Merge branch 'master' of ssh://crater.dragonflybsd.org/repository/git/dragonfly
[dragonfly.git] / sys / vm / vm_pageout.c
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *      This product includes software developed by the University of
23  *      California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *      from: @(#)vm_pageout.c  7.4 (Berkeley) 5/7/91
41  *
42  *
43  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44  * All rights reserved.
45  *
46  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47  *
48  * Permission to use, copy, modify and distribute this software and
49  * its documentation is hereby granted, provided that both the copyright
50  * notice and this permission notice appear in all copies of the
51  * software, derivative works or modified versions, and any portions
52  * thereof, and that both notices appear in supporting documentation.
53  *
54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57  *
58  * Carnegie Mellon requests users of this software to return to
59  *
60  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61  *  School of Computer Science
62  *  Carnegie Mellon University
63  *  Pittsburgh PA 15213-3890
64  *
65  * any improvements or extensions that they make and grant Carnegie the
66  * rights to redistribute these changes.
67  *
68  * $FreeBSD: src/sys/vm/vm_pageout.c,v 1.151.2.15 2002/12/29 18:21:04 dillon Exp $
69  * $DragonFly: src/sys/vm/vm_pageout.c,v 1.36 2008/07/01 02:02:56 dillon Exp $
70  */
71
72 /*
73  *      The proverbial page-out daemon.
74  */
75
76 #include "opt_vm.h"
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/kthread.h>
82 #include <sys/resourcevar.h>
83 #include <sys/signalvar.h>
84 #include <sys/vnode.h>
85 #include <sys/vmmeter.h>
86 #include <sys/sysctl.h>
87
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <sys/lock.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/vm_extern.h>
98
99 #include <sys/thread2.h>
100 #include <vm/vm_page2.h>
101
102 /*
103  * System initialization
104  */
105
106 /* the kernel process "vm_pageout"*/
107 static void vm_pageout (void);
108 static int vm_pageout_clean (vm_page_t);
109 static int vm_pageout_scan (int pass);
110 static int vm_pageout_free_page_calc (vm_size_t count);
111 struct thread *pagethread;
112
113 static struct kproc_desc page_kp = {
114         "pagedaemon",
115         vm_pageout,
116         &pagethread
117 };
118 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
119
120 #if !defined(NO_SWAPPING)
121 /* the kernel process "vm_daemon"*/
122 static void vm_daemon (void);
123 static struct   thread *vmthread;
124
125 static struct kproc_desc vm_kp = {
126         "vmdaemon",
127         vm_daemon,
128         &vmthread
129 };
130 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
131 #endif
132
133
134 int vm_pages_needed=0;          /* Event on which pageout daemon sleeps */
135 int vm_pageout_deficit=0;       /* Estimated number of pages deficit */
136 int vm_pageout_pages_needed=0;  /* flag saying that the pageout daemon needs pages */
137
138 #if !defined(NO_SWAPPING)
139 static int vm_pageout_req_swapout;      /* XXX */
140 static int vm_daemon_needed;
141 #endif
142 static int vm_max_launder = 32;
143 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
144 static int vm_pageout_full_stats_interval = 0;
145 static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
146 static int defer_swap_pageouts=0;
147 static int disable_swap_pageouts=0;
148
149 #if defined(NO_SWAPPING)
150 static int vm_swap_enabled=0;
151 static int vm_swap_idle_enabled=0;
152 #else
153 static int vm_swap_enabled=1;
154 static int vm_swap_idle_enabled=0;
155 #endif
156
157 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
158         CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
159
160 SYSCTL_INT(_vm, OID_AUTO, max_launder,
161         CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
162
163 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
164         CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
165
166 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
167         CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
168
169 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
170         CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
171
172 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
173         CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
174
175 #if defined(NO_SWAPPING)
176 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
177         CTLFLAG_RD, &vm_swap_enabled, 0, "");
178 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
179         CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
180 #else
181 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
182         CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
183 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
184         CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
185 #endif
186
187 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
188         CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
189
190 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
191         CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
192
193 static int pageout_lock_miss;
194 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
195         CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
196
197 int vm_load;
198 SYSCTL_INT(_vm, OID_AUTO, vm_load,
199         CTLFLAG_RD, &vm_load, 0, "load on the VM system");
200 int vm_load_enable = 1;
201 SYSCTL_INT(_vm, OID_AUTO, vm_load_enable,
202         CTLFLAG_RW, &vm_load_enable, 0, "enable vm_load rate limiting");
203 #ifdef INVARIANTS
204 int vm_load_debug;
205 SYSCTL_INT(_vm, OID_AUTO, vm_load_debug,
206         CTLFLAG_RW, &vm_load_debug, 0, "debug vm_load");
207 #endif
208
209 #define VM_PAGEOUT_PAGE_COUNT 16
210 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
211
212 int vm_page_max_wired;          /* XXX max # of wired pages system-wide */
213
214 #if !defined(NO_SWAPPING)
215 typedef void freeer_fcn_t (vm_map_t, vm_object_t, vm_pindex_t, int);
216 static void vm_pageout_map_deactivate_pages (vm_map_t, vm_pindex_t);
217 static freeer_fcn_t vm_pageout_object_deactivate_pages;
218 static void vm_req_vmdaemon (void);
219 #endif
220 static void vm_pageout_page_stats(void);
221
222 /*
223  * Update vm_load to slow down faulting processes.
224  */
225 void
226 vm_fault_ratecheck(void)
227 {
228         if (vm_pages_needed) {
229                 if (vm_load < 1000)
230                         ++vm_load;
231         } else {
232                 if (vm_load > 0)
233                         --vm_load;
234         }
235 }
236
237 /*
238  * vm_pageout_clean:
239  *
240  * Clean the page and remove it from the laundry.  The page must not be
241  * busy on-call.
242  * 
243  * We set the busy bit to cause potential page faults on this page to
244  * block.  Note the careful timing, however, the busy bit isn't set till
245  * late and we cannot do anything that will mess with the page.
246  */
247
248 static int
249 vm_pageout_clean(vm_page_t m)
250 {
251         vm_object_t object;
252         vm_page_t mc[2*vm_pageout_page_count];
253         int pageout_count;
254         int ib, is, page_base;
255         vm_pindex_t pindex = m->pindex;
256
257         object = m->object;
258
259         /*
260          * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
261          * with the new swapper, but we could have serious problems paging
262          * out other object types if there is insufficient memory.  
263          *
264          * Unfortunately, checking free memory here is far too late, so the
265          * check has been moved up a procedural level.
266          */
267
268         /*
269          * Don't mess with the page if it's busy, held, or special
270          */
271         if ((m->hold_count != 0) ||
272             ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
273                 return 0;
274         }
275
276         mc[vm_pageout_page_count] = m;
277         pageout_count = 1;
278         page_base = vm_pageout_page_count;
279         ib = 1;
280         is = 1;
281
282         /*
283          * Scan object for clusterable pages.
