Merge branch 'vendor/OPENSSL'
[dragonfly.git] / sys / vm / vm_pageout.c
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * The Mach Operating System project at Carnegie-Mellon University.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *      This product includes software developed by the University of
25  *      California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49  *
50  * Permission to use, copy, modify and distribute this software and
51  * its documentation is hereby granted, provided that both the copyright
52  * notice and this permission notice appear in all copies of the
53  * software, derivative works or modified versions, and any portions
54  * thereof, and that both notices appear in supporting documentation.
55  *
56  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
57  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
58  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59  *
60  * Carnegie Mellon requests users of this software to return to
61  *
62  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
63  *  School of Computer Science
64  *  Carnegie Mellon University
65  *  Pittsburgh PA 15213-3890
66  *
67  * any improvements or extensions that they make and grant Carnegie the
68  * rights to redistribute these changes.
69  *
70  * $FreeBSD: src/sys/vm/vm_pageout.c,v 1.151.2.15 2002/12/29 18:21:04 dillon Exp $
71  * $DragonFly: src/sys/vm/vm_pageout.c,v 1.36 2008/07/01 02:02:56 dillon Exp $
72  */
73
74 /*
75  *      The proverbial page-out daemon.
76  */
77
78 #include "opt_vm.h"
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/proc.h>
83 #include <sys/kthread.h>
84 #include <sys/resourcevar.h>
85 #include <sys/signalvar.h>
86 #include <sys/vnode.h>
87 #include <sys/vmmeter.h>
88 #include <sys/sysctl.h>
89
90 #include <vm/vm.h>
91 #include <vm/vm_param.h>
92 #include <sys/lock.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_page.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_pageout.h>
97 #include <vm/vm_pager.h>
98 #include <vm/swap_pager.h>
99 #include <vm/vm_extern.h>
100
101 #include <sys/thread2.h>
102 #include <sys/mplock2.h>
103 #include <vm/vm_page2.h>
104
105 /*
106  * System initialization
107  */
108
109 /* the kernel process "vm_pageout"*/
110 static int vm_pageout_clean (vm_page_t);
111 static int vm_pageout_scan (int pass);
112 static int vm_pageout_free_page_calc (vm_size_t count);
113 struct thread *pagethread;
114
115 #if !defined(NO_SWAPPING)
116 /* the kernel process "vm_daemon"*/
117 static void vm_daemon (void);
118 static struct   thread *vmthread;
119
120 static struct kproc_desc vm_kp = {
121         "vmdaemon",
122         vm_daemon,
123         &vmthread
124 };
125 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
126 #endif
127
128
129 int vm_pages_needed=0;          /* Event on which pageout daemon sleeps */
130 int vm_pageout_deficit=0;       /* Estimated number of pages deficit */
131 int vm_pageout_pages_needed=0;  /* flag saying that the pageout daemon needs pages */
132
133 #if !defined(NO_SWAPPING)
134 static int vm_pageout_req_swapout;      /* XXX */
135 static int vm_daemon_needed;
136 #endif
137 static int vm_max_launder = 32;
138 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
139 static int vm_pageout_full_stats_interval = 0;
140 static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
141 static int defer_swap_pageouts=0;
142 static int disable_swap_pageouts=0;
143
144 #if defined(NO_SWAPPING)
145 static int vm_swap_enabled=0;
146 static int vm_swap_idle_enabled=0;
147 #else
148 static int vm_swap_enabled=1;
149 static int vm_swap_idle_enabled=0;
150 #endif
151
152 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
153         CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
154
155 SYSCTL_INT(_vm, OID_AUTO, max_launder,
156         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
157
158 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
159         CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
160
161 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
162         CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
163
164 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
165         CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
166
167 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
168         CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
169
170 #if defined(NO_SWAPPING)
171 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
172         CTLFLAG_RD, &vm_swap_enabled, 0, "");
173 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
174         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
175 #else
176 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
177         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
178 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
179         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
180 #endif
181
182 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
183         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
184
185 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
186         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
187
188 static int pageout_lock_miss;
189 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
190         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
191
192 int vm_load;
193 SYSCTL_INT(_vm, OID_AUTO, vm_load,
194         CTLFLAG_RD, &vm_load, 0, "load on the VM system");
195 int vm_load_enable = 1;
196 SYSCTL_INT(_vm, OID_AUTO, vm_load_enable,
197         CTLFLAG_RW, &vm_load_enable, 0, "enable vm_load rate limiting");
198 #ifdef INVARIANTS
199 int vm_load_debug;
200 SYSCTL_INT(_vm, OID_AUTO, vm_load_debug,
201         CTLFLAG_RW, &vm_load_debug, 0, "debug vm_load");
202 #endif
203
204 #define VM_PAGEOUT_PAGE_COUNT 16
205 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
206
207 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
208
209 #if !defined(NO_SWAPPING)
210 typedef void freeer_fcn_t (vm_map_t, vm_object_t, vm_pindex_t, int);
211 static void vm_pageout_map_deactivate_pages (vm_map_t, vm_pindex_t);
212 static freeer_fcn_t vm_pageout_object_deactivate_pages;
213 static void vm_req_vmdaemon (void);
214 #endif
215 static void vm_pageout_page_stats(void);
216
217 /*
218  * Update vm_load to slow down faulting processes.
219  *
220  * SMP races ok.
221  * No requirements.
222  */
223 void
224 vm_fault_ratecheck(void)
225 {
226         if (vm_pages_needed) {
227                 if (vm_load < 1000)
228                         ++vm_load;
229         } else {
230                 if (vm_load > 0)
231                         --vm_load;
232         }
233 }
234
235 /*
236  * vm_pageout_clean:
237  *
238  * Clean the page and remove it from the laundry.  The page must not be
239  * busy on-call.
240  * 
241  * We set the busy bit to cause potential page faults on this page to
242  * block.  Note the careful timing, however, the busy bit isn't set till
243  * late and we cannot do anything that will mess with the page.
244  *
245  * The caller must hold vm_token.
246  */
247 static int
248 vm_pageout_clean(vm_page_t m)
249 {
250         vm_object_t object;
251         vm_page_t mc[2*vm_pageout_page_count];
252         int pageout_count;
253         int ib, is, page_base;
254         vm_pindex_t pindex = m->pindex;
255
256         object = m->object;
257
258         /*
259          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
260          * with the new swapper, but we could have serious problems paging
261          * out other object types if there is insufficient memory.  
262          *
263          * Unfortunately, checking free memory here is far too late, so the
264          * check has been moved up a procedural level.
265          */
266
267         /*
268          * Don't mess with the page if it's busy, held, or special
269          */
270         if ((m->hold_count != 0) ||
271             ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
272                 return 0;
273         }
274
275         mc[vm_pageout_page_count] = m;
276         pageout_count = 1;
277         page_base = vm_pageout_page_count;
278         ib = 1;
279         is = 1;
280
281         /*
282          * Scan object for clusterable pages.
283          *
284          * We can cluster ONLY if: ->> the page is NOT
285          * clean, wired, busy, held, or mapped into a
286          * buffer, and one of the following:
287          * 1) The page is inactive, or a seldom used
288          *    active page.
289          * -or-
290          * 2) we force the issue.
