2 * WPA Supplicant / Crypto wrapper for internal crypto implementation
3 * Copyright (c) 2006, Jouni Malinen <j@w1.fi>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * Alternatively, this software may be distributed under the terms of BSD
12 * See README and COPYING for more details.
29 #ifdef CONFIG_TLS_INTERNAL
37 void des3_key_setup(const u8 *key, struct des3_key_s *dkey);
38 void des3_encrypt(const u8 *plain, const struct des3_key_s *key, u8 *crypt);
39 void des3_decrypt(const u8 *crypt, const struct des3_key_s *key, u8 *plain);
51 unsigned char buffer[64];
56 enum crypto_hash_alg alg;
58 struct MD5Context md5;
59 struct SHA1Context sha1;
66 struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key,
69 struct crypto_hash *ctx;
74 ctx = os_zalloc(sizeof(*ctx));
81 case CRYPTO_HASH_ALG_MD5:
84 case CRYPTO_HASH_ALG_SHA1:
85 SHA1Init(&ctx->u.sha1);
87 case CRYPTO_HASH_ALG_HMAC_MD5:
88 if (key_len > sizeof(k_pad)) {
90 MD5Update(&ctx->u.md5, key, key_len);
91 MD5Final(tk, &ctx->u.md5);
95 os_memcpy(ctx->key, key, key_len);
96 ctx->key_len = key_len;
98 os_memcpy(k_pad, key, key_len);
99 os_memset(k_pad + key_len, 0, sizeof(k_pad) - key_len);
100 for (i = 0; i < sizeof(k_pad); i++)
102 MD5Init(&ctx->u.md5);
103 MD5Update(&ctx->u.md5, k_pad, sizeof(k_pad));
105 case CRYPTO_HASH_ALG_HMAC_SHA1:
106 if (key_len > sizeof(k_pad)) {
107 SHA1Init(&ctx->u.sha1);
108 SHA1Update(&ctx->u.sha1, key, key_len);
109 SHA1Final(tk, &ctx->u.sha1);
113 os_memcpy(ctx->key, key, key_len);
114 ctx->key_len = key_len;
116 os_memcpy(k_pad, key, key_len);
117 os_memset(k_pad + key_len, 0, sizeof(k_pad) - key_len);
118 for (i = 0; i < sizeof(k_pad); i++)
120 SHA1Init(&ctx->u.sha1);
121 SHA1Update(&ctx->u.sha1, k_pad, sizeof(k_pad));
132 void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len)
138 case CRYPTO_HASH_ALG_MD5:
139 case CRYPTO_HASH_ALG_HMAC_MD5:
140 MD5Update(&ctx->u.md5, data, len);
142 case CRYPTO_HASH_ALG_SHA1:
143 case CRYPTO_HASH_ALG_HMAC_SHA1:
144 SHA1Update(&ctx->u.sha1, data, len);
150 int crypto_hash_finish(struct crypto_hash *ctx, u8 *mac, size_t *len)
158 if (mac == NULL || len == NULL) {
164 case CRYPTO_HASH_ALG_MD5:
171 MD5Final(mac, &ctx->u.md5);
173 case CRYPTO_HASH_ALG_SHA1:
180 SHA1Final(mac, &ctx->u.sha1);
182 case CRYPTO_HASH_ALG_HMAC_MD5:
190 MD5Final(mac, &ctx->u.md5);
192 os_memcpy(k_pad, ctx->key, ctx->key_len);
193 os_memset(k_pad + ctx->key_len, 0,
194 sizeof(k_pad) - ctx->key_len);
195 for (i = 0; i < sizeof(k_pad); i++)
197 MD5Init(&ctx->u.md5);
198 MD5Update(&ctx->u.md5, k_pad, sizeof(k_pad));
199 MD5Update(&ctx->u.md5, mac, 16);
200 MD5Final(mac, &ctx->u.md5);
202 case CRYPTO_HASH_ALG_HMAC_SHA1:
210 SHA1Final(mac, &ctx->u.sha1);