284          *
285          * We can cluster ONLY if: ->> the page is NOT
286          * clean, wired, busy, held, or mapped into a
287          * buffer, and one of the following:
288          * 1) The page is inactive, or a seldom used
289          *    active page.
290          * -or-
291          * 2) we force the issue.
292          *
293          * During heavy mmap/modification loads the pageout
294          * daemon can really fragment the underlying file
295          * due to flushing pages out of order and not trying
296          * align the clusters (which leave sporatic out-of-order
297          * holes).  To solve this problem we do the reverse scan
298          * first and attempt to align our cluster, then do a 
299          * forward scan if room remains.
300          */
301
302 more:
303         while (ib && pageout_count < vm_pageout_page_count) {
304                 vm_page_t p;
305
306                 if (ib > pindex) {
307                         ib = 0;
308                         break;
309                 }
310
311                 if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
312                         ib = 0;
313                         break;
314                 }
315                 if (((p->queue - p->pc) == PQ_CACHE) ||
316                     (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
317                         ib = 0;
318                         break;
319                 }
320                 vm_page_test_dirty(p);
321                 if ((p->dirty & p->valid) == 0 ||
322                     p->queue != PQ_INACTIVE ||
323                     p->wire_count != 0 ||       /* may be held by buf cache */
324                     p->hold_count != 0) {       /* may be undergoing I/O */
325                         ib = 0;
326                         break;
327                 }
328                 mc[--page_base] = p;
329                 ++pageout_count;
330                 ++ib;
331                 /*
332                  * alignment boundry, stop here and switch directions.  Do
333                  * not clear ib.
334                  */
335                 if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
336                         break;
337         }
338
339         while (pageout_count < vm_pageout_page_count && 
340             pindex + is < object->size) {
341                 vm_page_t p;
342
343                 if ((p = vm_page_lookup(object, pindex + is)) == NULL)
344                         break;
345                 if (((p->queue - p->pc) == PQ_CACHE) ||
346                     (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
347                         break;
348                 }
349                 vm_page_test_dirty(p);
350                 if ((p->dirty & p->valid) == 0 ||
351                     p->queue != PQ_INACTIVE ||
352                     p->wire_count != 0 ||       /* may be held by buf cache */
353                     p->hold_count != 0) {       /* may be undergoing I/O */
354                         break;
355                 }
356                 mc[page_base + pageout_count] = p;
357                 ++pageout_count;
358                 ++is;
359         }
360
361         /*
362          * If we exhausted our forward scan, continue with the reverse scan
363          * when possible, even past a page boundry.  This catches boundry
364          * conditions.
365          */
366         if (ib && pageout_count < vm_pageout_page_count)
367                 goto more;
368
369         /*
370          * we allow reads during pageouts...
371          */
372         return vm_pageout_flush(&mc[page_base], pageout_count, 0);
373 }
374
375 /*
376  * vm_pageout_flush() - launder the given pages
377  *
378  *      The given pages are laundered.  Note that we setup for the start of
379  *      I/O ( i.e. busy the page ), mark it read-only, and bump the object
380  *      reference count all in here rather then in the parent.  If we want
381  *      the parent to do more sophisticated things we may have to change
382  *      the ordering.
383  */
384 int
385 vm_pageout_flush(vm_page_t *mc, int count, int flags)
386 {
387         vm_object_t object;
388         int pageout_status[count];
389         int numpagedout = 0;
390         int i;
391
392         /*
393          * Initiate I/O.  Bump the vm_page_t->busy counter.
394          */
395         for (i = 0; i < count; i++) {
396                 KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
397                 vm_page_io_start(mc[i]);
398         }
399
400         /*
401          * We must make the pages read-only.  This will also force the
402          * modified bit in the related pmaps to be cleared.  The pager
403          * cannot clear the bit for us since the I/O completion code
404          * typically runs from an interrupt.  The act of making the page
405          * read-only handles the case for us.
406          */
407         for (i = 0; i < count; i++) {
408                 vm_page_protect(mc[i], VM_PROT_READ);
409         }
410
411         object = mc[0]->object;
412         vm_object_pip_add(object, count);
413
414         vm_pager_put_pages(object, mc, count,
415             (flags | ((object == &kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
416             pageout_status);
417
418         for (i = 0; i < count; i++) {
419                 vm_page_t mt = mc[i];
420
421                 switch (pageout_status[i]) {
422                 case VM_PAGER_OK:
423                         numpagedout++;
424                         break;
425                 case VM_PAGER_PEND:
426                         numpagedout++;
427                         break;
428                 case VM_PAGER_BAD:
429                         /*
430                          * Page outside of range of object. Right now we
431                          * essentially lose the changes by pretending it
432                          * worked.
433                          */
434                         pmap_clear_modify(mt);
435                         vm_page_undirty(mt);
436                         break;
437                 case VM_PAGER_ERROR:
438                 case VM_PAGER_FAIL:
439                         /*
440                          * A page typically cannot be paged out when we
441                          * have run out of swap.  We leave the page
442                          * marked inactive and will try to page it out
443                          * again later.
444                          *
445                          * Starvation of the active page list is used to
446                          * determine when the system is massively memory
447                          * starved.
448                          */
449                         break;
450                 case VM_PAGER_AGAIN:
451                         break;
452                 }
453
454                 /*
455                  * If the operation is still going, leave the page busy to
456                  * block all other accesses. Also, leave the paging in
457                  * progress indicator set so that we don't attempt an object
458                  * collapse.
459                  *
460                  * For any pages which have completed synchronously, 
461                  * deactivate the page if we are under a severe deficit.
462                  * Do not try to enter them into the cache, though, they
463                  * might still be read-heavy.
464                  */
465                 if (pageout_status[i] != VM_PAGER_PEND) {
466                         vm_object_pip_wakeup(object);
467                         vm_page_io_finish(mt);
468                         if (vm_page_count_severe())
469                                 vm_page_deactivate(mt);
470 #if 0
471                         if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
472                                 vm_page_protect(mt, VM_PROT_READ);
473 #endif
474                 }
475         }
476         return numpagedout;
477 }
478
479 #if !defined(NO_SWAPPING)
480 /*
481  *      vm_pageout_object_deactivate_pages
482  *
483  *      deactivate enough pages to satisfy the inactive target
484  *      requirements or if vm_page_proc_limit is set, then
485  *      deactivate all of the pages in the object and its
486  *      backing_objects.
487  *
488  *      The object and map must be locked.
489  */
490 static int vm_pageout_object_deactivate_pages_callback(vm_page_t, void *);
491
492 static void
493 vm_pageout_object_deactivate_pages(vm_map_t map, vm_object_t object,
494         vm_pindex_t desired, int map_remove_only)
495 {
496         struct rb_vm_page_scan_info info;
497         int remove_mode;
498
499         if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
500                 return;
501
502         while (object) {
503                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
504                         return;
505                 if (object->paging_in_progress)
506                         return;
507
508                 remove_mode = map_remove_only;
509                 if (object->shadow_count > 1)
510                         remove_mode = 1;
511
512                 /*
513                  * scan the objects entire memory queue.  spl protection is
514                  * required to avoid an interrupt unbusy/free race against
515                  * our busy check.
