tlo(task, *p);
2533       (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
2534     }
2535 }
2536
2537 // Create the symbol table sections.  Here we also set the final
2538 // values of the symbols.  At this point all the loadable sections are
2539 // fully laid out.  SHNUM is the number of sections so far.
2540
2541 void
2542 Layout::create_symtab_sections(const Input_objects* input_objects,
2543                                Symbol_table* symtab,
2544                                unsigned int shnum,
2545                                off_t* poff)
2546 {
2547   int symsize;
2548   unsigned int align;
2549   if (parameters->target().get_size() == 32)
2550     {
2551       symsize = elfcpp::Elf_sizes<32>::sym_size;
2552       align = 4;
2553     }
2554   else if (parameters->target().get_size() == 64)
2555     {
2556       symsize = elfcpp::Elf_sizes<64>::sym_size;
2557       align = 8;
2558     }
2559   else
2560     gold_unreachable();
2561
2562   off_t off = *poff;
2563   off = align_address(off, align);
2564   off_t startoff = off;
2565
2566   // Save space for the dummy symbol at the start of the section.  We
2567   // never bother to write this out--it will just be left as zero.
2568   off += symsize;
2569   unsigned int local_symbol_index = 1;
2570
2571   // Add STT_SECTION symbols for each Output section which needs one.
2572   for (Section_list::iterator p = this->section_list_.begin();
2573        p != this->section_list_.end();
2574        ++p)
2575     {
2576       if (!(*p)->needs_symtab_index())
2577         (*p)->set_symtab_index(-1U);
2578       else
2579         {
2580           (*p)->set_symtab_index(local_symbol_index);
2581           ++local_symbol_index;
2582           off += symsize;
2583         }
2584     }
2585
2586   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2587        p != input_objects->relobj_end();
2588        ++p)
2589     {
2590       unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
2591                                                         off, symtab);
2592       off += (index - local_symbol_index) * symsize;
2593       local_symbol_index = index;
2594     }
2595
2596   unsigned int local_symcount = local_symbol_index;
2597   gold_assert(static_cast<off_t>(local_symcount * symsize) == off - startoff);
2598
2599   off_t dynoff;
2600   size_t dyn_global_index;
2601   size_t dyncount;
2602   if (this->dynsym_section_ == NULL)
2603     {
2604       dynoff = 0;
2605       dyn_global_index = 0;
2606       dyncount = 0;
2607     }
2608   else
2609     {
2610       dyn_global_index = this->dynsym_section_->info();
2611       off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
2612       dynoff = this->dynsym_section_->offset() + locsize;
2613       dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
2614       gold_assert(static_cast<off_t>(dyncount * symsize)
2615                   == this->dynsym_section_->data_size() - locsize);
2616     }
2617
2618   off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
2619                          &this->sympool_, &local_symcount);
2620
2621   if (!parameters->options().strip_all())
2622     {
2623       this->sympool_.set_string_offsets();
2624
2625       const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
2626       Output_section* osymtab = this->make_output_section(symtab_name,
2627                                                           elfcpp::SHT_SYMTAB,
2628                                                           0, false, false);
2629       this->symtab_section_ = osymtab;
2630
2631       Output_section_data* pos = new Output_data_fixed_space(off - startoff,
2632                                                              align,
2633                                                              "** symtab");
2634       osymtab->add_output_section_data(pos);
2635
2636       // We generate a .symtab_shndx section if we have more than
2637       // SHN_LORESERVE sections.  Technically it is possible that we
2638       // don't need one, because it is possible that there are no
2639       // symbols in any of sections with indexes larger than
2640       // SHN_LORESERVE.  That is probably unusual, though, and it is
2641       // easier to always create one than to compute section indexes
2642       // twice (once here, once when writing out the symbols).
2643       if (shnum >= elfcpp::SHN_LORESERVE)
2644         {
2645           const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
2646                                                                false, NULL);
2647           Output_section* osymtab_xindex =
2648             this->make_output_section(symtab_xindex_name,
2649                                       elfcpp::SHT_SYMTAB_SHNDX, 0, false,
2650                                       false);
2651
2652           size_t symcount = (off - startoff) / symsize;
2653           this->symtab_xindex_ = new Output_symtab_xindex(symcount);
2654
2655           osymtab_xindex->add_output_section_data(this->symtab_xindex_);
2656
2657           osymtab_xindex->set_link_section(osymtab);
2658           osymtab_xindex->set_addralign(4);
2659           osymtab_xindex->set_entsize(4);
2660
2661           osymtab_xindex->set_after_input_sections();
2662
2663           // This tells the driver code to wait until the symbol table
2664           // has written out before writing out the postprocessing
2665           // sections, including the .symtab_shndx section.
2666           this->any_postprocessing_sections_ = true;
2667         }
2668
2669       const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
2670       Output_section* ostrtab = this->make_output_section(strtab_name,
2671                                                           elfcpp::SHT_STRTAB,
2672                                                           0, false, false);
2673
2674       Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
2675       ostrtab->add_output_section_data(pstr);
2676
2677       osymtab->set_file_offset(startoff);
2678       osymtab->finalize_data_size();
2679       osymtab->set_link_section(ostrtab);
2680       osymtab->set_info(local_symcount);
2681       osymtab->set_entsize(symsize);
2682
2683       *poff = off;
2684     }
2685 }
2686
2687 // Create the .shstrtab section, which holds the names of the
2688 // sections.  At the time this is called, we have created all the
2689 // output sections except .shstrtab itself.
2690
2691 Output_section*
2692 Layout::create_shstrtab()
2693 {
2694   // FIXME: We don't need to create a .shstrtab section if we are
2695   // stripping everything.
2696
2697   const char* name = this->namepool_.add(".shstrtab", false, NULL);
2698
2699   Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
2700                                                  false, false);
2701
2702   // We can't write out this section until we've set all the section
2703   // names, and we don't set the names of compressed output sections
2704   // until relocations are complete.
2705   os->set_after_input_sections();
2706
2707   Output_section_data* posd = new Output_data_strtab(&this->namepool_);
2708   os->add_output_section_data(posd);
2709
2710   return os;
2711 }
2712
2713 // Create the section headers.  SIZE is 32 or 64.  OFF is the file
2714 // offset.
