kernel - Fix missing token release in msync() error path
[dragonfly.git] / sys / vm / vm_fault.c
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *      The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *      This product includes software developed by the University of
26  *      California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *      from: @(#)vm_fault.c    8.4 (Berkeley) 1/12/94
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
50  *
51  * Permission to use, copy, modify and distribute this software and
52  * its documentation is hereby granted, provided that both the copyright
53  * notice and this permission notice appear in all copies of the
54  * software, derivative works or modified versions, and any portions
55  * thereof, and that both notices appear in supporting documentation.
56  *
57  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60  *
61  * Carnegie Mellon requests users of this software to return to
62  *
63  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
64  *  School of Computer Science
65  *  Carnegie Mellon University
66  *  Pittsburgh PA 15213-3890
67  *
68  * any improvements or extensions that they make and grant Carnegie the
69  * rights to redistribute these changes.
70  *
71  * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $
72  * $DragonFly: src/sys/vm/vm_fault.c,v 1.47 2008/07/01 02:02:56 dillon Exp $
73  */
74
75 /*
76  *      Page fault handling module.
77  */
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/kernel.h>
82 #include <sys/proc.h>
83 #include <sys/vnode.h>
84 #include <sys/resourcevar.h>
85 #include <sys/vmmeter.h>
86 #include <sys/vkernel.h>
87 #include <sys/lock.h>
88 #include <sys/sysctl.h>
89
90 #include <cpu/lwbuf.h>
91
92 #include <vm/vm.h>
93 #include <vm/vm_param.h>
94 #include <vm/pmap.h>
95 #include <vm/vm_map.h>
96 #include <vm/vm_object.h>
97 #include <vm/vm_page.h>
98 #include <vm/vm_pageout.h>
99 #include <vm/vm_kern.h>
100 #include <vm/vm_pager.h>
101 #include <vm/vnode_pager.h>
102 #include <vm/vm_extern.h>
103
104 #include <sys/thread2.h>
105 #include <vm/vm_page2.h>
106
107 struct faultstate {
108         vm_page_t m;
109         vm_object_t object;
110         vm_pindex_t pindex;
111         vm_prot_t prot;
112         vm_page_t first_m;
113         vm_object_t first_object;
114         vm_prot_t first_prot;
115         vm_map_t map;
116         vm_map_entry_t entry;
117         int lookup_still_valid;
118         int didlimit;
119         int hardfault;
120         int fault_flags;
121         int map_generation;
122         boolean_t wired;
123         struct vnode *vp;
124 };
125
126 static int debug_cluster = 0;
127 SYSCTL_INT(_vm, OID_AUTO, debug_cluster, CTLFLAG_RW, &debug_cluster, 0, "");
128
129 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t);
130 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *, vpte_t, int);
131 #if 0
132 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
133 #endif
134 static int vm_fault_ratelimit(struct vmspace *);
135 static void vm_set_nosync(vm_page_t m, vm_map_entry_t entry);
136 static void vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry,
137                         int prot);
138
139 static __inline void
140 release_page(struct faultstate *fs)
141 {
142         vm_page_deactivate(fs->m);
143         vm_page_wakeup(fs->m);
144         fs->m = NULL;
145 }
146
147 /*
148  * NOTE: Once unlocked any cached fs->entry becomes invalid, any reuse
149  *       requires relocking and then checking the timestamp.
150  *
151  * NOTE: vm_map_lock_read() does not bump fs->map->timestamp so we do
152  *       not have to update fs->map_generation here.
153  *
154  * NOTE: This function can fail due to a deadlock against the caller's
155  *       holding of a vm_page BUSY.
156  */
157 static __inline int
158 relock_map(struct faultstate *fs)
159 {
160         int error;
161
162         if (fs->lookup_still_valid == FALSE && fs->map) {
163                 error = vm_map_lock_read_to(fs->map);
164                 if (error == 0)
165                         fs->lookup_still_valid = TRUE;
166         } else {
167                 error = 0;
168         }
169         return error;
170 }
171
172 static __inline void
173 unlock_map(struct faultstate *fs)
174 {
175         if (fs->lookup_still_valid && fs->map) {
176                 vm_map_lookup_done(fs->map, fs->entry, 0);
177                 fs->lookup_still_valid = FALSE;
178         }
179 }
180
181 /*
182  * Clean up after a successful call to vm_fault_object() so another call
183  * to vm_fault_object() can be made.
184  */
185 static void
186 _cleanup_successful_fault(struct faultstate *fs, int relock)
187 {
188         if (fs->object != fs->first_object) {
189                 vm_page_free(fs->first_m);
190                 vm_object_pip_wakeup(fs->object);
191                 fs->first_m = NULL;
192         }
193         fs->object = fs->first_object;
194         if (relock && fs->lookup_still_valid == FALSE) {
195                 if (fs->map)
196                         vm_map_lock_read(fs->map);
197                 fs->lookup_still_valid = TRUE;
198         }
199 }
200
201 static void
202 _unlock_things(struct faultstate *fs, int dealloc)
203 {
204         _cleanup_successful_fault(fs, 0);
205         if (dealloc) {
206                 /*vm_object_deallocate(fs->first_object);*/
207                 /*fs->first_object = NULL; drop used later on */
208         }
209         unlock_map(fs); 
210         if (fs->vp != NULL) { 
211                 vput(fs->vp);
212                 fs->vp = NULL;
213         }
214 }
215
216 #define unlock_things(fs) _unlock_things(fs, 0)
217 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
218 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
219
220 /*
221  * TRYPAGER 
222  *
223  * Determine if the pager for the current object *might* contain the page.
224  *
225  * We only need to try the pager if this is not a default object (default
226  * objects are zero-fill and have no real pager), and if we are not taking
227  * a wiring fault or if the FS entry is wired.
228  */
229 #define TRYPAGER(fs)    \
230                 (fs->object->type != OBJT_DEFAULT && \
231                 (((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
232
233 /*
234  * vm_fault:
235  *
236  * Handle a page fault occuring at the given address, requiring the given
237  * permissions, in the map specified.  If successful, the page is inserted
238  * into the associated physical map.
239  *
240  * NOTE: The given address should be truncated to the proper page address.
241  *
242  * KERN_SUCCESS is returned if the page fault is handled; otherwise,
243  * a standard error specifying why the fault is fatal is returned.
244  *
245  * The map in question must be referenced, and remains so.
246  * The caller may hold no locks.
247  * No other requirements.
248  */
249 int
250 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
251 {
252         int result;
253         vm_pindex_t first_pindex;
254         struct faultstate fs;
255         int growstack;
256
257         mycpu->gd_cnt.v_vm_faults++;
258
259         fs.didlimit = 0;
260         fs.hardfault = 0;
261         fs.fault_flags = fault_flags;
262         growstack = 1;
263
264         lwkt_gettoken(&map->token);
265
266 RetryFault:
267         /*
268          * Find the vm_map_entry representing the backing store and resolve
269          * the top level object and page index.  This may have the side
270          * effect of executing a copy-on-write on the map entry and/or
271          * creating a shadow object, but will not COW any actual VM pages.
272          *
273          * On success fs.map is left read-locked and various other fields 
274          * are initialized but not otherwise referenced or locked.
275          *
276          * NOTE!  vm_map_lookup will try to upgrade the fault_type to
277          * VM_FAULT_WRITE if the map entry is a virtual page table and also
278          * writable, so we can set the 'A'accessed bit in the virtual page
279          * table entry.
280          */
281         fs.map = map;
282         result = vm_map_lookup(&fs.map, vaddr, fault_type,
283                                &fs.entry, &fs.first_object,
284                                &first_pindex, &fs.first_prot, &fs.wired);
285
286         /*
287          * If the lookup failed or the map protections are incompatible,
288          * the fault generally fails.  However, if the caller is trying
289          * to do a user wiring we have more work to do.
290          */
291         if (result != KERN_SUCCESS) {
292                 if (result != KERN_PROTECTION_FAILURE ||
293                     (fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
294                 {
295                         if (result == KERN_INVALID_ADDRESS && growstack &&
296                             map != &kernel_map && curproc != NULL) {
297                                 result = vm_map_growstack(curproc, vaddr);
298                                 if (result == KERN_SUCCESS) {
299                                         growstack = 0;
300                                         goto RetryFault;
301                                 }
302                                 result = KERN_FAILURE;
303                         }
304                         goto done;
305                 }
306
307                 /*
308                  * If we are user-wiring a r/w segment, and it is COW, then
309                  * we need to do the COW operation.  Note that we don't
310                  * currently COW RO sections now, because it is NOT desirable
311                  * to COW .text.  We simply keep .text from ever being COW'ed
312                  * and take the heat that one cannot debug wired .text sections.
313                  */
314                 result = vm_map_lookup(&fs.map, vaddr,
315                                        VM_PROT_READ|VM_PROT_WRITE|
316                                         VM_PROT_OVERRIDE_WRITE,
317                                        &fs.entry, &fs.first_object,
318                                        &first_pindex, &fs.first_prot,
319                                        &fs.wired);
320                 if (result != KERN_SUCCESS) {
321                         result = KERN_FAILURE;
322                         goto done;
323                 }
324
325                 /*
326                  * If we don't COW now, on a user wire, the user will never
327                  * be able to write to the mapping.  If we don't make this
328                  * restriction, the bookkeeping would be nearly impossible.
329                  */
330                 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
331                         fs.entry->max_protection &= ~VM_PROT_WRITE;
332         }
333
334         /*
335          * fs.map is read-locked
336          *
337          * Misc checks.  Save the map generation number to detect races.
338          */
339         fs.map_generation = fs.map->timestamp;
340
341         if (fs.entry->eflags & (MAP_ENTRY_NOFAULT | MAP_ENTRY_KSTACK)) {
342                 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
343                         panic("vm_fault: fault on nofault entry, addr: %p",
344                               (void *)vaddr);
345                 }
346                 if ((fs.entry->eflags & MAP_ENTRY_KSTACK) &&
347                     vaddr >= fs.entry->start &&
348                     vaddr < fs.entry->start + PAGE_SIZE) {
349                         panic("vm_fault: fault on stack guard, addr: %p",
350                               (void *)vaddr);
351                 }
352         }
353
354         /*
355          * A system map entry may return a NULL object.  No object means
356          * no pager means an unrecoverable kernel fault.