212 os_memcpy(k_pad, ctx->key, ctx->key_len);
213 os_memset(k_pad + ctx->key_len, 0,
214 sizeof(k_pad) - ctx->key_len);
215 for (i = 0; i < sizeof(k_pad); i++)
217 SHA1Init(&ctx->u.sha1);
218 SHA1Update(&ctx->u.sha1, k_pad, sizeof(k_pad));
219 SHA1Update(&ctx->u.sha1, mac, 20);
220 SHA1Final(mac, &ctx->u.sha1);
230 struct crypto_cipher {
231 enum crypto_cipher_alg alg;
245 struct des3_key_s key;
252 struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg,
253 const u8 *iv, const u8 *key,
256 struct crypto_cipher *ctx;
258 ctx = os_zalloc(sizeof(*ctx));
265 case CRYPTO_CIPHER_ALG_RC4:
266 if (key_len > sizeof(ctx->u.rc4.key)) {
270 ctx->u.rc4.keylen = key_len;
271 os_memcpy(ctx->u.rc4.key, key, key_len);
273 case CRYPTO_CIPHER_ALG_AES:
274 if (key_len > sizeof(ctx->u.aes.cbc)) {
278 ctx->u.aes.ctx_enc = aes_encrypt_init(key, key_len);
279 if (ctx->u.aes.ctx_enc == NULL) {
283 ctx->u.aes.ctx_dec = aes_decrypt_init(key, key_len);
284 if (ctx->u.aes.ctx_dec == NULL) {
285 aes_encrypt_deinit(ctx->u.aes.ctx_enc);
289 ctx->u.aes.block_size = key_len;
290 os_memcpy(ctx->u.aes.cbc, iv, ctx->u.aes.block_size);
292 case CRYPTO_CIPHER_ALG_3DES:
297 des3_key_setup(key, &ctx->u.des3.key);
298 os_memcpy(ctx->u.des3.cbc, iv, 8);
309 int crypto_cipher_encrypt(struct crypto_cipher *ctx, const u8 *plain,
310 u8 *crypt, size_t len)
315 case CRYPTO_CIPHER_ALG_RC4:
317 os_memcpy(crypt, plain, len);
318 rc4_skip(ctx->u.rc4.key, ctx->u.rc4.keylen,
319 ctx->u.rc4.used_bytes, crypt, len);
320 ctx->u.rc4.used_bytes += len;
322 case CRYPTO_CIPHER_ALG_AES:
323 if (len % ctx->u.aes.block_size)
325 blocks = len / ctx->u.aes.block_size;
326 for (i = 0; i < blocks; i++) {
327 for (j = 0; j < ctx->u.aes.block_size; j++)
328 ctx->u.aes.cbc[j] ^= plain[j];
329 aes_encrypt(ctx->u.aes.ctx_enc, ctx->u.aes.cbc,
331 os_memcpy(crypt, ctx->u.aes.cbc,
332 ctx->u.aes.block_size);
333 plain += ctx->u.aes.block_size;
334 crypt += ctx->u.aes.block_size;
337 case CRYPTO_CIPHER_ALG_3DES:
341 for (i = 0; i < blocks; i++) {
342 for (j = 0; j < 8; j++)
343 ctx->u.des3.cbc[j] ^= plain[j];
344 des3_encrypt(ctx->u.des3.cbc, &ctx->u.des3.key,
346 os_memcpy(crypt, ctx->u.des3.cbc, 8);
359 int crypto_cipher_decrypt(struct crypto_cipher *ctx, const u8 *crypt,
360 u8 *plain, size_t len)
366 case CRYPTO_CIPHER_ALG_RC4:
368 os_memcpy(plain, crypt, len);
369 rc4_skip(ctx->u.rc4.key, ctx->u.rc4.keylen,
370 ctx->u.rc4.used_bytes, plain, len);
371 ctx->u.rc4.used_bytes += len;
373 case CRYPTO_CIPHER_ALG_AES:
374 if (len % ctx->u.aes.block_size)
376 blocks = len / ctx->u.aes.block_size;
377 for (i = 0; i < blocks; i++) {
378 os_memcpy(tmp, crypt, ctx->u.aes.block_size);
379 aes_decrypt(ctx->u.aes.ctx_dec, crypt, plain);
