Import gcc-4.7.2 to new vendor branch
[dragonfly.git] / contrib / gcc-4.7 / gcc / function.c
1 /* Expands front end tree to back end RTL for GCC.
2    Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3    1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4    2010, 2011, 2012  Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21
22 /* This file handles the generation of rtl code from tree structure
23    at the level of the function as a whole.
24    It creates the rtl expressions for parameters and auto variables
25    and has full responsibility for allocating stack slots.
26
27    `expand_function_start' is called at the beginning of a function,
28    before the function body is parsed, and `expand_function_end' is
29    called after parsing the body.
30
31    Call `assign_stack_local' to allocate a stack slot for a local variable.
32    This is usually done during the RTL generation for the function body,
33    but it can also be done in the reload pass when a pseudo-register does
34    not get a hard register.  */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl-error.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "hashtab.h"
55 #include "ggc.h"
56 #include "tm_p.h"
57 #include "integrate.h"
58 #include "langhooks.h"
59 #include "target.h"
60 #include "common/common-target.h"
61 #include "cfglayout.h"
62 #include "gimple.h"
63 #include "tree-pass.h"
64 #include "predict.h"
65 #include "df.h"
66 #include "timevar.h"
67 #include "vecprim.h"
68 #include "params.h"
69 #include "bb-reorder.h"
70
71 /* So we can assign to cfun in this file.  */
72 #undef cfun
73
74 #ifndef STACK_ALIGNMENT_NEEDED
75 #define STACK_ALIGNMENT_NEEDED 1
76 #endif
77
78 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
79
80 /* Some systems use __main in a way incompatible with its use in gcc, in these
81    cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
82    give the same symbol without quotes for an alternative entry point.  You
83    must define both, or neither.  */
84 #ifndef NAME__MAIN
85 #define NAME__MAIN "__main"
86 #endif
87
88 /* Round a value to the lowest integer less than it that is a multiple of
89    the required alignment.  Avoid using division in case the value is
90    negative.  Assume the alignment is a power of two.  */
91 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
92
93 /* Similar, but round to the next highest integer that meets the
94    alignment.  */
95 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
96
97 /* Nonzero if function being compiled doesn't contain any calls
98    (ignoring the prologue and epilogue).  This is set prior to
99    local register allocation and is valid for the remaining
100    compiler passes.  */
101 int current_function_is_leaf;
102
103 /* Nonzero if function being compiled doesn't modify the stack pointer
104    (ignoring the prologue and epilogue).  This is only valid after
105    pass_stack_ptr_mod has run.  */
106 int current_function_sp_is_unchanging;
107
108 /* Nonzero if the function being compiled is a leaf function which only
109    uses leaf registers.  This is valid after reload (specifically after
110    sched2) and is useful only if the port defines LEAF_REGISTERS.  */
111 int current_function_uses_only_leaf_regs;
112
113 /* Nonzero once virtual register instantiation has been done.
114    assign_stack_local uses frame_pointer_rtx when this is nonzero.
115    calls.c:emit_library_call_value_1 uses it to set up
116    post-instantiation libcalls.  */
117 int virtuals_instantiated;
118
119 /* Assign unique numbers to labels generated for profiling, debugging, etc.  */
120 static GTY(()) int funcdef_no;
121
122 /* These variables hold pointers to functions to create and destroy
123    target specific, per-function data structures.  */
124 struct machine_function * (*init_machine_status) (void);
125
126 /* The currently compiled function.  */
127 struct function *cfun = 0;
128
129 /* These hashes record the prologue and epilogue insns.  */
130 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
131   htab_t prologue_insn_hash;
132 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
133   htab_t epilogue_insn_hash;
134 \f
135
136 htab_t types_used_by_vars_hash = NULL;
137 VEC(tree,gc) *types_used_by_cur_var_decl;
138
139 /* Forward declarations.  */
140
141 static struct temp_slot *find_temp_slot_from_address (rtx);
142 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
143 static void pad_below (struct args_size *, enum machine_mode, tree);
144 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
145 static int all_blocks (tree, tree *);
146 static tree *get_block_vector (tree, int *);
147 extern tree debug_find_var_in_block_tree (tree, tree);
148 /* We always define `record_insns' even if it's not used so that we
149    can always export `prologue_epilogue_contains'.  */
150 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
151 static bool contains (const_rtx, htab_t);
152 static void prepare_function_start (void);
153 static void do_clobber_return_reg (rtx, void *);
154 static void do_use_return_reg (rtx, void *);
155 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
156 \f
157 /* Stack of nested functions.  */
158 /* Keep track of the cfun stack.  */
159
160 typedef struct function *function_p;
161
162 DEF_VEC_P(function_p);
163 DEF_VEC_ALLOC_P(function_p,heap);
164 static VEC(function_p,heap) *function_context_stack;
165
166 /* Save the current context for compilation of a nested function.
167    This is called from language-specific code.  */
168
169 void
170 push_function_context (void)
171 {
172   if (cfun == 0)
173     allocate_struct_function (NULL, false);
174
175   VEC_safe_push (function_p, heap, function_context_stack, cfun);
176   set_cfun (NULL);
177 }
178
179 /* Restore the last saved context, at the end of a nested function.
180    This function is called from language-specific code.  */
181
182 void
183 pop_function_context (void)
184 {
185   struct function *p = VEC_pop (function_p, function_context_stack);
186   set_cfun (p);
187   current_function_decl = p->decl;
188
189   /* Reset variables that have known state during rtx generation.  */
190   virtuals_instantiated = 0;
191   generating_concat_p = 1;
192 }
193
194 /* Clear out all parts of the state in F that can safely be discarded
195    after the function has been parsed, but not compiled, to let
196    garbage collection reclaim the memory.  */
197
198 void
199 free_after_parsing (struct function *f)
200 {
201   f->language = 0;
202 }
203
204 /* Clear out all parts of the state in F that can safely be discarded
205    after the function has been compiled, to let garbage collection
206    reclaim the memory.  */
207
208 void
209 free_after_compilation (struct function *f)
210 {
211   prologue_insn_hash = NULL;
212   epilogue_insn_hash = NULL;
213
214   free (crtl->emit.regno_pointer_align);
215
216   memset (crtl, 0, sizeof (struct rtl_data));
217   f->eh = NULL;
218   f->machine = NULL;
219   f->cfg = NULL;
220
221   regno_reg_rtx = NULL;
222   insn_locators_free ();
223 }
224 \f
225 /* Return size needed for stack frame based on slots so far allocated.
226    This size counts from zero.  It is not rounded to PREFERRED_STACK_BOUNDARY;
227    the caller may have to do that.  */
228
229 HOST_WIDE_INT
230 get_frame_size (void)
231 {
232   if (FRAME_GROWS_DOWNWARD)
233     return -frame_offset;
234   else
235     return frame_offset;
236 }
237
238 /* Issue an error message and return TRUE if frame OFFSET overflows in
239    the signed target pointer arithmetics for function FUNC.  Otherwise
240    return FALSE.  */
241
242 bool
243 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
244 {
245   unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
246
247   if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
248                /* Leave room for the fixed part of the frame.  */
249                - 64 * UNITS_PER_WORD)
250     {
251       error_at (DECL_SOURCE_LOCATION (func),
252                 "total size of local objects too large");
253       return TRUE;
254     }
255
256   return FALSE;
257 }
258
259 /* Return stack slot alignment in bits for TYPE and MODE.  */
260
261 static unsigned int
262 get_stack_local_alignment (tree type, enum machine_mode mode)
263 {
264   unsigned int alignment;
265
266   if (mode == BLKmode)
267     alignment = BIGGEST_ALIGNMENT;
268   else
269     alignment = GET_MODE_ALIGNMENT (mode);
270
271   /* Allow the frond-end to (possibly) increase the alignment of this
272      stack slot.  */
273   if (! type)
274     type = lang_hooks.types.type_for_mode (mode, 0);
275
276   return STACK_SLOT_ALIGNMENT (type, mode, alignment);
277 }
278
279 /* Determine whether it is possible to fit a stack slot of size SIZE and
280    alignment ALIGNMENT into an area in the stack frame that starts at
281    frame offset START and has a length of LENGTH.  If so, store the frame
282    offset to be used for the stack slot in *POFFSET and return true;
283    return false otherwise.  This function will extend the frame size when
284    given a start/length pair that lies at the end of the frame.  */
285
286 static bool
287 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
288                      HOST_WIDE_INT size, unsigned int alignment,
289                      HOST_WIDE_INT *poffset)
290 {
291   HOST_WIDE_INT this_frame_offset;
292   int frame_off, frame_alignment, frame_phase;
293
294   /* Calculate how many bytes the start of local variables is off from
295      stack alignment.  */
296   frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
297   frame_off = STARTING_FRAME_OFFSET % frame_alignment;
298   frame_phase = frame_off ? frame_alignment - frame_off : 0;
299
300   /* Round the frame offset to the specified alignment.  */
301
302   /*  We must be careful here, since FRAME_OFFSET might be negative and
303       division with a negative dividend isn't as well defined as we might
304       like.  So we instead assume that ALIGNMENT is a power of two and
305       use logical operations which are unambiguous.  */
306   if (FRAME_GROWS_DOWNWARD)
307     this_frame_offset
308       = (FLOOR_ROUND (start + length - size - frame_phase,
309                       (unsigned HOST_WIDE_INT) alignment)
310          + frame_phase);
311   else
312     this_frame_offset
313       = (CEIL_ROUND (start - frame_phase,
314                      (unsigned HOST_WIDE_INT) alignment)
315          + frame_phase);
316
317   /* See if it fits.  If this space is at the edge of the frame,
318      consider extending the frame to make it fit.  Our caller relies on
319      this when allocating a new slot.  */
320   if (frame_offset == start && this_frame_offset < frame_offset)
321     frame_offset = this_frame_offset;
322   else if (this_frame_offset < start)
323     return false;
324   else if (start + length == frame_offset
325            && this_frame_offset + size > start + length)
326     frame_offset = this_frame_offset + size;
327   else if (this_frame_offset + size > start + length)
328     return false;
329
330   *poffset = this_frame_offset;
331   return true;
332 }
333
334 /* Create a new frame_space structure describing free space in the stack
335    frame beginning at START and ending at END, and chain it into the
336    function's frame_space_list.  */
337
338 static void
339 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
340 {
341   struct frame_space *space = ggc_alloc_frame_space ();
342   space->next = crtl->frame_space_list;
343   crtl->frame_space_list = space;
344   space->start = start;
345   space->length = end - start;
346 }
347
348 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
349    with machine mode MODE.
350
351    ALIGN controls the amount of alignment for the address of the slot:
352    0 means according to MODE,
353    -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
354    -2 means use BITS_PER_UNIT,
355    positive specifies alignment boundary in bits.
356
357    KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
358    alignment and ASLK_RECORD_PAD bit set if we should remember
359    extra space we allocated for alignment purposes.  When we are
360    called from assign_stack_temp_for_type, it is not set so we don't
361    track the same stack slot in two independent lists.
362
363    We do not round to stack_boundary here.  */
364
365 rtx
366 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
367                       int align, int kind)
368 {
369   rtx x, addr;
370   int bigend_correction = 0;
371   HOST_WIDE_INT slot_offset = 0, old_frame_offset;
372   unsigned int alignment, alignment_in_bits;
373
374   if (align == 0)
375     {
376       alignment = get_stack_local_alignment (NULL, mode);
377       alignment /= BITS_PER_UNIT;
378     }
379   else if (align == -1)
380     {
381       alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
382       size = CEIL_ROUND (size, alignment);
383     }
384   else if (align == -2)
385     alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
386   else
387     alignment = align / BITS_PER_UNIT;
388
389   alignment_in_bits = alignment * BITS_PER_UNIT;
390
391   /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT.  */
392   if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
393     {
394       alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
395       alignment = alignment_in_bits / BITS_PER_UNIT;
396     }
397
398   if (SUPPORTS_STACK_ALIGNMENT)
399     {
400       if (crtl->stack_alignment_estimated < alignment_in_bits)
401         {
402           if (!crtl->stack_realign_processed)
403             crtl->stack_alignment_estimated = alignment_in_bits;
404           else
405             {
406               /* If stack is realigned and stack alignment value
407                  hasn't been finalized, it is OK not to increase
408                  stack_alignment_estimated.  The bigger alignment
409                  requirement is recorded in stack_alignment_needed
410                  below.  */
411               gcc_assert (!crtl->stack_realign_finalized);
412               if (!crtl->stack_realign_needed)
413                 {
414                   /* It is OK to reduce the alignment as long as the
415                      requested size is 0 or the estimated stack
416                      alignment >= mode alignment.  */
417                   gcc_assert ((kind & ASLK_REDUCE_ALIGN)
418                               || size == 0
419                               || (crtl->stack_alignment_estimated
420                                   >= GET_MODE_ALIGNMENT (mode)));
421                   alignment_in_bits = crtl->stack_alignment_estimated;
422                   alignment = alignment_in_bits / BITS_PER_UNIT;
423                 }
424             }
425         }
426     }
427
428   if (crtl->stack_alignment_needed < alignment_in_bits)
429     crtl->stack_alignment_needed = alignment_in_bits;
430   if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
431     crtl->max_used_stack_slot_alignment = alignment_in_bits;
432
433   if (mode != BLKmode || size != 0)
434     {
435       if (kind & ASLK_RECORD_PAD)
436         {
437           struct frame_space **psp;
438
439           for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
440             {
441               struct frame_space *space = *psp;
442               if (!try_fit_stack_local (space->start, space->length, size,
443                                         alignment, &slot_offset))
444                 continue;
445               *psp = space->next;
446               if (slot_offset > space->start)
447                 add_frame_space (space->start, slot_offset);
448               if (slot_offset + size < space->start + space->length)
449                 add_frame_space (slot_offset + size,
450                                  space->start + space->length);
451               goto found_space;
452             }
453         }
454     }
455   else if (!STACK_ALIGNMENT_NEEDED)
456     {
457       slot_offset = frame_offset;
458       goto found_space;
459     }
460
461   old_frame_offset = frame_offset;
462
463   if (FRAME_GROWS_DOWNWARD)
464     {
465       frame_offset -= size;
466       try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
467
468       if (kind & ASLK_RECORD_PAD)
469         {
470           if (slot_offset > frame_offset)
471             add_frame_space (frame_offset, slot_offset);
472           if (slot_offset + size < old_frame_offset)
473             add_frame_space (slot_offset + size, old_frame_offset);
474         }
475     }
476   else
477     {
478       frame_offset += size;
479       try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
480
481       if (kind & ASLK_RECORD_PAD)
482         {
483           if (slot_offset > old_frame_offset)
484             add_frame_space (old_frame_offset, slot_offset);
485           if (slot_offset + size < frame_offset)
486             add_frame_space (slot_offset + size, frame_offset);
487         }
488     }
489
490  found_space:
491   /* On a big-endian machine, if we are allocating more space than we will use,
492      use the least significant bytes of those that are allocated.  */
493   if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
494     bigend_correction = size - GET_MODE_SIZE (mode);
495
496   /* If we have already instantiated virtual registers, return the actual
497      address relative to the frame pointer.  */
498   if (virtuals_instantiated)
499     addr = plus_constant (frame_pointer_rtx,
500                           trunc_int_for_mode
501                           (slot_offset + bigend_correction
502                            + STARTING_FRAME_OFFSET, Pmode));
503   else
504     addr = plus_constant (virtual_stack_vars_rtx,
505                           trunc_int_for_mode
506                           (slot_offset + bigend_correction,
507                            Pmode));
508
509   x = gen_rtx_MEM (mode, addr);
510   set_mem_align (x, alignment_in_bits);
511   MEM_NOTRAP_P (x) = 1;
512
513   stack_slot_list
514     = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
515
516   if (frame_offset_overflow (frame_offset, current_function_decl))
517     frame_offset = 0;
518
519   return x;
520 }
521
522 /* Wrap up assign_stack_local_1 with last parameter as false.  */
523
524 rtx
525 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
526 {
527   return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
528 }
529 \f
530 \f
531 /* In order to evaluate some expressions, such as function calls returning
532    structures in memory, we need to temporarily allocate stack locations.
533    We record each allocated temporary in the following structure.
534
535    Associated with each temporary slot is a nesting level.  When we pop up
536    one level, all temporaries associated with the previous level are freed.
537    Normally, all temporaries are freed after the execution of the statement
538    in which they were created.  However, if we are inside a ({...}) grouping,
539    the result may be in a temporary and hence must be preserved.  If the
540    result could be in a temporary, we preserve it if we can determine which
541    one it is in.  If we cannot determine which temporary may contain the
542    result, all temporaries are preserved.  A temporary is preserved by
543    pretending it was allocated at the previous nesting level.
544
545    Automatic variables are also assigned temporary slots, at the nesting
546    level where they are defined.  They are marked a "kept" so that
547    free_temp_slots will not free them.  */
548
549 struct GTY(()) temp_slot {
550   /* Points to next temporary slot.  */
551   struct temp_slot *next;
552   /* Points to previous temporary slot.  */
553   struct temp_slot *prev;
554   /* The rtx to used to reference the slot.  */
555   rtx slot;
556   /* The size, in units, of the slot.  */
557   HOST_WIDE_INT size;
558   /* The type of the object in the slot, or zero if it doesn't correspond
559      to a type.  We use this to determine whether a slot can be reused.
560      It can be reused if objects of the type of the new slot will always
561      conflict with objects of the type of the old slot.  */
562   tree type;
563   /* The alignment (in bits) of the slot.  */
564   unsigned int align;
565   /* Nonzero if this temporary is currently in use.  */
566   char in_use;
567   /* Nonzero if this temporary has its address taken.  */
568   char addr_taken;
569   /* Nesting level at which this slot is being used.  */
570   int level;
571   /* Nonzero if this should survive a call to free_temp_slots.  */
572   int keep;
573   /* The offset of the slot from the frame_pointer, including extra space
574      for alignment.  This info is for combine_temp_slots.  */
575   HOST_WIDE_INT base_offset;
576   /* The size of the slot, including extra space for alignment.  This
577      info is for combine_temp_slots.  */
578   HOST_WIDE_INT full_size;
579 };
580
581 /* A table of addresses that represent a stack slot.  The table is a mapping
582    from address RTXen to a temp slot.  */
583 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
584
585 /* Entry for the above hash table.  */
586 struct GTY(()) temp_slot_address_entry {
587   hashval_t hash;
588   rtx address;
589   struct temp_slot *temp_slot;
590 };
591
592 /* Removes temporary slot TEMP from LIST.  */
593
594 static void
595 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
596 {
597   if (temp->next)
598     temp->next->prev = temp->prev;
599   if (temp->prev)
600     temp->prev->next = temp->next;
601   else
602     *list = temp->next;
603
604   temp->prev = temp->next = NULL;
605 }
606
607 /* Inserts temporary slot TEMP to LIST.  */
608
609 static void
610 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
611 {
612   temp->next = *list;
613   if (*list)
614     (*list)->prev = temp;
615   temp->prev = NULL;
616   *list = temp;
617 }
618
619 /* Returns the list of used temp slots at LEVEL.  */
620
621 static struct temp_slot **
622 temp_slots_at_level (int level)
623 {
624   if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
625     VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
626
627   return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
628 }
629
630 /* Returns the maximal temporary slot level.  */
631
632 static int
633 max_slot_level (void)
634 {
635   if (!used_temp_slots)
636     return -1;
637
638   return VEC_length (temp_slot_p, used_temp_slots) - 1;
639 }
640
641 /* Moves temporary slot TEMP to LEVEL.  */
642
643 static void
644 move_slot_to_level (struct temp_slot *temp, int level)
645 {
646   cut_slot_from_list (temp, temp_slots_at_level (temp->level));
647   insert_slot_to_list (temp, temp_slots_at_level (level));
648   temp->level = level;
649 }
650
651 /* Make temporary slot TEMP available.  */
652
653 static void
654 make_slot_available (struct temp_slot *temp)
655 {
656   cut_slot_from_list (temp, temp_slots_at_level (temp->level));
657   insert_slot_to_list (temp, &avail_temp_slots);
658   temp->in_use = 0;
659   temp->level = -1;
660 }
661
662 /* Compute the hash value for an address -> temp slot mapping.
663    The value is cached on the mapping entry.  */
664 static hashval_t
665 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
666 {
667   int do_not_record = 0;
668   return hash_rtx (t->address, GET_MODE (t->address),
669                    &do_not_record, NULL, false);
670 }
671
672 /* Return the hash value for an address -> temp slot mapping.  */
673 static hashval_t
674 temp_slot_address_hash (const void *p)
675 {
676   const struct temp_slot_address_entry *t;
677   t = (const struct temp_slot_address_entry *) p;
678   return t->hash;
679 }
680
681 /* Compare two address -> temp slot mapping entries.  */
682 static int
683 temp_slot_address_eq (const void *p1, const void *p2)
684 {
685   const struct temp_slot_address_entry *t1, *t2;
686   t1 = (const struct temp_slot_address_entry *) p1;
687   t2 = (const struct temp_slot_address_entry *) p2;
688   return exp_equiv_p (t1->address, t2->address, 0, true);
689 }
690
691 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping.  */
692 static void
693 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
694 {
695   void **slot;
696   struct temp_slot_address_entry *t = ggc_alloc_temp_slot_address_entry ();
697   t->address = address;
698   t->temp_slot = temp_slot;
699   t->hash = temp_slot_address_compute_hash (t);
700   slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
701   *slot = t;
702 }
703
704 /* Remove an address -> temp slot mapping entry if the temp slot is
705    not in use anymore.  Callback for remove_unused_temp_slot_addresses.  */
706 static int
707 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
708 {
709   const struct temp_slot_address_entry *t;
710   t = (const struct temp_slot_address_entry *) *slot;
711   if (! t->temp_slot->in_use)
712     *slot = NULL;
713   return 1;
714 }
715
716 /* Remove all mappings of addresses to unused temp slots.  */
717 static void
718 remove_unused_temp_slot_addresses (void)
719 {
720   htab_traverse (temp_slot_address_table,
721                  remove_unused_temp_slot_addresses_1,
722                  NULL);
723 }
724
725 /* Find the temp slot corresponding to the object at address X.  */
726
727 static struct temp_slot *
728 find_temp_slot_from_address (rtx x)
729 {
730   struct temp_slot *p;
731   struct temp_slot_address_entry tmp, *t;
732
733   /* First try the easy way:
734      See if X exists in the address -> temp slot mapping.  */
735   tmp.address = x;
736   tmp.temp_slot = NULL;
737   tmp.hash = temp_slot_address_compute_hash (&tmp);
738   t = (struct temp_slot_address_entry *)
739     htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
740   if (t)
741     return t->temp_slot;
742
743   /* If we have a sum involving a register, see if it points to a temp
744      slot.  */
745   if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
746       && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
747     return p;
748   else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
749            && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
750     return p;
751
752   /* Last resort: Address is a virtual stack var address.  */
753   if (GET_CODE (x) == PLUS
754       && XEXP (x, 0) == virtual_stack_vars_rtx
755       && CONST_INT_P (XEXP (x, 1)))
756     {
757       int i;
758       for (i = max_slot_level (); i >= 0; i--)
759         for (p = *temp_slots_at_level (i); p; p = p->next)
760           {
761             if (INTVAL (XEXP (x, 1)) >= p->base_offset
762                 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
763               return p;
764           }
765     }
766
767   return NULL;
768 }
769 \f
770 /* Allocate a temporary stack slot and record it for possible later
771    reuse.
772
773    MODE is the machine mode to be given to the returned rtx.
774
775    SIZE is the size in units of the space required.  We do no rounding here
776    since assign_stack_local will do any required rounding.
777
778    KEEP is 1 if this slot is to be retained after a call to
779    free_temp_slots.  Automatic variables for a block are allocated
780    with this flag.  KEEP values of 2 or 3 were needed respectively
781    for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
782    or for SAVE_EXPRs, but they are now unused.
783
784    TYPE is the type that will be used for the stack slot.  */
785
786 rtx
787 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
788                             int keep, tree type)
789 {
790   unsigned int align;
791   struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
792   rtx slot;
793
794   /* If SIZE is -1 it means that somebody tried to allocate a temporary
795      of a variable size.  */
796   gcc_assert (size != -1);
797
798   /* These are now unused.  */
799   gcc_assert (keep <= 1);
800
801   align = get_stack_local_alignment (type, mode);
802
803   /* Try to find an available, already-allocated temporary of the proper
804      mode which meets the size and alignment requirements.  Choose the
805      smallest one with the closest alignment.
806
807      If assign_stack_temp is called outside of the tree->rtl expansion,
808      we cannot reuse the stack slots (that may still refer to
809      VIRTUAL_STACK_VARS_REGNUM).  */
810   if (!virtuals_instantiated)
811     {
812       for (p = avail_temp_slots; p; p = p->next)
813         {
814           if (p->align >= align && p->size >= size
815               && GET_MODE (p->slot) == mode
816               && objects_must_conflict_p (p->type, type)
817               && (best_p == 0 || best_p->size > p->size
818                   || (best_p->size == p->size && best_p->align > p->align)))
819             {
820               if (p->align == align && p->size == size)
821                 {
822                   selected = p;
823                   cut_slot_from_list (selected, &avail_temp_slots);
824                   best_p = 0;
825                   break;
826                 }
827               best_p = p;
828             }
829         }
830     }
831
832   /* Make our best, if any, the one to use.  */
833   if (best_p)
834     {
835       selected = best_p;
836       cut_slot_from_list (selected, &avail_temp_slots);
837
838       /* If there are enough aligned bytes left over, make them into a new
839          temp_slot so that the extra bytes don't get wasted.  Do this only
840          for BLKmode slots, so that we can be sure of the alignment.  */
841       if (GET_MODE (best_p->slot) == BLKmode)
842         {
843           int alignment = best_p->align / BITS_PER_UNIT;
844           HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
845
846           if (best_p->size - rounded_size >= alignment)
847             {
848               p = ggc_alloc_temp_slot ();
849               p->in_use = p->addr_taken = 0;
850               p->size = best_p->size - rounded_size;
851               p->base_offset = best_p->base_offset + rounded_size;
852               p->full_size = best_p->full_size - rounded_size;
853               p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
854               p->align = best_p->align;
855               p->type = best_p->type;
856               insert_slot_to_list (p, &avail_temp_slots);
857
858               stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
859                                                    stack_slot_list);
860
861               best_p->size = rounded_size;
862               best_p->full_size = rounded_size;
863             }
864         }
865     }
866
867   /* If we still didn't find one, make a new temporary.  */
868   if (selected == 0)
869     {
870       HOST_WIDE_INT frame_offset_old = frame_offset;
871
872       p = ggc_alloc_temp_slot ();
873
874       /* We are passing an explicit alignment request to assign_stack_local.
875          One side effect of that is assign_stack_local will not round SIZE
876          to ensure the frame offset remains suitably aligned.
877
878          So for requests which depended on the rounding of SIZE, we go ahead
879          and round it now.  We also make sure ALIGNMENT is at least
880          BIGGEST_ALIGNMENT.  */
881       gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
882       p->slot = assign_stack_local_1 (mode,
883                                       (mode == BLKmode
884                                        ? CEIL_ROUND (size,
885                                                      (int) align
886                                                      / BITS_PER_UNIT)
887                                        : size),
888                                       align, 0);
889
890       p->align = align;
891
892       /* The following slot size computation is necessary because we don't
893          know the actual size of the temporary slot until assign_stack_local
894          has performed all the frame alignment and size rounding for the
895          requested temporary.  Note that extra space added for alignment
896          can be either above or below this stack slot depending on which
897          way the frame grows.  We include the extra space if and only if it
898          is above this slot.  */
899       if (FRAME_GROWS_DOWNWARD)
900         p->size = frame_offset_old - frame_offset;
901       else
902         p->size = size;
903
904       /* Now define the fields used by combine_temp_slots.  */
905       if (FRAME_GROWS_DOWNWARD)
906         {
907           p->base_offset = frame_offset;
908           p->full_size = frame_offset_old - frame_offset;
909         }
910       else
911         {
912           p->base_offset = frame_offset_old;
913           p->full_size = frame_offset - frame_offset_old;
914         }
915
916       selected = p;
917     }
918
919   p = selected;
920   p->in_use = 1;
921   p->addr_taken = 0;
922   p->type = type;
923   p->level = temp_slot_level;
924   p->keep = keep;
925
926   pp = temp_slots_at_level (p->level);
927   insert_slot_to_list (p, pp);
928   insert_temp_slot_address (XEXP (p->slot, 0), p);
929
930   /* Create a new MEM rtx to avoid clobbering MEM flags of old slots.  */
931   slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
932   stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
933
934   /* If we know the alias set for the memory that will be used, use
935      it.  If there's no TYPE, then we don't know anything about the
936      alias set for the memory.  */
937   set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
938   set_mem_align (slot, align);
939
940   /* If a type is specified, set the relevant flags.  */
941   if (type != 0)
942     MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
943   MEM_NOTRAP_P (slot) = 1;
944
945   return slot;
946 }
947
948 /* Allocate a temporary stack slot and record it for possible later
949    reuse.  First three arguments are same as in preceding function.  */
950
951 rtx
952 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
953 {
954   return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
955 }
956 \f
957 /* Assign a temporary.
