Import OpenSSL 0.9.8j.
[dragonfly.git] / crypto / openssl / crypto / sha / sha256.c
1 /* crypto/sha/sha256.c */
2 /* ====================================================================
3  * Copyright (c) 2004 The OpenSSL Project.  All rights reserved
4  * according to the OpenSSL license [found in ../../LICENSE].
5  * ====================================================================
6  */
7 #include <openssl/opensslconf.h>
8 #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA256)
9
10 #include <stdlib.h>
11 #include <string.h>
12
13 #include <openssl/crypto.h>
14 #include <openssl/sha.h>
15 #ifdef OPENSSL_FIPS
16 #include <openssl/fips.h>
17 #endif
18
19 #include <openssl/opensslv.h>
20
21 const char SHA256_version[]="SHA-256" OPENSSL_VERSION_PTEXT;
22
23 int SHA224_Init (SHA256_CTX *c)
24         {
25 #ifdef OPENSSL_FIPS
26         FIPS_selftest_check();
27 #endif
28         c->h[0]=0xc1059ed8UL;   c->h[1]=0x367cd507UL;
29         c->h[2]=0x3070dd17UL;   c->h[3]=0xf70e5939UL;
30         c->h[4]=0xffc00b31UL;   c->h[5]=0x68581511UL;
31         c->h[6]=0x64f98fa7UL;   c->h[7]=0xbefa4fa4UL;
32         c->Nl=0;        c->Nh=0;
33         c->num=0;       c->md_len=SHA224_DIGEST_LENGTH;
34         return 1;
35         }
36
37 int SHA256_Init (SHA256_CTX *c)
38         {
39 #ifdef OPENSSL_FIPS
40         FIPS_selftest_check();
41 #endif
42         c->h[0]=0x6a09e667UL;   c->h[1]=0xbb67ae85UL;
43         c->h[2]=0x3c6ef372UL;   c->h[3]=0xa54ff53aUL;
44         c->h[4]=0x510e527fUL;   c->h[5]=0x9b05688cUL;
45         c->h[6]=0x1f83d9abUL;   c->h[7]=0x5be0cd19UL;
46         c->Nl=0;        c->Nh=0;
47         c->num=0;       c->md_len=SHA256_DIGEST_LENGTH;
48         return 1;
49         }
50
51 unsigned char *SHA224(const unsigned char *d, size_t n, unsigned char *md)
52         {
53         SHA256_CTX c;
54         static unsigned char m[SHA224_DIGEST_LENGTH];
55
56         if (md == NULL) md=m;
57         SHA224_Init(&c);
58         SHA256_Update(&c,d,n);
59         SHA256_Final(md,&c);
60         OPENSSL_cleanse(&c,sizeof(c));
61         return(md);
62         }
63
64 unsigned char *SHA256(const unsigned char *d, size_t n, unsigned char *md)
65         {
66         SHA256_CTX c;
67         static unsigned char m[SHA256_DIGEST_LENGTH];
68
69         if (md == NULL) md=m;
70         SHA256_Init(&c);
71         SHA256_Update(&c,d,n);
72         SHA256_Final(md,&c);
73         OPENSSL_cleanse(&c,sizeof(c));
74         return(md);
75         }
76
77 int SHA224_Update(SHA256_CTX *c, const void *data, size_t len)
78 {   return SHA256_Update (c,data,len);   }
79 int SHA224_Final (unsigned char *md, SHA256_CTX *c)
80 {   return SHA256_Final (md,c);   }
81
82 #define DATA_ORDER_IS_BIG_ENDIAN
83
84 #define HASH_LONG               SHA_LONG
85 #define HASH_CTX                SHA256_CTX
86 #define HASH_CBLOCK             SHA_CBLOCK
87 /*
88  * Note that FIPS180-2 discusses "Truncation of the Hash Function Output."
89  * default: case below covers for it. It's not clear however if it's
90  * permitted to truncate to amount of bytes not divisible by 4. I bet not,
91  * but if it is, then default: case shall be extended. For reference.
92  * Idea behind separate cases for pre-defined lenghts is to let the
93  * compiler decide if it's appropriate to unroll small loops.
