/* * Copyright (c) 1988, 1989, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)radix.c 8.4 (Berkeley) 11/2/94 * $FreeBSD: src/sys/net/radix.c,v 1.20.2.3 2002/04/28 05:40:25 suz Exp $ * $DragonFly: src/sys/net/radix.c,v 1.14 2006/12/22 23:44:54 swildner Exp $ */ /* * Routines to build and maintain radix trees for routing lookups. */ #include #ifdef _KERNEL #include #include #include #else #include #endif #include #include /* * The arguments to the radix functions are really counted byte arrays with * the length in the first byte. struct sockaddr's fit this type structurally. */ #define clen(c) (*(u_char *)(c)) static int rn_walktree_from(struct radix_node_head *h, char *a, char *m, walktree_f_t *f, void *w); static int rn_walktree(struct radix_node_head *, walktree_f_t *, void *); static struct radix_node *rn_insert(char *, struct radix_node_head *, boolean_t *, struct radix_node [2]), *rn_newpair(char *, int, struct radix_node[2]), *rn_search(const char *, struct radix_node *), *rn_search_m(const char *, struct radix_node *, const char *); static struct radix_mask *rn_mkfreelist; static struct radix_node_head *mask_rnhead; static int max_keylen; static char *rn_zeros, *rn_ones; static int rn_lexobetter(char *m, char *n); static struct radix_mask * rn_new_radix_mask(struct radix_node *tt, struct radix_mask *nextmask); static boolean_t rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip); static __inline struct radix_mask * MKGet(struct radix_mask **l) { struct radix_mask *m; if (*l != NULL) { m = *l; *l = m->rm_next; } else { R_Malloc(m, struct radix_mask *, sizeof *m); } return m; } static __inline void MKFree(struct radix_mask **l, struct radix_mask *m) { m->rm_next = *l; *l = m; } /* * The data structure for the keys is a radix tree with one way * branching removed. The index rn_bit at an internal node n represents a bit * position to be tested. The tree is arranged so that all descendants * of a node n have keys whose bits all agree up to position rn_bit - 1. * (We say the index of n is rn_bit.) * * There is at least one descendant which has a one bit at position rn_bit, * and at least one with a zero there. * * A route is determined by a pair of key and mask. We require that the * bit-wise logical and of the key and mask to be the key. * We define the index of a route to associated with the mask to be * the first bit number in the mask where 0 occurs (with bit number 0 * representing the highest order bit). * * We say a mask is normal if every bit is 0, past the index of the mask. * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit, * and m is a normal mask, then the route applies to every descendant of n. * If the index(m) < rn_bit, this implies the trailing last few bits of k * before bit b are all 0, (and hence consequently true of every descendant * of n), so the route applies to all descendants of the node as well. * * Similar logic shows that a non-normal mask m such that * index(m) <= index(n) could potentially apply to many children of n. * Thus, for each non-host route, we attach its mask to a list at an internal * node as high in the tree as we can go. * * The present version of the code makes use of normal routes in short- * circuiting an explict mask and compare operation when testing whether * a key satisfies a normal route, and also in remembering the unique leaf * that governs a subtree. */ static struct radix_node * rn_search(const char *v, struct radix_node *head) { struct radix_node *x; x = head; while (x->rn_bit >= 0) { if (x->rn_bmask & v[x->rn_offset]) x = x->rn_right; else x = x->rn_left; } return (x); } static struct radix_node * rn_search_m(const char *v, struct radix_node *head, const char *m) { struct radix_node *x; for (x = head; x->rn_bit >= 0;) { if ((x->rn_bmask & m[x->rn_offset]) && (x->rn_bmask & v[x->rn_offset])) x = x->rn_right; else x = x->rn_left; } return x; } boolean_t rn_refines(char *m, char *n) { char *lim, *lim2; int longer = clen(n++) - clen(m++); boolean_t masks_are_equal = TRUE; lim2 = lim = n + clen(n); if (longer > 0) lim -= longer; while (n < lim) { if (*n & ~(*m)) return FALSE; if (*n++ != *m++) masks_are_equal = FALSE; } while (n < lim2) if (*n++) return FALSE; if (masks_are_equal && (longer < 0)) for (lim2 = m - longer; m < lim2; ) if (*m++) return TRUE; return (!masks_are_equal); } struct radix_node * rn_lookup(char *key, char *mask, struct radix_node_head *head) { struct radix_node *x; char *netmask = NULL; if (mask != NULL) { x = rn_addmask(mask, TRUE, head->rnh_treetop->rn_offset); if (x == NULL) return (NULL); netmask = x->rn_key; } x = rn_match(key, head); if (x != NULL && netmask != NULL) { while (x != NULL && x->rn_mask != netmask) x = x->rn_dupedkey; } return x; } static boolean_t rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip) { char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask; char *cplim; int length = min(clen(cp), clen(cp2)); if (cp3 == NULL) cp3 = rn_ones; else length = min(length, clen(cp3)); cplim = cp + length; cp3 += skip; cp2 += skip; for (cp += skip; cp < cplim; cp++, cp2++, cp3++) if ((*cp ^ *cp2) & *cp3) return FALSE; return TRUE; } struct radix_node * rn_match(char *key, struct radix_node_head *head) { struct radix_node *t, *x; char *cp = key, *cp2; char *cplim; struct radix_node *saved_t, *top = head->rnh_treetop; int off = top->rn_offset, klen, matched_off; int test, b, rn_bit; t = rn_search(key, top); /* * See if we match exactly as a host destination * or at least learn how many bits match, for normal mask finesse. * * It doesn't hurt us to limit how many bytes to check * to the length of the mask, since if it matches we had a genuine * match and the leaf we have is the most specific one anyway; * if it didn't match with a shorter length it would fail * with a long one. This wins big for class B&C netmasks which * are probably the most common case... */ if (t->rn_mask != NULL) klen = clen(t->rn_mask); else klen = clen(key); cp += off; cp2 = t->rn_key + off; cplim = key + klen; for (; cp < cplim; cp++, cp2++) if (*cp != *cp2) goto on1; /* * This extra grot is in case we are explicitly asked * to look up the default. Ugh! * * Never return the root node itself, it seems to cause a * lot of confusion. */ if (t->rn_flags & RNF_ROOT) t = t->rn_dupedkey; return t; on1: test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */ for (b = 7; (test >>= 1) > 0;) b--; matched_off = cp - key; b += matched_off << 3; rn_bit = -1 - b; /* * If there is a host route in a duped-key chain, it will be first. */ if ((saved_t = t)->rn_mask == NULL) t = t->rn_dupedkey; for (; t; t = t->rn_dupedkey) { /* * Even if we don't match exactly as a host, * we may match if the leaf we wound up at is * a route to a net. */ if (t->rn_flags & RNF_NORMAL) { if (rn_bit <= t->rn_bit) return t; } else if (rn_satisfies_leaf(key, t, matched_off)) return t; } t = saved_t; /* start searching up the tree */ do { struct radix_mask *m; t = t->rn_parent; /* * If non-contiguous masks ever