958    If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
959    and so that should be used in error messages.  In either case, we
960    allocate of the given type.
961    KEEP is as for assign_stack_temp.
962    MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
963    it is 0 if a register is OK.
964    DONT_PROMOTE is 1 if we should not promote values in register
965    to wider modes.  */
966
967 rtx
968 assign_temp (tree type_or_decl, int keep, int memory_required,
969              int dont_promote ATTRIBUTE_UNUSED)
970 {
971   tree type, decl;
972   enum machine_mode mode;
973 #ifdef PROMOTE_MODE
974   int unsignedp;
975 #endif
976
977   if (DECL_P (type_or_decl))
978     decl = type_or_decl, type = TREE_TYPE (decl);
979   else
980     decl = NULL, type = type_or_decl;
981
982   mode = TYPE_MODE (type);
983 #ifdef PROMOTE_MODE
984   unsignedp = TYPE_UNSIGNED (type);
985 #endif
986
987   if (mode == BLKmode || memory_required)
988     {
989       HOST_WIDE_INT size = int_size_in_bytes (type);
990       rtx tmp;
991
992       /* Zero sized arrays are GNU C extension.  Set size to 1 to avoid
993          problems with allocating the stack space.  */
994       if (size == 0)
995         size = 1;
996
997       /* Unfortunately, we don't yet know how to allocate variable-sized
998          temporaries.  However, sometimes we can find a fixed upper limit on
999          the size, so try that instead.  */
1000       else if (size == -1)
1001         size = max_int_size_in_bytes (type);
1002
1003       /* The size of the temporary may be too large to fit into an integer.  */
1004       /* ??? Not sure this should happen except for user silliness, so limit
1005          this to things that aren't compiler-generated temporaries.  The
1006          rest of the time we'll die in assign_stack_temp_for_type.  */
1007       if (decl && size == -1
1008           && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
1009         {
1010           error ("size of variable %q+D is too large", decl);
1011           size = 1;
1012         }
1013
1014       tmp = assign_stack_temp_for_type (mode, size, keep, type);
1015       return tmp;
1016     }
1017
1018 #ifdef PROMOTE_MODE
1019   if (! dont_promote)
1020     mode = promote_mode (type, mode, &unsignedp);
1021 #endif
1022
1023   return gen_reg_rtx (mode);
1024 }
1025 \f
1026 /* Combine temporary stack slots which are adjacent on the stack.
1027
1028    This allows for better use of already allocated stack space.  This is only
1029    done for BLKmode slots because we can be sure that we won't have alignment
1030    problems in this case.  */
1031
1032 static void
1033 combine_temp_slots (void)
1034 {
1035   struct temp_slot *p, *q, *next, *next_q;
1036   int num_slots;
1037
1038   /* We can't combine slots, because the information about which slot
1039      is in which alias set will be lost.  */
1040   if (flag_strict_aliasing)
1041     return;
1042
1043   /* If there are a lot of temp slots, don't do anything unless
1044      high levels of optimization.  */
1045   if (! flag_expensive_optimizations)
1046     for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1047       if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1048         return;
1049
1050   for (p = avail_temp_slots; p; p = next)
1051     {
1052       int delete_p = 0;
1053
1054       next = p->next;
1055
1056       if (GET_MODE (p->slot) != BLKmode)
1057         continue;
1058
1059       for (q = p->next; q; q = next_q)
1060         {
1061           int delete_q = 0;
1062
1063           next_q = q->next;
1064
1065           if (GET_MODE (q->slot) != BLKmode)
1066             continue;
1067
1068           if (p->base_offset + p->full_size == q->base_offset)
1069             {
1070               /* Q comes after P; combine Q into P.  */
1071               p->size += q->size;
1072               p->full_size += q->full_size;
1073               delete_q = 1;
1074             }
1075           else if (q->base_offset + q->full_size == p->base_offset)
1076             {
1077               /* P comes after Q; combine P into Q.  */
1078               q->size += p->size;
1079               q->full_size += p->full_size;
1080               delete_p = 1;
1081               break;
1082             }
1083           if (delete_q)
1084             cut_slot_from_list (q, &avail_temp_slots);
1085         }
1086
1087       /* Either delete P or advance past it.  */
1088       if (delete_p)
1089         cut_slot_from_list (p, &avail_temp_slots);
1090     }
1091 }
1092 \f
1093 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1094    slot that previously was known by OLD_RTX.  */
1095
1096 void
1097 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1098 {
1099   struct temp_slot *p;
1100
1101   if (rtx_equal_p (old_rtx, new_rtx))
1102     return;
1103
1104   p = find_temp_slot_from_address (old_rtx);
1105
1106   /* If we didn't find one, see if both OLD_RTX is a PLUS.  If so, and
1107      NEW_RTX is a register, see if one operand of the PLUS is a
1108      temporary location.  If so, NEW_RTX points into it.  Otherwise,
1109      if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1110      in common between them.  If so, try a recursive call on those
1111      values.  */
1112   if (p == 0)
1113     {
1114       if (GET_CODE (old_rtx) != PLUS)
1115         return;
1116
1117       if (REG_P (new_rtx))
1118         {
1119           update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1120           update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1121           return;
1122         }
1123       else if (GET_CODE (new_rtx) != PLUS)
1124         return;
1125
1126       if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1127         update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1128       else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1129         update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1130       else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1131         update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1132       else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1133         update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1134
1135       return;
1136     }
1137
1138   /* Otherwise add an alias for the temp's address.  */
1139   insert_temp_slot_address (new_rtx, p);
1140 }
1141
1142 /* If X could be a reference to a temporary slot, mark the fact that its
1143    address was taken.  */
1144
1145 void
1146 mark_temp_addr_taken (rtx x)
1147 {
1148   struct temp_slot *p;
1149
1150   if (x == 0)
1151     return;
1152
1153   /* If X is not in memory or is at a constant address, it cannot be in
1154      a temporary slot.  */
1155   if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1156     return;
1157
1158   p = find_temp_slot_from_address (XEXP (x, 0));
1159   if (p != 0)
1160     p->addr_taken = 1;
1161 }
1162
1163 /* If X could be a reference to a temporary slot, mark that slot as
1164    belonging to the to one level higher than the current level.  If X
1165    matched one of our slots, just mark that one.  Otherwise, we can't
1166    easily predict which it is, so upgrade all of them.  Kept slots
1167    need not be touched.
1168
1169    This is called when an ({...}) construct occurs and a statement
1170    returns a value in memory.  */
1171
1172 void
1173 preserve_temp_slots (rtx x)
1174 {
1175   struct temp_slot *p = 0, *next;
1176
1177   /* If there is no result, we still might have some objects whose address
1178      were taken, so we need to make sure they stay around.  */
1179   if (x == 0)
1180     {
1181       for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1182         {
1183           next = p->next;
1184
1185           if (p->addr_taken)
1186             move_slot_to_level (p, temp_slot_level - 1);
1187         }
1188
1189       return;
1190     }
1191
1192   /* If X is a register that is being used as a pointer, see if we have
1193      a temporary slot we know it points to.  To be consistent with
1194      the code below, we really should preserve all non-kept slots
1195      if we can't find a match, but that seems to be much too costly.  */
1196   if (REG_P (x) && REG_POINTER (x))
1197     p = find_temp_slot_from_address (x);
1198
1199   /* If X is not in memory or is at a constant address, it cannot be in
1200      a temporary slot, but it can contain something whose address was
1201      taken.  */
1202   if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1203     {
1204       for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1205         {
1206           next = p->next;
1207
1208           if (p->addr_taken)
1209             move_slot_to_level (p, temp_slot_level - 1);
1210         }
1211
1212       return;
1213     }
1214
1215   /* First see if we can find a match.  */
1216   if (p == 0)
1217     p = find_temp_slot_from_address (XEXP (x, 0));
1218
1219   if (p != 0)
1220     {
1221       /* Move everything at our level whose address was taken to our new
1222          level in case we used its address.  */
1223       struct temp_slot *q;
1224
1225       if (p->level == temp_slot_level)
1226         {
1227           for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1228             {
1229               next = q->next;
1230
1231               if (p != q && q->addr_taken)
1232                 move_slot_to_level (q, temp_slot_level - 1);
1233             }
1234
1235           move_slot_to_level (p, temp_slot_level - 1);
1236           p->addr_taken = 0;
1237         }
1238       return;
1239     }
1240
1241   /* Otherwise, preserve all non-kept slots at this level.  */
1242   for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1243     {
1244       next = p->next;
1245
1246       if (!p->keep)
1247         move_slot_to_level (p, temp_slot_level - 1);
1248     }
1249 }
1250
1251 /* Free all temporaries used so far.  This is normally called at the
1252    end of generating code for a statement.  */
1253
1254 void
1255 free_temp_slots (void)
1256 {
1257   struct temp_slot *p, *next;
1258   bool some_available = false;
1259
1260   for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1261     {
1262       next = p->next;
1263
1264       if (!p->keep)
1265         {
1266           make_slot_available (p);
1267           some_available = true;
1268         }
1269     }
1270
1271   if (some_available)
1272     {
1273       remove_unused_temp_slot_addresses ();
1274       combine_temp_slots ();
1275     }
1276 }
1277
1278 /* Push deeper into the nesting level for stack temporaries.  */
1279
1280 void
1281 push_temp_slots (void)
1282 {
1283   temp_slot_level++;
1284 }
1285
1286 /* Pop a temporary nesting level.  All slots in use in the current level
1287    are freed.  */
1288
1289 void
1290 pop_temp_slots (void)
1291 {
1292   struct temp_slot *p, *next;
1293   bool some_available = false;
1294
1295   for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1296     {
1297       next = p->next;
1298       make_slot_available (p);
1299       some_available = true;
1300     }
1301
1302   if (some_available)
1303     {
1304       remove_unused_temp_slot_addresses ();
1305       combine_temp_slots ();
1306     }
1307
1308   temp_slot_level--;
1309 }
1310
1311 /* Initialize temporary slots.  */
1312
1313 void
1314 init_temp_slots (void)
1315 {
1316   /* We have not allocated any temporaries yet.  */
1317   avail_temp_slots = 0;
1318   used_temp_slots = 0;
1319   temp_slot_level = 0;
1320
1321   /* Set up the table to map addresses to temp slots.  */
1322   if (! temp_slot_address_table)
1323     temp_slot_address_table = htab_create_ggc (32,
1324                                                temp_slot_address_hash,
1325                                                temp_slot_address_eq,
1326                                                NULL);
1327   else
1328     htab_empty (temp_slot_address_table);
1329 }
1330 \f
1331 /* These routines are responsible for converting virtual register references
1332    to the actual hard register references once RTL generation is complete.
1333
1334    The following four variables are used for communication between the
1335    routines.  They contain the offsets of the virtual registers from their
1336    respective hard registers.  */
1337
1338 static int in_arg_offset;
1339 static int var_offset;
1340 static int dynamic_offset;
1341 static int out_arg_offset;
1342 static int cfa_offset;
1343
1344 /* In most machines, the stack pointer register is equivalent to the bottom
1345    of the stack.  */
1346
1347 #ifndef STACK_POINTER_OFFSET
1348 #define STACK_POINTER_OFFSET    0
1349 #endif
1350
1351 /* If not defined, pick an appropriate default for the offset of dynamically
1352    allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1353    REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE.  */
1354
1355 #ifndef STACK_DYNAMIC_OFFSET
1356
1357 /* The bottom of the stack points to the actual arguments.  If
1358    REG_PARM_STACK_SPACE is defined, this includes the space for the register
1359    parameters.  However, if OUTGOING_REG_PARM_STACK space is not defined,
1360    stack space for register parameters is not pushed by the caller, but
1361    rather part of the fixed stack areas and hence not included in
1362    `crtl->outgoing_args_size'.  Nevertheless, we must allow
1363    for it when allocating stack dynamic objects.  */
1364
1365 #if defined(REG_PARM_STACK_SPACE)
1366 #define STACK_DYNAMIC_OFFSET(FNDECL)    \
1367 ((ACCUMULATE_OUTGOING_ARGS                                                    \
1368   ? (crtl->outgoing_args_size                                 \
1369      + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1370                                                : REG_PARM_STACK_SPACE (FNDECL))) \
1371   : 0) + (STACK_POINTER_OFFSET))
1372 #else
1373 #define STACK_DYNAMIC_OFFSET(FNDECL)    \
1374 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0)            \
1375  + (STACK_POINTER_OFFSET))
1376 #endif
1377 #endif
1378
1379 \f
1380 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1381    is a virtual register, return the equivalent hard register and set the
1382    offset indirectly through the pointer.  Otherwise, return 0.  */
1383
1384 static rtx
1385 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1386 {
1387   rtx new_rtx;
1388   HOST_WIDE_INT offset;
1389
1390   if (x == virtual_incoming_args_rtx)
1391     {
1392       if (stack_realign_drap)
1393         {
1394           /* Replace virtual_incoming_args_rtx with internal arg
1395              pointer if DRAP is used to realign stack.  */
1396           new_rtx = crtl->args.internal_arg_pointer;
1397           offset = 0;
1398         }
1399       else
1400         new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1401     }
1402   else if (x == virtual_stack_vars_rtx)
1403     new_rtx = frame_pointer_rtx, offset = var_offset;
1404   else if (x == virtual_stack_dynamic_rtx)
1405     new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1406   else if (x == virtual_outgoing_args_rtx)
1407     new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1408   else if (x == virtual_cfa_rtx)
1409     {
1410 #ifdef FRAME_POINTER_CFA_OFFSET
1411       new_rtx = frame_pointer_rtx;
1412 #else
1413       new_rtx = arg_pointer_rtx;
1414 #endif
1415       offset = cfa_offset;
1416     }
1417   else if (x == virtual_preferred_stack_boundary_rtx)
1418     {
1419       new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1420       offset = 0;
1421     }
1422   else
1423     return NULL_RTX;
1424
1425   *poffset = offset;
1426   return new_rtx;
1427 }
1428
1429 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1430    Instantiate any virtual registers present inside of *LOC.  The expression
1431    is simplified, as much as possible, but is not to be considered "valid"
1432    in any sense implied by the target.  If any change is made, set CHANGED
1433    to true.  */
1434
1435 static int
1436 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1437 {
1438   HOST_WIDE_INT offset;
1439   bool *changed = (bool *) data;
1440   rtx x, new_rtx;
1441
1442   x = *loc;
1443   if (x == 0)
1444     return 0;
1445
1446   switch (GET_CODE (x))
1447     {
1448     case REG:
1449       new_rtx = instantiate_new_reg (x, &offset);
1450       if (new_rtx)
1451         {
1452           *loc = plus_constant (new_rtx, offset);
1453           if (changed)
1454             *changed = true;
1455         }
1456       return -1;
1457
1458     case PLUS:
1459       new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1460       if (new_rtx)
1461         {
1462           new_rtx = plus_constant (new_rtx, offset);
1463           *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
1464           if (changed)
1465             *changed = true;
1466           return -1;
1467         }
1468
1469       /* FIXME -- from old code */
1470           /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1471              we can commute the PLUS and SUBREG because pointers into the
1472              frame are well-behaved.  */
1473       break;
1474
1475     default:
1476       break;
1477     }
1478
1479   return 0;
1480 }
1481
1482 /* A subroutine of instantiate_virtual_regs_in_insn.  Return true if X
1483    matches the predicate for insn CODE operand OPERAND.  */
1484
1485 static int
1486 safe_insn_predicate (int code, int operand, rtx x)
1487 {
1488   return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1489 }
1490
1491 /* A subroutine of instantiate_virtual_regs.  Instantiate any virtual
1492    registers present inside of insn.  The result will be a valid insn.  */
1493
1494 static void
1495 instantiate_virtual_regs_in_insn (rtx insn)
1496 {
1497   HOST_WIDE_INT offset;
1498   int insn_code, i;
1499   bool any_change = false;
1500   rtx set, new_rtx, x, seq;
1501
1502   /* There are some special cases to be handled first.  */
1503   set = single_set (insn);
1504   if (set)
1505     {
1506       /* We're allowed to assign to a virtual register.  This is interpreted
1507          to mean that the underlying register gets assigned the inverse
1508          transformation.  This is used, for example, in the handling of
1509          non-local gotos.  */
1510       new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1511       if (new_rtx)
1512         {
1513           start_sequence ();
1514
1515           for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1516           x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1517                                    GEN_INT (-offset));
1518           x = force_operand (x, new_rtx);
1519           if (x != new_rtx)
1520             emit_move_insn (new_rtx, x);
1521
1522           seq = get_insns ();
1523           end_sequence ();
1524
1525           emit_insn_before (seq, insn);
1526           delete_insn (insn);
1527           return;
1528         }
1529
1530       /* Handle a straight copy from a virtual register by generating a
1531          new add insn.  The difference between this and falling through
1532          to the generic case is avoiding a new pseudo and eliminating a
1533          move insn in the initial rtl stream.  */
1534       new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1535       if (new_rtx && offset != 0
1536           && REG_P (SET_DEST (set))
1537           && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1538         {
1539           start_sequence ();
1540
1541           x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1542                                    new_rtx, GEN_INT (offset), SET_DEST (set),
1543                                    1, OPTAB_LIB_WIDEN);
1544           if (x != SET_DEST (set))
1545             emit_move_insn (SET_DEST (set), x);
1546
1547           seq = get_insns ();
1548           end_sequence ();
1549
1550           emit_insn_before (seq, insn);
1551           delete_insn (insn);
1552           return;
1553         }
1554
1555       extract_insn (insn);
1556       insn_code = INSN_CODE (insn);
1557
1558       /* Handle a plus involving a virtual register by determining if the
1559          operands remain valid if they're modified in place.  */
1560       if (GET_CODE (SET_SRC (set)) == PLUS
1561           && recog_data.n_operands >= 3
1562           && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1563           && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1564           && CONST_INT_P (recog_data.operand[2])
1565           && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1566         {
1567           offset += INTVAL (recog_data.operand[2]);
1568
1569           /* If the sum is zero, then replace with a plain move.  */
1570           if (offset == 0
1571               && REG_P (SET_DEST (set))
1572               && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1573             {
1574               start_sequence ();
1575               emit_move_insn (SET_DEST (set), new_rtx);
1576               seq = get_insns ();
1577               end_sequence ();
1578
1579               emit_insn_before (seq, insn);
1580               delete_insn (insn);
1581               return;
1582             }
1583
1584           x = gen_int_mode (offset, recog_data.operand_mode[2]);
1585
1586           /* Using validate_change and apply_change_group here leaves
1587              recog_data in an invalid state.  Since we know exactly what
1588              we want to check, do those two by hand.  */
1589           if (safe_insn_predicate (insn_code, 1, new_rtx)
1590               && safe_insn_predicate (insn_code, 2, x))
1591             {
1592               *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1593               *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1594               any_change = true;
1595
1596               /* Fall through into the regular operand fixup loop in
1597                  order to take care of operands other than 1 and 2.  */
1598             }
1599         }
1600     }
1601   else
1602     {
1603       extract_insn (insn);
1604       insn_code = INSN_CODE (insn);
1605     }
1606
1607   /* In the general case, we expect virtual registers to appear only in
1608      operands, and then only as either bare registers or inside memories.  */
1609   for (i = 0; i < recog_data.n_operands; ++i)
1610     {
1611       x = recog_data.operand[i];
1612       switch (GET_CODE (x))
1613         {
1614         case MEM:
1615           {
1616             rtx addr = XEXP (x, 0);
1617             bool changed = false;
1618
1619             for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1620             if (!changed)
1621               continue;
1622
1623             start_sequence ();
1624             x = replace_equiv_address (x, addr);
1625             /* It may happen that the address with the virtual reg
1626                was valid (e.g. based on the virtual stack reg, which might
1627                be acceptable to the predicates with all offsets), whereas
1628                the address now isn't anymore, for instance when the address
1629                is still offsetted, but the base reg isn't virtual-stack-reg
1630                anymore.  Below we would do a force_reg on the whole operand,
1631                but this insn might actually only accept memory.  Hence,
1632                before doing that last resort, try to reload the address into
1633                a register, so this operand stays a MEM.  */
1634             if (!safe_insn_predicate (insn_code, i, x))
1635               {
1636                 addr = force_reg (GET_MODE (addr), addr);
1637                 x = replace_equiv_address (x, addr);
1638               }
1639             seq = get_insns ();
1640             end_sequence ();
1641             if (seq)
1642               emit_insn_before (seq, insn);
1643           }
1644           break;
1645
1646         case REG:
1647           new_rtx = instantiate_new_reg (x, &offset);
1648           if (new_rtx == NULL)
1649             continue;
1650           if (offset == 0)
1651             x = new_rtx;
1652           else
1653             {
1654               start_sequence ();
1655
1656               /* Careful, special mode predicates may have stuff in
1657                  insn_data[insn_code].operand[i].mode that isn't useful
1658                  to us for computing a new value.  */
1659               /* ??? Recognize address_operand and/or "p" constraints
1660                  to see if (plus new offset) is a valid before we put
1661                  this through expand_simple_binop.  */
1662               x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1663                                        GEN_INT (offset), NULL_RTX,
1664                                        1, OPTAB_LIB_WIDEN);
1665               seq = get_insns ();
1666               end_sequence ();
1667               emit_insn_before (seq, insn);
1668             }
1669           break;
1670
1671         case SUBREG:
1672           new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1673           if (new_rtx == NULL)
1674             continue;
1675           if (offset != 0)
1676             {
1677               start_sequence ();
1678               new_rtx = expand_simple_binop (GET_MODE (new_rtx), PLUS, new_rtx,
1679                                          GEN_INT (offset), NULL_RTX,
1680                                          1, OPTAB_LIB_WIDEN);
1681               seq = get_insns ();
1682               end_sequence ();
1683               emit_insn_before (seq, insn);
1684             }
1685           x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1686                                    GET_MODE (new_rtx), SUBREG_BYTE (x));
1687           gcc_assert (x);
1688           break;
1689
1690         default:
1691           continue;
1692         }
1693
1694       /* At this point, X contains the new value for the operand.
1695          Validate the new value vs the insn predicate.  Note that
1696          asm insns will have insn_code -1 here.  */
1697       if (!safe_insn_predicate (insn_code, i, x))
1698         {
1699           start_sequence ();
1700           if (REG_P (x))
1701             {
1702               gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1703               x = copy_to_reg (x);
1704             }
1705           else
1706             x = force_reg (insn_data[insn_code].operand[i].mode, x);
1707           seq = get_insns ();
1708           end_sequence ();
1709           if (seq)
1710             emit_insn_before (seq, insn);
1711         }
1712
1713       *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1714       any_change = true;
1715     }
1716
1717   if (any_change)
1718     {
1719       /* Propagate operand changes into the duplicates.  */
1720       for (i = 0; i < recog_data.n_dups; ++i)
1721         *recog_data.dup_loc[i]
1722           = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1723
1724       /* Force re-recognition of the instruction for validation.  */
1725       INSN_CODE (insn) = -1;
1726     }
1727
1728   if (asm_noperands (PATTERN (insn)) >= 0)
1729     {
1730       if (!check_asm_operands (PATTERN (insn)))
1731         {
1732           error_for_asm (insn, "impossible constraint in %<asm%>");
1733           delete_insn_and_edges (insn);
1734         }
1735     }
1736   else
1737     {
1738       if (recog_memoized (insn) < 0)
1739         fatal_insn_not_found (insn);
1740     }
1741 }
1742
1743 /* Subroutine of instantiate_decls.  Given RTL representing a decl,
1744    do any instantiation required.  */
1745
1746 void
1747 instantiate_decl_rtl (rtx x)
1748 {
1749   rtx addr;
1750
1751   if (x == 0)
1752     return;
1753
1754   /* If this is a CONCAT, recurse for the pieces.  */
1755   if (GET_CODE (x) == CONCAT)
1756     {
1757       instantiate_decl_rtl (XEXP (x, 0));
1758       instantiate_decl_rtl (XEXP (x, 1));
1759       return;
1760     }
1761
1762   /* If this is not a MEM, no need to do anything.  Similarly if the
1763      address is a constant or a register that is not a virtual register.  */
1764   if (!MEM_P (x))
1765     return;
1766
1767   addr = XEXP (x, 0);
1768   if (CONSTANT_P (addr)
1769       || (REG_P (addr)
1770           && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1771               || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1772     return;
1773
1774   for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1775 }
1776
1777 /* Helper for instantiate_decls called via walk_tree: Process all decls
1778    in the given DECL_VALUE_EXPR.  */
1779
1780 static tree
1781 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1782 {
1783   tree t = *tp;
1784   if (! EXPR_P (t))
1785     {
1786       *walk_subtrees = 0;
1787       if (DECL_P (t))
1788         {
1789           if (DECL_RTL_SET_P (t))
1790             instantiate_decl_rtl (DECL_RTL (t));
1791           if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1792               && DECL_INCOMING_RTL (t))
1793             instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1794           if ((TREE_CODE (t) == VAR_DECL
1795                || TREE_CODE (t) == RESULT_DECL)
1796               && DECL_HAS_VALUE_EXPR_P (t))
1797             {
1798               tree v = DECL_VALUE_EXPR (t);
1799               walk_tree (&v, instantiate_expr, NULL, NULL);
1800             }
1801         }
1802     }
1803   return NULL;
1804 }
1805
1806 /* Subroutine of instantiate_decls: Process all decls in the given
1807    BLOCK node and all its subblocks.  */
1808
1809 static void
1810 instantiate_decls_1 (tree let)
1811 {
1812   tree t;
1813
1814   for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1815     {
1816       if (DECL_RTL_SET_P (t))
1817         instantiate_decl_rtl (DECL_RTL (t));
1818       if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1819         {
1820           tree v = DECL_VALUE_EXPR (t);
1821           walk_tree (&v, instantiate_expr, NULL, NULL);
1822         }
1823     }
1824
1825   /* Process all subblocks.  */
1826   for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1827     instantiate_decls_1 (t);
1828 }
1829
1830 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1831    all virtual registers in their DECL_RTL's.  */
1832
1833 static void
1834 instantiate_decls (tree fndecl)
1835 {
1836   tree decl;
1837   unsigned ix;
1838
1839   /* Process all parameters of the function.  */
1840   for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1841     {
1842       instantiate_decl_rtl (DECL_RTL (decl));
1843       instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1844       if (DECL_HAS_VALUE_EXPR_P (decl))
1845         {
1846           tree v = DECL_VALUE_EXPR (decl);
1847           walk_tree (&v, instantiate_expr, NULL, NULL);
1848         }
1849     }
1850
1851   if ((decl = DECL_RESULT (fndecl))
1852       && TREE_CODE (decl) == RESULT_DECL)
1853     {
1854       if (DECL_RTL_SET_P (decl))
1855         instantiate_decl_rtl (DECL_RTL (decl));
1856       if (DECL_HAS_VALUE_EXPR_P (decl))
1857         {
1858           tree v = DECL_VALUE_EXPR (decl);
1859           walk_tree (&v, instantiate_expr, NULL, NULL);
1860         }
1861     }
1862
1863   /* Now process all variables defined in the function or its subblocks.  */
1864   instantiate_decls_1 (DECL_INITIAL (fndecl));
1865
1866   FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1867     if (DECL_RTL_SET_P (decl))
1868       instantiate_decl_rtl (DECL_RTL (decl));
1869   VEC_free (tree, gc, cfun->local_decls);
1870 }
1871
1872 /* Pass through the INSNS of function FNDECL and convert virtual register
1873    references to hard register references.  */
1874
1875 static unsigned int
1876 instantiate_virtual_regs (void)
1877 {
1878   rtx insn;
1879
1880   /* Compute the offsets to use for this function.  */
1881   in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1882   var_offset = STARTING_FRAME_OFFSET;
1883   dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1884   out_arg_offset = STACK_POINTER_OFFSET;
1885 #ifdef FRAME_POINTER_CFA_OFFSET
1886   cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1887 #else
1888   cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1889 #endif
1890
1891   /* Initialize recognition, indicating that volatile is OK.  */
1892   init_recog ();
1893
1894   /* Scan through all the insns, instantiating every virtual register still
1895      present.  */
1896   for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1897     if (INSN_P (insn))
1898       {
1899         /* These patterns in the instruction stream can never be recognized.