357          */
358         if (fs.first_object == NULL) {
359                 panic("vm_fault: unrecoverable fault at %p in entry %p",
360                         (void *)vaddr, fs.entry);
361         }
362
363         /*
364          * Bump the paging-in-progress count to prevent size changes (e.g.
365          * truncation operations) during I/O.  This must be done after
366          * obtaining the vnode lock in order to avoid possible deadlocks.
367          */
368         vm_object_hold(fs.first_object);
369         fs.vp = vnode_pager_lock(fs.first_object);
370
371         fs.lookup_still_valid = TRUE;
372         fs.first_m = NULL;
373         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
374
375         /*
376          * If the entry is wired we cannot change the page protection.
377          */
378         if (fs.wired)
379                 fault_type = fs.first_prot;
380
381         /*
382          * The page we want is at (first_object, first_pindex), but if the
383          * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
384          * page table to figure out the actual pindex.
385          *
386          * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
387          * ONLY
388          */
389         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
390                 result = vm_fault_vpagetable(&fs, &first_pindex,
391                                              fs.entry->aux.master_pde,
392                                              fault_type);
393                 if (result == KERN_TRY_AGAIN) {
394                         vm_object_drop(fs.first_object);
395                         goto RetryFault;
396                 }
397                 if (result != KERN_SUCCESS)
398                         goto done;
399         }
400
401         /*
402          * Now we have the actual (object, pindex), fault in the page.  If
403          * vm_fault_object() fails it will unlock and deallocate the FS
404          * data.   If it succeeds everything remains locked and fs->object
405          * will have an additional PIP count if it is not equal to
406          * fs->first_object
407          *
408          * vm_fault_object will set fs->prot for the pmap operation.  It is
409          * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
410          * page can be safely written.  However, it will force a read-only
411          * mapping for a read fault if the memory is managed by a virtual
412          * page table.
413          */
414         /* BEFORE */
415         result = vm_fault_object(&fs, first_pindex, fault_type);
416
417         if (result == KERN_TRY_AGAIN) {
418                 vm_object_drop(fs.first_object);
419                 goto RetryFault;
420         }
421         if (result != KERN_SUCCESS)
422                 goto done;
423
424         /*
425          * On success vm_fault_object() does not unlock or deallocate, and fs.m
426          * will contain a busied page.
427          *
428          * Enter the page into the pmap and do pmap-related adjustments.
429          */
430         vm_page_flag_set(fs.m, PG_REFERENCED);
431         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
432
433         /*KKASSERT(fs.m->queue == PQ_NONE); page-in op may deactivate page */
434         KKASSERT(fs.m->flags & PG_BUSY);
435
436         /*
437          * If the page is not wired down, then put it where the pageout daemon
438          * can find it.
439          */
440         if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
441                 if (fs.wired)
442                         vm_page_wire(fs.m);
443                 else
444                         vm_page_unwire(fs.m, 1);
445         } else {
446                 vm_page_activate(fs.m);
447         }
448         vm_page_wakeup(fs.m);
449
450         /*
451          * Burst in a few more pages if possible.  The fs.map should still
452          * be locked.  To avoid interlocking against a vnode->getblk
453          * operation we had to be sure to unbusy our primary vm_page above
454          * first.
455          */
456         if (fault_flags & VM_FAULT_BURST) {
457                 if ((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0 &&
458                     fs.wired == 0) {
459                         vm_prefault(fs.map->pmap, vaddr, fs.entry, fs.prot);
460                 }
461         }
462
463         /*
464          * Unlock everything, and return
465          */
466         unlock_things(&fs);
467
468         if (curthread->td_lwp) {
469                 if (fs.hardfault) {
470                         curthread->td_lwp->lwp_ru.ru_majflt++;
471                 } else {
472                         curthread->td_lwp->lwp_ru.ru_minflt++;
473                 }
474         }
475
476         /*vm_object_deallocate(fs.first_object);*/
477         /*fs.m = NULL; */
478         /*fs.first_object = NULL; must still drop later */
479
480         result = KERN_SUCCESS;
481 done:
482         if (fs.first_object)
483                 vm_object_drop(fs.first_object);
484         lwkt_reltoken(&map->token);
485         return (result);
486 }
487
488 /*
489  * Fault in the specified virtual address in the current process map, 
490  * returning a held VM page or NULL.  See vm_fault_page() for more 
491  * information.
492  *
493  * No requirements.
494  */
495 vm_page_t
496 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp)
497 {
498         struct lwp *lp = curthread->td_lwp;
499         vm_page_t m;
500
501         m = vm_fault_page(&lp->lwp_vmspace->vm_map, va, 
502                           fault_type, VM_FAULT_NORMAL, errorp);
503         return(m);
504 }
505
506 /*
507  * Fault in the specified virtual address in the specified map, doing all
508  * necessary manipulation of the object store and all necessary I/O.  Return
509  * a held VM page or NULL, and set *errorp.  The related pmap is not
510  * updated.
511  *
512  * The returned page will be properly dirtied if VM_PROT_WRITE was specified,
513  * and marked PG_REFERENCED as well.
514  *
515  * If the page cannot be faulted writable and VM_PROT_WRITE was specified, an
516  * error will be returned.
517  *
518  * No requirements.
519  */
520 vm_page_t
521 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
522               int fault_flags, int *errorp)
523 {
524         vm_pindex_t first_pindex;
525         struct faultstate fs;
526         int result;
527         vm_prot_t orig_fault_type = fault_type;
528
529         mycpu->gd_cnt.v_vm_faults++;
530
531         fs.didlimit = 0;
532         fs.hardfault = 0;
533         fs.fault_flags = fault_flags;
534         KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
535
536         lwkt_gettoken(&map->token);
537
538 RetryFault:
539         /*
540          * Find the vm_map_entry representing the backing store and resolve
541          * the top level object and page index.  This may have the side
542          * effect of executing a copy-on-write on the map entry and/or
543          * creating a shadow object, but will not COW any actual VM pages.
544          *
545          * On success fs.map is left read-locked and various other fields 
546          * are initialized but not otherwise referenced or locked.
547          *
548          * NOTE!  vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
549          * if the map entry is a virtual page table and also writable,
550          * so we can set the 'A'accessed bit in the virtual page table entry.
551          */
552         fs.map = map;
553         result = vm_map_lookup(&fs.map, vaddr, fault_type,
554                                &fs.entry, &fs.first_object,
555                                &first_pindex, &fs.first_prot, &fs.wired);
556
557         if (result != KERN_SUCCESS) {
558                 *errorp = result;
559                 fs.m = NULL;
560                 goto done;
561         }
562
563         /*
564          * fs.map is read-locked
565          *
566          * Misc checks.  Save the map generation number to detect races.
567          */
568         fs.map_generation = fs.map->timestamp;
569
570         if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
571                 panic("vm_fault: fault on nofault entry, addr: %lx",
572                     (u_long)vaddr);
573         }
574
575         /*
576          * A system map entry may return a NULL object.  No object means
577          * no pager means an unrecoverable kernel fault.
578          */
579         if (fs.first_object == NULL) {
580                 panic("vm_fault: unrecoverable fault at %p in entry %p",
581                         (void *)vaddr, fs.entry);
582         }
583
584         /*
585          * Make a reference to this object to prevent its disposal while we
586          * are messing with it.  Once we have the reference, the map is free
587          * to be diddled.  Since objects reference their shadows (and copies),
588          * they will stay around as well.
589          *
590          * The reference should also prevent an unexpected collapse of the
591          * parent that might move pages from the current object into the
592          * parent unexpectedly, resulting in corruption.
593          *
594          * Bump the paging-in-progress count to prevent size changes (e.g.
595          * truncation operations) during I/O.  This must be done after
596          * obtaining the vnode lock in order to avoid possible deadlocks.
597          */
598         vm_object_hold(fs.first_object);
599         fs.vp = vnode_pager_lock(fs.first_object);
600
601         fs.lookup_still_valid = TRUE;
602         fs.first_m = NULL;
603         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
604
605         /*
606          * If the entry is wired we cannot change the page protection.
607          */
608         if (fs.wired)
609                 fault_type = fs.first_prot;
610
611         /*
612          * The page we want is at (first_object, first_pindex), but if the
613          * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
614          * page table to figure out the actual pindex.
615          *
616          * NOTE!  DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
617          * ONLY
618          */
619         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
620                 result = vm_fault_vpagetable(&fs, &first_pindex,
621                                              fs.entry->aux.master_pde,
622                                              fault_type);
623                 if (result == KERN_TRY_AGAIN) {
624                         vm_object_drop(fs.first_object);
625                         goto RetryFault;
626                 }
627                 if (result != KERN_SUCCESS) {
628                         *errorp = result;
629                         fs.m = NULL;
630                         goto done;
631                 }
632         }
633
634         /*
635          * Now we have the actual (object, pindex), fault in the page.  If
636          * vm_fault_object() fails it will unlock and deallocate the FS
637          * data.   If it succeeds everything remains locked and fs->object
638          * will have an additinal PIP count if it is not equal to
639          * fs->first_object
640          */
641         result = vm_fault_object(&fs, first_pindex, fault_type);
642
643         if (result == KERN_TRY_AGAIN) {
644                 vm_object_drop(fs.first_object);
645                 goto RetryFault;
646         }
647         if (result != KERN_SUCCESS) {
648                 *errorp = result;
649                 fs.m = NULL;
650                 goto done;
651         }
652
653         if ((orig_fault_type & VM_PROT_WRITE) &&
654             (fs.prot & VM_PROT_WRITE) == 0) {
655                 *errorp = KERN_PROTECTION_FAILURE;
656                 unlock_and_deallocate(&fs);
657                 fs.m = NULL;
658                 goto done;
659         }
660
661         /*
662          * Update the pmap.  We really only have to do this if a COW
663          * occured to replace the read-only page with the new page.  For
664          * now just do it unconditionally. XXX
665          */
666         pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
667         vm_page_flag_set(fs.m, PG_REFERENCED);
668
669         /*
670          * On success vm_fault_object() does not unlock or deallocate, and fs.m
671          * will contain a busied page.  So we must unlock here after having
672          * messed with the pmap.