380 for (j = 0; j < ctx->u.aes.block_size; j++)
381 plain[j] ^= ctx->u.aes.cbc[j];
382 os_memcpy(ctx->u.aes.cbc, tmp, ctx->u.aes.block_size);
383 plain += ctx->u.aes.block_size;
384 crypt += ctx->u.aes.block_size;
387 case CRYPTO_CIPHER_ALG_3DES:
391 for (i = 0; i < blocks; i++) {
392 os_memcpy(tmp, crypt, 8);
393 des3_decrypt(crypt, &ctx->u.des3.key, plain);
394 for (j = 0; j < 8; j++)
395 plain[j] ^= ctx->u.des3.cbc[j];
396 os_memcpy(ctx->u.des3.cbc, tmp, 8);
409 void crypto_cipher_deinit(struct crypto_cipher *ctx)
412 case CRYPTO_CIPHER_ALG_AES:
413 aes_encrypt_deinit(ctx->u.aes.ctx_enc);
414 aes_decrypt_deinit(ctx->u.aes.ctx_dec);
416 case CRYPTO_CIPHER_ALG_3DES:
425 /* Dummy structures; these are just typecast to struct crypto_rsa_key */
426 struct crypto_public_key;
427 struct crypto_private_key;
430 struct crypto_public_key * crypto_public_key_import(const u8 *key, size_t len)
432 return (struct crypto_public_key *)
433 crypto_rsa_import_public_key(key, len);
437 struct crypto_private_key * crypto_private_key_import(const u8 *key,
440 return (struct crypto_private_key *)
441 crypto_rsa_import_private_key(key, len);
445 struct crypto_public_key * crypto_public_key_from_cert(const u8 *buf,
448 /* No X.509 support in crypto_internal.c */
453 static int pkcs1_generate_encryption_block(u8 block_type, size_t modlen,
454 const u8 *in, size_t inlen,
455 u8 *out, size_t *outlen)
463 * EB = 00 || BT || PS || 00 || D
464 * BT = 00 or 01 for private-key operation; 02 for public-key operation
465 * PS = k-3-||D||; at least eight octets
466 * (BT=0: PS=0x00, BT=1: PS=0xff, BT=2: PS=pseudorandom non-zero)
467 * k = length of modulus in octets (modlen)
470 if (modlen < 12 || modlen > *outlen || inlen > modlen - 11) {
471 wpa_printf(MSG_DEBUG, "PKCS #1: %s - Invalid buffer "
472 "lengths (modlen=%lu outlen=%lu inlen=%lu)",
473 __func__, (unsigned long) modlen,
474 (unsigned long) *outlen,
475 (unsigned long) inlen);
481 *pos++ = block_type; /* BT */
482 ps_len = modlen - inlen - 3;
483 switch (block_type) {
485 os_memset(pos, 0x00, ps_len);
489 os_memset(pos, 0xff, ps_len);
493 if (os_get_random(pos, ps_len) < 0) {
494 wpa_printf(MSG_DEBUG, "PKCS #1: %s - Failed to get "
495 "random data for PS", __func__);
505 wpa_printf(MSG_DEBUG, "PKCS #1: %s - Unsupported block type "
506 "%d", __func__, block_type);
510 os_memcpy(pos, in, inlen); /* D */
516 static int crypto_rsa_encrypt_pkcs1(int block_type, struct crypto_rsa_key *key,
518 const u8 *in, size_t inlen,
519 u8 *out, size_t *outlen)
523 modlen = crypto_rsa_get_modulus_len(key);
525 if (pkcs1_generate_encryption_block(block_type, modlen, in, inlen,