291          *
292          * During heavy mmap/modification loads the pageout
293          * daemon can really fragment the underlying file
294          * due to flushing pages out of order and not trying
295          * align the clusters (which leave sporatic out-of-order
296          * holes).  To solve this problem we do the reverse scan
297          * first and attempt to align our cluster, then do a 
298          * forward scan if room remains.
299          */
300
301 more:
302         while (ib && pageout_count < vm_pageout_page_count) {
303                 vm_page_t p;
304
305                 if (ib > pindex) {
306                         ib = 0;
307                         break;
308                 }
309
310                 if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
311                         ib = 0;
312                         break;
313                 }
314                 if (((p->queue - p->pc) == PQ_CACHE) ||
315                     (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
316                         ib = 0;
317                         break;
318                 }
319                 vm_page_test_dirty(p);
320                 if ((p->dirty & p->valid) == 0 ||
321                     p->queue != PQ_INACTIVE ||
322                     p->wire_count != 0 ||       /* may be held by buf cache */
323                     p->hold_count != 0) {       /* may be undergoing I/O */
324                         ib = 0;
325                         break;
326                 }
327                 mc[--page_base] = p;
328                 ++pageout_count;
329                 ++ib;
330                 /*
331                  * alignment boundry, stop here and switch directions.  Do
332                  * not clear ib.
333                  */
334                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
335                         break;
336         }
337
338         while (pageout_count < vm_pageout_page_count && 
339             pindex + is < object->size) {
340                 vm_page_t p;
341
342                 if ((p = vm_page_lookup(object, pindex + is)) == NULL)
343                         break;
344                 if (((p->queue - p->pc) == PQ_CACHE) ||
345                     (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
346                         break;
347                 }
348                 vm_page_test_dirty(p);
349                 if ((p->dirty & p->valid) == 0 ||
350                     p->queue != PQ_INACTIVE ||
351                     p->wire_count != 0 ||       /* may be held by buf cache */
352                     p->hold_count != 0) {       /* may be undergoing I/O */
353                         break;
354                 }
355                 mc[page_base + pageout_count] = p;
356                 ++pageout_count;
357                 ++is;
358         }
359
360         /*
361          * If we exhausted our forward scan, continue with the reverse scan
362          * when possible, even past a page boundry.  This catches boundry
363          * conditions.
364          */
365         if (ib && pageout_count < vm_pageout_page_count)
366                 goto more;
367
368         /*
369          * we allow reads during pageouts...
370          */
371         return vm_pageout_flush(&mc[page_base], pageout_count, 0);
372 }
373
374 /*
375  * vm_pageout_flush() - launder the given pages
376  *
377  *      The given pages are laundered.  Note that we setup for the start of
378  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
379  *      reference count all in here rather then in the parent.  If we want
380  *      the parent to do more sophisticated things we may have to change
381  *      the ordering.
382  *
383  * The caller must hold vm_token.
384  */
385 int
386 vm_pageout_flush(vm_page_t *mc, int count, int flags)
387 {
388         vm_object_t object;
389         int pageout_status[count];
390         int numpagedout = 0;
391         int i;
392
393         ASSERT_LWKT_TOKEN_HELD(&vm_token);
394
395         /*
396          * Initiate I/O.  Bump the vm_page_t->busy counter.
397          */
398         for (i = 0; i < count; i++) {
399                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
400                 vm_page_io_start(mc[i]);
401         }
402
403         /*
404          * We must make the pages read-only.  This will also force the
405          * modified bit in the related pmaps to be cleared.  The pager
406          * cannot clear the bit for us since the I/O completion code
407          * typically runs from an interrupt.  The act of making the page
408          * read-only handles the case for us.
409          */
410         for (i = 0; i < count; i++) {
411                 vm_page_protect(mc[i], VM_PROT_READ);
412         }
413
414         object = mc[0]->object;
415         vm_object_pip_add(object, count);
416
417         vm_pager_put_pages(object, mc, count,
418             (flags | ((object == &kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
419             pageout_status);
420
421         for (i = 0; i < count; i++) {
422                 vm_page_t mt = mc[i];
423
424                 switch (pageout_status[i]) {
425                 case VM_PAGER_OK:
426                         numpagedout++;
427                         break;
428                 case VM_PAGER_PEND:
429                         numpagedout++;
430                         break;
431                 case VM_PAGER_BAD:
432                         /*
433                          * Page outside of range of object. Right now we
434                          * essentially lose the changes by pretending it
435                          * worked.
436                          */
437                         pmap_clear_modify(mt);
438                         vm_page_undirty(mt);
439                         break;
440                 case VM_PAGER_ERROR:
441                 case VM_PAGER_FAIL:
442                         /*
443                          * A page typically cannot be paged out when we
444                          * have run out of swap.  We leave the page
445                          * marked inactive and will try to page it out
446                          * again later.
447                          *
448                          * Starvation of the active page list is used to
449                          * determine when the system is massively memory
450                          * starved.
451                          */
452                         break;
453                 case VM_PAGER_AGAIN:
454                         break;
455                 }
456
457                 /*
458                  * If the operation is still going, leave the page busy to
459                  * block all other accesses. Also, leave the paging in
460                  * progress indicator set so that we don't attempt an object
461                  * collapse.
462                  *
463                  * For any pages which have completed synchronously, 
464                  * deactivate the page if we are under a severe deficit.
465                  * Do not try to enter them into the cache, though, they
466                  * might still be read-heavy.
467                  */
468                 if (pageout_status[i] != VM_PAGER_PEND) {
469                         vm_object_pip_wakeup(object);
470                         vm_page_io_finish(mt);
471                         if (vm_page_count_severe())
472                                 vm_page_deactivate(mt);
473 #if 0
474                         if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
475                                 vm_page_protect(mt, VM_PROT_READ);
476 #endif
477                 }
478         }
479         return numpagedout;
480 }
481
482 #if !defined(NO_SWAPPING)
483 /*
484  *      vm_pageout_object_deactivate_pages
485  *
486  *      deactivate enough pages to satisfy the inactive target
487  *      requirements or if vm_page_proc_limit is set, then
488  *      deactivate all of the pages in the object and its
489  *      backing_objects.
490  *
491  * The map must be locked.
492  * The caller must hold vm_token.
493  */
494 static int vm_pageout_object_deactivate_pages_callback(vm_page_t, void *);
495
496 static void
497 vm_pageout_object_deactivate_pages(vm_map_t map, vm_object_t object,
498                                    vm_pindex_t desired, int map_remove_only)
499 {
500         struct rb_vm_page_scan_info info;
501         int remove_mode;
502
503         if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
504                 return;
505
506         while (object) {
507                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
508                         return;
509                 if (object->paging_in_progress)
510                         return;
511
512                 remove_mode = map_remove_only;
513                 if (object->shadow_count > 1)
514                         remove_mode = 1;
515
516                 /*
517                  * scan the objects entire memory queue.  spl protection is
518                  * required to avoid an interrupt unbusy/free race against
519                  * our busy check.
520                  */
521                 crit_enter();
522                 info.limit = remove_mode;
523                 info.map = map;
524                 info.desired = desired;
525                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
526                                 vm_pageout_object_deactivate_pages_callback,
527                                 &info
528                 );
529                 crit_exit();
530                 object = object->backing_object;
531         }
532 }
533
534 /*
535  * The caller must hold vm_token.