1900            Fortunately, they shouldn't contain virtual registers either.  */
1901         if (GET_CODE (PATTERN (insn)) == USE
1902             || GET_CODE (PATTERN (insn)) == CLOBBER
1903             || GET_CODE (PATTERN (insn)) == ADDR_VEC
1904             || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1905             || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1906           continue;
1907         else if (DEBUG_INSN_P (insn))
1908           for_each_rtx (&INSN_VAR_LOCATION (insn),
1909                         instantiate_virtual_regs_in_rtx, NULL);
1910         else
1911           instantiate_virtual_regs_in_insn (insn);
1912
1913         if (INSN_DELETED_P (insn))
1914           continue;
1915
1916         for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1917
1918         /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE.  */
1919         if (CALL_P (insn))
1920           for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1921                         instantiate_virtual_regs_in_rtx, NULL);
1922       }
1923
1924   /* Instantiate the virtual registers in the DECLs for debugging purposes.  */
1925   instantiate_decls (current_function_decl);
1926
1927   targetm.instantiate_decls ();
1928
1929   /* Indicate that, from now on, assign_stack_local should use
1930      frame_pointer_rtx.  */
1931   virtuals_instantiated = 1;
1932
1933   return 0;
1934 }
1935
1936 struct rtl_opt_pass pass_instantiate_virtual_regs =
1937 {
1938  {
1939   RTL_PASS,
1940   "vregs",                              /* name */
1941   NULL,                                 /* gate */
1942   instantiate_virtual_regs,             /* execute */
1943   NULL,                                 /* sub */
1944   NULL,                                 /* next */
1945   0,                                    /* static_pass_number */
1946   TV_NONE,                              /* tv_id */
1947   0,                                    /* properties_required */
1948   0,                                    /* properties_provided */
1949   0,                                    /* properties_destroyed */
1950   0,                                    /* todo_flags_start */
1951   0                                     /* todo_flags_finish */
1952  }
1953 };
1954
1955 \f
1956 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1957    This means a type for which function calls must pass an address to the
1958    function or get an address back from the function.
1959    EXP may be a type node or an expression (whose type is tested).  */
1960
1961 int
1962 aggregate_value_p (const_tree exp, const_tree fntype)
1963 {
1964   const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1965   int i, regno, nregs;
1966   rtx reg;
1967
1968   if (fntype)
1969     switch (TREE_CODE (fntype))
1970       {
1971       case CALL_EXPR:
1972         {
1973           tree fndecl = get_callee_fndecl (fntype);
1974           fntype = (fndecl
1975                     ? TREE_TYPE (fndecl)
1976                     : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
1977         }
1978         break;
1979       case FUNCTION_DECL:
1980         fntype = TREE_TYPE (fntype);
1981         break;
1982       case FUNCTION_TYPE:
1983       case METHOD_TYPE:
1984         break;
1985       case IDENTIFIER_NODE:
1986         fntype = NULL_TREE;
1987         break;
1988       default:
1989         /* We don't expect other tree types here.  */
1990         gcc_unreachable ();
1991       }
1992
1993   if (VOID_TYPE_P (type))
1994     return 0;
1995
1996   /* If a record should be passed the same as its first (and only) member
1997      don't pass it as an aggregate.  */
1998   if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
1999     return aggregate_value_p (first_field (type), fntype);
2000
2001   /* If the front end has decided that this needs to be passed by
2002      reference, do so.  */
2003   if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2004       && DECL_BY_REFERENCE (exp))
2005     return 1;
2006
2007   /* Function types that are TREE_ADDRESSABLE force return in memory.  */
2008   if (fntype && TREE_ADDRESSABLE (fntype))
2009     return 1;
2010
2011   /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2012      and thus can't be returned in registers.  */
2013   if (TREE_ADDRESSABLE (type))
2014     return 1;
2015
2016   if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2017     return 1;
2018
2019   if (targetm.calls.return_in_memory (type, fntype))
2020     return 1;
2021
2022   /* Make sure we have suitable call-clobbered regs to return
2023      the value in; if not, we must return it in memory.  */
2024   reg = hard_function_value (type, 0, fntype, 0);
2025
2026   /* If we have something other than a REG (e.g. a PARALLEL), then assume
2027      it is OK.  */
2028   if (!REG_P (reg))
2029     return 0;
2030
2031   regno = REGNO (reg);
2032   nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2033   for (i = 0; i < nregs; i++)
2034     if (! call_used_regs[regno + i])
2035       return 1;
2036
2037   return 0;
2038 }
2039 \f
2040 /* Return true if we should assign DECL a pseudo register; false if it
2041    should live on the local stack.  */
2042
2043 bool
2044 use_register_for_decl (const_tree decl)
2045 {
2046   if (!targetm.calls.allocate_stack_slots_for_args())
2047     return true;
2048
2049   /* Honor volatile.  */
2050   if (TREE_SIDE_EFFECTS (decl))
2051     return false;
2052
2053   /* Honor addressability.  */
2054   if (TREE_ADDRESSABLE (decl))
2055     return false;
2056
2057   /* Only register-like things go in registers.  */
2058   if (DECL_MODE (decl) == BLKmode)
2059     return false;
2060
2061   /* If -ffloat-store specified, don't put explicit float variables
2062      into registers.  */
2063   /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2064      propagates values across these stores, and it probably shouldn't.  */
2065   if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2066     return false;
2067
2068   /* If we're not interested in tracking debugging information for
2069      this decl, then we can certainly put it in a register.  */
2070   if (DECL_IGNORED_P (decl))
2071     return true;
2072
2073   if (optimize)
2074     return true;
2075
2076   if (!DECL_REGISTER (decl))
2077     return false;
2078
2079   switch (TREE_CODE (TREE_TYPE (decl)))
2080     {
2081     case RECORD_TYPE:
2082     case UNION_TYPE:
2083     case QUAL_UNION_TYPE:
2084       /* When not optimizing, disregard register keyword for variables with
2085          types containing methods, otherwise the methods won't be callable
2086          from the debugger.  */
2087       if (TYPE_METHODS (TREE_TYPE (decl)))
2088         return false;
2089       break;
2090     default:
2091       break;
2092     }
2093
2094   return true;
2095 }
2096
2097 /* Return true if TYPE should be passed by invisible reference.  */
2098
2099 bool
2100 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2101                    tree type, bool named_arg)
2102 {
2103   if (type)
2104     {
2105       /* If this type contains non-trivial constructors, then it is
2106          forbidden for the middle-end to create any new copies.  */
2107       if (TREE_ADDRESSABLE (type))
2108         return true;
2109
2110       /* GCC post 3.4 passes *all* variable sized types by reference.  */
2111       if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2112         return true;
2113
2114       /* If a record type should be passed the same as its first (and only)
2115          member, use the type and mode of that member.  */
2116       if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2117         {
2118           type = TREE_TYPE (first_field (type));
2119           mode = TYPE_MODE (type);
2120         }
2121     }
2122
2123   return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
2124                                           type, named_arg);
2125 }
2126
2127 /* Return true if TYPE, which is passed by reference, should be callee
2128    copied instead of caller copied.  */
2129
2130 bool
2131 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2132                          tree type, bool named_arg)
2133 {
2134   if (type && TREE_ADDRESSABLE (type))
2135     return false;
2136   return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
2137                                       named_arg);
2138 }
2139
2140 /* Structures to communicate between the subroutines of assign_parms.
2141    The first holds data persistent across all parameters, the second
2142    is cleared out for each parameter.  */
2143
2144 struct assign_parm_data_all
2145 {
2146   /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2147      should become a job of the target or otherwise encapsulated.  */
2148   CUMULATIVE_ARGS args_so_far_v;
2149   cumulative_args_t args_so_far;
2150   struct args_size stack_args_size;
2151   tree function_result_decl;
2152   tree orig_fnargs;
2153   rtx first_conversion_insn;
2154   rtx last_conversion_insn;
2155   HOST_WIDE_INT pretend_args_size;
2156   HOST_WIDE_INT extra_pretend_bytes;
2157   int reg_parm_stack_space;
2158 };
2159
2160 struct assign_parm_data_one
2161 {
2162   tree nominal_type;
2163   tree passed_type;
2164   rtx entry_parm;
2165   rtx stack_parm;
2166   enum machine_mode nominal_mode;
2167   enum machine_mode passed_mode;
2168   enum machine_mode promoted_mode;
2169   struct locate_and_pad_arg_data locate;
2170   int partial;
2171   BOOL_BITFIELD named_arg : 1;
2172   BOOL_BITFIELD passed_pointer : 1;
2173   BOOL_BITFIELD on_stack : 1;
2174   BOOL_BITFIELD loaded_in_reg : 1;
2175 };
2176
2177 /* A subroutine of assign_parms.  Initialize ALL.  */
2178
2179 static void
2180 assign_parms_initialize_all (struct assign_parm_data_all *all)
2181 {
2182   tree fntype ATTRIBUTE_UNUSED;
2183
2184   memset (all, 0, sizeof (*all));
2185
2186   fntype = TREE_TYPE (current_function_decl);
2187
2188 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2189   INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2190 #else
2191   INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2192                         current_function_decl, -1);
2193 #endif
2194   all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2195
2196 #ifdef REG_PARM_STACK_SPACE
2197   all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2198 #endif
2199 }
2200
2201 /* If ARGS contains entries with complex types, split the entry into two
2202    entries of the component type.  Return a new list of substitutions are
2203    needed, else the old list.  */
2204
2205 static void
2206 split_complex_args (VEC(tree, heap) **args)
2207 {
2208   unsigned i;
2209   tree p;
2210
2211   FOR_EACH_VEC_ELT (tree, *args, i, p)
2212     {
2213       tree type = TREE_TYPE (p);
2214       if (TREE_CODE (type) == COMPLEX_TYPE
2215           && targetm.calls.split_complex_arg (type))
2216         {
2217           tree decl;
2218           tree subtype = TREE_TYPE (type);
2219           bool addressable = TREE_ADDRESSABLE (p);
2220
2221           /* Rewrite the PARM_DECL's type with its component.  */
2222           p = copy_node (p);
2223           TREE_TYPE (p) = subtype;
2224           DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2225           DECL_MODE (p) = VOIDmode;
2226           DECL_SIZE (p) = NULL;
2227           DECL_SIZE_UNIT (p) = NULL;
2228           /* If this arg must go in memory, put it in a pseudo here.
2229              We can't allow it to go in memory as per normal parms,
2230              because the usual place might not have the imag part
2231              adjacent to the real part.  */
2232           DECL_ARTIFICIAL (p) = addressable;
2233           DECL_IGNORED_P (p) = addressable;
2234           TREE_ADDRESSABLE (p) = 0;
2235           layout_decl (p, 0);
2236           VEC_replace (tree, *args, i, p);
2237
2238           /* Build a second synthetic decl.  */
2239           decl = build_decl (EXPR_LOCATION (p),
2240                              PARM_DECL, NULL_TREE, subtype);
2241           DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2242           DECL_ARTIFICIAL (decl) = addressable;
2243           DECL_IGNORED_P (decl) = addressable;
2244           layout_decl (decl, 0);
2245           VEC_safe_insert (tree, heap, *args, ++i, decl);
2246         }
2247     }
2248 }
2249
2250 /* A subroutine of assign_parms.  Adjust the parameter list to incorporate
2251    the hidden struct return argument, and (abi willing) complex args.
2252    Return the new parameter list.  */
2253
2254 static VEC(tree, heap) *
2255 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2256 {
2257   tree fndecl = current_function_decl;
2258   tree fntype = TREE_TYPE (fndecl);
2259   VEC(tree, heap) *fnargs = NULL;
2260   tree arg;
2261
2262   for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2263     VEC_safe_push (tree, heap, fnargs, arg);
2264
2265   all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2266
2267   /* If struct value address is treated as the first argument, make it so.  */
2268   if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2269       && ! cfun->returns_pcc_struct
2270       && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2271     {
2272       tree type = build_pointer_type (TREE_TYPE (fntype));
2273       tree decl;
2274
2275       decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2276                          PARM_DECL, get_identifier (".result_ptr"), type);
2277       DECL_ARG_TYPE (decl) = type;
2278       DECL_ARTIFICIAL (decl) = 1;
2279       DECL_NAMELESS (decl) = 1;
2280       TREE_CONSTANT (decl) = 1;
2281
2282       DECL_CHAIN (decl) = all->orig_fnargs;
2283       all->orig_fnargs = decl;
2284       VEC_safe_insert (tree, heap, fnargs, 0, decl);
2285
2286       all->function_result_decl = decl;
2287     }
2288
2289   /* If the target wants to split complex arguments into scalars, do so.  */
2290   if (targetm.calls.split_complex_arg)
2291     split_complex_args (&fnargs);
2292
2293   return fnargs;
2294 }
2295
2296 /* A subroutine of assign_parms.  Examine PARM and pull out type and mode
2297    data for the parameter.  Incorporate ABI specifics such as pass-by-
2298    reference and type promotion.  */
2299
2300 static void
2301 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2302                              struct assign_parm_data_one *data)
2303 {
2304   tree nominal_type, passed_type;
2305   enum machine_mode nominal_mode, passed_mode, promoted_mode;
2306   int unsignedp;
2307
2308   memset (data, 0, sizeof (*data));
2309
2310   /* NAMED_ARG is a misnomer.  We really mean 'non-variadic'. */
2311   if (!cfun->stdarg)
2312     data->named_arg = 1;  /* No variadic parms.  */
2313   else if (DECL_CHAIN (parm))
2314     data->named_arg = 1;  /* Not the last non-variadic parm. */
2315   else if (targetm.calls.strict_argument_naming (all->args_so_far))
2316     data->named_arg = 1;  /* Only variadic ones are unnamed.  */
2317   else
2318     data->named_arg = 0;  /* Treat as variadic.  */
2319
2320   nominal_type = TREE_TYPE (parm);
2321   passed_type = DECL_ARG_TYPE (parm);
2322
2323   /* Look out for errors propagating this far.  Also, if the parameter's
2324      type is void then its value doesn't matter.  */
2325   if (TREE_TYPE (parm) == error_mark_node
2326       /* This can happen after weird syntax errors
2327          or if an enum type is defined among the parms.  */
2328       || TREE_CODE (parm) != PARM_DECL
2329       || passed_type == NULL
2330       || VOID_TYPE_P (nominal_type))
2331     {
2332       nominal_type = passed_type = void_type_node;
2333       nominal_mode = passed_mode = promoted_mode = VOIDmode;
2334       goto egress;
2335     }
2336
2337   /* Find mode of arg as it is passed, and mode of arg as it should be
2338      during execution of this function.  */
2339   passed_mode = TYPE_MODE (passed_type);
2340   nominal_mode = TYPE_MODE (nominal_type);
2341
2342   /* If the parm is to be passed as a transparent union or record, use the
2343      type of the first field for the tests below.  We have already verified
2344      that the modes are the same.  */
2345   if ((TREE_CODE (passed_type) == UNION_TYPE
2346        || TREE_CODE (passed_type) == RECORD_TYPE)
2347       && TYPE_TRANSPARENT_AGGR (passed_type))
2348     passed_type = TREE_TYPE (first_field (passed_type));
2349
2350   /* See if this arg was passed by invisible reference.  */
2351   if (pass_by_reference (&all->args_so_far_v, passed_mode,
2352                          passed_type, data->named_arg))
2353     {
2354       passed_type = nominal_type = build_pointer_type (passed_type);
2355       data->passed_pointer = true;
2356       passed_mode = nominal_mode = Pmode;
2357     }
2358
2359   /* Find mode as it is passed by the ABI.  */
2360   unsignedp = TYPE_UNSIGNED (passed_type);
2361   promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2362                                          TREE_TYPE (current_function_decl), 0);
2363
2364  egress:
2365   data->nominal_type = nominal_type;
2366   data->passed_type = passed_type;
2367   data->nominal_mode = nominal_mode;
2368   data->passed_mode = passed_mode;
2369   data->promoted_mode = promoted_mode;
2370 }
2371
2372 /* A subroutine of assign_parms.  Invoke setup_incoming_varargs.  */
2373
2374 static void
2375 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2376                             struct assign_parm_data_one *data, bool no_rtl)
2377 {
2378   int varargs_pretend_bytes = 0;
2379
2380   targetm.calls.setup_incoming_varargs (all->args_so_far,
2381                                         data->promoted_mode,
2382                                         data->passed_type,
2383                                         &varargs_pretend_bytes, no_rtl);
2384
2385   /* If the back-end has requested extra stack space, record how much is
2386      needed.  Do not change pretend_args_size otherwise since it may be
2387      nonzero from an earlier partial argument.  */
2388   if (varargs_pretend_bytes > 0)
2389     all->pretend_args_size = varargs_pretend_bytes;
2390 }
2391
2392 /* A subroutine of assign_parms.  Set DATA->ENTRY_PARM corresponding to
2393    the incoming location of the current parameter.  */
2394
2395 static void
2396 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2397                             struct assign_parm_data_one *data)
2398 {
2399   HOST_WIDE_INT pretend_bytes = 0;
2400   rtx entry_parm;
2401   bool in_regs;
2402
2403   if (data->promoted_mode == VOIDmode)
2404     {
2405       data->entry_parm = data->stack_parm = const0_rtx;
2406       return;
2407     }
2408
2409   entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2410                                                     data->promoted_mode,
2411                                                     data->passed_type,
2412                                                     data->named_arg);
2413
2414   if (entry_parm == 0)
2415     data->promoted_mode = data->passed_mode;
2416
2417   /* Determine parm's home in the stack, in case it arrives in the stack
2418      or we should pretend it did.  Compute the stack position and rtx where
2419      the argument arrives and its size.
2420
2421      There is one complexity here:  If this was a parameter that would
2422      have been passed in registers, but wasn't only because it is
2423      __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2424      it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2425      In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2426      as it was the previous time.  */
2427   in_regs = entry_parm != 0;
2428 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2429   in_regs = true;
2430 #endif
2431   if (!in_regs && !data->named_arg)
2432     {
2433       if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2434         {
2435           rtx tem;
2436           tem = targetm.calls.function_incoming_arg (all->args_so_far,
2437                                                      data->promoted_mode,
2438                                                      data->passed_type, true);
2439           in_regs = tem != NULL;
2440         }
2441     }
2442
2443   /* If this parameter was passed both in registers and in the stack, use
2444      the copy on the stack.  */
2445   if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2446                                         data->passed_type))
2447     entry_parm = 0;
2448
2449   if (entry_parm)
2450     {
2451       int partial;
2452
2453       partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2454                                                  data->promoted_mode,
2455                                                  data->passed_type,
2456                                                  data->named_arg);
2457       data->partial = partial;
2458
2459       /* The caller might already have allocated stack space for the
2460          register parameters.  */
2461       if (partial != 0 && all->reg_parm_stack_space == 0)
2462         {
2463           /* Part of this argument is passed in registers and part
2464              is passed on the stack.  Ask the prologue code to extend
2465              the stack part so that we can recreate the full value.
2466
2467              PRETEND_BYTES is the size of the registers we need to store.
2468              CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2469              stack space that the prologue should allocate.
2470
2471              Internally, gcc assumes that the argument pointer is aligned
2472              to STACK_BOUNDARY bits.  This is used both for alignment
2473              optimizations (see init_emit) and to locate arguments that are
2474              aligned to more than PARM_BOUNDARY bits.  We must preserve this
2475              invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2476              a stack boundary.  */
2477
2478           /* We assume at most one partial arg, and it must be the first
2479              argument on the stack.  */
2480           gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2481
2482           pretend_bytes = partial;
2483           all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2484
2485           /* We want to align relative to the actual stack pointer, so
2486              don't include this in the stack size until later.  */
2487           all->extra_pretend_bytes = all->pretend_args_size;
2488         }
2489     }
2490
2491   locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2492                        entry_parm ? data->partial : 0, current_function_decl,
2493                        &all->stack_args_size, &data->locate);
2494
2495   /* Update parm_stack_boundary if this parameter is passed in the
2496      stack.  */
2497   if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2498     crtl->parm_stack_boundary = data->locate.boundary;
2499
2500   /* Adjust offsets to include the pretend args.  */
2501   pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2502   data->locate.slot_offset.constant += pretend_bytes;
2503   data->locate.offset.constant += pretend_bytes;
2504
2505   data->entry_parm = entry_parm;
2506 }
2507
2508 /* A subroutine of assign_parms.  If there is actually space on the stack
2509    for this parm, count it in stack_args_size and return true.  */
2510
2511 static bool
2512 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2513                            struct assign_parm_data_one *data)
2514 {
2515   /* Trivially true if we've no incoming register.  */
2516   if (data->entry_parm == NULL)
2517     ;
2518   /* Also true if we're partially in registers and partially not,
2519      since we've arranged to drop the entire argument on the stack.  */
2520   else if (data->partial != 0)
2521     ;
2522   /* Also true if the target says that it's passed in both registers
2523      and on the stack.  */
2524   else if (GET_CODE (data->entry_parm) == PARALLEL
2525            && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2526     ;
2527   /* Also true if the target says that there's stack allocated for
2528      all register parameters.  */
2529   else if (all->reg_parm_stack_space > 0)
2530     ;
2531   /* Otherwise, no, this parameter has no ABI defined stack slot.  */
2532   else
2533     return false;
2534
2535   all->stack_args_size.constant += data->locate.size.constant;
2536   if (data->locate.size.var)
2537     ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2538
2539   return true;
2540 }
2541
2542 /* A subroutine of assign_parms.  Given that this parameter is allocated
2543    stack space by the ABI, find it.  */
2544
2545 static void
2546 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2547 {
2548   rtx offset_rtx, stack_parm;
2549   unsigned int align, boundary;
2550
2551   /* If we're passing this arg using a reg, make its stack home the
2552      aligned stack slot.  */
2553   if (data->entry_parm)
2554     offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2555   else
2556     offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2557
2558   stack_parm = crtl->args.internal_arg_pointer;
2559   if (offset_rtx != const0_rtx)
2560     stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2561   stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2562
2563   if (!data->passed_pointer)
2564     {
2565       set_mem_attributes (stack_parm, parm, 1);
2566       /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2567          while promoted mode's size is needed.  */
2568       if (data->promoted_mode != BLKmode
2569           && data->promoted_mode != DECL_MODE (parm))
2570         {
2571           set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2572           if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2573             {
2574               int offset = subreg_lowpart_offset (DECL_MODE (parm),
2575                                                   data->promoted_mode);
2576               if (offset)
2577                 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2578             }
2579         }
2580     }
2581
2582   boundary = data->locate.boundary;
2583   align = BITS_PER_UNIT;
2584
2585   /* If we're padding upward, we know that the alignment of the slot
2586      is TARGET_FUNCTION_ARG_BOUNDARY.  If we're using slot_offset, we're
2587      intentionally forcing upward padding.  Otherwise we have to come
2588      up with a guess at the alignment based on OFFSET_RTX.  */
2589   if (data->locate.where_pad != downward || data->entry_parm)
2590     align = boundary;
2591   else if (CONST_INT_P (offset_rtx))
2592     {
2593       align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2594       align = align & -align;
2595     }
2596   set_mem_align (stack_parm, align);
2597
2598   if (data->entry_parm)
2599     set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2600
2601   data->stack_parm = stack_parm;
2602 }
2603
2604 /* A subroutine of assign_parms.  Adjust DATA->ENTRY_RTL such that it's
2605    always valid and contiguous.  */
2606
2607 static void
2608 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2609 {
2610   rtx entry_parm = data->entry_parm;
2611   rtx stack_parm = data->stack_parm;
2612
2613   /* If this parm was passed part in regs and part in memory, pretend it
2614      arrived entirely in memory by pushing the register-part onto the stack.
2615      In the special case of a DImode or DFmode that is split, we could put
2616      it together in a pseudoreg directly, but for now that's not worth
2617      bothering with.  */
2618   if (data->partial != 0)
2619     {
2620       /* Handle calls that pass values in multiple non-contiguous
2621          locations.  The Irix 6 ABI has examples of this.  */
2622       if (GET_CODE (entry_parm) == PARALLEL)
2623         emit_group_store (validize_mem (stack_parm), entry_parm,
2624                           data->passed_type,
2625                           int_size_in_bytes (data->passed_type));
2626       else
2627         {
2628           gcc_assert (data->partial % UNITS_PER_WORD == 0);
2629           move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2630                                data->partial / UNITS_PER_WORD);
2631         }
2632
2633       entry_parm = stack_parm;
2634     }
2635
2636   /* If we didn't decide this parm came in a register, by default it came
2637      on the stack.  */
2638   else if (entry_parm == NULL)
2639     entry_parm = stack_parm;
2640
2641   /* When an argument is passed in multiple locations, we can't make use
2642      of this information, but we can save some copying if the whole argument
2643      is passed in a single register.  */
2644   else if (GET_CODE (entry_parm) == PARALLEL
2645            && data->nominal_mode != BLKmode
2646            && data->passed_mode != BLKmode)
2647     {
2648       size_t i, len = XVECLEN (entry_parm, 0);
2649
2650       for (i = 0; i < len; i++)
2651         if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2652             && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2653             && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2654                 == data->passed_mode)
2655             && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2656           {
2657             entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2658             break;
2659           }
2660     }
2661
2662   data->entry_parm = entry_parm;
2663 }
2664
2665 /* A subroutine of assign_parms.  Reconstitute any values which were
2666    passed in multiple registers and would fit in a single register.  */
2667
2668 static void
2669 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2670 {
2671   rtx entry_parm = data->entry_parm;
2672
2673   /* Convert the PARALLEL to a REG of the same mode as the parallel.
2674      This can be done with register operations rather than on the
2675      stack, even if we will store the reconstituted parameter on the
2676      stack later.  */
2677   if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2678     {
2679       rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2680       emit_group_store (parmreg, entry_parm, data->passed_type,
2681                         GET_MODE_SIZE (GET_MODE (entry_parm)));
2682       entry_parm = parmreg;
2683     }
2684
2685   data->entry_parm = entry_parm;
2686 }
2687
2688 /* A subroutine of assign_parms.  Adjust DATA->STACK_RTL such that it's
2689    always valid and properly aligned.  */
2690
2691 static void
2692 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2693 {
2694   rtx stack_parm = data->stack_parm;
2695
2696   /* If we can't trust the parm stack slot to be aligned enough for its
2697      ultimate type, don't use that slot after entry.  We'll make another
2698      stack slot, if we need one.  */
2699   if (stack_parm
2700       && ((STRICT_ALIGNMENT
2701            && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2702           || (data->nominal_type
2703               && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2704               && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2705     stack_parm = NULL;
2706
2707   /* If parm was passed in memory, and we need to convert it on entry,
2708      don't store it back in that same slot.  */
2709   else if (data->entry_parm == stack_parm
2710            && data->nominal_mode != BLKmode
2711            && data->nominal_mode != data->passed_mode)
2712     stack_parm = NULL;
2713
2714   /* If stack protection is in effect for this function, don't leave any
2715      pointers in their passed stack slots.  */
2716   else if (crtl->stack_protect_guard
2717            && (flag_stack_protect == 2
2718                || data->passed_pointer
2719                || POINTER_TYPE_P (data->nominal_type)))
2720     stack_parm = NULL;
2721
2722   data->stack_parm = stack_parm;
2723 }
2724
2725 /* A subroutine of assign_parms.  Return true if the current parameter
2726    should be stored as a BLKmode in the current frame.  */
2727
2728 static bool
2729 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2730 {
2731   if (data->nominal_mode == BLKmode)
2732     return true;
2733   if (GET_MODE (data->entry_parm) == BLKmode)
2734     return true;
2735
2736 #ifdef BLOCK_REG_PADDING
2737   /* Only assign_parm_setup_block knows how to deal with register arguments
2738      that are padded at the least significant end.  */
2739   if (REG_P (data->entry_parm)
2740       && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2741       && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2742           == (BYTES_BIG_ENDIAN ? upward : downward)))
2743     return true;
2744 #endif
2745
2746   return false;
2747 }
2748
2749 /* A subroutine of assign_parms.  Arrange for the parameter to be
2750    present and valid in DATA->STACK_RTL.  */
2751
2752 static void
2753 assign_parm_setup_block (struct assign_parm_data_all *all,
2754                          tree parm, struct assign_parm_data_one *data)
2755 {
2756   rtx entry_parm = data->entry_parm;
2757   rtx stack_parm = data->stack_parm;
2758   HOST_WIDE_INT size;
2759   HOST_WIDE_INT size_stored;
2760
2761   if (GET_CODE (entry_parm) == PARALLEL)
2762     entry_parm = emit_group_move_into_temps (entry_parm);
2763
2764   size = int_size_in_bytes (data->passed_type);
2765   size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2766   if (stack_parm == 0)
2767     {
2768       DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2769       stack_parm = assign_stack_local (BLKmode, size_stored,
2770                                        DECL_ALIGN (parm));
2771       if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2772         PUT_MODE (stack_parm, GET_MODE (entry_parm));
2773       set_mem_attributes (stack_parm, parm, 1);
2774     }
2775
2776   /* If a BLKmode arrives in registers, copy it to a stack slot.  Handle
2777      calls that pass values in multiple non-contiguous locations.  */
2778   if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2779     {
2780       rtx mem;
2781
2782       /* Note that we will be storing an integral number of words.