529 return crypto_rsa_exptmod(out, modlen, out, outlen, key, use_private);
533 int crypto_public_key_encrypt_pkcs1_v15(struct crypto_public_key *key,
534 const u8 *in, size_t inlen,
535 u8 *out, size_t *outlen)
537 return crypto_rsa_encrypt_pkcs1(2, (struct crypto_rsa_key *) key,
538 0, in, inlen, out, outlen);
542 int crypto_private_key_sign_pkcs1(struct crypto_private_key *key,
543 const u8 *in, size_t inlen,
544 u8 *out, size_t *outlen)
546 return crypto_rsa_encrypt_pkcs1(1, (struct crypto_rsa_key *) key,
547 1, in, inlen, out, outlen);
551 void crypto_public_key_free(struct crypto_public_key *key)
553 crypto_rsa_free((struct crypto_rsa_key *) key);
557 void crypto_private_key_free(struct crypto_private_key *key)
559 crypto_rsa_free((struct crypto_rsa_key *) key);
563 int crypto_public_key_decrypt_pkcs1(struct crypto_public_key *key,
564 const u8 *crypt, size_t crypt_len,
565 u8 *plain, size_t *plain_len)
571 if (crypto_rsa_exptmod(crypt, crypt_len, plain, &len,
572 (struct crypto_rsa_key *) key, 0) < 0)
578 * EB = 00 || BT || PS || 00 || D
580 * PS = k-3-||D|| times FF
581 * k = length of modulus in octets
584 if (len < 3 + 8 + 16 /* min hash len */ ||
585 plain[0] != 0x00 || plain[1] != 0x01 || plain[2] != 0xff) {
586 wpa_printf(MSG_INFO, "LibTomCrypt: Invalid signature EB "
592 while (pos < plain + len && *pos == 0xff)
594 if (pos - plain - 2 < 8) {
595 /* PKCS #1 v1.5, 8.1: At least eight octets long PS */
596 wpa_printf(MSG_INFO, "LibTomCrypt: Too short signature "
601 if (pos + 16 /* min hash len */ >= plain + len || *pos != 0x00) {
602 wpa_printf(MSG_INFO, "LibTomCrypt: Invalid signature EB "
609 /* Strip PKCS #1 header */
610 os_memmove(plain, pos, len);
617 int crypto_global_init(void)
623 void crypto_global_deinit(void)
630 int crypto_mod_exp(const u8 *base, size_t base_len,
631 const u8 *power, size_t power_len,
632 const u8 *modulus, size_t modulus_len,
633 u8 *result, size_t *result_len)
635 struct bignum *bn_base, *bn_exp, *bn_modulus, *bn_result;
638 bn_base = bignum_init();
639 bn_exp = bignum_init();
640 bn_modulus = bignum_init();
641 bn_result = bignum_init();
643 if (bn_base == NULL || bn_exp == NULL || bn_modulus == NULL ||
647 if (bignum_set_unsigned_bin(bn_base, base, base_len) < 0 ||
648 bignum_set_unsigned_bin(bn_exp, power, power_len) < 0 ||
649 bignum_set_unsigned_bin(bn_modulus, modulus, modulus_len) < 0)
652 if (bignum_exptmod(bn_base, bn_exp, bn_modulus, bn_result) < 0)
655 ret = bignum_get_unsigned_bin(bn_result, result, result_len);
658 bignum_deinit(bn_base);
659 bignum_deinit(bn_exp);
660 bignum_deinit(bn_modulus);
661 bignum_deinit(bn_result);
665 #endif /* EAP_FAST */
668 #endif /* CONFIG_TLS_INTERNAL */
670 #endif /* EAP_TLS_FUNCS */