673          */
674         unlock_things(&fs);
675
676         /*
677          * Return a held page.  We are not doing any pmap manipulation so do
678          * not set PG_MAPPED.  However, adjust the page flags according to
679          * the fault type because the caller may not use a managed pmapping
680          * (so we don't want to lose the fact that the page will be dirtied
681          * if a write fault was specified).
682          */
683         vm_page_hold(fs.m);
684         if (fault_type & VM_PROT_WRITE)
685                 vm_page_dirty(fs.m);
686
687         /*
688          * Unbusy the page by activating it.  It remains held and will not
689          * be reclaimed.
690          */
691         vm_page_activate(fs.m);
692
693         if (curthread->td_lwp) {
694                 if (fs.hardfault) {
695                         curthread->td_lwp->lwp_ru.ru_majflt++;
696                 } else {
697                         curthread->td_lwp->lwp_ru.ru_minflt++;
698                 }
699         }
700
701         /*
702          * Unlock everything, and return the held page.
703          */
704         vm_page_wakeup(fs.m);
705         /*vm_object_deallocate(fs.first_object);*/
706         /*fs.first_object = NULL; */
707         *errorp = 0;
708
709 done:
710         if (fs.first_object)
711                 vm_object_drop(fs.first_object);
712         lwkt_reltoken(&map->token);
713         return(fs.m);
714 }
715
716 /*
717  * Fault in the specified (object,offset), dirty the returned page as
718  * needed.  If the requested fault_type cannot be done NULL and an
719  * error is returned.
720  *
721  * A held (but not busied) page is returned.
722  *
723  * No requirements.
724  */
725 vm_page_t
726 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
727                      vm_prot_t fault_type, int fault_flags, int *errorp)
728 {
729         int result;
730         vm_pindex_t first_pindex;
731         struct faultstate fs;
732         struct vm_map_entry entry;
733
734         ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
735         bzero(&entry, sizeof(entry));
736         entry.object.vm_object = object;
737         entry.maptype = VM_MAPTYPE_NORMAL;
738         entry.protection = entry.max_protection = fault_type;
739
740         fs.didlimit = 0;
741         fs.hardfault = 0;
742         fs.fault_flags = fault_flags;
743         fs.map = NULL;
744         KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
745
746 RetryFault:
747         
748         fs.first_object = object;
749         first_pindex = OFF_TO_IDX(offset);
750         fs.entry = &entry;
751         fs.first_prot = fault_type;
752         fs.wired = 0;
753         /*fs.map_generation = 0; unused */
754
755         /*
756          * Make a reference to this object to prevent its disposal while we
757          * are messing with it.  Once we have the reference, the map is free
758          * to be diddled.  Since objects reference their shadows (and copies),
759          * they will stay around as well.
760          *
761          * The reference should also prevent an unexpected collapse of the
762          * parent that might move pages from the current object into the
763          * parent unexpectedly, resulting in corruption.
764          *
765          * Bump the paging-in-progress count to prevent size changes (e.g.
766          * truncation operations) during I/O.  This must be done after
767          * obtaining the vnode lock in order to avoid possible deadlocks.
768          */
769         fs.vp = vnode_pager_lock(fs.first_object);
770
771         fs.lookup_still_valid = TRUE;
772         fs.first_m = NULL;
773         fs.object = fs.first_object;    /* so unlock_and_deallocate works */
774
775 #if 0
776         /* XXX future - ability to operate on VM object using vpagetable */
777         if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
778                 result = vm_fault_vpagetable(&fs, &first_pindex,
779                                              fs.entry->aux.master_pde,
780                                              fault_type);
781                 if (result == KERN_TRY_AGAIN)
782                         goto RetryFault;
783                 if (result != KERN_SUCCESS) {
784                         *errorp = result;
785                         return (NULL);
786                 }
787         }
788 #endif
789
790         /*
791          * Now we have the actual (object, pindex), fault in the page.  If
792          * vm_fault_object() fails it will unlock and deallocate the FS
793          * data.   If it succeeds everything remains locked and fs->object
794          * will have an additinal PIP count if it is not equal to
795          * fs->first_object
796          */
797         result = vm_fault_object(&fs, first_pindex, fault_type);
798
799         if (result == KERN_TRY_AGAIN)
800                 goto RetryFault;
801         if (result != KERN_SUCCESS) {
802                 *errorp = result;
803                 return(NULL);
804         }
805
806         if ((fault_type & VM_PROT_WRITE) && (fs.prot & VM_PROT_WRITE) == 0) {
807                 *errorp = KERN_PROTECTION_FAILURE;
808                 unlock_and_deallocate(&fs);
809                 return(NULL);
810         }
811
812         /*
813          * On success vm_fault_object() does not unlock or deallocate, so we
814          * do it here.  Note that the returned fs.m will be busied.
815          */
816         unlock_things(&fs);
817
818         /*
819          * Return a held page.  We are not doing any pmap manipulation so do
820          * not set PG_MAPPED.  However, adjust the page flags according to
821          * the fault type because the caller may not use a managed pmapping
822          * (so we don't want to lose the fact that the page will be dirtied
823          * if a write fault was specified).
824          */
825         vm_page_hold(fs.m);
826         if (fault_type & VM_PROT_WRITE)
827                 vm_page_dirty(fs.m);
828
829         if (fault_flags & VM_FAULT_DIRTY)
830                 vm_page_dirty(fs.m);
831         if (fault_flags & VM_FAULT_UNSWAP)
832                 swap_pager_unswapped(fs.m);
833
834         /*
835          * Indicate that the page was accessed.
836          */
837         vm_page_flag_set(fs.m, PG_REFERENCED);
838
839         /*
840          * Unbusy the page by activating it.  It remains held and will not
841          * be reclaimed.
842          */
843         vm_page_activate(fs.m);
844
845         if (curthread->td_lwp) {
846                 if (fs.hardfault) {
847                         mycpu->gd_cnt.v_vm_faults++;
848                         curthread->td_lwp->lwp_ru.ru_majflt++;
849                 } else {
850                         curthread->td_lwp->lwp_ru.ru_minflt++;
851                 }
852         }
853
854         /*
855          * Unlock everything, and return the held page.
856          */
857         vm_page_wakeup(fs.m);
858         /*vm_object_deallocate(fs.first_object);*/
859         /*fs.first_object = NULL; */
860
861         *errorp = 0;
862         return(fs.m);
863 }
864
865 /*
866  * Translate the virtual page number (first_pindex) that is relative
867  * to the address space into a logical page number that is relative to the
868  * backing object.  Use the virtual page table pointed to by (vpte).
869  *
870  * This implements an N-level page table.  Any level can terminate the
871  * scan by setting VPTE_PS.   A linear mapping is accomplished by setting
872  * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
873  */
874 static
875 int
876 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
877                     vpte_t vpte, int fault_type)
878 {
879         struct lwbuf *lwb;
880         struct lwbuf lwb_cache;
881         int vshift = VPTE_FRAME_END - PAGE_SHIFT; /* index bits remaining */
882         int result = KERN_SUCCESS;
883         vpte_t *ptep;
884
885         ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
886         for (;;) {
887                 /*
888                  * We cannot proceed if the vpte is not valid, not readable
889                  * for a read fault, or not writable for a write fault.
890                  */
891                 if ((vpte & VPTE_V) == 0) {
892                         unlock_and_deallocate(fs);
893                         return (KERN_FAILURE);
894                 }
895                 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_R) == 0) {
896                         unlock_and_deallocate(fs);
897                         return (KERN_FAILURE);
898                 }
899                 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_W) == 0) {
900                         unlock_and_deallocate(fs);
901                         return (KERN_FAILURE);
902                 }
903                 if ((vpte & VPTE_PS) || vshift == 0)
904                         break;
905                 KKASSERT(vshift >= VPTE_PAGE_BITS);
906
907                 /*
908                  * Get the page table page.  Nominally we only read the page
909                  * table, but since we are actively setting VPTE_M and VPTE_A,
910                  * tell vm_fault_object() that we are writing it. 
911                  *
912                  * There is currently no real need to optimize this.
913                  */
914                 result = vm_fault_object(fs, (vpte & VPTE_FRAME) >> PAGE_SHIFT,
915                                          VM_PROT_READ|VM_PROT_WRITE);
916                 if (result != KERN_SUCCESS)
917                         return (result);
918
919                 /*
920                  * Process the returned fs.m and look up the page table
921                  * entry in the page table page.
922                  */
923                 vshift -= VPTE_PAGE_BITS;
924                 lwb = lwbuf_alloc(fs->m, &lwb_cache);
925                 ptep = ((vpte_t *)lwbuf_kva(lwb) +
926                         ((*pindex >> vshift) & VPTE_PAGE_MASK));
927                 vpte = *ptep;
928
929                 /*
930                  * Page table write-back.  If the vpte is valid for the
931                  * requested operation, do a write-back to the page table.
932                  *
933                  * XXX VPTE_M is not set properly for page directory pages.
934                  * It doesn't get set in the page directory if the page table
935                  * is modified during a read access.
936                  */
937                 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) &&
938                     (vpte & VPTE_W)) {
939                         if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) {
940                                 atomic_set_long(ptep, VPTE_M | VPTE_A);
941                                 vm_page_dirty(fs->m);
942                         }
943                 }
944                 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V) &&
945                     (vpte & VPTE_R)) {
946                         if ((vpte & VPTE_A) == 0) {
947                                 atomic_set_long(ptep, VPTE_A);
948                                 vm_page_dirty(fs->m);
949                         }
950                 }
951                 lwbuf_free(lwb);
952                 vm_page_flag_set(fs->m, PG_REFERENCED);
953                 vm_page_activate(fs->m);
954                 vm_page_wakeup(fs->m);
955                 fs->m = NULL;
956                 cleanup_successful_fault(fs);
957         }
958         /*
959          * Combine remaining address bits with the vpte.
960          */
961         /* JG how many bits from each? */
962         *pindex = ((vpte & VPTE_FRAME) >> PAGE_SHIFT) +
963                   (*pindex & ((1L << vshift) - 1));
964         return (KERN_SUCCESS);
965 }
966
967
968 /*
969  * This is the core of the vm_fault code.
970  *
971  * Do all operations required to fault-in (fs.first_object, pindex).  Run
972  * through the shadow chain as necessary and do required COW or virtual
973  * copy operations.  The caller has already fully resolved the vm_map_entry
974  * and, if appropriate, has created a copy-on-write layer.  All we need to
975  * do is iterate the object chain.
