sys/vfs/hammer2: Cleanup static chain function prototypes
[dragonfly.git] / sys / vfs / hammer2 / hammer2_chain.c
1 /*
2  * Copyright (c) 2011-2020 The DragonFly Project.  All rights reserved.
3  *
4  * This code is derived from software contributed to The DragonFly Project
5  * by Matthew Dillon <dillon@dragonflybsd.org>
6  * and Venkatesh Srinivas <vsrinivas@dragonflybsd.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in
16  *    the documentation and/or other materials provided with the
17  *    distribution.
18  * 3. Neither the name of The DragonFly Project nor the names of its
19  *    contributors may be used to endorse or promote products derived
20  *    from this software without specific, prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
26  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
30  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
32  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 /*
36  * This subsystem implements most of the core support functions for
37  * the hammer2_chain structure.
38  *
39  * Chains are the in-memory version on media objects (volume header, inodes,
40  * indirect blocks, data blocks, etc).  Chains represent a portion of the
41  * HAMMER2 topology.
42  *
43  * Chains are no-longer delete-duplicated.  Instead, the original in-memory
44  * chain will be moved along with its block reference (e.g. for things like
45  * renames, hardlink operations, modifications, etc), and will be indexed
46  * on a secondary list for flush handling instead of propagating a flag
47  * upward to the root.
48  *
49  * Concurrent front-end operations can still run against backend flushes
50  * as long as they do not cross the current flush boundary.  An operation
51  * running above the current flush (in areas not yet flushed) can become
52  * part of the current flush while ano peration running below the current
53  * flush can become part of the next flush.
54  */
55 #include <sys/cdefs.h>
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/types.h>
59 #include <sys/lock.h>
60 #include <sys/kern_syscall.h>
61 #include <sys/uuid.h>
62
63 #include <crypto/sha2/sha2.h>
64
65 #include "hammer2.h"
66
67 static hammer2_chain_t *hammer2_chain_create_indirect(
68                 hammer2_chain_t *parent,
69                 hammer2_key_t key, int keybits,
70                 hammer2_tid_t mtid, int for_type, int *errorp);
71 static int hammer2_chain_delete_obref(hammer2_chain_t *parent,
72                 hammer2_chain_t *chain,
73                 hammer2_tid_t mtid, int flags,
74                 hammer2_blockref_t *obref);
75 static hammer2_chain_t *hammer2_combined_find(
76                 hammer2_chain_t *parent,
77                 hammer2_blockref_t *base, int count,
78                 hammer2_key_t *key_nextp,
79                 hammer2_key_t key_beg, hammer2_key_t key_end,
80                 hammer2_blockref_t **bresp);
81 static hammer2_chain_t *hammer2_chain_lastdrop(hammer2_chain_t *chain,
82                                 int depth);
83 static void hammer2_chain_lru_flush(hammer2_pfs_t *pmp);
84
85 /*
86  * There are many degenerate situations where an extreme rate of console
87  * output can occur from warnings and errors.  Make sure this output does
88  * not impede operations.
89  */
90 static struct krate krate_h2chk = { .freq = 5 };
91 static struct krate krate_h2me = { .freq = 1 };
92 static struct krate krate_h2em = { .freq = 1 };
93
94 /*
95  * Basic RBTree for chains (core.rbtree).
96  */
97 RB_GENERATE(hammer2_chain_tree, hammer2_chain, rbnode, hammer2_chain_cmp);
98
99 int
100 hammer2_chain_cmp(hammer2_chain_t *chain1, hammer2_chain_t *chain2)
101 {
102         hammer2_key_t c1_beg;
103         hammer2_key_t c1_end;
104         hammer2_key_t c2_beg;
105         hammer2_key_t c2_end;
106
107         /*
108          * Compare chains.  Overlaps are not supposed to happen and catch
109          * any software issues early we count overlaps as a match.
110          */
111         c1_beg = chain1->bref.key;
112         c1_end = c1_beg + ((hammer2_key_t)1 << chain1->bref.keybits) - 1;
113         c2_beg = chain2->bref.key;
114         c2_end = c2_beg + ((hammer2_key_t)1 << chain2->bref.keybits) - 1;
115
116         if (c1_end < c2_beg)    /* fully to the left */
117                 return(-1);
118         if (c1_beg > c2_end)    /* fully to the right */
119                 return(1);
120         return(0);              /* overlap (must not cross edge boundary) */
121 }
122
123 /*
124  * Assert that a chain has no media data associated with it.
125  */
126 static __inline void
127 hammer2_chain_assert_no_data(hammer2_chain_t *chain)
128 {
129         KKASSERT(chain->dio == NULL);
130         if (chain->bref.type != HAMMER2_BREF_TYPE_VOLUME &&
131             chain->bref.type != HAMMER2_BREF_TYPE_FREEMAP &&
132             chain->data) {
133                 panic("hammer2_chain_assert_no_data: chain %p still has data",
134                     chain);
135         }
136 }
137
138 /*
139  * Make a chain visible to the flusher.  The flusher operates using a top-down
140  * recursion based on the ONFLUSH flag.  It locates MODIFIED and UPDATE chains,
141  * flushes them, and updates blocks back to the volume root.
142  *
143  * This routine sets the ONFLUSH flag upward from the triggering chain until
144  * it hits an inode root or the volume root.  Inode chains serve as inflection
145  * points, requiring the flusher to bridge across trees.  Inodes include
146  * regular inodes, PFS roots (pmp->iroot), and the media super root
147  * (spmp->iroot).
148  */
149 void
150 hammer2_chain_setflush(hammer2_chain_t *chain)
151 {
152         hammer2_chain_t *parent;
153
154         if ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
155                 hammer2_spin_sh(&chain->core.spin);
156                 while ((chain->flags & HAMMER2_CHAIN_ONFLUSH) == 0) {
157                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONFLUSH);
158                         if (chain->bref.type == HAMMER2_BREF_TYPE_INODE)
159                                 break;
160                         if ((parent = chain->parent) == NULL)
161                                 break;
162                         hammer2_spin_sh(&parent->core.spin);
163                         hammer2_spin_unsh(&chain->core.spin);
164                         chain = parent;
165                 }
166                 hammer2_spin_unsh(&chain->core.spin);
167         }
168 }
169
170 /*
171  * Allocate a new disconnected chain element representing the specified
172  * bref.  chain->refs is set to 1 and the passed bref is copied to
173  * chain->bref.  chain->bytes is derived from the bref.
174  *
175  * chain->pmp inherits pmp unless the chain is an inode (other than the
176  * super-root inode).
177  *
178  * NOTE: Returns a referenced but unlocked (because there is no core) chain.
179  */
180 hammer2_chain_t *
181 hammer2_chain_alloc(hammer2_dev_t *hmp, hammer2_pfs_t *pmp,
182                     hammer2_blockref_t *bref)
183 {
184         hammer2_chain_t *chain;
185         u_int bytes;
186
187         /*
188          * Special case - radix of 0 indicates a chain that does not
189          * need a data reference (context is completely embedded in the
190          * bref).
191          */
192         if ((int)(bref->data_off & HAMMER2_OFF_MASK_RADIX))
193                 bytes = 1U << (int)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
194         else
195                 bytes = 0;
196
197         atomic_add_long(&hammer2_chain_allocs, 1);
198
199         /*
200          * Construct the appropriate system structure.
201          */
202         switch(bref->type) {
203         case HAMMER2_BREF_TYPE_DIRENT:
204         case HAMMER2_BREF_TYPE_INODE:
205         case HAMMER2_BREF_TYPE_INDIRECT:
206         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
207         case HAMMER2_BREF_TYPE_DATA:
208         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
209                 chain = kmalloc(sizeof(*chain), hmp->mchain, M_WAITOK | M_ZERO);
210                 break;
211         case HAMMER2_BREF_TYPE_VOLUME:
212         case HAMMER2_BREF_TYPE_FREEMAP:
213                 /*
214                  * Only hammer2_chain_bulksnap() calls this function with these
215                  * types.
216                  */
217                 chain = kmalloc(sizeof(*chain), hmp->mchain, M_WAITOK | M_ZERO);
218                 break;
219         default:
220                 chain = NULL;
221                 panic("hammer2_chain_alloc: unrecognized blockref type: %d",
222                       bref->type);
223         }
224
225         /*
226          * Initialize the new chain structure.  pmp must be set to NULL for
227          * chains belonging to the super-root topology of a device mount.
228          */
229         if (pmp == hmp->spmp)
230                 chain->pmp = NULL;
231         else
232                 chain->pmp = pmp;
233
234         chain->hmp = hmp;
235         chain->bref = *bref;
236         chain->bytes = bytes;
237         chain->refs = 1;
238         chain->flags = HAMMER2_CHAIN_ALLOCATED;
239         lockinit(&chain->diolk, "chdio", 0, 0);
240
241         /*
242          * Set the PFS boundary flag if this chain represents a PFS root.
243          */
244         if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
245                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_PFSBOUNDARY);
246         hammer2_chain_core_init(chain);
247
248         return (chain);
249 }
250
251 /*
252  * Initialize a chain's core structure.  This structure used to be allocated
253  * but is now embedded.
254  *
255  * The core is not locked.  No additional refs on the chain are made.
256  * (trans) must not be NULL if (core) is not NULL.
257  */
258 void
259 hammer2_chain_core_init(hammer2_chain_t *chain)
260 {
261         /*
262          * Fresh core under nchain (no multi-homing of ochain's
263          * sub-tree).
264          */
265         RB_INIT(&chain->core.rbtree);   /* live chains */
266         hammer2_mtx_init(&chain->lock, "h2chain");
267 }
268
269 /*
270  * Add a reference to a chain element, preventing its destruction.
271  *
272  * (can be called with spinlock held)
273  */
274 void
275 hammer2_chain_ref(hammer2_chain_t *chain)
276 {
277         if (atomic_fetchadd_int(&chain->refs, 1) == 0) {
278                 /*
279                  * Just flag that the chain was used and should be recycled
280                  * on the LRU if it encounters it later.
281                  */
282                 if (chain->flags & HAMMER2_CHAIN_ONLRU)
283                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_LRUHINT);
284
285 #if 0
286                 /*
287                  * REMOVED - reduces contention, lru_list is more heuristical
288                  * now.
289                  *
290                  * 0->non-zero transition must ensure that chain is removed
291                  * from the LRU list.
292                  *
293                  * NOTE: Already holding lru_spin here so we cannot call
294                  *       hammer2_chain_ref() to get it off lru_list, do
295                  *       it manually.
296                  */
297                 if (chain->flags & HAMMER2_CHAIN_ONLRU) {
298                         hammer2_pfs_t *pmp = chain->pmp;
299                         hammer2_spin_ex(&pmp->lru_spin);
300                         if (chain->flags & HAMMER2_CHAIN_ONLRU) {
301                                 atomic_add_int(&pmp->lru_count, -1);
302                                 atomic_clear_int(&chain->flags,
303                                                  HAMMER2_CHAIN_ONLRU);
304                                 TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
305                         }
306                         hammer2_spin_unex(&pmp->lru_spin);
307                 }
308 #endif
309         }
310 }
311
312 /*
313  * Ref a locked chain and force the data to be held across an unlock.
314  * Chain must be currently locked.  The user of the chain who desires
315  * to release the hold must call hammer2_chain_lock_unhold() to relock
316  * and unhold the chain, then unlock normally, or may simply call
317  * hammer2_chain_drop_unhold() (which is safer against deadlocks).
318  */
319 void
320 hammer2_chain_ref_hold(hammer2_chain_t *chain)
321 {
322         atomic_add_int(&chain->lockcnt, 1);
323         hammer2_chain_ref(chain);
324 }
325
326 /*
327  * Insert the chain in the core rbtree.
328  *
329  * Normal insertions are placed in the live rbtree.  Insertion of a deleted
330  * chain is a special case used by the flush code that is placed on the
331  * unstaged deleted list to avoid confusing the live view.
332  */
333 #define HAMMER2_CHAIN_INSERT_SPIN       0x0001
334 #define HAMMER2_CHAIN_INSERT_LIVE       0x0002
335 #define HAMMER2_CHAIN_INSERT_RACE       0x0004
336
337 static
338 int
339 hammer2_chain_insert(hammer2_chain_t *parent, hammer2_chain_t *chain,
340                      int flags, int generation)
341 {
342         hammer2_chain_t *xchain;
343         int error = 0;
344
345         if (flags & HAMMER2_CHAIN_INSERT_SPIN)
346                 hammer2_spin_ex(&parent->core.spin);
347
348         /*
349          * Interlocked by spinlock, check for race
350          */
351         if ((flags & HAMMER2_CHAIN_INSERT_RACE) &&
352             parent->core.generation != generation) {
353                 error = HAMMER2_ERROR_EAGAIN;
354                 goto failed;
355         }
356
357         /*
358          * Insert chain
359          */
360         xchain = RB_INSERT(hammer2_chain_tree, &parent->core.rbtree, chain);
361         KASSERT(xchain == NULL,
362                 ("hammer2_chain_insert: collision %p %p (key=%016jx)",
363                 chain, xchain, chain->bref.key));
364         atomic_set_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
365         chain->parent = parent;
366         ++parent->core.chain_count;
367         ++parent->core.generation;      /* XXX incs for _get() too, XXX */
368
369         /*
370          * We have to keep track of the effective live-view blockref count
371          * so the create code knows when to push an indirect block.
372          */
373         if (flags & HAMMER2_CHAIN_INSERT_LIVE)
374                 atomic_add_int(&parent->core.live_count, 1);
375 failed:
376         if (flags & HAMMER2_CHAIN_INSERT_SPIN)
377                 hammer2_spin_unex(&parent->core.spin);
378         return error;
379 }
380
381 /*
382  * Drop the caller's reference to the chain.  When the ref count drops to
383  * zero this function will try to disassociate the chain from its parent and
384  * deallocate it, then recursely drop the parent using the implied ref
385  * from the chain's chain->parent.
386  *
387  * Nobody should own chain's mutex on the 1->0 transition, unless this drop
388  * races an acquisition by another cpu.  Therefore we can loop if we are
389  * unable to acquire the mutex, and refs is unlikely to be 1 unless we again
390  * race against another drop.
391  */
392 void
393 hammer2_chain_drop(hammer2_chain_t *chain)
394 {
395         u_int refs;
396
397         KKASSERT(chain->refs > 0);
398
399         while (chain) {
400                 refs = chain->refs;
401                 cpu_ccfence();
402                 KKASSERT(refs > 0);
403
404                 if (refs == 1) {
405                         if (hammer2_mtx_ex_try(&chain->lock) == 0)
406                                 chain = hammer2_chain_lastdrop(chain, 0);
407                         /* retry the same chain, or chain from lastdrop */
408                 } else {
409                         if (atomic_cmpset_int(&chain->refs, refs, refs - 1))
410                                 break;
411                         /* retry the same chain */
412                 }
413                 cpu_pause();
414         }
415 }
416
417 /*
418  * Unhold a held and probably not-locked chain, ensure that the data is
419  * dropped on the 1->0 transition of lockcnt by obtaining an exclusive
420  * lock and then simply unlocking the chain.
421  */
422 void
423 hammer2_chain_unhold(hammer2_chain_t *chain)
424 {
425         u_int lockcnt;
426         int iter = 0;
427
428         for (;;) {
429                 lockcnt = chain->lockcnt;
430                 cpu_ccfence();
431                 if (lockcnt > 1) {
432                         if (atomic_cmpset_int(&chain->lockcnt,
433                                               lockcnt, lockcnt - 1)) {
434                                 break;
435                         }
436                 } else if (hammer2_mtx_ex_try(&chain->lock) == 0) {
437                         hammer2_chain_unlock(chain);
438                         break;
439                 } else {
440                         /*
441                          * This situation can easily occur on SMP due to
442                          * the gap inbetween the 1->0 transition and the
443                          * final unlock.  We cannot safely block on the
444                          * mutex because lockcnt might go above 1.
445                          *
446                          * XXX Sleep for one tick if it takes too long.
447                          */
448                         if (++iter > 1000) {
449                                 if (iter > 1000 + hz) {
450                                         kprintf("hammer2: h2race1 %p\n", chain);
451                                         iter = 1000;
452                                 }
453                                 tsleep(&iter, 0, "h2race1", 1);
454                         }
455                         cpu_pause();
456                 }
457         }
458 }
459
460 void
461 hammer2_chain_drop_unhold(hammer2_chain_t *chain)
462 {
463         hammer2_chain_unhold(chain);
464         hammer2_chain_drop(chain);
465 }
466
467 void
468 hammer2_chain_rehold(hammer2_chain_t *chain)
469 {
470         hammer2_chain_lock(chain, HAMMER2_RESOLVE_SHARED);
471         atomic_add_int(&chain->lockcnt, 1);
472         hammer2_chain_unlock(chain);
473 }
474
475 /*
476  * Handles the (potential) last drop of chain->refs from 1->0.  Called with
477  * the mutex exclusively locked, refs == 1, and lockcnt 0.  SMP races are
478  * possible against refs and lockcnt.  We must dispose of the mutex on chain.
479  *
480  * This function returns an unlocked chain for recursive drop or NULL.  It
481  * can return the same chain if it determines it has raced another ref.
482  *
483  * --
484  *
485  * When two chains need to be recursively dropped we use the chain we
486  * would otherwise free to placehold the additional chain.  It's a bit
487  * convoluted but we can't just recurse without potentially blowing out
488  * the kernel stack.
489  *
490  * The chain cannot be freed if it has any children.
491  * The chain cannot be freed if flagged MODIFIED unless we can dispose of it.
492  * The chain cannot be freed if flagged UPDATE unless we can dispose of it.
493  * Any dedup registration can remain intact.
494  *
495  * The core spinlock is allowed to nest child-to-parent (not parent-to-child).
496  */
497 static
498 hammer2_chain_t *
499 hammer2_chain_lastdrop(hammer2_chain_t *chain, int depth)
500 {
501         hammer2_pfs_t *pmp;
502         hammer2_dev_t *hmp;
503         hammer2_chain_t *parent;
504         hammer2_chain_t *rdrop;
505
506         /*
507          * We need chain's spinlock to interlock the sub-tree test.
508          * We already have chain's mutex, protecting chain->parent.
509          *
510          * Remember that chain->refs can be in flux.
511          */
512         hammer2_spin_ex(&chain->core.spin);
513
514         if (chain->parent != NULL) {
515                 /*
516                  * If the chain has a parent the UPDATE bit prevents scrapping
517                  * as the chain is needed to properly flush the parent.  Try
518                  * to complete the 1->0 transition and return NULL.  Retry
519                  * (return chain) if we are unable to complete the 1->0
520                  * transition, else return NULL (nothing more to do).
521                  *
522                  * If the chain has a parent the MODIFIED bit prevents
523                  * scrapping.
524                  *
525                  * Chains with UPDATE/MODIFIED are *not* put on the LRU list!
526                  */
527                 if (chain->flags & (HAMMER2_CHAIN_UPDATE |
528                                     HAMMER2_CHAIN_MODIFIED)) {
529                         if (atomic_cmpset_int(&chain->refs, 1, 0)) {
530                                 hammer2_spin_unex(&chain->core.spin);
531                                 hammer2_chain_assert_no_data(chain);
532                                 hammer2_mtx_unlock(&chain->lock);
533                                 chain = NULL;
534                         } else {
535                                 hammer2_spin_unex(&chain->core.spin);
536                                 hammer2_mtx_unlock(&chain->lock);
537                         }
538                         return (chain);
539                 }
540                 /* spinlock still held */
541         } else if (chain->bref.type == HAMMER2_BREF_TYPE_VOLUME ||
542                    chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP) {
543                 /*
544                  * Retain the static vchain and fchain.  Clear bits that
545                  * are not relevant.  Do not clear the MODIFIED bit,
546                  * and certainly do not put it on the delayed-flush queue.
547                  */
548                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
549         } else {
550                 /*
551                  * The chain has no parent and can be flagged for destruction.
552                  * Since it has no parent, UPDATE can also be cleared.
553                  */
554                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
555                 if (chain->flags & HAMMER2_CHAIN_UPDATE)
556                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
557
558                 /*
559                  * If the chain has children we must propagate the DESTROY
560                  * flag downward and rip the disconnected topology apart.
561                  * This is accomplished by calling hammer2_flush() on the
562                  * chain.
563                  *
564                  * Any dedup is already handled by the underlying DIO, so
565                  * we do not have to specifically flush it here.