516                  */
517                 crit_enter();
518                 info.limit = remove_mode;
519                 info.map = map;
520                 info.desired = desired;
521                 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
522                                 vm_pageout_object_deactivate_pages_callback,
523                                 &info
524                 );
525                 crit_exit();
526                 object = object->backing_object;
527         }
528 }
529                                         
530 static int
531 vm_pageout_object_deactivate_pages_callback(vm_page_t p, void *data)
532 {
533         struct rb_vm_page_scan_info *info = data;
534         int actcount;
535
536         if (pmap_resident_count(vm_map_pmap(info->map)) <= info->desired) {
537                 return(-1);
538         }
539         mycpu->gd_cnt.v_pdpages++;
540         if (p->wire_count != 0 || p->hold_count != 0 || p->busy != 0 ||
541             (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
542             !pmap_page_exists_quick(vm_map_pmap(info->map), p)) {
543                 return(0);
544         }
545
546         actcount = pmap_ts_referenced(p);
547         if (actcount) {
548                 vm_page_flag_set(p, PG_REFERENCED);
549         } else if (p->flags & PG_REFERENCED) {
550                 actcount = 1;
551         }
552
553         if ((p->queue != PQ_ACTIVE) &&
554                 (p->flags & PG_REFERENCED)) {
555                 vm_page_activate(p);
556                 p->act_count += actcount;
557                 vm_page_flag_clear(p, PG_REFERENCED);
558         } else if (p->queue == PQ_ACTIVE) {
559                 if ((p->flags & PG_REFERENCED) == 0) {
560                         p->act_count -= min(p->act_count, ACT_DECLINE);
561                         if (!info->limit && (vm_pageout_algorithm || (p->act_count == 0))) {
562                                 vm_page_busy(p);
563                                 vm_page_protect(p, VM_PROT_NONE);
564                                 vm_page_wakeup(p);
565                                 vm_page_deactivate(p);
566                         } else {
567                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
568                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
569                         }
570                 } else {
571                         vm_page_activate(p);
572                         vm_page_flag_clear(p, PG_REFERENCED);
573                         if (p->act_count < (ACT_MAX - ACT_ADVANCE))
574                                 p->act_count += ACT_ADVANCE;
575                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
576                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
577                 }
578         } else if (p->queue == PQ_INACTIVE) {
579                 vm_page_busy(p);
580                 vm_page_protect(p, VM_PROT_NONE);
581                 vm_page_wakeup(p);
582         }
583         return(0);
584 }
585
586 /*
587  * deactivate some number of pages in a map, try to do it fairly, but
588  * that is really hard to do.
589  */
590 static void
591 vm_pageout_map_deactivate_pages(vm_map_t map, vm_pindex_t desired)
592 {
593         vm_map_entry_t tmpe;
594         vm_object_t obj, bigobj;
595         int nothingwired;
596
597         if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT)) {
598                 return;
599         }
600
601         bigobj = NULL;
602         nothingwired = TRUE;
603
604         /*
605          * first, search out the biggest object, and try to free pages from
606          * that.
607          */
608         tmpe = map->header.next;
609         while (tmpe != &map->header) {
610                 switch(tmpe->maptype) {
611                 case VM_MAPTYPE_NORMAL:
612                 case VM_MAPTYPE_VPAGETABLE:
613                         obj = tmpe->object.vm_object;
614                         if ((obj != NULL) && (obj->shadow_count <= 1) &&
615                                 ((bigobj == NULL) ||
616                                  (bigobj->resident_page_count < obj->resident_page_count))) {
617                                 bigobj = obj;
618                         }
619                         break;
620                 default:
621                         break;
622                 }
623                 if (tmpe->wired_count > 0)
624                         nothingwired = FALSE;
625                 tmpe = tmpe->next;
626         }
627
628         if (bigobj)
629                 vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
630
631         /*
632          * Next, hunt around for other pages to deactivate.  We actually
633          * do this search sort of wrong -- .text first is not the best idea.
634          */
635         tmpe = map->header.next;
636         while (tmpe != &map->header) {
637                 if (pmap_resident_count(vm_map_pmap(map)) <= desired)
638                         break;
639                 switch(tmpe->maptype) {
640                 case VM_MAPTYPE_NORMAL:
641                 case VM_MAPTYPE_VPAGETABLE:
642                         obj = tmpe->object.vm_object;
643                         if (obj)
644                                 vm_pageout_object_deactivate_pages(map, obj, desired, 0);
645                         break;
646                 default:
647                         break;
648                 }
649                 tmpe = tmpe->next;
650         };
651
652         /*
653          * Remove all mappings if a process is swapped out, this will free page
654          * table pages.
655          */
656         if (desired == 0 && nothingwired)
657                 pmap_remove(vm_map_pmap(map),
658                             VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
659         vm_map_unlock(map);
660 }
661 #endif
662
663 /*
664  * Don't try to be fancy - being fancy can lead to vnode deadlocks.   We
665  * only do it for OBJT_DEFAULT and OBJT_SWAP objects which we know can
666  * be trivially freed.
667  */
668 void
669 vm_pageout_page_free(vm_page_t m) 
670 {
671         vm_object_t object = m->object;
672         int type = object->type;
673
674         if (type == OBJT_SWAP || type == OBJT_DEFAULT)
675                 vm_object_reference(object);
676         vm_page_busy(m);
677         vm_page_protect(m, VM_PROT_NONE);
678         vm_page_free(m);
679         if (type == OBJT_SWAP || type == OBJT_DEFAULT)
680                 vm_object_deallocate(object);
681 }
682
683 /*
684  * vm_pageout_scan does the dirty work for the pageout daemon.
685  */
686 struct vm_pageout_scan_info {
687         struct proc *bigproc;
688         vm_offset_t bigsize;
689 };
690
691 static int vm_pageout_scan_callback(struct proc *p, void *data);
692
693 static int
694 vm_pageout_scan(int pass)
695 {
696         struct vm_pageout_scan_info info;
697         vm_page_t m, next;
698         struct vm_page marker;
699         int maxscan, pcount;
700         int recycle_count;
701         int inactive_shortage, active_shortage;
702         int inactive_original_shortage;
703         vm_object_t object;
704         int actcount;
705         int vnodes_skipped = 0;
706         int maxlaunder;
707
708         /*
709          * Do whatever cleanup that the pmap code can.
710          */
711         pmap_collect();
712
713         /*
714          * Calculate our target for the number of free+cache pages we
715          * want to get to.  This is higher then the number that causes
716          * allocations to stall (severe) in order to provide hysteresis,
717          * and if we don't make it all the way but get to the minimum
718          * we're happy.