94  */
95 #define HASH_MAKE_STRING(c,s)   do {    \
96         unsigned long ll;               \
97         unsigned int  xn;               \
98         switch ((c)->md_len)            \
99         {   case SHA224_DIGEST_LENGTH:  \
100                 for (xn=0;xn<SHA224_DIGEST_LENGTH/4;xn++)       \
101                 {   ll=(c)->h[xn]; HOST_l2c(ll,(s));   }        \
102                 break;                  \
103             case SHA256_DIGEST_LENGTH:  \
104                 for (xn=0;xn<SHA256_DIGEST_LENGTH/4;xn++)       \
105                 {   ll=(c)->h[xn]; HOST_l2c(ll,(s));   }        \
106                 break;                  \
107             default:                    \
108                 if ((c)->md_len > SHA256_DIGEST_LENGTH) \
109                     return 0;                           \
110                 for (xn=0;xn<(c)->md_len/4;xn++)                \
111                 {   ll=(c)->h[xn]; HOST_l2c(ll,(s));   }        \
112                 break;                  \
113         }                               \
114         } while (0)
115
116 #define HASH_UPDATE             SHA256_Update
117 #define HASH_TRANSFORM          SHA256_Transform
118 #define HASH_FINAL              SHA256_Final
119 #define HASH_BLOCK_DATA_ORDER   sha256_block_data_order
120 #ifndef SHA256_ASM
121 static
122 #endif
123 void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num);
124
125 #include "md32_common.h"
126
127 #ifndef SHA256_ASM
128 static const SHA_LONG K256[64] = {
129         0x428a2f98UL,0x71374491UL,0xb5c0fbcfUL,0xe9b5dba5UL,
130         0x3956c25bUL,0x59f111f1UL,0x923f82a4UL,0xab1c5ed5UL,
131         0xd807aa98UL,0x12835b01UL,0x243185beUL,0x550c7dc3UL,
132         0x72be5d74UL,0x80deb1feUL,0x9bdc06a7UL,0xc19bf174UL,
133         0xe49b69c1UL,0xefbe4786UL,0x0fc19dc6UL,0x240ca1ccUL,
134         0x2de92c6fUL,0x4a7484aaUL,0x5cb0a9dcUL,0x76f988daUL,
135         0x983e5152UL,0xa831c66dUL,0xb00327c8UL,0xbf597fc7UL,
136         0xc6e00bf3UL,0xd5a79147UL,0x06ca6351UL,0x14292967UL,
137         0x27b70a85UL,0x2e1b2138UL,0x4d2c6dfcUL,0x53380d13UL,
138         0x650a7354UL,0x766a0abbUL,0x81c2c92eUL,0x92722c85UL,
139         0xa2bfe8a1UL,0xa81a664bUL,0xc24b8b70UL,0xc76c51a3UL,
140         0xd192e819UL,0xd6990624UL,0xf40e3585UL,0x106aa070UL,
141         0x19a4c116UL,0x1e376c08UL,0x2748774cUL,0x34b0bcb5UL,
142         0x391c0cb3UL,0x4ed8aa4aUL,0x5b9cca4fUL,0x682e6ff3UL,
143         0x748f82eeUL,0x78a5636fUL,0x84c87814UL,0x8cc70208UL,
144         0x90befffaUL,0xa4506cebUL,0xbef9a3f7UL,0xc67178f2UL };
145
146 /*
147  * FIPS specification refers to right rotations, while our ROTATE macro
148  * is left one. This is why you might notice that rotation coefficients
149  * differ from those observed in FIPS document by 32-N...