2715
2716 void
2717 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
2718 {
2719   Output_section_headers* oshdrs;
2720   oshdrs = new Output_section_headers(this,
2721                                       &this->segment_list_,
2722                                       &this->section_list_,
2723                                       &this->unattached_section_list_,
2724                                       &this->namepool_,
2725                                       shstrtab_section);
2726   off_t off = align_address(*poff, oshdrs->addralign());
2727   oshdrs->set_address_and_file_offset(0, off);
2728   off += oshdrs->data_size();
2729   *poff = off;
2730   this->section_headers_ = oshdrs;
2731 }
2732
2733 // Count the allocated sections.
2734
2735 size_t
2736 Layout::allocated_output_section_count() const
2737 {
2738   size_t section_count = 0;
2739   for (Segment_list::const_iterator p = this->segment_list_.begin();
2740        p != this->segment_list_.end();
2741        ++p)
2742     section_count += (*p)->output_section_count();
2743   return section_count;
2744 }
2745
2746 // Create the dynamic symbol table.
2747
2748 void
2749 Layout::create_dynamic_symtab(const Input_objects* input_objects,
2750                               Symbol_table* symtab,
2751                               Output_section **pdynstr,
2752                               unsigned int* plocal_dynamic_count,
2753                               std::vector<Symbol*>* pdynamic_symbols,
2754                               Versions* pversions)
2755 {
2756   // Count all the symbols in the dynamic symbol table, and set the
2757   // dynamic symbol indexes.
2758
2759   // Skip symbol 0, which is always all zeroes.
2760   unsigned int index = 1;
2761
2762   // Add STT_SECTION symbols for each Output section which needs one.
2763   for (Section_list::iterator p = this->section_list_.begin();
2764        p != this->section_list_.end();
2765        ++p)
2766     {
2767       if (!(*p)->needs_dynsym_index())
2768         (*p)->set_dynsym_index(-1U);
2769       else
2770         {
2771           (*p)->set_dynsym_index(index);
2772           ++index;
2773         }
2774     }
2775
2776   // Count the local symbols that need to go in the dynamic symbol table,
2777   // and set the dynamic symbol indexes.
2778   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2779        p != input_objects->relobj_end();
2780        ++p)
2781     {
2782       unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
2783       index = new_index;
2784     }
2785
2786   unsigned int local_symcount = index;
2787   *plocal_dynamic_count = local_symcount;
2788
2789   index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
2790                                      &this->dynpool_, pversions);
2791
2792   int symsize;
2793   unsigned int align;
2794   const int size = parameters->target().get_size();
2795   if (size == 32)
2796     {
2797       symsize = elfcpp::Elf_sizes<32>::sym_size;
2798       align = 4;
2799     }
2800   else if (size == 64)
2801     {
2802       symsize = elfcpp::Elf_sizes<64>::sym_size;
2803       align = 8;
2804     }
2805   else
2806     gold_unreachable();
2807
2808   // Create the dynamic symbol table section.
2809
2810   Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
2811                                                        elfcpp::SHT_DYNSYM,
2812                                                        elfcpp::SHF_ALLOC,
2813                                                        false, false, true);
2814
2815   Output_section_data* odata = new Output_data_fixed_space(index * symsize,
2816                                                            align,
2817                                                            "** dynsym");
2818   dynsym->add_output_section_data(odata);
2819
2820   dynsym->set_info(local_symcount);
2821   dynsym->set_entsize(symsize);
2822   dynsym->set_addralign(align);
2823
2824   this->dynsym_section_ = dynsym;
2825
2826   Output_data_dynamic* const odyn = this->dynamic_data_;
2827   odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
2828   odyn->add_constant(elfcpp::DT_SYMENT, symsize);
2829
2830   // If there are more than SHN_LORESERVE allocated sections, we
2831   // create a .dynsym_shndx section.  It is possible that we don't
2832   // need one, because it is possible that there are no dynamic
2833   // symbols in any of the sections with indexes larger than
2834   // SHN_LORESERVE.  This is probably unusual, though, and at this
2835   // time we don't know the actual section indexes so it is
2836   // inconvenient to check.
2837   if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
2838     {
2839       Output_section* dynsym_xindex =
2840         this->choose_output_section(NULL, ".dynsym_shndx",
2841                                     elfcpp::SHT_SYMTAB_SHNDX,
2842                                     elfcpp::SHF_ALLOC,
2843                                     false, false, true);
2844
2845       this->dynsym_xindex_ = new Output_symtab_xindex(index);
2846
2847       dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
2848
2849       dynsym_xindex->set_link_section(dynsym);
2850       dynsym_xindex->set_addralign(4);
2851       dynsym_xindex->set_entsize(4);
2852
2853       dynsym_xindex->set_after_input_sections();
2854
2855       // This tells the driver code to wait until the symbol table has
2856       // written out before writing out the postprocessing sections,
2857       // including the .dynsym_shndx section.
2858       this->any_postprocessing_sections_ = true;
2859     }
2860
2861   // Create the dynamic string table section.
2862
2863   Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
2864                                                        elfcpp::SHT_STRTAB,
2865                                                        elfcpp::SHF_ALLOC,
2866                                                        false, false, true);
2867
2868   Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
2869   dynstr->add_output_section_data(strdata);
2870
2871   dynsym->set_link_section(dynstr);
2872   this->dynamic_section_->set_link_section(dynstr);
2873
2874   odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
2875   odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
2876
2877   *pdynstr = dynstr;
2878
2879   // Create the hash tables.
2880
2881   if (strcmp(parameters->options().hash_style(), "sysv") == 0
2882       || strcmp(parameters->options().hash_style(), "both") == 0)
2883     {
2884       unsigned char* phash;
2885       unsigned int hashlen;
2886       Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
2887                                     &phash, &hashlen);
2888
2889       Output_section* hashsec = this->choose_output_section(NULL, ".hash",
2890                                                             elfcpp::SHT_HASH,
2891                                                             elfcpp::SHF_ALLOC,
2892                                                             false, false, true);
2893
2894       Output_section_data* hashdata = new Output_data_const_buffer(phash,
2895                                                                    hashlen,
2896                                                                    align,
2897                                                                    "** hash");
2898       hashsec->add_output_section_data(hashdata);
2899
2900       hashsec->set_link_section(dynsym);
2901       hashsec->set_entsize(4);
2902
2903       odyn->add_section_address(elfcpp::DT_HASH, hashsec);
2904     }
2905
2906   if (strcmp(parameters->options().hash_style(), "gnu") == 0
2907       || strcmp(parameters->options().hash_style(), "both") == 0)
2908     {
2909       unsigned char* phash;
2910       unsigned int hashlen;
2911       Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
2912                                     &phash, &hashlen);
2913
2914       Output_section* hashsec = this->choose_output_section(NULL, ".gnu.hash",
2915                                                             elfcpp::SHT_GNU_HASH,
2916                                                             elfcpp::SHF_ALLOC,
2917                                                             false, false, true);
2918
2919       Output_section_data* hashdata = new Output_data_const_buffer(phash,
2920                                                                    hashlen,
2921                                                                    align,
2922                                                                    "** hash");
2923       hashsec->add_output_section_data(hashdata);
2924
2925       hashsec->set_link_section(dynsym);
2926       hashsec->set_entsize(4);
2927
2928       odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
2929     }
2930 }
2931
2932 // Assign offsets to each local portion of the dynamic symbol table.