719          */
720         inactive_shortage = vm_paging_target() + vm_pageout_deficit;
721         inactive_original_shortage = inactive_shortage;
722         vm_pageout_deficit = 0;
723
724         /*
725          * Initialize our marker
726          */
727         bzero(&marker, sizeof(marker));
728         marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
729         marker.queue = PQ_INACTIVE;
730         marker.wire_count = 1;
731
732         /*
733          * Start scanning the inactive queue for pages we can move to the
734          * cache or free.  The scan will stop when the target is reached or
735          * we have scanned the entire inactive queue.  Note that m->act_count
736          * is not used to form decisions for the inactive queue, only for the
737          * active queue.
738          *
739          * maxlaunder limits the number of dirty pages we flush per scan.
740          * For most systems a smaller value (16 or 32) is more robust under
741          * extreme memory and disk pressure because any unnecessary writes
742          * to disk can result in extreme performance degredation.  However,
743          * systems with excessive dirty pages (especially when MAP_NOSYNC is
744          * used) will die horribly with limited laundering.  If the pageout
745          * daemon cannot clean enough pages in the first pass, we let it go
746          * all out in succeeding passes.
747          */
748         if ((maxlaunder = vm_max_launder) <= 1)
749                 maxlaunder = 1;
750         if (pass)
751                 maxlaunder = 10000;
752
753         /*
754          * We will generally be in a critical section throughout the 
755          * scan, but we can release it temporarily when we are sitting on a
756          * non-busy page without fear.  this is required to prevent an
757          * interrupt from unbusying or freeing a page prior to our busy
758          * check, leaving us on the wrong queue or checking the wrong
759          * page.
760          */
761         crit_enter();
762 rescan0:
763         maxscan = vmstats.v_inactive_count;
764         for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
765              m != NULL && maxscan-- > 0 && inactive_shortage > 0;
766              m = next
767          ) {
768                 mycpu->gd_cnt.v_pdpages++;
769
770                 /*
771                  * Give interrupts a chance
772                  */
773                 crit_exit();
774                 crit_enter();
775
776                 /*
777                  * It's easier for some of the conditions below to just loop
778                  * and catch queue changes here rather then check everywhere
779                  * else.
780                  */
781                 if (m->queue != PQ_INACTIVE)
782                         goto rescan0;
783                 next = TAILQ_NEXT(m, pageq);
784
785                 /*
786                  * skip marker pages
787                  */
788                 if (m->flags & PG_MARKER)
789                         continue;
790
791                 /*
792                  * A held page may be undergoing I/O, so skip it.
793                  */
794                 if (m->hold_count) {
795                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
796                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
797                         continue;
798                 }
799
800                 /*
801                  * Dont mess with busy pages, keep in the front of the
802                  * queue, most likely are being paged out.
803                  */
804                 if (m->busy || (m->flags & PG_BUSY)) {
805                         continue;
806                 }
807
808                 if (m->object->ref_count == 0) {
809                         /*
810                          * If the object is not being used, we ignore previous 
811                          * references.
812                          */
813                         vm_page_flag_clear(m, PG_REFERENCED);
814                         pmap_clear_reference(m);
815
816                 } else if (((m->flags & PG_REFERENCED) == 0) &&
817                             (actcount = pmap_ts_referenced(m))) {
818                         /*
819                          * Otherwise, if the page has been referenced while 
820                          * in the inactive queue, we bump the "activation
821                          * count" upwards, making it less likely that the
822                          * page will be added back to the inactive queue
823                          * prematurely again.  Here we check the page tables
824                          * (or emulated bits, if any), given the upper level
825                          * VM system not knowing anything about existing 
826                          * references.
827                          */
828                         vm_page_activate(m);
829                         m->act_count += (actcount + ACT_ADVANCE);
830                         continue;
831                 }
832
833                 /*
834                  * If the upper level VM system knows about any page 
835                  * references, we activate the page.  We also set the 
836                  * "activation count" higher than normal so that we will less 
837                  * likely place pages back onto the inactive queue again.
838                  */
839                 if ((m->flags & PG_REFERENCED) != 0) {
840                         vm_page_flag_clear(m, PG_REFERENCED);
841                         actcount = pmap_ts_referenced(m);
842                         vm_page_activate(m);
843                         m->act_count += (actcount + ACT_ADVANCE + 1);
844                         continue;
845                 }
846
847                 /*
848                  * If the upper level VM system doesn't know anything about 
849                  * the page being dirty, we have to check for it again.  As 
850                  * far as the VM code knows, any partially dirty pages are 
851                  * fully dirty.
852                  *
853                  * Pages marked PG_WRITEABLE may be mapped into the user
854                  * address space of a process running on another cpu.  A
855                  * user process (without holding the MP lock) running on
856                  * another cpu may be able to touch the page while we are
857                  * trying to remove it.  vm_page_cache() will handle this
858                  * case for us.
859                  */
860                 if (m->dirty == 0) {
861                         vm_page_test_dirty(m);
862                 } else {
863                         vm_page_dirty(m);
864                 }
865
866                 if (m->valid == 0) {
867                         /*
868                          * Invalid pages can be easily freed
869                          */
870                         vm_pageout_page_free(m);
871                         mycpu->gd_cnt.v_dfree++;
872                         --inactive_shortage;
873                 } else if (m->dirty == 0) {
874                         /*
875                          * Clean pages can be placed onto the cache queue.
876                          * This effectively frees them.
877                          */
878                         vm_page_cache(m);
879                         --inactive_shortage;
880                 } else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
881                         /*
882                          * Dirty pages need to be paged out, but flushing
883                          * a page is extremely expensive verses freeing
884                          * a clean page.  Rather then artificially limiting
885                          * the number of pages we can flush, we instead give
886                          * dirty pages extra priority on the inactive queue
887                          * by forcing them to be cycled through the queue
888                          * twice before being flushed, after which the 
889                          * (now clean) page will cycle through once more
890                          * before being freed.  This significantly extends
891                          * the thrash point for a heavily loaded machine.
892                          */
893                         vm_page_flag_set(m, PG_WINATCFLS);
894                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
895                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
896                 } else if (maxlaunder > 0) {
897                         /*
898                          * We always want to try to flush some dirty pages if
899                          * we encounter them, to keep the system stable.
900                          * Normally this number is small, but under extreme
901                          * pressure where there are insufficient clean pages
902                          * on the inactive queue, we may have to go all out.
903                          */
904                         int swap_pageouts_ok;
905                         struct vnode *vp = NULL;
906
907                         object = m->object;
908
909                         if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
910                                 swap_pageouts_ok = 1;
911                         } else {
912                                 swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
913                                 swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
914                                 vm_page_count_min(0));
915                                                                                 
916                         }
917
918                         /*
919                          * We don't bother paging objects that are "dead".  
920                          * Those objects are in a "rundown" state.