566                  */
567                 if (chain->core.chain_count) {
568                         hammer2_spin_unex(&chain->core.spin);
569                         hammer2_flush(chain, HAMMER2_FLUSH_TOP |
570                                              HAMMER2_FLUSH_ALL);
571                         hammer2_mtx_unlock(&chain->lock);
572
573                         return(chain);  /* retry drop */
574                 }
575
576                 /*
577                  * Otherwise we can scrap the MODIFIED bit if it is set,
578                  * and continue along the freeing path.
579                  *
580                  * Be sure to clean-out any dedup bits.  Without a parent
581                  * this chain will no longer be visible to the flush code.
582                  * Easy check data_off to avoid the volume root.
583                  */
584                 if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
585                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
586                         atomic_add_long(&hammer2_count_modified_chains, -1);
587                         if (chain->pmp)
588                                 hammer2_pfs_memory_wakeup(chain->pmp, -1);
589                 }
590                 /* spinlock still held */
591         }
592
593         /* spinlock still held */
594
595         /*
596          * If any children exist we must leave the chain intact with refs == 0.
597          * They exist because chains are retained below us which have refs or
598          * may require flushing.
599          *
600          * Retry (return chain) if we fail to transition the refs to 0, else
601          * return NULL indication nothing more to do.
602          *
603          * Chains with children are NOT put on the LRU list.
604          */
605         if (chain->core.chain_count) {
606                 if (atomic_cmpset_int(&chain->refs, 1, 0)) {
607                         hammer2_spin_unex(&chain->core.spin);
608                         hammer2_chain_assert_no_data(chain);
609                         hammer2_mtx_unlock(&chain->lock);
610                         chain = NULL;
611                 } else {
612                         hammer2_spin_unex(&chain->core.spin);
613                         hammer2_mtx_unlock(&chain->lock);
614                 }
615                 return (chain);
616         }
617         /* spinlock still held */
618         /* no chains left under us */
619
620         /*
621          * chain->core has no children left so no accessors can get to our
622          * chain from there.  Now we have to lock the parent core to interlock
623          * remaining possible accessors that might bump chain's refs before
624          * we can safely drop chain's refs with intent to free the chain.
625          */
626         hmp = chain->hmp;
627         pmp = chain->pmp;       /* can be NULL */
628         rdrop = NULL;
629
630         parent = chain->parent;
631
632         /*
633          * WARNING! chain's spin lock is still held here, and other spinlocks
634          *          will be acquired and released in the code below.  We
635          *          cannot be making fancy procedure calls!
636          */
637
638         /*
639          * We can cache the chain if it is associated with a pmp
640          * and not flagged as being destroyed or requesting a full
641          * release.  In this situation the chain is not removed
642          * from its parent, i.e. it can still be looked up.
643          *
644          * We intentionally do not cache DATA chains because these
645          * were likely used to load data into the logical buffer cache
646          * and will not be accessed again for some time.
647          */
648         if ((chain->flags &
649              (HAMMER2_CHAIN_DESTROY | HAMMER2_CHAIN_RELEASE)) == 0 &&
650             chain->pmp &&
651             chain->bref.type != HAMMER2_BREF_TYPE_DATA) {
652                 if (parent)
653                         hammer2_spin_ex(&parent->core.spin);
654                 if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
655                         /*
656                          * 1->0 transition failed, retry.  Do not drop
657                          * the chain's data yet!
658                          */
659                         if (parent)
660                                 hammer2_spin_unex(&parent->core.spin);
661                         hammer2_spin_unex(&chain->core.spin);
662                         hammer2_mtx_unlock(&chain->lock);
663
664                         return(chain);
665                 }
666
667                 /*
668                  * Success
669                  */
670                 hammer2_chain_assert_no_data(chain);
671
672                 /*
673                  * Make sure we are on the LRU list, clean up excessive
674                  * LRU entries.  We can only really drop one but there might
675                  * be other entries that we can remove from the lru_list
676                  * without dropping.
677                  *
678                  * NOTE: HAMMER2_CHAIN_ONLRU may only be safely set when
679                  *       chain->core.spin AND pmp->lru_spin are held, but
680                  *       can be safely cleared only holding pmp->lru_spin.
681                  */
682                 if ((chain->flags & HAMMER2_CHAIN_ONLRU) == 0) {
683                         hammer2_spin_ex(&pmp->lru_spin);
684                         if ((chain->flags & HAMMER2_CHAIN_ONLRU) == 0) {
685                                 atomic_set_int(&chain->flags,
686                                                HAMMER2_CHAIN_ONLRU);
687                                 TAILQ_INSERT_TAIL(&pmp->lru_list,
688                                                   chain, lru_node);
689                                 atomic_add_int(&pmp->lru_count, 1);
690                         }
691                         if (pmp->lru_count < HAMMER2_LRU_LIMIT)
692                                 depth = 1;      /* disable lru_list flush */
693                         hammer2_spin_unex(&pmp->lru_spin);
694                 } else {
695                         /* disable lru flush */
696                         depth = 1;
697                 }
698
699                 if (parent) {
700                         hammer2_spin_unex(&parent->core.spin);
701                         parent = NULL;  /* safety */
702                 }
703                 hammer2_spin_unex(&chain->core.spin);
704                 hammer2_mtx_unlock(&chain->lock);
705
706                 /*
707                  * lru_list hysteresis (see above for depth overrides).
708                  * Note that depth also prevents excessive lastdrop recursion.
709                  */
710                 if (depth == 0)
711                         hammer2_chain_lru_flush(pmp);
712
713                 return NULL;
714                 /* NOT REACHED */
715         }
716
717         /*
718          * Make sure we are not on the LRU list.
719          */
720         if (chain->flags & HAMMER2_CHAIN_ONLRU) {
721                 hammer2_spin_ex(&pmp->lru_spin);
722                 if (chain->flags & HAMMER2_CHAIN_ONLRU) {
723                         atomic_add_int(&pmp->lru_count, -1);
724                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
725                         TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
726                 }
727                 hammer2_spin_unex(&pmp->lru_spin);
728         }
729
730         /*
731          * Spinlock the parent and try to drop the last ref on chain.
732          * On success determine if we should dispose of the chain
733          * (remove the chain from its parent, etc).
734          *
735          * (normal core locks are top-down recursive but we define
736          * core spinlocks as bottom-up recursive, so this is safe).
737          */
738         if (parent) {
739                 hammer2_spin_ex(&parent->core.spin);
740                 if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
741                         /*
742                          * 1->0 transition failed, retry.
743                          */
744                         hammer2_spin_unex(&parent->core.spin);
745                         hammer2_spin_unex(&chain->core.spin);
746                         hammer2_mtx_unlock(&chain->lock);
747
748                         return(chain);
749                 }
750
751                 /*
752                  * 1->0 transition successful, parent spin held to prevent
753                  * new lookups, chain spinlock held to protect parent field.
754                  * Remove chain from the parent.
755                  *
756                  * If the chain is being removed from the parent's btree but
757                  * is not bmapped, we have to adjust live_count downward.  If
758                  * it is bmapped then the blockref is retained in the parent
759                  * as is its associated live_count.  This case can occur when
760                  * a chain added to the topology is unable to flush and is
761                  * then later deleted.
762                  */
763                 if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
764                         if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) &&
765                             (chain->flags & HAMMER2_CHAIN_BMAPPED) == 0) {
766                                 atomic_add_int(&parent->core.live_count, -1);
767                         }
768                         RB_REMOVE(hammer2_chain_tree,
769                                   &parent->core.rbtree, chain);
770                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
771                         --parent->core.chain_count;
772                         chain->parent = NULL;
773                 }
774
775                 /*
776                  * If our chain was the last chain in the parent's core the
777                  * core is now empty and its parent might have to be
778                  * re-dropped if it has 0 refs.
779                  */
780                 if (parent->core.chain_count == 0) {
781                         rdrop = parent;
782                         atomic_add_int(&rdrop->refs, 1);
783                         /*
784                         if (atomic_cmpset_int(&rdrop->refs, 0, 1) == 0)
785                                 rdrop = NULL;
786                         */
787                 }
788                 hammer2_spin_unex(&parent->core.spin);
789                 parent = NULL;  /* safety */
790                 /* FALL THROUGH */
791         } else {
792                 /*
793                  * No-parent case.
794                  */
795                 if (atomic_cmpset_int(&chain->refs, 1, 0) == 0) {
796                         /*
797                          * 1->0 transition failed, retry.
798                          */
799                         hammer2_spin_unex(&parent->core.spin);
800                         hammer2_spin_unex(&chain->core.spin);
801                         hammer2_mtx_unlock(&chain->lock);
802
803                         return(chain);
804                 }
805         }
806
807         /*
808          * Successful 1->0 transition, no parent, no children... no way for
809          * anyone to ref this chain any more.  We can clean-up and free it.
810          *
811          * We still have the core spinlock, and core's chain_count is 0.
812          * Any parent spinlock is gone.
813          */
814         hammer2_spin_unex(&chain->core.spin);
815         hammer2_chain_assert_no_data(chain);
816         hammer2_mtx_unlock(&chain->lock);
817         KKASSERT(RB_EMPTY(&chain->core.rbtree) &&
818                  chain->core.chain_count == 0);
819
820         /*
821          * All locks are gone, no pointers remain to the chain, finish
822          * freeing it.
823          */
824         KKASSERT((chain->flags & (HAMMER2_CHAIN_UPDATE |
825                                   HAMMER2_CHAIN_MODIFIED)) == 0);
826
827         /*
828          * Once chain resources are gone we can use the now dead chain
829          * structure to placehold what might otherwise require a recursive
830          * drop, because we have potentially two things to drop and can only
831          * return one directly.
832          */
833         if (chain->flags & HAMMER2_CHAIN_ALLOCATED) {
834                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ALLOCATED);
835                 chain->hmp = NULL;
836                 kfree(chain, hmp->mchain);
837         }
838
839         /*
840          * Possible chaining loop when parent re-drop needed.
841          */
842         return(rdrop);
843 }
844
845 /*
846  * Heuristical flush of the LRU, try to reduce the number of entries
847  * on the LRU to (HAMMER2_LRU_LIMIT * 2 / 3).  This procedure is called
848  * only when lru_count exceeds HAMMER2_LRU_LIMIT.
849  */
850 static
851 void
852 hammer2_chain_lru_flush(hammer2_pfs_t *pmp)
853 {
854         hammer2_chain_t *chain;
855
856 again:
857         chain = NULL;
858         hammer2_spin_ex(&pmp->lru_spin);
859         while (pmp->lru_count > HAMMER2_LRU_LIMIT * 2 / 3) {
860                 /*
861                  * Pick a chain off the lru_list, just recycle it quickly
862                  * if LRUHINT is set (the chain was ref'd but left on
863                  * the lru_list, so cycle to the end).
864                  */
865                 chain = TAILQ_FIRST(&pmp->lru_list);
866                 TAILQ_REMOVE(&pmp->lru_list, chain, lru_node);
867
868                 if (chain->flags & HAMMER2_CHAIN_LRUHINT) {
869                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_LRUHINT);
870                         TAILQ_INSERT_TAIL(&pmp->lru_list, chain, lru_node);
871                         chain = NULL;
872                         continue;
873                 }
874
875                 /*
876                  * Ok, we are off the LRU.  We must adjust refs before we
877                  * can safely clear the ONLRU flag.
878                  */
879                 atomic_add_int(&pmp->lru_count, -1);
880                 if (atomic_cmpset_int(&chain->refs, 0, 1)) {
881                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
882                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_RELEASE);
883                         break;
884                 }
885                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONLRU);
886                 chain = NULL;
887         }
888         hammer2_spin_unex(&pmp->lru_spin);
889         if (chain == NULL)
890                 return;
891
892         /*
893          * If we picked a chain off the lru list we may be able to lastdrop
894          * it.  Use a depth of 1 to prevent excessive lastdrop recursion.
895          */
896         while (chain) {
897                 u_int refs;
898
899                 refs = chain->refs;
900                 cpu_ccfence();
901                 KKASSERT(refs > 0);
902
903                 if (refs == 1) {
904                         if (hammer2_mtx_ex_try(&chain->lock) == 0)
905                                 chain = hammer2_chain_lastdrop(chain, 1);
906                         /* retry the same chain, or chain from lastdrop */
907                 } else {
908                         if (atomic_cmpset_int(&chain->refs, refs, refs - 1))
909                                 break;
910                         /* retry the same chain */
911                 }
912                 cpu_pause();
913         }
914         goto again;
915 }
916
917 /*
918  * On last lock release.
919  */
920 static hammer2_io_t *
921 hammer2_chain_drop_data(hammer2_chain_t *chain)
922 {
923         hammer2_io_t *dio;
924
925         if ((dio = chain->dio) != NULL) {
926                 chain->dio = NULL;
927                 chain->data = NULL;
928         } else {
929                 switch(chain->bref.type) {
930                 case HAMMER2_BREF_TYPE_VOLUME:
931                 case HAMMER2_BREF_TYPE_FREEMAP:
932                         break;
933                 default:
934                         if (chain->data != NULL) {
935                                 hammer2_spin_unex(&chain->core.spin);
936                                 panic("chain data not null: "
937                                       "chain %p bref %016jx.%02x "
938                                       "refs %d parent %p dio %p data %p",
939                                       chain, chain->bref.data_off,
940                                       chain->bref.type, chain->refs,
941                                       chain->parent,
942                                       chain->dio, chain->data);
943                         }
944                         KKASSERT(chain->data == NULL);
945                         break;
946                 }
947         }
948         return dio;
949 }
950
951 /*
952  * Lock a referenced chain element, acquiring its data with I/O if necessary,
953  * and specify how you would like the data to be resolved.
954  *
955  * If an I/O or other fatal error occurs, chain->error will be set to non-zero.
956  *
957  * The lock is allowed to recurse, multiple locking ops will aggregate
958  * the requested resolve types.  Once data is assigned it will not be
959  * removed until the last unlock.
960  *
961  * HAMMER2_RESOLVE_NEVER - Do not resolve the data element.
962  *                         (typically used to avoid device/logical buffer
963  *                          aliasing for data)
964  *
965  * HAMMER2_RESOLVE_MAYBE - Do not resolve data elements for chains in
966  *                         the INITIAL-create state (indirect blocks only).
967  *
968  *                         Do not resolve data elements for DATA chains.
969  *                         (typically used to avoid device/logical buffer
970  *                          aliasing for data)
971  *
972  * HAMMER2_RESOLVE_ALWAYS- Always resolve the data element.
973  *
974  * HAMMER2_RESOLVE_SHARED- (flag) The chain is locked shared, otherwise
975  *                         it will be locked exclusive.
976  *
977  * HAMMER2_RESOLVE_NONBLOCK- (flag) The chain is locked non-blocking.  If
978  *                         the lock fails, EAGAIN is returned.
979  *
980  * NOTE: Embedded elements (volume header, inodes) are always resolved
981  *       regardless.
982  *
983  * NOTE: Specifying HAMMER2_RESOLVE_ALWAYS on a newly-created non-embedded
984  *       element will instantiate and zero its buffer, and flush it on
985  *       release.
986  *
987  * NOTE: (data) elements are normally locked RESOLVE_NEVER or RESOLVE_MAYBE
988  *       so as not to instantiate a device buffer, which could alias against
989  *       a logical file buffer.  However, if ALWAYS is specified the
990  *       device buffer will be instantiated anyway.
991  *
992  * NOTE: The return value is always 0 unless NONBLOCK is specified, in which
993  *       case it can be either 0 or EAGAIN.
994  *
995  * WARNING! This function blocks on I/O if data needs to be fetched.  This
996  *          blocking can run concurrent with other compatible lock holders
997  *          who do not need data returning.  The lock is not upgraded to
998  *          exclusive during a data fetch, a separate bit is used to
999  *          interlock I/O.  However, an exclusive lock holder can still count
1000  *          on being interlocked against an I/O fetch managed by a shared
1001  *          lock holder.
1002  */
1003 int
1004 hammer2_chain_lock(hammer2_chain_t *chain, int how)
1005 {
1006         KKASSERT(chain->refs > 0);
1007
1008         if (how & HAMMER2_RESOLVE_NONBLOCK) {
1009                 /*
1010                  * We still have to bump lockcnt before acquiring the lock,
1011                  * even for non-blocking operation, because the unlock code
1012                  * live-loops on lockcnt == 1 when dropping the last lock.
1013                  *
1014                  * If the non-blocking operation fails we have to use an
1015                  * unhold sequence to undo the mess.
1016                  *
1017                  * NOTE: LOCKAGAIN must always succeed without blocking,
1018                  *       even if NONBLOCK is specified.
1019                  */
1020                 atomic_add_int(&chain->lockcnt, 1);
1021                 if (how & HAMMER2_RESOLVE_SHARED) {
1022                         if (how & HAMMER2_RESOLVE_LOCKAGAIN) {
1023                                 hammer2_mtx_sh_again(&chain->lock);
1024                         } else {
1025                                 if (hammer2_mtx_sh_try(&chain->lock) != 0) {
1026                                         hammer2_chain_unhold(chain);
1027                                         return EAGAIN;
1028                                 }
1029                         }
1030                 } else {
1031                         if (hammer2_mtx_ex_try(&chain->lock) != 0) {
1032                                 hammer2_chain_unhold(chain);
1033                                 return EAGAIN;
1034                         }
1035                 }
1036         } else {
1037                 /*
1038                  * Get the appropriate lock.  If LOCKAGAIN is flagged with
1039                  * SHARED the caller expects a shared lock to already be
1040                  * present and we are giving it another ref.  This case must
1041                  * importantly not block if there is a pending exclusive lock
1042                  * request.
1043                  */
1044                 atomic_add_int(&chain->lockcnt, 1);
1045                 if (how & HAMMER2_RESOLVE_SHARED) {
1046                         if (how & HAMMER2_RESOLVE_LOCKAGAIN) {
1047                                 hammer2_mtx_sh_again(&chain->lock);
1048                         } else {
1049                                 hammer2_mtx_sh(&chain->lock);
1050                         }
1051                 } else {
1052                         hammer2_mtx_ex(&chain->lock);
1053                 }
1054         }
1055
1056         /*
1057          * If we already have a valid data pointer make sure the data is
1058          * synchronized to the current cpu, and then no further action is
1059          * necessary.
1060          */
1061         if (chain->data) {
1062                 if (chain->dio)
1063                         hammer2_io_bkvasync(chain->dio);
1064                 return 0;
1065         }
1066
1067         /*
1068          * Do we have to resolve the data?  This is generally only
1069          * applicable to HAMMER2_BREF_TYPE_DATA which is special-cased.
1070          * Other BREF types expects the data to be there.
1071          */
1072         switch(how & HAMMER2_RESOLVE_MASK) {
1073         case HAMMER2_RESOLVE_NEVER:
1074                 return 0;
1075         case HAMMER2_RESOLVE_MAYBE:
1076                 if (chain->flags & HAMMER2_CHAIN_INITIAL)
1077                         return 0;
1078                 if (chain->bref.type == HAMMER2_BREF_TYPE_DATA)
1079                         return 0;
1080 #if 0
1081                 if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE)
1082                         return 0;
1083                 if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF)
1084                         return 0;
1085 #endif
1086                 /* fall through */
1087         case HAMMER2_RESOLVE_ALWAYS:
1088         default:
1089                 break;
1090         }
1091
1092         /*
1093          * Caller requires data
1094          */
1095         hammer2_chain_load_data(chain);
1096
1097         return 0;
1098 }
1099
1100 /*
1101  * Lock the chain, retain the hold, and drop the data persistence count.
1102  * The data should remain valid because we never transitioned lockcnt
1103  * through 0.
1104  */
1105 void
1106 hammer2_chain_lock_unhold(hammer2_chain_t *chain, int how)
1107 {
1108         hammer2_chain_lock(chain, how);
1109         atomic_add_int(&chain->lockcnt, -1);
1110 }
1111
1112 #if 0
1113 /*
1114  * Downgrade an exclusive chain lock to a shared chain lock.
1115  *
1116  * NOTE: There is no upgrade equivalent due to the ease of
1117  *       deadlocks in that direction.
1118  */
1119 void
1120 hammer2_chain_lock_downgrade(hammer2_chain_t *chain)
1121 {
1122         hammer2_mtx_downgrade(&chain->lock);
1123 }
1124 #endif
1125
1126 /*
1127  * Issue I/O and install chain->data.  Caller must hold a chain lock, lock
1128  * may be of any type.
1129  *
1130  * Once chain->data is set it cannot be disposed of until all locks are
1131  * released.
1132  *
1133  * Make sure the data is synchronized to the current cpu.
1134  */
1135 void
1136 hammer2_chain_load_data(hammer2_chain_t *chain)
1137 {
1138         hammer2_blockref_t *bref;
1139         hammer2_dev_t *hmp;
1140         hammer2_io_t *dio;
1141         char *bdata;
1142         int error;
1143
1144         /*
1145          * Degenerate case, data already present, or chain has no media
1146          * reference to load.