536  */
537 static int
538 vm_pageout_object_deactivate_pages_callback(vm_page_t p, void *data)
539 {
540         struct rb_vm_page_scan_info *info = data;
541         int actcount;
542
543         if (pmap_resident_count(vm_map_pmap(info->map)) <= info->desired) {
544                 return(-1);
545         }
546         mycpu->gd_cnt.v_pdpages++;
547         if (p->wire_count != 0 || p->hold_count != 0 || p->busy != 0 ||
548             (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
549             !pmap_page_exists_quick(vm_map_pmap(info->map), p)) {
550                 return(0);
551         }
552
553         actcount = pmap_ts_referenced(p);
554         if (actcount) {
555                 vm_page_flag_set(p, PG_REFERENCED);
556         } else if (p->flags & PG_REFERENCED) {
557                 actcount = 1;
558         }
559
560         if ((p->queue != PQ_ACTIVE) &&
561                 (p->flags & PG_REFERENCED)) {
562                 vm_page_activate(p);
563                 p->act_count += actcount;
564                 vm_page_flag_clear(p, PG_REFERENCED);
565         } else if (p->queue == PQ_ACTIVE) {
566                 if ((p->flags & PG_REFERENCED) == 0) {
567                         p->act_count -= min(p->act_count, ACT_DECLINE);
568                         if (!info->limit && (vm_pageout_algorithm || (p->act_count == 0))) {
569                                 vm_page_busy(p);
570                                 vm_page_protect(p, VM_PROT_NONE);
571                                 vm_page_wakeup(p);
572                                 vm_page_deactivate(p);
573                         } else {
574                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
575                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
576                         }
577                 } else {
578                         vm_page_activate(p);
579                         vm_page_flag_clear(p, PG_REFERENCED);
580                         if (p->act_count < (ACT_MAX - ACT_ADVANCE))
581                                 p->act_count += ACT_ADVANCE;
582                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
583                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
584                 }
585         } else if (p->queue == PQ_INACTIVE) {
586                 vm_page_busy(p);
587                 vm_page_protect(p, VM_PROT_NONE);
588                 vm_page_wakeup(p);
589         }
590         return(0);
591 }
592
593 /*
594  * Deactivate some number of pages in a map, try to do it fairly, but
595  * that is really hard to do.
596  *
597  * The caller must hold vm_token.
598  */
599 static void
600 vm_pageout_map_deactivate_pages(vm_map_t map, vm_pindex_t desired)
601 {
602         vm_map_entry_t tmpe;
603         vm_object_t obj, bigobj;
604         int nothingwired;
605
606         if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT)) {
607                 return;
608         }
609
610         bigobj = NULL;
611         nothingwired = TRUE;
612
613         /*
614          * first, search out the biggest object, and try to free pages from
615          * that.
616          */
617         tmpe = map->header.next;
618         while (tmpe != &map->header) {
619                 switch(tmpe->maptype) {
620                 case VM_MAPTYPE_NORMAL:
621                 case VM_MAPTYPE_VPAGETABLE:
622                         obj = tmpe->object.vm_object;
623                         if ((obj != NULL) && (obj->shadow_count <= 1) &&
624                                 ((bigobj == NULL) ||
625                                  (bigobj->resident_page_count < obj->resident_page_count))) {
626                                 bigobj = obj;
627                         }
628                         break;
629                 default:
630                         break;
631                 }
632                 if (tmpe->wired_count > 0)
633                         nothingwired = FALSE;
634                 tmpe = tmpe->next;
635         }
636
637         if (bigobj)
638                 vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
639
640         /*
641          * Next, hunt around for other pages to deactivate.  We actually
642          * do this search sort of wrong -- .text first is not the best idea.
643          */
644         tmpe = map->header.next;
645         while (tmpe != &map->header) {
646                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
647                         break;
648                 switch(tmpe->maptype) {
649                 case VM_MAPTYPE_NORMAL:
650                 case VM_MAPTYPE_VPAGETABLE:
651                         obj = tmpe->object.vm_object;
652                         if (obj)
653                                 vm_pageout_object_deactivate_pages(map, obj, desired, 0);
654                         break;
655                 default:
656                         break;
657                 }
658                 tmpe = tmpe->next;
659         };
660
661         /*
662          * Remove all mappings if a process is swapped out, this will free page
663          * table pages.
664          */
665         if (desired == 0 && nothingwired)
666                 pmap_remove(vm_map_pmap(map),
667                             VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
668         vm_map_unlock(map);
669 }
670 #endif
671
672 /*
673  * Don't try to be fancy - being fancy can lead to vnode deadlocks.   We
674  * only do it for OBJT_DEFAULT and OBJT_SWAP objects which we know can
675  * be trivially freed.
676  *
677  * The caller must hold vm_token.
678  */
679 static void
680 vm_pageout_page_free(vm_page_t m) 
681 {
682         vm_object_t object = m->object;
683         int type = object->type;
684
685         if (type == OBJT_SWAP || type == OBJT_DEFAULT)
686                 vm_object_reference(object);
687         vm_page_busy(m);
688         vm_page_protect(m, VM_PROT_NONE);
689         vm_page_free(m);
690         if (type == OBJT_SWAP || type == OBJT_DEFAULT)
691                 vm_object_deallocate(object);
692 }
693
694 /*
695  * vm_pageout_scan does the dirty work for the pageout daemon.
696  */
697 struct vm_pageout_scan_info {
698         struct proc *bigproc;
699         vm_offset_t bigsize;
700 };
701
702 static int vm_pageout_scan_callback(struct proc *p, void *data);
703
704 /*
705  * The caller must hold vm_token.
706  */
707 static int
708 vm_pageout_scan(int pass)
709 {
710         struct vm_pageout_scan_info info;
711         vm_page_t m, next;
712         struct vm_page marker;
713         struct vnode *vpfailed;         /* warning, allowed to be stale */
714         int maxscan, pcount;
715         int recycle_count;
716         int inactive_shortage, active_shortage;
717         int inactive_original_shortage;
718         vm_object_t object;
719         int actcount;
720         int vnodes_skipped = 0;
721         int maxlaunder;
722
723         /*
724          * Do whatever cleanup that the pmap code can.
725          */
726         pmap_collect();
727
728         /*
729          * Calculate our target for the number of free+cache pages we
730          * want to get to.  This is higher then the number that causes
731          * allocations to stall (severe) in order to provide hysteresis,
732          * and if we don't make it all the way but get to the minimum
733          * we're happy.
734          */
735         inactive_shortage = vm_paging_target() + vm_pageout_deficit;
736         inactive_original_shortage = inactive_shortage;
737         vm_pageout_deficit = 0;
738
739         /*
740          * Initialize our marker
741          */
742         bzero(&marker, sizeof(marker));
743         marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
744         marker.queue = PQ_INACTIVE;
745         marker.wire_count = 1;
746
747         /*
748          * Start scanning the inactive queue for pages we can move to the
749          * cache or free.  The scan will stop when the target is reached or
750          * we have scanned the entire inactive queue.  Note that m->act_count
751          * is not used to form decisions for the inactive queue, only for the
752          * active queue.
753          *
754          * maxlaunder limits the number of dirty pages we flush per scan.