921                          */
922                         if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
923                                 TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
924                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
925                                 continue;
926                         }
927
928                         /*
929                          * The object is already known NOT to be dead.   It
930                          * is possible for the vget() to block the whole
931                          * pageout daemon, but the new low-memory handling
932                          * code should prevent it.
933                          *
934                          * The previous code skipped locked vnodes and, worse,
935                          * reordered pages in the queue.  This results in
936                          * completely non-deterministic operation because,
937                          * quite often, a vm_fault has initiated an I/O and
938                          * is holding a locked vnode at just the point where
939                          * the pageout daemon is woken up.
940                          *
941                          * We can't wait forever for the vnode lock, we might
942                          * deadlock due to a vn_read() getting stuck in
943                          * vm_wait while holding this vnode.  We skip the 
944                          * vnode if we can't get it in a reasonable amount
945                          * of time.
946                          */
947
948                         if (object->type == OBJT_VNODE) {
949                                 vp = object->handle;
950
951                                 if (vget(vp, LK_EXCLUSIVE|LK_NOOBJ|LK_TIMELOCK)) {
952                                         ++pageout_lock_miss;
953                                         if (object->flags & OBJ_MIGHTBEDIRTY)
954                                                     vnodes_skipped++;
955                                         continue;
956                                 }
957
958                                 /*
959                                  * The page might have been moved to another
960                                  * queue during potential blocking in vget()
961                                  * above.  The page might have been freed and
962                                  * reused for another vnode.  The object might
963                                  * have been reused for another vnode.
964                                  */
965                                 if (m->queue != PQ_INACTIVE ||
966                                     m->object != object ||
967                                     object->handle != vp) {
968                                         if (object->flags & OBJ_MIGHTBEDIRTY)
969                                                 vnodes_skipped++;
970                                         vput(vp);
971                                         continue;
972                                 }
973         
974                                 /*
975                                  * The page may have been busied during the
976                                  * blocking in vput();  We don't move the
977                                  * page back onto the end of the queue so that
978                                  * statistics are more correct if we don't.
979                                  */
980                                 if (m->busy || (m->flags & PG_BUSY)) {
981                                         vput(vp);
982                                         continue;
983                                 }
984
985                                 /*
986                                  * If the page has become held it might
987                                  * be undergoing I/O, so skip it
988                                  */
989                                 if (m->hold_count) {
990                                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
991                                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
992                                         if (object->flags & OBJ_MIGHTBEDIRTY)
993                                                 vnodes_skipped++;
994                                         vput(vp);
995                                         continue;
996                                 }
997                         }
998
999                         /*
1000                          * If a page is dirty, then it is either being washed
1001                          * (but not yet cleaned) or it is still in the
1002                          * laundry.  If it is still in the laundry, then we
1003                          * start the cleaning operation. 
1004                          *
1005                          * This operation may cluster, invalidating the 'next'
1006                          * pointer.  To prevent an inordinate number of
1007                          * restarts we use our marker to remember our place.
1008                          *
1009                          * decrement inactive_shortage on success to account
1010                          * for the (future) cleaned page.  Otherwise we
1011                          * could wind up laundering or cleaning too many
1012                          * pages.
1013                          */
1014                         TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
1015                         if (vm_pageout_clean(m) != 0) {
1016                                 --inactive_shortage;
1017                                 --maxlaunder;
1018                         }
1019                         next = TAILQ_NEXT(&marker, pageq);
1020                         TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
1021                         if (vp != NULL)
1022                                 vput(vp);
1023                 }
1024         }
1025
1026         /*
1027          * We want to move pages from the active queue to the inactive
1028          * queue to get the inactive queue to the inactive target.  If
1029          * we still have a page shortage from above we try to directly free
1030          * clean pages instead of moving them.
1031          *
1032          * If we do still have a shortage we keep track of the number of
1033          * pages we free or cache (recycle_count) as a measure of thrashing
1034          * between the active and inactive queues.
1035          *
1036          * If we were able to completely satisfy the free+cache targets
1037          * from the inactive pool we limit the number of pages we move
1038          * from the active pool to the inactive pool to 2x the pages we
1039          * had removed from the inactive pool (with a minimum of 1/5 the
1040          * inactive target).  If we were not able to completely satisfy
1041          * the free+cache targets we go for the whole target aggressively.
1042          *
1043          * NOTE: Both variables can end up negative.
1044          * NOTE: We are still in a critical section.
1045          */
1046         active_shortage = vmstats.v_inactive_target - vmstats.v_inactive_count;
1047         if (inactive_original_shortage < vmstats.v_inactive_target / 10)
1048                 inactive_original_shortage = vmstats.v_inactive_target / 10;
1049         if (inactive_shortage <= 0 &&
1050             active_shortage > inactive_original_shortage * 2) {
1051                 active_shortage = inactive_original_shortage * 2;
1052         }
1053
1054         pcount = vmstats.v_active_count;
1055         recycle_count = 0;
1056         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1057
1058         while ((m != NULL) && (pcount-- > 0) &&
1059                (inactive_shortage > 0 || active_shortage > 0)
1060         ) {
1061                 /*
1062                  * Give interrupts a chance.
1063                  */
1064                 crit_exit();
1065                 crit_enter();
1066
1067                 /*
1068                  * If the page was ripped out from under us, just stop.
1069                  */
1070                 if (m->queue != PQ_ACTIVE)
1071                         break;
1072                 next = TAILQ_NEXT(m, pageq);
1073
1074                 /*
1075                  * Don't deactivate pages that are busy.
1076                  */
1077                 if ((m->busy != 0) ||
1078                     (m->flags & PG_BUSY) ||
1079                     (m->hold_count != 0)) {
1080                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1081                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1082                         m = next;
1083                         continue;
1084                 }
1085
1086                 /*
1087                  * The count for pagedaemon pages is done after checking the
1088                  * page for eligibility...
1089                  */
1090                 mycpu->gd_cnt.v_pdpages++;
1091
1092                 /*
1093                  * Check to see "how much" the page has been used and clear
1094                  * the tracking access bits.  If the object has no references
1095                  * don't bother paying the expense.
1096                  */
1097                 actcount = 0;
1098                 if (m->object->ref_count != 0) {
1099                         if (m->flags & PG_REFERENCED)
1100                                 ++actcount;
1101                         actcount += pmap_ts_referenced(m);
1102                         if (actcount) {
1103                                 m->act_count += ACT_ADVANCE + actcount;
1104                                 if (m->act_count > ACT_MAX)
1105                                         m->act_count = ACT_MAX;
1106                         }
1107                 }
1108                 vm_page_flag_clear(m, PG_REFERENCED);
1109
1110                 /*
1111                  * actcount is only valid if the object ref_count is non-zero.
1112                  */
1113                 if (actcount && m->object->ref_count != 0) {
1114                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1115                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1116                 } else {
1117                         m->act_count -= min(m->act_count, ACT_DECLINE);
1118                         if (vm_pageout_algorithm ||
1119                             m->object->ref_count == 0 ||
1120                             m->act_count < pass + 1
1121                         ) {
1122                                 /*
1123                                  * Deactivate the page.  If we had a
1124                                  * shortage from our inactive scan try to
1125                                  * free (cache) the page instead.