2933
2934 void
2935 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
2936 {
2937   Output_section* dynsym = this->dynsym_section_;
2938   gold_assert(dynsym != NULL);
2939
2940   off_t off = dynsym->offset();
2941
2942   // Skip the dummy symbol at the start of the section.
2943   off += dynsym->entsize();
2944
2945   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
2946        p != input_objects->relobj_end();
2947        ++p)
2948     {
2949       unsigned int count = (*p)->set_local_dynsym_offset(off);
2950       off += count * dynsym->entsize();
2951     }
2952 }
2953
2954 // Create the version sections.
2955
2956 void
2957 Layout::create_version_sections(const Versions* versions,
2958                                 const Symbol_table* symtab,
2959                                 unsigned int local_symcount,
2960                                 const std::vector<Symbol*>& dynamic_symbols,
2961                                 const Output_section* dynstr)
2962 {
2963   if (!versions->any_defs() && !versions->any_needs())
2964     return;
2965
2966   switch (parameters->size_and_endianness())
2967     {
2968 #ifdef HAVE_TARGET_32_LITTLE
2969     case Parameters::TARGET_32_LITTLE:
2970       this->sized_create_version_sections<32, false>(versions, symtab,
2971                                                      local_symcount,
2972                                                      dynamic_symbols, dynstr);
2973       break;
2974 #endif
2975 #ifdef HAVE_TARGET_32_BIG
2976     case Parameters::TARGET_32_BIG:
2977       this->sized_create_version_sections<32, true>(versions, symtab,
2978                                                     local_symcount,
2979                                                     dynamic_symbols, dynstr);
2980       break;
2981 #endif
2982 #ifdef HAVE_TARGET_64_LITTLE
2983     case Parameters::TARGET_64_LITTLE:
2984       this->sized_create_version_sections<64, false>(versions, symtab,
2985                                                      local_symcount,
2986                                                      dynamic_symbols, dynstr);
2987       break;
2988 #endif
2989 #ifdef HAVE_TARGET_64_BIG
2990     case Parameters::TARGET_64_BIG:
2991       this->sized_create_version_sections<64, true>(versions, symtab,
2992                                                     local_symcount,
2993                                                     dynamic_symbols, dynstr);
2994       break;
2995 #endif
2996     default:
2997       gold_unreachable();
2998     }
2999 }
3000
3001 // Create the version sections, sized version.
3002
3003 template<int size, bool big_endian>
3004 void
3005 Layout::sized_create_version_sections(
3006     const Versions* versions,
3007     const Symbol_table* symtab,
3008     unsigned int local_symcount,
3009     const std::vector<Symbol*>& dynamic_symbols,
3010     const Output_section* dynstr)
3011 {
3012   Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
3013                                                      elfcpp::SHT_GNU_versym,
3014                                                      elfcpp::SHF_ALLOC,
3015                                                      false, false, true);
3016
3017   unsigned char* vbuf;
3018   unsigned int vsize;
3019   versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
3020                                                       local_symcount,
3021                                                       dynamic_symbols,
3022                                                       &vbuf, &vsize);
3023
3024   Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
3025                                                             "** versions");
3026
3027   vsec->add_output_section_data(vdata);
3028   vsec->set_entsize(2);
3029   vsec->set_link_section(this->dynsym_section_);
3030
3031   Output_data_dynamic* const odyn = this->dynamic_data_;
3032   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
3033
3034   if (versions->any_defs())
3035     {
3036       Output_section* vdsec;
3037       vdsec= this->choose_output_section(NULL, ".gnu.version_d",
3038                                          elfcpp::SHT_GNU_verdef,
3039                                          elfcpp::SHF_ALLOC,
3040                                          false, false, true);
3041
3042       unsigned char* vdbuf;
3043       unsigned int vdsize;
3044       unsigned int vdentries;
3045       versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
3046                                                        &vdsize, &vdentries);
3047
3048       Output_section_data* vddata =
3049         new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
3050
3051       vdsec->add_output_section_data(vddata);
3052       vdsec->set_link_section(dynstr);
3053       vdsec->set_info(vdentries);
3054
3055       odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
3056       odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
3057     }
3058
3059   if (versions->any_needs())
3060     {
3061       Output_section* vnsec;
3062       vnsec = this->choose_output_section(NULL, ".gnu.version_r",
3063                                           elfcpp::SHT_GNU_verneed,
3064                                           elfcpp::SHF_ALLOC,
3065                                           false, false, true);
3066
3067       unsigned char* vnbuf;
3068       unsigned int vnsize;
3069       unsigned int vnentries;
3070       versions->need_section_contents<size, big_endian>(&this->dynpool_,
3071                                                         &vnbuf, &vnsize,
3072                                                         &vnentries);
3073
3074       Output_section_data* vndata =
3075         new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
3076
3077       vnsec->add_output_section_data(vndata);
3078       vnsec->set_link_section(dynstr);
3079       vnsec->set_info(vnentries);
3080
3081       odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
3082       odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
3083     }
3084 }
3085
3086 // Create the .interp section and PT_INTERP segment.
3087
3088 void
3089 Layout::create_interp(const Target* target)
3090 {
3091   const char* interp = parameters->options().dynamic_linker();
3092   if (interp == NULL)
3093     {
3094       interp = target->dynamic_linker();
3095       gold_assert(interp != NULL);
3096     }
3097
3098   size_t len = strlen(interp) + 1;
3099
3100   Output_section_data* odata = new Output_data_const(interp, len, 1);
3101
3102   Output_section* osec = this->choose_output_section(NULL, ".interp",
3103                                                      elfcpp::SHT_PROGBITS,
3104                                                      elfcpp::SHF_ALLOC,
3105                                                      false, true, true);
3106   osec->add_output_section_data(odata);
3107
3108   if (!this->script_options_->saw_phdrs_clause())
3109     {
3110       Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
3111                                                        elfcpp::PF_R);
3112       oseg->add_output_section(osec, elfcpp::PF_R, false);
3113     }
3114 }
3115
3116 // Finish the .dynamic section and PT_DYNAMIC segment.
