2 * Copyright (c) 2003, 2004 Matthew Dillon. All rights reserved.
3 * Copyright (c) 2003, 2004 Jeffrey M. Hsu. All rights reserved.
4 * Copyright (c) 2003 Jonathan Lemon. All rights reserved.
5 * Copyright (c) 2003, 2004 The DragonFly Project. All rights reserved.
7 * This code is derived from software contributed to The DragonFly Project
8 * by Jonathan Lemon, Jeffrey M. Hsu, and Matthew Dillon.
10 * Jonathan Lemon gave Jeffrey Hsu permission to combine his copyright
11 * into this one around July 8 2004.
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of The DragonFly Project nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific, prior written permission.
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
28 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
29 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
30 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
31 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
32 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
33 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
34 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
35 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * $DragonFly: src/sys/net/netisr.c,v 1.49 2008/11/01 10:29:31 sephe Exp $
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/malloc.h>
45 #include <sys/msgport.h>
47 #include <sys/interrupt.h>
48 #include <sys/socket.h>
49 #include <sys/sysctl.h>
51 #include <net/if_var.h>
52 #include <net/netisr.h>
53 #include <machine/cpufunc.h>
55 #include <sys/thread2.h>
56 #include <sys/msgport2.h>
57 #include <net/netmsg2.h>
59 #define NETISR_GET_MPLOCK(ni) \
61 if (((ni)->ni_flags & NETISR_FLAG_MPSAFE) == 0) \
65 #define NETISR_REL_MPLOCK(ni) \
67 if (((ni)->ni_flags & NETISR_FLAG_MPSAFE) == 0) \
71 static void netmsg_sync_func(struct netmsg *msg);
73 struct netmsg_port_registration {
74 TAILQ_ENTRY(netmsg_port_registration) npr_entry;
78 static struct netisr netisrs[NETISR_MAX];
79 static TAILQ_HEAD(,netmsg_port_registration) netreglist;
81 /* Per-CPU thread to handle any protocol. */
82 struct thread netisr_cpu[MAXCPU];
83 lwkt_port netisr_afree_rport;
84 lwkt_port netisr_adone_rport;
85 lwkt_port netisr_apanic_rport;
86 lwkt_port netisr_sync_port;
88 static int (*netmsg_fwd_port_fn)(lwkt_port_t, lwkt_msg_t);
90 static int netisr_mpsafe_thread = 0;
91 TUNABLE_INT("net.netisr.mpsafe_thread", &netisr_mpsafe_thread);
93 SYSCTL_NODE(_net, OID_AUTO, netisr, CTLFLAG_RW, 0, "netisr");
94 SYSCTL_INT(_net_netisr, OID_AUTO, mpsafe_thread, CTLFLAG_RW,
95 &netisr_mpsafe_thread, 0,
96 "0:BGL, 1:Adaptive BGL, 2:No BGL(experimental)");
99 NETISR_TO_MSGF(const struct netisr *ni)
103 if (ni->ni_flags & NETISR_FLAG_MPSAFE)
104 msg_flags |= MSGF_MPSAFE;
109 * netisr_afree_rport replymsg function, only used to handle async
110 * messages which the sender has abandoned to their fate.
113 netisr_autofree_reply(lwkt_port_t port, lwkt_msg_t msg)
115 kfree(msg, M_LWKTMSG);
119 * We need a custom putport function to handle the case where the
120 * message target is the current thread's message port. This case
121 * can occur when the TCP or UDP stack does a direct callback to NFS and NFS
122 * then turns around and executes a network operation synchronously.
124 * To prevent deadlocking, we must execute these self-referential messages
125 * synchronously, effectively turning the message into a glorified direct
126 * procedure call back into the protocol stack. The operation must be
127 * complete on return or we will deadlock, so panic if it isn't.
130 netmsg_put_port(lwkt_port_t port, lwkt_msg_t lmsg)
132 netmsg_t netmsg = (void *)lmsg;
134 if ((lmsg->ms_flags & MSGF_SYNC) && port == &curthread->td_msgport) {
135 netmsg->nm_dispatch(netmsg);
136 if ((lmsg->ms_flags & MSGF_DONE) == 0)
137 panic("netmsg_put_port: self-referential deadlock on netport");
140 return(netmsg_fwd_port_fn(port, lmsg));
145 * UNIX DOMAIN sockets still have to run their uipc functions synchronously,
146 * because they depend on the user proc context for a number of things
147 * (like creds) which we have not yet incorporated into the message structure.
149 * However, we maintain or message/port abstraction. Having a special
150 * synchronous port which runs the commands synchronously gives us the
151 * ability to serialize operations in one place later on when we start
155 netmsg_sync_putport(lwkt_port_t port, lwkt_msg_t lmsg)
157 netmsg_t netmsg = (void *)lmsg;
159 KKASSERT((lmsg->ms_flags & MSGF_DONE) == 0);
161 lmsg->ms_target_port = port; /* required for abort */
162 netmsg->nm_dispatch(netmsg);
171 TAILQ_INIT(&netreglist);
174 * Create default per-cpu threads for generic protocol handling.