755          * For most systems a smaller value (16 or 32) is more robust under
756          * extreme memory and disk pressure because any unnecessary writes
757          * to disk can result in extreme performance degredation.  However,
758          * systems with excessive dirty pages (especially when MAP_NOSYNC is
759          * used) will die horribly with limited laundering.  If the pageout
760          * daemon cannot clean enough pages in the first pass, we let it go
761          * all out in succeeding passes.
762          */
763         if ((maxlaunder = vm_max_launder) <= 1)
764                 maxlaunder = 1;
765         if (pass)
766                 maxlaunder = 10000;
767
768         /*
769          * We will generally be in a critical section throughout the 
770          * scan, but we can release it temporarily when we are sitting on a
771          * non-busy page without fear.  this is required to prevent an
772          * interrupt from unbusying or freeing a page prior to our busy
773          * check, leaving us on the wrong queue or checking the wrong
774          * page.
775          */
776         crit_enter();
777 rescan0:
778         vpfailed = NULL;
779         maxscan = vmstats.v_inactive_count;
780         for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
781              m != NULL && maxscan-- > 0 && inactive_shortage > 0;
782              m = next
783          ) {
784                 mycpu->gd_cnt.v_pdpages++;
785
786                 /*
787                  * Give interrupts a chance
788                  */
789                 crit_exit();
790                 crit_enter();
791
792                 /*
793                  * It's easier for some of the conditions below to just loop
794                  * and catch queue changes here rather then check everywhere
795                  * else.
796                  */
797                 if (m->queue != PQ_INACTIVE)
798                         goto rescan0;
799                 next = TAILQ_NEXT(m, pageq);
800
801                 /*
802                  * skip marker pages
803                  */
804                 if (m->flags & PG_MARKER)
805                         continue;
806
807                 /*
808                  * A held page may be undergoing I/O, so skip it.
809                  */
810                 if (m->hold_count) {
811                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
812                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
813                         ++vm_swapcache_inactive_heuristic;
814                         continue;
815                 }
816
817                 /*
818                  * Dont mess with busy pages, keep in the front of the
819                  * queue, most likely are being paged out.
820                  */
821                 if (m->busy || (m->flags & PG_BUSY)) {
822                         continue;
823                 }
824
825                 if (m->object->ref_count == 0) {
826                         /*
827                          * If the object is not being used, we ignore previous 
828                          * references.
829                          */
830                         vm_page_flag_clear(m, PG_REFERENCED);
831                         pmap_clear_reference(m);
832
833                 } else if (((m->flags & PG_REFERENCED) == 0) &&
834                             (actcount = pmap_ts_referenced(m))) {
835                         /*
836                          * Otherwise, if the page has been referenced while 
837                          * in the inactive queue, we bump the "activation
838                          * count" upwards, making it less likely that the
839                          * page will be added back to the inactive queue
840                          * prematurely again.  Here we check the page tables
841                          * (or emulated bits, if any), given the upper level
842                          * VM system not knowing anything about existing 
843                          * references.
844                          */
845                         vm_page_activate(m);
846                         m->act_count += (actcount + ACT_ADVANCE);
847                         continue;
848                 }
849
850                 /*
851                  * If the upper level VM system knows about any page 
852                  * references, we activate the page.  We also set the 
853                  * "activation count" higher than normal so that we will less 
854                  * likely place pages back onto the inactive queue again.
855                  */
856                 if ((m->flags & PG_REFERENCED) != 0) {
857                         vm_page_flag_clear(m, PG_REFERENCED);
858                         actcount = pmap_ts_referenced(m);
859                         vm_page_activate(m);
860                         m->act_count += (actcount + ACT_ADVANCE + 1);
861                         continue;
862                 }
863
864                 /*
865                  * If the upper level VM system doesn't know anything about 
866                  * the page being dirty, we have to check for it again.  As 
867                  * far as the VM code knows, any partially dirty pages are 
868                  * fully dirty.
869                  *
870                  * Pages marked PG_WRITEABLE may be mapped into the user
871                  * address space of a process running on another cpu.  A
872                  * user process (without holding the MP lock) running on
873                  * another cpu may be able to touch the page while we are
874                  * trying to remove it.  vm_page_cache() will handle this
875                  * case for us.
876                  */
877                 if (m->dirty == 0) {
878                         vm_page_test_dirty(m);
879                 } else {
880                         vm_page_dirty(m);
881                 }
882
883                 if (m->valid == 0) {
884                         /*
885                          * Invalid pages can be easily freed
886                          */
887                         vm_pageout_page_free(m);
888                         mycpu->gd_cnt.v_dfree++;
889                         --inactive_shortage;
890                 } else if (m->dirty == 0) {
891                         /*
892                          * Clean pages can be placed onto the cache queue.
893                          * This effectively frees them.
894                          */
895                         vm_page_cache(m);
896                         --inactive_shortage;
897                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
898                         /*
899                          * Dirty pages need to be paged out, but flushing
900                          * a page is extremely expensive verses freeing
901                          * a clean page.  Rather then artificially limiting
902                          * the number of pages we can flush, we instead give
903                          * dirty pages extra priority on the inactive queue
904                          * by forcing them to be cycled through the queue
905                          * twice before being flushed, after which the 
906                          * (now clean) page will cycle through once more
907                          * before being freed.  This significantly extends
908                          * the thrash point for a heavily loaded machine.
909                          */
910                         vm_page_flag_set(m, PG_WINATCFLS);
911                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
912                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
913                         ++vm_swapcache_inactive_heuristic;
914                 } else if (maxlaunder > 0) {
915                         /*
916                          * We always want to try to flush some dirty pages if
917                          * we encounter them, to keep the system stable.
918                          * Normally this number is small, but under extreme
919                          * pressure where there are insufficient clean pages
920                          * on the inactive queue, we may have to go all out.
921                          */
922                         int swap_pageouts_ok;
923                         struct vnode *vp = NULL;
924
925                         object = m->object;
926
927                         if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
928                                 swap_pageouts_ok = 1;
929                         } else {
930                                 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
931                                 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
932                                 vm_page_count_min(0));
933                                                                                 
934                         }
935
936                         /*
937                          * We don't bother paging objects that are "dead".  
938                          * Those objects are in a "rundown" state.
939                          */
940                         if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
941                                 TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
942                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
943                                 ++vm_swapcache_inactive_heuristic;
944                                 continue;
945                         }
946
947                         /*
948                          * The object is already known NOT to be dead.   It
949                          * is possible for the vget() to block the whole
950                          * pageout daemon, but the new low-memory handling
951                          * code should prevent it.
952                          *
953                          * The previous code skipped locked vnodes and, worse,
954                          * reordered pages in the queue.  This results in
955                          * completely non-deterministic operation because,
956                          * quite often, a vm_fault has initiated an I/O and
957                          * is holding a locked vnode at just the point where
958                          * the pageout daemon is woken up.
959                          *
960                          * We can't wait forever for the vnode lock, we might
961                          * deadlock due to a vn_read() getting stuck in
962                          * vm_wait while holding this vnode.  We skip the 
963                          * vnode if we can't get it in a reasonable amount
964                          * of time.
965                          *
966                          * vpfailed is used to (try to) avoid the case where
967                          * a large number of pages are associated with a
968                          * locked vnode, which could cause the pageout daemon
969                          * to stall for an excessive amount of time.