3117
3118 void
3119 Layout::finish_dynamic_section(const Input_objects* input_objects,
3120                                const Symbol_table* symtab)
3121 {
3122   if (!this->script_options_->saw_phdrs_clause())
3123     {
3124       Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
3125                                                        (elfcpp::PF_R
3126                                                         | elfcpp::PF_W));
3127       oseg->add_output_section(this->dynamic_section_,
3128                                elfcpp::PF_R | elfcpp::PF_W,
3129                                false);
3130     }
3131
3132   Output_data_dynamic* const odyn = this->dynamic_data_;
3133
3134   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
3135        p != input_objects->dynobj_end();
3136        ++p)
3137     {
3138       if (!(*p)->is_needed()
3139           && (*p)->input_file()->options().as_needed())
3140         {
3141           // This dynamic object was linked with --as-needed, but it
3142           // is not needed.
3143           continue;
3144         }
3145
3146       odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
3147     }
3148
3149   if (parameters->options().shared())
3150     {
3151       const char* soname = parameters->options().soname();
3152       if (soname != NULL)
3153         odyn->add_string(elfcpp::DT_SONAME, soname);
3154     }
3155
3156   Symbol* sym = symtab->lookup(parameters->options().init());
3157   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
3158     odyn->add_symbol(elfcpp::DT_INIT, sym);
3159
3160   sym = symtab->lookup(parameters->options().fini());
3161   if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
3162     odyn->add_symbol(elfcpp::DT_FINI, sym);
3163
3164   // Look for .init_array, .preinit_array and .fini_array by checking
3165   // section types.
3166   for(Layout::Section_list::const_iterator p = this->section_list_.begin();
3167       p != this->section_list_.end();
3168       ++p)
3169     switch((*p)->type())
3170       {
3171       case elfcpp::SHT_FINI_ARRAY:
3172         odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
3173         odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p); 
3174         break;
3175       case elfcpp::SHT_INIT_ARRAY:
3176         odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
3177         odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p); 
3178         break;
3179       case elfcpp::SHT_PREINIT_ARRAY:
3180         odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
3181         odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p); 
3182         break;
3183       default:
3184         break;
3185       }
3186   
3187   // Add a DT_RPATH entry if needed.
3188   const General_options::Dir_list& rpath(parameters->options().rpath());
3189   if (!rpath.empty())
3190     {
3191       std::string rpath_val;
3192       for (General_options::Dir_list::const_iterator p = rpath.begin();
3193            p != rpath.end();
3194            ++p)
3195         {
3196           if (rpath_val.empty())
3197             rpath_val = p->name();
3198           else
3199             {
3200               // Eliminate duplicates.
3201               General_options::Dir_list::const_iterator q;
3202               for (q = rpath.begin(); q != p; ++q)
3203                 if (q->name() == p->name())
3204                   break;
3205               if (q == p)
3206                 {
3207                   rpath_val += ':';
3208                   rpath_val += p->name();
3209                 }
3210             }
3211         }
3212
3213       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
3214       if (parameters->options().enable_new_dtags())
3215         odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
3216     }
3217
3218   // Look for text segments that have dynamic relocations.
3219   bool have_textrel = false;
3220   if (!this->script_options_->saw_sections_clause())
3221     {
3222       for (Segment_list::const_iterator p = this->segment_list_.begin();
3223            p != this->segment_list_.end();
3224            ++p)
3225         {
3226           if (((*p)->flags() & elfcpp::PF_W) == 0
3227               && (*p)->dynamic_reloc_count() > 0)
3228             {
3229               have_textrel = true;
3230               break;
3231             }
3232         }
3233     }
3234   else
3235     {
3236       // We don't know the section -> segment mapping, so we are
3237       // conservative and just look for readonly sections with
3238       // relocations.  If those sections wind up in writable segments,
3239       // then we have created an unnecessary DT_TEXTREL entry.
3240       for (Section_list::const_iterator p = this->section_list_.begin();
3241            p != this->section_list_.end();
3242            ++p)
3243         {
3244           if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
3245               && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
3246               && ((*p)->dynamic_reloc_count() > 0))
3247             {
3248               have_textrel = true;
3249               break;
3250             }
3251         }
3252     }
3253
3254   // Add a DT_FLAGS entry. We add it even if no flags are set so that
3255   // post-link tools can easily modify these flags if desired.
3256   unsigned int flags = 0;
3257   if (have_textrel)
3258     {
3259       // Add a DT_TEXTREL for compatibility with older loaders.
3260       odyn->add_constant(elfcpp::DT_TEXTREL, 0);
3261       flags |= elfcpp::DF_TEXTREL;
3262     }
3263   if (parameters->options().shared() && this->has_static_tls())
3264     flags |= elfcpp::DF_STATIC_TLS;
3265   if (parameters->options().origin())
3266     flags |= elfcpp::DF_ORIGIN;
3267   if (parameters->options().Bsymbolic())
3268     {
3269       flags |= elfcpp::DF_SYMBOLIC;
3270       // Add DT_SYMBOLIC for compatibility with older loaders.
3271       odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
3272     }
3273   if (parameters->options().now())
3274     flags |= elfcpp::DF_BIND_NOW;
3275   odyn->add_constant(elfcpp::DT_FLAGS, flags);
3276
3277   flags = 0;
3278   if (parameters->options().initfirst())
3279     flags |= elfcpp::DF_1_INITFIRST;
3280   if (parameters->options().interpose())
3281     flags |= elfcpp::DF_1_INTERPOSE;
3282   if (parameters->options().loadfltr())
3283     flags |= elfcpp::DF_1_LOADFLTR;
3284   if (parameters->options().nodefaultlib())
3285     flags |= elfcpp::DF_1_NODEFLIB;
3286   if (parameters->options().nodelete())
3287     flags |= elfcpp::DF_1_NODELETE;
3288   if (parameters->options().nodlopen())
3289     flags |= elfcpp::DF_1_NOOPEN;
3290   if (parameters->options().nodump())
3291     flags |= elfcpp::DF_1_NODUMP;
3292   if (!parameters->options().shared())
3293     flags &= ~(elfcpp::DF_1_INITFIRST
3294                | elfcpp::DF_1_NODELETE
3295                | elfcpp::DF_1_NOOPEN);
3296   if (parameters->options().origin())
3297     flags |= elfcpp::DF_1_ORIGIN;
3298   if (parameters->options().now())
3299     flags |= elfcpp::DF_1_NOW;
3300   if (flags)
3301     odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
3302 }
3303
3304 // The mapping of input section name prefixes to output section names.