976  *
977  * On failure (fs) is unlocked and deallocated and the caller may return or
978  * retry depending on the failure code.  On success (fs) is NOT unlocked or
979  * deallocated, fs.m will contained a resolved, busied page, and fs.object
980  * will have an additional PIP count if it is not equal to fs.first_object.
981  *
982  * fs->first_object must be held on call.
983  */
984 static
985 int
986 vm_fault_object(struct faultstate *fs,
987                 vm_pindex_t first_pindex, vm_prot_t fault_type)
988 {
989         vm_object_t next_object;
990         vm_pindex_t pindex;
991         int error;
992
993         ASSERT_LWKT_TOKEN_HELD(vm_object_token(fs->first_object));
994         fs->prot = fs->first_prot;
995         fs->object = fs->first_object;
996         pindex = first_pindex;
997
998         vm_object_chain_acquire(fs->first_object);
999         vm_object_pip_add(fs->first_object, 1);
1000
1001         /* 
1002          * If a read fault occurs we try to make the page writable if
1003          * possible.  There are three cases where we cannot make the
1004          * page mapping writable:
1005          *
1006          * (1) The mapping is read-only or the VM object is read-only,
1007          *     fs->prot above will simply not have VM_PROT_WRITE set.
1008          *
1009          * (2) If the mapping is a virtual page table we need to be able
1010          *     to detect writes so we can set VPTE_M in the virtual page
1011          *     table.
1012          *
1013          * (3) If the VM page is read-only or copy-on-write, upgrading would
1014          *     just result in an unnecessary COW fault.
1015          *
1016          * VM_PROT_VPAGED is set if faulting via a virtual page table and
1017          * causes adjustments to the 'M'odify bit to also turn off write
1018          * access to force a re-fault.
1019          */
1020         if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
1021                 if ((fault_type & VM_PROT_WRITE) == 0)
1022                         fs->prot &= ~VM_PROT_WRITE;
1023         }
1024
1025         /* vm_object_hold(fs->object); implied b/c object == first_object */
1026
1027         for (;;) {
1028                 /*
1029                  * The entire backing chain from first_object to object
1030                  * inclusive is chainlocked.
1031                  *
1032                  * If the object is dead, we stop here
1033                  */
1034                 if (fs->object->flags & OBJ_DEAD) {
1035                         vm_object_pip_wakeup(fs->first_object);
1036                         vm_object_chain_release_all(fs->first_object,
1037                                                     fs->object);
1038                         if (fs->object != fs->first_object)
1039                                 vm_object_drop(fs->object);
1040                         unlock_and_deallocate(fs);
1041                         return (KERN_PROTECTION_FAILURE);
1042                 }
1043
1044                 /*
1045                  * See if the page is resident.  Wait/Retry if the page is
1046                  * busy (lots of stuff may have changed so we can't continue
1047                  * in that case).
1048                  *
1049                  * We can theoretically allow the soft-busy case on a read
1050                  * fault if the page is marked valid, but since such
1051                  * pages are typically already pmap'd, putting that
1052                  * special case in might be more effort then it is
1053                  * worth.  We cannot under any circumstances mess
1054                  * around with a vm_page_t->busy page except, perhaps,
1055                  * to pmap it.
1056                  */
1057                 fs->m = vm_page_lookup_busy_try(fs->object, pindex,
1058                                                 TRUE, &error);
1059                 if (error) {
1060                         vm_object_pip_wakeup(fs->first_object);
1061                         vm_object_chain_release_all(fs->first_object,
1062                                                     fs->object);
1063                         if (fs->object != fs->first_object)
1064                                 vm_object_drop(fs->object);
1065                         unlock_things(fs);
1066                         vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
1067                         mycpu->gd_cnt.v_intrans++;
1068                         /*vm_object_deallocate(fs->first_object);*/
1069                         /*fs->first_object = NULL;*/
1070                         fs->m = NULL;
1071                         return (KERN_TRY_AGAIN);
1072                 }
1073                 if (fs->m) {
1074                         /*
1075                          * The page is busied for us.
1076                          *
1077                          * If reactivating a page from PQ_CACHE we may have
1078                          * to rate-limit.
1079                          */
1080                         int queue = fs->m->queue;
1081                         vm_page_unqueue_nowakeup(fs->m);
1082
1083                         if ((queue - fs->m->pc) == PQ_CACHE && 
1084                             vm_page_count_severe()) {
1085                                 vm_page_activate(fs->m);
1086                                 vm_page_wakeup(fs->m);
1087                                 fs->m = NULL;
1088                                 vm_object_pip_wakeup(fs->first_object);
1089                                 vm_object_chain_release_all(fs->first_object,
1090                                                             fs->object);
1091                                 if (fs->object != fs->first_object)
1092                                         vm_object_drop(fs->object);
1093                                 unlock_and_deallocate(fs);
1094                                 vm_waitpfault();
1095                                 return (KERN_TRY_AGAIN);
1096                         }
1097
1098                         /*
1099                          * If it still isn't completely valid (readable),
1100                          * or if a read-ahead-mark is set on the VM page,
1101                          * jump to readrest, else we found the page and
1102                          * can return.
1103                          *
1104                          * We can release the spl once we have marked the
1105                          * page busy.
1106                          */
1107                         if (fs->m->object != &kernel_object) {
1108                                 if ((fs->m->valid & VM_PAGE_BITS_ALL) !=
1109                                     VM_PAGE_BITS_ALL) {
1110                                         goto readrest;
1111                                 }
1112                                 if (fs->m->flags & PG_RAM) {
1113                                         if (debug_cluster)
1114                                                 kprintf("R");
1115                                         vm_page_flag_clear(fs->m, PG_RAM);
1116                                         goto readrest;
1117                                 }
1118                         }
1119                         break; /* break to PAGE HAS BEEN FOUND */
1120                 }
1121
1122                 /*
1123                  * Page is not resident, If this is the search termination
1124                  * or the pager might contain the page, allocate a new page.
1125                  */
1126                 if (TRYPAGER(fs) || fs->object == fs->first_object) {
1127                         /*
1128                          * If the page is beyond the object size we fail
1129                          */
1130                         if (pindex >= fs->object->size) {
1131                                 vm_object_pip_wakeup(fs->first_object);
1132                                 vm_object_chain_release_all(fs->first_object,
1133                                                             fs->object);
1134                                 if (fs->object != fs->first_object)
1135                                         vm_object_drop(fs->object);
1136                                 unlock_and_deallocate(fs);
1137                                 return (KERN_PROTECTION_FAILURE);
1138                         }
1139
1140                         /*
1141                          * Ratelimit.
1142                          */
1143                         if (fs->didlimit == 0 && curproc != NULL) {
1144                                 int limticks;
1145
1146                                 limticks = vm_fault_ratelimit(curproc->p_vmspace);
1147                                 if (limticks) {
1148                                         vm_object_pip_wakeup(fs->first_object);
1149                                         vm_object_chain_release_all(
1150                                                 fs->first_object, fs->object);
1151                                         if (fs->object != fs->first_object)
1152                                                 vm_object_drop(fs->object);
1153                                         unlock_and_deallocate(fs);
1154                                         tsleep(curproc, 0, "vmrate", limticks);
1155                                         fs->didlimit = 1;
1156                                         return (KERN_TRY_AGAIN);
1157                                 }
1158                         }
1159
1160                         /*
1161                          * Allocate a new page for this object/offset pair.
1162                          *
1163                          * It is possible for the allocation to race, so
1164                          * handle the case.
1165                          */
1166                         fs->m = NULL;
1167                         if (!vm_page_count_severe()) {
1168                                 fs->m = vm_page_alloc(fs->object, pindex,
1169                                     ((fs->vp || fs->object->backing_object) ?
1170                                         VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL :
1171                                         VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL |
1172                                         VM_ALLOC_ZERO));
1173                         }
1174                         if (fs->m == NULL) {
1175                                 vm_object_pip_wakeup(fs->first_object);
1176                                 vm_object_chain_release_all(fs->first_object,
1177                                                             fs->object);
1178                                 if (fs->object != fs->first_object)
1179                                         vm_object_drop(fs->object);
1180                                 unlock_and_deallocate(fs);
1181                                 vm_waitpfault();
1182                                 return (KERN_TRY_AGAIN);
1183                         }
1184
1185                         /*
1186                          * Fall through to readrest.  We have a new page which
1187                          * will have to be paged (since m->valid will be 0).
1188                          */
1189                 }
1190
1191 readrest:
1192                 /*
1193                  * We have found an invalid or partially valid page, a
1194                  * page with a read-ahead mark which might be partially or
1195                  * fully valid (and maybe dirty too), or we have allocated
1196                  * a new page.
1197                  *
1198                  * Attempt to fault-in the page if there is a chance that the
1199                  * pager has it, and potentially fault in additional pages
1200                  * at the same time.
1201                  *
1202                  * If TRYPAGER is true then fs.m will be non-NULL and busied
1203                  * for us.
1204                  */
1205                 if (TRYPAGER(fs)) {
1206                         int rv;
1207                         int seqaccess;
1208                         u_char behavior = vm_map_entry_behavior(fs->entry);
1209
1210                         if (behavior == MAP_ENTRY_BEHAV_RANDOM)
1211                                 seqaccess = 0;
1212                         else
1213                                 seqaccess = -1;
1214
1215                         /*
1216                          * If sequential access is detected then attempt
1217                          * to deactivate/cache pages behind the scan to
1218                          * prevent resource hogging.
1219                          *
1220                          * Use of PG_RAM to detect sequential access
1221                          * also simulates multi-zone sequential access
1222                          * detection for free.
1223                          *
1224                          * NOTE: Partially valid dirty pages cannot be
1225                          *       deactivated without causing NFS picemeal
1226                          *       writes to barf.