970                          */
971                         if (object->type == OBJT_VNODE) {
972                                 int flags;
973
974                                 vp = object->handle;
975                                 flags = LK_EXCLUSIVE | LK_NOOBJ;
976                                 if (vp == vpfailed)
977                                         flags |= LK_NOWAIT;
978                                 else
979                                         flags |= LK_TIMELOCK;
980                                 if (vget(vp, flags) != 0) {
981                                         vpfailed = vp;
982                                         ++pageout_lock_miss;
983                                         if (object->flags & OBJ_MIGHTBEDIRTY)
984                                                     vnodes_skipped++;
985                                         continue;
986                                 }
987
988                                 /*
989                                  * The page might have been moved to another
990                                  * queue during potential blocking in vget()
991                                  * above.  The page might have been freed and
992                                  * reused for another vnode.  The object might
993                                  * have been reused for another vnode.
994                                  */
995                                 if (m->queue != PQ_INACTIVE ||
996                                     m->object != object ||
997                                     object->handle != vp) {
998                                         if (object->flags & OBJ_MIGHTBEDIRTY)
999                                                 vnodes_skipped++;
1000                                         vput(vp);
1001                                         continue;
1002                                 }
1003         
1004                                 /*
1005                                  * The page may have been busied during the
1006                                  * blocking in vput();  We don't move the
1007                                  * page back onto the end of the queue so that
1008                                  * statistics are more correct if we don't.
1009                                  */
1010                                 if (m->busy || (m->flags & PG_BUSY)) {
1011                                         vput(vp);
1012                                         continue;
1013                                 }
1014
1015                                 /*
1016                                  * If the page has become held it might
1017                                  * be undergoing I/O, so skip it
1018                                  */
1019                                 if (m->hold_count) {
1020                                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1021                                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1022                                         ++vm_swapcache_inactive_heuristic;
1023                                         if (object->flags & OBJ_MIGHTBEDIRTY)
1024                                                 vnodes_skipped++;
1025                                         vput(vp);
1026                                         continue;
1027                                 }
1028                         }
1029
1030                         /*
1031                          * If a page is dirty, then it is either being washed
1032                          * (but not yet cleaned) or it is still in the
1033                          * laundry.  If it is still in the laundry, then we
1034                          * start the cleaning operation. 
1035                          *
1036                          * This operation may cluster, invalidating the 'next'
1037                          * pointer.  To prevent an inordinate number of
1038                          * restarts we use our marker to remember our place.
1039                          *
1040                          * decrement inactive_shortage on success to account
1041                          * for the (future) cleaned page.  Otherwise we
1042                          * could wind up laundering or cleaning too many
1043                          * pages.
1044                          */
1045                         TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
1046                         if (vm_pageout_clean(m) != 0) {
1047                                 --inactive_shortage;
1048                                 --maxlaunder;
1049                         }
1050                         next = TAILQ_NEXT(&marker, pageq);
1051                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
1052                         if (vp != NULL)
1053                                 vput(vp);
1054                 }
1055         }
1056
1057         /*
1058          * We want to move pages from the active queue to the inactive
1059          * queue to get the inactive queue to the inactive target.  If
1060          * we still have a page shortage from above we try to directly free
1061          * clean pages instead of moving them.
1062          *
1063          * If we do still have a shortage we keep track of the number of
1064          * pages we free or cache (recycle_count) as a measure of thrashing
1065          * between the active and inactive queues.
1066          *
1067          * If we were able to completely satisfy the free+cache targets
1068          * from the inactive pool we limit the number of pages we move
1069          * from the active pool to the inactive pool to 2x the pages we
1070          * had removed from the inactive pool (with a minimum of 1/5 the
1071          * inactive target).  If we were not able to completely satisfy
1072          * the free+cache targets we go for the whole target aggressively.
1073          *
1074          * NOTE: Both variables can end up negative.
1075          * NOTE: We are still in a critical section.
1076          */
1077         active_shortage = vmstats.v_inactive_target - vmstats.v_inactive_count;
1078         if (inactive_original_shortage < vmstats.v_inactive_target / 10)
1079                 inactive_original_shortage = vmstats.v_inactive_target / 10;
1080         if (inactive_shortage <= 0 &&
1081             active_shortage > inactive_original_shortage * 2) {
1082                 active_shortage = inactive_original_shortage * 2;
1083         }
1084
1085         pcount = vmstats.v_active_count;
1086         recycle_count = 0;
1087         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1088
1089         while ((m != NULL) && (pcount-- > 0) &&
1090                (inactive_shortage > 0 || active_shortage > 0)
1091         ) {
1092                 /*
1093                  * Give interrupts a chance.
1094                  */
1095                 crit_exit();
1096                 crit_enter();
1097
1098                 /*
1099                  * If the page was ripped out from under us, just stop.
1100                  */
1101                 if (m->queue != PQ_ACTIVE)
1102                         break;
1103                 next = TAILQ_NEXT(m, pageq);
1104
1105                 /*
1106                  * Don't deactivate pages that are busy.
1107                  */
1108                 if ((m->busy != 0) ||
1109                     (m->flags & PG_BUSY) ||
1110                     (m->hold_count != 0)) {
1111                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1112                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1113                         m = next;
1114                         continue;
1115                 }
1116
1117                 /*
1118                  * The count for pagedaemon pages is done after checking the
1119                  * page for eligibility...
1120                  */
1121                 mycpu->gd_cnt.v_pdpages++;
1122
1123                 /*
1124                  * Check to see "how much" the page has been used and clear
1125                  * the tracking access bits.  If the object has no references
1126                  * don't bother paying the expense.
1127                  */
1128                 actcount = 0;
1129                 if (m->object->ref_count != 0) {
1130                         if (m->flags & PG_REFERENCED)
1131                                 ++actcount;
1132                         actcount += pmap_ts_referenced(m);
1133                         if (actcount) {
1134                                 m->act_count += ACT_ADVANCE + actcount;
1135                                 if (m->act_count > ACT_MAX)
1136                                         m->act_count = ACT_MAX;
1137                         }
1138                 }
1139                 vm_page_flag_clear(m, PG_REFERENCED);
1140
1141                 /*
1142                  * actcount is only valid if the object ref_count is non-zero.
1143                  */
1144                 if (actcount && m->object->ref_count != 0) {
1145                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1146                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1147                 } else {
1148                         m->act_count -= min(m->act_count, ACT_DECLINE);
1149                         if (vm_pageout_algorithm ||
1150                             m->object->ref_count == 0 ||
1151                             m->act_count < pass + 1
1152                         ) {
1153                                 /*
1154                                  * Deactivate the page.  If we had a
1155                                  * shortage from our inactive scan try to
1156                                  * free (cache) the page instead.
1157                                  *
1158                                  * Don't just blindly cache the page if
1159                                  * we do not have a shortage from the
1160                                  * inactive scan, that could lead to
1161                                  * gigabytes being moved.