1147          */
1148         KKASSERT(chain->lock.mtx_lock & MTX_MASK);
1149         if (chain->data) {
1150                 if (chain->dio)
1151                         hammer2_io_bkvasync(chain->dio);
1152                 return;
1153         }
1154         if ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0)
1155                 return;
1156
1157         hmp = chain->hmp;
1158         KKASSERT(hmp != NULL);
1159
1160         /*
1161          * Gain the IOINPROG bit, interlocked block.
1162          */
1163         for (;;) {
1164                 u_int oflags;
1165                 u_int nflags;
1166
1167                 oflags = chain->flags;
1168                 cpu_ccfence();
1169                 if (oflags & HAMMER2_CHAIN_IOINPROG) {
1170                         nflags = oflags | HAMMER2_CHAIN_IOSIGNAL;
1171                         tsleep_interlock(&chain->flags, 0);
1172                         if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1173                                 tsleep(&chain->flags, PINTERLOCKED,
1174                                         "h2iocw", 0);
1175                         }
1176                         /* retry */
1177                 } else {
1178                         nflags = oflags | HAMMER2_CHAIN_IOINPROG;
1179                         if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1180                                 break;
1181                         }
1182                         /* retry */
1183                 }
1184         }
1185
1186         /*
1187          * We own CHAIN_IOINPROG
1188          *
1189          * Degenerate case if we raced another load.
1190          */
1191         if (chain->data) {
1192                 if (chain->dio)
1193                         hammer2_io_bkvasync(chain->dio);
1194                 goto done;
1195         }
1196
1197         /*
1198          * We must resolve to a device buffer, either by issuing I/O or
1199          * by creating a zero-fill element.  We do not mark the buffer
1200          * dirty when creating a zero-fill element (the hammer2_chain_modify()
1201          * API must still be used to do that).
1202          *
1203          * The device buffer is variable-sized in powers of 2 down
1204          * to HAMMER2_MIN_ALLOC (typically 1K).  A 64K physical storage
1205          * chunk always contains buffers of the same size. (XXX)
1206          *
1207          * The minimum physical IO size may be larger than the variable
1208          * block size.
1209          */
1210         bref = &chain->bref;
1211
1212         /*
1213          * The getblk() optimization can only be used on newly created
1214          * elements if the physical block size matches the request.
1215          */
1216         if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1217                 error = hammer2_io_new(hmp, bref->type,
1218                                        bref->data_off, chain->bytes,
1219                                        &chain->dio);
1220         } else {
1221                 error = hammer2_io_bread(hmp, bref->type,
1222                                          bref->data_off, chain->bytes,
1223                                          &chain->dio);
1224                 hammer2_adjreadcounter(chain->bref.type, chain->bytes);
1225         }
1226         if (error) {
1227                 chain->error = HAMMER2_ERROR_EIO;
1228                 kprintf("hammer2_chain_load_data: I/O error %016jx: %d\n",
1229                         (intmax_t)bref->data_off, error);
1230                 hammer2_io_bqrelse(&chain->dio);
1231                 goto done;
1232         }
1233         chain->error = 0;
1234
1235         /*
1236          * This isn't perfect and can be ignored on OSs which do not have
1237          * an indication as to whether a buffer is coming from cache or
1238          * if I/O was actually issued for the read.  TESTEDGOOD will work
1239          * pretty well without the B_IOISSUED logic because chains are
1240          * cached, but in that situation (without B_IOISSUED) it will not
1241          * detect whether a re-read via I/O is corrupted verses the original
1242          * read.
1243          *
1244          * We can't re-run the CRC on every fresh lock.  That would be
1245          * insanely expensive.
1246          *
1247          * If the underlying kernel buffer covers the entire chain we can
1248          * use the B_IOISSUED indication to determine if we have to re-run
1249          * the CRC on chain data for chains that managed to stay cached
1250          * across the kernel disposal of the original buffer.
1251          */
1252         if ((dio = chain->dio) != NULL && dio->bp) {
1253                 struct buf *bp = dio->bp;
1254
1255                 if (dio->psize == chain->bytes &&
1256                     (bp->b_flags & B_IOISSUED)) {
1257                         atomic_clear_int(&chain->flags,
1258                                          HAMMER2_CHAIN_TESTEDGOOD);
1259                         bp->b_flags &= ~B_IOISSUED;
1260                 }
1261         }
1262
1263         /*
1264          * NOTE: A locked chain's data cannot be modified without first
1265          *       calling hammer2_chain_modify().
1266          */
1267
1268         /*
1269          * NOTE: hammer2_io_data() call issues bkvasync()
1270          */
1271         bdata = hammer2_io_data(chain->dio, chain->bref.data_off);
1272
1273         if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1274                 /*
1275                  * Clear INITIAL.  In this case we used io_new() and the
1276                  * buffer has been zero'd and marked dirty.
1277                  *
1278                  * CHAIN_MODIFIED has not been set yet, and we leave it
1279                  * that way for now.  Set a temporary CHAIN_NOTTESTED flag
1280                  * to prevent hammer2_chain_testcheck() from trying to match
1281                  * a check code that has not yet been generated.  This bit
1282                  * should NOT end up on the actual media.
1283                  */
1284                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1285                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_NOTTESTED);
1286         } else if (chain->flags & HAMMER2_CHAIN_MODIFIED) {
1287                 /*
1288                  * check data not currently synchronized due to
1289                  * modification.  XXX assumes data stays in the buffer
1290                  * cache, which might not be true (need biodep on flush
1291                  * to calculate crc?  or simple crc?).
1292                  */
1293         } else if ((chain->flags & HAMMER2_CHAIN_TESTEDGOOD) == 0) {
1294                 if (hammer2_chain_testcheck(chain, bdata) == 0) {
1295                         chain->error = HAMMER2_ERROR_CHECK;
1296                 } else {
1297                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_TESTEDGOOD);
1298                 }
1299         }
1300
1301         /*
1302          * Setup the data pointer, either pointing it to an embedded data
1303          * structure and copying the data from the buffer, or pointing it
1304          * into the buffer.
1305          *
1306          * The buffer is not retained when copying to an embedded data
1307          * structure in order to avoid potential deadlocks or recursions
1308          * on the same physical buffer.
1309          *
1310          * WARNING! Other threads can start using the data the instant we
1311          *          set chain->data non-NULL.
1312          */
1313         switch (bref->type) {
1314         case HAMMER2_BREF_TYPE_VOLUME:
1315         case HAMMER2_BREF_TYPE_FREEMAP:
1316                 /*
1317                  * Copy data from bp to embedded buffer
1318                  */
1319                 panic("hammer2_chain_load_data: unresolved volume header");
1320                 break;
1321         case HAMMER2_BREF_TYPE_DIRENT:
1322                 KKASSERT(chain->bytes != 0);
1323                 /* fall through */
1324         case HAMMER2_BREF_TYPE_INODE:
1325         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
1326         case HAMMER2_BREF_TYPE_INDIRECT:
1327         case HAMMER2_BREF_TYPE_DATA:
1328         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1329         default:
1330                 /*
1331                  * Point data at the device buffer and leave dio intact.
1332                  */
1333                 chain->data = (void *)bdata;
1334                 break;
1335         }
1336
1337         /*
1338          * Release HAMMER2_CHAIN_IOINPROG and signal waiters if requested.
1339          */
1340 done:
1341         for (;;) {
1342                 u_int oflags;
1343                 u_int nflags;
1344
1345                 oflags = chain->flags;
1346                 nflags = oflags & ~(HAMMER2_CHAIN_IOINPROG |
1347                                     HAMMER2_CHAIN_IOSIGNAL);
1348                 KKASSERT(oflags & HAMMER2_CHAIN_IOINPROG);
1349                 if (atomic_cmpset_int(&chain->flags, oflags, nflags)) {
1350                         if (oflags & HAMMER2_CHAIN_IOSIGNAL)
1351                                 wakeup(&chain->flags);
1352                         break;
1353                 }
1354         }
1355 }
1356
1357 /*
1358  * Unlock and deref a chain element.
1359  *
1360  * Remember that the presence of children under chain prevent the chain's
1361  * destruction but do not add additional references, so the dio will still
1362  * be dropped.
1363  */
1364 void
1365 hammer2_chain_unlock(hammer2_chain_t *chain)
1366 {
1367         hammer2_io_t *dio;
1368         u_int lockcnt;
1369         int iter = 0;
1370
1371         /*
1372          * If multiple locks are present (or being attempted) on this
1373          * particular chain we can just unlock, drop refs, and return.
1374          *
1375          * Otherwise fall-through on the 1->0 transition.
1376          */
1377         for (;;) {
1378                 lockcnt = chain->lockcnt;
1379                 KKASSERT(lockcnt > 0);
1380                 cpu_ccfence();
1381                 if (lockcnt > 1) {
1382                         if (atomic_cmpset_int(&chain->lockcnt,
1383                                               lockcnt, lockcnt - 1)) {
1384                                 hammer2_mtx_unlock(&chain->lock);
1385                                 return;
1386                         }
1387                 } else if (hammer2_mtx_upgrade_try(&chain->lock) == 0) {
1388                         /* while holding the mutex exclusively */
1389                         if (atomic_cmpset_int(&chain->lockcnt, 1, 0))
1390                                 break;
1391                 } else {
1392                         /*
1393                          * This situation can easily occur on SMP due to
1394                          * the gap inbetween the 1->0 transition and the
1395                          * final unlock.  We cannot safely block on the
1396                          * mutex because lockcnt might go above 1.
1397                          *
1398                          * XXX Sleep for one tick if it takes too long.
1399                          */
1400                         if (++iter > 1000) {
1401                                 if (iter > 1000 + hz) {
1402                                         kprintf("hammer2: h2race2 %p\n", chain);
1403                                         iter = 1000;
1404                                 }
1405                                 tsleep(&iter, 0, "h2race2", 1);
1406                         }
1407                         cpu_pause();
1408                 }
1409                 /* retry */
1410         }
1411
1412         /*
1413          * Last unlock / mutex upgraded to exclusive.  Drop the data
1414          * reference.
1415          */
1416         dio = hammer2_chain_drop_data(chain);
1417         if (dio)
1418                 hammer2_io_bqrelse(&dio);
1419         hammer2_mtx_unlock(&chain->lock);
1420 }
1421
1422 /*
1423  * Unlock and hold chain data intact
1424  */
1425 void
1426 hammer2_chain_unlock_hold(hammer2_chain_t *chain)
1427 {
1428         atomic_add_int(&chain->lockcnt, 1);
1429         hammer2_chain_unlock(chain);
1430 }
1431
1432 /*
1433  * Helper to obtain the blockref[] array base and count for a chain.
1434  *
1435  * XXX Not widely used yet, various use cases need to be validated and
1436  *     converted to use this function.
1437  */
1438 static
1439 hammer2_blockref_t *
1440 hammer2_chain_base_and_count(hammer2_chain_t *parent, int *countp)
1441 {
1442         hammer2_blockref_t *base;
1443         int count;
1444
1445         if (parent->flags & HAMMER2_CHAIN_INITIAL) {
1446                 base = NULL;
1447
1448                 switch(parent->bref.type) {
1449                 case HAMMER2_BREF_TYPE_INODE:
1450                         count = HAMMER2_SET_COUNT;
1451                         break;
1452                 case HAMMER2_BREF_TYPE_INDIRECT:
1453                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1454                         count = parent->bytes / sizeof(hammer2_blockref_t);
1455                         break;
1456                 case HAMMER2_BREF_TYPE_VOLUME:
1457                         count = HAMMER2_SET_COUNT;
1458                         break;
1459                 case HAMMER2_BREF_TYPE_FREEMAP:
1460                         count = HAMMER2_SET_COUNT;
1461                         break;
1462                 default:
1463                         panic("hammer2_chain_base_and_count: "
1464                               "unrecognized blockref type: %d",
1465                               parent->bref.type);
1466                         count = 0;
1467                         break;
1468                 }
1469         } else {
1470                 switch(parent->bref.type) {
1471                 case HAMMER2_BREF_TYPE_INODE:
1472                         base = &parent->data->ipdata.u.blockset.blockref[0];
1473                         count = HAMMER2_SET_COUNT;
1474                         break;
1475                 case HAMMER2_BREF_TYPE_INDIRECT:
1476                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
1477                         base = &parent->data->npdata[0];
1478                         count = parent->bytes / sizeof(hammer2_blockref_t);
1479                         break;
1480                 case HAMMER2_BREF_TYPE_VOLUME:
1481                         base = &parent->data->voldata.
1482                                         sroot_blockset.blockref[0];
1483                         count = HAMMER2_SET_COUNT;
1484                         break;
1485                 case HAMMER2_BREF_TYPE_FREEMAP:
1486                         base = &parent->data->blkset.blockref[0];
1487                         count = HAMMER2_SET_COUNT;
1488                         break;
1489                 default:
1490                         panic("hammer2_chain_base_and_count: "
1491                               "unrecognized blockref type: %d",
1492                               parent->bref.type);
1493                         count = 0;
1494                         break;
1495                 }
1496         }
1497         *countp = count;
1498
1499         return base;
1500 }
1501
1502 /*
1503  * This counts the number of live blockrefs in a block array and
1504  * also calculates the point at which all remaining blockrefs are empty.
1505  * This routine can only be called on a live chain.
1506  *
1507  * Caller holds the chain locked, but possibly with a shared lock.  We
1508  * must use an exclusive spinlock to prevent corruption.
1509  *
1510  * NOTE: Flag is not set until after the count is complete, allowing
1511  *       callers to test the flag without holding the spinlock.
1512  *
1513  * NOTE: If base is NULL the related chain is still in the INITIAL
1514  *       state and there are no blockrefs to count.
1515  *
1516  * NOTE: live_count may already have some counts accumulated due to
1517  *       creation and deletion and could even be initially negative.
1518  */
1519 void
1520 hammer2_chain_countbrefs(hammer2_chain_t *chain,
1521                          hammer2_blockref_t *base, int count)
1522 {
1523         hammer2_spin_ex(&chain->core.spin);
1524         if ((chain->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0) {
1525                 if (base) {
1526                         while (--count >= 0) {
1527                                 if (base[count].type != HAMMER2_BREF_TYPE_EMPTY)
1528                                         break;
1529                         }
1530                         chain->core.live_zero = count + 1;
1531                         while (count >= 0) {
1532                                 if (base[count].type != HAMMER2_BREF_TYPE_EMPTY)
1533                                         atomic_add_int(&chain->core.live_count,
1534                                                        1);
1535                                 --count;
1536                         }
1537                 } else {
1538                         chain->core.live_zero = 0;
1539                 }
1540                 /* else do not modify live_count */
1541                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_COUNTEDBREFS);
1542         }
1543         hammer2_spin_unex(&chain->core.spin);
1544 }
1545
1546 /*
1547  * Resize the chain's physical storage allocation in-place.  This function does
1548  * not usually adjust the data pointer and must be followed by (typically) a
1549  * hammer2_chain_modify() call to copy any old data over and adjust the
1550  * data pointer.
1551  *
1552  * Chains can be resized smaller without reallocating the storage.  Resizing
1553  * larger will reallocate the storage.  Excess or prior storage is reclaimed
1554  * asynchronously at a later time.
1555  *
1556  * An nradix value of 0 is special-cased to mean that the storage should
1557  * be disassociated, that is the chain is being resized to 0 bytes (not 1
1558  * byte).
1559  *
1560  * Must be passed an exclusively locked parent and chain.
1561  *
1562  * This function is mostly used with DATA blocks locked RESOLVE_NEVER in order
1563  * to avoid instantiating a device buffer that conflicts with the vnode data
1564  * buffer.  However, because H2 can compress or encrypt data, the chain may
1565  * have a dio assigned to it in those situations, and they do not conflict.
1566  *
1567  * XXX return error if cannot resize.
1568  */
1569 int
1570 hammer2_chain_resize(hammer2_chain_t *chain,
1571                      hammer2_tid_t mtid, hammer2_off_t dedup_off,
1572                      int nradix, int flags)
1573 {
1574         hammer2_dev_t *hmp;
1575         size_t obytes;
1576         size_t nbytes;
1577         int error;
1578
1579         hmp = chain->hmp;
1580
1581         /*
1582          * Only data and indirect blocks can be resized for now.
1583          * (The volu root, inodes, and freemap elements use a fixed size).
1584          */
1585         KKASSERT(chain != &hmp->vchain);
1586         KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1587                  chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
1588                  chain->bref.type == HAMMER2_BREF_TYPE_DIRENT);
1589
1590         /*
1591          * Nothing to do if the element is already the proper size
1592          */
1593         obytes = chain->bytes;
1594         nbytes = (nradix) ? (1U << nradix) : 0;
1595         if (obytes == nbytes)
1596                 return (chain->error);
1597
1598         /*
1599          * Make sure the old data is instantiated so we can copy it.  If this
1600          * is a data block, the device data may be superfluous since the data
1601          * might be in a logical block, but compressed or encrypted data is
1602          * another matter.
1603          *
1604          * NOTE: The modify will set BMAPUPD for us if BMAPPED is set.
1605          */
1606         error = hammer2_chain_modify(chain, mtid, dedup_off, 0);
1607         if (error)
1608                 return error;
1609
1610         /*
1611          * Reallocate the block, even if making it smaller (because different
1612          * block sizes may be in different regions).
1613          *
1614          * NOTE: Operation does not copy the data and may only be used
1615          *       to resize data blocks in-place, or directory entry blocks
1616          *       which are about to be modified in some manner.
1617          */
1618         error = hammer2_freemap_alloc(chain, nbytes);
1619         if (error)
1620                 return error;
1621
1622         chain->bytes = nbytes;
1623
1624         /*
1625          * We don't want the followup chain_modify() to try to copy data
1626          * from the old (wrong-sized) buffer.  It won't know how much to
1627          * copy.  This case should only occur during writes when the
1628          * originator already has the data to write in-hand.
1629          */
1630         if (chain->dio) {
1631                 KKASSERT(chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1632                          chain->bref.type == HAMMER2_BREF_TYPE_DIRENT);
1633                 hammer2_io_brelse(&chain->dio);
1634                 chain->data = NULL;
1635         }
1636         return (chain->error);
1637 }
1638
1639 /*
1640  * Set the chain modified so its data can be changed by the caller, or
1641  * install deduplicated data.  The caller must call this routine for each
1642  * set of modifications it makes, even if the chain is already flagged
1643  * MODIFIED.
1644  *
1645  * Sets bref.modify_tid to mtid only if mtid != 0.  Note that bref.modify_tid
1646  * is a CLC (cluster level change) field and is not updated by parent
1647  * propagation during a flush.
1648  *
1649  * Returns an appropriate HAMMER2_ERROR_* code, which will generally reflect
1650  * chain->error except for HAMMER2_ERROR_ENOSPC.  If the allocation fails
1651  * due to no space available, HAMMER2_ERROR_ENOSPC is returned and the chain
1652  * remains unmodified with its old data ref intact and chain->error
1653  * unchanged.
1654  *
1655  *                               Dedup Handling
1656  *
1657  * If the DEDUPABLE flag is set in the chain the storage must be reallocated
1658  * even if the chain is still flagged MODIFIED.  In this case the chain's
1659  * DEDUPABLE flag will be cleared once the new storage has been assigned.
1660  *
1661  * If the caller passes a non-zero dedup_off we will use it to assign the
1662  * new storage.  The MODIFIED flag will be *CLEARED* in this case, and
1663  * DEDUPABLE will be set (NOTE: the UPDATE flag is always set).  The caller
1664  * must not modify the data content upon return.
1665  */
1666 int
1667 hammer2_chain_modify(hammer2_chain_t *chain, hammer2_tid_t mtid,
1668                      hammer2_off_t dedup_off, int flags)
1669 {
1670         hammer2_blockref_t obref;
1671         hammer2_dev_t *hmp;
1672         hammer2_io_t *dio;
1673         int error;
1674         int wasinitial;
1675         int setmodified;
1676         int setupdate;
1677         int newmod;
1678         char *bdata;
1679
1680         hmp = chain->hmp;
1681         obref = chain->bref;
1682         KKASSERT(chain->lock.mtx_lock & MTX_EXCLUSIVE);
1683
1684         /*
1685          * Data is not optional for freemap chains (we must always be sure
1686          * to copy the data on COW storage allocations).
1687          */
1688         if (chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
1689             chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
1690                 KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) ||
1691                          (flags & HAMMER2_MODIFY_OPTDATA) == 0);
1692         }
1693
1694         /*
1695          * Data must be resolved if already assigned, unless explicitly
1696          * flagged otherwise.  If we cannot safety load the data the
1697          * modification fails and we return early.