176 for (i = 0; i < ncpus; ++i) {
177 lwkt_create(netmsg_service_loop, &netisr_mpsafe_thread, NULL,
178 &netisr_cpu[i], TDF_NETWORK | TDF_MPSAFE, i,
180 netmsg_service_port_init(&netisr_cpu[i].td_msgport);
184 * The netisr_afree_rport is a special reply port which automatically
185 * frees the replied message. The netisr_adone_rport simply marks
186 * the message as being done. The netisr_apanic_rport panics if
187 * the message is replied to.
189 lwkt_initport_replyonly(&netisr_afree_rport, netisr_autofree_reply);
190 lwkt_initport_replyonly_null(&netisr_adone_rport);
191 lwkt_initport_panic(&netisr_apanic_rport);
194 * The netisr_syncport is a special port which executes the message
195 * synchronously and waits for it if EASYNC is returned.
197 lwkt_initport_putonly(&netisr_sync_port, netmsg_sync_putport);
200 SYSINIT(netisr, SI_SUB_PRE_DRIVERS, SI_ORDER_FIRST, netisr_init, NULL);
203 * Finish initializing the message port for a netmsg service. This also
204 * registers the port for synchronous cleanup operations such as when an
205 * ifnet is being destroyed. There is no deregistration API yet.
208 netmsg_service_port_init(lwkt_port_t port)
210 struct netmsg_port_registration *reg;
213 * Override the putport function. Our custom function checks for
214 * self-references and executes such commands synchronously.
216 if (netmsg_fwd_port_fn == NULL)
217 netmsg_fwd_port_fn = port->mp_putport;
218 KKASSERT(netmsg_fwd_port_fn == port->mp_putport);
219 port->mp_putport = netmsg_put_port;
222 * Keep track of ports using the netmsg API so we can synchronize
223 * certain operations (such as freeing an ifnet structure) across all
226 reg = kmalloc(sizeof(*reg), M_TEMP, M_WAITOK|M_ZERO);
227 reg->npr_port = port;
228 TAILQ_INSERT_TAIL(&netreglist, reg, npr_entry);
232 * This function synchronizes the caller with all netmsg services. For
233 * example, if an interface is being removed we must make sure that all
234 * packets related to that interface complete processing before the structure
235 * can actually be freed. This sort of synchronization is an alternative to
236 * ref-counting the netif, removing the ref counting overhead in favor of
237 * placing additional overhead in the netif freeing sequence (where it is
241 netmsg_service_sync(void)
243 struct netmsg_port_registration *reg;
246 netmsg_init(&smsg, &curthread->td_msgport, MSGF_MPSAFE, netmsg_sync_func);
248 TAILQ_FOREACH(reg, &netreglist, npr_entry) {
249 lwkt_domsg(reg->npr_port, &smsg.nm_lmsg, 0);
254 * The netmsg function simply replies the message. API semantics require
255 * EASYNC to be returned if the netmsg function disposes of the message.
258 netmsg_sync_func(struct netmsg *msg)
260 lwkt_replymsg(&msg->nm_lmsg, 0);
264 * Return current BGL lock state (1:locked, 0: unlocked)
267 netmsg_service(struct netmsg *msg, int mpsafe_mode, int mplocked)
270 * Adjust the mplock dynamically.
272 switch (mpsafe_mode) {
273 case NETMSG_SERVICE_ADAPTIVE: /* Adaptive BGL */
274 if (msg->nm_lmsg.ms_flags & MSGF_MPSAFE) {
279 msg->nm_dispatch(msg);
280 /* Leave mpunlocked */
284 /* mplocked = 1; not needed */
286 msg->nm_dispatch(msg);
289 /* Leave mpunlocked, next msg might be mpsafe */
293 case NETMSG_SERVICE_MPSAFE: /* No BGL */
298 msg->nm_dispatch(msg);
299 /* Leave mpunlocked */
307 msg->nm_dispatch(msg);
315 * Generic netmsg service loop. Some protocols may roll their own but all
316 * must do the basic command dispatch function call done here.
319 netmsg_service_loop(void *arg)
322 int mplocked, *mpsafe_mode = arg;
325 * Thread was started with TDF_MPSAFE
332 while ((msg = lwkt_waitport(&curthread->td_msgport, 0))) {
333 mplocked = netmsg_service(msg, *mpsafe_mode, mplocked);
338 * Call the netisr directly.
339 * Queueing may be done in the msg port layer at its discretion.
342 netisr_dispatch(int num, struct mbuf *m)
344 /* just queue it for now XXX JH */
345 netisr_queue(num, m);
349 * Same as netisr_dispatch(), but always queue.
350 * This is either used in places where we are not confident that
351 * direct dispatch is possible, or where queueing is required.