1126                                  *
1127                                  * Don't just blindly cache the page if
1128                                  * we do not have a shortage from the
1129                                  * inactive scan, that could lead to
1130                                  * gigabytes being moved.
1131                                  */
1132                                 --active_shortage;
1133                                 if (inactive_shortage > 0 ||
1134                                     m->object->ref_count == 0) {
1135                                         if (inactive_shortage > 0)
1136                                                 ++recycle_count;
1137                                         vm_page_busy(m);
1138                                         vm_page_protect(m, VM_PROT_NONE);
1139                                         vm_page_wakeup(m);
1140                                         if (m->dirty == 0 &&
1141                                             inactive_shortage > 0) {
1142                                                 --inactive_shortage;
1143                                                 vm_page_cache(m);
1144                                         } else {
1145                                                 vm_page_deactivate(m);
1146                                         }
1147                                 } else {
1148                                         vm_page_deactivate(m);
1149                                 }
1150                         } else {
1151                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1152                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1153                         }
1154                 }
1155                 m = next;
1156         }
1157
1158         /*
1159          * We try to maintain some *really* free pages, this allows interrupt
1160          * code to be guaranteed space.  Since both cache and free queues 
1161          * are considered basically 'free', moving pages from cache to free
1162          * does not effect other calculations.
1163          *
1164          * NOTE: we are still in a critical section.
1165          *
1166          * Pages moved from PQ_CACHE to totally free are not counted in the
1167          * pages_freed counter.
1168          */
1169         while (vmstats.v_free_count < vmstats.v_free_reserved) {
1170                 static int cache_rover = 0;
1171                 m = vm_page_list_find(PQ_CACHE, cache_rover, FALSE);
1172                 if (m == NULL)
1173                         break;
1174                 if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || 
1175                     m->busy || 
1176                     m->hold_count || 
1177                     m->wire_count) {
1178 #ifdef INVARIANTS
1179                         kprintf("Warning: busy page %p found in cache\n", m);
1180 #endif
1181                         vm_page_deactivate(m);
1182                         continue;
1183                 }
1184                 KKASSERT((m->flags & PG_MAPPED) == 0);
1185                 KKASSERT(m->dirty == 0);
1186                 cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1187                 vm_pageout_page_free(m);
1188                 mycpu->gd_cnt.v_dfree++;
1189         }
1190
1191         crit_exit();
1192
1193 #if !defined(NO_SWAPPING)
1194         /*
1195          * Idle process swapout -- run once per second.
1196          */
1197         if (vm_swap_idle_enabled) {
1198                 static long lsec;
1199                 if (time_second != lsec) {
1200                         vm_pageout_req_swapout |= VM_SWAP_IDLE;
1201                         vm_req_vmdaemon();
1202                         lsec = time_second;
1203                 }
1204         }
1205 #endif
1206                 
1207         /*
1208          * If we didn't get enough free pages, and we have skipped a vnode
1209          * in a writeable object, wakeup the sync daemon.  And kick swapout
1210          * if we did not get enough free pages.
1211          */
1212         if (vm_paging_target() > 0) {
1213                 if (vnodes_skipped && vm_page_count_min(0))
1214                         speedup_syncer();
1215 #if !defined(NO_SWAPPING)
1216                 if (vm_swap_enabled && vm_page_count_target()) {
1217                         vm_req_vmdaemon();
1218                         vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1219                 }
1220 #endif
1221         }
1222
1223         /*
1224          * Handle catastrophic conditions.  Under good conditions we should
1225          * be at the target, well beyond our minimum.  If we could not even
1226          * reach our minimum the system is under heavy stress.
1227          *
1228          * Determine whether we have run out of memory.  This occurs when
1229          * swap_pager_full is TRUE and the only pages left in the page
1230          * queues are dirty.  We will still likely have page shortages.
1231          *
1232          * - swap_pager_full is set if insufficient swap was
1233          *   available to satisfy a requested pageout.
1234          *
1235          * - the inactive queue is bloated (4 x size of active queue),
1236          *   meaning it is unable to get rid of dirty pages and.
1237          *
1238          * - vm_page_count_min() without counting pages recycled from the
1239          *   active queue (recycle_count) means we could not recover
1240          *   enough pages to meet bare minimum needs.  This test only
1241          *   works if the inactive queue is bloated.
1242          *
1243          * - due to a positive inactive_shortage we shifted the remaining
1244          *   dirty pages from the active queue to the inactive queue
1245          *   trying to find clean ones to free.
1246          */
1247         if (swap_pager_full && vm_page_count_min(recycle_count))
1248                 kprintf("Warning: system low on memory+swap!\n");
1249         if (swap_pager_full && vm_page_count_min(recycle_count) &&
1250             vmstats.v_inactive_count > vmstats.v_active_count * 4 &&
1251             inactive_shortage > 0) {
1252                 /*
1253                  * Kill something.
1254                  */
1255                 info.bigproc = NULL;
1256                 info.bigsize = 0;
1257                 allproc_scan(vm_pageout_scan_callback, &info);
1258                 if (info.bigproc != NULL) {
1259                         killproc(info.bigproc, "out of swap space");
1260                         info.bigproc->p_nice = PRIO_MIN;
1261                         info.bigproc->p_usched->resetpriority(
1262                                 FIRST_LWP_IN_PROC(info.bigproc));
1263                         wakeup(&vmstats.v_free_count);
1264                         PRELE(info.bigproc);
1265                 }
1266         }
1267         return(inactive_shortage);
1268 }
1269
1270 static int
1271 vm_pageout_scan_callback(struct proc *p, void *data)
1272 {
1273         struct vm_pageout_scan_info *info = data;
1274         vm_offset_t size;
1275
1276         /*
1277          * Never kill system processes or init.  If we have configured swap
1278          * then try to avoid killing low-numbered pids.
1279          */
1280         if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1281             ((p->p_pid < 48) && (vm_swap_size != 0))) {
1282                 return (0);
1283         }
1284
1285         /*
1286          * if the process is in a non-running type state,
1287          * don't touch it.
1288          */
1289         if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1290                 return (0);
1291
1292         /*
1293          * Get the approximate process size.  Note that anonymous pages
1294          * with backing swap will be counted twice, but there should not
1295          * be too many such pages due to the stress the VM system is
1296          * under at this point.
1297          */
1298         size = vmspace_anonymous_count(p->p_vmspace) +
1299                 vmspace_swap_count(p->p_vmspace);
1300
1301         /*
1302          * If the this process is bigger than the biggest one
1303          * remember it.