2783          So we have to be careful to ensure that we allocate an
2784          integral number of words.  We do this above when we call
2785          assign_stack_local if space was not allocated in the argument
2786          list.  If it was, this will not work if PARM_BOUNDARY is not
2787          a multiple of BITS_PER_WORD.  It isn't clear how to fix this
2788          if it becomes a problem.  Exception is when BLKmode arrives
2789          with arguments not conforming to word_mode.  */
2790
2791       if (data->stack_parm == 0)
2792         ;
2793       else if (GET_CODE (entry_parm) == PARALLEL)
2794         ;
2795       else
2796         gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2797
2798       mem = validize_mem (stack_parm);
2799
2800       /* Handle values in multiple non-contiguous locations.  */
2801       if (GET_CODE (entry_parm) == PARALLEL)
2802         {
2803           push_to_sequence2 (all->first_conversion_insn,
2804                              all->last_conversion_insn);
2805           emit_group_store (mem, entry_parm, data->passed_type, size);
2806           all->first_conversion_insn = get_insns ();
2807           all->last_conversion_insn = get_last_insn ();
2808           end_sequence ();
2809         }
2810
2811       else if (size == 0)
2812         ;
2813
2814       /* If SIZE is that of a mode no bigger than a word, just use
2815          that mode's store operation.  */
2816       else if (size <= UNITS_PER_WORD)
2817         {
2818           enum machine_mode mode
2819             = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2820
2821           if (mode != BLKmode
2822 #ifdef BLOCK_REG_PADDING
2823               && (size == UNITS_PER_WORD
2824                   || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2825                       != (BYTES_BIG_ENDIAN ? upward : downward)))
2826 #endif
2827               )
2828             {
2829               rtx reg;
2830
2831               /* We are really truncating a word_mode value containing
2832                  SIZE bytes into a value of mode MODE.  If such an
2833                  operation requires no actual instructions, we can refer
2834                  to the value directly in mode MODE, otherwise we must
2835                  start with the register in word_mode and explicitly
2836                  convert it.  */
2837               if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2838                 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2839               else
2840                 {
2841                   reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2842                   reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2843                 }
2844               emit_move_insn (change_address (mem, mode, 0), reg);
2845             }
2846
2847           /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2848              machine must be aligned to the left before storing
2849              to memory.  Note that the previous test doesn't
2850              handle all cases (e.g. SIZE == 3).  */
2851           else if (size != UNITS_PER_WORD
2852 #ifdef BLOCK_REG_PADDING
2853                    && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2854                        == downward)
2855 #else
2856                    && BYTES_BIG_ENDIAN
2857 #endif
2858                    )
2859             {
2860               rtx tem, x;
2861               int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2862               rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2863
2864               x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
2865               tem = change_address (mem, word_mode, 0);
2866               emit_move_insn (tem, x);
2867             }
2868           else
2869             move_block_from_reg (REGNO (entry_parm), mem,
2870                                  size_stored / UNITS_PER_WORD);
2871         }
2872       else
2873         move_block_from_reg (REGNO (entry_parm), mem,
2874                              size_stored / UNITS_PER_WORD);
2875     }
2876   else if (data->stack_parm == 0)
2877     {
2878       push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2879       emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2880                        BLOCK_OP_NORMAL);
2881       all->first_conversion_insn = get_insns ();
2882       all->last_conversion_insn = get_last_insn ();
2883       end_sequence ();
2884     }
2885
2886   data->stack_parm = stack_parm;
2887   SET_DECL_RTL (parm, stack_parm);
2888 }
2889
2890 /* A subroutine of assign_parms.  Allocate a pseudo to hold the current
2891    parameter.  Get it there.  Perform all ABI specified conversions.  */
2892
2893 static void
2894 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2895                        struct assign_parm_data_one *data)
2896 {
2897   rtx parmreg, validated_mem;
2898   rtx equiv_stack_parm;
2899   enum machine_mode promoted_nominal_mode;
2900   int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2901   bool did_conversion = false;
2902   bool need_conversion, moved;
2903
2904   /* Store the parm in a pseudoregister during the function, but we may
2905      need to do it in a wider mode.  Using 2 here makes the result
2906      consistent with promote_decl_mode and thus expand_expr_real_1.  */
2907   promoted_nominal_mode
2908     = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2909                              TREE_TYPE (current_function_decl), 2);
2910
2911   parmreg = gen_reg_rtx (promoted_nominal_mode);
2912
2913   if (!DECL_ARTIFICIAL (parm))
2914     mark_user_reg (parmreg);
2915
2916   /* If this was an item that we received a pointer to,
2917      set DECL_RTL appropriately.  */
2918   if (data->passed_pointer)
2919     {
2920       rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2921       set_mem_attributes (x, parm, 1);
2922       SET_DECL_RTL (parm, x);
2923     }
2924   else
2925     SET_DECL_RTL (parm, parmreg);
2926
2927   assign_parm_remove_parallels (data);
2928
2929   /* Copy the value into the register, thus bridging between
2930      assign_parm_find_data_types and expand_expr_real_1.  */
2931
2932   equiv_stack_parm = data->stack_parm;
2933   validated_mem = validize_mem (data->entry_parm);
2934
2935   need_conversion = (data->nominal_mode != data->passed_mode
2936                      || promoted_nominal_mode != data->promoted_mode);
2937   moved = false;
2938
2939   if (need_conversion
2940       && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
2941       && data->nominal_mode == data->passed_mode
2942       && data->nominal_mode == GET_MODE (data->entry_parm))
2943     {
2944       /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2945          mode, by the caller.  We now have to convert it to
2946          NOMINAL_MODE, if different.  However, PARMREG may be in
2947          a different mode than NOMINAL_MODE if it is being stored
2948          promoted.
2949
2950          If ENTRY_PARM is a hard register, it might be in a register
2951          not valid for operating in its mode (e.g., an odd-numbered
2952          register for a DFmode).  In that case, moves are the only
2953          thing valid, so we can't do a convert from there.  This
2954          occurs when the calling sequence allow such misaligned
2955          usages.
2956
2957          In addition, the conversion may involve a call, which could
2958          clobber parameters which haven't been copied to pseudo
2959          registers yet.
2960
2961          First, we try to emit an insn which performs the necessary
2962          conversion.  We verify that this insn does not clobber any
2963          hard registers.  */
2964
2965       enum insn_code icode;
2966       rtx op0, op1;
2967
2968       icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
2969                             unsignedp);
2970
2971       op0 = parmreg;
2972       op1 = validated_mem;
2973       if (icode != CODE_FOR_nothing
2974           && insn_operand_matches (icode, 0, op0)
2975           && insn_operand_matches (icode, 1, op1))
2976         {
2977           enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
2978           rtx insn, insns, t = op1;
2979           HARD_REG_SET hardregs;
2980
2981           start_sequence ();
2982           /* If op1 is a hard register that is likely spilled, first
2983              force it into a pseudo, otherwise combiner might extend
2984              its lifetime too much.  */
2985           if (GET_CODE (t) == SUBREG)
2986             t = SUBREG_REG (t);
2987           if (REG_P (t)
2988               && HARD_REGISTER_P (t)
2989               && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
2990               && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
2991             {
2992               t = gen_reg_rtx (GET_MODE (op1));
2993               emit_move_insn (t, op1);
2994             }
2995           else
2996             t = op1;
2997           insn = gen_extend_insn (op0, t, promoted_nominal_mode,
2998                                   data->passed_mode, unsignedp);
2999           emit_insn (insn);
3000           insns = get_insns ();
3001
3002           moved = true;
3003           CLEAR_HARD_REG_SET (hardregs);
3004           for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3005             {
3006               if (INSN_P (insn))
3007                 note_stores (PATTERN (insn), record_hard_reg_sets,
3008                              &hardregs);
3009               if (!hard_reg_set_empty_p (hardregs))
3010                 moved = false;
3011             }
3012
3013           end_sequence ();
3014
3015           if (moved)
3016             {
3017               emit_insn (insns);
3018               if (equiv_stack_parm != NULL_RTX)
3019                 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3020                                                   equiv_stack_parm);
3021             }
3022         }
3023     }
3024
3025   if (moved)
3026     /* Nothing to do.  */
3027     ;
3028   else if (need_conversion)
3029     {
3030       /* We did not have an insn to convert directly, or the sequence
3031          generated appeared unsafe.  We must first copy the parm to a
3032          pseudo reg, and save the conversion until after all
3033          parameters have been moved.  */
3034
3035       int save_tree_used;
3036       rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3037
3038       emit_move_insn (tempreg, validated_mem);
3039
3040       push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3041       tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3042
3043       if (GET_CODE (tempreg) == SUBREG
3044           && GET_MODE (tempreg) == data->nominal_mode
3045           && REG_P (SUBREG_REG (tempreg))
3046           && data->nominal_mode == data->passed_mode
3047           && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3048           && GET_MODE_SIZE (GET_MODE (tempreg))
3049              < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3050         {
3051           /* The argument is already sign/zero extended, so note it
3052              into the subreg.  */
3053           SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3054           SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
3055         }
3056
3057       /* TREE_USED gets set erroneously during expand_assignment.  */
3058       save_tree_used = TREE_USED (parm);
3059       expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3060       TREE_USED (parm) = save_tree_used;
3061       all->first_conversion_insn = get_insns ();
3062       all->last_conversion_insn = get_last_insn ();
3063       end_sequence ();
3064
3065       did_conversion = true;
3066     }
3067   else
3068     emit_move_insn (parmreg, validated_mem);
3069
3070   /* If we were passed a pointer but the actual value can safely live
3071      in a register, put it in one.  */
3072   if (data->passed_pointer
3073       && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
3074       /* If by-reference argument was promoted, demote it.  */
3075       && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
3076           || use_register_for_decl (parm)))
3077     {
3078       /* We can't use nominal_mode, because it will have been set to
3079          Pmode above.  We must use the actual mode of the parm.  */
3080       parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3081       mark_user_reg (parmreg);
3082
3083       if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3084         {
3085           rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3086           int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3087
3088           push_to_sequence2 (all->first_conversion_insn,
3089                              all->last_conversion_insn);
3090           emit_move_insn (tempreg, DECL_RTL (parm));
3091           tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3092           emit_move_insn (parmreg, tempreg);
3093           all->first_conversion_insn = get_insns ();
3094           all->last_conversion_insn = get_last_insn ();
3095           end_sequence ();
3096
3097           did_conversion = true;
3098         }
3099       else
3100         emit_move_insn (parmreg, DECL_RTL (parm));
3101
3102       SET_DECL_RTL (parm, parmreg);
3103
3104       /* STACK_PARM is the pointer, not the parm, and PARMREG is
3105          now the parm.  */
3106       data->stack_parm = NULL;
3107     }
3108
3109   /* Mark the register as eliminable if we did no conversion and it was
3110      copied from memory at a fixed offset, and the arg pointer was not
3111      copied to a pseudo-reg.  If the arg pointer is a pseudo reg or the
3112      offset formed an invalid address, such memory-equivalences as we
3113      make here would screw up life analysis for it.  */
3114   if (data->nominal_mode == data->passed_mode
3115       && !did_conversion
3116       && data->stack_parm != 0
3117       && MEM_P (data->stack_parm)
3118       && data->locate.offset.var == 0
3119       && reg_mentioned_p (virtual_incoming_args_rtx,
3120                           XEXP (data->stack_parm, 0)))
3121     {
3122       rtx linsn = get_last_insn ();
3123       rtx sinsn, set;
3124
3125       /* Mark complex types separately.  */
3126       if (GET_CODE (parmreg) == CONCAT)
3127         {
3128           enum machine_mode submode
3129             = GET_MODE_INNER (GET_MODE (parmreg));
3130           int regnor = REGNO (XEXP (parmreg, 0));
3131           int regnoi = REGNO (XEXP (parmreg, 1));
3132           rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3133           rtx stacki = adjust_address_nv (data->stack_parm, submode,
3134                                           GET_MODE_SIZE (submode));
3135
3136           /* Scan backwards for the set of the real and
3137              imaginary parts.  */
3138           for (sinsn = linsn; sinsn != 0;
3139                sinsn = prev_nonnote_insn (sinsn))
3140             {
3141               set = single_set (sinsn);
3142               if (set == 0)
3143                 continue;
3144
3145               if (SET_DEST (set) == regno_reg_rtx [regnoi])
3146                 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3147               else if (SET_DEST (set) == regno_reg_rtx [regnor])
3148                 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3149             }
3150         }
3151       else 
3152         set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3153     }
3154
3155   /* For pointer data type, suggest pointer register.  */
3156   if (POINTER_TYPE_P (TREE_TYPE (parm)))
3157     mark_reg_pointer (parmreg,
3158                       TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3159 }
3160
3161 /* A subroutine of assign_parms.  Allocate stack space to hold the current
3162    parameter.  Get it there.  Perform all ABI specified conversions.  */
3163
3164 static void
3165 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3166                          struct assign_parm_data_one *data)
3167 {
3168   /* Value must be stored in the stack slot STACK_PARM during function
3169      execution.  */
3170   bool to_conversion = false;
3171
3172   assign_parm_remove_parallels (data);
3173
3174   if (data->promoted_mode != data->nominal_mode)
3175     {
3176       /* Conversion is required.  */
3177       rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3178
3179       emit_move_insn (tempreg, validize_mem (data->entry_parm));
3180
3181       push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3182       to_conversion = true;
3183
3184       data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3185                                           TYPE_UNSIGNED (TREE_TYPE (parm)));
3186
3187       if (data->stack_parm)
3188         {
3189           int offset = subreg_lowpart_offset (data->nominal_mode,
3190                                               GET_MODE (data->stack_parm));
3191           /* ??? This may need a big-endian conversion on sparc64.  */
3192           data->stack_parm
3193             = adjust_address (data->stack_parm, data->nominal_mode, 0);
3194           if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
3195             set_mem_offset (data->stack_parm,
3196                             MEM_OFFSET (data->stack_parm) + offset);
3197         }
3198     }
3199
3200   if (data->entry_parm != data->stack_parm)
3201     {
3202       rtx src, dest;
3203
3204       if (data->stack_parm == 0)
3205         {
3206           int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3207                                             GET_MODE (data->entry_parm),
3208                                             TYPE_ALIGN (data->passed_type));
3209           data->stack_parm
3210             = assign_stack_local (GET_MODE (data->entry_parm),
3211                                   GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3212                                   align);
3213           set_mem_attributes (data->stack_parm, parm, 1);
3214         }
3215
3216       dest = validize_mem (data->stack_parm);
3217       src = validize_mem (data->entry_parm);
3218
3219       if (MEM_P (src))
3220         {
3221           /* Use a block move to handle potentially misaligned entry_parm.  */
3222           if (!to_conversion)
3223             push_to_sequence2 (all->first_conversion_insn,
3224                                all->last_conversion_insn);
3225           to_conversion = true;
3226
3227           emit_block_move (dest, src,
3228                            GEN_INT (int_size_in_bytes (data->passed_type)),
3229                            BLOCK_OP_NORMAL);
3230         }
3231       else
3232         emit_move_insn (dest, src);
3233     }
3234
3235   if (to_conversion)
3236     {
3237       all->first_conversion_insn = get_insns ();
3238       all->last_conversion_insn = get_last_insn ();
3239       end_sequence ();
3240     }
3241
3242   SET_DECL_RTL (parm, data->stack_parm);
3243 }
3244
3245 /* A subroutine of assign_parms.  If the ABI splits complex arguments, then
3246    undo the frobbing that we did in assign_parms_augmented_arg_list.  */
3247
3248 static void
3249 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3250                               VEC(tree, heap) *fnargs)
3251 {
3252   tree parm;
3253   tree orig_fnargs = all->orig_fnargs;
3254   unsigned i = 0;
3255
3256   for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3257     {
3258       if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3259           && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3260         {
3261           rtx tmp, real, imag;
3262           enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3263
3264           real = DECL_RTL (VEC_index (tree, fnargs, i));
3265           imag = DECL_RTL (VEC_index (tree, fnargs, i + 1));
3266           if (inner != GET_MODE (real))
3267             {
3268               real = gen_lowpart_SUBREG (inner, real);
3269               imag = gen_lowpart_SUBREG (inner, imag);
3270             }
3271
3272           if (TREE_ADDRESSABLE (parm))
3273             {
3274               rtx rmem, imem;
3275               HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3276               int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3277                                                 DECL_MODE (parm),
3278                                                 TYPE_ALIGN (TREE_TYPE (parm)));
3279
3280               /* split_complex_arg put the real and imag parts in
3281                  pseudos.  Move them to memory.  */
3282               tmp = assign_stack_local (DECL_MODE (parm), size, align);
3283               set_mem_attributes (tmp, parm, 1);
3284               rmem = adjust_address_nv (tmp, inner, 0);
3285               imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3286               push_to_sequence2 (all->first_conversion_insn,
3287                                  all->last_conversion_insn);
3288               emit_move_insn (rmem, real);
3289               emit_move_insn (imem, imag);
3290               all->first_conversion_insn = get_insns ();
3291               all->last_conversion_insn = get_last_insn ();
3292               end_sequence ();
3293             }
3294           else
3295             tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3296           SET_DECL_RTL (parm, tmp);
3297
3298           real = DECL_INCOMING_RTL (VEC_index (tree, fnargs, i));
3299           imag = DECL_INCOMING_RTL (VEC_index (tree, fnargs, i + 1));
3300           if (inner != GET_MODE (real))
3301             {
3302               real = gen_lowpart_SUBREG (inner, real);
3303               imag = gen_lowpart_SUBREG (inner, imag);
3304             }
3305           tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3306           set_decl_incoming_rtl (parm, tmp, false);
3307           i++;
3308         }
3309     }
3310 }
3311
3312 /* Assign RTL expressions to the function's parameters.  This may involve
3313    copying them into registers and using those registers as the DECL_RTL.  */
3314
3315 static void
3316 assign_parms (tree fndecl)
3317 {
3318   struct assign_parm_data_all all;
3319   tree parm;
3320   VEC(tree, heap) *fnargs;
3321   unsigned i;
3322
3323   crtl->args.internal_arg_pointer
3324     = targetm.calls.internal_arg_pointer ();
3325
3326   assign_parms_initialize_all (&all);
3327   fnargs = assign_parms_augmented_arg_list (&all);
3328
3329   FOR_EACH_VEC_ELT (tree, fnargs, i, parm)
3330     {
3331       struct assign_parm_data_one data;
3332
3333       /* Extract the type of PARM; adjust it according to ABI.  */
3334       assign_parm_find_data_types (&all, parm, &data);
3335
3336       /* Early out for errors and void parameters.  */
3337       if (data.passed_mode == VOIDmode)
3338         {
3339           SET_DECL_RTL (parm, const0_rtx);
3340           DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3341           continue;
3342         }
3343
3344       /* Estimate stack alignment from parameter alignment.  */
3345       if (SUPPORTS_STACK_ALIGNMENT)
3346         {
3347           unsigned int align
3348             = targetm.calls.function_arg_boundary (data.promoted_mode,
3349                                                    data.passed_type);
3350           align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3351                                      align);
3352           if (TYPE_ALIGN (data.nominal_type) > align)
3353             align = MINIMUM_ALIGNMENT (data.nominal_type,
3354                                        TYPE_MODE (data.nominal_type),
3355                                        TYPE_ALIGN (data.nominal_type));
3356           if (crtl->stack_alignment_estimated < align)
3357             {
3358               gcc_assert (!crtl->stack_realign_processed);
3359               crtl->stack_alignment_estimated = align;
3360             }
3361         }
3362
3363       if (cfun->stdarg && !DECL_CHAIN (parm))
3364         assign_parms_setup_varargs (&all, &data, false);
3365
3366       /* Find out where the parameter arrives in this function.  */
3367       assign_parm_find_entry_rtl (&all, &data);
3368
3369       /* Find out where stack space for this parameter might be.  */
3370       if (assign_parm_is_stack_parm (&all, &data))
3371         {
3372           assign_parm_find_stack_rtl (parm, &data);
3373           assign_parm_adjust_entry_rtl (&data);
3374         }
3375
3376       /* Record permanently how this parm was passed.  */
3377       if (data.passed_pointer)
3378         {
3379           rtx incoming_rtl
3380             = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3381                            data.entry_parm);
3382           set_decl_incoming_rtl (parm, incoming_rtl, true);
3383         }
3384       else
3385         set_decl_incoming_rtl (parm, data.entry_parm, false);
3386
3387       /* Update info on where next arg arrives in registers.  */
3388       targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3389                                           data.passed_type, data.named_arg);
3390
3391       assign_parm_adjust_stack_rtl (&data);
3392
3393       if (assign_parm_setup_block_p (&data))
3394         assign_parm_setup_block (&all, parm, &data);
3395       else if (data.passed_pointer || use_register_for_decl (parm))
3396         assign_parm_setup_reg (&all, parm, &data);
3397       else
3398         assign_parm_setup_stack (&all, parm, &data);
3399     }
3400
3401   if (targetm.calls.split_complex_arg)
3402     assign_parms_unsplit_complex (&all, fnargs);
3403
3404   VEC_free (tree, heap, fnargs);
3405
3406   /* Output all parameter conversion instructions (possibly including calls)
3407      now that all parameters have been copied out of hard registers.  */
3408   emit_insn (all.first_conversion_insn);
3409
3410   /* Estimate reload stack alignment from scalar return mode.  */
3411   if (SUPPORTS_STACK_ALIGNMENT)
3412     {
3413       if (DECL_RESULT (fndecl))
3414         {
3415           tree type = TREE_TYPE (DECL_RESULT (fndecl));
3416           enum machine_mode mode = TYPE_MODE (type);
3417
3418           if (mode != BLKmode
3419               && mode != VOIDmode
3420               && !AGGREGATE_TYPE_P (type))
3421             {
3422               unsigned int align = GET_MODE_ALIGNMENT (mode);
3423               if (crtl->stack_alignment_estimated < align)
3424                 {
3425                   gcc_assert (!crtl->stack_realign_processed);
3426                   crtl->stack_alignment_estimated = align;
3427                 }
3428             }
3429         }
3430     }
3431
3432   /* If we are receiving a struct value address as the first argument, set up
3433      the RTL for the function result. As this might require code to convert
3434      the transmitted address to Pmode, we do this here to ensure that possible
3435      preliminary conversions of the address have been emitted already.  */
3436   if (all.function_result_decl)
3437     {
3438       tree result = DECL_RESULT (current_function_decl);
3439       rtx addr = DECL_RTL (all.function_result_decl);
3440       rtx x;
3441
3442       if (DECL_BY_REFERENCE (result))
3443         {
3444           SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3445           x = addr;
3446         }
3447       else
3448         {
3449           SET_DECL_VALUE_EXPR (result,
3450                                build1 (INDIRECT_REF, TREE_TYPE (result),
3451                                        all.function_result_decl));
3452           addr = convert_memory_address (Pmode, addr);
3453           x = gen_rtx_MEM (DECL_MODE (result), addr);
3454           set_mem_attributes (x, result, 1);
3455         }
3456
3457       DECL_HAS_VALUE_EXPR_P (result) = 1;
3458
3459       SET_DECL_RTL (result, x);
3460     }
3461
3462   /* We have aligned all the args, so add space for the pretend args.  */
3463   crtl->args.pretend_args_size = all.pretend_args_size;
3464   all.stack_args_size.constant += all.extra_pretend_bytes;
3465   crtl->args.size = all.stack_args_size.constant;
3466
3467   /* Adjust function incoming argument size for alignment and
3468      minimum length.  */
3469
3470 #ifdef REG_PARM_STACK_SPACE
3471   crtl->args.size = MAX (crtl->args.size,
3472                                     REG_PARM_STACK_SPACE (fndecl));
3473 #endif
3474
3475   crtl->args.size = CEIL_ROUND (crtl->args.size,
3476                                            PARM_BOUNDARY / BITS_PER_UNIT);
3477
3478 #ifdef ARGS_GROW_DOWNWARD
3479   crtl->args.arg_offset_rtx
3480     = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3481        : expand_expr (size_diffop (all.stack_args_size.var,
3482                                    size_int (-all.stack_args_size.constant)),
3483                       NULL_RTX, VOIDmode, EXPAND_NORMAL));
3484 #else
3485   crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3486 #endif
3487
3488   /* See how many bytes, if any, of its args a function should try to pop
3489      on return.  */
3490
3491   crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3492                                                          TREE_TYPE (fndecl),
3493                                                          crtl->args.size);
3494
3495   /* For stdarg.h function, save info about
3496      regs and stack space used by the named args.  */
3497
3498   crtl->args.info = all.args_so_far_v;
3499
3500   /* Set the rtx used for the function return value.  Put this in its
3501      own variable so any optimizers that need this information don't have
3502      to include tree.h.  Do this here so it gets done when an inlined
3503      function gets output.  */
3504
3505   crtl->return_rtx
3506     = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3507        ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3508
3509   /* If scalar return value was computed in a pseudo-reg, or was a named
3510      return value that got dumped to the stack, copy that to the hard
3511      return register.  */
3512   if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3513     {
3514       tree decl_result = DECL_RESULT (fndecl);
3515       rtx decl_rtl = DECL_RTL (decl_result);
3516
3517       if (REG_P (decl_rtl)
3518           ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3519           : DECL_REGISTER (decl_result))
3520         {
3521           rtx real_decl_rtl;
3522
3523           real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3524                                                         fndecl, true);
3525           REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3526           /* The delay slot scheduler assumes that crtl->return_rtx
3527              holds the hard register containing the return value, not a
3528              temporary pseudo.  */
3529           crtl->return_rtx = real_decl_rtl;
3530         }
3531     }
3532 }
3533
3534 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3535    For all seen types, gimplify their sizes.  */
3536
3537 static tree
3538 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3539 {
3540   tree t = *tp;
3541
3542   *walk_subtrees = 0;
3543   if (TYPE_P (t))
3544     {
3545       if (POINTER_TYPE_P (t))
3546         *walk_subtrees = 1;
3547       else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3548                && !TYPE_SIZES_GIMPLIFIED (t))
3549         {
3550           gimplify_type_sizes (t, (gimple_seq *) data);
3551           *walk_subtrees = 1;
3552         }
3553     }
3554
3555   return NULL;
3556 }
3557
3558 /* Gimplify the parameter list for current_function_decl.  This involves
3559    evaluating SAVE_EXPRs of variable sized parameters and generating code
3560    to implement callee-copies reference parameters.  Returns a sequence of
3561    statements to add to the beginning of the function.  */
3562
3563 gimple_seq
3564 gimplify_parameters (void)
3565 {
3566   struct assign_parm_data_all all;
3567   tree parm;
3568   gimple_seq stmts = NULL;
3569   VEC(tree, heap) *fnargs;
3570   unsigned i;
3571
3572   assign_parms_initialize_all (&all);
3573   fnargs = assign_parms_augmented_arg_list (&all);
3574
3575   FOR_EACH_VEC_ELT (tree, fnargs, i, parm)
3576     {
3577       struct assign_parm_data_one data;
3578
3579       /* Extract the type of PARM; adjust it according to ABI.  */
3580       assign_parm_find_data_types (&all, parm, &data);
3581
3582       /* Early out for errors and void parameters.  */
3583       if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3584         continue;
3585
3586       /* Update info on where next arg arrives in registers.  */
3587       targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3588                                           data.passed_type, data.named_arg);
3589
3590       /* ??? Once upon a time variable_size stuffed parameter list
3591          SAVE_EXPRs (amongst others) onto a pending sizes list.  This
3592          turned out to be less than manageable in the gimple world.
3593          Now we have to hunt them down ourselves.  */
3594       walk_tree_without_duplicates (&data.passed_type,
3595                                     gimplify_parm_type, &stmts);
3596
3597       if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3598         {
3599           gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3600           gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3601         }
3602
3603       if (data.passed_pointer)
3604         {
3605           tree type = TREE_TYPE (data.passed_type);
3606           if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
3607                                        type, data.named_arg))
3608             {
3609               tree local, t;
3610
3611               /* For constant-sized objects, this is trivial; for
3612                  variable-sized objects, we have to play games.  */
3613               if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3614                   && !(flag_stack_check == GENERIC_STACK_CHECK
3615                        && compare_tree_int (DECL_SIZE_UNIT (parm),
3616                                             STACK_CHECK_MAX_VAR_SIZE) > 0))
3617                 {
3618                   local = create_tmp_var (type, get_name (parm));
3619                   DECL_IGNORED_P (local) = 0;
3620                   /* If PARM was addressable, move that flag over
3621                      to the local copy, as its address will be taken,
3622                      not the PARMs.  Keep the parms address taken
3623                      as we'll query that flag during gimplification.  */
3624                   if (TREE_ADDRESSABLE (parm))
3625                     TREE_ADDRESSABLE (local) = 1;
3626                   else if (TREE_CODE (type) == COMPLEX_TYPE
3627                            || TREE_CODE (type) == VECTOR_TYPE)
3628                     DECL_GIMPLE_REG_P (local) = 1;
3629                 }
3630               else
3631                 {
3632                   tree ptr_type, addr;
3633
3634                   ptr_type = build_pointer_type (type);
3635                   addr = create_tmp_reg (ptr_type, get_name (parm));
3636                   DECL_IGNORED_P (addr) = 0;
3637                   local = build_fold_indirect_ref (addr);
3638
3639                   t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
3640                   t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
3641                                        size_int (DECL_ALIGN (parm)));
3642
3643                   /* The call has been built for a variable-sized object.  */
3644                   CALL_ALLOCA_FOR_VAR_P (t) = 1;
3645                   t = fold_convert (ptr_type, t);
3646                   t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3647                   gimplify_and_add (t, &stmts);
3648                 }
3649
3650               gimplify_assign (local, parm, &stmts);
3651
3652               SET_DECL_VALUE_EXPR (parm, local);
3653               DECL_HAS_VALUE_EXPR_P (parm) = 1;
3654             }
3655         }
3656     }
3657
3658   VEC_free (tree, heap, fnargs);
3659
3660   return stmts;
3661 }
3662 \f
3663 /* Compute the size and offset from the start of the stacked arguments for a
3664    parm passed in mode PASSED_MODE and with type TYPE.