1227                          */
1228                         if ((fs->first_object->type != OBJT_DEVICE) &&
1229                             (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
1230                                 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
1231                                  (fs->m->flags & PG_RAM)))
1232                         ) {
1233                                 vm_pindex_t scan_pindex;
1234                                 int scan_count = 16;
1235
1236                                 if (first_pindex < 16) {
1237                                         scan_pindex = 0;
1238                                         scan_count = 0;
1239                                 } else {
1240                                         scan_pindex = first_pindex - 16;
1241                                         if (scan_pindex < 16)
1242                                                 scan_count = scan_pindex;
1243                                         else
1244                                                 scan_count = 16;
1245                                 }
1246
1247                                 while (scan_count) {
1248                                         vm_page_t mt;
1249
1250                                         mt = vm_page_lookup(fs->first_object,
1251                                                             scan_pindex);
1252                                         if (mt == NULL)
1253                                                 break;
1254                                         if (vm_page_busy_try(mt, TRUE))
1255                                                 goto skip;
1256
1257                                         if (mt->valid != VM_PAGE_BITS_ALL) {
1258                                                 vm_page_wakeup(mt);
1259                                                 break;
1260                                         }
1261                                         if ((mt->flags &
1262                                              (PG_FICTITIOUS | PG_UNMANAGED)) ||
1263                                             mt->hold_count ||
1264                                             mt->wire_count)  {
1265                                                 vm_page_wakeup(mt);
1266                                                 goto skip;
1267                                         }
1268                                         if (mt->dirty == 0)
1269                                                 vm_page_test_dirty(mt);
1270                                         if (mt->dirty) {
1271                                                 vm_page_protect(mt,
1272                                                                 VM_PROT_NONE);
1273                                                 vm_page_deactivate(mt);
1274                                                 vm_page_wakeup(mt);
1275                                         } else {
1276                                                 vm_page_cache(mt);
1277                                         }
1278 skip:
1279                                         --scan_count;
1280                                         --scan_pindex;
1281                                 }
1282
1283                                 seqaccess = 1;
1284                         }
1285
1286                         /*
1287                          * Avoid deadlocking against the map when doing I/O.
1288                          * fs.object and the page is PG_BUSY'd.
1289                          *
1290                          * NOTE: Once unlocked, fs->entry can become stale
1291                          *       so this will NULL it out.
1292                          *
1293                          * NOTE: fs->entry is invalid until we relock the
1294                          *       map and verify that the timestamp has not
1295                          *       changed.
1296                          */
1297                         unlock_map(fs);
1298
1299                         /*
1300                          * Acquire the page data.  We still hold a ref on
1301                          * fs.object and the page has been PG_BUSY's.
1302                          *
1303                          * The pager may replace the page (for example, in
1304                          * order to enter a fictitious page into the
1305                          * object).  If it does so it is responsible for
1306                          * cleaning up the passed page and properly setting
1307                          * the new page PG_BUSY.
1308                          *
1309                          * If we got here through a PG_RAM read-ahead
1310                          * mark the page may be partially dirty and thus
1311                          * not freeable.  Don't bother checking to see
1312                          * if the pager has the page because we can't free
1313                          * it anyway.  We have to depend on the get_page
1314                          * operation filling in any gaps whether there is
1315                          * backing store or not.
1316                          */
1317                         rv = vm_pager_get_page(fs->object, &fs->m, seqaccess);
1318
1319                         if (rv == VM_PAGER_OK) {
1320                                 /*
1321                                  * Relookup in case pager changed page. Pager
1322                                  * is responsible for disposition of old page
1323                                  * if moved.
1324                                  *
1325                                  * XXX other code segments do relookups too.
1326                                  * It's a bad abstraction that needs to be
1327                                  * fixed/removed.
1328                                  */
1329                                 fs->m = vm_page_lookup(fs->object, pindex);
1330                                 if (fs->m == NULL) {
1331                                         vm_object_pip_wakeup(fs->first_object);
1332                                         vm_object_chain_release_all(
1333                                                 fs->first_object, fs->object);
1334                                         if (fs->object != fs->first_object)
1335                                                 vm_object_drop(fs->object);
1336                                         unlock_and_deallocate(fs);
1337                                         return (KERN_TRY_AGAIN);
1338                                 }
1339
1340                                 ++fs->hardfault;
1341                                 break; /* break to PAGE HAS BEEN FOUND */
1342                         }
1343
1344                         /*
1345                          * Remove the bogus page (which does not exist at this
1346                          * object/offset); before doing so, we must get back
1347                          * our object lock to preserve our invariant.
1348                          *
1349                          * Also wake up any other process that may want to bring
1350                          * in this page.
1351                          *
1352                          * If this is the top-level object, we must leave the
1353                          * busy page to prevent another process from rushing
1354                          * past us, and inserting the page in that object at
1355                          * the same time that we are.
1356                          */
1357                         if (rv == VM_PAGER_ERROR) {
1358                                 if (curproc) {
1359                                         kprintf("vm_fault: pager read error, "
1360                                                 "pid %d (%s)\n",
1361                                                 curproc->p_pid,
1362                                                 curproc->p_comm);
1363                                 } else {
1364                                         kprintf("vm_fault: pager read error, "
1365                                                 "thread %p (%s)\n",
1366                                                 curthread,
1367                                                 curproc->p_comm);
1368                                 }
1369                         }
1370
1371                         /*
1372                          * Data outside the range of the pager or an I/O error
1373                          *
1374                          * The page may have been wired during the pagein,
1375                          * e.g. by the buffer cache, and cannot simply be
1376                          * freed.  Call vnode_pager_freepage() to deal with it.
1377                          */
1378                         /*
1379                          * XXX - the check for kernel_map is a kludge to work
1380                          * around having the machine panic on a kernel space
1381                          * fault w/ I/O error.
1382                          */
1383                         if (((fs->map != &kernel_map) &&
1384                             (rv == VM_PAGER_ERROR)) || (rv == VM_PAGER_BAD)) {
1385                                 vnode_pager_freepage(fs->m);
1386                                 fs->m = NULL;
1387                                 vm_object_pip_wakeup(fs->first_object);
1388                                 vm_object_chain_release_all(fs->first_object,
1389                                                             fs->object);
1390                                 if (fs->object != fs->first_object)
1391                                         vm_object_drop(fs->object);
1392                                 unlock_and_deallocate(fs);
1393                                 if (rv == VM_PAGER_ERROR)
1394                                         return (KERN_FAILURE);
1395                                 else
1396                                         return (KERN_PROTECTION_FAILURE);
1397                                 /* NOT REACHED */
1398                         }
1399                         if (fs->object != fs->first_object) {
1400                                 vnode_pager_freepage(fs->m);
1401                                 fs->m = NULL;
1402                                 /*
1403                                  * XXX - we cannot just fall out at this
1404                                  * point, m has been freed and is invalid!
1405                                  */
1406                         }
1407                 }
1408
1409                 /*
1410                  * We get here if the object has a default pager (or unwiring) 
1411                  * or the pager doesn't have the page.
1412                  */
1413                 if (fs->object == fs->first_object)
1414                         fs->first_m = fs->m;
1415
1416                 /*
1417                  * Move on to the next object.  The chain lock should prevent
1418                  * the backing_object from getting ripped out from under us.
1419                  */
1420                 if ((next_object = fs->object->backing_object) != NULL) {
1421                         vm_object_hold(next_object);
1422                         vm_object_chain_acquire(next_object);
1423                         KKASSERT(next_object == fs->object->backing_object);
1424                         pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1425                 }
1426
1427                 if (next_object == NULL) {
1428                         /*
1429                          * If there's no object left, fill the page in the top
1430                          * object with zeros.
1431                          */
1432                         if (fs->object != fs->first_object) {
1433                                 if (fs->first_object->backing_object !=
1434                                     fs->object) {
1435                                         vm_object_hold(fs->first_object->backing_object);
1436                                 }
1437                                 vm_object_chain_release_all(
1438                                         fs->first_object->backing_object,
1439                                         fs->object);
1440                                 if (fs->first_object->backing_object !=
1441                                     fs->object) {
1442                                         vm_object_drop(fs->first_object->backing_object);
1443                                 }
1444                                 vm_object_pip_wakeup(fs->object);
1445                                 vm_object_drop(fs->object);
1446                                 fs->object = fs->first_object;
1447                                 pindex = first_pindex;
1448                                 fs->m = fs->first_m;
1449                         }
1450                         fs->first_m = NULL;
1451
1452                         /*
1453                          * Zero the page if necessary and mark it valid.
1454                          */
1455                         if ((fs->m->flags & PG_ZERO) == 0) {
1456                                 vm_page_zero_fill(fs->m);
1457                         } else {
1458 #ifdef PMAP_DEBUG
1459                                 pmap_page_assertzero(VM_PAGE_TO_PHYS(fs->m));
1460 #endif
1461                                 vm_page_flag_clear(fs->m, PG_ZERO);
1462                                 mycpu->gd_cnt.v_ozfod++;
1463                         }
1464                         mycpu->gd_cnt.v_zfod++;
1465                         fs->m->valid = VM_PAGE_BITS_ALL;
1466                         break;  /* break to PAGE HAS BEEN FOUND */
1467                 }
1468                 if (fs->object != fs->first_object) {
1469                         vm_object_pip_wakeup(fs->object);
1470                         vm_object_lock_swap();
1471                         vm_object_drop(fs->object);
1472                 }
1473                 KASSERT(fs->object != next_object,
1474                         ("object loop %p", next_object));
1475                 fs->object = next_object;
1476                 vm_object_pip_add(fs->object, 1);
1477         }
1478
1479         /*
1480          * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1481          * is held.]
1482          *
1483          * object still held.
1484          *
1485          * If the page is being written, but isn't already owned by the
1486          * top-level object, we have to copy it into a new page owned by the
1487          * top-level object.
1488          */
1489         KASSERT((fs->m->flags & PG_BUSY) != 0,
1490                 ("vm_fault: not busy after main loop"));
1491
1492         if (fs->object != fs->first_object) {
1493                 /*
1494                  * We only really need to copy if we want to write it.
1495                  */
1496                 if (fault_type & VM_PROT_WRITE) {
1497                         /*
1498                          * This allows pages to be virtually copied from a 
1499                          * backing_object into the first_object, where the 
1500                          * backing object has no other refs to it, and cannot
1501                          * gain any more refs.  Instead of a bcopy, we just 
1502                          * move the page from the backing object to the 
1503                          * first object.  Note that we must mark the page 
1504                          * dirty in the first object so that it will go out 
1505                          * to swap when needed.