354 netisr_queue(int num, struct mbuf *m)
357 struct netmsg_packet *pmsg;
360 KASSERT((num > 0 && num <= (sizeof(netisrs)/sizeof(netisrs[0]))),
361 ("%s: bad isr %d", __func__, num));
364 if (ni->ni_handler == NULL) {
365 kprintf("%s: unregistered isr %d\n", __func__, num);
370 if ((port = ni->ni_mport(&m)) == NULL)
373 pmsg = &m->m_hdr.mh_netmsg;
375 netmsg_init(&pmsg->nm_netmsg, &netisr_apanic_rport, NETISR_TO_MSGF(ni),
378 pmsg->nm_netmsg.nm_lmsg.u.ms_result = num;
379 lwkt_sendmsg(port, &pmsg->nm_netmsg.nm_lmsg);
384 netisr_register(int num, lwkt_portfn_t mportfn, netisr_fn_t handler,
389 KASSERT((num > 0 && num <= (sizeof(netisrs)/sizeof(netisrs[0]))),
390 ("netisr_register: bad isr %d", num));
393 ni->ni_mport = mportfn;
394 ni->ni_handler = handler;
395 ni->ni_flags = flags;
396 netmsg_init(&ni->ni_netmsg, &netisr_adone_rport, NETISR_TO_MSGF(ni), NULL);
400 netisr_unregister(int num)
402 KASSERT((num > 0 && num <= (sizeof(netisrs)/sizeof(netisrs[0]))),
403 ("unregister_netisr: bad isr number: %d\n", num));
410 * Return message port for default handler thread on CPU 0.
413 cpu0_portfn(struct mbuf **mptr)
415 return (&netisr_cpu[0].td_msgport);
421 return (&netisr_cpu[cpu].td_msgport);
425 * If the current thread is a network protocol thread (TDF_NETWORK),
426 * then return the current thread's message port.
427 * XXX Else, return the current CPU's netisr message port.
432 if (curthread->td_flags & TDF_NETWORK)
433 return &curthread->td_msgport;
435 return cpu_portfn(mycpuid);
440 cpu0_soport(struct socket *so __unused, struct sockaddr *nam __unused,
441 struct mbuf **dummy __unused, int req __unused)
443 return (&netisr_cpu[0].td_msgport);
447 cpu0_ctlport(int cmd __unused, struct sockaddr *sa __unused,
448 void *extra __unused)
450 return (&netisr_cpu[0].td_msgport);
454 sync_soport(struct socket *so __unused, struct sockaddr *nam __unused,
455 struct mbuf **dummy __unused, int req __unused)
457 return (&netisr_sync_port);
461 * schednetisr() is used to call the netisr handler from the appropriate
462 * netisr thread for polling and other purposes.
464 * This function may be called from a hard interrupt or IPI and must be
465 * MP SAFE and non-blocking. We use a fixed per-cpu message instead of
466 * trying to allocate one. We must get ourselves onto the target cpu
467 * to safely check the MSGF_DONE bit on the message but since the message
468 * will be sent to that cpu anyway this does not add any extra work beyond
469 * what lwkt_sendmsg() would have already had to do to schedule the target
473 schednetisr_remote(void *data)
476 struct netisr *ni = &netisrs[num];
477 lwkt_port_t port = &netisr_cpu[0].td_msgport;
480 pmsg = &netisrs[num].ni_netmsg;
482 if (pmsg->nm_lmsg.ms_flags & MSGF_DONE) {
483 netmsg_init(pmsg, &netisr_adone_rport, NETISR_TO_MSGF(ni),
485 pmsg->nm_lmsg.u.ms_result = num;
486 lwkt_sendmsg(port, &pmsg->nm_lmsg);
494 KASSERT((num > 0 && num <= (sizeof(netisrs)/sizeof(netisrs[0]))),
495 ("schednetisr: bad isr %d", num));
497 if (mycpu->gd_cpuid != 0)
498 lwkt_send_ipiq(globaldata_find(0), schednetisr_remote, (void *)num);
500 schednetisr_remote((void *)num);
502 schednetisr_remote((void *)num);
507 netisr_find_port(int num, struct mbuf **m0)
511 struct mbuf *m = *m0;
515 KASSERT((num > 0 && num <= (sizeof(netisrs)/sizeof(netisrs[0]))),
516 ("%s: bad isr %d", __func__, num));
519 if (ni->ni_mport == NULL) {
520 kprintf("%s: unregistered isr %d\n", __func__, num);
525 if ((port = ni->ni_mport(&m)) == NULL)
533 netisr_run(int num, struct mbuf *m)
536 struct netmsg_packet *pmsg;
538 KASSERT((num > 0 && num <= (sizeof(netisrs)/sizeof(netisrs[0]))),
539 ("%s: bad isr %d", __func__, num));
542 if (ni->ni_handler == NULL) {
543 kprintf("%s: unregistered isr %d\n", __func__, num);
548 pmsg = &m->m_hdr.mh_netmsg;
550 netmsg_init(&pmsg->nm_netmsg, &netisr_apanic_rport, 0, ni->ni_handler);
552 pmsg->nm_netmsg.nm_lmsg.u.ms_result = num;
554 NETISR_GET_MPLOCK(ni);
555 ni->ni_handler(&pmsg->nm_netmsg);
556 NETISR_REL_MPLOCK(ni);