3305 // In some cases one prefix is itself a prefix of another prefix; in
3306 // such a case the longer prefix must come first.  These prefixes are
3307 // based on the GNU linker default ELF linker script.
3308
3309 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
3310 const Layout::Section_name_mapping Layout::section_name_mapping[] =
3311 {
3312   MAPPING_INIT(".text.", ".text"),
3313   MAPPING_INIT(".ctors.", ".ctors"),
3314   MAPPING_INIT(".dtors.", ".dtors"),
3315   MAPPING_INIT(".rodata.", ".rodata"),
3316   MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
3317   MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
3318   MAPPING_INIT(".data.", ".data"),
3319   MAPPING_INIT(".bss.", ".bss"),
3320   MAPPING_INIT(".tdata.", ".tdata"),
3321   MAPPING_INIT(".tbss.", ".tbss"),
3322   MAPPING_INIT(".init_array.", ".init_array"),
3323   MAPPING_INIT(".fini_array.", ".fini_array"),
3324   MAPPING_INIT(".sdata.", ".sdata"),
3325   MAPPING_INIT(".sbss.", ".sbss"),
3326   // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
3327   // differently depending on whether it is creating a shared library.
3328   MAPPING_INIT(".sdata2.", ".sdata"),
3329   MAPPING_INIT(".sbss2.", ".sbss"),
3330   MAPPING_INIT(".lrodata.", ".lrodata"),
3331   MAPPING_INIT(".ldata.", ".ldata"),
3332   MAPPING_INIT(".lbss.", ".lbss"),
3333   MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
3334   MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
3335   MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
3336   MAPPING_INIT(".gnu.linkonce.t.", ".text"),
3337   MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
3338   MAPPING_INIT(".gnu.linkonce.d.", ".data"),
3339   MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
3340   MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
3341   MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
3342   MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
3343   MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
3344   MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
3345   MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
3346   MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
3347   MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
3348   MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
3349   MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
3350   MAPPING_INIT(".ARM.extab.", ".ARM.extab"),
3351   MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
3352   MAPPING_INIT(".ARM.exidx.", ".ARM.exidx"),
3353   MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
3354 };
3355 #undef MAPPING_INIT
3356
3357 const int Layout::section_name_mapping_count =
3358   (sizeof(Layout::section_name_mapping)
3359    / sizeof(Layout::section_name_mapping[0]));
3360
3361 // Choose the output section name to use given an input section name.
3362 // Set *PLEN to the length of the name.  *PLEN is initialized to the
3363 // length of NAME.
3364
3365 const char*
3366 Layout::output_section_name(const char* name, size_t* plen)
3367 {
3368   // gcc 4.3 generates the following sorts of section names when it
3369   // needs a section name specific to a function:
3370   //   .text.FN
3371   //   .rodata.FN
3372   //   .sdata2.FN
3373   //   .data.FN
3374   //   .data.rel.FN
3375   //   .data.rel.local.FN
3376   //   .data.rel.ro.FN
3377   //   .data.rel.ro.local.FN
3378   //   .sdata.FN
3379   //   .bss.FN
3380   //   .sbss.FN
3381   //   .tdata.FN
3382   //   .tbss.FN
3383
3384   // The GNU linker maps all of those to the part before the .FN,
3385   // except that .data.rel.local.FN is mapped to .data, and
3386   // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
3387   // beginning with .data.rel.ro.local are grouped together.
3388
3389   // For an anonymous namespace, the string FN can contain a '.'.
3390
3391   // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
3392   // GNU linker maps to .rodata.
3393
3394   // The .data.rel.ro sections are used with -z relro.  The sections
3395   // are recognized by name.  We use the same names that the GNU
3396   // linker does for these sections.
3397
3398   // It is hard to handle this in a principled way, so we don't even
3399   // try.  We use a table of mappings.  If the input section name is
3400   // not found in the table, we simply use it as the output section
3401   // name.
3402
3403   const Section_name_mapping* psnm = section_name_mapping;
3404   for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
3405     {
3406       if (strncmp(name, psnm->from, psnm->fromlen) == 0)
3407         {
3408           *plen = psnm->tolen;
3409           return psnm->to;
3410         }
3411     }
3412
3413   return name;
3414 }
3415
3416 // Check if a comdat group or .gnu.linkonce section with the given
3417 // NAME is selected for the link.  If there is already a section,
3418 // *KEPT_SECTION is set to point to the existing section and the
3419 // function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
3420 // IS_GROUP_NAME are recorded for this NAME in the layout object,
3421 // *KEPT_SECTION is set to the internal copy and the function returns
3422 // true.
3423
3424 bool
3425 Layout::find_or_add_kept_section(const std::string& name,
3426                                  Relobj* object,
3427                                  unsigned int shndx,
3428                                  bool is_comdat,
3429                                  bool is_group_name,
3430                                  Kept_section** kept_section)
3431 {
3432   // It's normal to see a couple of entries here, for the x86 thunk
3433   // sections.  If we see more than a few, we're linking a C++
3434   // program, and we resize to get more space to minimize rehashing.
3435   if (this->signatures_.size() > 4
3436       && !this->resized_signatures_)
3437     {
3438       reserve_unordered_map(&this->signatures_,
3439                             this->number_of_input_files_ * 64);
3440       this->resized_signatures_ = true;
3441     }
3442
3443   Kept_section candidate;
3444   std::pair<Signatures::iterator, bool> ins =
3445     this->signatures_.insert(std::make_pair(name, candidate));
3446
3447   if (kept_section != NULL)
3448     *kept_section = &ins.first->second;
3449   if (ins.second)
3450     {
3451       // This is the first time we've seen this signature.
3452       ins.first->second.set_object(object);
3453       ins.first->second.set_shndx(shndx);
3454       if (is_comdat)
3455         ins.first->second.set_is_comdat();
3456       if (is_group_name)
3457         ins.first->second.set_is_group_name();
3458       return true;
3459     }
3460
3461   // We have already seen this signature.
3462
3463   if (ins.first->second.is_group_name())
3464     {
3465       // We've already seen a real section group with this signature.
3466       // If the kept group is from a plugin object, and we're in the
3467       // replacement phase, accept the new one as a replacement.