3665
3666    INITIAL_OFFSET_PTR points to the current offset into the stacked
3667    arguments.
3668
3669    The starting offset and size for this parm are returned in
3670    LOCATE->OFFSET and LOCATE->SIZE, respectively.  When IN_REGS is
3671    nonzero, the offset is that of stack slot, which is returned in
3672    LOCATE->SLOT_OFFSET.  LOCATE->ALIGNMENT_PAD is the amount of
3673    padding required from the initial offset ptr to the stack slot.
3674
3675    IN_REGS is nonzero if the argument will be passed in registers.  It will
3676    never be set if REG_PARM_STACK_SPACE is not defined.
3677
3678    FNDECL is the function in which the argument was defined.
3679
3680    There are two types of rounding that are done.  The first, controlled by
3681    TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3682    argument list to be aligned to the specific boundary (in bits).  This
3683    rounding affects the initial and starting offsets, but not the argument
3684    size.
3685
3686    The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3687    optionally rounds the size of the parm to PARM_BOUNDARY.  The
3688    initial offset is not affected by this rounding, while the size always
3689    is and the starting offset may be.  */
3690
3691 /*  LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3692     INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3693     callers pass in the total size of args so far as
3694     INITIAL_OFFSET_PTR.  LOCATE->SIZE is always positive.  */
3695
3696 void
3697 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3698                      int partial, tree fndecl ATTRIBUTE_UNUSED,
3699                      struct args_size *initial_offset_ptr,
3700                      struct locate_and_pad_arg_data *locate)
3701 {
3702   tree sizetree;
3703   enum direction where_pad;
3704   unsigned int boundary, round_boundary;
3705   int reg_parm_stack_space = 0;
3706   int part_size_in_regs;
3707
3708 #ifdef REG_PARM_STACK_SPACE
3709   reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3710
3711   /* If we have found a stack parm before we reach the end of the
3712      area reserved for registers, skip that area.  */
3713   if (! in_regs)
3714     {
3715       if (reg_parm_stack_space > 0)
3716         {
3717           if (initial_offset_ptr->var)
3718             {
3719               initial_offset_ptr->var
3720                 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3721                               ssize_int (reg_parm_stack_space));
3722               initial_offset_ptr->constant = 0;
3723             }
3724           else if (initial_offset_ptr->constant < reg_parm_stack_space)
3725             initial_offset_ptr->constant = reg_parm_stack_space;
3726         }
3727     }
3728 #endif /* REG_PARM_STACK_SPACE */
3729
3730   part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3731
3732   sizetree
3733     = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3734   where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3735   boundary = targetm.calls.function_arg_boundary (passed_mode, type);
3736   round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
3737                                                               type);
3738   locate->where_pad = where_pad;
3739
3740   /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT.  */
3741   if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3742     boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3743
3744   locate->boundary = boundary;
3745
3746   if (SUPPORTS_STACK_ALIGNMENT)
3747     {
3748       /* stack_alignment_estimated can't change after stack has been
3749          realigned.  */
3750       if (crtl->stack_alignment_estimated < boundary)
3751         {
3752           if (!crtl->stack_realign_processed)
3753             crtl->stack_alignment_estimated = boundary;
3754           else
3755             {
3756               /* If stack is realigned and stack alignment value
3757                  hasn't been finalized, it is OK not to increase
3758                  stack_alignment_estimated.  The bigger alignment
3759                  requirement is recorded in stack_alignment_needed
3760                  below.  */
3761               gcc_assert (!crtl->stack_realign_finalized
3762                           && crtl->stack_realign_needed);
3763             }
3764         }
3765     }
3766
3767   /* Remember if the outgoing parameter requires extra alignment on the
3768      calling function side.  */
3769   if (crtl->stack_alignment_needed < boundary)
3770     crtl->stack_alignment_needed = boundary;
3771   if (crtl->preferred_stack_boundary < boundary)
3772     crtl->preferred_stack_boundary = boundary;
3773
3774 #ifdef ARGS_GROW_DOWNWARD
3775   locate->slot_offset.constant = -initial_offset_ptr->constant;
3776   if (initial_offset_ptr->var)
3777     locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3778                                           initial_offset_ptr->var);
3779
3780   {
3781     tree s2 = sizetree;
3782     if (where_pad != none
3783         && (!host_integerp (sizetree, 1)
3784             || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % round_boundary))
3785       s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
3786     SUB_PARM_SIZE (locate->slot_offset, s2);
3787   }
3788
3789   locate->slot_offset.constant += part_size_in_regs;
3790
3791   if (!in_regs
3792 #ifdef REG_PARM_STACK_SPACE
3793       || REG_PARM_STACK_SPACE (fndecl) > 0
3794 #endif
3795      )
3796     pad_to_arg_alignment (&locate->slot_offset, boundary,
3797                           &locate->alignment_pad);
3798
3799   locate->size.constant = (-initial_offset_ptr->constant
3800                            - locate->slot_offset.constant);
3801   if (initial_offset_ptr->var)
3802     locate->size.var = size_binop (MINUS_EXPR,
3803                                    size_binop (MINUS_EXPR,
3804                                                ssize_int (0),
3805                                                initial_offset_ptr->var),
3806                                    locate->slot_offset.var);
3807
3808   /* Pad_below needs the pre-rounded size to know how much to pad
3809      below.  */
3810   locate->offset = locate->slot_offset;
3811   if (where_pad == downward)
3812     pad_below (&locate->offset, passed_mode, sizetree);
3813
3814 #else /* !ARGS_GROW_DOWNWARD */
3815   if (!in_regs
3816 #ifdef REG_PARM_STACK_SPACE
3817       || REG_PARM_STACK_SPACE (fndecl) > 0
3818 #endif
3819       )
3820     pad_to_arg_alignment (initial_offset_ptr, boundary,
3821                           &locate->alignment_pad);
3822   locate->slot_offset = *initial_offset_ptr;
3823
3824 #ifdef PUSH_ROUNDING
3825   if (passed_mode != BLKmode)
3826     sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3827 #endif
3828
3829   /* Pad_below needs the pre-rounded size to know how much to pad below
3830      so this must be done before rounding up.  */
3831   locate->offset = locate->slot_offset;
3832   if (where_pad == downward)
3833     pad_below (&locate->offset, passed_mode, sizetree);
3834
3835   if (where_pad != none
3836       && (!host_integerp (sizetree, 1)
3837           || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % round_boundary))
3838     sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
3839
3840   ADD_PARM_SIZE (locate->size, sizetree);
3841
3842   locate->size.constant -= part_size_in_regs;
3843 #endif /* ARGS_GROW_DOWNWARD */
3844
3845 #ifdef FUNCTION_ARG_OFFSET
3846   locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3847 #endif
3848 }
3849
3850 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3851    BOUNDARY is measured in bits, but must be a multiple of a storage unit.  */
3852
3853 static void
3854 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3855                       struct args_size *alignment_pad)
3856 {
3857   tree save_var = NULL_TREE;
3858   HOST_WIDE_INT save_constant = 0;
3859   int boundary_in_bytes = boundary / BITS_PER_UNIT;
3860   HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3861
3862 #ifdef SPARC_STACK_BOUNDARY_HACK
3863   /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3864      the real alignment of %sp.  However, when it does this, the
3865      alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY.  */
3866   if (SPARC_STACK_BOUNDARY_HACK)
3867     sp_offset = 0;
3868 #endif
3869
3870   if (boundary > PARM_BOUNDARY)
3871     {
3872       save_var = offset_ptr->var;
3873       save_constant = offset_ptr->constant;
3874     }
3875
3876   alignment_pad->var = NULL_TREE;
3877   alignment_pad->constant = 0;
3878
3879   if (boundary > BITS_PER_UNIT)
3880     {
3881       if (offset_ptr->var)
3882         {
3883           tree sp_offset_tree = ssize_int (sp_offset);
3884           tree offset = size_binop (PLUS_EXPR,
3885                                     ARGS_SIZE_TREE (*offset_ptr),
3886                                     sp_offset_tree);
3887 #ifdef ARGS_GROW_DOWNWARD
3888           tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3889 #else
3890           tree rounded = round_up   (offset, boundary / BITS_PER_UNIT);
3891 #endif
3892
3893           offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3894           /* ARGS_SIZE_TREE includes constant term.  */
3895           offset_ptr->constant = 0;
3896           if (boundary > PARM_BOUNDARY)
3897             alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3898                                              save_var);
3899         }
3900       else
3901         {
3902           offset_ptr->constant = -sp_offset +
3903 #ifdef ARGS_GROW_DOWNWARD
3904             FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3905 #else
3906             CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3907 #endif
3908             if (boundary > PARM_BOUNDARY)
3909               alignment_pad->constant = offset_ptr->constant - save_constant;
3910         }
3911     }
3912 }
3913
3914 static void
3915 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3916 {
3917   if (passed_mode != BLKmode)
3918     {
3919       if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3920         offset_ptr->constant
3921           += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3922                / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3923               - GET_MODE_SIZE (passed_mode));
3924     }
3925   else
3926     {
3927       if (TREE_CODE (sizetree) != INTEGER_CST
3928           || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3929         {
3930           /* Round the size up to multiple of PARM_BOUNDARY bits.  */
3931           tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3932           /* Add it in.  */
3933           ADD_PARM_SIZE (*offset_ptr, s2);
3934           SUB_PARM_SIZE (*offset_ptr, sizetree);
3935         }
3936     }
3937 }
3938 \f
3939
3940 /* True if register REGNO was alive at a place where `setjmp' was
3941    called and was set more than once or is an argument.  Such regs may
3942    be clobbered by `longjmp'.  */
3943
3944 static bool
3945 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3946 {
3947   /* There appear to be cases where some local vars never reach the
3948      backend but have bogus regnos.  */
3949   if (regno >= max_reg_num ())
3950     return false;
3951
3952   return ((REG_N_SETS (regno) > 1
3953            || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3954           && REGNO_REG_SET_P (setjmp_crosses, regno));
3955 }
3956
3957 /* Walk the tree of blocks describing the binding levels within a
3958    function and warn about variables the might be killed by setjmp or
3959    vfork.  This is done after calling flow_analysis before register
3960    allocation since that will clobber the pseudo-regs to hard
3961    regs.  */
3962
3963 static void
3964 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3965 {
3966   tree decl, sub;
3967
3968   for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
3969     {
3970       if (TREE_CODE (decl) == VAR_DECL
3971           && DECL_RTL_SET_P (decl)
3972           && REG_P (DECL_RTL (decl))
3973           && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3974         warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3975                  " %<longjmp%> or %<vfork%>", decl);
3976     }
3977
3978   for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
3979     setjmp_vars_warning (setjmp_crosses, sub);
3980 }
3981
3982 /* Do the appropriate part of setjmp_vars_warning
3983    but for arguments instead of local variables.  */
3984
3985 static void
3986 setjmp_args_warning (bitmap setjmp_crosses)
3987 {
3988   tree decl;
3989   for (decl = DECL_ARGUMENTS (current_function_decl);
3990        decl; decl = DECL_CHAIN (decl))
3991     if (DECL_RTL (decl) != 0
3992         && REG_P (DECL_RTL (decl))
3993         && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3994       warning (OPT_Wclobbered,
3995                "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3996                decl);
3997 }
3998
3999 /* Generate warning messages for variables live across setjmp.  */
4000
4001 void
4002 generate_setjmp_warnings (void)
4003 {
4004   bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4005
4006   if (n_basic_blocks == NUM_FIXED_BLOCKS
4007       || bitmap_empty_p (setjmp_crosses))
4008     return;
4009
4010   setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4011   setjmp_args_warning (setjmp_crosses);
4012 }
4013
4014 \f
4015 /* Reverse the order of elements in the fragment chain T of blocks,
4016    and return the new head of the chain (old last element).  */
4017
4018 static tree
4019 block_fragments_nreverse (tree t)
4020 {
4021   tree prev = 0, block, next;
4022   for (block = t; block; block = next)
4023     {
4024       next = BLOCK_FRAGMENT_CHAIN (block);
4025       BLOCK_FRAGMENT_CHAIN (block) = prev;
4026       prev = block;
4027     }
4028   return prev;
4029 }
4030
4031 /* Reverse the order of elements in the chain T of blocks,
4032    and return the new head of the chain (old last element).
4033    Also do the same on subblocks and reverse the order of elements
4034    in BLOCK_FRAGMENT_CHAIN as well.  */
4035
4036 static tree
4037 blocks_nreverse_all (tree t)
4038 {
4039   tree prev = 0, block, next;
4040   for (block = t; block; block = next)
4041     {
4042       next = BLOCK_CHAIN (block);
4043       BLOCK_CHAIN (block) = prev;
4044       BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4045       if (BLOCK_FRAGMENT_CHAIN (block)
4046           && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4047         BLOCK_FRAGMENT_CHAIN (block)
4048           = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4049       prev = block;
4050     }
4051   return prev;
4052 }
4053
4054
4055 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4056    and create duplicate blocks.  */
4057 /* ??? Need an option to either create block fragments or to create
4058    abstract origin duplicates of a source block.  It really depends
4059    on what optimization has been performed.  */
4060
4061 void
4062 reorder_blocks (void)
4063 {
4064   tree block = DECL_INITIAL (current_function_decl);
4065   VEC(tree,heap) *block_stack;
4066
4067   if (block == NULL_TREE)
4068     return;
4069
4070   block_stack = VEC_alloc (tree, heap, 10);
4071
4072   /* Reset the TREE_ASM_WRITTEN bit for all blocks.  */
4073   clear_block_marks (block);
4074
4075   /* Prune the old trees away, so that they don't get in the way.  */
4076   BLOCK_SUBBLOCKS (block) = NULL_TREE;
4077   BLOCK_CHAIN (block) = NULL_TREE;
4078
4079   /* Recreate the block tree from the note nesting.  */
4080   reorder_blocks_1 (get_insns (), block, &block_stack);
4081   BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4082
4083   VEC_free (tree, heap, block_stack);
4084 }
4085
4086 /* Helper function for reorder_blocks.  Reset TREE_ASM_WRITTEN.  */
4087
4088 void
4089 clear_block_marks (tree block)
4090 {
4091   while (block)
4092     {
4093       TREE_ASM_WRITTEN (block) = 0;
4094       clear_block_marks (BLOCK_SUBBLOCKS (block));
4095       block = BLOCK_CHAIN (block);
4096     }
4097 }
4098
4099 static void
4100 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
4101 {
4102   rtx insn;
4103
4104   for (insn = insns; insn; insn = NEXT_INSN (insn))
4105     {
4106       if (NOTE_P (insn))
4107         {
4108           if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4109             {
4110               tree block = NOTE_BLOCK (insn);
4111               tree origin;
4112
4113               gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4114               origin = block;
4115
4116               /* If we have seen this block before, that means it now
4117                  spans multiple address regions.  Create a new fragment.  */
4118               if (TREE_ASM_WRITTEN (block))
4119                 {
4120                   tree new_block = copy_node (block);
4121
4122                   BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4123                   BLOCK_FRAGMENT_CHAIN (new_block)
4124                     = BLOCK_FRAGMENT_CHAIN (origin);
4125                   BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4126
4127                   NOTE_BLOCK (insn) = new_block;
4128                   block = new_block;
4129                 }
4130
4131               BLOCK_SUBBLOCKS (block) = 0;
4132               TREE_ASM_WRITTEN (block) = 1;
4133               /* When there's only one block for the entire function,
4134                  current_block == block and we mustn't do this, it
4135                  will cause infinite recursion.  */
4136               if (block != current_block)
4137                 {
4138                   if (block != origin)
4139                     gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);
4140
4141                   BLOCK_SUPERCONTEXT (block) = current_block;
4142                   BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4143                   BLOCK_SUBBLOCKS (current_block) = block;
4144                   current_block = origin;
4145                 }
4146               VEC_safe_push (tree, heap, *p_block_stack, block);
4147             }
4148           else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4149             {
4150               NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
4151               current_block = BLOCK_SUPERCONTEXT (current_block);
4152             }
4153         }
4154     }
4155 }
4156
4157 /* Reverse the order of elements in the chain T of blocks,
4158    and return the new head of the chain (old last element).  */
4159
4160 tree
4161 blocks_nreverse (tree t)
4162 {
4163   tree prev = 0, block, next;
4164   for (block = t; block; block = next)
4165     {
4166       next = BLOCK_CHAIN (block);
4167       BLOCK_CHAIN (block) = prev;
4168       prev = block;
4169     }
4170   return prev;
4171 }
4172
4173 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4174    by modifying the last node in chain 1 to point to chain 2.  */
4175
4176 tree
4177 block_chainon (tree op1, tree op2)
4178 {
4179   tree t1;
4180
4181   if (!op1)
4182     return op2;
4183   if (!op2)
4184     return op1;
4185
4186   for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4187     continue;
4188   BLOCK_CHAIN (t1) = op2;
4189
4190 #ifdef ENABLE_TREE_CHECKING
4191   {
4192     tree t2;
4193     for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4194       gcc_assert (t2 != t1);
4195   }
4196 #endif
4197
4198   return op1;
4199 }
4200
4201 /* Count the subblocks of the list starting with BLOCK.  If VECTOR is
4202    non-NULL, list them all into VECTOR, in a depth-first preorder
4203    traversal of the block tree.  Also clear TREE_ASM_WRITTEN in all
4204    blocks.  */
4205
4206 static int
4207 all_blocks (tree block, tree *vector)
4208 {
4209   int n_blocks = 0;
4210
4211   while (block)
4212     {
4213       TREE_ASM_WRITTEN (block) = 0;
4214
4215       /* Record this block.  */
4216       if (vector)
4217         vector[n_blocks] = block;
4218
4219       ++n_blocks;
4220
4221       /* Record the subblocks, and their subblocks...  */
4222       n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4223                               vector ? vector + n_blocks : 0);
4224       block = BLOCK_CHAIN (block);
4225     }
4226
4227   return n_blocks;
4228 }
4229
4230 /* Return a vector containing all the blocks rooted at BLOCK.  The
4231    number of elements in the vector is stored in N_BLOCKS_P.  The
4232    vector is dynamically allocated; it is the caller's responsibility
4233    to call `free' on the pointer returned.  */
4234
4235 static tree *
4236 get_block_vector (tree block, int *n_blocks_p)
4237 {
4238   tree *block_vector;
4239
4240   *n_blocks_p = all_blocks (block, NULL);
4241   block_vector = XNEWVEC (tree, *n_blocks_p);
4242   all_blocks (block, block_vector);
4243
4244   return block_vector;
4245 }
4246
4247 static GTY(()) int next_block_index = 2;
4248
4249 /* Set BLOCK_NUMBER for all the blocks in FN.  */
4250
4251 void
4252 number_blocks (tree fn)
4253 {
4254   int i;
4255   int n_blocks;
4256   tree *block_vector;
4257
4258   /* For SDB and XCOFF debugging output, we start numbering the blocks
4259      from 1 within each function, rather than keeping a running
4260      count.  */
4261 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4262   if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4263     next_block_index = 1;
4264 #endif
4265
4266   block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4267
4268   /* The top-level BLOCK isn't numbered at all.  */
4269   for (i = 1; i < n_blocks; ++i)
4270     /* We number the blocks from two.  */
4271     BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4272
4273   free (block_vector);
4274
4275   return;
4276 }
4277
4278 /* If VAR is present in a subblock of BLOCK, return the subblock.  */
4279
4280 DEBUG_FUNCTION tree
4281 debug_find_var_in_block_tree (tree var, tree block)
4282 {
4283   tree t;
4284
4285   for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4286     if (t == var)
4287       return block;
4288
4289   for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4290     {
4291       tree ret = debug_find_var_in_block_tree (var, t);
4292       if (ret)
4293         return ret;
4294     }
4295
4296   return NULL_TREE;
4297 }
4298 \f
4299 /* Keep track of whether we're in a dummy function context.  If we are,
4300    we don't want to invoke the set_current_function hook, because we'll
4301    get into trouble if the hook calls target_reinit () recursively or
4302    when the initial initialization is not yet complete.  */
4303
4304 static bool in_dummy_function;
4305
4306 /* Invoke the target hook when setting cfun.  Update the optimization options
4307    if the function uses different options than the default.  */
4308
4309 static void
4310 invoke_set_current_function_hook (tree fndecl)
4311 {
4312   if (!in_dummy_function)
4313     {
4314       tree opts = ((fndecl)
4315                    ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4316                    : optimization_default_node);
4317
4318       if (!opts)
4319         opts = optimization_default_node;
4320
4321       /* Change optimization options if needed.  */
4322       if (optimization_current_node != opts)
4323         {
4324           optimization_current_node = opts;
4325           cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4326         }
4327
4328       targetm.set_current_function (fndecl);
4329     }
4330 }
4331
4332 /* cfun should never be set directly; use this function.  */
4333
4334 void
4335 set_cfun (struct function *new_cfun)
4336 {
4337   if (cfun != new_cfun)
4338     {
4339       cfun = new_cfun;
4340       invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4341     }
4342 }
4343
4344 /* Initialized with NOGC, making this poisonous to the garbage collector.  */
4345
4346 static VEC(function_p,heap) *cfun_stack;
4347
4348 /* Push the current cfun onto the stack, and set cfun to new_cfun.  */
4349
4350 void
4351 push_cfun (struct function *new_cfun)
4352 {
4353   VEC_safe_push (function_p, heap, cfun_stack, cfun);
4354   set_cfun (new_cfun);
4355 }
4356
4357 /* Pop cfun from the stack.  */
4358
4359 void
4360 pop_cfun (void)
4361 {
4362   struct function *new_cfun = VEC_pop (function_p, cfun_stack);
4363   set_cfun (new_cfun);
4364 }
4365
4366 /* Return value of funcdef and increase it.  */
4367 int
4368 get_next_funcdef_no (void)
4369 {
4370   return funcdef_no++;
4371 }
4372
4373 /* Return value of funcdef.  */
4374 int
4375 get_last_funcdef_no (void)
4376 {
4377   return funcdef_no;
4378 }
4379
4380 /* Allocate a function structure for FNDECL and set its contents
4381    to the defaults.  Set cfun to the newly-allocated object.
4382    Some of the helper functions invoked during initialization assume
4383    that cfun has already been set.  Therefore, assign the new object
4384    directly into cfun and invoke the back end hook explicitly at the
4385    very end, rather than initializing a temporary and calling set_cfun
4386    on it.
4387
4388    ABSTRACT_P is true if this is a function that will never be seen by
4389    the middle-end.  Such functions are front-end concepts (like C++
4390    function templates) that do not correspond directly to functions
4391    placed in object files.  */
4392
4393 void
4394 allocate_struct_function (tree fndecl, bool abstract_p)
4395 {
4396   tree result;
4397   tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4398
4399   cfun = ggc_alloc_cleared_function ();
4400
4401   init_eh_for_function ();
4402
4403   if (init_machine_status)
4404     cfun->machine = (*init_machine_status) ();
4405
4406 #ifdef OVERRIDE_ABI_FORMAT
4407   OVERRIDE_ABI_FORMAT (fndecl);
4408 #endif
4409
4410   invoke_set_current_function_hook (fndecl);
4411
4412   if (fndecl != NULL_TREE)
4413     {
4414       DECL_STRUCT_FUNCTION (fndecl) = cfun;
4415       cfun->decl = fndecl;
4416       current_function_funcdef_no = get_next_funcdef_no ();
4417
4418       result = DECL_RESULT (fndecl);
4419       if (!abstract_p && aggregate_value_p (result, fndecl))
4420         {
4421 #ifdef PCC_STATIC_STRUCT_RETURN
4422           cfun->returns_pcc_struct = 1;
4423 #endif
4424           cfun->returns_struct = 1;
4425         }
4426
4427       cfun->stdarg = stdarg_p (fntype);
4428
4429       /* Assume all registers in stdarg functions need to be saved.  */
4430       cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4431       cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4432
4433       /* ??? This could be set on a per-function basis by the front-end
4434          but is this worth the hassle?  */
4435       cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4436     }
4437 }
4438
4439 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4440    instead of just setting it.  */
4441
4442 void
4443 push_struct_function (tree fndecl)
4444 {
4445   VEC_safe_push (function_p, heap, cfun_stack, cfun);
4446   allocate_struct_function (fndecl, false);
4447 }
4448
4449 /* Reset crtl and other non-struct-function variables to defaults as
4450    appropriate for emitting rtl at the start of a function.  */
4451
4452 static void
4453 prepare_function_start (void)
4454 {
4455   gcc_assert (!crtl->emit.x_last_insn);
4456   init_temp_slots ();
4457   init_emit ();
4458   init_varasm_status ();
4459   init_expr ();
4460   default_rtl_profile ();
4461
4462   if (flag_stack_usage_info)
4463     {
4464       cfun->su = ggc_alloc_cleared_stack_usage ();
4465       cfun->su->static_stack_size = -1;
4466     }
4467
4468   cse_not_expected = ! optimize;
4469
4470   /* Caller save not needed yet.  */
4471   caller_save_needed = 0;
4472
4473   /* We haven't done register allocation yet.  */
4474   reg_renumber = 0;
4475
4476   /* Indicate that we have not instantiated virtual registers yet.  */
4477   virtuals_instantiated = 0;
4478
4479   /* Indicate that we want CONCATs now.  */
4480   generating_concat_p = 1;
4481
4482   /* Indicate we have no need of a frame pointer yet.  */
4483   frame_pointer_needed = 0;
4484 }
4485
4486 /* Initialize the rtl expansion mechanism so that we can do simple things
4487    like generate sequences.  This is used to provide a context during global
4488    initialization of some passes.  You must call expand_dummy_function_end
4489    to exit this context.  */
4490
4491 void
4492 init_dummy_function_start (void)
4493 {
4494   gcc_assert (!in_dummy_function);
4495   in_dummy_function = true;
4496   push_struct_function (NULL_TREE);
4497   prepare_function_start ();
4498 }
4499
4500 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4501    and initialize static variables for generating RTL for the statements
4502    of the function.  */
4503
4504 void
4505 init_function_start (tree subr)
4506 {
4507   if (subr && DECL_STRUCT_FUNCTION (subr))
4508     set_cfun (DECL_STRUCT_FUNCTION (subr));
4509   else
4510     allocate_struct_function (subr, false);
4511   prepare_function_start ();
4512   decide_function_section (subr);
4513
4514   /* Warn if this value is an aggregate type,
4515      regardless of which calling convention we are using for it.  */
4516   if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4517     warning (OPT_Waggregate_return, "function returns an aggregate");
4518 }
4519
4520 /* Make sure all values used by the optimization passes have sane defaults.  */
4521 unsigned int
4522 init_function_for_compilation (void)
4523 {
4524   reg_renumber = 0;
4525   return 0;
4526 }
4527
4528 struct rtl_opt_pass pass_init_function =
4529 {
4530  {
4531   RTL_PASS,
4532   "*init_function",                     /* name */
4533   NULL,                                 /* gate */
4534   init_function_for_compilation,        /* execute */
4535   NULL,                                 /* sub */
4536   NULL,                                 /* next */
4537   0,                                    /* static_pass_number */
4538   TV_NONE,                              /* tv_id */
4539   0,                                    /* properties_required */
4540   0,                                    /* properties_provided */
4541   0,                                    /* properties_destroyed */
4542   0,                                    /* todo_flags_start */
4543   0                                     /* todo_flags_finish */
4544  }
4545 };
4546
4547
4548 void
4549 expand_main_function (void)
4550 {
4551 #if (defined(INVOKE__main)                              \
4552      || (!defined(HAS_INIT_SECTION)                     \
4553          && !defined(INIT_SECTION_ASM_OP)               \
4554          && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4555   emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4556 #endif
4557 }
4558 \f
4559 /* Expand code to initialize the stack_protect_guard.  This is invoked at
4560    the beginning of a function to be protected.  */
4561
4562 #ifndef HAVE_stack_protect_set
4563 # define HAVE_stack_protect_set         0
4564 # define gen_stack_protect_set(x,y)     (gcc_unreachable (), NULL_RTX)
4565 #endif
4566
4567 void
4568 stack_protect_prologue (void)
4569 {
4570   tree guard_decl = targetm.stack_protect_guard ();
4571   rtx x, y;
4572
4573   x = expand_normal (crtl->stack_protect_guard);
4574   y = expand_normal (guard_decl);
4575
4576   /* Allow the target to copy from Y to X without leaking Y into a
4577      register.  */
4578   if (HAVE_stack_protect_set)
4579     {
4580       rtx insn = gen_stack_protect_set (x, y);
4581       if (insn)
4582         {
4583           emit_insn (insn);
4584           return;
4585         }
4586     }
4587
4588   /* Otherwise do a straight move.  */
4589   emit_move_insn (x, y);
4590 }
4591
4592 /* Expand code to verify the stack_protect_guard.  This is invoked at
4593    the end of a function to be protected.  */
4594
4595 #ifndef HAVE_stack_protect_test
4596 # define HAVE_stack_protect_test                0
4597 # define gen_stack_protect_test(x, y, z)        (gcc_unreachable (), NULL_RTX)
4598 #endif
4599
4600 void
4601 stack_protect_epilogue (void)
4602 {
4603   tree guard_decl = targetm.stack_protect_guard ();
4604   rtx label = gen_label_rtx ();
4605   rtx x, y, tmp;
4606
4607   x = expand_normal (crtl->stack_protect_guard);
4608   y = expand_normal (guard_decl);
4609
4610   /* Allow the target to compare Y with X without leaking either into
4611      a register.  */
4612   switch (HAVE_stack_protect_test != 0)
4613     {
4614     case 1:
4615       tmp = gen_stack_protect_test (x, y, label);
4616       if (tmp)
4617         {
4618           emit_insn (tmp);
4619           break;
4620         }
4621       /* FALLTHRU */
4622
4623     default:
4624       emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4625       break;
4626     }
4627
4628   /* The noreturn predictor has been moved to the tree level.  The rtl-level
4629      predictors estimate this branch about 20%, which isn't enough to get
4630      things moved out of line.  Since this is the only extant case of adding
4631      a noreturn function at the rtl level, it doesn't seem worth doing ought
4632      except adding the prediction by hand.  */
4633   tmp = get_last_insn ();
4634   if (JUMP_P (tmp))
4635     predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4636
4637   expand_expr_stmt (targetm.stack_protect_fail ());
4638   emit_label (label);
4639 }
4640 \f
4641 /* Start the RTL for a new function, and set variables used for
4642    emitting RTL.