150  */
151 #define Sigma0(x)       (ROTATE((x),30) ^ ROTATE((x),19) ^ ROTATE((x),10))
152 #define Sigma1(x)       (ROTATE((x),26) ^ ROTATE((x),21) ^ ROTATE((x),7))
153 #define sigma0(x)       (ROTATE((x),25) ^ ROTATE((x),14) ^ ((x)>>3))
154 #define sigma1(x)       (ROTATE((x),15) ^ ROTATE((x),13) ^ ((x)>>10))
155
156 #define Ch(x,y,z)       (((x) & (y)) ^ ((~(x)) & (z)))
157 #define Maj(x,y,z)      (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
158
159 #ifdef OPENSSL_SMALL_FOOTPRINT
160
161 static void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num)
162         {
163         unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1,T2;
164         SHA_LONG        X[16],l;
165         int i;
166         const unsigned char *data=in;
167
168                         while (num--) {
169
170         a = ctx->h[0];  b = ctx->h[1];  c = ctx->h[2];  d = ctx->h[3];
171         e = ctx->h[4];  f = ctx->h[5];  g = ctx->h[6];  h = ctx->h[7];
172
173         for (i=0;i<16;i++)
174                 {
175                 HOST_c2l(data,l); T1 = X[i] = l;
176                 T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
177                 T2 = Sigma0(a) + Maj(a,b,c);
178                 h = g;  g = f;  f = e;  e = d + T1;
179                 d = c;  c = b;  b = a;  a = T1 + T2;
180                 }
181
182         for (;i<64;i++)
183                 {
184                 s0 = X[(i+1)&0x0f];     s0 = sigma0(s0);
185                 s1 = X[(i+14)&0x0f];    s1 = sigma1(s1);
186
187                 T1 = X[i&0xf] += s0 + s1 + X[(i+9)&0xf];
188                 T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];
189                 T2 = Sigma0(a) + Maj(a,b,c);
190                 h = g;  g = f;  f = e;  e = d + T1;
191                 d = c;  c = b;  b = a;  a = T1 + T2;
192                 }
193
194         ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
195         ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
196
197                         }
198 }
199
200 #else
201
202 #define ROUND_00_15(i,a,b,c,d,e,f,g,h)          do {    \
203         T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i];      \
204         h = Sigma0(a) + Maj(a,b,c);                     \
205         d += T1;        h += T1;                } while (0)
206
207 #define ROUND_16_63(i,a,b,c,d,e,f,g,h,X)        do {    \
208         s0 = X[(i+1)&0x0f];     s0 = sigma0(s0);        \
209         s1 = X[(i+14)&0x0f];    s1 = sigma1(s1);        \
210         T1 = X[(i)&0x0f] += s0 + s1 + X[(i+9)&0x0f];    \
211         ROUND_00_15(i,a,b,c,d,e,f,g,h);         } while (0)
212
213 static void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num)
214         {
215         unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1;
216         SHA_LONG        X[16];
217         int i;
218         const unsigned char *data=in;
219         const union { long one; char little; } is_endian = {1};
220
221                         while (num--) {
222
223         a = ctx->h[0];  b = ctx->h[1];  c = ctx->h[2];  d = ctx->h[3];
224         e = ctx->h[4];  f = ctx->h[5];  g = ctx->h[6];  h = ctx->h[7];
225
226         if (!is_endian.little && sizeof(SHA_LONG)==4 && ((size_t)in%4)==0)
227                 {
228                 const SHA_LONG *W=(const SHA_LONG *)data;
229
230                 T1 = X[0] = W[0];       ROUND_00_15(0,a,b,c,d,e,f,g,h);
231                 T1 = X[1] = W[1];       ROUND_00_15(1,h,a,b,c,d,e,f,g);