3468       if (ins.first->second.object() == NULL
3469           && parameters->options().plugins()->in_replacement_phase())
3470         {
3471           ins.first->second.set_object(object);
3472           ins.first->second.set_shndx(shndx);
3473           return true;
3474         }
3475       return false;
3476     }
3477   else if (is_group_name)
3478     {
3479       // This is a real section group, and we've already seen a
3480       // linkonce section with this signature.  Record that we've seen
3481       // a section group, and don't include this section group.
3482       ins.first->second.set_is_group_name();
3483       return false;
3484     }
3485   else
3486     {
3487       // We've already seen a linkonce section and this is a linkonce
3488       // section.  These don't block each other--this may be the same
3489       // symbol name with different section types.
3490       return true;
3491     }
3492 }
3493
3494 // Store the allocated sections into the section list.
3495
3496 void
3497 Layout::get_allocated_sections(Section_list* section_list) const
3498 {
3499   for (Section_list::const_iterator p = this->section_list_.begin();
3500        p != this->section_list_.end();
3501        ++p)
3502     if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
3503       section_list->push_back(*p);
3504 }
3505
3506 // Create an output segment.
3507
3508 Output_segment*
3509 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3510 {
3511   gold_assert(!parameters->options().relocatable());
3512   Output_segment* oseg = new Output_segment(type, flags);
3513   this->segment_list_.push_back(oseg);
3514
3515   if (type == elfcpp::PT_TLS)
3516     this->tls_segment_ = oseg;
3517   else if (type == elfcpp::PT_GNU_RELRO)
3518     this->relro_segment_ = oseg;
3519
3520   return oseg;
3521 }
3522
3523 // Write out the Output_sections.  Most won't have anything to write,
3524 // since most of the data will come from input sections which are
3525 // handled elsewhere.  But some Output_sections do have Output_data.
3526
3527 void
3528 Layout::write_output_sections(Output_file* of) const
3529 {
3530   for (Section_list::const_iterator p = this->section_list_.begin();
3531        p != this->section_list_.end();
3532        ++p)
3533     {
3534       if (!(*p)->after_input_sections())
3535         (*p)->write(of);
3536     }
3537 }
3538
3539 // Write out data not associated with a section or the symbol table.
3540
3541 void
3542 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
3543 {
3544   if (!parameters->options().strip_all())
3545     {
3546       const Output_section* symtab_section = this->symtab_section_;
3547       for (Section_list::const_iterator p = this->section_list_.begin();
3548            p != this->section_list_.end();
3549            ++p)
3550         {
3551           if ((*p)->needs_symtab_index())
3552             {
3553               gold_assert(symtab_section != NULL);
3554               unsigned int index = (*p)->symtab_index();
3555               gold_assert(index > 0 && index != -1U);
3556               off_t off = (symtab_section->offset()
3557                            + index * symtab_section->entsize());
3558               symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
3559             }
3560         }
3561     }
3562
3563   const Output_section* dynsym_section = this->dynsym_section_;
3564   for (Section_list::const_iterator p = this->section_list_.begin();
3565        p != this->section_list_.end();
3566        ++p)
3567     {
3568       if ((*p)->needs_dynsym_index())
3569         {
3570           gold_assert(dynsym_section != NULL);
3571           unsigned int index = (*p)->dynsym_index();
3572           gold_assert(index > 0 && index != -1U);
3573           off_t off = (dynsym_section->offset()
3574                        + index * dynsym_section->entsize());
3575           symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
3576         }
3577     }
3578
3579   // Write out the Output_data which are not in an Output_section.
3580   for (Data_list::const_iterator p = this->special_output_list_.begin();
3581        p != this->special_output_list_.end();
3582        ++p)
3583     (*p)->write(of);
3584 }
3585
3586 // Write out the Output_sections which can only be written after the
3587 // input sections are complete.
3588
3589 void
3590 Layout::write_sections_after_input_sections(Output_file* of)
3591 {
3592   // Determine the final section offsets, and thus the final output
3593   // file size.  Note we finalize the .shstrab last, to allow the
3594   // after_input_section sections to modify their section-names before
3595   // writing.
3596   if (this->any_postprocessing_sections_)
3597     {
3598       off_t off = this->output_file_size_;
3599       off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
3600
3601       // Now that we've finalized the names, we can finalize the shstrab.
3602       off =
3603         this->set_section_offsets(off,
3604                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
3605
3606       if (off > this->output_file_size_)
3607         {
3608           of->resize(off);
3609           this->output_file_size_ = off;
3610         }
3611     }
3612
3613   for (Section_list::const_iterator p = this->section_list_.begin();
3614        p != this->section_list_.end();
3615        ++p)
3616     {
3617       if ((*p)->after_input_sections())
3618         (*p)->write(of);
3619     }
3620
3621   this->section_headers_->write(of);
3622 }
3623
3624 // If the build ID requires computing a checksum, do so here, and
3625 // write it out.  We compute a checksum over the entire file because
3626 // that is simplest.
3627
3628 void
3629 Layout::write_build_id(Output_file* of) const
3630 {
3631   if (this->build_id_note_ == NULL)
3632     return;
3633
3634   const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
3635
3636   unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
3637                                           this->build_id_note_->data_size());
3638
3639   const char* style = parameters->options().build_id();
3640   if (strcmp(style, "sha1") == 0)
3641     {
3642       sha1_ctx ctx;
3643       sha1_init_ctx(&ctx);
3644       sha1_process_bytes(iv, this->output_file_size_, &ctx);
3645       sha1_finish_ctx(&ctx, ov);
3646     }
3647   else if (strcmp(style, "md5") == 0)
3648     {
3649       md5_ctx ctx;
3650       md5_init_ctx(&ctx);
3651       md5_process_bytes(iv, this->output_file_size_, &ctx);
3652       md5_finish_ctx(&ctx, ov);
3653     }
3654   else
3655     gold_unreachable();
3656
3657   of->write_output_view(this->build_id_note_->offset(),
3658                         this->build_id_note_->data_size(),
3659                         ov);
3660
3661   of->free_input_view(0, this->output_file_size_, iv);
3662 }
3663
3664 // Write out a binary file.  This is called after the link is
3665 // complete.  IN is the temporary output file we used to generate the
3666 // ELF code.  We simply walk through the segments, read them from
3667 // their file offset in IN, and write them to their load address in
3668 // the output file.  FIXME: with a bit more work, we could support
3669 // S-records and/or Intel hex format here.
3670
3671 void
3672 Layout::write_binary(Output_file* in) const
3673 {
3674   gold_assert(parameters->options().oformat_enum()
3675               == General_options::OBJECT_FORMAT_BINARY);
3676
3677   // Get the size of the binary file.