4643    SUBR is the FUNCTION_DECL node.
4644    PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4645    the function's parameters, which must be run at any return statement.  */
4646
4647 void
4648 expand_function_start (tree subr)
4649 {
4650   /* Make sure volatile mem refs aren't considered
4651      valid operands of arithmetic insns.  */
4652   init_recog_no_volatile ();
4653
4654   crtl->profile
4655     = (profile_flag
4656        && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4657
4658   crtl->limit_stack
4659     = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4660
4661   /* Make the label for return statements to jump to.  Do not special
4662      case machines with special return instructions -- they will be
4663      handled later during jump, ifcvt, or epilogue creation.  */
4664   return_label = gen_label_rtx ();
4665
4666   /* Initialize rtx used to return the value.  */
4667   /* Do this before assign_parms so that we copy the struct value address
4668      before any library calls that assign parms might generate.  */
4669
4670   /* Decide whether to return the value in memory or in a register.  */
4671   if (aggregate_value_p (DECL_RESULT (subr), subr))
4672     {
4673       /* Returning something that won't go in a register.  */
4674       rtx value_address = 0;
4675
4676 #ifdef PCC_STATIC_STRUCT_RETURN
4677       if (cfun->returns_pcc_struct)
4678         {
4679           int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4680           value_address = assemble_static_space (size);
4681         }
4682       else
4683 #endif
4684         {
4685           rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4686           /* Expect to be passed the address of a place to store the value.
4687              If it is passed as an argument, assign_parms will take care of
4688              it.  */
4689           if (sv)
4690             {
4691               value_address = gen_reg_rtx (Pmode);
4692               emit_move_insn (value_address, sv);
4693             }
4694         }
4695       if (value_address)
4696         {
4697           rtx x = value_address;
4698           if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4699             {
4700               x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4701               set_mem_attributes (x, DECL_RESULT (subr), 1);
4702             }
4703           SET_DECL_RTL (DECL_RESULT (subr), x);
4704         }
4705     }
4706   else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4707     /* If return mode is void, this decl rtl should not be used.  */
4708     SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4709   else
4710     {
4711       /* Compute the return values into a pseudo reg, which we will copy
4712          into the true return register after the cleanups are done.  */
4713       tree return_type = TREE_TYPE (DECL_RESULT (subr));
4714       if (TYPE_MODE (return_type) != BLKmode
4715           && targetm.calls.return_in_msb (return_type))
4716         /* expand_function_end will insert the appropriate padding in
4717            this case.  Use the return value's natural (unpadded) mode
4718            within the function proper.  */
4719         SET_DECL_RTL (DECL_RESULT (subr),
4720                       gen_reg_rtx (TYPE_MODE (return_type)));
4721       else
4722         {
4723           /* In order to figure out what mode to use for the pseudo, we
4724              figure out what the mode of the eventual return register will
4725              actually be, and use that.  */
4726           rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4727
4728           /* Structures that are returned in registers are not
4729              aggregate_value_p, so we may see a PARALLEL or a REG.  */
4730           if (REG_P (hard_reg))
4731             SET_DECL_RTL (DECL_RESULT (subr),
4732                           gen_reg_rtx (GET_MODE (hard_reg)));
4733           else
4734             {
4735               gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4736               SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4737             }
4738         }
4739
4740       /* Set DECL_REGISTER flag so that expand_function_end will copy the
4741          result to the real return register(s).  */
4742       DECL_REGISTER (DECL_RESULT (subr)) = 1;
4743     }
4744
4745   /* Initialize rtx for parameters and local variables.
4746      In some cases this requires emitting insns.  */
4747   assign_parms (subr);
4748
4749   /* If function gets a static chain arg, store it.  */
4750   if (cfun->static_chain_decl)
4751     {
4752       tree parm = cfun->static_chain_decl;
4753       rtx local, chain, insn;
4754
4755       local = gen_reg_rtx (Pmode);
4756       chain = targetm.calls.static_chain (current_function_decl, true);
4757
4758       set_decl_incoming_rtl (parm, chain, false);
4759       SET_DECL_RTL (parm, local);
4760       mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4761
4762       insn = emit_move_insn (local, chain);
4763
4764       /* Mark the register as eliminable, similar to parameters.  */
4765       if (MEM_P (chain)
4766           && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
4767         set_dst_reg_note (insn, REG_EQUIV, chain, local);
4768     }
4769
4770   /* If the function receives a non-local goto, then store the
4771      bits we need to restore the frame pointer.  */
4772   if (cfun->nonlocal_goto_save_area)
4773     {
4774       tree t_save;
4775       rtx r_save;
4776
4777       /* ??? We need to do this save early.  Unfortunately here is
4778          before the frame variable gets declared.  Help out...  */
4779       tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4780       if (!DECL_RTL_SET_P (var))
4781         expand_decl (var);
4782
4783       t_save = build4 (ARRAY_REF,
4784                        TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
4785                        cfun->nonlocal_goto_save_area,
4786                        integer_zero_node, NULL_TREE, NULL_TREE);
4787       r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4788       gcc_assert (GET_MODE (r_save) == Pmode);
4789
4790       emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4791       update_nonlocal_goto_save_area ();
4792     }
4793
4794   /* The following was moved from init_function_start.
4795      The move is supposed to make sdb output more accurate.  */
4796   /* Indicate the beginning of the function body,
4797      as opposed to parm setup.  */
4798   emit_note (NOTE_INSN_FUNCTION_BEG);
4799
4800   gcc_assert (NOTE_P (get_last_insn ()));
4801
4802   parm_birth_insn = get_last_insn ();
4803
4804   if (crtl->profile)
4805     {
4806 #ifdef PROFILE_HOOK
4807       PROFILE_HOOK (current_function_funcdef_no);
4808 #endif
4809     }
4810
4811   /* If we are doing generic stack checking, the probe should go here.  */
4812   if (flag_stack_check == GENERIC_STACK_CHECK)
4813     stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4814
4815   /* Make sure there is a line number after the function entry setup code.  */
4816   force_next_line_note ();
4817 }
4818 \f
4819 /* Undo the effects of init_dummy_function_start.  */
4820 void
4821 expand_dummy_function_end (void)
4822 {
4823   gcc_assert (in_dummy_function);
4824
4825   /* End any sequences that failed to be closed due to syntax errors.  */
4826   while (in_sequence_p ())
4827     end_sequence ();
4828
4829   /* Outside function body, can't compute type's actual size
4830      until next function's body starts.  */
4831
4832   free_after_parsing (cfun);
4833   free_after_compilation (cfun);
4834   pop_cfun ();
4835   in_dummy_function = false;
4836 }
4837
4838 /* Call DOIT for each hard register used as a return value from
4839    the current function.  */
4840
4841 void
4842 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4843 {
4844   rtx outgoing = crtl->return_rtx;
4845
4846   if (! outgoing)
4847     return;
4848
4849   if (REG_P (outgoing))
4850     (*doit) (outgoing, arg);
4851   else if (GET_CODE (outgoing) == PARALLEL)
4852     {
4853       int i;
4854
4855       for (i = 0; i < XVECLEN (outgoing, 0); i++)
4856         {
4857           rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4858
4859           if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4860             (*doit) (x, arg);
4861         }
4862     }
4863 }
4864
4865 static void
4866 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4867 {
4868   emit_clobber (reg);
4869 }
4870
4871 void
4872 clobber_return_register (void)
4873 {
4874   diddle_return_value (do_clobber_return_reg, NULL);
4875
4876   /* In case we do use pseudo to return value, clobber it too.  */
4877   if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4878     {
4879       tree decl_result = DECL_RESULT (current_function_decl);
4880       rtx decl_rtl = DECL_RTL (decl_result);
4881       if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4882         {
4883           do_clobber_return_reg (decl_rtl, NULL);
4884         }
4885     }
4886 }
4887
4888 static void
4889 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4890 {
4891   emit_use (reg);
4892 }
4893
4894 static void
4895 use_return_register (void)
4896 {
4897   diddle_return_value (do_use_return_reg, NULL);
4898 }
4899
4900 /* Possibly warn about unused parameters.  */
4901 void
4902 do_warn_unused_parameter (tree fn)
4903 {
4904   tree decl;
4905
4906   for (decl = DECL_ARGUMENTS (fn);
4907        decl; decl = DECL_CHAIN (decl))
4908     if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4909         && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4910         && !TREE_NO_WARNING (decl))
4911       warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4912 }
4913
4914 static GTY(()) rtx initial_trampoline;
4915
4916 /* Generate RTL for the end of the current function.  */
4917
4918 void
4919 expand_function_end (void)
4920 {
4921   rtx clobber_after;
4922
4923   /* If arg_pointer_save_area was referenced only from a nested
4924      function, we will not have initialized it yet.  Do that now.  */
4925   if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
4926     get_arg_pointer_save_area ();
4927
4928   /* If we are doing generic stack checking and this function makes calls,
4929      do a stack probe at the start of the function to ensure we have enough
4930      space for another stack frame.  */
4931   if (flag_stack_check == GENERIC_STACK_CHECK)
4932     {
4933       rtx insn, seq;
4934
4935       for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4936         if (CALL_P (insn))
4937           {
4938             rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
4939             start_sequence ();
4940             if (STACK_CHECK_MOVING_SP)
4941               anti_adjust_stack_and_probe (max_frame_size, true);
4942             else
4943               probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
4944             seq = get_insns ();
4945             end_sequence ();
4946             set_insn_locators (seq, prologue_locator);
4947             emit_insn_before (seq, stack_check_probe_note);
4948             break;
4949           }
4950     }
4951
4952   /* End any sequences that failed to be closed due to syntax errors.  */
4953   while (in_sequence_p ())
4954     end_sequence ();
4955
4956   clear_pending_stack_adjust ();
4957   do_pending_stack_adjust ();
4958
4959   /* Output a linenumber for the end of the function.
4960      SDB depends on this.  */
4961   force_next_line_note ();
4962   set_curr_insn_source_location (input_location);
4963
4964   /* Before the return label (if any), clobber the return
4965      registers so that they are not propagated live to the rest of
4966      the function.  This can only happen with functions that drop
4967      through; if there had been a return statement, there would
4968      have either been a return rtx, or a jump to the return label.
4969
4970      We delay actual code generation after the current_function_value_rtx
4971      is computed.  */
4972   clobber_after = get_last_insn ();
4973
4974   /* Output the label for the actual return from the function.  */
4975   emit_label (return_label);
4976
4977   if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
4978     {
4979       /* Let except.c know where it should emit the call to unregister
4980          the function context for sjlj exceptions.  */
4981       if (flag_exceptions)
4982         sjlj_emit_function_exit_after (get_last_insn ());
4983     }
4984   else
4985     {
4986       /* We want to ensure that instructions that may trap are not
4987          moved into the epilogue by scheduling, because we don't
4988          always emit unwind information for the epilogue.  */
4989       if (cfun->can_throw_non_call_exceptions)
4990         emit_insn (gen_blockage ());
4991     }
4992
4993   /* If this is an implementation of throw, do what's necessary to
4994      communicate between __builtin_eh_return and the epilogue.  */
4995   expand_eh_return ();
4996
4997   /* If scalar return value was computed in a pseudo-reg, or was a named
4998      return value that got dumped to the stack, copy that to the hard
4999      return register.  */
5000   if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5001     {
5002       tree decl_result = DECL_RESULT (current_function_decl);
5003       rtx decl_rtl = DECL_RTL (decl_result);
5004
5005       if (REG_P (decl_rtl)
5006           ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5007           : DECL_REGISTER (decl_result))
5008         {
5009           rtx real_decl_rtl = crtl->return_rtx;
5010
5011           /* This should be set in assign_parms.  */
5012           gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5013
5014           /* If this is a BLKmode structure being returned in registers,
5015              then use the mode computed in expand_return.  Note that if
5016              decl_rtl is memory, then its mode may have been changed,
5017              but that crtl->return_rtx has not.  */
5018           if (GET_MODE (real_decl_rtl) == BLKmode)
5019             PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5020
5021           /* If a non-BLKmode return value should be padded at the least
5022              significant end of the register, shift it left by the appropriate
5023              amount.  BLKmode results are handled using the group load/store
5024              machinery.  */
5025           if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5026               && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5027             {
5028               emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5029                                            REGNO (real_decl_rtl)),
5030                               decl_rtl);
5031               shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5032             }
5033           /* If a named return value dumped decl_return to memory, then
5034              we may need to re-do the PROMOTE_MODE signed/unsigned
5035              extension.  */
5036           else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5037             {
5038               int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5039               promote_function_mode (TREE_TYPE (decl_result),
5040                                      GET_MODE (decl_rtl), &unsignedp,
5041                                      TREE_TYPE (current_function_decl), 1);
5042
5043               convert_move (real_decl_rtl, decl_rtl, unsignedp);
5044             }
5045           else if (GET_CODE (real_decl_rtl) == PARALLEL)
5046             {
5047               /* If expand_function_start has created a PARALLEL for decl_rtl,
5048                  move the result to the real return registers.  Otherwise, do
5049                  a group load from decl_rtl for a named return.  */
5050               if (GET_CODE (decl_rtl) == PARALLEL)
5051                 emit_group_move (real_decl_rtl, decl_rtl);
5052               else
5053                 emit_group_load (real_decl_rtl, decl_rtl,
5054                                  TREE_TYPE (decl_result),
5055                                  int_size_in_bytes (TREE_TYPE (decl_result)));
5056             }
5057           /* In the case of complex integer modes smaller than a word, we'll
5058              need to generate some non-trivial bitfield insertions.  Do that
5059              on a pseudo and not the hard register.  */
5060           else if (GET_CODE (decl_rtl) == CONCAT
5061                    && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5062                    && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5063             {
5064               int old_generating_concat_p;
5065               rtx tmp;
5066
5067               old_generating_concat_p = generating_concat_p;
5068               generating_concat_p = 0;
5069               tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5070               generating_concat_p = old_generating_concat_p;
5071
5072               emit_move_insn (tmp, decl_rtl);
5073               emit_move_insn (real_decl_rtl, tmp);
5074             }
5075           else
5076             emit_move_insn (real_decl_rtl, decl_rtl);
5077         }
5078     }
5079
5080   /* If returning a structure, arrange to return the address of the value
5081      in a place where debuggers expect to find it.
5082
5083      If returning a structure PCC style,
5084      the caller also depends on this value.
5085      And cfun->returns_pcc_struct is not necessarily set.  */
5086   if (cfun->returns_struct
5087       || cfun->returns_pcc_struct)
5088     {
5089       rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5090       tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5091       rtx outgoing;
5092
5093       if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5094         type = TREE_TYPE (type);
5095       else
5096         value_address = XEXP (value_address, 0);
5097
5098       outgoing = targetm.calls.function_value (build_pointer_type (type),
5099                                                current_function_decl, true);
5100
5101       /* Mark this as a function return value so integrate will delete the
5102          assignment and USE below when inlining this function.  */
5103       REG_FUNCTION_VALUE_P (outgoing) = 1;
5104
5105       /* The address may be ptr_mode and OUTGOING may be Pmode.  */
5106       value_address = convert_memory_address (GET_MODE (outgoing),
5107                                               value_address);
5108
5109       emit_move_insn (outgoing, value_address);
5110
5111       /* Show return register used to hold result (in this case the address
5112          of the result.  */
5113       crtl->return_rtx = outgoing;
5114     }
5115
5116   /* Emit the actual code to clobber return register.  */
5117   {
5118     rtx seq;
5119
5120     start_sequence ();
5121     clobber_return_register ();
5122     seq = get_insns ();
5123     end_sequence ();
5124
5125     emit_insn_after (seq, clobber_after);
5126   }
5127
5128   /* Output the label for the naked return from the function.  */
5129   if (naked_return_label)
5130     emit_label (naked_return_label);
5131
5132   /* @@@ This is a kludge.  We want to ensure that instructions that
5133      may trap are not moved into the epilogue by scheduling, because
5134      we don't always emit unwind information for the epilogue.  */
5135   if (cfun->can_throw_non_call_exceptions
5136       && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5137     emit_insn (gen_blockage ());
5138
5139   /* If stack protection is enabled for this function, check the guard.  */
5140   if (crtl->stack_protect_guard)
5141     stack_protect_epilogue ();
5142
5143   /* If we had calls to alloca, and this machine needs
5144      an accurate stack pointer to exit the function,
5145      insert some code to save and restore the stack pointer.  */
5146   if (! EXIT_IGNORE_STACK
5147       && cfun->calls_alloca)
5148     {
5149       rtx tem = 0, seq;
5150
5151       start_sequence ();
5152       emit_stack_save (SAVE_FUNCTION, &tem);
5153       seq = get_insns ();
5154       end_sequence ();
5155       emit_insn_before (seq, parm_birth_insn);
5156
5157       emit_stack_restore (SAVE_FUNCTION, tem);
5158     }
5159
5160   /* ??? This should no longer be necessary since stupid is no longer with
5161      us, but there are some parts of the compiler (eg reload_combine, and
5162      sh mach_dep_reorg) that still try and compute their own lifetime info
5163      instead of using the general framework.  */
5164   use_return_register ();
5165 }
5166
5167 rtx
5168 get_arg_pointer_save_area (void)
5169 {
5170   rtx ret = arg_pointer_save_area;
5171
5172   if (! ret)
5173     {
5174       ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5175       arg_pointer_save_area = ret;
5176     }
5177
5178   if (! crtl->arg_pointer_save_area_init)
5179     {
5180       rtx seq;
5181
5182       /* Save the arg pointer at the beginning of the function.  The
5183          generated stack slot may not be a valid memory address, so we
5184          have to check it and fix it if necessary.  */
5185       start_sequence ();
5186       emit_move_insn (validize_mem (ret),
5187                       crtl->args.internal_arg_pointer);
5188       seq = get_insns ();
5189       end_sequence ();
5190
5191       push_topmost_sequence ();
5192       emit_insn_after (seq, entry_of_function ());
5193       pop_topmost_sequence ();
5194
5195       crtl->arg_pointer_save_area_init = true;
5196     }
5197
5198   return ret;
5199 }
5200 \f
5201 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5202    for the first time.  */
5203
5204 static void
5205 record_insns (rtx insns, rtx end, htab_t *hashp)
5206 {
5207   rtx tmp;
5208   htab_t hash = *hashp;
5209
5210   if (hash == NULL)
5211     *hashp = hash
5212       = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
5213
5214   for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5215     {
5216       void **slot = htab_find_slot (hash, tmp, INSERT);
5217       gcc_assert (*slot == NULL);
5218       *slot = tmp;
5219     }
5220 }
5221
5222 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5223    basic block, splitting or peepholes.  If INSN is a prologue or epilogue
5224    insn, then record COPY as well.  */
5225
5226 void
5227 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5228 {
5229   htab_t hash;
5230   void **slot;
5231
5232   hash = epilogue_insn_hash;
5233   if (!hash || !htab_find (hash, insn))
5234     {
5235       hash = prologue_insn_hash;
5236       if (!hash || !htab_find (hash, insn))
5237         return;
5238     }
5239
5240   slot = htab_find_slot (hash, copy, INSERT);
5241   gcc_assert (*slot == NULL);
5242   *slot = copy;
5243 }
5244
5245 /* Set the locator of the insn chain starting at INSN to LOC.  */
5246 static void
5247 set_insn_locators (rtx insn, int loc)
5248 {
5249   while (insn != NULL_RTX)
5250     {
5251       if (INSN_P (insn))
5252         INSN_LOCATOR (insn) = loc;
5253       insn = NEXT_INSN (insn);
5254     }
5255 }
5256
5257 /* Determine if any INSNs in HASH are, or are part of, INSN.  Because
5258    we can be running after reorg, SEQUENCE rtl is possible.  */
5259
5260 static bool
5261 contains (const_rtx insn, htab_t hash)
5262 {
5263   if (hash == NULL)
5264     return false;
5265
5266   if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5267     {
5268       int i;
5269       for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
5270         if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
5271           return true;
5272       return false;
5273     }
5274
5275   return htab_find (hash, insn) != NULL;
5276 }
5277
5278 int
5279 prologue_epilogue_contains (const_rtx insn)
5280 {
5281   if (contains (insn, prologue_insn_hash))
5282     return 1;
5283   if (contains (insn, epilogue_insn_hash))
5284     return 1;
5285   return 0;
5286 }
5287
5288 #ifdef HAVE_simple_return
5289
5290 /* Return true if INSN requires the stack frame to be set up.
5291    PROLOGUE_USED contains the hard registers used in the function
5292    prologue.  SET_UP_BY_PROLOGUE is the set of registers we expect the
5293    prologue to set up for the function.  */
5294 bool
5295 requires_stack_frame_p (rtx insn, HARD_REG_SET prologue_used,
5296                         HARD_REG_SET set_up_by_prologue)
5297 {
5298   df_ref *df_rec;
5299   HARD_REG_SET hardregs;
5300   unsigned regno;
5301
5302   if (CALL_P (insn))
5303     return !SIBLING_CALL_P (insn);
5304
5305   /* We need a frame to get the unique CFA expected by the unwinder.  */
5306   if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
5307     return true;
5308
5309   CLEAR_HARD_REG_SET (hardregs);
5310   for (df_rec = DF_INSN_DEFS (insn); *df_rec; df_rec++)
5311     {
5312       rtx dreg = DF_REF_REG (*df_rec);
5313
5314       if (!REG_P (dreg))
5315         continue;
5316
5317       add_to_hard_reg_set (&hardregs, GET_MODE (dreg),
5318                            REGNO (dreg));
5319     }
5320   if (hard_reg_set_intersect_p (hardregs, prologue_used))
5321     return true;
5322   AND_COMPL_HARD_REG_SET (hardregs, call_used_reg_set);
5323   for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5324     if (TEST_HARD_REG_BIT (hardregs, regno)
5325         && df_regs_ever_live_p (regno))
5326       return true;
5327
5328   for (df_rec = DF_INSN_USES (insn); *df_rec; df_rec++)
5329     {
5330       rtx reg = DF_REF_REG (*df_rec);
5331
5332       if (!REG_P (reg))
5333         continue;
5334
5335       add_to_hard_reg_set (&hardregs, GET_MODE (reg),
5336                            REGNO (reg));
5337     }
5338   if (hard_reg_set_intersect_p (hardregs, set_up_by_prologue))
5339     return true;
5340
5341   return false;
5342 }
5343
5344 /* See whether BB has a single successor that uses [REGNO, END_REGNO),
5345    and if BB is its only predecessor.  Return that block if so,
5346    otherwise return null.  */
5347
5348 static basic_block
5349 next_block_for_reg (basic_block bb, int regno, int end_regno)
5350 {
5351   edge e, live_edge;
5352   edge_iterator ei;
5353   bitmap live;
5354   int i;
5355
5356   live_edge = NULL;
5357   FOR_EACH_EDGE (e, ei, bb->succs)
5358     {
5359       live = df_get_live_in (e->dest);
5360       for (i = regno; i < end_regno; i++)
5361         if (REGNO_REG_SET_P (live, i))
5362           {
5363             if (live_edge && live_edge != e)
5364               return NULL;
5365             live_edge = e;
5366           }
5367     }
5368
5369   /* We can sometimes encounter dead code.  Don't try to move it
5370      into the exit block.  */
5371   if (!live_edge || live_edge->dest == EXIT_BLOCK_PTR)
5372     return NULL;
5373
5374   /* Reject targets of abnormal edges.  This is needed for correctness
5375      on ports like Alpha and MIPS, whose pic_offset_table_rtx can die on
5376      exception edges even though it is generally treated as call-saved
5377      for the majority of the compilation.  Moving across abnormal edges
5378      isn't going to be interesting for shrink-wrap usage anyway.  */
5379   if (live_edge->flags & EDGE_ABNORMAL)
5380     return NULL;
5381
5382   if (EDGE_COUNT (live_edge->dest->preds) > 1)
5383     return NULL;
5384
5385   return live_edge->dest;
5386 }
5387
5388 /* Try to move INSN from BB to a successor.  Return true on success.
5389    USES and DEFS are the set of registers that are used and defined
5390    after INSN in BB.  */
5391
5392 static bool
5393 move_insn_for_shrink_wrap (basic_block bb, rtx insn,
5394                            const HARD_REG_SET uses,
5395                            const HARD_REG_SET defs)
5396 {
5397   rtx set, src, dest;
5398   bitmap live_out, live_in, bb_uses, bb_defs;
5399   unsigned int i, dregno, end_dregno, sregno, end_sregno;
5400   basic_block next_block;
5401
5402   /* Look for a simple register copy.  */
5403   set = single_set (insn);
5404   if (!set)
5405     return false;
5406   src = SET_SRC (set);
5407   dest = SET_DEST (set);
5408   if (!REG_P (dest) || !REG_P (src))
5409     return false;
5410
5411   /* Make sure that the source register isn't defined later in BB.  */
5412   sregno = REGNO (src);
5413   end_sregno = END_REGNO (src);
5414   if (overlaps_hard_reg_set_p (defs, GET_MODE (src), sregno))
5415     return false;
5416
5417   /* Make sure that the destination register isn't referenced later in BB.  */
5418   dregno = REGNO (dest);
5419   end_dregno = END_REGNO (dest);
5420   if (overlaps_hard_reg_set_p (uses, GET_MODE (dest), dregno)
5421       || overlaps_hard_reg_set_p (defs, GET_MODE (dest), dregno))
5422     return false;
5423
5424   /* See whether there is a successor block to which we could move INSN.  */
5425   next_block = next_block_for_reg (bb, dregno, end_dregno);
5426   if (!next_block)
5427     return false;
5428
5429   /* At this point we are committed to moving INSN, but let's try to
5430      move it as far as we can.  */
5431   do
5432     {
5433       live_out = df_get_live_out (bb);
5434       live_in = df_get_live_in (next_block);
5435       bb = next_block;
5436
5437       /* Check whether BB uses DEST or clobbers DEST.  We need to add
5438          INSN to BB if so.  Either way, DEST is no longer live on entry,
5439          except for any part that overlaps SRC (next loop).  */
5440       bb_uses = &DF_LR_BB_INFO (bb)->use;
5441       bb_defs = &DF_LR_BB_INFO (bb)->def;
5442       for (i = dregno; i < end_dregno; i++)
5443         {
5444           if (REGNO_REG_SET_P (bb_uses, i) || REGNO_REG_SET_P (bb_defs, i))
5445             next_block = NULL;
5446           CLEAR_REGNO_REG_SET (live_out, i);
5447           CLEAR_REGNO_REG_SET (live_in, i);
5448         }
5449
5450       /* Check whether BB clobbers SRC.  We need to add INSN to BB if so.