1506                          */
1507                         if (
1508                                 /*
1509                                  * Map, if present, has not changed
1510                                  */
1511                                 (fs->map == NULL ||
1512                                 fs->map_generation == fs->map->timestamp) &&
1513                                 /*
1514                                  * Only one shadow object
1515                                  */
1516                                 (fs->object->shadow_count == 1) &&
1517                                 /*
1518                                  * No COW refs, except us
1519                                  */
1520                                 (fs->object->ref_count == 1) &&
1521                                 /*
1522                                  * No one else can look this object up
1523                                  */
1524                                 (fs->object->handle == NULL) &&
1525                                 /*
1526                                  * No other ways to look the object up
1527                                  */
1528                                 ((fs->object->type == OBJT_DEFAULT) ||
1529                                  (fs->object->type == OBJT_SWAP)) &&
1530                                 /*
1531                                  * We don't chase down the shadow chain
1532                                  */
1533                                 (fs->object == fs->first_object->backing_object) &&
1534
1535                                 /*
1536                                  * grab the lock if we need to
1537                                  */
1538                                 (fs->lookup_still_valid ||
1539                                  fs->map == NULL ||
1540                                  lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
1541                             ) {
1542                                 /*
1543                                  * (first_m) and (m) are both busied.  We have
1544                                  * move (m) into (first_m)'s object/pindex
1545                                  * in an atomic fashion, then free (first_m).
1546                                  *
1547                                  * first_object is held so second remove
1548                                  * followed by the rename should wind
1549                                  * up being atomic.  vm_page_free() might
1550                                  * block so we don't do it until after the
1551                                  * rename.
1552                                  */
1553                                 fs->lookup_still_valid = 1;
1554                                 vm_page_protect(fs->first_m, VM_PROT_NONE);
1555                                 vm_page_remove(fs->first_m);
1556                                 vm_page_rename(fs->m, fs->first_object,
1557                                                first_pindex);
1558                                 vm_page_free(fs->first_m);
1559                                 fs->first_m = fs->m;
1560                                 fs->m = NULL;
1561                                 mycpu->gd_cnt.v_cow_optim++;
1562                         } else {
1563                                 /*
1564                                  * Oh, well, lets copy it.
1565                                  */
1566                                 vm_page_copy(fs->m, fs->first_m);
1567                                 vm_page_event(fs->m, VMEVENT_COW);
1568                         }
1569
1570                         if (fs->m) {
1571                                 /*
1572                                  * We no longer need the old page or object.
1573                                  */
1574                                 release_page(fs);
1575                         }
1576
1577                         /*
1578                          * We intend to revert to first_object, undo the
1579                          * chain lock through to that.
1580                          */
1581                         if (fs->first_object->backing_object != fs->object)
1582                                 vm_object_hold(fs->first_object->backing_object);
1583                         vm_object_chain_release_all(
1584                                         fs->first_object->backing_object,
1585                                         fs->object);
1586                         if (fs->first_object->backing_object != fs->object)
1587                                 vm_object_drop(fs->first_object->backing_object);
1588
1589                         /*
1590                          * fs->object != fs->first_object due to above 
1591                          * conditional
1592                          */
1593                         vm_object_pip_wakeup(fs->object);
1594                         vm_object_drop(fs->object);
1595
1596                         /*
1597                          * Only use the new page below...
1598                          */
1599
1600                         mycpu->gd_cnt.v_cow_faults++;
1601                         fs->m = fs->first_m;
1602                         fs->object = fs->first_object;
1603                         pindex = first_pindex;
1604                 } else {
1605                         /*
1606                          * If it wasn't a write fault avoid having to copy
1607                          * the page by mapping it read-only.
1608                          */
1609                         fs->prot &= ~VM_PROT_WRITE;
1610                 }
1611         }
1612
1613         /*
1614          * Relock the map if necessary, then check the generation count.
1615          * relock_map() will update fs->timestamp to account for the
1616          * relocking if necessary.
1617          *
1618          * If the count has changed after relocking then all sorts of
1619          * crap may have happened and we have to retry.
1620          *
1621          * NOTE: The relock_map() can fail due to a deadlock against
1622          *       the vm_page we are holding BUSY.
1623          */
1624         if (fs->lookup_still_valid == FALSE && fs->map) {
1625                 if (relock_map(fs) ||
1626                     fs->map->timestamp != fs->map_generation) {
1627                         release_page(fs);
1628                         vm_object_pip_wakeup(fs->first_object);
1629                         vm_object_chain_release_all(fs->first_object,
1630                                                     fs->object);
1631                         if (fs->object != fs->first_object)
1632                                 vm_object_drop(fs->object);
1633                         unlock_and_deallocate(fs);
1634                         return (KERN_TRY_AGAIN);
1635                 }
1636         }
1637
1638         /*
1639          * If the fault is a write, we know that this page is being
1640          * written NOW so dirty it explicitly to save on pmap_is_modified()
1641          * calls later.
1642          *
1643          * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
1644          * if the page is already dirty to prevent data written with
1645          * the expectation of being synced from not being synced.
1646          * Likewise if this entry does not request NOSYNC then make
1647          * sure the page isn't marked NOSYNC.  Applications sharing
1648          * data should use the same flags to avoid ping ponging.
1649          *
1650          * Also tell the backing pager, if any, that it should remove
1651          * any swap backing since the page is now dirty.
1652          */
1653         if (fs->prot & VM_PROT_WRITE) {
1654                 vm_object_set_writeable_dirty(fs->m->object);
1655                 vm_set_nosync(fs->m, fs->entry);
1656                 if (fs->fault_flags & VM_FAULT_DIRTY) {
1657                         vm_page_dirty(fs->m);
1658                         swap_pager_unswapped(fs->m);
1659                 }
1660         }
1661
1662         vm_object_pip_wakeup(fs->first_object);
1663         vm_object_chain_release_all(fs->first_object, fs->object);
1664         if (fs->object != fs->first_object)
1665                 vm_object_drop(fs->object);
1666
1667         /*
1668          * Page had better still be busy.  We are still locked up and 
1669          * fs->object will have another PIP reference if it is not equal
1670          * to fs->first_object.
1671          */
1672         KASSERT(fs->m->flags & PG_BUSY,
1673                 ("vm_fault: page %p not busy!", fs->m));
1674
1675         /*
1676          * Sanity check: page must be completely valid or it is not fit to
1677          * map into user space.  vm_pager_get_pages() ensures this.
1678          */
1679         if (fs->m->valid != VM_PAGE_BITS_ALL) {
1680                 vm_page_zero_invalid(fs->m, TRUE);
1681                 kprintf("Warning: page %p partially invalid on fault\n", fs->m);
1682         }
1683         vm_page_flag_clear(fs->m, PG_ZERO);
1684
1685         return (KERN_SUCCESS);
1686 }
1687
1688 /*
1689  * Wire down a range of virtual addresses in a map.  The entry in question
1690  * should be marked in-transition and the map must be locked.  We must
1691  * release the map temporarily while faulting-in the page to avoid a
1692  * deadlock.  Note that the entry may be clipped while we are blocked but
1693  * will never be freed.
1694  *
1695  * No requirements.
1696  */
1697 int
1698 vm_fault_wire(vm_map_t map, vm_map_entry_t entry, boolean_t user_wire)
1699 {
1700         boolean_t fictitious;
1701         vm_offset_t start;
1702         vm_offset_t end;
1703         vm_offset_t va;
1704         vm_paddr_t pa;
1705         vm_page_t m;
1706         pmap_t pmap;
1707         int rv;
1708
1709         lwkt_gettoken(&map->token);
1710
1711         pmap = vm_map_pmap(map);
1712         start = entry->start;
1713         end = entry->end;
1714         fictitious = entry->object.vm_object &&
1715                         (entry->object.vm_object->type == OBJT_DEVICE);
1716         if (entry->eflags & MAP_ENTRY_KSTACK)
1717                 start += PAGE_SIZE;
1718         map->timestamp++;
1719         vm_map_unlock(map);
1720
1721         /*
1722          * We simulate a fault to get the page and enter it in the physical
1723          * map.
1724          */
1725         for (va = start; va < end; va += PAGE_SIZE) {
1726                 if (user_wire) {
1727                         rv = vm_fault(map, va, VM_PROT_READ, 
1728                                         VM_FAULT_USER_WIRE);
1729                 } else {
1730                         rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
1731                                         VM_FAULT_CHANGE_WIRING);
1732                 }
1733                 if (rv) {
1734                         while (va > start) {
1735                                 va -= PAGE_SIZE;
1736                                 if ((pa = pmap_extract(pmap, va)) == 0)
1737                                         continue;
1738                                 pmap_change_wiring(pmap, va, FALSE);
1739                                 if (!fictitious) {
1740                                         m = PHYS_TO_VM_PAGE(pa);
1741                                         vm_page_busy_wait(m, FALSE, "vmwrpg");
1742                                         vm_page_unwire(m, 1);
1743                                         vm_page_wakeup(m);
1744                                 }
1745                         }
1746                         goto done;
1747                 }
1748         }
1749         rv = KERN_SUCCESS;
1750 done:
1751         vm_map_lock(map);
1752         lwkt_reltoken(&map->token);
1753         return (rv);
1754 }
1755
1756 /*
1757  * Unwire a range of virtual addresses in a map.  The map should be
1758  * locked.
1759  */
1760 void
1761 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
1762 {
1763         boolean_t fictitious;
1764         vm_offset_t start;
1765         vm_offset_t end;
1766         vm_offset_t va;
1767         vm_paddr_t pa;
1768         vm_page_t m;
1769         pmap_t pmap;
1770
1771         lwkt_gettoken(&map->token);
1772
1773         pmap = vm_map_pmap(map);
1774         start = entry->start;
1775         end = entry->end;
1776         fictitious = entry->object.vm_object &&
1777                         (entry->object.vm_object->type == OBJT_DEVICE);
1778         if (entry->eflags & MAP_ENTRY_KSTACK)
1779                 start += PAGE_SIZE;
1780
1781         /*
1782          * Since the pages are wired down, we must be able to get their
1783          * mappings from the physical map system.