1304          */
1305         if (info->bigsize < size) {
1306                 if (info->bigproc)
1307                         PRELE(info->bigproc);
1308                 PHOLD(p);
1309                 info->bigproc = p;
1310                 info->bigsize = size;
1311         }
1312         return(0);
1313 }
1314
1315 /*
1316  * This routine tries to maintain the pseudo LRU active queue,
1317  * so that during long periods of time where there is no paging,
1318  * that some statistic accumulation still occurs.  This code
1319  * helps the situation where paging just starts to occur.
1320  */
1321 static void
1322 vm_pageout_page_stats(void)
1323 {
1324         vm_page_t m,next;
1325         int pcount,tpcount;             /* Number of pages to check */
1326         static int fullintervalcount = 0;
1327         int page_shortage;
1328
1329         page_shortage = 
1330             (vmstats.v_inactive_target + vmstats.v_cache_max + vmstats.v_free_min) -
1331             (vmstats.v_free_count + vmstats.v_inactive_count + vmstats.v_cache_count);
1332
1333         if (page_shortage <= 0)
1334                 return;
1335
1336         crit_enter();
1337
1338         pcount = vmstats.v_active_count;
1339         fullintervalcount += vm_pageout_stats_interval;
1340         if (fullintervalcount < vm_pageout_full_stats_interval) {
1341                 tpcount = (vm_pageout_stats_max * vmstats.v_active_count) / vmstats.v_page_count;
1342                 if (pcount > tpcount)
1343                         pcount = tpcount;
1344         } else {
1345                 fullintervalcount = 0;
1346         }
1347
1348         m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1349         while ((m != NULL) && (pcount-- > 0)) {
1350                 int actcount;
1351
1352                 if (m->queue != PQ_ACTIVE) {
1353                         break;
1354                 }
1355
1356                 next = TAILQ_NEXT(m, pageq);
1357                 /*
1358                  * Don't deactivate pages that are busy.
1359                  */
1360                 if ((m->busy != 0) ||
1361                     (m->flags & PG_BUSY) ||
1362                     (m->hold_count != 0)) {
1363                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1364                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1365                         m = next;
1366                         continue;
1367                 }
1368
1369                 actcount = 0;
1370                 if (m->flags & PG_REFERENCED) {
1371                         vm_page_flag_clear(m, PG_REFERENCED);
1372                         actcount += 1;
1373                 }
1374
1375                 actcount += pmap_ts_referenced(m);
1376                 if (actcount) {
1377                         m->act_count += ACT_ADVANCE + actcount;
1378                         if (m->act_count > ACT_MAX)
1379                                 m->act_count = ACT_MAX;
1380                         TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1381                         TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1382                 } else {
1383                         if (m->act_count == 0) {
1384                                 /*
1385                                  * We turn off page access, so that we have
1386                                  * more accurate RSS stats.  We don't do this
1387                                  * in the normal page deactivation when the
1388                                  * system is loaded VM wise, because the
1389                                  * cost of the large number of page protect
1390                                  * operations would be higher than the value
1391                                  * of doing the operation.
1392                                  */
1393                                 vm_page_busy(m);
1394                                 vm_page_protect(m, VM_PROT_NONE);
1395                                 vm_page_wakeup(m);
1396                                 vm_page_deactivate(m);
1397                         } else {
1398                                 m->act_count -= min(m->act_count, ACT_DECLINE);
1399                                 TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1400                                 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1401                         }
1402                 }
1403
1404                 m = next;
1405         }
1406         crit_exit();
1407 }
1408
1409 static int
1410 vm_pageout_free_page_calc(vm_size_t count)
1411 {
1412         if (count < vmstats.v_page_count)
1413                  return 0;
1414         /*
1415          * free_reserved needs to include enough for the largest swap pager
1416          * structures plus enough for any pv_entry structs when paging.
1417          */
1418         if (vmstats.v_page_count > 1024)
1419                 vmstats.v_free_min = 4 + (vmstats.v_page_count - 1024) / 200;
1420         else
1421                 vmstats.v_free_min = 4;
1422         vmstats.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1423                 vmstats.v_interrupt_free_min;
1424         vmstats.v_free_reserved = vm_pageout_page_count +
1425                 vmstats.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1426         vmstats.v_free_severe = vmstats.v_free_min / 2;
1427         vmstats.v_free_min += vmstats.v_free_reserved;
1428         vmstats.v_free_severe += vmstats.v_free_reserved;
1429         return 1;
1430 }
1431
1432
1433 /*
1434  * vm_pageout is the high level pageout daemon.
1435  */
1436 static void
1437 vm_pageout(void)
1438 {
1439         int pass;
1440         int inactive_shortage;
1441
1442         /*
1443          * Initialize some paging parameters.
1444          */
1445         curthread->td_flags |= TDF_SYSTHREAD;
1446
1447         vmstats.v_interrupt_free_min = 2;
1448         if (vmstats.v_page_count < 2000)
1449                 vm_pageout_page_count = 8;
1450
1451         vm_pageout_free_page_calc(vmstats.v_page_count);
1452
1453         /*
1454          * v_free_target and v_cache_min control pageout hysteresis.  Note
1455          * that these are more a measure of the VM cache queue hysteresis
1456          * then the VM free queue.  Specifically, v_free_target is the
1457          * high water mark (free+cache pages).
1458          *
1459          * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1460          * low water mark, while v_free_min is the stop.  v_cache_min must
1461          * be big enough to handle memory needs while the pageout daemon
1462          * is signalled and run to free more pages.
1463          */
1464         if (vmstats.v_free_count > 6144)
1465                 vmstats.v_free_target = 4 * vmstats.v_free_min + vmstats.v_free_reserved;
1466         else
1467                 vmstats.v_free_target = 2 * vmstats.v_free_min + vmstats.v_free_reserved;
1468
1469         /*
1470          * NOTE: With the new buffer cache b_act_count we want the default
1471          *       inactive target to be a percentage of available memory.
1472          *
1473          *       The inactive target essentially determines the minimum
1474          *       number of 'temporary' pages capable of caching one-time-use
1475          *       files when the VM system is otherwise full of pages
1476          *       belonging to multi-time-use files or active program data.
1477          *
1478          * NOTE: The inactive target is aggressively persued only if the
1479          *       inactive queue becomes too small.  If the inactive queue
1480          *       is large enough to satisfy page movement to free+cache
1481          *       then it is repopulated more slowly from the active queue.
1482          *       This allows a generate inactive_target default to be set.
1483          *
1484          *       There is an issue here for processes which sit mostly idle
1485          *       'overnight', such as sshd, tcsh, and X.  Any movement from
1486          *       the active queue will eventually cause such pages to
1487          *       recycle eventually causing a lot of paging in the morning.
1488          *       To reduce the incidence of this pages cycled out of the
1489          *       buffer cache are moved directly to the inactive queue if
1490          *       they were only used once or twice.  The vfs.vm_cycle_point
1491          *       sysctl can be used to adjust this.