become important * we can restore the masking and open coding of * the search and satisfaction test and put the * calculation of "off" back before the "do". */ m = t->rn_mklist; while (m != NULL) { if (m->rm_flags & RNF_NORMAL) { if (rn_bit <= m->rm_bit) return (m->rm_leaf); } else { off = min(t->rn_offset, matched_off); x = rn_search_m(key, t, m->rm_mask); while (x != NULL && x->rn_mask != m->rm_mask) x = x->rn_dupedkey; if (x && rn_satisfies_leaf(key, x, off)) return x; } m = m->rm_next; } } while (t != top); return NULL; } #ifdef RN_DEBUG int rn_nodenum; struct radix_node *rn_clist; int rn_saveinfo; boolean_t rn_debug = TRUE; #endif static struct radix_node * rn_newpair(char *key, int indexbit, struct radix_node nodes[2]) { struct radix_node *leaf = &nodes[0], *interior = &nodes[1]; interior->rn_bit = indexbit; interior->rn_bmask = 0x80 >> (indexbit & 0x7); interior->rn_offset = indexbit >> 3; interior->rn_left = leaf; interior->rn_mklist = NULL; leaf->rn_bit = -1; leaf->rn_key = key; leaf->rn_parent = interior; leaf->rn_flags = interior->rn_flags = RNF_ACTIVE; leaf->rn_mklist = NULL; #ifdef RN_DEBUG leaf->rn_info = rn_nodenum++; interior->rn_info = rn_nodenum++; leaf->rn_twin = interior; leaf->rn_ybro = rn_clist; rn_clist = leaf; #endif return interior; } static struct radix_node * rn_insert(char *key, struct radix_node_head *head, boolean_t *dupentry, struct radix_node nodes[2]) { struct radix_node *top = head->rnh_treetop; int head_off = top->rn_offset, klen = clen(key); struct radix_node *t = rn_search(key, top); char *cp = key + head_off; int b; struct radix_node *tt; /* * Find first bit at which the key and t->rn_key differ */ { char *cp2 = t->rn_key + head_off; int cmp_res; char *cplim = key + klen; while (cp < cplim) if (*cp2++ != *cp++) goto on1; *dupentry = TRUE; return t; on1: *dupentry = FALSE; cmp_res = (cp[-1] ^ cp2[-1]) & 0xff; for (b = (cp - key) << 3; cmp_res; b--) cmp_res >>= 1; } { struct radix_node *p, *x = top; cp = key; do { p = x; if (cp[x->rn_offset] & x->rn_bmask) x = x->rn_right; else x = x->rn_left; } while (b > (unsigned) x->rn_bit); /* x->rn_bit < b && x->rn_bit >= 0 */ #ifdef RN_DEBUG if (rn_debug) log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p); #endif t = rn_newpair(key, b, nodes); tt = t->rn_left; if ((cp[p->rn_offset] & p->rn_bmask) == 0) p->rn_left = t; else p->rn_right = t; x->rn_parent = t; t->rn_parent = p; /* frees x, p as temp vars below */ if ((cp[t->rn_offset] & t->rn_bmask) == 0) { t->rn_right = x; } else { t->rn_right = tt; t->rn_left = x; } #ifdef RN_DEBUG if (rn_debug) log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p); #endif } return (tt); } struct radix_node * rn_addmask(char *netmask, boolean_t search, int skip) { struct radix_node *x, *saved_x; char *cp, *cplim; int b = 0, mlen, m0, j; boolean_t maskduplicated, isnormal; static int last_zeroed = 0; char *addmask_key; if ((mlen = clen(netmask)) > max_keylen) mlen = max_keylen; if (skip == 0) skip = 1; if (mlen <= skip) return (mask_rnhead->rnh_nodes); R_Malloc(addmask_key, char *, max_keylen); if (addmask_key == NULL) return NULL; if (skip > 1) bcopy(rn_ones + 1, addmask_key + 1, skip - 1); if ((m0 = mlen) > skip) bcopy(netmask + skip, addmask_key + skip, mlen - skip); /* * Trim trailing zeroes. */ for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;) cp--; mlen = cp - addmask_key; if (mlen <= skip) { if (m0 >= last_zeroed) last_zeroed = mlen; Free(addmask_key); return (mask_rnhead->rnh_nodes); } if (m0 < last_zeroed) bzero(addmask_key + m0, last_zeroed - m0); *addmask_key = last_zeroed = mlen; x = rn_search(addmask_key, mask_rnhead->rnh_treetop); if (bcmp(addmask_key, x->rn_key, mlen) != 0) x = NULL; if (x != NULL || search) goto out; R_Malloc(x, struct radix_node *, max_keylen + 2 * (sizeof *x)); if ((saved_x = x) == NULL) goto out; bzero(x, max_keylen + 2 * (sizeof *x)); netmask = cp = (char *)(x + 2); bcopy(addmask_key, cp, mlen); x = rn_insert(cp, mask_rnhead, &maskduplicated, x); if (maskduplicated) { log(LOG_ERR, "rn_addmask: mask impossibly already in tree"); Free(saved_x); goto out; } /* * Calculate index of mask, and check for normalcy. */ isnormal = TRUE; cplim = netmask + mlen; for (cp = netmask + skip; cp < cplim && clen(cp) == 0xff;) cp++; if (cp != cplim) { static const char normal_chars[] = { 0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1 }; for (j = 0x80; (j & *cp) != 0; j >>= 1) b++; if (*cp != normal_chars[b] || cp != (cplim - 1)) isnormal = FALSE; } b += (cp - netmask) << 3; x->rn_bit = -1 - b; if (isnormal) x->rn_flags |= RNF_NORMAL; out: Free(addmask_key); return (x); } /* XXX: arbitrary ordering for non-contiguous masks */ static boolean_t rn_lexobetter(char *mp, char *np) { char *lim; if ((unsigned) *mp > (unsigned) *np) return TRUE;/* not really, but need to check longer one first */ if (*mp == *np) for (lim = mp + clen(mp); mp < lim;) if (*mp++ > *np++) return TRUE; return FALSE; } static struct radix_mask * rn_new_radix_mask(struct radix_node *tt, struct radix_mask *nextmask) { struct radix_mask *m; m = MKGet(&rn_mkfreelist); if (m == NULL) { log(LOG_ERR, "Mask for route not entered\n"); return (NULL); } bzero(m, sizeof *m); m->rm_bit = tt->rn_bit; m->rm_flags = tt->rn_flags; if (tt->rn_flags & RNF_NORMAL) m->rm_leaf = tt; else m->rm_mask = tt->rn_mask; m->rm_next = nextmask; tt->rn_mklist = m; return m; } struct radix_node * rn_addroute(char *key, char *netmask, struct radix_node_head *head, struct radix_node treenodes[2]) { struct radix_node *t, *x = NULL, *tt; struct radix_node *saved_tt, *top = head->rnh_treetop; short b = 0, b_leaf = 0; boolean_t keyduplicated; char *mmask; struct radix_mask *m, **mp; /* * In dealing with non-contiguous masks, there may be * many different routes which have the same mask. * We will find it useful to have a unique pointer to * the mask to speed avoiding duplicate references at * nodes and possibly save time in calculating indices. */ if (netmask != NULL) { if ((x = rn_addmask(netmask, FALSE, top->rn_offset)) == NULL) return (NULL); b_leaf = x->rn_bit; b = -1 - x->rn_bit; netmask = x->rn_key; } /* * Deal with duplicated keys: attach node to previous instance */ saved_tt = tt = rn_insert(key, head, &keyduplicated, treenodes); if (keyduplicated) { for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) { if (tt->rn_mask == netmask) return (NULL); if (netmask == NULL || (tt->rn_mask && ((b_leaf < tt->rn_bit) /* index(netmask) > node */ || rn_refines(netmask, tt->rn_mask) || rn_lexobetter(netmask, tt->rn_mask)))) break; } /* * If the mask is not duplicated, we wouldn't * find it among possible duplicate key entries * anyway, so the above test doesn't hurt. * * We sort the masks for a duplicated key the same way as * in a masklist -- most specific to least specific. * This may require the unfortunate nuisance of relocating * the head of the list. */ if (tt == saved_tt) { struct radix_node *xx = x; /* link in at head of list */ (tt = treenodes)->rn_dupedkey = t; tt->rn_flags = t->rn_flags; tt->rn_parent = x = t->rn_parent; t->rn_parent = tt; /* parent */ if (x->rn_left == t) x->rn_left = tt; else x->rn_right = tt; saved_tt = tt; x = xx; } else { (tt = treenodes)->rn_dupedkey = t->rn_dupedkey; t->rn_dupedkey = tt; tt->rn_parent = t; /* parent */ if (tt->rn_dupedkey != NULL) /* parent */ tt->rn_dupedkey->rn_parent = tt; /* parent */ } #ifdef RN_DEBUG t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++; tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt; #endif tt->rn_key = key; tt->rn_bit = -1; tt->rn_flags = RNF_ACTIVE; } /* * Put mask in tree. */ if (netmask != NULL) { tt->rn_mask = netmask; tt->rn_bit = x->rn_bit; tt->rn_flags |= x->rn_flags & RNF_NORMAL; } t = saved_tt->rn_parent; if (keyduplicated) goto on2; b_leaf = -1 - t->rn_bit; if (t->rn_right == saved_tt) x = t->rn_left; else x = t->rn_right; /* Promote general routes from below */ if (x->rn_bit < 0) { mp = &t->rn_mklist; while (x != NULL) { if (x->rn_mask != NULL && x->rn_bit >= b_leaf && x->rn_mklist == NULL) { *mp = m = rn_new_radix_mask(x, NULL); if (m != NULL) mp = &m->rm_next; } x = x->rn_dupedkey; } } else if (x->rn_mklist != NULL) { /* * Skip over masks whose index is > that of new node */ for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_next) if (m->rm_bit >= b_leaf) break; t->rn_mklist = m; *mp = NULL; } on2: /* Add new route to highest possible ancestor's list */ if ((netmask == NULL) || (b > t->rn_bit )) return tt; /* can't lift at all */ b_leaf = tt->rn_bit; do { x = t; t = t->rn_parent; } while (b <= t->rn_bit && x != top); /* * Search through routes associated with node to * insert new route according to index. * Need same criteria as when sorting dupedkeys to avoid * double loop on deletion. */ for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_next) { if (m->rm_bit < b_leaf) continue; if (m->rm_bit > b_leaf) break; if (m->rm_flags & RNF_NORMAL) { mmask = m->rm_leaf->rn_mask; if (tt->rn_flags & RNF_NORMAL) { log(LOG_ERR, "Non-unique normal route, mask not entered\n"); return tt; } } else mmask = m->rm_mask; if (mmask == netmask) { m->rm_refs++; tt->rn_mklist = m; return tt; } if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask)) break; } *mp = rn_new_radix_mask(tt, *mp); return tt; } struct radix_node * rn_delete(char *key, char *netmask, struct radix_node_head *head) { struct radix_node *t, *p, *x, *tt; struct radix_mask *m, *saved_m, **mp; struct radix_node *dupedkey, *saved_tt, *top; int b, head_off, klen; x = head->rnh_treetop; tt = rn_search(key, x); head_off = x->rn_offset; klen = clen(key); saved_tt = tt; top = x; if (tt == NULL || bcmp(key + head_off, tt->rn_key + head_off, klen - head_off)) return (NULL); /* * Delete our route from mask lists. */ if (netmask != NULL) { if ((x = rn_addmask(netmask, TRUE, head_off)) == NULL) return (NULL); netmask = x->rn_key; while (tt->rn_mask != netmask) if ((tt = tt->rn_dupedkey) == NULL) return (NULL); } if (tt->rn_mask == NULL || (saved_m = m = tt->rn_mklist) == NULL) goto on1; if (tt->rn_flags & RNF_NORMAL) { if (m->rm_leaf != tt || m->rm_refs > 0) { log(LOG_ERR, "rn_delete: inconsistent annotation\n"); return (NULL); /* dangling ref could cause disaster */ } } else { if (m->rm_mask != tt->rn_mask) { log(LOG_ERR, "rn_delete: inconsistent annotation\n"); goto on1; } if (--m->rm_refs >= 0) goto on1; } b = -1 - tt->rn_bit; t = saved_tt->rn_parent; if (b > t->rn_bit) goto on1; /* Wasn't lifted at all */ do { x = t; t = t->rn_parent; } while (b <= t->rn_bit && x != top); for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_next) if (m == saved_m) { *mp = m->rm_next; MKFree(&rn_mkfreelist, m); break; } if (m == NULL) { log(LOG_ERR, "rn_delete: couldn't find our annotation\n"); if (tt->rn_flags & RNF_NORMAL) return (NULL); /* Dangling ref to us */ } on1: /* * Eliminate us from tree */ if (tt->rn_flags & RNF_ROOT) return (NULL); #ifdef RN_DEBUG /* Get us out of the creation list */ for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {} if (t) t->rn_ybro = tt->rn_ybro; #endif t = tt->rn_parent; dupedkey = saved_tt->rn_dupedkey; if (dupedkey != NULL) { /* * at this point, tt is the deletion target and saved_tt * is the head of the dupekey chain */ if (tt == saved_tt) { /* remove from head of chain */ x = dupedkey; x->rn_parent = t; if (t->rn_left == tt) t->rn_left = x; else t->rn_right = x; } else { /* find node in front of tt on the chain */ for (x = p = saved_tt; p && p->rn_dupedkey != tt;) p = p->rn_dupedkey; if (p) { p->rn_dupedkey = tt->rn_dupedkey; if (tt->rn_dupedkey) /* parent */ tt->rn_dupedkey->rn_parent = p; /* parent */ } else log(LOG_ERR, "rn_delete: couldn't find us\n"); } t = tt + 1; if (t->rn_flags & RNF_ACTIVE) { #ifndef RN_DEBUG *++x = *t; p = t->rn_parent; #else b = t->rn_info; *++x = *t; t->rn_info = b; p = t->rn_parent; #endif if (p->rn_left == t) p->rn_left = x; else p->rn_right = x; x->rn_left->rn_parent = x; x->rn_right->rn_parent = x; } goto out; } if (t->rn_left == tt) x = t->rn_right; else x = t->rn_left; p = t->rn_parent; if (p->rn_right == t) p->rn_right = x; else p->rn_left = x; x->rn_parent = p; /* * Demote routes attached to us. */ if (t->rn_mklist != NULL) { if (x->rn_bit >= 0) { for (mp = &x->rn_mklist; (m = *mp);) mp = &m->rm_next; *mp = t->rn_mklist; } else { /* * If there are any (key, mask) pairs in a sibling * duped-key chain, some subset will appear sorted * in the same order attached to our mklist. */ for (m = t->rn_mklist; m && x; x = x->rn_dupedkey) if (m == x->rn_mklist) { struct radix_mask *mm = m->rm_next; x->rn_mklist = NULL; if (--(m->rm_refs) < 0) MKFree(&rn_mkfreelist, m); m = mm; } if (m) log(LOG_ERR, "rn_delete: Orphaned Mask %p at %p\n", (void *)m, (void *)x); } } /* * We may be holding an active internal node in the tree. */ x = tt + 1; if (t != x) { #ifndef RN_DEBUG *t = *x; #else b = t->rn_info; *t = *x; t->rn_info = b; #endif t->rn_left->rn_parent = t; t->rn_right->rn_parent = t; p = x->rn_parent; if (p->rn_left == x) p->rn_left = t; else p->rn_right = t; } out: tt->rn_flags &= ~RNF_ACTIVE; tt[1].rn_flags &= ~RNF_ACTIVE; return (tt); } /* * This is the same as rn_walktree() except for the parameters and the * exit. */ static int rn_walktree_from(struct radix_node_head *h, char *xa, char *xm, walktree_f_t *f, void *w) { struct radix_node *base, *next; struct radix_node *rn, *last = NULL /* shut up gcc */; boolean_t stopping = FALSE; int lastb, error; /* * rn_search_m is sort-of-open-coded here. */ /* kprintf("about to search\n"); */ for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) { last = rn; /* kprintf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n", rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */ if (!