1698          */
1699         if (chain->data == NULL && chain->bytes != 0 &&
1700             (flags & HAMMER2_MODIFY_OPTDATA) == 0 &&
1701             (chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX)) {
1702                 hammer2_chain_load_data(chain);
1703                 if (chain->error)
1704                         return (chain->error);
1705         }
1706         error = 0;
1707
1708         /*
1709          * Set MODIFIED to indicate that the chain has been modified.  A new
1710          * allocation is required when modifying a chain.
1711          *
1712          * Set UPDATE to ensure that the blockref is updated in the parent.
1713          *
1714          * If MODIFIED is already set determine if we can reuse the assigned
1715          * data block or if we need a new data block.
1716          */
1717         if ((chain->flags & HAMMER2_CHAIN_MODIFIED) == 0) {
1718                 /*
1719                  * Must set modified bit.
1720                  */
1721                 atomic_add_long(&hammer2_count_modified_chains, 1);
1722                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1723                 hammer2_pfs_memory_inc(chain->pmp);  /* can be NULL */
1724                 setmodified = 1;
1725
1726                 /*
1727                  * We may be able to avoid a copy-on-write if the chain's
1728                  * check mode is set to NONE and the chain's current
1729                  * modify_tid is beyond the last explicit snapshot tid.
1730                  *
1731                  * This implements HAMMER2's overwrite-in-place feature.
1732                  *
1733                  * NOTE! This data-block cannot be used as a de-duplication
1734                  *       source when the check mode is set to NONE.
1735                  */
1736                 if ((chain->bref.type == HAMMER2_BREF_TYPE_DATA ||
1737                      chain->bref.type == HAMMER2_BREF_TYPE_DIRENT) &&
1738                     (chain->flags & HAMMER2_CHAIN_INITIAL) == 0 &&
1739                     (chain->flags & HAMMER2_CHAIN_DEDUPABLE) == 0 &&
1740                     HAMMER2_DEC_CHECK(chain->bref.methods) ==
1741                      HAMMER2_CHECK_NONE &&
1742                     chain->pmp &&
1743                     chain->bref.modify_tid >
1744                      chain->pmp->iroot->meta.pfs_lsnap_tid) {
1745                         /*
1746                          * Sector overwrite allowed.
1747                          */
1748                         newmod = 0;
1749                 } else if ((hmp->hflags & HMNT2_EMERG) &&
1750                            chain->pmp &&
1751                            chain->bref.modify_tid >
1752                             chain->pmp->iroot->meta.pfs_lsnap_tid) {
1753                         /*
1754                          * If in emergency delete mode then do a modify-in-
1755                          * place on any chain type belonging to the PFS as
1756                          * long as it doesn't mess up a snapshot.  We might
1757                          * be forced to do this anyway a little further down
1758                          * in the code if the allocation fails.
1759                          *
1760                          * Also note that in emergency mode, these modify-in-
1761                          * place operations are NOT SAFE.  A storage failure,
1762                          * power failure, or panic can corrupt the filesystem.
1763                          */
1764                         newmod = 0;
1765                 } else {
1766                         /*
1767                          * Sector overwrite not allowed, must copy-on-write.
1768                          */
1769                         newmod = 1;
1770                 }
1771         } else if (chain->flags & HAMMER2_CHAIN_DEDUPABLE) {
1772                 /*
1773                  * If the modified chain was registered for dedup we need
1774                  * a new allocation.  This only happens for delayed-flush
1775                  * chains (i.e. which run through the front-end buffer
1776                  * cache).
1777                  */
1778                 newmod = 1;
1779                 setmodified = 0;
1780         } else {
1781                 /*
1782                  * Already flagged modified, no new allocation is needed.
1783                  */
1784                 newmod = 0;
1785                 setmodified = 0;
1786         }
1787
1788         /*
1789          * Flag parent update required.
1790          */
1791         if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0) {
1792                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
1793                 setupdate = 1;
1794         } else {
1795                 setupdate = 0;
1796         }
1797
1798         /*
1799          * The XOP code returns held but unlocked focus chains.  This
1800          * prevents the chain from being destroyed but does not prevent
1801          * it from being modified.  diolk is used to interlock modifications
1802          * against XOP frontend accesses to the focus.
1803          *
1804          * This allows us to theoretically avoid deadlocking the frontend
1805          * if one of the backends lock up by not formally locking the
1806          * focused chain in the frontend.  In addition, the synchronization
1807          * code relies on this mechanism to avoid deadlocking concurrent
1808          * synchronization threads.
1809          */
1810         lockmgr(&chain->diolk, LK_EXCLUSIVE);
1811
1812         /*
1813          * The modification or re-modification requires an allocation and
1814          * possible COW.  If an error occurs, the previous content and data
1815          * reference is retained and the modification fails.
1816          *
1817          * If dedup_off is non-zero, the caller is requesting a deduplication
1818          * rather than a modification.  The MODIFIED bit is not set and the
1819          * data offset is set to the deduplication offset.  The data cannot
1820          * be modified.
1821          *
1822          * NOTE: The dedup offset is allowed to be in a partially free state
1823          *       and we must be sure to reset it to a fully allocated state
1824          *       to force two bulkfree passes to free it again.
1825          *
1826          * NOTE: Only applicable when chain->bytes != 0.
1827          *
1828          * XXX can a chain already be marked MODIFIED without a data
1829          * assignment?  If not, assert here instead of testing the case.
1830          */
1831         if (chain != &hmp->vchain && chain != &hmp->fchain &&
1832             chain->bytes) {
1833                 if ((chain->bref.data_off & ~HAMMER2_OFF_MASK_RADIX) == 0 ||
1834                     newmod
1835                 ) {
1836                         /*
1837                          * NOTE: We do not have to remove the dedup
1838                          *       registration because the area is still
1839                          *       allocated and the underlying DIO will
1840                          *       still be flushed.
1841                          */
1842                         if (dedup_off) {
1843                                 chain->bref.data_off = dedup_off;
1844                                 chain->bytes = 1 << (dedup_off &
1845                                                      HAMMER2_OFF_MASK_RADIX);
1846                                 chain->error = 0;
1847                                 atomic_clear_int(&chain->flags,
1848                                                  HAMMER2_CHAIN_MODIFIED);
1849                                 atomic_add_long(&hammer2_count_modified_chains,
1850                                                 -1);
1851                                 if (chain->pmp) {
1852                                         hammer2_pfs_memory_wakeup(
1853                                                 chain->pmp, -1);
1854                                 }
1855                                 hammer2_freemap_adjust(hmp, &chain->bref,
1856                                                 HAMMER2_FREEMAP_DORECOVER);
1857                                 atomic_set_int(&chain->flags,
1858                                                 HAMMER2_CHAIN_DEDUPABLE);
1859                         } else {
1860                                 error = hammer2_freemap_alloc(chain,
1861                                                               chain->bytes);
1862                                 atomic_clear_int(&chain->flags,
1863                                                 HAMMER2_CHAIN_DEDUPABLE);
1864
1865                                 /*
1866                                  * If we are unable to allocate a new block
1867                                  * but we are in emergency mode, issue a
1868                                  * warning to the console and reuse the same
1869                                  * block.
1870                                  *
1871                                  * We behave as if the allocation were
1872                                  * successful.
1873                                  *
1874                                  * THIS IS IMPORTANT: These modifications
1875                                  * are virtually guaranteed to corrupt any
1876                                  * snapshots related to this filesystem.
1877                                  */
1878                                 if (error && (hmp->hflags & HMNT2_EMERG)) {
1879                                         error = 0;
1880                                         chain->bref.flags |=
1881                                                 HAMMER2_BREF_FLAG_EMERG_MIP;
1882
1883                                         krateprintf(&krate_h2em,
1884                                             "hammer2: Emergency Mode WARNING: "
1885                                             "Operation will likely corrupt "
1886                                             "related snapshot: "
1887                                             "%016jx.%02x key=%016jx\n",
1888                                             chain->bref.data_off,
1889                                             chain->bref.type,
1890                                             chain->bref.key);
1891                                 } else if (error == 0) {
1892                                         chain->bref.flags &=
1893                                                 ~HAMMER2_BREF_FLAG_EMERG_MIP;
1894                                 }
1895                         }
1896                 }
1897         }
1898
1899         /*
1900          * Stop here if error.  We have to undo any flag bits we might
1901          * have set above.
1902          */
1903         if (error) {
1904                 if (setmodified) {
1905                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_MODIFIED);
1906                         atomic_add_long(&hammer2_count_modified_chains, -1);
1907                         if (chain->pmp)
1908                                 hammer2_pfs_memory_wakeup(chain->pmp, -1);
1909                 }
1910                 if (setupdate) {
1911                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
1912                 }
1913                 lockmgr(&chain->diolk, LK_RELEASE);
1914
1915                 return error;
1916         }
1917
1918         /*
1919          * Update mirror_tid and modify_tid.  modify_tid is only updated
1920          * if not passed as zero (during flushes, parent propagation passes
1921          * the value 0).
1922          *
1923          * NOTE: chain->pmp could be the device spmp.
1924          */
1925         chain->bref.mirror_tid = hmp->voldata.mirror_tid + 1;
1926         if (mtid)
1927                 chain->bref.modify_tid = mtid;
1928
1929         /*
1930          * Set BMAPUPD to tell the flush code that an existing blockmap entry
1931          * requires updating as well as to tell the delete code that the
1932          * chain's blockref might not exactly match (in terms of physical size
1933          * or block offset) the one in the parent's blocktable.  The base key
1934          * of course will still match.
1935          */
1936         if (chain->flags & HAMMER2_CHAIN_BMAPPED)
1937                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPUPD);
1938
1939         /*
1940          * Short-cut data block handling when the caller does not need an
1941          * actual data reference to (aka OPTDATA), as long as the chain does
1942          * not already have a data pointer to the data and no de-duplication
1943          * occurred.
1944          *
1945          * This generally means that the modifications are being done via the
1946          * logical buffer cache.
1947          *
1948          * NOTE: If deduplication occurred we have to run through the data
1949          *       stuff to clear INITIAL, and the caller will likely want to
1950          *       assign the check code anyway.  Leaving INITIAL set on a
1951          *       dedup can be deadly (it can cause the block to be zero'd!).
1952          *
1953          * This code also handles bytes == 0 (most dirents).
1954          */
1955         if (chain->bref.type == HAMMER2_BREF_TYPE_DATA &&
1956             (flags & HAMMER2_MODIFY_OPTDATA) &&
1957             chain->data == NULL) {
1958                 if (dedup_off == 0) {
1959                         KKASSERT(chain->dio == NULL);
1960                         goto skip2;
1961                 }
1962         }
1963
1964         /*
1965          * Clearing the INITIAL flag (for indirect blocks) indicates that
1966          * we've processed the uninitialized storage allocation.
1967          *
1968          * If this flag is already clear we are likely in a copy-on-write
1969          * situation but we have to be sure NOT to bzero the storage if
1970          * no data is present.
1971          *
1972          * Clearing of NOTTESTED is allowed if the MODIFIED bit is set,
1973          */
1974         if (chain->flags & HAMMER2_CHAIN_INITIAL) {
1975                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
1976                 wasinitial = 1;
1977         } else {
1978                 wasinitial = 0;
1979         }
1980
1981         /*
1982          * Instantiate data buffer and possibly execute COW operation
1983          */
1984         switch(chain->bref.type) {
1985         case HAMMER2_BREF_TYPE_VOLUME:
1986         case HAMMER2_BREF_TYPE_FREEMAP:
1987                 /*
1988                  * The data is embedded, no copy-on-write operation is
1989                  * needed.
1990                  */
1991                 KKASSERT(chain->dio == NULL);
1992                 break;
1993         case HAMMER2_BREF_TYPE_DIRENT:
1994                 /*
1995                  * The data might be fully embedded.
1996                  */
1997                 if (chain->bytes == 0) {
1998                         KKASSERT(chain->dio == NULL);
1999                         break;
2000                 }
2001                 /* fall through */
2002         case HAMMER2_BREF_TYPE_INODE:
2003         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
2004         case HAMMER2_BREF_TYPE_DATA:
2005         case HAMMER2_BREF_TYPE_INDIRECT:
2006         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2007                 /*
2008                  * Perform the copy-on-write operation
2009                  *
2010                  * zero-fill or copy-on-write depending on whether
2011                  * chain->data exists or not and set the dirty state for
2012                  * the new buffer.  hammer2_io_new() will handle the
2013                  * zero-fill.
2014                  *
2015                  * If a dedup_off was supplied this is an existing block
2016                  * and no COW, copy, or further modification is required.
2017                  */
2018                 KKASSERT(chain != &hmp->vchain && chain != &hmp->fchain);
2019
2020                 if (wasinitial && dedup_off == 0) {
2021                         error = hammer2_io_new(hmp, chain->bref.type,
2022                                                chain->bref.data_off,
2023                                                chain->bytes, &dio);
2024                 } else {
2025                         error = hammer2_io_bread(hmp, chain->bref.type,
2026                                                  chain->bref.data_off,
2027                                                  chain->bytes, &dio);
2028                 }
2029                 hammer2_adjreadcounter(chain->bref.type, chain->bytes);
2030
2031                 /*
2032                  * If an I/O error occurs make sure callers cannot accidently
2033                  * modify the old buffer's contents and corrupt the filesystem.
2034                  *
2035                  * NOTE: hammer2_io_data() call issues bkvasync()
2036                  */
2037                 if (error) {
2038                         kprintf("hammer2_chain_modify: hmp=%p I/O error\n",
2039                                 hmp);
2040                         chain->error = HAMMER2_ERROR_EIO;
2041                         hammer2_io_brelse(&dio);
2042                         hammer2_io_brelse(&chain->dio);
2043                         chain->data = NULL;
2044                         break;
2045                 }
2046                 chain->error = 0;
2047                 bdata = hammer2_io_data(dio, chain->bref.data_off);
2048
2049                 if (chain->data) {
2050                         /*
2051                          * COW (unless a dedup).
2052                          */
2053                         KKASSERT(chain->dio != NULL);
2054                         if (chain->data != (void *)bdata && dedup_off == 0) {
2055                                 bcopy(chain->data, bdata, chain->bytes);
2056                         }
2057                 } else if (wasinitial == 0 && dedup_off == 0) {
2058                         /*
2059                          * We have a problem.  We were asked to COW but
2060                          * we don't have any data to COW with!
2061                          */
2062                         panic("hammer2_chain_modify: having a COW %p\n",
2063                               chain);
2064                 }
2065
2066                 /*
2067                  * Retire the old buffer, replace with the new.  Dirty or
2068                  * redirty the new buffer.
2069                  *
2070                  * WARNING! The system buffer cache may have already flushed
2071                  *          the buffer, so we must be sure to [re]dirty it
2072                  *          for further modification.
2073                  *
2074                  *          If dedup_off was supplied, the caller is not
2075                  *          expected to make any further modification to the
2076                  *          buffer.
2077                  *
2078                  * WARNING! hammer2_get_gdata() assumes dio never transitions
2079                  *          through NULL in order to optimize away unnecessary
2080                  *          diolk operations.
2081                  */
2082                 {
2083                         hammer2_io_t *tio;
2084
2085                         if ((tio = chain->dio) != NULL)
2086                                 hammer2_io_bqrelse(&tio);
2087                         chain->data = (void *)bdata;
2088                         chain->dio = dio;
2089                         if (dedup_off == 0)
2090                                 hammer2_io_setdirty(dio);
2091                 }
2092                 break;
2093         default:
2094                 panic("hammer2_chain_modify: illegal non-embedded type %d",
2095                       chain->bref.type);
2096                 break;
2097
2098         }
2099 skip2:
2100         /*
2101          * setflush on parent indicating that the parent must recurse down
2102          * to us.  Do not call on chain itself which might already have it
2103          * set.
2104          */
2105         if (chain->parent)
2106                 hammer2_chain_setflush(chain->parent);
2107         lockmgr(&chain->diolk, LK_RELEASE);
2108
2109         return (chain->error);
2110 }
2111
2112 /*
2113  * Modify the chain associated with an inode.
2114  */
2115 int
2116 hammer2_chain_modify_ip(hammer2_inode_t *ip, hammer2_chain_t *chain,
2117                         hammer2_tid_t mtid, int flags)
2118 {
2119         int error;
2120
2121         hammer2_inode_modify(ip);
2122         error = hammer2_chain_modify(chain, mtid, 0, flags);
2123
2124         return error;
2125 }
2126
2127 /*
2128  * Volume header data locks
2129  */
2130 void
2131 hammer2_voldata_lock(hammer2_dev_t *hmp)
2132 {
2133         lockmgr(&hmp->vollk, LK_EXCLUSIVE);
2134 }
2135
2136 void
2137 hammer2_voldata_unlock(hammer2_dev_t *hmp)
2138 {
2139         lockmgr(&hmp->vollk, LK_RELEASE);
2140 }
2141
2142 void
2143 hammer2_voldata_modify(hammer2_dev_t *hmp)
2144 {
2145         if ((hmp->vchain.flags & HAMMER2_CHAIN_MODIFIED) == 0) {
2146                 atomic_add_long(&hammer2_count_modified_chains, 1);
2147                 atomic_set_int(&hmp->vchain.flags, HAMMER2_CHAIN_MODIFIED);
2148                 hammer2_pfs_memory_inc(hmp->vchain.pmp);
2149         }
2150 }
2151
2152 /*
2153  * This function returns the chain at the nearest key within the specified
2154  * range.  The returned chain will be referenced but not locked.
2155  *
2156  * This function will recurse through chain->rbtree as necessary and will
2157  * return a *key_nextp suitable for iteration.  *key_nextp is only set if
2158  * the iteration value is less than the current value of *key_nextp.
2159  *
2160  * The caller should use (*key_nextp) to calculate the actual range of
2161  * the returned element, which will be (key_beg to *key_nextp - 1), because
2162  * there might be another element which is superior to the returned element
2163  * and overlaps it.
2164  *
2165  * (*key_nextp) can be passed as key_beg in an iteration only while non-NULL
2166  * chains continue to be returned.  On EOF (*key_nextp) may overflow since
2167  * it will wind up being (key_end + 1).
2168  *
2169  * WARNING!  Must be called with child's spinlock held.  Spinlock remains
2170  *           held through the operation.
2171  */
2172 struct hammer2_chain_find_info {
2173         hammer2_chain_t         *best;
2174         hammer2_key_t           key_beg;
2175         hammer2_key_t           key_end;
2176         hammer2_key_t           key_next;
2177 };
2178
2179 static int hammer2_chain_find_cmp(hammer2_chain_t *child, void *data);
2180 static int hammer2_chain_find_callback(hammer2_chain_t *child, void *data);
2181
2182 static
2183 hammer2_chain_t *
2184 hammer2_chain_find(hammer2_chain_t *parent, hammer2_key_t *key_nextp,
2185                           hammer2_key_t key_beg, hammer2_key_t key_end)
2186 {
2187         struct hammer2_chain_find_info info;
2188
2189         info.best = NULL;
2190         info.key_beg = key_beg;
2191         info.key_end = key_end;
2192         info.key_next = *key_nextp;
2193
2194         RB_SCAN(hammer2_chain_tree, &parent->core.rbtree,
2195                 hammer2_chain_find_cmp, hammer2_chain_find_callback,
2196                 &info);
2197         *key_nextp = info.key_next;
2198 #if 0
2199         kprintf("chain_find %p %016jx:%016jx next=%016jx\n",
2200                 parent, key_beg, key_end, *key_nextp);
2201 #endif
2202
2203         return (info.best);
2204 }
2205
2206 static
2207 int
2208 hammer2_chain_find_cmp(hammer2_chain_t *child, void *data)
2209 {
2210         struct hammer2_chain_find_info *info = data;
2211         hammer2_key_t child_beg;
2212         hammer2_key_t child_end;
2213
2214         child_beg = child->bref.key;
2215         child_end = child_beg + ((hammer2_key_t)1 << child->bref.keybits) - 1;
2216
2217         if (child_end < info->key_beg)
2218                 return(-1);
2219         if (child_beg > info->key_end)
2220                 return(1);
2221         return(0);
2222 }
2223
2224 static
2225 int
2226 hammer2_chain_find_callback(hammer2_chain_t *child, void *data)
2227 {
2228         struct hammer2_chain_find_info *info = data;
2229         hammer2_chain_t *best;
2230         hammer2_key_t child_end;
2231
2232         /*
2233          * WARNING! Layerq is scanned forwards, exact matches should keep
2234          *          the existing info->best.