1784          */
1785         for (va = start; va < end; va += PAGE_SIZE) {
1786                 pa = pmap_extract(pmap, va);
1787                 if (pa != 0) {
1788                         pmap_change_wiring(pmap, va, FALSE);
1789                         if (!fictitious) {
1790                                 m = PHYS_TO_VM_PAGE(pa);
1791                                 vm_page_busy_wait(m, FALSE, "vmwupg");
1792                                 vm_page_unwire(m, 1);
1793                                 vm_page_wakeup(m);
1794                         }
1795                 }
1796         }
1797         lwkt_reltoken(&map->token);
1798 }
1799
1800 /*
1801  * Reduce the rate at which memory is allocated to a process based
1802  * on the perceived load on the VM system. As the load increases
1803  * the allocation burst rate goes down and the delay increases. 
1804  *
1805  * Rate limiting does not apply when faulting active or inactive
1806  * pages.  When faulting 'cache' pages, rate limiting only applies
1807  * if the system currently has a severe page deficit.
1808  *
1809  * XXX vm_pagesupply should be increased when a page is freed.
1810  *
1811  * We sleep up to 1/10 of a second.
1812  */
1813 static int
1814 vm_fault_ratelimit(struct vmspace *vmspace)
1815 {
1816         if (vm_load_enable == 0)
1817                 return(0);
1818         if (vmspace->vm_pagesupply > 0) {
1819                 --vmspace->vm_pagesupply;       /* SMP race ok */
1820                 return(0);
1821         }
1822 #ifdef INVARIANTS
1823         if (vm_load_debug) {
1824                 kprintf("load %-4d give %d pgs, wait %d, pid %-5d (%s)\n",
1825                         vm_load, 
1826                         (1000 - vm_load ) / 10, vm_load * hz / 10000,
1827                         curproc->p_pid, curproc->p_comm);
1828         }
1829 #endif
1830         vmspace->vm_pagesupply = (1000 - vm_load) / 10;
1831         return(vm_load * hz / 10000);
1832 }
1833
1834 /*
1835  * Copy all of the pages from a wired-down map entry to another.
1836  *
1837  * The source and destination maps must be locked for write.
1838  * The source and destination maps token must be held
1839  * The source map entry must be wired down (or be a sharing map
1840  * entry corresponding to a main map entry that is wired down).
1841  *
1842  * No other requirements.
1843  */
1844 void
1845 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1846                     vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
1847 {
1848         vm_object_t dst_object;
1849         vm_object_t src_object;
1850         vm_ooffset_t dst_offset;
1851         vm_ooffset_t src_offset;
1852         vm_prot_t prot;
1853         vm_offset_t vaddr;
1854         vm_page_t dst_m;
1855         vm_page_t src_m;
1856
1857         src_object = src_entry->object.vm_object;
1858         src_offset = src_entry->offset;
1859
1860         /*
1861          * Create the top-level object for the destination entry. (Doesn't
1862          * actually shadow anything - we copy the pages directly.)
1863          */
1864         vm_map_entry_allocate_object(dst_entry);
1865         dst_object = dst_entry->object.vm_object;
1866
1867         prot = dst_entry->max_protection;
1868
1869         /*
1870          * Loop through all of the pages in the entry's range, copying each
1871          * one from the source object (it should be there) to the destination
1872          * object.
1873          */
1874         for (vaddr = dst_entry->start, dst_offset = 0;
1875             vaddr < dst_entry->end;
1876             vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1877
1878                 /*
1879                  * Allocate a page in the destination object
1880                  */
1881                 do {
1882                         dst_m = vm_page_alloc(dst_object,
1883                                               OFF_TO_IDX(dst_offset),
1884                                               VM_ALLOC_NORMAL);
1885                         if (dst_m == NULL) {
1886                                 vm_wait(0);
1887                         }
1888                 } while (dst_m == NULL);
1889
1890                 /*
1891                  * Find the page in the source object, and copy it in.
1892                  * (Because the source is wired down, the page will be in
1893                  * memory.)
1894                  */
1895                 src_m = vm_page_lookup(src_object,
1896                                        OFF_TO_IDX(dst_offset + src_offset));
1897                 if (src_m == NULL)
1898                         panic("vm_fault_copy_wired: page missing");
1899
1900                 vm_page_copy(src_m, dst_m);
1901                 vm_page_event(src_m, VMEVENT_COW);
1902
1903                 /*
1904                  * Enter it in the pmap...
1905                  */
1906
1907                 vm_page_flag_clear(dst_m, PG_ZERO);
1908                 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1909
1910                 /*
1911                  * Mark it no longer busy, and put it on the active list.
1912                  */
1913                 vm_page_activate(dst_m);
1914                 vm_page_wakeup(dst_m);
1915         }
1916 }
1917
1918 #if 0
1919
1920 /*
1921  * This routine checks around the requested page for other pages that
1922  * might be able to be faulted in.  This routine brackets the viable
1923  * pages for the pages to be paged in.
1924  *
1925  * Inputs:
1926  *      m, rbehind, rahead
1927  *
1928  * Outputs:
1929  *  marray (array of vm_page_t), reqpage (index of requested page)
1930  *
1931  * Return value:
1932  *  number of pages in marray
1933  */
1934 static int
1935 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
1936                           vm_page_t *marray, int *reqpage)
1937 {
1938         int i,j;
1939         vm_object_t object;
1940         vm_pindex_t pindex, startpindex, endpindex, tpindex;
1941         vm_page_t rtm;
1942         int cbehind, cahead;
1943
1944         object = m->object;
1945         pindex = m->pindex;
1946
1947         /*
1948          * we don't fault-ahead for device pager
1949          */
1950         if (object->type == OBJT_DEVICE) {
1951                 *reqpage = 0;
1952                 marray[0] = m;
1953                 return 1;
1954         }
1955
1956         /*
1957          * if the requested page is not available, then give up now
1958          */
1959         if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1960                 *reqpage = 0;   /* not used by caller, fix compiler warn */
1961                 return 0;
1962         }
1963
1964         if ((cbehind == 0) && (cahead == 0)) {
1965                 *reqpage = 0;
1966                 marray[0] = m;
1967                 return 1;
1968         }
1969
1970         if (rahead > cahead) {
1971                 rahead = cahead;
1972         }
1973
1974         if (rbehind > cbehind) {
1975                 rbehind = cbehind;
1976         }
1977
1978         /*
1979          * Do not do any readahead if we have insufficient free memory.
1980          *
1981          * XXX code was broken disabled before and has instability
1982          * with this conditonal fixed, so shortcut for now.
1983          */
1984         if (burst_fault == 0 || vm_page_count_severe()) {
1985                 marray[0] = m;
1986                 *reqpage = 0;
1987                 return 1;
1988         }
1989
1990         /*
1991          * scan backward for the read behind pages -- in memory 
1992          *
1993          * Assume that if the page is not found an interrupt will not
1994          * create it.  Theoretically interrupts can only remove (busy)
1995          * pages, not create new associations.
1996          */
1997         if (pindex > 0) {
1998                 if (rbehind > pindex) {
1999                         rbehind = pindex;
2000                         startpindex = 0;
2001                 } else {
2002                         startpindex = pindex - rbehind;
2003                 }
2004
2005                 vm_object_hold(object);
2006                 for (tpindex = pindex; tpindex > startpindex; --tpindex) {
2007                         if (vm_page_lookup(object, tpindex - 1))
2008                                 break;
2009                 }
2010
2011                 i = 0;
2012                 while (tpindex < pindex) {
2013                         rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2014                                                              VM_ALLOC_NULL_OK);
2015                         if (rtm == NULL) {
2016                                 for (j = 0; j < i; j++) {
2017                                         vm_page_free(marray[j]);
2018                                 }
2019                                 vm_object_drop(object);
2020                                 marray[0] = m;
2021                                 *reqpage = 0;
2022                                 return 1;
2023                         }
2024                         marray[i] = rtm;
2025                         ++i;
2026                         ++tpindex;
2027                 }
2028                 vm_object_drop(object);
2029         } else {
2030                 i = 0;
2031         }
2032
2033         /*
2034          * Assign requested page
2035          */
2036         marray[i] = m;
2037         *reqpage = i;
2038         ++i;
2039
2040         /*
2041          * Scan forwards for read-ahead pages
2042          */
2043         tpindex = pindex + 1;
2044         endpindex = tpindex + rahead;
2045         if (endpindex > object->size)
2046                 endpindex = object->size;
2047
2048         vm_object_hold(object);
2049         while (tpindex < endpindex) {
2050                 if (vm_page_lookup(object, tpindex))
2051                         break;
2052                 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_SYSTEM |
2053                                                      VM_ALLOC_NULL_OK);
2054                 if (rtm == NULL)
2055                         break;
2056                 marray[i] = rtm;
2057                 ++i;
2058                 ++tpindex;
2059         }
2060         vm_object_drop(object);
2061
2062         return (i);
2063 }
2064
2065 #endif
2066
2067 /*
2068  * vm_prefault() provides a quick way of clustering pagefaults into a
2069  * processes address space.  It is a "cousin" of pmap_object_init_pt,
2070  * except it runs at page fault time instead of mmap time.
2071  *
2072  * vm.fast_fault        Enables pre-faulting zero-fill pages
2073  *
2074  * vm.prefault_pages    Number of pages (1/2 negative, 1/2 positive) to
2075  *                      prefault.  Scan stops in either direction when
2076  *                      a page is found to already exist.
2077  *
2078  * This code used to be per-platform pmap_prefault().  It is now
2079  * machine-independent and enhanced to also pre-fault zero-fill pages
2080  * (see vm.fast_fault) as well as make them writable, which greatly
2081  * reduces the number of page faults programs incur.
2082  *
2083  * Application performance when pre-faulting zero-fill pages is heavily
2084  * dependent on the application.  Very tiny applications like /bin/echo
2085  * lose a little performance while applications of any appreciable size
2086  * gain performance.  Prefaulting multiple pages also reduces SMP
2087  * congestion and can improve SMP performance significantly.
2088  *
2089  * NOTE!  prot may allow writing but this only applies to the top level
2090  *        object.  If we wind up mapping a page extracted from a backing
2091  *        object we have to make sure it is read-only.
2092  *
2093  * NOTE!  The caller has already handled any COW operations on the
2094  *        vm_map_entry via the normal fault code.  Do NOT call this
2095  *        shortcut unless the normal fault code has run on this entry.
2096  *
2097  * The related map must be locked.
2098  * No other requirements.