5451          Either way, SRC is now live on entry.  */
5452       for (i = sregno; i < end_sregno; i++)
5453         {
5454           if (REGNO_REG_SET_P (bb_defs, i))
5455             next_block = NULL;
5456           SET_REGNO_REG_SET (live_out, i);
5457           SET_REGNO_REG_SET (live_in, i);
5458         }
5459
5460       /* If we don't need to add the move to BB, look for a single
5461          successor block.  */
5462       if (next_block)
5463         next_block = next_block_for_reg (next_block, dregno, end_dregno);
5464     }
5465   while (next_block);
5466
5467   /* BB now defines DEST.  It only uses the parts of DEST that overlap SRC
5468      (next loop).  */
5469   for (i = dregno; i < end_dregno; i++)
5470     {
5471       CLEAR_REGNO_REG_SET (bb_uses, i);
5472       SET_REGNO_REG_SET (bb_defs, i);
5473     }
5474
5475   /* BB now uses SRC.  */
5476   for (i = sregno; i < end_sregno; i++)
5477     SET_REGNO_REG_SET (bb_uses, i);
5478
5479   emit_insn_after (PATTERN (insn), bb_note (bb));
5480   delete_insn (insn);
5481   return true;
5482 }
5483
5484 /* Look for register copies in the first block of the function, and move
5485    them down into successor blocks if the register is used only on one
5486    path.  This exposes more opportunities for shrink-wrapping.  These
5487    kinds of sets often occur when incoming argument registers are moved
5488    to call-saved registers because their values are live across one or
5489    more calls during the function.  */
5490
5491 static void
5492 prepare_shrink_wrap (basic_block entry_block)
5493 {
5494   rtx insn, curr, x;
5495   HARD_REG_SET uses, defs;
5496   df_ref *ref;
5497
5498   CLEAR_HARD_REG_SET (uses);
5499   CLEAR_HARD_REG_SET (defs);
5500   FOR_BB_INSNS_REVERSE_SAFE (entry_block, insn, curr)
5501     if (NONDEBUG_INSN_P (insn)
5502         && !move_insn_for_shrink_wrap (entry_block, insn, uses, defs))
5503       {
5504         /* Add all defined registers to DEFs.  */
5505         for (ref = DF_INSN_DEFS (insn); *ref; ref++)
5506           {
5507             x = DF_REF_REG (*ref);
5508             if (REG_P (x) && HARD_REGISTER_P (x))
5509               SET_HARD_REG_BIT (defs, REGNO (x));
5510           }
5511
5512         /* Add all used registers to USESs.  */
5513         for (ref = DF_INSN_USES (insn); *ref; ref++)
5514           {
5515             x = DF_REF_REG (*ref);
5516             if (REG_P (x) && HARD_REGISTER_P (x))
5517               SET_HARD_REG_BIT (uses, REGNO (x));
5518           }
5519       }
5520 }
5521
5522 #endif
5523
5524 #ifdef HAVE_return
5525 /* Insert use of return register before the end of BB.  */
5526
5527 static void
5528 emit_use_return_register_into_block (basic_block bb)
5529 {
5530   rtx seq;
5531   start_sequence ();
5532   use_return_register ();
5533   seq = get_insns ();
5534   end_sequence ();
5535   emit_insn_before (seq, BB_END (bb));
5536 }
5537
5538
5539 /* Create a return pattern, either simple_return or return, depending on
5540    simple_p.  */
5541
5542 static rtx
5543 gen_return_pattern (bool simple_p)
5544 {
5545 #ifdef HAVE_simple_return
5546   return simple_p ? gen_simple_return () : gen_return ();
5547 #else
5548   gcc_assert (!simple_p);
5549   return gen_return ();
5550 #endif
5551 }
5552
5553 /* Insert an appropriate return pattern at the end of block BB.  This
5554    also means updating block_for_insn appropriately.  SIMPLE_P is
5555    the same as in gen_return_pattern and passed to it.  */
5556
5557 static void
5558 emit_return_into_block (bool simple_p, basic_block bb)
5559 {
5560   rtx jump, pat;
5561   jump = emit_jump_insn_after (gen_return_pattern (simple_p), BB_END (bb));
5562   pat = PATTERN (jump);
5563   if (GET_CODE (pat) == PARALLEL)
5564     pat = XVECEXP (pat, 0, 0);
5565   gcc_assert (ANY_RETURN_P (pat));
5566   JUMP_LABEL (jump) = pat;
5567 }
5568 #endif
5569
5570 /* Set JUMP_LABEL for a return insn.  */
5571
5572 void
5573 set_return_jump_label (rtx returnjump)
5574 {
5575   rtx pat = PATTERN (returnjump);
5576   if (GET_CODE (pat) == PARALLEL)
5577     pat = XVECEXP (pat, 0, 0);
5578   if (ANY_RETURN_P (pat))
5579     JUMP_LABEL (returnjump) = pat;
5580   else
5581     JUMP_LABEL (returnjump) = ret_rtx;
5582 }
5583
5584 #ifdef HAVE_simple_return
5585 /* Create a copy of BB instructions and insert at BEFORE.  Redirect
5586    preds of BB to COPY_BB if they don't appear in NEED_PROLOGUE.  */
5587 static void
5588 dup_block_and_redirect (basic_block bb, basic_block copy_bb, rtx before,
5589                         bitmap_head *need_prologue)
5590 {
5591   edge_iterator ei;
5592   edge e;
5593   rtx insn = BB_END (bb);
5594
5595   /* We know BB has a single successor, so there is no need to copy a
5596      simple jump at the end of BB.  */
5597   if (simplejump_p (insn))
5598     insn = PREV_INSN (insn);
5599
5600   start_sequence ();
5601   duplicate_insn_chain (BB_HEAD (bb), insn);
5602   if (dump_file)
5603     {
5604       unsigned count = 0;
5605       for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5606         if (active_insn_p (insn))
5607           ++count;
5608       fprintf (dump_file, "Duplicating bb %d to bb %d, %u active insns.\n",
5609                bb->index, copy_bb->index, count);
5610     }
5611   insn = get_insns ();
5612   end_sequence ();
5613   emit_insn_before (insn, before);
5614
5615   /* Redirect all the paths that need no prologue into copy_bb.  */
5616   for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
5617     if (!bitmap_bit_p (need_prologue, e->src->index))
5618       {
5619         redirect_edge_and_branch_force (e, copy_bb);
5620         continue;
5621       }
5622     else
5623       ei_next (&ei);
5624 }
5625 #endif
5626
5627 #if defined (HAVE_return) || defined (HAVE_simple_return)
5628 /* Return true if there are any active insns between HEAD and TAIL.  */
5629 static bool
5630 active_insn_between (rtx head, rtx tail)
5631 {
5632   while (tail)
5633     {
5634       if (active_insn_p (tail))
5635         return true;
5636       if (tail == head)
5637         return false;
5638       tail = PREV_INSN (tail);
5639     }
5640   return false;
5641 }
5642
5643 /* LAST_BB is a block that exits, and empty of active instructions.
5644    Examine its predecessors for jumps that can be converted to
5645    (conditional) returns.  */
5646 static VEC (edge, heap) *
5647 convert_jumps_to_returns (basic_block last_bb, bool simple_p,
5648                           VEC (edge, heap) *unconverted ATTRIBUTE_UNUSED)
5649 {
5650   int i;
5651   basic_block bb;
5652   rtx label;
5653   edge_iterator ei;
5654   edge e;
5655   VEC(basic_block,heap) *src_bbs;
5656
5657   src_bbs = VEC_alloc (basic_block, heap, EDGE_COUNT (last_bb->preds));
5658   FOR_EACH_EDGE (e, ei, last_bb->preds)
5659     if (e->src != ENTRY_BLOCK_PTR)
5660       VEC_quick_push (basic_block, src_bbs, e->src);
5661
5662   label = BB_HEAD (last_bb);
5663
5664   FOR_EACH_VEC_ELT (basic_block, src_bbs, i, bb)
5665     {
5666       rtx jump = BB_END (bb);
5667
5668       if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5669         continue;
5670
5671       e = find_edge (bb, last_bb);
5672
5673       /* If we have an unconditional jump, we can replace that
5674          with a simple return instruction.  */
5675       if (simplejump_p (jump))
5676         {
5677           /* The use of the return register might be present in the exit
5678              fallthru block.  Either:
5679              - removing the use is safe, and we should remove the use in
5680              the exit fallthru block, or
5681              - removing the use is not safe, and we should add it here.
5682              For now, we conservatively choose the latter.  Either of the
5683              2 helps in crossjumping.  */
5684           emit_use_return_register_into_block (bb);
5685
5686           emit_return_into_block (simple_p, bb);
5687           delete_insn (jump);
5688         }
5689
5690       /* If we have a conditional jump branching to the last
5691          block, we can try to replace that with a conditional
5692          return instruction.  */
5693       else if (condjump_p (jump))
5694         {
5695           rtx dest;
5696
5697           if (simple_p)
5698             dest = simple_return_rtx;
5699           else
5700             dest = ret_rtx;
5701           if (!redirect_jump (jump, dest, 0))
5702             {
5703 #ifdef HAVE_simple_return
5704               if (simple_p)
5705                 {
5706                   if (dump_file)
5707                     fprintf (dump_file,
5708                              "Failed to redirect bb %d branch.\n", bb->index);
5709                   VEC_safe_push (edge, heap, unconverted, e);
5710                 }
5711 #endif
5712               continue;
5713             }
5714
5715           /* See comment in simplejump_p case above.  */
5716           emit_use_return_register_into_block (bb);
5717
5718           /* If this block has only one successor, it both jumps
5719              and falls through to the fallthru block, so we can't
5720              delete the edge.  */
5721           if (single_succ_p (bb))
5722             continue;
5723         }
5724       else
5725         {
5726 #ifdef HAVE_simple_return
5727           if (simple_p)
5728             {
5729               if (dump_file)
5730                 fprintf (dump_file,
5731                          "Failed to redirect bb %d branch.\n", bb->index);
5732               VEC_safe_push (edge, heap, unconverted, e);
5733             }
5734 #endif
5735           continue;
5736         }
5737
5738       /* Fix up the CFG for the successful change we just made.  */
5739       redirect_edge_succ (e, EXIT_BLOCK_PTR);
5740       e->flags &= ~EDGE_CROSSING;
5741     }
5742   VEC_free (basic_block, heap, src_bbs);
5743   return unconverted;
5744 }
5745
5746 /* Emit a return insn for the exit fallthru block.  */
5747 static basic_block
5748 emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
5749 {
5750   basic_block last_bb = exit_fallthru_edge->src;
5751
5752   if (JUMP_P (BB_END (last_bb)))
5753     {
5754       last_bb = split_edge (exit_fallthru_edge);
5755       exit_fallthru_edge = single_succ_edge (last_bb);
5756     }
5757   emit_barrier_after (BB_END (last_bb));
5758   emit_return_into_block (simple_p, last_bb);
5759   exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
5760   return last_bb;
5761 }
5762 #endif
5763
5764
5765 /* Generate the prologue and epilogue RTL if the machine supports it.  Thread
5766    this into place with notes indicating where the prologue ends and where
5767    the epilogue begins.  Update the basic block information when possible.
5768
5769    Notes on epilogue placement:
5770    There are several kinds of edges to the exit block:
5771    * a single fallthru edge from LAST_BB
5772    * possibly, edges from blocks containing sibcalls
5773    * possibly, fake edges from infinite loops
5774
5775    The epilogue is always emitted on the fallthru edge from the last basic
5776    block in the function, LAST_BB, into the exit block.
5777
5778    If LAST_BB is empty except for a label, it is the target of every
5779    other basic block in the function that ends in a return.  If a
5780    target has a return or simple_return pattern (possibly with
5781    conditional variants), these basic blocks can be changed so that a
5782    return insn is emitted into them, and their target is adjusted to
5783    the real exit block.
5784
5785    Notes on shrink wrapping: We implement a fairly conservative
5786    version of shrink-wrapping rather than the textbook one.  We only
5787    generate a single prologue and a single epilogue.  This is
5788    sufficient to catch a number of interesting cases involving early
5789    exits.
5790
5791    First, we identify the blocks that require the prologue to occur before
5792    them.  These are the ones that modify a call-saved register, or reference
5793    any of the stack or frame pointer registers.  To simplify things, we then
5794    mark everything reachable from these blocks as also requiring a prologue.
5795    This takes care of loops automatically, and avoids the need to examine
5796    whether MEMs reference the frame, since it is sufficient to check for
5797    occurrences of the stack or frame pointer.
5798
5799    We then compute the set of blocks for which the need for a prologue
5800    is anticipatable (borrowing terminology from the shrink-wrapping
5801    description in Muchnick's book).  These are the blocks which either
5802    require a prologue themselves, or those that have only successors
5803    where the prologue is anticipatable.  The prologue needs to be
5804    inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5805    is not.  For the moment, we ensure that only one such edge exists.
5806
5807    The epilogue is placed as described above, but we make a
5808    distinction between inserting return and simple_return patterns
5809    when modifying other blocks that end in a return.  Blocks that end
5810    in a sibcall omit the sibcall_epilogue if the block is not in
5811    ANTIC.  */
5812
5813 static void
5814 thread_prologue_and_epilogue_insns (void)
5815 {
5816   bool inserted;
5817 #ifdef HAVE_simple_return
5818   VEC (edge, heap) *unconverted_simple_returns = NULL;
5819   bool nonempty_prologue;
5820   bitmap_head bb_flags;
5821   unsigned max_grow_size;
5822 #endif
5823   rtx returnjump;
5824   rtx seq ATTRIBUTE_UNUSED, epilogue_end ATTRIBUTE_UNUSED;
5825   rtx prologue_seq ATTRIBUTE_UNUSED, split_prologue_seq ATTRIBUTE_UNUSED;
5826   edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
5827   edge_iterator ei;
5828
5829   df_analyze ();
5830
5831   rtl_profile_for_bb (ENTRY_BLOCK_PTR);
5832
5833   inserted = false;
5834   seq = NULL_RTX;
5835   epilogue_end = NULL_RTX;
5836   returnjump = NULL_RTX;
5837
5838   /* Can't deal with multiple successors of the entry block at the
5839      moment.  Function should always have at least one entry
5840      point.  */
5841   gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5842   entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
5843   orig_entry_edge = entry_edge;
5844
5845   split_prologue_seq = NULL_RTX;
5846   if (flag_split_stack
5847       && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
5848           == NULL))
5849     {
5850 #ifndef HAVE_split_stack_prologue
5851       gcc_unreachable ();
5852 #else
5853       gcc_assert (HAVE_split_stack_prologue);
5854
5855       start_sequence ();
5856       emit_insn (gen_split_stack_prologue ());
5857       split_prologue_seq = get_insns ();
5858       end_sequence ();
5859
5860       record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
5861       set_insn_locators (split_prologue_seq, prologue_locator);
5862 #endif
5863     }
5864
5865   prologue_seq = NULL_RTX;
5866 #ifdef HAVE_prologue
5867   if (HAVE_prologue)
5868     {
5869       start_sequence ();
5870       seq = gen_prologue ();
5871       emit_insn (seq);
5872
5873       /* Insert an explicit USE for the frame pointer
5874          if the profiling is on and the frame pointer is required.  */
5875       if (crtl->profile && frame_pointer_needed)
5876         emit_use (hard_frame_pointer_rtx);
5877
5878       /* Retain a map of the prologue insns.  */
5879       record_insns (seq, NULL, &prologue_insn_hash);
5880       emit_note (NOTE_INSN_PROLOGUE_END);
5881
5882       /* Ensure that instructions are not moved into the prologue when
5883          profiling is on.  The call to the profiling routine can be
5884          emitted within the live range of a call-clobbered register.  */
5885       if (!targetm.profile_before_prologue () && crtl->profile)
5886         emit_insn (gen_blockage ());
5887
5888       prologue_seq = get_insns ();
5889       end_sequence ();
5890       set_insn_locators (prologue_seq, prologue_locator);
5891     }
5892 #endif
5893
5894 #ifdef HAVE_simple_return
5895   bitmap_initialize (&bb_flags, &bitmap_default_obstack);
5896
5897   /* Try to perform a kind of shrink-wrapping, making sure the
5898      prologue/epilogue is emitted only around those parts of the
5899      function that require it.  */
5900
5901   nonempty_prologue = false;
5902   for (seq = prologue_seq; seq; seq = NEXT_INSN (seq))
5903     if (!NOTE_P (seq) || NOTE_KIND (seq) != NOTE_INSN_PROLOGUE_END)
5904       {
5905         nonempty_prologue = true;
5906         break;
5907       }
5908       
5909   if (flag_shrink_wrap && HAVE_simple_return
5910       && (targetm.profile_before_prologue () || !crtl->profile)
5911       && nonempty_prologue && !crtl->calls_eh_return)
5912     {
5913       HARD_REG_SET prologue_clobbered, prologue_used, live_on_edge;
5914       struct hard_reg_set_container set_up_by_prologue;
5915       rtx p_insn;
5916       VEC(basic_block, heap) *vec;
5917       basic_block bb;
5918       bitmap_head bb_antic_flags;
5919       bitmap_head bb_on_list;
5920       bitmap_head bb_tail;
5921
5922       if (dump_file)
5923         fprintf (dump_file, "Attempting shrink-wrapping optimization.\n");
5924
5925       /* Compute the registers set and used in the prologue.  */
5926       CLEAR_HARD_REG_SET (prologue_clobbered);
5927       CLEAR_HARD_REG_SET (prologue_used);
5928       for (p_insn = prologue_seq; p_insn; p_insn = NEXT_INSN (p_insn))
5929         {
5930           HARD_REG_SET this_used;
5931           if (!NONDEBUG_INSN_P (p_insn))
5932             continue;
5933
5934           CLEAR_HARD_REG_SET (this_used);
5935           note_uses (&PATTERN (p_insn), record_hard_reg_uses,
5936                      &this_used);
5937           AND_COMPL_HARD_REG_SET (this_used, prologue_clobbered);
5938           IOR_HARD_REG_SET (prologue_used, this_used);
5939           note_stores (PATTERN (p_insn), record_hard_reg_sets,
5940                        &prologue_clobbered);
5941         }
5942
5943       prepare_shrink_wrap (entry_edge->dest);
5944
5945       bitmap_initialize (&bb_antic_flags, &bitmap_default_obstack);
5946       bitmap_initialize (&bb_on_list, &bitmap_default_obstack);
5947       bitmap_initialize (&bb_tail, &bitmap_default_obstack);
5948
5949       /* Find the set of basic blocks that require a stack frame,
5950          and blocks that are too big to be duplicated.  */
5951
5952       vec = VEC_alloc (basic_block, heap, n_basic_blocks);
5953
5954       CLEAR_HARD_REG_SET (set_up_by_prologue.set);
5955       add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
5956                            STACK_POINTER_REGNUM);
5957       add_to_hard_reg_set (&set_up_by_prologue.set, Pmode, ARG_POINTER_REGNUM);
5958       if (frame_pointer_needed)
5959         add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
5960                              HARD_FRAME_POINTER_REGNUM);
5961       if (pic_offset_table_rtx)
5962         add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
5963                              PIC_OFFSET_TABLE_REGNUM);
5964       if (stack_realign_drap && crtl->drap_reg)
5965         add_to_hard_reg_set (&set_up_by_prologue.set,
5966                              GET_MODE (crtl->drap_reg),
5967                              REGNO (crtl->drap_reg));
5968       if (targetm.set_up_by_prologue)
5969         targetm.set_up_by_prologue (&set_up_by_prologue);
5970
5971       /* We don't use a different max size depending on
5972          optimize_bb_for_speed_p because increasing shrink-wrapping
5973          opportunities by duplicating tail blocks can actually result
5974          in an overall decrease in code size.  */
5975       max_grow_size = get_uncond_jump_length ();
5976       max_grow_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
5977
5978       FOR_EACH_BB (bb)
5979         {
5980           rtx insn;
5981           unsigned size = 0;
5982
5983           FOR_BB_INSNS (bb, insn)
5984             if (NONDEBUG_INSN_P (insn))
5985               {
5986                 if (requires_stack_frame_p (insn, prologue_used,
5987                                             set_up_by_prologue.set))
5988                   {
5989                     if (bb == entry_edge->dest)
5990                       goto fail_shrinkwrap;
5991                     bitmap_set_bit (&bb_flags, bb->index);
5992                     VEC_quick_push (basic_block, vec, bb);
5993                     break;
5994                   }
5995                 else if (size <= max_grow_size)
5996                   {
5997                     size += get_attr_min_length (insn);
5998                     if (size > max_grow_size)
5999                       bitmap_set_bit (&bb_on_list, bb->index);
6000                   }
6001               }
6002         }
6003
6004       /* Blocks that really need a prologue, or are too big for tails.  */
6005       bitmap_ior_into (&bb_on_list, &bb_flags);
6006
6007       /* For every basic block that needs a prologue, mark all blocks
6008          reachable from it, so as to ensure they are also seen as
6009          requiring a prologue.  */
6010       while (!VEC_empty (basic_block, vec))
6011         {
6012           basic_block tmp_bb = VEC_pop (basic_block, vec);
6013
6014           FOR_EACH_EDGE (e, ei, tmp_bb->succs)
6015             if (e->dest != EXIT_BLOCK_PTR
6016                 && bitmap_set_bit (&bb_flags, e->dest->index))
6017               VEC_quick_push (basic_block, vec, e->dest);
6018         }
6019
6020       /* Find the set of basic blocks that need no prologue, have a
6021          single successor, can be duplicated, meet a max size
6022          requirement, and go to the exit via like blocks.  */
6023       VEC_quick_push (basic_block, vec, EXIT_BLOCK_PTR);
6024       while (!VEC_empty (basic_block, vec))
6025         {
6026           basic_block tmp_bb = VEC_pop (basic_block, vec);
6027
6028           FOR_EACH_EDGE (e, ei, tmp_bb->preds)
6029             if (single_succ_p (e->src)
6030                 && !bitmap_bit_p (&bb_on_list, e->src->index)
6031                 && can_duplicate_block_p (e->src))
6032               {
6033                 edge pe;
6034                 edge_iterator pei;
6035
6036                 /* If there is predecessor of e->src which doesn't
6037                    need prologue and the edge is complex,
6038                    we might not be able to redirect the branch
6039                    to a copy of e->src.  */
6040                 FOR_EACH_EDGE (pe, pei, e->src->preds)
6041                   if ((pe->flags & EDGE_COMPLEX) != 0
6042                       && !bitmap_bit_p (&bb_flags, pe->src->index))
6043                     break;
6044                 if (pe == NULL && bitmap_set_bit (&bb_tail, e->src->index))
6045                   VEC_quick_push (basic_block, vec, e->src);
6046               }
6047         }
6048
6049       /* Now walk backwards from every block that is marked as needing
6050          a prologue to compute the bb_antic_flags bitmap.  Exclude
6051          tail blocks; They can be duplicated to be used on paths not
6052          needing a prologue.  */
6053       bitmap_clear (&bb_on_list);
6054       bitmap_and_compl (&bb_antic_flags, &bb_flags, &bb_tail);
6055       FOR_EACH_BB (bb)
6056         {
6057           if (!bitmap_bit_p (&bb_antic_flags, bb->index))
6058             continue;
6059           FOR_EACH_EDGE (e, ei, bb->preds)
6060             if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
6061                 && bitmap_set_bit (&bb_on_list, e->src->index))
6062               VEC_quick_push (basic_block, vec, e->src);
6063         }
6064       while (!VEC_empty (basic_block, vec))
6065         {
6066           basic_block tmp_bb = VEC_pop (basic_block, vec);
6067           bool all_set = true;
6068
6069           bitmap_clear_bit (&bb_on_list, tmp_bb->index);
6070           FOR_EACH_EDGE (e, ei, tmp_bb->succs)
6071             if (!bitmap_bit_p (&bb_antic_flags, e->dest->index))
6072               {
6073                 all_set = false;
6074                 break;
6075               }
6076
6077           if (all_set)
6078             {
6079               bitmap_set_bit (&bb_antic_flags, tmp_bb->index);
6080               FOR_EACH_EDGE (e, ei, tmp_bb->preds)
6081                 if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
6082                     && bitmap_set_bit (&bb_on_list, e->src->index))
6083                   VEC_quick_push (basic_block, vec, e->src);
6084             }
6085         }
6086       /* Find exactly one edge that leads to a block in ANTIC from
6087          a block that isn't.  */
6088       if (!bitmap_bit_p (&bb_antic_flags, entry_edge->dest->index))
6089         FOR_EACH_BB (bb)
6090           {
6091             if (!bitmap_bit_p (&bb_antic_flags, bb->index))
6092               continue;
6093             FOR_EACH_EDGE (e, ei, bb->preds)
6094               if (!bitmap_bit_p (&bb_antic_flags, e->src->index))
6095                 {
6096                   if (entry_edge != orig_entry_edge)
6097                     {
6098                       entry_edge = orig_entry_edge;
6099                       if (dump_file)
6100                         fprintf (dump_file, "More than one candidate edge.\n");
6101                       goto fail_shrinkwrap;
6102                     }
6103                   if (dump_file)
6104                     fprintf (dump_file, "Found candidate edge for "
6105                              "shrink-wrapping, %d->%d.\n", e->src->index,
6106                              e->dest->index);
6107                   entry_edge = e;
6108                 }
6109           }
6110
6111       if (entry_edge != orig_entry_edge)
6112         {
6113           /* Test whether the prologue is known to clobber any register
6114              (other than FP or SP) which are live on the edge.  */
6115           CLEAR_HARD_REG_BIT (prologue_clobbered, STACK_POINTER_REGNUM);
6116           if (frame_pointer_needed)
6117             CLEAR_HARD_REG_BIT (prologue_clobbered, HARD_FRAME_POINTER_REGNUM);
6118           CLEAR_HARD_REG_SET (live_on_edge);
6119           reg_set_to_hard_reg_set (&live_on_edge,
6120                                    df_get_live_in (entry_edge->dest));
6121           if (hard_reg_set_intersect_p (live_on_edge, prologue_clobbered))
6122             {
6123               entry_edge = orig_entry_edge;
6124               if (dump_file)
6125                 fprintf (dump_file,
6126                          "Shrink-wrapping aborted due to clobber.\n");
6127             }
6128         }
6129       if (entry_edge != orig_entry_edge)
6130         {
6131           crtl->shrink_wrapped = true;
6132           if (dump_file)
6133             fprintf (dump_file, "Performing shrink-wrapping.\n");
6134
6135           /* Find tail blocks reachable from both blocks needing a
6136              prologue and blocks not needing a prologue.  */
6137           if (!bitmap_empty_p (&bb_tail))
6138             FOR_EACH_BB (bb)
6139               {
6140                 bool some_pro, some_no_pro;
6141                 if (!bitmap_bit_p (&bb_tail, bb->index))
6142                   continue;
6143                 some_pro = some_no_pro = false;
6144                 FOR_EACH_EDGE (e, ei, bb->preds)
6145                   {
6146                     if (bitmap_bit_p (&bb_flags, e->src->index))
6147                       some_pro = true;
6148                     else
6149                       some_no_pro = true;
6150                   }
6151                 if (some_pro && some_no_pro)
6152                   VEC_quick_push (basic_block, vec, bb);
6153                 else
6154                   bitmap_clear_bit (&bb_tail, bb->index);
6155               }
6156           /* Find the head of each tail.  */
6157           while (!VEC_empty (basic_block, vec))
6158             {
6159               basic_block tbb = VEC_pop (basic_block, vec);
6160
6161               if (!bitmap_bit_p (&bb_tail, tbb->index))
6162                 continue;
6163
6164               while (single_succ_p (tbb))
6165                 {
6166                   tbb = single_succ (tbb);
6167                   bitmap_clear_bit (&bb_tail, tbb->index);
6168                 }
6169             }
6170           /* Now duplicate the tails.  */
6171           if (!bitmap_empty_p (&bb_tail))
6172             FOR_EACH_BB_REVERSE (bb)
6173               {
6174                 basic_block copy_bb, tbb;
6175                 rtx insert_point;
6176                 int eflags;
6177
6178                 if (!bitmap_clear_bit (&bb_tail, bb->index))
6179                   continue;
6180
6181                 /* Create a copy of BB, instructions and all, for
6182                    use on paths that don't need a prologue.
6183                    Ideal placement of the copy is on a fall-thru edge
6184                    or after a block that would jump to the copy.  */ 
6185                 FOR_EACH_EDGE (e, ei, bb->preds)
6186                   if (!bitmap_bit_p (&bb_flags, e->src->index)
6187                       && single_succ_p (e->src))
6188                     break;
6189                 if (e)
6190                   {
6191                     copy_bb = create_basic_block (NEXT_INSN (BB_END (e->src)),
6192                                                   NULL_RTX, e->src);
6193                     BB_COPY_PARTITION (copy_bb, e->src);
6194                   }
6195                 else
6196                   {
6197                     /* Otherwise put the copy at the end of the function.  */
6198                     copy_bb = create_basic_block (NULL_RTX, NULL_RTX,
6199                                                   EXIT_BLOCK_PTR->prev_bb);
6200                     BB_COPY_PARTITION (copy_bb, bb);
6201                   }
6202
6203                 insert_point = emit_note_after (NOTE_INSN_DELETED,
6204                                                 BB_END (copy_bb));
6205                 emit_barrier_after (BB_END (copy_bb));
6206
6207                 tbb = bb;
6208                 while (1)
6209                   {
6210                     dup_block_and_redirect (tbb, copy_bb, insert_point,
6211                                             &bb_flags);
6212                     tbb = single_succ (tbb);
6213                     if (tbb == EXIT_BLOCK_PTR)
6214                       break;
6215                     e = split_block (copy_bb, PREV_INSN (insert_point));
6216                     copy_bb = e->dest;
6217                   }
6218
6219                 /* Quiet verify_flow_info by (ab)using EDGE_FAKE.