2235          */
2236         if ((best = info->best) == NULL) {
2237                 /*
2238                  * No previous best.  Assign best
2239                  */
2240                 info->best = child;
2241         } else if (best->bref.key <= info->key_beg &&
2242                    child->bref.key <= info->key_beg) {
2243                 /*
2244                  * Illegal overlap.
2245                  */
2246                 KKASSERT(0);
2247                 /*info->best = child;*/
2248         } else if (child->bref.key < best->bref.key) {
2249                 /*
2250                  * Child has a nearer key and best is not flush with key_beg.
2251                  * Set best to child.  Truncate key_next to the old best key.
2252                  */
2253                 info->best = child;
2254                 if (info->key_next > best->bref.key || info->key_next == 0)
2255                         info->key_next = best->bref.key;
2256         } else if (child->bref.key == best->bref.key) {
2257                 /*
2258                  * If our current best is flush with the child then this
2259                  * is an illegal overlap.
2260                  *
2261                  * key_next will automatically be limited to the smaller of
2262                  * the two end-points.
2263                  */
2264                 KKASSERT(0);
2265                 info->best = child;
2266         } else {
2267                 /*
2268                  * Keep the current best but truncate key_next to the child's
2269                  * base.
2270                  *
2271                  * key_next will also automatically be limited to the smaller
2272                  * of the two end-points (probably not necessary for this case
2273                  * but we do it anyway).
2274                  */
2275                 if (info->key_next > child->bref.key || info->key_next == 0)
2276                         info->key_next = child->bref.key;
2277         }
2278
2279         /*
2280          * Always truncate key_next based on child's end-of-range.
2281          */
2282         child_end = child->bref.key + ((hammer2_key_t)1 << child->bref.keybits);
2283         if (child_end && (info->key_next > child_end || info->key_next == 0))
2284                 info->key_next = child_end;
2285
2286         return(0);
2287 }
2288
2289 /*
2290  * Retrieve the specified chain from a media blockref, creating the
2291  * in-memory chain structure which reflects it.  The returned chain is
2292  * held and locked according to (how) (HAMMER2_RESOLVE_*).  The caller must
2293  * handle crc-checks and so forth, and should check chain->error before
2294  * assuming that the data is good.
2295  *
2296  * To handle insertion races pass the INSERT_RACE flag along with the
2297  * generation number of the core.  NULL will be returned if the generation
2298  * number changes before we have a chance to insert the chain.  Insert
2299  * races can occur because the parent might be held shared.
2300  *
2301  * Caller must hold the parent locked shared or exclusive since we may
2302  * need the parent's bref array to find our block.
2303  *
2304  * WARNING! chain->pmp is always set to NULL for any chain representing
2305  *          part of the super-root topology.
2306  */
2307 hammer2_chain_t *
2308 hammer2_chain_get(hammer2_chain_t *parent, int generation,
2309                   hammer2_blockref_t *bref, int how)
2310 {
2311         hammer2_dev_t *hmp = parent->hmp;
2312         hammer2_chain_t *chain;
2313         int error;
2314
2315         /*
2316          * Allocate a chain structure representing the existing media
2317          * entry.  Resulting chain has one ref and is not locked.
2318          */
2319         if (bref->flags & HAMMER2_BREF_FLAG_PFSROOT)
2320                 chain = hammer2_chain_alloc(hmp, NULL, bref);
2321         else
2322                 chain = hammer2_chain_alloc(hmp, parent->pmp, bref);
2323         /* ref'd chain returned */
2324
2325         /*
2326          * Flag that the chain is in the parent's blockmap so delete/flush
2327          * knows what to do with it.
2328          */
2329         atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
2330
2331         /*
2332          * chain must be locked to avoid unexpected ripouts
2333          */
2334         hammer2_chain_lock(chain, how);
2335
2336         /*
2337          * Link the chain into its parent.  A spinlock is required to safely
2338          * access the RBTREE, and it is possible to collide with another
2339          * hammer2_chain_get() operation because the caller might only hold
2340          * a shared lock on the parent.
2341          *
2342          * NOTE: Get races can occur quite often when we distribute
2343          *       asynchronous read-aheads across multiple threads.
2344          */
2345         KKASSERT(parent->refs > 0);
2346         error = hammer2_chain_insert(parent, chain,
2347                                      HAMMER2_CHAIN_INSERT_SPIN |
2348                                      HAMMER2_CHAIN_INSERT_RACE,
2349                                      generation);
2350         if (error) {
2351                 KKASSERT((chain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
2352                 /*kprintf("chain %p get race\n", chain);*/
2353                 hammer2_chain_unlock(chain);
2354                 hammer2_chain_drop(chain);
2355                 chain = NULL;
2356         } else {
2357                 KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
2358         }
2359
2360         /*
2361          * Return our new chain referenced but not locked, or NULL if
2362          * a race occurred.
2363          */
2364         return (chain);
2365 }
2366
2367 /*
2368  * Lookup initialization/completion API
2369  */
2370 hammer2_chain_t *
2371 hammer2_chain_lookup_init(hammer2_chain_t *parent, int flags)
2372 {
2373         hammer2_chain_ref(parent);
2374         if (flags & HAMMER2_LOOKUP_SHARED) {
2375                 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS |
2376                                            HAMMER2_RESOLVE_SHARED);
2377         } else {
2378                 hammer2_chain_lock(parent, HAMMER2_RESOLVE_ALWAYS);
2379         }
2380         return (parent);
2381 }
2382
2383 void
2384 hammer2_chain_lookup_done(hammer2_chain_t *parent)
2385 {
2386         if (parent) {
2387                 hammer2_chain_unlock(parent);
2388                 hammer2_chain_drop(parent);
2389         }
2390 }
2391
2392 /*
2393  * Take the locked chain and return a locked parent.  The chain remains
2394  * locked on return, but may have to be temporarily unlocked to acquire
2395  * the parent.  Because of this, (chain) must be stable and cannot be
2396  * deleted while it was temporarily unlocked (typically means that (chain)
2397  * is an inode).
2398  *
2399  * Pass HAMMER2_RESOLVE_* flags in flags.
2400  *
2401  * This will work even if the chain is errored, and the caller can check
2402  * parent->error on return if desired since the parent will be locked.
2403  *
2404  * This function handles the lock order reversal.
2405  */
2406 hammer2_chain_t *
2407 hammer2_chain_getparent(hammer2_chain_t *chain, int flags)
2408 {
2409         hammer2_chain_t *parent;
2410
2411         /*
2412          * Be careful of order, chain must be unlocked before parent
2413          * is locked below to avoid a deadlock.  Try it trivially first.
2414          */
2415         parent = chain->parent;
2416         if (parent == NULL)
2417                 panic("hammer2_chain_getparent: no parent");
2418         hammer2_chain_ref(parent);
2419         if (hammer2_chain_lock(parent, flags|HAMMER2_RESOLVE_NONBLOCK) == 0)
2420                 return parent;
2421
2422         for (;;) {
2423                 hammer2_chain_unlock(chain);
2424                 hammer2_chain_lock(parent, flags);
2425                 hammer2_chain_lock(chain, flags);
2426
2427                 /*
2428                  * Parent relinking races are quite common.  We have to get
2429                  * it right or we will blow up the block table.
2430                  */
2431                 if (chain->parent == parent)
2432                         break;
2433                 hammer2_chain_unlock(parent);
2434                 hammer2_chain_drop(parent);
2435                 cpu_ccfence();
2436                 parent = chain->parent;
2437                 if (parent == NULL)
2438                         panic("hammer2_chain_getparent: no parent");
2439                 hammer2_chain_ref(parent);
2440         }
2441         return parent;
2442 }
2443
2444 /*
2445  * Take the locked chain and return a locked parent.  The chain is unlocked
2446  * and dropped.  *chainp is set to the returned parent as a convenience.
2447  * Pass HAMMER2_RESOLVE_* flags in flags.
2448  *
2449  * This will work even if the chain is errored, and the caller can check
2450  * parent->error on return if desired since the parent will be locked.
2451  *
2452  * The chain does NOT need to be stable.  We use a tracking structure
2453  * to track the expected parent if the chain is deleted out from under us.
2454  *
2455  * This function handles the lock order reversal.
2456  */
2457 hammer2_chain_t *
2458 hammer2_chain_repparent(hammer2_chain_t **chainp, int flags)
2459 {
2460         hammer2_chain_t *chain;
2461         hammer2_chain_t *parent;
2462         struct hammer2_reptrack reptrack;
2463         struct hammer2_reptrack **repp;
2464
2465         /*
2466          * Be careful of order, chain must be unlocked before parent
2467          * is locked below to avoid a deadlock.  Try it trivially first.
2468          */
2469         chain = *chainp;
2470         parent = chain->parent;
2471         if (parent == NULL) {
2472                 hammer2_spin_unex(&chain->core.spin);
2473                 panic("hammer2_chain_repparent: no parent");
2474         }
2475         hammer2_chain_ref(parent);
2476         if (hammer2_chain_lock(parent, flags|HAMMER2_RESOLVE_NONBLOCK) == 0) {
2477                 hammer2_chain_unlock(chain);
2478                 hammer2_chain_drop(chain);
2479                 *chainp = parent;
2480
2481                 return parent;
2482         }
2483
2484         /*
2485          * Ok, now it gets a bit nasty.  There are multiple situations where
2486          * the parent might be in the middle of a deletion, or where the child
2487          * (chain) might be deleted the instant we let go of its lock.
2488          * We can potentially end up in a no-win situation!
2489          *
2490          * In particular, the indirect_maintenance() case can cause these
2491          * situations.
2492          *
2493          * To deal with this we install a reptrack structure in the parent
2494          * This reptrack structure 'owns' the parent ref and will automatically
2495          * migrate to the parent's parent if the parent is deleted permanently.
2496          */
2497         hammer2_spin_init(&reptrack.spin, "h2reptrk");
2498         reptrack.chain = parent;
2499         hammer2_chain_ref(parent);              /* for the reptrack */
2500
2501         hammer2_spin_ex(&parent->core.spin);
2502         reptrack.next = parent->core.reptrack;
2503         parent->core.reptrack = &reptrack;
2504         hammer2_spin_unex(&parent->core.spin);
2505
2506         hammer2_chain_unlock(chain);
2507         hammer2_chain_drop(chain);
2508         chain = NULL;   /* gone */
2509
2510         /*
2511          * At the top of this loop, chain is gone and parent is refd both
2512          * by us explicitly AND via our reptrack.  We are attempting to
2513          * lock parent.
2514          */
2515         for (;;) {
2516                 hammer2_chain_lock(parent, flags);
2517
2518                 if (reptrack.chain == parent)
2519                         break;
2520                 hammer2_chain_unlock(parent);
2521                 hammer2_chain_drop(parent);
2522
2523                 kprintf("hammer2: debug REPTRACK %p->%p\n",
2524                         parent, reptrack.chain);
2525                 hammer2_spin_ex(&reptrack.spin);
2526                 parent = reptrack.chain;
2527                 hammer2_chain_ref(parent);
2528                 hammer2_spin_unex(&reptrack.spin);
2529         }
2530
2531         /*
2532          * Once parent is locked and matches our reptrack, our reptrack
2533          * will be stable and we have our parent.  We can unlink our
2534          * reptrack.
2535          *
2536          * WARNING!  Remember that the chain lock might be shared.  Chains
2537          *           locked shared have stable parent linkages.
2538          */
2539         hammer2_spin_ex(&parent->core.spin);
2540         repp = &parent->core.reptrack;
2541         while (*repp != &reptrack)
2542                 repp = &(*repp)->next;
2543         *repp = reptrack.next;
2544         hammer2_spin_unex(&parent->core.spin);
2545
2546         hammer2_chain_drop(parent);     /* reptrack ref */
2547         *chainp = parent;               /* return parent lock+ref */
2548
2549         return parent;
2550 }
2551
2552 /*
2553  * Dispose of any linked reptrack structures in (chain) by shifting them to
2554  * (parent).  Both (chain) and (parent) must be exclusively locked.
2555  *
2556  * This is interlocked against any children of (chain) on the other side.
2557  * No children so remain as-of when this is called so we can test
2558  * core.reptrack without holding the spin-lock.
2559  *
2560  * Used whenever the caller intends to permanently delete chains related
2561  * to topological recursions (BREF_TYPE_INDIRECT, BREF_TYPE_FREEMAP_NODE),
2562  * where the chains underneath the node being deleted are given a new parent
2563  * above the node being deleted.
2564  */
2565 static
2566 void
2567 hammer2_chain_repchange(hammer2_chain_t *parent, hammer2_chain_t *chain)
2568 {
2569         struct hammer2_reptrack *reptrack;
2570
2571         KKASSERT(chain->core.live_count == 0 && RB_EMPTY(&chain->core.rbtree));
2572         while (chain->core.reptrack) {
2573                 hammer2_spin_ex(&parent->core.spin);
2574                 hammer2_spin_ex(&chain->core.spin);
2575                 reptrack = chain->core.reptrack;
2576                 if (reptrack == NULL) {
2577                         hammer2_spin_unex(&chain->core.spin);
2578                         hammer2_spin_unex(&parent->core.spin);
2579                         break;
2580                 }
2581                 hammer2_spin_ex(&reptrack->spin);
2582                 chain->core.reptrack = reptrack->next;
2583                 reptrack->chain = parent;
2584                 reptrack->next = parent->core.reptrack;
2585                 parent->core.reptrack = reptrack;
2586                 hammer2_chain_ref(parent);              /* reptrack */
2587
2588                 hammer2_spin_unex(&chain->core.spin);
2589                 hammer2_spin_unex(&parent->core.spin);
2590                 kprintf("hammer2: debug repchange %p %p->%p\n",
2591                         reptrack, chain, parent);
2592                 hammer2_chain_drop(chain);              /* reptrack */
2593         }
2594 }
2595
2596 /*
2597  * Locate the first chain whos key range overlaps (key_beg, key_end) inclusive.
2598  * (*parentp) typically points to an inode but can also point to a related
2599  * indirect block and this function will recurse upwards and find the inode
2600  * or the nearest undeleted indirect block covering the key range.
2601  *
2602  * This function unconditionally sets *errorp, replacing any previous value.
2603  *
2604  * (*parentp) must be exclusive or shared locked (depending on flags) and
2605  * referenced and can be an inode or an existing indirect block within the
2606  * inode.
2607  *
2608  * If (*parent) is errored out, this function will not attempt to recurse
2609  * the radix tree and will return NULL along with an appropriate *errorp.
2610  * If NULL is returned and *errorp is 0, the requested lookup could not be
2611  * located.
2612  *
2613  * On return (*parentp) will be modified to point at the deepest parent chain
2614  * element encountered during the search, as a helper for an insertion or
2615  * deletion.
2616  *
2617  * The new (*parentp) will be locked shared or exclusive (depending on flags),
2618  * and referenced, and the old will be unlocked and dereferenced (no change
2619  * if they are both the same).  This is particularly important if the caller
2620  * wishes to insert a new chain, (*parentp) will be set properly even if NULL
2621  * is returned, as long as no error occurred.
2622  *
2623  * The matching chain will be returned locked according to flags.
2624  *
2625  * --
2626  *
2627  * NULL is returned if no match was found, but (*parentp) will still
2628  * potentially be adjusted.
2629  *
2630  * On return (*key_nextp) will point to an iterative value for key_beg.
2631  * (If NULL is returned (*key_nextp) is set to (key_end + 1)).
2632  *
2633  * This function will also recurse up the chain if the key is not within the
2634  * current parent's range.  (*parentp) can never be set to NULL.  An iteration
2635  * can simply allow (*parentp) to float inside the loop.
2636  *
2637  * NOTE!  chain->data is not always resolved.  By default it will not be
2638  *        resolved for BREF_TYPE_DATA, FREEMAP_NODE, or FREEMAP_LEAF.  Use
2639  *        HAMMER2_LOOKUP_ALWAYS to force resolution (but be careful w/
2640  *        BREF_TYPE_DATA as the device buffer can alias the logical file
2641  *        buffer).
2642  */
2643
2644 hammer2_chain_t *
2645 hammer2_chain_lookup(hammer2_chain_t **parentp, hammer2_key_t *key_nextp,
2646                      hammer2_key_t key_beg, hammer2_key_t key_end,
2647                      int *errorp, int flags)
2648 {
2649         hammer2_dev_t *hmp;
2650         hammer2_chain_t *parent;
2651         hammer2_chain_t *chain;
2652         hammer2_blockref_t *base;
2653         hammer2_blockref_t *bref;
2654         hammer2_blockref_t bsave;
2655         hammer2_key_t scan_beg;
2656         hammer2_key_t scan_end;
2657         int count = 0;
2658         int how_always = HAMMER2_RESOLVE_ALWAYS;
2659         int how_maybe = HAMMER2_RESOLVE_MAYBE;
2660         int how;
2661         int generation;
2662         int maxloops = 300000;
2663         volatile hammer2_mtx_t save_mtx;
2664
2665         if (flags & HAMMER2_LOOKUP_ALWAYS) {
2666                 how_maybe = how_always;
2667                 how = HAMMER2_RESOLVE_ALWAYS;
2668         } else if (flags & HAMMER2_LOOKUP_NODATA) {
2669                 how = HAMMER2_RESOLVE_NEVER;
2670         } else {
2671                 how = HAMMER2_RESOLVE_MAYBE;
2672         }
2673         if (flags & HAMMER2_LOOKUP_SHARED) {
2674                 how_maybe |= HAMMER2_RESOLVE_SHARED;
2675                 how_always |= HAMMER2_RESOLVE_SHARED;
2676                 how |= HAMMER2_RESOLVE_SHARED;
2677         }
2678
2679         /*
2680          * Recurse (*parentp) upward if necessary until the parent completely
2681          * encloses the key range or we hit the inode.
2682          *
2683          * Handle races against the flusher deleting indirect nodes on its
2684          * way back up by continuing to recurse upward past the deletion.
2685          */
2686         parent = *parentp;
2687         hmp = parent->hmp;
2688         *errorp = 0;
2689
2690         while (parent->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2691                parent->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2692                 scan_beg = parent->bref.key;
2693                 scan_end = scan_beg +
2694                            ((hammer2_key_t)1 << parent->bref.keybits) - 1;
2695                 if ((parent->flags & HAMMER2_CHAIN_DELETED) == 0) {
2696                         if (key_beg >= scan_beg && key_end <= scan_end)
2697                                 break;
2698                 }
2699                 parent = hammer2_chain_repparent(parentp, how_maybe);
2700         }
2701 again:
2702         if (--maxloops == 0)
2703                 panic("hammer2_chain_lookup: maxloops");
2704
2705         /*
2706          * MATCHIND case that does not require parent->data (do prior to
2707          * parent->error check).
2708          */
2709         switch(parent->bref.type) {
2710         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2711         case HAMMER2_BREF_TYPE_INDIRECT:
2712                 if (flags & HAMMER2_LOOKUP_MATCHIND) {
2713                         scan_beg = parent->bref.key;
2714                         scan_end = scan_beg +
2715                                ((hammer2_key_t)1 << parent->bref.keybits) - 1;
2716                         if (key_beg == scan_beg && key_end == scan_end) {
2717                                 chain = parent;
2718                                 hammer2_chain_ref(chain);
2719                                 hammer2_chain_lock(chain, how_maybe);
2720                                 *key_nextp = scan_end + 1;
2721                                 goto done;
2722                         }
2723                 }
2724                 break;
2725         default:
2726                 break;
2727         }
2728
2729         /*
2730          * No lookup is possible if the parent is errored.  We delayed
2731          * this check as long as we could to ensure that the parent backup,
2732          * embedded data, and MATCHIND code could still execute.
2733          */
2734         if (parent->error) {
2735                 *errorp = parent->error;
2736                 return NULL;
2737         }
2738
2739         /*
2740          * Locate the blockref array.  Currently we do a fully associative
2741          * search through the array.
2742          */
2743         switch(parent->bref.type) {
2744         case HAMMER2_BREF_TYPE_INODE:
2745                 /*
2746                  * Special shortcut for embedded data returns the inode
2747                  * itself.  Callers must detect this condition and access
2748                  * the embedded data (the strategy code does this for us).
2749                  *
2750                  * This is only applicable to regular files and softlinks.