1162                                  */
1163                                 --active_shortage;
1164                                 if (inactive_shortage > 0 ||
1165                                     m->object->ref_count == 0) {
1166                                         if (inactive_shortage > 0)
1167                                                 ++recycle_count;
1168                                         vm_page_busy(m);
1169                                         vm_page_protect(m, VM_PROT_NONE);
1170                                         vm_page_wakeup(m);
1171                                         if (m->dirty == 0 &&
1172                                             inactive_shortage > 0) {
1173                                                 --inactive_shortage;
1174                                                 vm_page_cache(m);
1175                                         } else {
1176                                                 vm_page_deactivate(m);
1177                                         }
1178                                 } else {
1179                                         vm_page_deactivate(m);
1180                                 }
1181                         } else {
1182                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1183                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1184                         }
1185                 }
1186                 m = next;
1187         }
1188
1189         /*
1190          * The number of actually free pages can drop down to v_free_reserved,
1191          * we try to build the free count back above v_free_min.  Note that
1192          * vm_paging_needed() also returns TRUE if v_free_count is not at
1193          * least v_free_min so that is the minimum we must build the free
1194          * count to.
1195          *
1196          * We use a slightly higher target to improve hysteresis,
1197          * ((v_free_target + v_free_min) / 2).  Since v_free_target
1198          * is usually the same as v_cache_min this maintains about
1199          * half the pages in the free queue as are in the cache queue,
1200          * providing pretty good pipelining for pageout operation.
1201          *
1202          * The system operator can manipulate vm.v_cache_min and
1203          * vm.v_free_target to tune the pageout demon.  Be sure
1204          * to keep vm.v_free_min < vm.v_free_target.
1205          *
1206          * Note that the original paging target is to get at least
1207          * (free_min + cache_min) into (free + cache).  The slightly
1208          * higher target will shift additional pages from cache to free
1209          * without effecting the original paging target in order to
1210          * maintain better hysteresis and not have the free count always
1211          * be dead-on v_free_min.
1212          *
1213          * NOTE: we are still in a critical section.
1214          *
1215          * Pages moved from PQ_CACHE to totally free are not counted in the
1216          * pages_freed counter.
1217          */
1218         while (vmstats.v_free_count <
1219                (vmstats.v_free_min + vmstats.v_free_target) / 2) {
1220                 /*
1221                  *
1222                  */
1223                 static int cache_rover = 0;
1224                 m = vm_page_list_find(PQ_CACHE, cache_rover, FALSE);
1225                 if (m == NULL)
1226                         break;
1227                 if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || 
1228                     m->busy || 
1229                     m->hold_count || 
1230                     m->wire_count) {
1231 #ifdef INVARIANTS
1232                         kprintf("Warning: busy page %p found in cache\n", m);
1233 #endif
1234                         vm_page_deactivate(m);
1235                         continue;
1236                 }
1237                 KKASSERT((m->flags & PG_MAPPED) == 0);
1238                 KKASSERT(m->dirty == 0);
1239                 cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1240                 vm_pageout_page_free(m);
1241                 mycpu->gd_cnt.v_dfree++;
1242         }
1243
1244         crit_exit();
1245
1246 #if !defined(NO_SWAPPING)
1247         /*
1248          * Idle process swapout -- run once per second.
1249          */
1250         if (vm_swap_idle_enabled) {
1251                 static long lsec;
1252                 if (time_second != lsec) {
1253                         vm_pageout_req_swapout |= VM_SWAP_IDLE;
1254                         vm_req_vmdaemon();
1255                         lsec = time_second;
1256                 }
1257         }
1258 #endif
1259                 
1260         /*
1261          * If we didn't get enough free pages, and we have skipped a vnode
1262          * in a writeable object, wakeup the sync daemon.  And kick swapout
1263          * if we did not get enough free pages.
1264          */
1265         if (vm_paging_target() > 0) {
1266                 if (vnodes_skipped && vm_page_count_min(0))
1267                         speedup_syncer();
1268 #if !defined(NO_SWAPPING)
1269                 if (vm_swap_enabled && vm_page_count_target()) {
1270                         vm_req_vmdaemon();
1271                         vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1272                 }
1273 #endif
1274         }
1275
1276         /*
1277          * Handle catastrophic conditions.  Under good conditions we should
1278          * be at the target, well beyond our minimum.  If we could not even
1279          * reach our minimum the system is under heavy stress.
1280          *
1281          * Determine whether we have run out of memory.  This occurs when
1282          * swap_pager_full is TRUE and the only pages left in the page
1283          * queues are dirty.  We will still likely have page shortages.
1284          *
1285          * - swap_pager_full is set if insufficient swap was
1286          *   available to satisfy a requested pageout.
1287          *
1288          * - the inactive queue is bloated (4 x size of active queue),
1289          *   meaning it is unable to get rid of dirty pages and.
1290          *
1291          * - vm_page_count_min() without counting pages recycled from the
1292          *   active queue (recycle_count) means we could not recover
1293          *   enough pages to meet bare minimum needs.  This test only
1294          *   works if the inactive queue is bloated.
1295          *
1296          * - due to a positive inactive_shortage we shifted the remaining
1297          *   dirty pages from the active queue to the inactive queue
1298          *   trying to find clean ones to free.
1299          */
1300         if (swap_pager_full && vm_page_count_min(recycle_count))
1301                 kprintf("Warning: system low on memory+swap!\n");
1302         if (swap_pager_full && vm_page_count_min(recycle_count) &&
1303             vmstats.v_inactive_count > vmstats.v_active_count * 4 &&
1304             inactive_shortage > 0) {
1305                 /*
1306                  * Kill something.
1307                  */
1308                 info.bigproc = NULL;
1309                 info.bigsize = 0;
1310                 allproc_scan(vm_pageout_scan_callback, &info);
1311                 if (info.bigproc != NULL) {
1312                         killproc(info.bigproc, "out of swap space");
1313                         info.bigproc->p_nice = PRIO_MIN;
1314                         info.bigproc->p_usched->resetpriority(
1315                                 FIRST_LWP_IN_PROC(info.bigproc));
1316                         wakeup(&vmstats.v_free_count);
1317                         PRELE(info.bigproc);
1318                 }
1319         }
1320         return(inactive_shortage);
1321 }
1322
1323 /*
1324  * The caller must hold vm_token and proc_token.
1325  */
1326 static int
1327 vm_pageout_scan_callback(struct proc *p, void *data)
1328 {
1329         struct vm_pageout_scan_info *info = data;
1330         vm_offset_t size;
1331
1332         /*
1333          * Never kill system processes or init.  If we have configured swap
1334          * then try to avoid killing low-numbered pids.
1335          */
1336         if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1337             ((p->p_pid < 48) && (vm_swap_size != 0))) {
1338                 return (0);
1339         }
1340
1341         /*
1342          * if the process is in a non-running type state,
1343          * don't touch it.
1344          */
1345         if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1346                 return (0);
1347
1348         /*
1349          * Get the approximate process size.  Note that anonymous pages
1350          * with backing swap will be counted twice, but there should not
1351          * be too many such pages due to the stress the VM system is
1352          * under at this point.
1353          */
1354         size = vmspace_anonymous_count(p->p_vmspace) +
1355                 vmspace_swap_count(p->p_vmspace);
1356
1357         /*
1358          * If the this process is bigger than the biggest one
1359          * remember it.
1360          */
1361         if (info->bigsize < size) {
1362                 if (info->bigproc)
1363                         PRELE(info->bigproc);
1364                 PHOLD(p);
1365                 info->bigproc = p;
1366                 info->bigsize = size;
1367         }
1368         return(0);
1369 }
1370
1371 /*
1372  * This routine tries to maintain the pseudo LRU active queue,
1373  * so that during long periods of time where there is no paging,
1374  * that some statistic accumulation still occurs.  This code
1375  * helps the situation where paging just starts to occur.