2099  */
2100 static int vm_prefault_pages = 8;
2101 SYSCTL_INT(_vm, OID_AUTO, prefault_pages, CTLFLAG_RW, &vm_prefault_pages, 0,
2102            "Maximum number of pages to pre-fault");
2103 static int vm_fast_fault = 1;
2104 SYSCTL_INT(_vm, OID_AUTO, fast_fault, CTLFLAG_RW, &vm_fast_fault, 0,
2105            "Burst fault zero-fill regions");
2106
2107 /*
2108  * Set PG_NOSYNC if the map entry indicates so, but only if the page
2109  * is not already dirty by other means.  This will prevent passive
2110  * filesystem syncing as well as 'sync' from writing out the page.
2111  */
2112 static void
2113 vm_set_nosync(vm_page_t m, vm_map_entry_t entry)
2114 {
2115         if (entry->eflags & MAP_ENTRY_NOSYNC) {
2116                 if (m->dirty == 0)
2117                         vm_page_flag_set(m, PG_NOSYNC);
2118         } else {
2119                 vm_page_flag_clear(m, PG_NOSYNC);
2120         }
2121 }
2122
2123 static void
2124 vm_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry, int prot)
2125 {
2126         struct lwp *lp;
2127         vm_page_t m;
2128         vm_offset_t addr;
2129         vm_pindex_t index;
2130         vm_pindex_t pindex;
2131         vm_object_t object;
2132         int pprot;
2133         int i;
2134         int noneg;
2135         int nopos;
2136         int maxpages;
2137
2138         /*
2139          * Get stable max count value, disabled if set to 0
2140          */
2141         maxpages = vm_prefault_pages;
2142         cpu_ccfence();
2143         if (maxpages <= 0)
2144                 return;
2145
2146         /*
2147          * We do not currently prefault mappings that use virtual page
2148          * tables.  We do not prefault foreign pmaps.
2149          */
2150         if (entry->maptype == VM_MAPTYPE_VPAGETABLE)
2151                 return;
2152         lp = curthread->td_lwp;
2153         if (lp == NULL || (pmap != vmspace_pmap(lp->lwp_vmspace)))
2154                 return;
2155
2156         /*
2157          * Limit pre-fault count to 1024 pages.
2158          */
2159         if (maxpages > 1024)
2160                 maxpages = 1024;
2161
2162         object = entry->object.vm_object;
2163         KKASSERT(object != NULL);
2164         vm_object_hold(object);
2165         KKASSERT(object == entry->object.vm_object);
2166         vm_object_chain_acquire(object);
2167
2168         noneg = 0;
2169         nopos = 0;
2170         for (i = 0; i < maxpages; ++i) {
2171                 vm_object_t lobject;
2172                 vm_object_t nobject;
2173                 int allocated = 0;
2174                 int error;
2175
2176                 /*
2177                  * This can eat a lot of time on a heavily contended
2178                  * machine so yield on the tick if needed.
2179                  */
2180                 if ((i & 7) == 7)
2181                         lwkt_yield();
2182
2183                 /*
2184                  * Calculate the page to pre-fault, stopping the scan in
2185                  * each direction separately if the limit is reached.
2186                  */
2187                 if (i & 1) {
2188                         if (noneg)
2189                                 continue;
2190                         addr = addra - ((i + 1) >> 1) * PAGE_SIZE;
2191                 } else {
2192                         if (nopos)
2193                                 continue;
2194                         addr = addra + ((i + 2) >> 1) * PAGE_SIZE;
2195                 }
2196                 if (addr < entry->start) {
2197                         noneg = 1;
2198                         if (noneg && nopos)
2199                                 break;
2200                         continue;
2201                 }
2202                 if (addr >= entry->end) {
2203                         nopos = 1;
2204                         if (noneg && nopos)
2205                                 break;
2206                         continue;
2207                 }
2208
2209                 /*
2210                  * Skip pages already mapped, and stop scanning in that
2211                  * direction.  When the scan terminates in both directions
2212                  * we are done.
2213                  */
2214                 if (pmap_prefault_ok(pmap, addr) == 0) {
2215                         if (i & 1)
2216                                 noneg = 1;
2217                         else
2218                                 nopos = 1;
2219                         if (noneg && nopos)
2220                                 break;
2221                         continue;
2222                 }
2223
2224                 /*
2225                  * Follow the VM object chain to obtain the page to be mapped
2226                  * into the pmap.
2227                  *
2228                  * If we reach the terminal object without finding a page
2229                  * and we determine it would be advantageous, then allocate
2230                  * a zero-fill page for the base object.  The base object
2231                  * is guaranteed to be OBJT_DEFAULT for this case.
2232                  *
2233                  * In order to not have to check the pager via *haspage*()
2234                  * we stop if any non-default object is encountered.  e.g.
2235                  * a vnode or swap object would stop the loop.
2236                  */
2237                 index = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
2238                 lobject = object;
2239                 pindex = index;
2240                 pprot = prot;
2241
2242                 KKASSERT(lobject == entry->object.vm_object);
2243                 /*vm_object_hold(lobject); implied */
2244
2245                 while ((m = vm_page_lookup_busy_try(lobject, pindex,
2246                                                     TRUE, &error)) == NULL) {
2247                         if (lobject->type != OBJT_DEFAULT)
2248                                 break;
2249                         if (lobject->backing_object == NULL) {
2250                                 if (vm_fast_fault == 0)
2251                                         break;
2252                                 if ((prot & VM_PROT_WRITE) == 0 ||
2253                                     vm_page_count_min(0)) {
2254                                         break;
2255                                 }
2256
2257                                 /*
2258                                  * NOTE: Allocated from base object
2259                                  */
2260                                 m = vm_page_alloc(object, index,
2261                                                   VM_ALLOC_NORMAL |
2262                                                   VM_ALLOC_ZERO |
2263                                                   VM_ALLOC_NULL_OK);
2264                                 if (m == NULL)
2265                                         break;
2266
2267                                 if ((m->flags & PG_ZERO) == 0) {
2268                                         vm_page_zero_fill(m);
2269                                 } else {
2270 #ifdef PMAP_DEBUG
2271                                         pmap_page_assertzero(
2272                                                         VM_PAGE_TO_PHYS(m));
2273 #endif
2274                                         vm_page_flag_clear(m, PG_ZERO);
2275                                         mycpu->gd_cnt.v_ozfod++;
2276                                 }
2277                                 mycpu->gd_cnt.v_zfod++;
2278                                 m->valid = VM_PAGE_BITS_ALL;
2279                                 allocated = 1;
2280                                 pprot = prot;
2281                                 /* lobject = object .. not needed */
2282                                 break;
2283                         }
2284                         if (lobject->backing_object_offset & PAGE_MASK)
2285                                 break;
2286                         nobject = lobject->backing_object;
2287                         vm_object_hold(nobject);
2288                         KKASSERT(nobject == lobject->backing_object);
2289                         pindex += lobject->backing_object_offset >> PAGE_SHIFT;
2290                         if (lobject != object) {
2291                                 vm_object_lock_swap();
2292                                 vm_object_drop(lobject);
2293                         }
2294                         lobject = nobject;
2295                         pprot &= ~VM_PROT_WRITE;
2296                         vm_object_chain_acquire(lobject);
2297                 }
2298
2299                 /*
2300                  * NOTE: A non-NULL (m) will be associated with lobject if
2301                  *       it was found there, otherwise it is probably a
2302                  *       zero-fill page associated with the base object.
2303                  *
2304                  * Give-up if no page is available.
2305                  */
2306                 if (m == NULL) {
2307                         if (lobject != object) {
2308                                 if (object->backing_object != lobject)
2309                                         vm_object_hold(object->backing_object);
2310                                 vm_object_chain_release_all(
2311                                         object->backing_object, lobject);
2312                                 if (object->backing_object != lobject)
2313                                         vm_object_drop(object->backing_object);
2314                                 vm_object_drop(lobject);
2315                         }
2316                         break;
2317                 }
2318
2319                 /*
2320                  * Do not conditionalize on PG_RAM.  If pages are present in
2321                  * the VM system we assume optimal caching.  If caching is
2322                  * not optimal the I/O gravy train will be restarted when we
2323                  * hit an unavailable page.  We do not want to try to restart
2324                  * the gravy train now because we really don't know how much
2325                  * of the object has been cached.  The cost for restarting
2326                  * the gravy train should be low (since accesses will likely
2327                  * be I/O bound anyway).
2328                  *
2329                  * The object must be marked dirty if we are mapping a
2330                  * writable page.  m->object is either lobject or object,
2331                  * both of which are still held.
2332                  */
2333                 if (pprot & VM_PROT_WRITE)
2334                         vm_object_set_writeable_dirty(m->object);
2335
2336                 if (lobject != object) {
2337                         if (object->backing_object != lobject)
2338                                 vm_object_hold(object->backing_object);
2339                         vm_object_chain_release_all(object->backing_object,
2340                                                     lobject);
2341                         if (object->backing_object != lobject)
2342                                 vm_object_drop(object->backing_object);
2343                         vm_object_drop(lobject);
2344                 }
2345
2346                 /*
2347                  * Enter the page into the pmap if appropriate.  If we had
2348                  * allocated the page we have to place it on a queue.  If not
2349                  * we just have to make sure it isn't on the cache queue
2350                  * (pages on the cache queue are not allowed to be mapped).
2351                  */
2352                 if (allocated) {
2353                         if (pprot & VM_PROT_WRITE)
2354                                 vm_set_nosync(m, entry);
2355                         pmap_enter(pmap, addr, m, pprot, 0);
2356                         vm_page_deactivate(m);
2357                         vm_page_wakeup(m);
2358                 } else if (error) {
2359                         /* couldn't busy page, no wakeup */
2360                 } else if (
2361                     ((m->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL) &&
2362                     (m->flags & PG_FICTITIOUS) == 0) {
2363                         /*
2364                          * A fully valid page not undergoing soft I/O can
2365                          * be immediately entered into the pmap.
2366                          */
2367                         if ((m->queue - m->pc) == PQ_CACHE)
2368                                 vm_page_deactivate(m);
2369                         if (pprot & VM_PROT_WRITE)
2370                                 vm_set_nosync(m, entry);
2371                         pmap_enter(pmap, addr, m, pprot, 0);
2372                         vm_page_wakeup(m);
2373                 } else {
2374                         vm_page_wakeup(m);
2375                 }
2376         }
2377         vm_object_chain_release(object);
2378         vm_object_drop(object);
2379 }