2751                  *
2752                  * We need a second lock on parent.  Since we already have
2753                  * a lock we must pass LOCKAGAIN to prevent unexpected
2754                  * blocking (we don't want to block on a second shared
2755                  * ref if an exclusive lock is pending)
2756                  */
2757                 if (parent->data->ipdata.meta.op_flags &
2758                     HAMMER2_OPFLAG_DIRECTDATA) {
2759                         if (flags & HAMMER2_LOOKUP_NODIRECT) {
2760                                 chain = NULL;
2761                                 *key_nextp = key_end + 1;
2762                                 goto done;
2763                         }
2764                         hammer2_chain_ref(parent);
2765                         hammer2_chain_lock(parent, how_always |
2766                                                    HAMMER2_RESOLVE_LOCKAGAIN);
2767                         *key_nextp = key_end + 1;
2768                         return (parent);
2769                 }
2770                 base = &parent->data->ipdata.u.blockset.blockref[0];
2771                 count = HAMMER2_SET_COUNT;
2772                 break;
2773         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
2774         case HAMMER2_BREF_TYPE_INDIRECT:
2775                 /*
2776                  * Optimize indirect blocks in the INITIAL state to avoid
2777                  * I/O.
2778                  *
2779                  * Debugging: Enter permanent wait state instead of
2780                  * panicing on unexpectedly NULL data for the moment.
2781                  */
2782                 if (parent->flags & HAMMER2_CHAIN_INITIAL) {
2783                         base = NULL;
2784                 } else {
2785                         if (parent->data == NULL) {
2786                                 kprintf("hammer2: unexpected NULL data "
2787                                         "on %p\n", parent);
2788                                 while (1)
2789                                         tsleep(parent, 0, "xxx", 0);
2790                         }
2791                         base = &parent->data->npdata[0];
2792                 }
2793                 count = parent->bytes / sizeof(hammer2_blockref_t);
2794                 break;
2795         case HAMMER2_BREF_TYPE_VOLUME:
2796                 base = &parent->data->voldata.sroot_blockset.blockref[0];
2797                 count = HAMMER2_SET_COUNT;
2798                 break;
2799         case HAMMER2_BREF_TYPE_FREEMAP:
2800                 base = &parent->data->blkset.blockref[0];
2801                 count = HAMMER2_SET_COUNT;
2802                 break;
2803         default:
2804                 kprintf("hammer2_chain_lookup: unrecognized "
2805                         "blockref(B) type: %d",
2806                         parent->bref.type);
2807                 while (1)
2808                         tsleep(&base, 0, "dead", 0);
2809                 panic("hammer2_chain_lookup: unrecognized "
2810                       "blockref(B) type: %d",
2811                       parent->bref.type);
2812                 base = NULL;    /* safety */
2813                 count = 0;      /* safety */
2814         }
2815
2816         /*
2817          * Merged scan to find next candidate.
2818          *
2819          * hammer2_base_*() functions require the parent->core.live_* fields
2820          * to be synchronized.
2821          *
2822          * We need to hold the spinlock to access the block array and RB tree
2823          * and to interlock chain creation.
2824          */
2825         if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
2826                 hammer2_chain_countbrefs(parent, base, count);
2827
2828         /*
2829          * Combined search
2830          */
2831         hammer2_spin_ex(&parent->core.spin);
2832         chain = hammer2_combined_find(parent, base, count,
2833                                       key_nextp,
2834                                       key_beg, key_end,
2835                                       &bref);
2836         generation = parent->core.generation;
2837
2838         /*
2839          * Exhausted parent chain, iterate.
2840          */
2841         if (bref == NULL) {
2842                 KKASSERT(chain == NULL);
2843                 hammer2_spin_unex(&parent->core.spin);
2844                 if (key_beg == key_end) /* short cut single-key case */
2845                         return (NULL);
2846
2847                 /*
2848                  * Stop if we reached the end of the iteration.
2849                  */
2850                 if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
2851                     parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2852                         return (NULL);
2853                 }
2854
2855                 /*
2856                  * Calculate next key, stop if we reached the end of the
2857                  * iteration, otherwise go up one level and loop.
2858                  */
2859                 key_beg = parent->bref.key +
2860                           ((hammer2_key_t)1 << parent->bref.keybits);
2861                 if (key_beg == 0 || key_beg > key_end)
2862                         return (NULL);
2863                 parent = hammer2_chain_repparent(parentp, how_maybe);
2864                 goto again;
2865         }
2866
2867         /*
2868          * Selected from blockref or in-memory chain.
2869          */
2870         bsave = *bref;
2871         if (chain == NULL) {
2872                 hammer2_spin_unex(&parent->core.spin);
2873                 if (bsave.type == HAMMER2_BREF_TYPE_INDIRECT ||
2874                     bsave.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2875                         chain = hammer2_chain_get(parent, generation,
2876                                                   &bsave, how_maybe);
2877                 } else {
2878                         chain = hammer2_chain_get(parent, generation,
2879                                                   &bsave, how);
2880                 }
2881                 if (chain == NULL)
2882                         goto again;
2883         } else {
2884                 hammer2_chain_ref(chain);
2885                 hammer2_spin_unex(&parent->core.spin);
2886
2887                 /*
2888                  * chain is referenced but not locked.  We must lock the
2889                  * chain to obtain definitive state.
2890                  */
2891                 if (bsave.type == HAMMER2_BREF_TYPE_INDIRECT ||
2892                     bsave.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2893                         hammer2_chain_lock(chain, how_maybe);
2894                 } else {
2895                         hammer2_chain_lock(chain, how);
2896                 }
2897                 KKASSERT(chain->parent == parent);
2898         }
2899         if (bcmp(&bsave, &chain->bref, sizeof(bsave)) ||
2900             chain->parent != parent) {
2901                 hammer2_chain_unlock(chain);
2902                 hammer2_chain_drop(chain);
2903                 chain = NULL;   /* SAFETY */
2904                 goto again;
2905         }
2906
2907
2908         /*
2909          * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
2910          *
2911          * NOTE: Chain's key range is not relevant as there might be
2912          *       one-offs within the range that are not deleted.
2913          *
2914          * NOTE: Lookups can race delete-duplicate because
2915          *       delete-duplicate does not lock the parent's core
2916          *       (they just use the spinlock on the core).
2917          */
2918         if (chain->flags & HAMMER2_CHAIN_DELETED) {
2919                 kprintf("skip deleted chain %016jx.%02x key=%016jx\n",
2920                         chain->bref.data_off, chain->bref.type,
2921                         chain->bref.key);
2922                 hammer2_chain_unlock(chain);
2923                 hammer2_chain_drop(chain);
2924                 chain = NULL;   /* SAFETY */
2925                 key_beg = *key_nextp;
2926                 if (key_beg == 0 || key_beg > key_end)
2927                         return(NULL);
2928                 goto again;
2929         }
2930
2931         /*
2932          * If the chain element is an indirect block it becomes the new
2933          * parent and we loop on it.  We must maintain our top-down locks
2934          * to prevent the flusher from interfering (i.e. doing a
2935          * delete-duplicate and leaving us recursing down a deleted chain).
2936          *
2937          * The parent always has to be locked with at least RESOLVE_MAYBE
2938          * so we can access its data.  It might need a fixup if the caller
2939          * passed incompatible flags.  Be careful not to cause a deadlock
2940          * as a data-load requires an exclusive lock.
2941          *
2942          * If HAMMER2_LOOKUP_MATCHIND is set and the indirect block's key
2943          * range is within the requested key range we return the indirect
2944          * block and do NOT loop.  This is usually only used to acquire
2945          * freemap nodes.
2946          */
2947         if (chain->bref.type == HAMMER2_BREF_TYPE_INDIRECT ||
2948             chain->bref.type == HAMMER2_BREF_TYPE_FREEMAP_NODE) {
2949                 save_mtx = parent->lock;
2950                 hammer2_chain_unlock(parent);
2951                 hammer2_chain_drop(parent);
2952                 *parentp = parent = chain;
2953                 chain = NULL;   /* SAFETY */
2954                 goto again;
2955         }
2956 done:
2957         /*
2958          * All done, return the locked chain.
2959          *
2960          * If the caller does not want a locked chain, replace the lock with
2961          * a ref.  Perhaps this can eventually be optimized to not obtain the
2962          * lock in the first place for situations where the data does not
2963          * need to be resolved.
2964          *
2965          * NOTE! A chain->error must be tested by the caller upon return.
2966          *       *errorp is only set based on issues which occur while
2967          *       trying to reach the chain.
2968          */
2969         return (chain);
2970 }
2971
2972 /*
2973  * After having issued a lookup we can iterate all matching keys.
2974  *
2975  * If chain is non-NULL we continue the iteration from just after it's index.
2976  *
2977  * If chain is NULL we assume the parent was exhausted and continue the
2978  * iteration at the next parent.
2979  *
2980  * If a fatal error occurs (typically an I/O error), a dummy chain is
2981  * returned with chain->error and error-identifying information set.  This
2982  * chain will assert if you try to do anything fancy with it.
2983  *
2984  * XXX Depending on where the error occurs we should allow continued iteration.
2985  *
2986  * parent must be locked on entry and remains locked throughout.  chain's
2987  * lock status must match flags.  Chain is always at least referenced.
2988  *
2989  * WARNING!  The MATCHIND flag does not apply to this function.
2990  */
2991 hammer2_chain_t *
2992 hammer2_chain_next(hammer2_chain_t **parentp, hammer2_chain_t *chain,
2993                    hammer2_key_t *key_nextp,
2994                    hammer2_key_t key_beg, hammer2_key_t key_end,
2995                    int *errorp, int flags)
2996 {
2997         hammer2_chain_t *parent;
2998         int how_maybe;
2999
3000         /*
3001          * Calculate locking flags for upward recursion.
3002          */
3003         how_maybe = HAMMER2_RESOLVE_MAYBE;
3004         if (flags & HAMMER2_LOOKUP_SHARED)
3005                 how_maybe |= HAMMER2_RESOLVE_SHARED;
3006
3007         parent = *parentp;
3008         *errorp = 0;
3009
3010         /*
3011          * Calculate the next index and recalculate the parent if necessary.
3012          */
3013         if (chain) {
3014                 key_beg = chain->bref.key +
3015                           ((hammer2_key_t)1 << chain->bref.keybits);
3016                 hammer2_chain_unlock(chain);
3017                 hammer2_chain_drop(chain);
3018
3019                 /*
3020                  * chain invalid past this point, but we can still do a
3021                  * pointer comparison w/parent.
3022                  *
3023                  * Any scan where the lookup returned degenerate data embedded
3024                  * in the inode has an invalid index and must terminate.
3025                  */
3026                 if (chain == parent)
3027                         return(NULL);
3028                 if (key_beg == 0 || key_beg > key_end)
3029                         return(NULL);
3030                 chain = NULL;
3031         } else if (parent->bref.type != HAMMER2_BREF_TYPE_INDIRECT &&
3032                    parent->bref.type != HAMMER2_BREF_TYPE_FREEMAP_NODE) {
3033                 /*
3034                  * We reached the end of the iteration.
3035                  */
3036                 return (NULL);
3037         } else {
3038                 /*
3039                  * Continue iteration with next parent unless the current
3040                  * parent covers the range.
3041                  *
3042                  * (This also handles the case of a deleted, empty indirect
3043                  * node).
3044                  */
3045                 key_beg = parent->bref.key +
3046                           ((hammer2_key_t)1 << parent->bref.keybits);
3047                 if (key_beg == 0 || key_beg > key_end)
3048                         return (NULL);
3049                 parent = hammer2_chain_repparent(parentp, how_maybe);
3050         }
3051
3052         /*
3053          * And execute
3054          */
3055         return (hammer2_chain_lookup(parentp, key_nextp,
3056                                      key_beg, key_end,
3057                                      errorp, flags));
3058 }
3059
3060 /*
3061  * Caller wishes to iterate chains under parent, loading new chains into
3062  * chainp.  Caller must initialize *chainp to NULL and *firstp to 1, and
3063  * then call hammer2_chain_scan() repeatedly until a non-zero return.
3064  * During the scan, *firstp will be set to 0 and (*chainp) will be replaced
3065  * with the returned chain for the scan.  The returned *chainp will be
3066  * locked and referenced.  Any prior contents will be unlocked and dropped.
3067  *
3068  * Caller should check the return value.  A normal scan EOF will return
3069  * exactly HAMMER2_ERROR_EOF.  Any other non-zero value indicates an
3070  * error trying to access parent data.  Any error in the returned chain
3071  * must be tested separately by the caller.
3072  *
3073  * (*chainp) is dropped on each scan, but will only be set if the returned
3074  * element itself can recurse.  Leaf elements are NOT resolved, loaded, or
3075  * returned via *chainp.  The caller will get their bref only.
3076  *
3077  * The raw scan function is similar to lookup/next but does not seek to a key.
3078  * Blockrefs are iterated via first_bref = (parent, NULL) and
3079  * next_chain = (parent, bref).
3080  *
3081  * The passed-in parent must be locked and its data resolved.  The function
3082  * nominally returns a locked and referenced *chainp != NULL for chains
3083  * the caller might need to recurse on (and will dipose of any *chainp passed
3084  * in).  The caller must check the chain->bref.type either way.
3085  */
3086 int
3087 hammer2_chain_scan(hammer2_chain_t *parent, hammer2_chain_t **chainp,
3088                    hammer2_blockref_t *bref, int *firstp,
3089                    int flags)
3090 {
3091         hammer2_dev_t *hmp;
3092         hammer2_blockref_t *base;
3093         hammer2_blockref_t *bref_ptr;
3094         hammer2_key_t key;
3095         hammer2_key_t next_key;
3096         hammer2_chain_t *chain = NULL;
3097         int count = 0;
3098         int how_always = HAMMER2_RESOLVE_ALWAYS;
3099         int how_maybe = HAMMER2_RESOLVE_MAYBE;
3100         int how;
3101         int generation;
3102         int maxloops = 300000;
3103         int error;
3104
3105         hmp = parent->hmp;
3106         error = 0;
3107
3108         /*
3109          * Scan flags borrowed from lookup.
3110          */
3111         if (flags & HAMMER2_LOOKUP_ALWAYS) {
3112                 how_maybe = how_always;
3113                 how = HAMMER2_RESOLVE_ALWAYS;
3114         } else if (flags & HAMMER2_LOOKUP_NODATA) {
3115                 how = HAMMER2_RESOLVE_NEVER;
3116         } else {
3117                 how = HAMMER2_RESOLVE_MAYBE;
3118         }
3119         if (flags & HAMMER2_LOOKUP_SHARED) {
3120                 how_maybe |= HAMMER2_RESOLVE_SHARED;
3121                 how_always |= HAMMER2_RESOLVE_SHARED;
3122                 how |= HAMMER2_RESOLVE_SHARED;
3123         }
3124
3125         /*
3126          * Calculate key to locate first/next element, unlocking the previous
3127          * element as we go.  Be careful, the key calculation can overflow.
3128          *
3129          * (also reset bref to NULL)
3130          */
3131         if (*firstp) {
3132                 key = 0;
3133                 *firstp = 0;
3134         } else {
3135                 key = bref->key + ((hammer2_key_t)1 << bref->keybits);
3136                 if ((chain = *chainp) != NULL) {
3137                         *chainp = NULL;
3138                         hammer2_chain_unlock(chain);
3139                         hammer2_chain_drop(chain);
3140                         chain = NULL;
3141                 }
3142                 if (key == 0) {
3143                         error |= HAMMER2_ERROR_EOF;
3144                         goto done;
3145                 }
3146         }
3147
3148 again:
3149         if (parent->error) {
3150                 error = parent->error;
3151                 goto done;
3152         }
3153         if (--maxloops == 0)
3154                 panic("hammer2_chain_scan: maxloops");
3155
3156         /*
3157          * Locate the blockref array.  Currently we do a fully associative
3158          * search through the array.
3159          */
3160         switch(parent->bref.type) {
3161         case HAMMER2_BREF_TYPE_INODE:
3162                 /*
3163                  * An inode with embedded data has no sub-chains.
3164                  *
3165                  * WARNING! Bulk scan code may pass a static chain marked
3166                  *          as BREF_TYPE_INODE with a copy of the volume
3167                  *          root blockset to snapshot the volume.
3168                  */
3169                 if (parent->data->ipdata.meta.op_flags &
3170                     HAMMER2_OPFLAG_DIRECTDATA) {
3171                         error |= HAMMER2_ERROR_EOF;
3172                         goto done;
3173                 }
3174                 base = &parent->data->ipdata.u.blockset.blockref[0];
3175                 count = HAMMER2_SET_COUNT;
3176                 break;
3177         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3178         case HAMMER2_BREF_TYPE_INDIRECT:
3179                 /*
3180                  * Optimize indirect blocks in the INITIAL state to avoid
3181                  * I/O.
3182                  */
3183                 if (parent->flags & HAMMER2_CHAIN_INITIAL) {
3184                         base = NULL;
3185                 } else {
3186                         if (parent->data == NULL)
3187                                 panic("parent->data is NULL");
3188                         base = &parent->data->npdata[0];
3189                 }
3190                 count = parent->bytes / sizeof(hammer2_blockref_t);
3191                 break;
3192         case HAMMER2_BREF_TYPE_VOLUME:
3193                 base = &parent->data->voldata.sroot_blockset.blockref[0];
3194                 count = HAMMER2_SET_COUNT;
3195                 break;
3196         case HAMMER2_BREF_TYPE_FREEMAP:
3197                 base = &parent->data->blkset.blockref[0];
3198                 count = HAMMER2_SET_COUNT;
3199                 break;
3200         default:
3201                 panic("hammer2_chain_scan: unrecognized blockref type: %d",
3202                       parent->bref.type);
3203                 base = NULL;    /* safety */
3204                 count = 0;      /* safety */
3205         }
3206
3207         /*
3208          * Merged scan to find next candidate.
3209          *
3210          * hammer2_base_*() functions require the parent->core.live_* fields
3211          * to be synchronized.
3212          *
3213          * We need to hold the spinlock to access the block array and RB tree
3214          * and to interlock chain creation.
3215          */
3216         if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
3217                 hammer2_chain_countbrefs(parent, base, count);
3218
3219         next_key = 0;
3220         bref_ptr = NULL;
3221         hammer2_spin_ex(&parent->core.spin);
3222         chain = hammer2_combined_find(parent, base, count,
3223                                       &next_key,
3224                                       key, HAMMER2_KEY_MAX,
3225                                       &bref_ptr);
3226         generation = parent->core.generation;
3227
3228         /*
3229          * Exhausted parent chain, we're done.
3230          */
3231         if (bref_ptr == NULL) {
3232                 hammer2_spin_unex(&parent->core.spin);
3233                 KKASSERT(chain == NULL);
3234                 error |= HAMMER2_ERROR_EOF;
3235                 goto done;
3236         }
3237
3238         /*
3239          * Copy into the supplied stack-based blockref.
3240          */
3241         *bref = *bref_ptr;
3242
3243         /*
3244          * Selected from blockref or in-memory chain.
3245          */
3246         if (chain == NULL) {
3247                 switch(bref->type) {
3248                 case HAMMER2_BREF_TYPE_INODE:
3249                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3250                 case HAMMER2_BREF_TYPE_INDIRECT:
3251                 case HAMMER2_BREF_TYPE_VOLUME:
3252                 case HAMMER2_BREF_TYPE_FREEMAP:
3253                         /*
3254                          * Recursion, always get the chain
3255                          */
3256                         hammer2_spin_unex(&parent->core.spin);
3257                         chain = hammer2_chain_get(parent, generation,
3258                                                   bref, how);
3259                         if (chain == NULL)
3260                                 goto again;
3261                         break;
3262                 default:
3263                         /*
3264                          * No recursion, do not waste time instantiating
3265                          * a chain, just iterate using the bref.
3266                          */
3267                         hammer2_spin_unex(&parent->core.spin);
3268                         break;
3269                 }
3270         } else {
3271                 /*
3272                  * Recursion or not we need the chain in order to supply
3273                  * the bref.
3274                  */
3275                 hammer2_chain_ref(chain);
3276                 hammer2_spin_unex(&parent->core.spin);
3277                 hammer2_chain_lock(chain, how);
3278         }
3279         if (chain &&
3280             (bcmp(bref, &chain->bref, sizeof(*bref)) ||
3281              chain->parent != parent)) {
3282                 hammer2_chain_unlock(chain);
3283                 hammer2_chain_drop(chain);
3284                 chain = NULL;
3285                 goto again;
3286         }
3287
3288         /*
3289          * Skip deleted chains (XXX cache 'i' end-of-block-array? XXX)
3290          *
3291          * NOTE: chain's key range is not relevant as there might be
3292          *       one-offs within the range that are not deleted.
3293          *
3294          * NOTE: XXX this could create problems with scans used in
3295          *       situations other than mount-time recovery.
3296          *
3297          * NOTE: Lookups can race delete-duplicate because
3298          *       delete-duplicate does not lock the parent's core
3299          *       (they just use the spinlock on the core).