1376  *
1377  * The caller must hold vm_token.
1378  */
1379 static void
1380 vm_pageout_page_stats(void)
1381 {
1382         vm_page_t m,next;
1383         int pcount,tpcount;             /* Number of pages to check */
1384         static int fullintervalcount = 0;
1385         int page_shortage;
1386
1387         page_shortage = 
1388             (vmstats.v_inactive_target + vmstats.v_cache_max + vmstats.v_free_min) -
1389             (vmstats.v_free_count + vmstats.v_inactive_count + vmstats.v_cache_count);
1390
1391         if (page_shortage <= 0)
1392                 return;
1393
1394         crit_enter();
1395
1396         pcount = vmstats.v_active_count;
1397         fullintervalcount += vm_pageout_stats_interval;
1398         if (fullintervalcount < vm_pageout_full_stats_interval) {
1399                 tpcount = (vm_pageout_stats_max * vmstats.v_active_count) / vmstats.v_page_count;
1400                 if (pcount > tpcount)
1401                         pcount = tpcount;
1402         } else {
1403                 fullintervalcount = 0;
1404         }
1405
1406         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1407         while ((m != NULL) && (pcount-- > 0)) {
1408                 int actcount;
1409
1410                 if (m->queue != PQ_ACTIVE) {
1411                         break;
1412                 }
1413
1414                 next = TAILQ_NEXT(m, pageq);
1415                 /*
1416                  * Don't deactivate pages that are busy.
1417                  */
1418                 if ((m->busy != 0) ||
1419                     (m->flags & PG_BUSY) ||
1420                     (m->hold_count != 0)) {
1421                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1422                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1423                         m = next;
1424                         continue;
1425                 }
1426
1427                 actcount = 0;
1428                 if (m->flags & PG_REFERENCED) {
1429                         vm_page_flag_clear(m, PG_REFERENCED);
1430                         actcount += 1;
1431                 }
1432
1433                 actcount += pmap_ts_referenced(m);
1434                 if (actcount) {
1435                         m->act_count += ACT_ADVANCE + actcount;
1436                         if (m->act_count > ACT_MAX)
1437                                 m->act_count = ACT_MAX;
1438                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1439                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1440                 } else {
1441                         if (m->act_count == 0) {
1442                                 /*
1443                                  * We turn off page access, so that we have
1444                                  * more accurate RSS stats.  We don't do this
1445                                  * in the normal page deactivation when the
1446                                  * system is loaded VM wise, because the
1447                                  * cost of the large number of page protect
1448                                  * operations would be higher than the value
1449                                  * of doing the operation.
1450                                  */
1451                                 vm_page_busy(m);
1452                                 vm_page_protect(m, VM_PROT_NONE);
1453                                 vm_page_wakeup(m);
1454                                 vm_page_deactivate(m);
1455                         } else {
1456                                 m->act_count -= min(m->act_count, ACT_DECLINE);
1457                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1458                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1459                         }
1460                 }
1461
1462                 m = next;
1463         }
1464         crit_exit();
1465 }
1466
1467 /*
1468  * The caller must hold vm_token.
1469  */
1470 static int
1471 vm_pageout_free_page_calc(vm_size_t count)
1472 {
1473         if (count < vmstats.v_page_count)
1474                  return 0;
1475         /*
1476          * free_reserved needs to include enough for the largest swap pager
1477          * structures plus enough for any pv_entry structs when paging.
1478          */
1479         if (vmstats.v_page_count > 1024)
1480                 vmstats.v_free_min = 4 + (vmstats.v_page_count - 1024) / 200;
1481         else
1482                 vmstats.v_free_min = 4;
1483         vmstats.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1484                 vmstats.v_interrupt_free_min;
1485         vmstats.v_free_reserved = vm_pageout_page_count +
1486                 vmstats.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1487         vmstats.v_free_severe = vmstats.v_free_min / 2;
1488         vmstats.v_free_min += vmstats.v_free_reserved;
1489         vmstats.v_free_severe += vmstats.v_free_reserved;
1490         return 1;
1491 }
1492
1493
1494 /*
1495  * vm_pageout is the high level pageout daemon.
1496  *
1497  * No requirements.
1498  */
1499 static void
1500 vm_pageout_thread(void)
1501 {
1502         int pass;
1503         int inactive_shortage;
1504
1505         /*
1506          * Permanently hold vm_token.
1507          */
1508         lwkt_gettoken(&vm_token);
1509
1510         /*
1511          * Initialize some paging parameters.
1512          */
1513         curthread->td_flags |= TDF_SYSTHREAD;
1514
1515         vmstats.v_interrupt_free_min = 2;
1516         if (vmstats.v_page_count < 2000)
1517                 vm_pageout_page_count = 8;
1518
1519         vm_pageout_free_page_calc(vmstats.v_page_count);
1520
1521         /*
1522          * v_free_target and v_cache_min control pageout hysteresis.  Note
1523          * that these are more a measure of the VM cache queue hysteresis
1524          * then the VM free queue.  Specifically, v_free_target is the
1525          * high water mark (free+cache pages).
1526          *
1527          * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1528          * low water mark, while v_free_min is the stop.  v_cache_min must
1529          * be big enough to handle memory needs while the pageout daemon
1530          * is signalled and run to free more pages.
1531          */
1532         if (vmstats.v_free_count > 6144)
1533                 vmstats.v_free_target = 4 * vmstats.v_free_min + vmstats.v_free_reserved;
1534         else
1535                 vmstats.v_free_target = 2 * vmstats.v_free_min + vmstats.v_free_reserved;
1536
1537         /*
1538          * NOTE: With the new buffer cache b_act_count we want the default
1539          *       inactive target to be a percentage of available memory.
1540          *
1541          *       The inactive target essentially determines the minimum
1542          *       number of 'temporary' pages capable of caching one-time-use
1543          *       files when the VM system is otherwise full of pages
1544          *       belonging to multi-time-use files or active program data.
1545          *
1546          * NOTE: The inactive target is aggressively persued only if the
1547          *       inactive queue becomes too small.  If the inactive queue
1548          *       is large enough to satisfy page movement to free+cache
1549          *       then it is repopulated more slowly from the active queue.
1550          *       This allows a general inactive_target default to be set.
1551          *
1552          *       There is an issue here for processes which sit mostly idle
1553          *       'overnight', such as sshd, tcsh, and X.  Any movement from
1554          *       the active queue will eventually cause such pages to
1555          *       recycle eventually causing a lot of paging in the morning.
1556          *       To reduce the incidence of this pages cycled out of the
1557          *       buffer cache are moved directly to the inactive queue if
1558          *       they were only used once or twice.
1559          *
1560          *       The vfs.vm_cycle_point sysctl can be used to adjust this.
1561          *       Increasing the value (up to 64) increases the number of
1562          *       buffer recyclements which go directly to the inactive queue.