1492          */
1493         if (vmstats.v_free_count > 2048) {
1494                 vmstats.v_cache_min = vmstats.v_free_target;
1495                 vmstats.v_cache_max = 2 * vmstats.v_cache_min;
1496         } else {
1497                 vmstats.v_cache_min = 0;
1498                 vmstats.v_cache_max = 0;
1499         }
1500         vmstats.v_inactive_target = vmstats.v_free_count / 2;
1501
1502         /* XXX does not really belong here */
1503         if (vm_page_max_wired == 0)
1504                 vm_page_max_wired = vmstats.v_free_count / 3;
1505
1506         if (vm_pageout_stats_max == 0)
1507                 vm_pageout_stats_max = vmstats.v_free_target;
1508
1509         /*
1510          * Set interval in seconds for stats scan.
1511          */
1512         if (vm_pageout_stats_interval == 0)
1513                 vm_pageout_stats_interval = 5;
1514         if (vm_pageout_full_stats_interval == 0)
1515                 vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1516         
1517
1518         /*
1519          * Set maximum free per pass
1520          */
1521         if (vm_pageout_stats_free_max == 0)
1522                 vm_pageout_stats_free_max = 5;
1523
1524         swap_pager_swap_init();
1525         pass = 0;
1526
1527         /*
1528          * The pageout daemon is never done, so loop forever.
1529          */
1530         while (TRUE) {
1531                 int error;
1532
1533                 /*
1534                  * Wait for an action request
1535                  */
1536                 crit_enter();
1537                 if (vm_pages_needed == 0) {
1538                         error = tsleep(&vm_pages_needed,
1539                                        0, "psleep",
1540                                        vm_pageout_stats_interval * hz);
1541                         if (error && vm_pages_needed == 0) {
1542                                 vm_pageout_page_stats();
1543                                 continue;
1544                         }
1545                         vm_pages_needed = 1;
1546                 }
1547                 crit_exit();
1548
1549                 /*
1550                  * If we have enough free memory, wakeup waiters.
1551                  * (This is optional here)
1552                  */
1553                 crit_enter();
1554                 if (!vm_page_count_min(0))
1555                         wakeup(&vmstats.v_free_count);
1556                 mycpu->gd_cnt.v_pdwakeups++;
1557                 crit_exit();
1558
1559                 /*
1560                  * Scan for pageout.  Try to avoid thrashing the system
1561                  * with activity.
1562                  */
1563                 inactive_shortage = vm_pageout_scan(pass);
1564                 if (inactive_shortage > 0) {
1565                         ++pass;
1566                         if (swap_pager_full) {
1567                                 /*
1568                                  * Running out of memory, catastrophic back-off
1569                                  * to one-second intervals.
1570                                  */
1571                                 tsleep(&vm_pages_needed, 0, "pdelay", hz);
1572                         } else if (pass < 10 && vm_pages_needed > 1) {
1573                                 /*
1574                                  * Normal operation, additional processes
1575                                  * have already kicked us.  Retry immediately.
1576                                  */
1577                         } else if (pass < 10) {
1578                                 /*
1579                                  * Normal operation, fewer processes.  Delay
1580                                  * a bit but allow wakeups.
1581                                  */
1582                                 vm_pages_needed = 0;
1583                                 tsleep(&vm_pages_needed, 0, "pdelay", hz / 10);
1584                                 vm_pages_needed = 1;
1585                         } else {
1586                                 /*
1587                                  * We've taken too many passes, forced delay.
1588                                  */
1589                                 tsleep(&vm_pages_needed, 0, "pdelay", hz / 10);
1590                         }
1591                 } else {
1592                         /*
1593                          * Interlocked wakeup of waiters (non-optional)
1594                          */
1595                         pass = 0;
1596                         if (vm_pages_needed && !vm_page_count_min(0)) {
1597                                 wakeup(&vmstats.v_free_count);
1598                                 vm_pages_needed = 0;
1599                         }
1600                 }
1601         }
1602 }
1603
1604 /*
1605  * Called after allocating a page out of the cache or free queue
1606  * to possibly wake the pagedaemon up to replentish our supply.
1607  *
1608  * We try to generate some hysteresis by waking the pagedaemon up
1609  * when our free+cache pages go below the severe level.  The pagedaemon
1610  * tries to get the count back up to at least the minimum, and through
1611  * to the target level if possible.
1612  *
1613  * If the pagedaemon is already active bump vm_pages_needed as a hint
1614  * that there are even more requests pending.
1615  */
1616 void
1617 pagedaemon_wakeup(void)
1618 {
1619         if (vm_page_count_severe() && curthread != pagethread) {
1620                 if (vm_pages_needed == 0) {
1621                         vm_pages_needed = 1;
1622                         wakeup(&vm_pages_needed);
1623                 } else if (vm_page_count_min(0)) {
1624                         ++vm_pages_needed;
1625                 }
1626         }
1627 }
1628
1629 #if !defined(NO_SWAPPING)
1630 static void
1631 vm_req_vmdaemon(void)
1632 {
1633         static int lastrun = 0;
1634
1635         if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1636                 wakeup(&vm_daemon_needed);
1637                 lastrun = ticks;
1638         }
1639 }
1640
1641 static int vm_daemon_callback(struct proc *p, void *data __unused);
1642
1643 static void
1644 vm_daemon(void)
1645 {
1646         while (TRUE) {
1647                 tsleep(&vm_daemon_needed, 0, "psleep", 0);
1648                 if (vm_pageout_req_swapout) {
1649                         swapout_procs(vm_pageout_req_swapout);
1650                         vm_pageout_req_swapout = 0;
1651                 }
1652                 /*
1653                  * scan the processes for exceeding their rlimits or if
1654                  * process is swapped out -- deactivate pages
1655                  */
1656                 allproc_scan(vm_daemon_callback, NULL);
1657         }
1658 }
1659
1660 static int
1661 vm_daemon_callback(struct proc *p, void *data __unused)
1662 {
1663         vm_pindex_t limit, size;
1664
1665         /*
1666          * if this is a system process or if we have already
1667          * looked at this process, skip it.
1668          */
1669         if (p->p_flag & (P_SYSTEM | P_WEXIT))
1670                 return (0);
1671
1672         /*
1673          * if the process is in a non-running type state,
1674          * don't touch it.
1675          */
1676         if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1677                 return (0);
1678
1679         /*
1680          * get a limit
1681          */
1682         limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1683                                 p->p_rlimit[RLIMIT_RSS].rlim_max));
1684
1685         /*
1686          * let processes that are swapped out really be
1687          * swapped out.  Set the limit to nothing to get as
1688          * many pages out to swap as possible.
1689          */
1690         if (p->p_flag & P_SWAPPEDOUT)
1691                 limit = 0;
1692
1693         size = vmspace_resident_count(p->p_vmspace);
1694         if (limit >= 0 && size >= limit) {
1695                 vm_pageout_map_deactivate_pages(
1696                     &p->p_vmspace->vm_map, limit);
1697         }
1698         return (0);
1699 }
1700
1701 #endif