3300          */
3301         if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
3302                 hammer2_chain_unlock(chain);
3303                 hammer2_chain_drop(chain);
3304                 chain = NULL;
3305
3306                 key = next_key;
3307                 if (key == 0) {
3308                         error |= HAMMER2_ERROR_EOF;
3309                         goto done;
3310                 }
3311                 goto again;
3312         }
3313
3314 done:
3315         /*
3316          * All done, return the bref or NULL, supply chain if necessary.
3317          */
3318         if (chain)
3319                 *chainp = chain;
3320         return (error);
3321 }
3322
3323 /*
3324  * Create and return a new hammer2 system memory structure of the specified
3325  * key, type and size and insert it under (*parentp).  This is a full
3326  * insertion, based on the supplied key/keybits, and may involve creating
3327  * indirect blocks and moving other chains around via delete/duplicate.
3328  *
3329  * This call can be made with parent == NULL as long as a non -1 methods
3330  * is supplied.  hmp must also be supplied in this situation (otherwise
3331  * hmp is extracted from the supplied parent).  The chain will be detached
3332  * from the topology.  A later call with both parent and chain can be made
3333  * to attach it.
3334  *
3335  * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (*parentp) TO THE INSERTION
3336  * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
3337  * FULL.  This typically means that the caller is creating the chain after
3338  * doing a hammer2_chain_lookup().
3339  *
3340  * (*parentp) must be exclusive locked and may be replaced on return
3341  * depending on how much work the function had to do.
3342  *
3343  * (*parentp) must not be errored or this function will assert.
3344  *
3345  * (*chainp) usually starts out NULL and returns the newly created chain,
3346  * but if the caller desires the caller may allocate a disconnected chain
3347  * and pass it in instead.
3348  *
3349  * This function should NOT be used to insert INDIRECT blocks.  It is
3350  * typically used to create/insert inodes and data blocks.
3351  *
3352  * Caller must pass-in an exclusively locked parent the new chain is to
3353  * be inserted under, and optionally pass-in a disconnected, exclusively
3354  * locked chain to insert (else we create a new chain).  The function will
3355  * adjust (*parentp) as necessary, create or connect the chain, and
3356  * return an exclusively locked chain in *chainp.
3357  *
3358  * When creating a PFSROOT inode under the super-root, pmp is typically NULL
3359  * and will be reassigned.
3360  *
3361  * NOTE: returns HAMMER_ERROR_* flags
3362  */
3363 int
3364 hammer2_chain_create(hammer2_chain_t **parentp, hammer2_chain_t **chainp,
3365                      hammer2_dev_t *hmp, hammer2_pfs_t *pmp, int methods,
3366                      hammer2_key_t key, int keybits, int type, size_t bytes,
3367                      hammer2_tid_t mtid, hammer2_off_t dedup_off, int flags)
3368 {
3369         hammer2_chain_t *chain;
3370         hammer2_chain_t *parent;
3371         hammer2_blockref_t *base;
3372         hammer2_blockref_t dummy;
3373         int allocated = 0;
3374         int error = 0;
3375         int count;
3376         int maxloops = 300000;
3377
3378         /*
3379          * Topology may be crossing a PFS boundary.
3380          */
3381         parent = *parentp;
3382         if (parent) {
3383                 KKASSERT(hammer2_mtx_owned(&parent->lock));
3384                 KKASSERT(parent->error == 0);
3385                 hmp = parent->hmp;
3386         }
3387         chain = *chainp;
3388
3389         if (chain == NULL) {
3390                 /*
3391                  * First allocate media space and construct the dummy bref,
3392                  * then allocate the in-memory chain structure.  Set the
3393                  * INITIAL flag for fresh chains which do not have embedded
3394                  * data.
3395                  *
3396                  * XXX for now set the check mode of the child based on
3397                  *     the parent or, if the parent is an inode, the
3398                  *     specification in the inode.
3399                  */
3400                 bzero(&dummy, sizeof(dummy));
3401                 dummy.type = type;
3402                 dummy.key = key;
3403                 dummy.keybits = keybits;
3404                 dummy.data_off = hammer2_getradix(bytes);
3405
3406                 /*
3407                  * Inherit methods from parent by default.  Primarily used
3408                  * for BREF_TYPE_DATA.  Non-data types *must* be set to
3409                  * a non-NONE check algorithm.
3410                  */
3411                 if (methods == -1)
3412                         dummy.methods = parent->bref.methods;
3413                 else
3414                         dummy.methods = (uint8_t)methods;
3415
3416                 if (type != HAMMER2_BREF_TYPE_DATA &&
3417                     HAMMER2_DEC_CHECK(dummy.methods) == HAMMER2_CHECK_NONE) {
3418                         dummy.methods |=
3419                                 HAMMER2_ENC_CHECK(HAMMER2_CHECK_DEFAULT);
3420                 }
3421
3422                 chain = hammer2_chain_alloc(hmp, pmp, &dummy);
3423
3424                 /*
3425                  * Lock the chain manually, chain_lock will load the chain
3426                  * which we do NOT want to do.  (note: chain->refs is set
3427                  * to 1 by chain_alloc() for us, but lockcnt is not).
3428                  */
3429                 chain->lockcnt = 1;
3430                 hammer2_mtx_ex(&chain->lock);
3431                 allocated = 1;
3432
3433                 /*
3434                  * Set INITIAL to optimize I/O.  The flag will generally be
3435                  * processed when we call hammer2_chain_modify().
3436                  *
3437                  * Recalculate bytes to reflect the actual media block
3438                  * allocation.  Handle special case radix 0 == 0 bytes.
3439                  */
3440                 bytes = (size_t)(chain->bref.data_off & HAMMER2_OFF_MASK_RADIX);
3441                 if (bytes)
3442                         bytes = (hammer2_off_t)1 << bytes;
3443                 chain->bytes = bytes;
3444
3445                 switch(type) {
3446                 case HAMMER2_BREF_TYPE_VOLUME:
3447                 case HAMMER2_BREF_TYPE_FREEMAP:
3448                         panic("hammer2_chain_create: called with volume type");
3449                         break;
3450                 case HAMMER2_BREF_TYPE_INDIRECT:
3451                         panic("hammer2_chain_create: cannot be used to"
3452                               "create indirect block");
3453                         break;
3454                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3455                         panic("hammer2_chain_create: cannot be used to"
3456                               "create freemap root or node");
3457                         break;
3458                 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
3459                         KKASSERT(bytes == sizeof(chain->data->bmdata));
3460                         /* fall through */
3461                 case HAMMER2_BREF_TYPE_DIRENT:
3462                 case HAMMER2_BREF_TYPE_INODE:
3463                 case HAMMER2_BREF_TYPE_DATA:
3464                 default:
3465                         /*
3466                          * leave chain->data NULL, set INITIAL
3467                          */
3468                         KKASSERT(chain->data == NULL);
3469                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_INITIAL);
3470                         break;
3471                 }
3472         } else {
3473                 /*
3474                  * We are reattaching a previously deleted chain, possibly
3475                  * under a new parent and possibly with a new key/keybits.
3476                  * The chain does not have to be in a modified state.  The
3477                  * UPDATE flag will be set later on in this routine.
3478                  *
3479                  * Do NOT mess with the current state of the INITIAL flag.
3480                  */
3481                 chain->bref.key = key;
3482                 chain->bref.keybits = keybits;
3483                 if (chain->flags & HAMMER2_CHAIN_DELETED)
3484                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3485                 KKASSERT(chain->parent == NULL);
3486         }
3487
3488         /*
3489          * Set the appropriate bref flag if requested.
3490          *
3491          * NOTE! Callers can call this function to move chains without
3492          *       knowing about special flags, so don't clear bref flags
3493          *       here!
3494          */
3495         if (flags & HAMMER2_INSERT_PFSROOT)
3496                 chain->bref.flags |= HAMMER2_BREF_FLAG_PFSROOT;
3497
3498         if (parent == NULL)
3499                 goto skip;
3500
3501         /*
3502          * Calculate how many entries we have in the blockref array and
3503          * determine if an indirect block is required when inserting into
3504          * the parent.
3505          */
3506 again:
3507         if (--maxloops == 0)
3508                 panic("hammer2_chain_create: maxloops");
3509
3510         switch(parent->bref.type) {
3511         case HAMMER2_BREF_TYPE_INODE:
3512                 if ((parent->data->ipdata.meta.op_flags &
3513                      HAMMER2_OPFLAG_DIRECTDATA) != 0) {
3514                         kprintf("hammer2: parent set for direct-data! "
3515                                 "pkey=%016jx ckey=%016jx\n",
3516                                 parent->bref.key,
3517                                 chain->bref.key);
3518                 }
3519                 KKASSERT((parent->data->ipdata.meta.op_flags &
3520                           HAMMER2_OPFLAG_DIRECTDATA) == 0);
3521                 KKASSERT(parent->data != NULL);
3522                 base = &parent->data->ipdata.u.blockset.blockref[0];
3523                 count = HAMMER2_SET_COUNT;
3524                 break;
3525         case HAMMER2_BREF_TYPE_INDIRECT:
3526         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3527                 if (parent->flags & HAMMER2_CHAIN_INITIAL)
3528                         base = NULL;
3529                 else
3530                         base = &parent->data->npdata[0];
3531                 count = parent->bytes / sizeof(hammer2_blockref_t);
3532                 break;
3533         case HAMMER2_BREF_TYPE_VOLUME:
3534                 KKASSERT(parent->data != NULL);
3535                 base = &parent->data->voldata.sroot_blockset.blockref[0];
3536                 count = HAMMER2_SET_COUNT;
3537                 break;
3538         case HAMMER2_BREF_TYPE_FREEMAP:
3539                 KKASSERT(parent->data != NULL);
3540                 base = &parent->data->blkset.blockref[0];
3541                 count = HAMMER2_SET_COUNT;
3542                 break;
3543         default:
3544                 panic("hammer2_chain_create: unrecognized blockref type: %d",
3545                       parent->bref.type);
3546                 base = NULL;
3547                 count = 0;
3548                 break;
3549         }
3550
3551         /*
3552          * Make sure we've counted the brefs
3553          */
3554         if ((parent->flags & HAMMER2_CHAIN_COUNTEDBREFS) == 0)
3555                 hammer2_chain_countbrefs(parent, base, count);
3556
3557         KASSERT(parent->core.live_count >= 0 &&
3558                 parent->core.live_count <= count,
3559                 ("bad live_count %d/%d (%02x, %d)",
3560                         parent->core.live_count, count,
3561                         parent->bref.type, parent->bytes));
3562
3563         /*
3564          * If no free blockref could be found we must create an indirect
3565          * block and move a number of blockrefs into it.  With the parent
3566          * locked we can safely lock each child in order to delete+duplicate
3567          * it without causing a deadlock.
3568          *
3569          * This may return the new indirect block or the old parent depending
3570          * on where the key falls.  NULL is returned on error.
3571          */
3572         if (parent->core.live_count == count) {
3573                 hammer2_chain_t *nparent;
3574
3575                 KKASSERT((flags & HAMMER2_INSERT_SAMEPARENT) == 0);
3576
3577                 nparent = hammer2_chain_create_indirect(parent, key, keybits,
3578                                                         mtid, type, &error);
3579                 if (nparent == NULL) {
3580                         if (allocated)
3581                                 hammer2_chain_drop(chain);
3582                         chain = NULL;
3583                         goto done;
3584                 }
3585                 if (parent != nparent) {
3586                         hammer2_chain_unlock(parent);
3587                         hammer2_chain_drop(parent);
3588                         parent = *parentp = nparent;
3589                 }
3590                 goto again;
3591         }
3592
3593         /*
3594          * fall through if parent, or skip to here if no parent.
3595          */
3596 skip:
3597         if (chain->flags & HAMMER2_CHAIN_DELETED)
3598                 kprintf("Inserting deleted chain @%016jx\n",
3599                         chain->bref.key);
3600
3601         /*
3602          * Link the chain into its parent.
3603          */
3604         if (chain->parent != NULL)
3605                 panic("hammer2: hammer2_chain_create: chain already connected");
3606         KKASSERT(chain->parent == NULL);
3607         if (parent) {
3608                 KKASSERT(parent->core.live_count < count);
3609                 hammer2_chain_insert(parent, chain,
3610                                      HAMMER2_CHAIN_INSERT_SPIN |
3611                                      HAMMER2_CHAIN_INSERT_LIVE,
3612                                      0);
3613         }
3614
3615         if (allocated) {
3616                 /*
3617                  * Mark the newly created chain modified.  This will cause
3618                  * UPDATE to be set and process the INITIAL flag.
3619                  *
3620                  * Device buffers are not instantiated for DATA elements
3621                  * as these are handled by logical buffers.
3622                  *
3623                  * Indirect and freemap node indirect blocks are handled
3624                  * by hammer2_chain_create_indirect() and not by this
3625                  * function.
3626                  *
3627                  * Data for all other bref types is expected to be
3628                  * instantiated (INODE, LEAF).
3629                  */
3630                 switch(chain->bref.type) {
3631                 case HAMMER2_BREF_TYPE_DATA:
3632                 case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
3633                 case HAMMER2_BREF_TYPE_DIRENT:
3634                 case HAMMER2_BREF_TYPE_INODE:
3635                         error = hammer2_chain_modify(chain, mtid, dedup_off,
3636                                                      HAMMER2_MODIFY_OPTDATA);
3637                         break;
3638                 default:
3639                         /*
3640                          * Remaining types are not supported by this function.
3641                          * In particular, INDIRECT and LEAF_NODE types are
3642                          * handled by create_indirect().
3643                          */
3644                         panic("hammer2_chain_create: bad type: %d",
3645                               chain->bref.type);
3646                         /* NOT REACHED */
3647                         break;
3648                 }
3649         } else {
3650                 /*
3651                  * When reconnecting a chain we must set UPDATE and
3652                  * setflush so the flush recognizes that it must update
3653                  * the bref in the parent.
3654                  */
3655                 if ((chain->flags & HAMMER2_CHAIN_UPDATE) == 0)
3656                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
3657         }
3658
3659         /*
3660          * We must setflush(parent) to ensure that it recurses through to
3661          * chain.  setflush(chain) might not work because ONFLUSH is possibly
3662          * already set in the chain (so it won't recurse up to set it in the
3663          * parent).
3664          */
3665         if (parent)
3666                 hammer2_chain_setflush(parent);
3667
3668 done:
3669         *chainp = chain;
3670
3671         return (error);
3672 }
3673
3674 /*
3675  * Move the chain from its old parent to a new parent.  The chain must have
3676  * already been deleted or already disconnected (or never associated) with
3677  * a parent.  The chain is reassociated with the new parent and the deleted
3678  * flag will be cleared (no longer deleted).  The chain's modification state
3679  * is not altered.
3680  *
3681  * THE CALLER MUST HAVE ALREADY PROPERLY SEEKED (parent) TO THE INSERTION
3682  * POINT SANS ANY REQUIRED INDIRECT BLOCK CREATIONS DUE TO THE ARRAY BEING
3683  * FULL.  This typically means that the caller is creating the chain after
3684  * doing a hammer2_chain_lookup().
3685  *
3686  * Neither (parent) or (chain) can be errored.
3687  *
3688  * If (parent) is non-NULL then the chain is inserted under the parent.
3689  *
3690  * If (parent) is NULL then the newly duplicated chain is not inserted
3691  * anywhere, similar to if it had just been chain_alloc()'d (suitable for
3692  * passing into hammer2_chain_create() after this function returns).
3693  *
3694  * WARNING! This function calls create which means it can insert indirect
3695  *          blocks.  This can cause other unrelated chains in the parent to
3696  *          be moved to a newly inserted indirect block in addition to the
3697  *          specific chain.
3698  */
3699 void
3700 hammer2_chain_rename(hammer2_chain_t **parentp, hammer2_chain_t *chain,
3701                      hammer2_tid_t mtid, int flags)
3702 {
3703         hammer2_blockref_t *bref;
3704         hammer2_dev_t *hmp;
3705         hammer2_chain_t *parent;
3706         size_t bytes;
3707
3708         /*
3709          * WARNING!  We should never resolve DATA to device buffers
3710          *           (XXX allow it if the caller did?), and since
3711          *           we currently do not have the logical buffer cache
3712          *           buffer in-hand to fix its cached physical offset
3713          *           we also force the modify code to not COW it. XXX
3714          *
3715          * NOTE!     We allow error'd chains to be renamed.  The bref itself
3716          *           is good and can be renamed.  The content, however, may
3717          *           be inaccessible.
3718          */
3719         hmp = chain->hmp;
3720         KKASSERT(chain->parent == NULL);
3721         /*KKASSERT(chain->error == 0); allow */
3722
3723         /*
3724          * Now create a duplicate of the chain structure, associating
3725          * it with the same core, making it the same size, pointing it
3726          * to the same bref (the same media block).
3727          *
3728          * NOTE: Handle special radix == 0 case (means 0 bytes).
3729          */
3730         bref = &chain->bref;
3731         bytes = (size_t)(bref->data_off & HAMMER2_OFF_MASK_RADIX);
3732         if (bytes)
3733                 bytes = (hammer2_off_t)1 << bytes;
3734
3735         /*
3736          * If parent is not NULL the duplicated chain will be entered under
3737          * the parent and the UPDATE bit set to tell flush to update
3738          * the blockref.
3739          *
3740          * We must setflush(parent) to ensure that it recurses through to
3741          * chain.  setflush(chain) might not work because ONFLUSH is possibly
3742          * already set in the chain (so it won't recurse up to set it in the
3743          * parent).
3744          *
3745          * Having both chains locked is extremely important for atomicy.
3746          */
3747         if (parentp && (parent = *parentp) != NULL) {
3748                 KKASSERT(hammer2_mtx_owned(&parent->lock));
3749                 KKASSERT(parent->refs > 0);
3750                 KKASSERT(parent->error == 0);
3751
3752                 hammer2_chain_create(parentp, &chain, NULL, chain->pmp,
3753                                      HAMMER2_METH_DEFAULT,
3754                                      bref->key, bref->keybits, bref->type,
3755                                      chain->bytes, mtid, 0, flags);
3756                 KKASSERT(chain->flags & HAMMER2_CHAIN_UPDATE);
3757                 hammer2_chain_setflush(*parentp);
3758         }
3759 }
3760
3761 /*
3762  * This works in tandem with delete_obref() to install a blockref in
3763  * (typically) an indirect block that is associated with the chain being
3764  * moved to *parentp.
3765  *
3766  * The reason we need this function is that the caller needs to maintain
3767  * the blockref as it was, and not generate a new blockref for what might
3768  * be a modified chain.  Otherwise stuff will leak into the flush that
3769  * the flush code's FLUSH_INODE_STOP flag is unable to catch.
3770  *
3771  * It is EXTREMELY important that we properly set CHAIN_BMAPUPD and
3772  * CHAIN_UPDATE.  We must set BMAPUPD if the bref does not match, and
3773  * we must clear CHAIN_UPDATE (that was likely set by the chain_rename) if
3774  * it does.  Otherwise we can end up in a situation where H2 is unable to
3775  * clean up the in-memory chain topology.
3776  *
3777  * The reason for this is that flushes do not generally flush through
3778  * BREF_TYPE_INODE chains and depend on a hammer2_inode_t queued to syncq
3779  * or sideq to properly flush and dispose of the related inode chain's flags.
3780  * Situations where the inode is not actually modified by the frontend,
3781  * but where we have to move the related chains around as we insert or cleanup
3782  * indirect blocks, can leave us with a 'dirty' (non-disposable) in-memory
3783  * inode chain that does not have a hammer2_inode_t associated with it.
3784  */
3785 static void
3786 hammer2_chain_rename_obref(hammer2_chain_t **parentp, hammer2_chain_t *chain,
3787                            hammer2_tid_t mtid, int flags,
3788                            hammer2_blockref_t *obref)
3789 {
3790         hammer2_chain_rename(parentp, chain, mtid, flags);
3791
3792         if (obref->type != HAMMER2_BREF_TYPE_EMPTY) {
3793                 hammer2_blockref_t *tbase;
3794                 int tcount;
3795
3796                 KKASSERT((chain->flags & HAMMER2_CHAIN_BMAPPED) == 0);
3797                 hammer2_chain_modify(*parentp, mtid, 0, 0);
3798                 tbase = hammer2_chain_base_and_count(*parentp, &tcount);
3799                 hammer2_base_insert(*parentp, tbase, tcount, chain, obref);
3800                 if (bcmp(obref, &chain->bref, sizeof(chain->bref))) {
3801                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPUPD |
3802                                                       HAMMER2_CHAIN_UPDATE);
3803                 } else {
3804                         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_UPDATE);
3805                 }
3806         }
3807 }
3808
3809 /*
3810  * Helper function for deleting chains.