(rn->rn_bmask & xm[rn->rn_offset])) { break; } if (rn->rn_bmask & xa[rn->rn_offset]) { rn = rn->rn_right; } else { rn = rn->rn_left; } } /* kprintf("done searching\n"); */ /* * Two cases: either we stepped off the end of our mask, * in which case last == rn, or we reached a leaf, in which * case we want to start from the last node we looked at. * Either way, last is the node we want to start from. */ rn = last; lastb = rn->rn_bit; /* kprintf("rn %p, lastb %d\n", rn, lastb);*/ /* * This gets complicated because we may delete the node * while applying the function f to it, so we need to calculate * the successor node in advance. */ while (rn->rn_bit >= 0) rn = rn->rn_left; while (!stopping) { /* kprintf("node %p (%d)\n", rn, rn->rn_bit); */ base = rn; /* If at right child go back up, otherwise, go right */ while (rn->rn_parent->rn_right == rn && !(rn->rn_flags & RNF_ROOT)) { rn = rn->rn_parent; /* if went up beyond last, stop */ if (rn->rn_bit < lastb) { stopping = TRUE; /* kprintf("up too far\n"); */ } } /* Find the next *leaf* since next node might vanish, too */ for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;) rn = rn->rn_left; next = rn; /* Process leaves */ while ((rn = base) != NULL) { base = rn->rn_dupedkey; /* kprintf("leaf %p\n", rn); */ if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w))) return (error); } rn = next; if (rn->rn_flags & RNF_ROOT) { /* kprintf("root, stopping"); */ stopping = TRUE; } } return 0; } static int rn_walktree(struct radix_node_head *h, walktree_f_t *f, void *w) { struct radix_node *base, *next; struct radix_node *rn = h->rnh_treetop; int error; /* * This gets complicated because we may delete the node * while applying the function f to it, so we need to calculate * the successor node in advance. */ /* First time through node, go left */ while (rn->rn_bit >= 0) rn = rn->rn_left; for (;;) { base = rn; /* If at right child go back up, otherwise, go right */ while (rn->rn_parent->rn_right == rn && !(rn->rn_flags & RNF_ROOT)) rn = rn->rn_parent; /* Find the next *leaf* since next node might vanish, too */ for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;) rn = rn->rn_left; next = rn; /* Process leaves */ while ((rn = base)) { base = rn->rn_dupedkey; if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w))) return (error); } rn = next; if (rn->rn_flags & RNF_ROOT) return (0); } /* NOTREACHED */ } int rn_inithead(void **head, int off) { struct radix_node_head *rnh; struct radix_node *root, *left, *right; if (*head != NULL) /* already initialized */ return (1); R_Malloc(rnh, struct radix_node_head *, sizeof *rnh); if (rnh == NULL) return (0); bzero(rnh, sizeof *rnh); *head = rnh; root = rn_newpair(rn_zeros, off, rnh->rnh_nodes); right = &rnh->rnh_nodes[2]; root->rn_parent = root; root->rn_flags = RNF_ROOT | RNF_ACTIVE; root->rn_right = right; left = root->rn_left; left->rn_bit = -1 - off; left->rn_flags = RNF_ROOT | RNF_ACTIVE; *right = *left; right->rn_key = rn_ones; rnh->rnh_treetop = root; rnh->rnh_addaddr = rn_addroute; rnh->rnh_deladdr = rn_delete; rnh->rnh_matchaddr = rn_match; rnh->rnh_lookup = rn_lookup; rnh->rnh_walktree = rn_walktree; rnh->rnh_walktree_from = rn_walktree_from; return (1); } void rn_init(void) { char *cp, *cplim; #ifdef _KERNEL struct domain *dom; SLIST_FOREACH(dom, &domains, dom_next) if (dom->dom_maxrtkey > max_keylen) max_keylen = dom->dom_maxrtkey; #endif if (max_keylen == 0) { log(LOG_ERR, "rn_init: radix functions require max_keylen be set\n"); return; } R_Malloc(rn_zeros, char *, 2 * max_keylen); if (rn_zeros == NULL) panic("rn_init"); bzero(rn_zeros, 2 * max_keylen); rn_ones = cp = rn_zeros + max_keylen; cplim = rn_ones + max_keylen; while (cp < cplim) *cp++ = -1; if (rn_inithead((void **)&mask_rnhead, 0) == 0) panic("rn_init 2"); }