3678   uint64_t max_load_address = 0;
3679   for (Segment_list::const_iterator p = this->segment_list_.begin();
3680        p != this->segment_list_.end();
3681        ++p)
3682     {
3683       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3684         {
3685           uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
3686           if (max_paddr > max_load_address)
3687             max_load_address = max_paddr;
3688         }
3689     }
3690
3691   Output_file out(parameters->options().output_file_name());
3692   out.open(max_load_address);
3693
3694   for (Segment_list::const_iterator p = this->segment_list_.begin();
3695        p != this->segment_list_.end();
3696        ++p)
3697     {
3698       if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
3699         {
3700           const unsigned char* vin = in->get_input_view((*p)->offset(),
3701                                                         (*p)->filesz());
3702           unsigned char* vout = out.get_output_view((*p)->paddr(),
3703                                                     (*p)->filesz());
3704           memcpy(vout, vin, (*p)->filesz());
3705           out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
3706           in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
3707         }
3708     }
3709
3710   out.close();
3711 }
3712
3713 // Print the output sections to the map file.
3714
3715 void
3716 Layout::print_to_mapfile(Mapfile* mapfile) const
3717 {
3718   for (Segment_list::const_iterator p = this->segment_list_.begin();
3719        p != this->segment_list_.end();
3720        ++p)
3721     (*p)->print_sections_to_mapfile(mapfile);
3722 }
3723
3724 // Print statistical information to stderr.  This is used for --stats.
3725
3726 void
3727 Layout::print_stats() const
3728 {
3729   this->namepool_.print_stats("section name pool");
3730   this->sympool_.print_stats("output symbol name pool");
3731   this->dynpool_.print_stats("dynamic name pool");
3732
3733   for (Section_list::const_iterator p = this->section_list_.begin();
3734        p != this->section_list_.end();
3735        ++p)
3736     (*p)->print_merge_stats();
3737 }
3738
3739 // Write_sections_task methods.
3740
3741 // We can always run this task.
3742
3743 Task_token*
3744 Write_sections_task::is_runnable()
3745 {
3746   return NULL;
3747 }
3748
3749 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
3750 // when finished.
3751
3752 void
3753 Write_sections_task::locks(Task_locker* tl)
3754 {
3755   tl->add(this, this->output_sections_blocker_);
3756   tl->add(this, this->final_blocker_);
3757 }
3758
3759 // Run the task--write out the data.
3760
3761 void
3762 Write_sections_task::run(Workqueue*)
3763 {
3764   this->layout_->write_output_sections(this->of_);
3765 }
3766
3767 // Write_data_task methods.
3768
3769 // We can always run this task.
3770
3771 Task_token*
3772 Write_data_task::is_runnable()
3773 {
3774   return NULL;
3775 }
3776
3777 // We need to unlock FINAL_BLOCKER when finished.
3778
3779 void
3780 Write_data_task::locks(Task_locker* tl)
3781 {
3782   tl->add(this, this->final_blocker_);
3783 }
3784
3785 // Run the task--write out the data.
3786
3787 void
3788 Write_data_task::run(Workqueue*)
3789 {
3790   this->layout_->write_data(this->symtab_, this->of_);
3791 }
3792
3793 // Write_symbols_task methods.
3794
3795 // We can always run this task.
3796
3797 Task_token*
3798 Write_symbols_task::is_runnable()
3799 {
3800   return NULL;
3801 }
3802
3803 // We need to unlock FINAL_BLOCKER when finished.
3804
3805 void
3806 Write_symbols_task::locks(Task_locker* tl)
3807 {
3808   tl->add(this, this->final_blocker_);
3809 }
3810
3811 // Run the task--write out the symbols.
3812
3813 void
3814 Write_symbols_task::run(Workqueue*)
3815 {
3816   this->symtab_->write_globals(this->sympool_, this->dynpool_,
3817                                this->layout_->symtab_xindex(),
3818                                this->layout_->dynsym_xindex(), this->of_);
3819 }
3820
3821 // Write_after_input_sections_task methods.
3822
3823 // We can only run this task after the input sections have completed.
3824
3825 Task_token*
3826 Write_after_input_sections_task::is_runnable()
3827 {
3828   if (this->input_sections_blocker_->is_blocked())
3829     return this->input_sections_blocker_;
3830   return NULL;
3831 }
3832
3833 // We need to unlock FINAL_BLOCKER when finished.
3834
3835 void
3836 Write_after_input_sections_task::locks(Task_locker* tl)
3837 {
3838   tl->add(this, this->final_blocker_);
3839 }
3840
3841 // Run the task.
3842
3843 void
3844 Write_after_input_sections_task::run(Workqueue*)
3845 {
3846   this->layout_->write_sections_after_input_sections(this->of_);
3847 }
3848
3849 // Close_task_runner methods.
3850
3851 // Run the task--close the file.
3852
3853 void
3854 Close_task_runner::run(Workqueue*, const Task*)
3855 {
3856   // If we need to compute a checksum for the BUILD if, we do so here.
3857   this->layout_->write_build_id(this->of_);
3858
3859   // If we've been asked to create a binary file, we do so here.
3860   if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
3861     this->layout_->write_binary(this->of_);
3862
3863   this->of_->close();
3864 }
3865
3866 // Instantiate the templates we need.  We could use the configure
3867 // script to restrict this to only the ones for implemented targets.