6220                    We have yet to add a simple_return to the tails,
6221                    as we'd like to first convert_jumps_to_returns in
6222                    case the block is no longer used after that.  */
6223                 eflags = EDGE_FAKE;
6224                 if (CALL_P (PREV_INSN (insert_point))
6225                     && SIBLING_CALL_P (PREV_INSN (insert_point)))
6226                   eflags = EDGE_SIBCALL | EDGE_ABNORMAL;
6227                 make_single_succ_edge (copy_bb, EXIT_BLOCK_PTR, eflags);
6228
6229                 /* verify_flow_info doesn't like a note after a
6230                    sibling call.  */
6231                 delete_insn (insert_point);
6232                 if (bitmap_empty_p (&bb_tail))
6233                   break;
6234               }
6235         }
6236
6237     fail_shrinkwrap:
6238       bitmap_clear (&bb_tail);
6239       bitmap_clear (&bb_antic_flags);
6240       bitmap_clear (&bb_on_list);
6241       VEC_free (basic_block, heap, vec);
6242     }
6243 #endif
6244
6245   if (split_prologue_seq != NULL_RTX)
6246     {
6247       insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
6248       inserted = true;
6249     }
6250   if (prologue_seq != NULL_RTX)
6251     {
6252       insert_insn_on_edge (prologue_seq, entry_edge);
6253       inserted = true;
6254     }
6255
6256   /* If the exit block has no non-fake predecessors, we don't need
6257      an epilogue.  */
6258   FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6259     if ((e->flags & EDGE_FAKE) == 0)
6260       break;
6261   if (e == NULL)
6262     goto epilogue_done;
6263
6264   rtl_profile_for_bb (EXIT_BLOCK_PTR);
6265
6266   exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR->preds);
6267
6268   /* If we're allowed to generate a simple return instruction, then by
6269      definition we don't need a full epilogue.  If the last basic
6270      block before the exit block does not contain active instructions,
6271      examine its predecessors and try to emit (conditional) return
6272      instructions.  */
6273 #ifdef HAVE_simple_return
6274   if (entry_edge != orig_entry_edge)
6275     {
6276       if (optimize)
6277         {
6278           unsigned i, last;
6279
6280           /* convert_jumps_to_returns may add to EXIT_BLOCK_PTR->preds
6281              (but won't remove).  Stop at end of current preds.  */
6282           last = EDGE_COUNT (EXIT_BLOCK_PTR->preds);
6283           for (i = 0; i < last; i++)
6284             {
6285               e = EDGE_I (EXIT_BLOCK_PTR->preds, i);
6286               if (LABEL_P (BB_HEAD (e->src))
6287                   && !bitmap_bit_p (&bb_flags, e->src->index)
6288                   && !active_insn_between (BB_HEAD (e->src), BB_END (e->src)))
6289                 unconverted_simple_returns
6290                   = convert_jumps_to_returns (e->src, true,
6291                                               unconverted_simple_returns);
6292             }
6293         }
6294
6295       if (exit_fallthru_edge != NULL
6296           && EDGE_COUNT (exit_fallthru_edge->src->preds) != 0
6297           && !bitmap_bit_p (&bb_flags, exit_fallthru_edge->src->index))
6298         {
6299           basic_block last_bb;
6300
6301           last_bb = emit_return_for_exit (exit_fallthru_edge, true);
6302           returnjump = BB_END (last_bb);
6303           exit_fallthru_edge = NULL;
6304         }
6305     }
6306 #endif
6307 #ifdef HAVE_return
6308   if (HAVE_return)
6309     {
6310       if (exit_fallthru_edge == NULL)
6311         goto epilogue_done;
6312
6313       if (optimize)
6314         {
6315           basic_block last_bb = exit_fallthru_edge->src;
6316
6317           if (LABEL_P (BB_HEAD (last_bb))
6318               && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
6319             convert_jumps_to_returns (last_bb, false, NULL);
6320
6321           if (EDGE_COUNT (last_bb->preds) != 0
6322               && single_succ_p (last_bb))
6323             {
6324               last_bb = emit_return_for_exit (exit_fallthru_edge, false);
6325               epilogue_end = returnjump = BB_END (last_bb);
6326 #ifdef HAVE_simple_return
6327               /* Emitting the return may add a basic block.
6328                  Fix bb_flags for the added block.  */
6329               if (last_bb != exit_fallthru_edge->src)
6330                 bitmap_set_bit (&bb_flags, last_bb->index);
6331 #endif
6332               goto epilogue_done;
6333             }
6334         }
6335     }
6336 #endif
6337
6338   /* A small fib -- epilogue is not yet completed, but we wish to re-use
6339      this marker for the splits of EH_RETURN patterns, and nothing else
6340      uses the flag in the meantime.  */
6341   epilogue_completed = 1;
6342
6343 #ifdef HAVE_eh_return
6344   /* Find non-fallthru edges that end with EH_RETURN instructions.  On
6345      some targets, these get split to a special version of the epilogue
6346      code.  In order to be able to properly annotate these with unwind
6347      info, try to split them now.  If we get a valid split, drop an
6348      EPILOGUE_BEG note and mark the insns as epilogue insns.  */
6349   FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6350     {
6351       rtx prev, last, trial;
6352
6353       if (e->flags & EDGE_FALLTHRU)
6354         continue;
6355       last = BB_END (e->src);
6356       if (!eh_returnjump_p (last))
6357         continue;
6358
6359       prev = PREV_INSN (last);
6360       trial = try_split (PATTERN (last), last, 1);
6361       if (trial == last)
6362         continue;
6363
6364       record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
6365       emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
6366     }
6367 #endif
6368
6369   /* If nothing falls through into the exit block, we don't need an
6370      epilogue.  */
6371
6372   if (exit_fallthru_edge == NULL)
6373     goto epilogue_done;
6374
6375 #ifdef HAVE_epilogue
6376   if (HAVE_epilogue)
6377     {
6378       start_sequence ();
6379       epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
6380       seq = gen_epilogue ();
6381       if (seq)
6382         emit_jump_insn (seq);
6383
6384       /* Retain a map of the epilogue insns.  */
6385       record_insns (seq, NULL, &epilogue_insn_hash);
6386       set_insn_locators (seq, epilogue_locator);
6387
6388       seq = get_insns ();
6389       returnjump = get_last_insn ();
6390       end_sequence ();
6391
6392       insert_insn_on_edge (seq, exit_fallthru_edge);
6393       inserted = true;
6394
6395       if (JUMP_P (returnjump))
6396         set_return_jump_label (returnjump);
6397     }
6398   else
6399 #endif
6400     {
6401       basic_block cur_bb;
6402
6403       if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
6404         goto epilogue_done;
6405       /* We have a fall-through edge to the exit block, the source is not
6406          at the end of the function, and there will be an assembler epilogue
6407          at the end of the function.
6408          We can't use force_nonfallthru here, because that would try to
6409          use return.  Inserting a jump 'by hand' is extremely messy, so
6410          we take advantage of cfg_layout_finalize using
6411          fixup_fallthru_exit_predecessor.  */
6412       cfg_layout_initialize (0);
6413       FOR_EACH_BB (cur_bb)
6414         if (cur_bb->index >= NUM_FIXED_BLOCKS
6415             && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
6416           cur_bb->aux = cur_bb->next_bb;
6417       cfg_layout_finalize ();
6418     }
6419
6420 epilogue_done:
6421
6422   default_rtl_profile ();
6423
6424   if (inserted)
6425     {
6426       sbitmap blocks;
6427
6428       commit_edge_insertions ();
6429
6430       /* Look for basic blocks within the prologue insns.  */
6431       blocks = sbitmap_alloc (last_basic_block);
6432       sbitmap_zero (blocks);
6433       SET_BIT (blocks, entry_edge->dest->index);
6434       SET_BIT (blocks, orig_entry_edge->dest->index);
6435       find_many_sub_basic_blocks (blocks);
6436       sbitmap_free (blocks);
6437
6438       /* The epilogue insns we inserted may cause the exit edge to no longer
6439          be fallthru.  */
6440       FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6441         {
6442           if (((e->flags & EDGE_FALLTHRU) != 0)
6443               && returnjump_p (BB_END (e->src)))
6444             e->flags &= ~EDGE_FALLTHRU;
6445         }
6446     }
6447
6448 #ifdef HAVE_simple_return
6449   /* If there were branches to an empty LAST_BB which we tried to
6450      convert to conditional simple_returns, but couldn't for some
6451      reason, create a block to hold a simple_return insn and redirect
6452      those remaining edges.  */
6453   if (!VEC_empty (edge, unconverted_simple_returns))
6454     {
6455       basic_block simple_return_block_hot = NULL;
6456       basic_block simple_return_block_cold = NULL;
6457       edge pending_edge_hot = NULL;
6458       edge pending_edge_cold = NULL;
6459       basic_block exit_pred = EXIT_BLOCK_PTR->prev_bb;
6460       int i;
6461
6462       gcc_assert (entry_edge != orig_entry_edge);
6463
6464       /* See if we can reuse the last insn that was emitted for the
6465          epilogue.  */
6466       if (returnjump != NULL_RTX
6467           && JUMP_LABEL (returnjump) == simple_return_rtx)
6468         {
6469           e = split_block (BLOCK_FOR_INSN (returnjump), PREV_INSN (returnjump));
6470           if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6471             simple_return_block_hot = e->dest;
6472           else
6473             simple_return_block_cold = e->dest;
6474         }
6475
6476       /* Also check returns we might need to add to tail blocks.  */
6477       FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6478         if (EDGE_COUNT (e->src->preds) != 0
6479             && (e->flags & EDGE_FAKE) != 0
6480             && !bitmap_bit_p (&bb_flags, e->src->index))
6481           {
6482             if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6483               pending_edge_hot = e;
6484             else
6485               pending_edge_cold = e;
6486           }
6487
6488       FOR_EACH_VEC_ELT (edge, unconverted_simple_returns, i, e)
6489         {
6490           basic_block *pdest_bb;
6491           edge pending;
6492
6493           if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6494             {
6495               pdest_bb = &simple_return_block_hot;
6496               pending = pending_edge_hot;
6497             }
6498           else
6499             {
6500               pdest_bb = &simple_return_block_cold;
6501               pending = pending_edge_cold;
6502             }
6503
6504           if (*pdest_bb == NULL && pending != NULL)
6505             {
6506               emit_return_into_block (true, pending->src);
6507               pending->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
6508               *pdest_bb = pending->src;
6509             }
6510           else if (*pdest_bb == NULL)
6511             {
6512               basic_block bb;
6513               rtx start;
6514
6515               bb = create_basic_block (NULL, NULL, exit_pred);
6516               BB_COPY_PARTITION (bb, e->src);
6517               start = emit_jump_insn_after (gen_simple_return (),
6518                                             BB_END (bb));
6519               JUMP_LABEL (start) = simple_return_rtx;
6520               emit_barrier_after (start);
6521
6522               *pdest_bb = bb;
6523               make_edge (bb, EXIT_BLOCK_PTR, 0);
6524             }
6525           redirect_edge_and_branch_force (e, *pdest_bb);
6526         }
6527       VEC_free (edge, heap, unconverted_simple_returns);
6528     }
6529
6530   if (entry_edge != orig_entry_edge)
6531     {
6532       FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6533         if (EDGE_COUNT (e->src->preds) != 0
6534             && (e->flags & EDGE_FAKE) != 0
6535             && !bitmap_bit_p (&bb_flags, e->src->index))
6536           {
6537             emit_return_into_block (true, e->src);
6538             e->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
6539           }
6540     }
6541 #endif
6542
6543 #ifdef HAVE_sibcall_epilogue
6544   /* Emit sibling epilogues before any sibling call sites.  */
6545   for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
6546     {
6547       basic_block bb = e->src;
6548       rtx insn = BB_END (bb);
6549       rtx ep_seq;
6550
6551       if (!CALL_P (insn)
6552           || ! SIBLING_CALL_P (insn)
6553 #ifdef HAVE_simple_return
6554           || (entry_edge != orig_entry_edge
6555               && !bitmap_bit_p (&bb_flags, bb->index))
6556 #endif
6557           )
6558         {
6559           ei_next (&ei);
6560           continue;
6561         }
6562
6563       ep_seq = gen_sibcall_epilogue ();
6564       if (ep_seq)
6565         {
6566           start_sequence ();
6567           emit_note (NOTE_INSN_EPILOGUE_BEG);
6568           emit_insn (ep_seq);
6569           seq = get_insns ();
6570           end_sequence ();
6571
6572           /* Retain a map of the epilogue insns.  Used in life analysis to
6573              avoid getting rid of sibcall epilogue insns.  Do this before we
6574              actually emit the sequence.  */
6575           record_insns (seq, NULL, &epilogue_insn_hash);
6576           set_insn_locators (seq, epilogue_locator);
6577
6578           emit_insn_before (seq, insn);
6579         }
6580       ei_next (&ei);
6581     }
6582 #endif
6583
6584 #ifdef HAVE_epilogue
6585   if (epilogue_end)
6586     {
6587       rtx insn, next;
6588
6589       /* Similarly, move any line notes that appear after the epilogue.
6590          There is no need, however, to be quite so anal about the existence
6591          of such a note.  Also possibly move
6592          NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6593          info generation.  */
6594       for (insn = epilogue_end; insn; insn = next)
6595         {
6596           next = NEXT_INSN (insn);
6597           if (NOTE_P (insn)
6598               && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6599             reorder_insns (insn, insn, PREV_INSN (epilogue_end));
6600         }
6601     }
6602 #endif
6603
6604 #ifdef HAVE_simple_return
6605   bitmap_clear (&bb_flags);
6606 #endif
6607
6608   /* Threading the prologue and epilogue changes the artificial refs
6609      in the entry and exit blocks.  */
6610   epilogue_completed = 1;
6611   df_update_entry_exit_and_calls ();
6612 }
6613
6614 /* Reposition the prologue-end and epilogue-begin notes after
6615    instruction scheduling.  */
6616
6617 void
6618 reposition_prologue_and_epilogue_notes (void)
6619 {
6620 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
6621     || defined (HAVE_sibcall_epilogue)
6622   /* Since the hash table is created on demand, the fact that it is
6623      non-null is a signal that it is non-empty.  */
6624   if (prologue_insn_hash != NULL)
6625     {
6626       size_t len = htab_elements (prologue_insn_hash);
6627       rtx insn, last = NULL, note = NULL;
6628
6629       /* Scan from the beginning until we reach the last prologue insn.  */
6630       /* ??? While we do have the CFG intact, there are two problems:
6631          (1) The prologue can contain loops (typically probing the stack),
6632              which means that the end of the prologue isn't in the first bb.
6633          (2) Sometimes the PROLOGUE_END note gets pushed into the next bb.  */
6634       for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6635         {
6636           if (NOTE_P (insn))
6637             {
6638               if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6639                 note = insn;
6640             }
6641           else if (contains (insn, prologue_insn_hash))
6642             {
6643               last = insn;
6644               if (--len == 0)
6645                 break;
6646             }
6647         }
6648
6649       if (last)
6650         {
6651           if (note == NULL)
6652             {
6653               /* Scan forward looking for the PROLOGUE_END note.  It should
6654                  be right at the beginning of the block, possibly with other
6655                  insn notes that got moved there.  */
6656               for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6657                 {
6658                   if (NOTE_P (note)
6659                       && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6660                     break;
6661                 }
6662             }
6663
6664           /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note.  */
6665           if (LABEL_P (last))
6666             last = NEXT_INSN (last);
6667           reorder_insns (note, note, last);
6668         }
6669     }
6670
6671   if (epilogue_insn_hash != NULL)
6672     {
6673       edge_iterator ei;
6674       edge e;
6675
6676       FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6677         {
6678           rtx insn, first = NULL, note = NULL;
6679           basic_block bb = e->src;
6680
6681           /* Scan from the beginning until we reach the first epilogue insn. */
6682           FOR_BB_INSNS (bb, insn)
6683             {
6684               if (NOTE_P (insn))
6685                 {
6686                   if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6687                     {
6688                       note = insn;
6689                       if (first != NULL)
6690                         break;
6691                     }
6692                 }
6693               else if (first == NULL && contains (insn, epilogue_insn_hash))
6694                 {
6695                   first = insn;
6696                   if (note != NULL)
6697                     break;
6698                 }
6699             }
6700
6701           if (note)
6702             {
6703               /* If the function has a single basic block, and no real
6704                  epilogue insns (e.g. sibcall with no cleanup), the
6705                  epilogue note can get scheduled before the prologue
6706                  note.  If we have frame related prologue insns, having
6707                  them scanned during the epilogue will result in a crash.
6708                  In this case re-order the epilogue note to just before
6709                  the last insn in the block.  */
6710               if (first == NULL)
6711                 first = BB_END (bb);
6712
6713               if (PREV_INSN (first) != note)
6714                 reorder_insns (note, note, PREV_INSN (first));
6715             }
6716         }
6717     }
6718 #endif /* HAVE_prologue or HAVE_epilogue */
6719 }
6720
6721 /* Returns the name of the current function.  */
6722 const char *
6723 current_function_name (void)
6724 {
6725   if (cfun == NULL)
6726     return "<none>";
6727   return lang_hooks.decl_printable_name (cfun->decl, 2);
6728 }
6729 \f
6730
6731 static unsigned int
6732 rest_of_handle_check_leaf_regs (void)
6733 {
6734 #ifdef LEAF_REGISTERS
6735   current_function_uses_only_leaf_regs
6736     = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6737 #endif
6738   return 0;
6739 }
6740
6741 /* Insert a TYPE into the used types hash table of CFUN.  */
6742
6743 static void
6744 used_types_insert_helper (tree type, struct function *func)
6745 {
6746   if (type != NULL && func != NULL)
6747     {
6748       void **slot;
6749
6750       if (func->used_types_hash == NULL)
6751         func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
6752                                                  htab_eq_pointer, NULL);
6753       slot = htab_find_slot (func->used_types_hash, type, INSERT);
6754       if (*slot == NULL)
6755         *slot = type;
6756     }
6757 }
6758
6759 /* Given a type, insert it into the used hash table in cfun.  */
6760 void
6761 used_types_insert (tree t)
6762 {
6763   while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6764     if (TYPE_NAME (t))
6765       break;
6766     else
6767       t = TREE_TYPE (t);
6768   if (TREE_CODE (t) == ERROR_MARK)
6769     return;
6770   if (TYPE_NAME (t) == NULL_TREE
6771       || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6772     t = TYPE_MAIN_VARIANT (t);
6773   if (debug_info_level > DINFO_LEVEL_NONE)
6774     {
6775       if (cfun)
6776         used_types_insert_helper (t, cfun);
6777       else
6778         /* So this might be a type referenced by a global variable.
6779            Record that type so that we can later decide to emit its debug
6780            information.  */
6781         VEC_safe_push (tree, gc, types_used_by_cur_var_decl, t);
6782     }
6783 }
6784
6785 /* Helper to Hash a struct types_used_by_vars_entry.  */
6786
6787 static hashval_t
6788 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6789 {
6790   gcc_assert (entry && entry->var_decl && entry->type);
6791
6792   return iterative_hash_object (entry->type,
6793                                 iterative_hash_object (entry->var_decl, 0));
6794 }
6795
6796 /* Hash function of the types_used_by_vars_entry hash table.  */
6797
6798 hashval_t
6799 types_used_by_vars_do_hash (const void *x)
6800 {
6801   const struct types_used_by_vars_entry *entry =
6802     (const struct types_used_by_vars_entry *) x;
6803
6804   return hash_types_used_by_vars_entry (entry);
6805 }
6806
6807 /*Equality function of the types_used_by_vars_entry hash table.  */
6808
6809 int
6810 types_used_by_vars_eq (const void *x1, const void *x2)
6811 {
6812   const struct types_used_by_vars_entry *e1 =
6813     (const struct types_used_by_vars_entry *) x1;
6814   const struct types_used_by_vars_entry *e2 =
6815     (const struct types_used_by_vars_entry *)x2;
6816
6817   return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6818 }
6819
6820 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6821
6822 void
6823 types_used_by_var_decl_insert (tree type, tree var_decl)
6824 {
6825   if (type != NULL && var_decl != NULL)
6826     {
6827       void **slot;
6828       struct types_used_by_vars_entry e;
6829       e.var_decl = var_decl;
6830       e.type = type;
6831       if (types_used_by_vars_hash == NULL)
6832         types_used_by_vars_hash =
6833           htab_create_ggc (37, types_used_by_vars_do_hash,
6834                            types_used_by_vars_eq, NULL);
6835       slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
6836                                        hash_types_used_by_vars_entry (&e), INSERT);
6837       if (*slot == NULL)
6838         {
6839           struct types_used_by_vars_entry *entry;
6840           entry = ggc_alloc_types_used_by_vars_entry ();
6841           entry->type = type;
6842           entry->var_decl = var_decl;
6843           *slot = entry;
6844         }
6845     }
6846 }
6847
6848 struct rtl_opt_pass pass_leaf_regs =
6849 {
6850  {
6851   RTL_PASS,
6852   "*leaf_regs",                         /* name */
6853   NULL,                                 /* gate */
6854   rest_of_handle_check_leaf_regs,       /* execute */
6855   NULL,                                 /* sub */
6856   NULL,                                 /* next */
6857   0,                                    /* static_pass_number */
6858   TV_NONE,                              /* tv_id */
6859   0,                                    /* properties_required */
6860   0,                                    /* properties_provided */
6861   0,                                    /* properties_destroyed */
6862   0,                                    /* todo_flags_start */
6863   0                                     /* todo_flags_finish */
6864  }
6865 };
6866
6867 static unsigned int
6868 rest_of_handle_thread_prologue_and_epilogue (void)
6869 {
6870   if (optimize)
6871     cleanup_cfg (CLEANUP_EXPENSIVE);
6872
6873   /* On some machines, the prologue and epilogue code, or parts thereof,
6874      can be represented as RTL.  Doing so lets us schedule insns between
6875      it and the rest of the code and also allows delayed branch
6876      scheduling to operate in the epilogue.  */
6877   thread_prologue_and_epilogue_insns ();
6878
6879   /* The stack usage info is finalized during prologue expansion.  */
6880   if (flag_stack_usage_info)
6881     output_stack_usage ();
6882
6883   return 0;
6884 }
6885
6886 struct rtl_opt_pass pass_thread_prologue_and_epilogue =
6887 {
6888  {
6889   RTL_PASS,
6890   "pro_and_epilogue",                   /* name */
6891   NULL,                                 /* gate */
6892   rest_of_handle_thread_prologue_and_epilogue, /* execute */
6893   NULL,                                 /* sub */
6894   NULL,                                 /* next */
6895   0,                                    /* static_pass_number */
6896   TV_THREAD_PROLOGUE_AND_EPILOGUE,      /* tv_id */
6897   0,                                    /* properties_required */
6898   0,                                    /* properties_provided */
6899   0,                                    /* properties_destroyed */
6900   TODO_verify_flow,                     /* todo_flags_start */
6901   TODO_df_verify |
6902   TODO_df_finish | TODO_verify_rtl_sharing |
6903   TODO_ggc_collect                      /* todo_flags_finish */
6904  }
6905 };
6906 \f
6907
6908 /* This mini-pass fixes fall-out from SSA in asm statements that have
6909    in-out constraints.  Say you start with
6910
6911      orig = inout;
6912      asm ("": "+mr" (inout));
6913      use (orig);
6914
6915    which is transformed very early to use explicit output and match operands:
6916
6917      orig = inout;
6918      asm ("": "=mr" (inout) : "0" (inout));
6919      use (orig);
6920
6921    Or, after SSA and copyprop,
6922
6923      asm ("": "=mr" (inout_2) : "0" (inout_1));
6924      use (inout_1);
6925
6926    Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6927    they represent two separate values, so they will get different pseudo
6928    registers during expansion.  Then, since the two operands need to match
6929    per the constraints, but use different pseudo registers, reload can
6930    only register a reload for these operands.  But reloads can only be
6931    satisfied by hardregs, not by memory, so we need a register for this
6932    reload, just because we are presented with non-matching operands.
6933    So, even though we allow memory for this operand, no memory can be
6934    used for it, just because the two operands don't match.  This can
6935    cause reload failures on register-starved targets.
6936
6937    So it's a symptom of reload not being able to use memory for reloads
6938    or, alternatively it's also a symptom of both operands not coming into
6939    reload as matching (in which case the pseudo could go to memory just
6940    fine, as the alternative allows it, and no reload would be necessary).
6941    We fix the latter problem here, by transforming
6942
6943      asm ("": "=mr" (inout_2) : "0" (inout_1));
6944
6945    back to
6946
6947      inout_2 = inout_1;
6948      asm ("": "=mr" (inout_2) : "0" (inout_2));  */
6949
6950 static void
6951 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
6952 {
6953   int i;
6954   bool changed = false;
6955   rtx op = SET_SRC (p_sets[0]);
6956   int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
6957   rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
6958   bool *output_matched = XALLOCAVEC (bool, noutputs);
6959
6960   memset (output_matched, 0, noutputs * sizeof (bool));
6961   for (i = 0; i < ninputs; i++)
6962     {
6963       rtx input, output, insns;
6964       const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
6965       char *end;
6966       int match, j;
6967
6968       if (*constraint == '%')
6969         constraint++;
6970
6971       match = strtoul (constraint, &end, 10);
6972       if (end == constraint)
6973         continue;
6974
6975       gcc_assert (match < noutputs);
6976       output = SET_DEST (p_sets[match]);
6977       input = RTVEC_ELT (inputs, i);
6978       /* Only do the transformation for pseudos.  */
6979       if (! REG_P (output)
6980           || rtx_equal_p (output, input)
6981           || (GET_MODE (input) != VOIDmode
6982               && GET_MODE (input) != GET_MODE (output)))
6983         continue;
6984
6985       /* We can't do anything if the output is also used as input,
6986          as we're going to overwrite it.  */
6987       for (j = 0; j < ninputs; j++)
6988         if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
6989           break;
6990       if (j != ninputs)
6991         continue;
6992
6993       /* Avoid changing the same input several times.  For
6994          asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6995          only change in once (to out1), rather than changing it
6996          first to out1 and afterwards to out2.  */
6997       if (i > 0)
6998         {
6999           for (j = 0; j < noutputs; j++)
7000             if (output_matched[j] && input == SET_DEST (p_sets[j]))
7001               break;
7002           if (j != noutputs)
7003             continue;
7004         }
7005       output_matched[match] = true;
7006
7007       start_sequence ();
7008       emit_move_insn (output, input);
7009       insns = get_insns ();
7010       end_sequence ();
7011       emit_insn_before (insns, insn);
7012
7013       /* Now replace all mentions of the input with output.  We can't
7014          just replace the occurrence in inputs[i], as the register might
7015          also be used in some other input (or even in an address of an
7016          output), which would mean possibly increasing the number of
7017          inputs by one (namely 'output' in addition), which might pose
7018          a too complicated problem for reload to solve.  E.g. this situation:
7019
7020            asm ("" : "=r" (output), "=m" (input) : "0" (input))
7021
7022          Here 'input' is used in two occurrences as input (once for the
7023          input operand, once for the address in the second output operand).
7024          If we would replace only the occurrence of the input operand (to
7025          make the matching) we would be left with this:
7026
7027            output = input
7028            asm ("" : "=r" (output), "=m" (input) : "0" (output))
7029
7030          Now we suddenly have two different input values (containing the same
7031          value, but different pseudos) where we formerly had only one.
7032          With more complicated asms this might lead to reload failures
7033          which wouldn't have happen without this pass.  So, iterate over
7034          all operands and replace all occurrences of the register used.  */
7035       for (j = 0; j < noutputs; j++)
7036         if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
7037             && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
7038           SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
7039                                               input, output);
7040       for (j = 0; j < ninputs; j++)
7041         if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
7042           RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
7043                                                input, output);
7044
7045       changed = true;
7046     }
7047
7048   if (changed)
7049     df_insn_rescan (insn);
7050 }
7051
7052 static unsigned
7053 rest_of_match_asm_constraints (void)
7054 {
7055   basic_block bb;
7056   rtx insn, pat, *p_sets;
7057   int noutputs;
7058
7059   if (!crtl->has_asm_statement)
7060     return 0;
7061
7062   df_set_flags (DF_DEFER_INSN_RESCAN);
7063   FOR_EACH_BB (bb)
7064     {
7065       FOR_BB_INSNS (bb, insn)
7066         {
7067           if (!INSN_P (insn))
7068             continue;
7069
7070           pat = PATTERN (insn);
7071           if (GET_CODE (pat) == PARALLEL)
7072             p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
7073           else if (GET_CODE (pat) == SET)
7074             p_sets = &PATTERN (insn), noutputs = 1;
7075           else
7076             continue;
7077
7078           if (GET_CODE (*p_sets) == SET
7079               && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
7080             match_asm_constraints_1 (insn, p_sets, noutputs);
7081          }
7082     }
7083
7084   return TODO_df_finish;
7085 }
7086
7087 struct rtl_opt_pass pass_match_asm_constraints =
7088 {
7089  {
7090   RTL_PASS,
7091   "asmcons",                            /* name */
7092   NULL,                                 /* gate */
7093   rest_of_match_asm_constraints,        /* execute */
7094   NULL,                                 /* sub */
7095   NULL,                                 /* next */
7096   0,                                    /* static_pass_number */
7097   TV_NONE,                              /* tv_id */
7098   0,                                    /* properties_required */
7099   0,                                    /* properties_provided */
7100   0,                                    /* properties_destroyed */
7101   0,                                    /* todo_flags_start */
7102   0                                     /* todo_flags_finish */
7103  }
7104 };
7105
7106
7107 #include "gt-function.h"