1563          */
1564         if (vmstats.v_free_count > 2048) {
1565                 vmstats.v_cache_min = vmstats.v_free_target;
1566                 vmstats.v_cache_max = 2 * vmstats.v_cache_min;
1567         } else {
1568                 vmstats.v_cache_min = 0;
1569                 vmstats.v_cache_max = 0;
1570         }
1571         vmstats.v_inactive_target = vmstats.v_free_count / 4;
1572
1573         /* XXX does not really belong here */
1574         if (vm_page_max_wired == 0)
1575                 vm_page_max_wired = vmstats.v_free_count / 3;
1576
1577         if (vm_pageout_stats_max == 0)
1578                 vm_pageout_stats_max = vmstats.v_free_target;
1579
1580         /*
1581          * Set interval in seconds for stats scan.
1582          */
1583         if (vm_pageout_stats_interval == 0)
1584                 vm_pageout_stats_interval = 5;
1585         if (vm_pageout_full_stats_interval == 0)
1586                 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1587         
1588
1589         /*
1590          * Set maximum free per pass
1591          */
1592         if (vm_pageout_stats_free_max == 0)
1593                 vm_pageout_stats_free_max = 5;
1594
1595         swap_pager_swap_init();
1596         pass = 0;
1597
1598         /*
1599          * The pageout daemon is never done, so loop forever.
1600          */
1601         while (TRUE) {
1602                 int error;
1603
1604                 /*
1605                  * Wait for an action request.  If we timeout check to
1606                  * see if paging is needed (in case the normal wakeup
1607                  * code raced us).
1608                  */
1609                 if (vm_pages_needed == 0) {
1610                         error = tsleep(&vm_pages_needed,
1611                                        0, "psleep",
1612                                        vm_pageout_stats_interval * hz);
1613                         if (error &&
1614                             vm_paging_needed() == 0 &&
1615                             vm_pages_needed == 0) {
1616                                 vm_pageout_page_stats();
1617                                 continue;
1618                         }
1619                         vm_pages_needed = 1;
1620                 }
1621
1622                 mycpu->gd_cnt.v_pdwakeups++;
1623
1624                 /*
1625                  * Scan for pageout.  Try to avoid thrashing the system
1626                  * with activity.
1627                  */
1628                 inactive_shortage = vm_pageout_scan(pass);
1629                 if (inactive_shortage > 0) {
1630                         ++pass;
1631                         if (swap_pager_full) {
1632                                 /*
1633                                  * Running out of memory, catastrophic back-off
1634                                  * to one-second intervals.
1635                                  */
1636                                 tsleep(&vm_pages_needed, 0, "pdelay", hz);
1637                         } else if (pass < 10 && vm_pages_needed > 1) {
1638                                 /*
1639                                  * Normal operation, additional processes
1640                                  * have already kicked us.  Retry immediately.
1641                                  */
1642                         } else if (pass < 10) {
1643                                 /*
1644                                  * Normal operation, fewer processes.  Delay
1645                                  * a bit but allow wakeups.
1646                                  */
1647                                 vm_pages_needed = 0;
1648                                 tsleep(&vm_pages_needed, 0, "pdelay", hz / 10);
1649                                 vm_pages_needed = 1;
1650                         } else {
1651                                 /*
1652                                  * We've taken too many passes, forced delay.
1653                                  */
1654                                 tsleep(&vm_pages_needed, 0, "pdelay", hz / 10);
1655                         }
1656                 } else {
1657                         /*
1658                          * Interlocked wakeup of waiters (non-optional)
1659                          */
1660                         pass = 0;
1661                         if (vm_pages_needed && !vm_page_count_min(0)) {
1662                                 wakeup(&vmstats.v_free_count);
1663                                 vm_pages_needed = 0;
1664                         }
1665                 }
1666         }
1667 }
1668
1669 static struct kproc_desc page_kp = {
1670         "pagedaemon",
1671         vm_pageout_thread,
1672         &pagethread
1673 };
1674 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
1675
1676
1677 /*
1678  * Called after allocating a page out of the cache or free queue
1679  * to possibly wake the pagedaemon up to replentish our supply.
1680  *
1681  * We try to generate some hysteresis by waking the pagedaemon up
1682  * when our free+cache pages go below the free_min+cache_min level.
1683  * The pagedaemon tries to get the count back up to at least the
1684  * minimum, and through to the target level if possible.
1685  *
1686  * If the pagedaemon is already active bump vm_pages_needed as a hint
1687  * that there are even more requests pending.
1688  *
1689  * SMP races ok?
1690  * No requirements.
1691  */
1692 void
1693 pagedaemon_wakeup(void)
1694 {
1695         if (vm_paging_needed() && curthread != pagethread) {
1696                 if (vm_pages_needed == 0) {
1697                         vm_pages_needed = 1;    /* SMP race ok */
1698                         wakeup(&vm_pages_needed);
1699                 } else if (vm_page_count_min(0)) {
1700                         ++vm_pages_needed;      /* SMP race ok */
1701                 }
1702         }
1703 }
1704
1705 #if !defined(NO_SWAPPING)
1706
1707 /*
1708  * SMP races ok?
1709  * No requirements.
1710  */
1711 static void
1712 vm_req_vmdaemon(void)
1713 {
1714         static int lastrun = 0;
1715
1716         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1717                 wakeup(&vm_daemon_needed);
1718                 lastrun = ticks;
1719         }
1720 }
1721
1722 static int vm_daemon_callback(struct proc *p, void *data __unused);
1723
1724 /*
1725  * No requirements.
1726  */
1727 static void
1728 vm_daemon(void)
1729 {
1730         /*
1731          * Permanently hold vm_token.
1732          */
1733         lwkt_gettoken(&vm_token);
1734
1735         while (TRUE) {
1736                 tsleep(&vm_daemon_needed, 0, "psleep", 0);
1737                 if (vm_pageout_req_swapout) {
1738                         swapout_procs(vm_pageout_req_swapout);
1739                         vm_pageout_req_swapout = 0;
1740                 }
1741                 /*
1742                  * scan the processes for exceeding their rlimits or if
1743                  * process is swapped out -- deactivate pages
1744                  */
1745                 allproc_scan(vm_daemon_callback, NULL);
1746         }
1747 }
1748
1749 /*
1750  * Caller must hold vm_token and proc_token.
1751  */
1752 static int
1753 vm_daemon_callback(struct proc *p, void *data __unused)
1754 {
1755         vm_pindex_t limit, size;
1756
1757         /*
1758          * if this is a system process or if we have already
1759          * looked at this process, skip it.
1760          */
1761         if (p->p_flag & (P_SYSTEM | P_WEXIT))
1762                 return (0);
1763
1764         /*
1765          * if the process is in a non-running type state,
1766          * don't touch it.
1767          */
1768         if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1769                 return (0);
1770
1771         /*
1772          * get a limit
1773          */
1774         limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1775                                 p->p_rlimit[RLIMIT_RSS].rlim_max));
1776
1777         /*
1778          * let processes that are swapped out really be
1779          * swapped out.  Set the limit to nothing to get as
1780          * many pages out to swap as possible.
1781          */
1782         if (p->p_flag & P_SWAPPEDOUT)
1783                 limit = 0;
1784
1785         size = vmspace_resident_count(p->p_vmspace);
1786         if (limit >= 0 && size >= limit) {
1787                 vm_pageout_map_deactivate_pages(
1788                     &p->p_vmspace->vm_map, limit);
1789         }
1790         return (0);
1791 }
1792
1793 #endif