232                 T1 = X[2] = W[2];       ROUND_00_15(2,g,h,a,b,c,d,e,f);
233                 T1 = X[3] = W[3];       ROUND_00_15(3,f,g,h,a,b,c,d,e);
234                 T1 = X[4] = W[4];       ROUND_00_15(4,e,f,g,h,a,b,c,d);
235                 T1 = X[5] = W[5];       ROUND_00_15(5,d,e,f,g,h,a,b,c);
236                 T1 = X[6] = W[6];       ROUND_00_15(6,c,d,e,f,g,h,a,b);
237                 T1 = X[7] = W[7];       ROUND_00_15(7,b,c,d,e,f,g,h,a);
238                 T1 = X[8] = W[8];       ROUND_00_15(8,a,b,c,d,e,f,g,h);
239                 T1 = X[9] = W[9];       ROUND_00_15(9,h,a,b,c,d,e,f,g);
240                 T1 = X[10] = W[10];     ROUND_00_15(10,g,h,a,b,c,d,e,f);
241                 T1 = X[11] = W[11];     ROUND_00_15(11,f,g,h,a,b,c,d,e);
242                 T1 = X[12] = W[12];     ROUND_00_15(12,e,f,g,h,a,b,c,d);
243                 T1 = X[13] = W[13];     ROUND_00_15(13,d,e,f,g,h,a,b,c);
244                 T1 = X[14] = W[14];     ROUND_00_15(14,c,d,e,f,g,h,a,b);
245                 T1 = X[15] = W[15];     ROUND_00_15(15,b,c,d,e,f,g,h,a);
246
247                 data += SHA256_CBLOCK;
248                 }
249         else
250                 {
251                 SHA_LONG l;
252
253                 HOST_c2l(data,l); T1 = X[0] = l;  ROUND_00_15(0,a,b,c,d,e,f,g,h);
254                 HOST_c2l(data,l); T1 = X[1] = l;  ROUND_00_15(1,h,a,b,c,d,e,f,g);
255                 HOST_c2l(data,l); T1 = X[2] = l;  ROUND_00_15(2,g,h,a,b,c,d,e,f);
256                 HOST_c2l(data,l); T1 = X[3] = l;  ROUND_00_15(3,f,g,h,a,b,c,d,e);
257                 HOST_c2l(data,l); T1 = X[4] = l;  ROUND_00_15(4,e,f,g,h,a,b,c,d);
258                 HOST_c2l(data,l); T1 = X[5] = l;  ROUND_00_15(5,d,e,f,g,h,a,b,c);
259                 HOST_c2l(data,l); T1 = X[6] = l;  ROUND_00_15(6,c,d,e,f,g,h,a,b);
260                 HOST_c2l(data,l); T1 = X[7] = l;  ROUND_00_15(7,b,c,d,e,f,g,h,a);
261                 HOST_c2l(data,l); T1 = X[8] = l;  ROUND_00_15(8,a,b,c,d,e,f,g,h);
262                 HOST_c2l(data,l); T1 = X[9] = l;  ROUND_00_15(9,h,a,b,c,d,e,f,g);
263                 HOST_c2l(data,l); T1 = X[10] = l; ROUND_00_15(10,g,h,a,b,c,d,e,f);
264                 HOST_c2l(data,l); T1 = X[11] = l; ROUND_00_15(11,f,g,h,a,b,c,d,e);
265                 HOST_c2l(data,l); T1 = X[12] = l; ROUND_00_15(12,e,f,g,h,a,b,c,d);
266                 HOST_c2l(data,l); T1 = X[13] = l; ROUND_00_15(13,d,e,f,g,h,a,b,c);
267                 HOST_c2l(data,l); T1 = X[14] = l; ROUND_00_15(14,c,d,e,f,g,h,a,b);
268                 HOST_c2l(data,l); T1 = X[15] = l; ROUND_00_15(15,b,c,d,e,f,g,h,a);
269                 }
270
271         for (i=16;i<64;i+=8)
272                 {
273                 ROUND_16_63(i+0,a,b,c,d,e,f,g,h,X);
274                 ROUND_16_63(i+1,h,a,b,c,d,e,f,g,X);
275                 ROUND_16_63(i+2,g,h,a,b,c,d,e,f,X);
276                 ROUND_16_63(i+3,f,g,h,a,b,c,d,e,X);
277                 ROUND_16_63(i+4,e,f,g,h,a,b,c,d,X);
278                 ROUND_16_63(i+5,d,e,f,g,h,a,b,c,X);
279                 ROUND_16_63(i+6,c,d,e,f,g,h,a,b,X);
280                 ROUND_16_63(i+7,b,c,d,e,f,g,h,a,X);
281                 }
282
283         ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d;
284         ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h;
285
286                         }
287         }
288
289 #endif
290 #endif /* SHA256_ASM */
291
292 #endif /* OPENSSL_NO_SHA256 */