3868
3869 #ifdef HAVE_TARGET_32_LITTLE
3870 template
3871 Output_section*
3872 Layout::layout<32, false>(Sized_relobj<32, false>* object, unsigned int shndx,
3873                           const char* name,
3874                           const elfcpp::Shdr<32, false>& shdr,
3875                           unsigned int, unsigned int, off_t*);
3876 #endif
3877
3878 #ifdef HAVE_TARGET_32_BIG
3879 template
3880 Output_section*
3881 Layout::layout<32, true>(Sized_relobj<32, true>* object, unsigned int shndx,
3882                          const char* name,
3883                          const elfcpp::Shdr<32, true>& shdr,
3884                          unsigned int, unsigned int, off_t*);
3885 #endif
3886
3887 #ifdef HAVE_TARGET_64_LITTLE
3888 template
3889 Output_section*
3890 Layout::layout<64, false>(Sized_relobj<64, false>* object, unsigned int shndx,
3891                           const char* name,
3892                           const elfcpp::Shdr<64, false>& shdr,
3893                           unsigned int, unsigned int, off_t*);
3894 #endif
3895
3896 #ifdef HAVE_TARGET_64_BIG
3897 template
3898 Output_section*
3899 Layout::layout<64, true>(Sized_relobj<64, true>* object, unsigned int shndx,
3900                          const char* name,
3901                          const elfcpp::Shdr<64, true>& shdr,
3902                          unsigned int, unsigned int, off_t*);
3903 #endif
3904
3905 #ifdef HAVE_TARGET_32_LITTLE
3906 template
3907 Output_section*
3908 Layout::layout_reloc<32, false>(Sized_relobj<32, false>* object,
3909                                 unsigned int reloc_shndx,
3910                                 const elfcpp::Shdr<32, false>& shdr,
3911                                 Output_section* data_section,
3912                                 Relocatable_relocs* rr);
3913 #endif
3914
3915 #ifdef HAVE_TARGET_32_BIG
3916 template
3917 Output_section*
3918 Layout::layout_reloc<32, true>(Sized_relobj<32, true>* object,
3919                                unsigned int reloc_shndx,
3920                                const elfcpp::Shdr<32, true>& shdr,
3921                                Output_section* data_section,
3922                                Relocatable_relocs* rr);
3923 #endif
3924
3925 #ifdef HAVE_TARGET_64_LITTLE
3926 template
3927 Output_section*
3928 Layout::layout_reloc<64, false>(Sized_relobj<64, false>* object,
3929                                 unsigned int reloc_shndx,
3930                                 const elfcpp::Shdr<64, false>& shdr,
3931                                 Output_section* data_section,
3932                                 Relocatable_relocs* rr);
3933 #endif
3934
3935 #ifdef HAVE_TARGET_64_BIG
3936 template
3937 Output_section*
3938 Layout::layout_reloc<64, true>(Sized_relobj<64, true>* object,
3939                                unsigned int reloc_shndx,
3940                                const elfcpp::Shdr<64, true>& shdr,
3941                                Output_section* data_section,
3942                                Relocatable_relocs* rr);
3943 #endif
3944
3945 #ifdef HAVE_TARGET_32_LITTLE
3946 template
3947 void
3948 Layout::layout_group<32, false>(Symbol_table* symtab,
3949                                 Sized_relobj<32, false>* object,
3950                                 unsigned int,
3951                                 const char* group_section_name,
3952                                 const char* signature,
3953                                 const elfcpp::Shdr<32, false>& shdr,
3954                                 elfcpp::Elf_Word flags,
3955                                 std::vector<unsigned int>* shndxes);
3956 #endif
3957
3958 #ifdef HAVE_TARGET_32_BIG
3959 template
3960 void
3961 Layout::layout_group<32, true>(Symbol_table* symtab,
3962                                Sized_relobj<32, true>* object,
3963                                unsigned int,
3964                                const char* group_section_name,
3965                                const char* signature,
3966                                const elfcpp::Shdr<32, true>& shdr,
3967                                elfcpp::Elf_Word flags,
3968                                std::vector<unsigned int>* shndxes);
3969 #endif
3970
3971 #ifdef HAVE_TARGET_64_LITTLE
3972 template
3973 void
3974 Layout::layout_group<64, false>(Symbol_table* symtab,
3975                                 Sized_relobj<64, false>* object,
3976                                 unsigned int,
3977                                 const char* group_section_name,
3978                                 const char* signature,
3979                                 const elfcpp::Shdr<64, false>& shdr,
3980                                 elfcpp::Elf_Word flags,
3981                                 std::vector<unsigned int>* shndxes);
3982 #endif
3983
3984 #ifdef HAVE_TARGET_64_BIG
3985 template
3986 void
3987 Layout::layout_group<64, true>(Symbol_table* symtab,
3988                                Sized_relobj<64, true>* object,
3989                                unsigned int,
3990                                const char* group_section_name,
3991                                const char* signature,
3992                                const elfcpp::Shdr<64, true>& shdr,
3993                                elfcpp::Elf_Word flags,
3994                                std::vector<unsigned int>* shndxes);
3995 #endif
3996
3997 #ifdef HAVE_TARGET_32_LITTLE
3998 template
3999 Output_section*
4000 Layout::layout_eh_frame<32, false>(Sized_relobj<32, false>* object,
4001                                    const unsigned char* symbols,
4002                                    off_t symbols_size,
4003                                    const unsigned char* symbol_names,
4004                                    off_t symbol_names_size,
4005                                    unsigned int shndx,
4006                                    const elfcpp::Shdr<32, false>& shdr,
4007                                    unsigned int reloc_shndx,
4008                                    unsigned int reloc_type,
4009                                    off_t* off);
4010 #endif
4011
4012 #ifdef HAVE_TARGET_32_BIG
4013 template
4014 Output_section*
4015 Layout::layout_eh_frame<32, true>(Sized_relobj<32, true>* object,
4016                                    const unsigned char* symbols,
4017                                    off_t symbols_size,
4018                                   const unsigned char* symbol_names,
4019                                   off_t symbol_names_size,
4020                                   unsigned int shndx,
4021                                   const elfcpp::Shdr<32, true>& shdr,
4022                                   unsigned int reloc_shndx,
4023                                   unsigned int reloc_type,
4024                                   off_t* off);
4025 #endif
4026
4027 #ifdef HAVE_TARGET_64_LITTLE
4028 template
4029 Output_section*
4030 Layout::layout_eh_frame<64, false>(Sized_relobj<64, false>* object,
4031                                    const unsigned char* symbols,
4032                                    off_t symbols_size,
4033                                    const unsigned char* symbol_names,
4034                                    off_t symbol_names_size,
4035                                    unsigned int shndx,
4036                                    const elfcpp::Shdr<64, false>& shdr,
4037                                    unsigned int reloc_shndx,
4038                                    unsigned int reloc_type,
4039                                    off_t* off);
4040 #endif
4041
4042 #ifdef HAVE_TARGET_64_BIG
4043 template
4044 Output_section*
4045 Layout::layout_eh_frame<64, true>(Sized_relobj<64, true>* object,
4046                                    const unsigned char* symbols,
4047                                    off_t symbols_size,
4048                                   const unsigned char* symbol_names,
4049                                   off_t symbol_names_size,
4050                                   unsigned int shndx,
4051                                   const elfcpp::Shdr<64, true>& shdr,
4052                                   unsigned int reloc_shndx,
4053                                   unsigned int reloc_type,
4054                                   off_t* off);
4055 #endif
4056
4057 } // End namespace gold.