3811  *
3812  * The chain is removed from the live view (the RBTREE) as well as the parent's
3813  * blockmap.  Both chain and its parent must be locked.
3814  *
3815  * parent may not be errored.  chain can be errored.
3816  */
3817 static int
3818 _hammer2_chain_delete_helper(hammer2_chain_t *parent, hammer2_chain_t *chain,
3819                              hammer2_tid_t mtid, int flags,
3820                              hammer2_blockref_t *obref)
3821 {
3822         hammer2_dev_t *hmp;
3823         int error = 0;
3824
3825         KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0);
3826         KKASSERT(chain->parent == parent);
3827         hmp = chain->hmp;
3828
3829         if (chain->flags & HAMMER2_CHAIN_BMAPPED) {
3830                 /*
3831                  * Chain is blockmapped, so there must be a parent.
3832                  * Atomically remove the chain from the parent and remove
3833                  * the blockmap entry.  The parent must be set modified
3834                  * to remove the blockmap entry.
3835                  */
3836                 hammer2_blockref_t *base;
3837                 int count;
3838
3839                 KKASSERT(parent != NULL);
3840                 KKASSERT(parent->error == 0);
3841                 KKASSERT((parent->flags & HAMMER2_CHAIN_INITIAL) == 0);
3842                 error = hammer2_chain_modify(parent, mtid, 0, 0);
3843                 if (error)
3844                         goto done;
3845
3846                 /*
3847                  * Calculate blockmap pointer
3848                  */
3849                 KKASSERT(chain->flags & HAMMER2_CHAIN_ONRBTREE);
3850                 hammer2_spin_ex(&chain->core.spin);
3851                 hammer2_spin_ex(&parent->core.spin);
3852
3853                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3854                 atomic_add_int(&parent->core.live_count, -1);
3855                 ++parent->core.generation;
3856                 RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
3857                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
3858                 --parent->core.chain_count;
3859                 chain->parent = NULL;
3860
3861                 switch(parent->bref.type) {
3862                 case HAMMER2_BREF_TYPE_INODE:
3863                         /*
3864                          * Access the inode's block array.  However, there
3865                          * is no block array if the inode is flagged
3866                          * DIRECTDATA.
3867                          */
3868                         if (parent->data &&
3869                             (parent->data->ipdata.meta.op_flags &
3870                              HAMMER2_OPFLAG_DIRECTDATA) == 0) {
3871                                 base =
3872                                    &parent->data->ipdata.u.blockset.blockref[0];
3873                         } else {
3874                                 base = NULL;
3875                         }
3876                         count = HAMMER2_SET_COUNT;
3877                         break;
3878                 case HAMMER2_BREF_TYPE_INDIRECT:
3879                 case HAMMER2_BREF_TYPE_FREEMAP_NODE:
3880                         if (parent->data)
3881                                 base = &parent->data->npdata[0];
3882                         else
3883                                 base = NULL;
3884                         count = parent->bytes / sizeof(hammer2_blockref_t);
3885                         break;
3886                 case HAMMER2_BREF_TYPE_VOLUME:
3887                         base = &parent->data->voldata.
3888                                         sroot_blockset.blockref[0];
3889                         count = HAMMER2_SET_COUNT;
3890                         break;
3891                 case HAMMER2_BREF_TYPE_FREEMAP:
3892                         base = &parent->data->blkset.blockref[0];
3893                         count = HAMMER2_SET_COUNT;
3894                         break;
3895                 default:
3896                         base = NULL;
3897                         count = 0;
3898                         panic("_hammer2_chain_delete_helper: "
3899                               "unrecognized blockref type: %d",
3900                               parent->bref.type);
3901                 }
3902
3903                 /*
3904                  * delete blockmapped chain from its parent.
3905                  *
3906                  * The parent is not affected by any statistics in chain
3907                  * which are pending synchronization.  That is, there is
3908                  * nothing to undo in the parent since they have not yet
3909                  * been incorporated into the parent.
3910                  *
3911                  * The parent is affected by statistics stored in inodes.
3912                  * Those have already been synchronized, so they must be
3913                  * undone.  XXX split update possible w/delete in middle?
3914                  */
3915                 if (base) {
3916                         hammer2_base_delete(parent, base, count, chain, obref);
3917                 }
3918                 hammer2_spin_unex(&parent->core.spin);
3919                 hammer2_spin_unex(&chain->core.spin);
3920         } else if (chain->flags & HAMMER2_CHAIN_ONRBTREE) {
3921                 /*
3922                  * Chain is not blockmapped but a parent is present.
3923                  * Atomically remove the chain from the parent.  There is
3924                  * no blockmap entry to remove.
3925                  *
3926                  * Because chain was associated with a parent but not
3927                  * synchronized, the chain's *_count_up fields contain
3928                  * inode adjustment statistics which must be undone.
3929                  */
3930                 hammer2_spin_ex(&chain->core.spin);
3931                 hammer2_spin_ex(&parent->core.spin);
3932                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3933                 atomic_add_int(&parent->core.live_count, -1);
3934                 ++parent->core.generation;
3935                 RB_REMOVE(hammer2_chain_tree, &parent->core.rbtree, chain);
3936                 atomic_clear_int(&chain->flags, HAMMER2_CHAIN_ONRBTREE);
3937                 --parent->core.chain_count;
3938                 chain->parent = NULL;
3939                 hammer2_spin_unex(&parent->core.spin);
3940                 hammer2_spin_unex(&chain->core.spin);
3941         } else {
3942                 /*
3943                  * Chain is not blockmapped and has no parent.  This
3944                  * is a degenerate case.
3945                  */
3946                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_DELETED);
3947         }
3948 done:
3949         return error;
3950 }
3951
3952 /*
3953  * Create an indirect block that covers one or more of the elements in the
3954  * current parent.  Either returns the existing parent with no locking or
3955  * ref changes or returns the new indirect block locked and referenced
3956  * and leaving the original parent lock/ref intact as well.
3957  *
3958  * If an error occurs, NULL is returned and *errorp is set to the H2 error.
3959  *
3960  * The returned chain depends on where the specified key falls.
3961  *
3962  * The key/keybits for the indirect mode only needs to follow three rules:
3963  *
3964  * (1) That all elements underneath it fit within its key space and
3965  *
3966  * (2) That all elements outside it are outside its key space.
3967  *
3968  * (3) When creating the new indirect block any elements in the current
3969  *     parent that fit within the new indirect block's keyspace must be
3970  *     moved into the new indirect block.
3971  *
3972  * (4) The keyspace chosen for the inserted indirect block CAN cover a wider
3973  *     keyspace the the current parent, but lookup/iteration rules will
3974  *     ensure (and must ensure) that rule (2) for all parents leading up
3975  *     to the nearest inode or the root volume header is adhered to.  This
3976  *     is accomplished by always recursing through matching keyspaces in
3977  *     the hammer2_chain_lookup() and hammer2_chain_next() API.
3978  *
3979  * The current implementation calculates the current worst-case keyspace by
3980  * iterating the current parent and then divides it into two halves, choosing
3981  * whichever half has the most elements (not necessarily the half containing
3982  * the requested key).
3983  *
3984  * We can also opt to use the half with the least number of elements.  This
3985  * causes lower-numbered keys (aka logical file offsets) to recurse through
3986  * fewer indirect blocks and higher-numbered keys to recurse through more.
3987  * This also has the risk of not moving enough elements to the new indirect
3988  * block and being forced to create several indirect blocks before the element
3989  * can be inserted.
3990  *
3991  * Must be called with an exclusively locked parent.
3992  *
3993  * NOTE: *errorp set to HAMMER_ERROR_* flags
3994  */
3995 static int hammer2_chain_indkey_freemap(hammer2_chain_t *parent,
3996                                 hammer2_key_t *keyp, int keybits,
3997                                 hammer2_blockref_t *base, int count);
3998 static int hammer2_chain_indkey_file(hammer2_chain_t *parent,
3999                                 hammer2_key_t *keyp, int keybits,
4000                                 hammer2_blockref_t *base, int count,
4001                                 int ncount);
4002 static int hammer2_chain_indkey_dir(hammer2_chain_t *parent,
4003                                 hammer2_key_t *keyp, int keybits,
4004                                 hammer2_blockref_t *base, int count,
4005                                 int ncount);
4006 static
4007 hammer2_chain_t *
4008 hammer2_chain_create_indirect(hammer2_chain_t *parent,
4009                               hammer2_key_t create_key, int create_bits,
4010                               hammer2_tid_t mtid, int for_type, int *errorp)
4011 {
4012         hammer2_dev_t *hmp;
4013         hammer2_blockref_t *base;
4014         hammer2_blockref_t *bref;
4015         hammer2_blockref_t bsave;
4016         hammer2_blockref_t dummy;
4017         hammer2_chain_t *chain;
4018         hammer2_chain_t *ichain;
4019         hammer2_key_t key = create_key;
4020         hammer2_key_t key_beg;
4021         hammer2_key_t key_end;
4022         hammer2_key_t key_next;
4023         int keybits = create_bits;
4024         int count;
4025         int ncount;
4026         int nbytes;
4027         int loops;
4028         int error;
4029         int reason;
4030         int generation;
4031         int maxloops = 300000;
4032
4033         /*
4034          * Calculate the base blockref pointer or NULL if the chain
4035          * is known to be empty.  We need to calculate the array count
4036          * for RB lookups either way.
4037          */
4038         hmp = parent->hmp;
4039         KKASSERT(hammer2_mtx_owned(&parent->lock));
4040
4041         /*
4042          * Pre-modify the parent now to avoid having to deal with error
4043          * processing if we tried to later (in the middle of our loop).
4044          *
4045          * We are going to be moving bref's around, the indirect blocks
4046          * cannot be in an initial state.  Do not pass MODIFY_OPTDATA.
4047          */
4048         *errorp = hammer2_chain_modify(parent, mtid, 0, 0);
4049         if (*errorp) {
4050                 kprintf("hammer2_chain_create_indirect: error %08x %s\n",
4051                         *errorp, hammer2_error_str(*errorp));
4052                 return NULL;
4053         }
4054         KKASSERT((parent->flags & HAMMER2_CHAIN_INITIAL) == 0);
4055
4056         /*hammer2_chain_modify(&parent, HAMMER2_MODIFY_OPTDATA);*/
4057         base = hammer2_chain_base_and_count(parent, &count);
4058
4059         /*
4060          * How big should our new indirect block be?  It has to be at least
4061          * as large as its parent for splits to work properly.
4062          *
4063          * The freemap uses a specific indirect block size.  The number of
4064          * levels are built dynamically and ultimately depend on the size
4065          * volume.  Because freemap blocks are taken from the reserved areas
4066          * of the volume our goal is efficiency (fewer levels) and not so
4067          * much to save disk space.
4068          *
4069          * The first indirect block level for a directory usually uses
4070          * HAMMER2_IND_BYTES_MIN (4KB = 32 directory entries).  Due to
4071          * the hash mechanism, this typically gives us a nominal
4072          * 32 * 4 entries with one level of indirection.
4073          *
4074          * We use HAMMER2_IND_BYTES_NOM (16KB = 128 blockrefs) for FILE
4075          * indirect blocks.  The initial 4 entries in the inode gives us
4076          * 256KB.  Up to 4 indirect blocks gives us 32MB.  Three levels
4077          * of indirection gives us 137GB, and so forth.  H2 can support
4078          * huge file sizes but they are not typical, so we try to stick
4079          * with compactness and do not use a larger indirect block size.
4080          *
4081          * We could use 64KB (PBUFSIZE), giving us 512 blockrefs, but
4082          * due to the way indirect blocks are created this usually winds
4083          * up being extremely inefficient for small files.  Even though
4084          * 16KB requires more levels of indirection for very large files,
4085          * the 16KB records can be ganged together into 64KB DIOs.
4086          */
4087         if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
4088             for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
4089                 nbytes = HAMMER2_FREEMAP_LEVELN_PSIZE;
4090         } else if (parent->bref.type == HAMMER2_BREF_TYPE_INODE) {
4091                 if (parent->data->ipdata.meta.type ==
4092                     HAMMER2_OBJTYPE_DIRECTORY)
4093                         nbytes = HAMMER2_IND_BYTES_MIN; /* 4KB = 32 entries */
4094                 else
4095                         nbytes = HAMMER2_IND_BYTES_NOM; /* 16KB = ~8MB file */
4096
4097         } else {
4098                 nbytes = HAMMER2_IND_BYTES_NOM;
4099         }
4100         if (nbytes < count * sizeof(hammer2_blockref_t)) {
4101                 KKASSERT(for_type != HAMMER2_BREF_TYPE_FREEMAP_NODE &&
4102                          for_type != HAMMER2_BREF_TYPE_FREEMAP_LEAF);
4103                 nbytes = count * sizeof(hammer2_blockref_t);
4104         }
4105         ncount = nbytes / sizeof(hammer2_blockref_t);
4106
4107         /*
4108          * When creating an indirect block for a freemap node or leaf
4109          * the key/keybits must be fitted to static radix levels because
4110          * particular radix levels use particular reserved blocks in the
4111          * related zone.
4112          *
4113          * This routine calculates the key/radix of the indirect block
4114          * we need to create, and whether it is on the high-side or the
4115          * low-side.
4116          */
4117         switch(for_type) {
4118         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
4119         case HAMMER2_BREF_TYPE_FREEMAP_LEAF:
4120                 keybits = hammer2_chain_indkey_freemap(parent, &key, keybits,
4121                                                        base, count);
4122                 break;
4123         case HAMMER2_BREF_TYPE_DATA:
4124                 keybits = hammer2_chain_indkey_file(parent, &key, keybits,
4125                                                     base, count, ncount);
4126                 break;
4127         case HAMMER2_BREF_TYPE_DIRENT:
4128         case HAMMER2_BREF_TYPE_INODE:
4129                 keybits = hammer2_chain_indkey_dir(parent, &key, keybits,
4130                                                    base, count, ncount);
4131                 break;
4132         default:
4133                 panic("illegal indirect block for bref type %d", for_type);
4134                 break;
4135         }
4136
4137         /*
4138          * Normalize the key for the radix being represented, keeping the
4139          * high bits and throwing away the low bits.
4140          */
4141         key &= ~(((hammer2_key_t)1 << keybits) - 1);
4142
4143         /*
4144          * Ok, create our new indirect block
4145          */
4146         bzero(&dummy, sizeof(dummy));
4147         if (for_type == HAMMER2_BREF_TYPE_FREEMAP_NODE ||
4148             for_type == HAMMER2_BREF_TYPE_FREEMAP_LEAF) {
4149                 dummy.type = HAMMER2_BREF_TYPE_FREEMAP_NODE;
4150         } else {
4151                 dummy.type = HAMMER2_BREF_TYPE_INDIRECT;
4152         }
4153         dummy.key = key;
4154         dummy.keybits = keybits;
4155         dummy.data_off = hammer2_getradix(nbytes);
4156         dummy.methods =
4157                 HAMMER2_ENC_CHECK(HAMMER2_DEC_CHECK(parent->bref.methods)) |
4158                 HAMMER2_ENC_COMP(HAMMER2_COMP_NONE);
4159
4160         ichain = hammer2_chain_alloc(hmp, parent->pmp, &dummy);
4161         atomic_set_int(&ichain->flags, HAMMER2_CHAIN_INITIAL);
4162         hammer2_chain_lock(ichain, HAMMER2_RESOLVE_MAYBE);
4163         /* ichain has one ref at this point */
4164
4165         /*
4166          * We have to mark it modified to allocate its block, but use
4167          * OPTDATA to allow it to remain in the INITIAL state.  Otherwise
4168          * it won't be acted upon by the flush code.
4169          *
4170          * XXX remove OPTDATA, we need a fully initialized indirect block to
4171          * be able to move the original blockref.
4172          */
4173         *errorp = hammer2_chain_modify(ichain, mtid, 0, 0);
4174         if (*errorp) {
4175                 kprintf("hammer2_chain_create_indirect: error %08x %s\n",
4176                         *errorp, hammer2_error_str(*errorp));
4177                 hammer2_chain_unlock(ichain);
4178                 hammer2_chain_drop(ichain);
4179                 return NULL;
4180         }
4181         KKASSERT((ichain->flags & HAMMER2_CHAIN_INITIAL) == 0);
4182
4183         /*
4184          * Iterate the original parent and move the matching brefs into
4185          * the new indirect block.
4186          *
4187          * XXX handle flushes.
4188          */
4189         key_beg = 0;
4190         key_end = HAMMER2_KEY_MAX;
4191         key_next = 0;   /* avoid gcc warnings */
4192         hammer2_spin_ex(&parent->core.spin);
4193         loops = 0;
4194         reason = 0;
4195
4196         for (;;) {
4197                 /*
4198                  * Parent may have been modified, relocating its block array.
4199                  * Reload the base pointer.
4200                  */
4201                 base = hammer2_chain_base_and_count(parent, &count);
4202
4203                 if (++loops > 100000) {
4204                     hammer2_spin_unex(&parent->core.spin);
4205                     panic("excessive loops r=%d p=%p base/count %p:%d %016jx\n",
4206                           reason, parent, base, count, key_next);
4207                 }
4208
4209                 /*
4210                  * NOTE: spinlock stays intact, returned chain (if not NULL)
4211                  *       is not referenced or locked which means that we
4212                  *       cannot safely check its flagged / deletion status
4213                  *       until we lock it.
4214                  */
4215                 chain = hammer2_combined_find(parent, base, count,
4216                                               &key_next,
4217                                               key_beg, key_end,
4218                                               &bref);
4219                 generation = parent->core.generation;
4220                 if (bref == NULL)
4221                         break;
4222                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4223
4224                 /*
4225                  * Skip keys that are not within the key/radix of the new
4226                  * indirect block.  They stay in the parent.
4227                  */
4228                 if (rounddown2(key ^ bref->key, (hammer2_key_t)1 << keybits) != 0) {
4229                         goto next_key_spinlocked;
4230                 }
4231
4232                 /*
4233                  * Load the new indirect block by acquiring the related
4234                  * chains (potentially from media as it might not be
4235                  * in-memory).  Then move it to the new parent (ichain).
4236                  *
4237                  * chain is referenced but not locked.  We must lock the
4238                  * chain to obtain definitive state.
4239                  */
4240                 bsave = *bref;
4241                 if (chain) {
4242                         /*
4243                          * Use chain already present in the RBTREE
4244                          */
4245                         hammer2_chain_ref(chain);
4246                         hammer2_spin_unex(&parent->core.spin);
4247                         hammer2_chain_lock(chain, HAMMER2_RESOLVE_NEVER);
4248                 } else {
4249                         /*
4250                          * Get chain for blockref element.  _get returns NULL
4251                          * on insertion race.
4252                          */
4253                         hammer2_spin_unex(&parent->core.spin);
4254                         chain = hammer2_chain_get(parent, generation, &bsave,
4255                                                   HAMMER2_RESOLVE_NEVER);
4256                         if (chain == NULL) {
4257                                 reason = 1;
4258                                 hammer2_spin_ex(&parent->core.spin);
4259                                 continue;
4260                         }
4261                 }
4262
4263                 /*
4264                  * This is always live so if the chain has been deleted
4265                  * we raced someone and we have to retry.
4266                  *
4267                  * NOTE: Lookups can race delete-duplicate because
4268                  *       delete-duplicate does not lock the parent's core
4269                  *       (they just use the spinlock on the core).
4270                  *
4271                  *       (note reversed logic for this one)
4272                  */
4273                 if (bcmp(&bsave, &chain->bref, sizeof(bsave)) ||
4274                     chain->parent != parent ||
4275                     (chain->flags & HAMMER2_CHAIN_DELETED)) {
4276                         hammer2_chain_unlock(chain);
4277                         hammer2_chain_drop(chain);
4278                         if (hammer2_debug & 0x0040) {
4279                                 kprintf("LOST PARENT RETRY "
4280                                 "RETRY (%p,%p)->%p %08x\n",
4281                                 parent, chain->parent, chain, chain->flags);
4282                         }
4283                         hammer2_spin_ex(&parent->core.spin);
4284                         continue;
4285                 }
4286
4287                 /*
4288                  * Shift the chain to the indirect block.
4289                  *
4290                  * WARNING! No reason for us to load chain data, pass NOSTATS
4291                  *          to prevent delete/insert from trying to access
4292                  *          inode stats (and thus asserting if there is no
4293                  *          chain->data loaded).
4294                  *
4295                  * WARNING! The (parent, chain) deletion may modify the parent
4296                  *          and invalidate the base pointer.
4297                  *
4298                  * WARNING! Parent must already be marked modified, so we
4299                  *          can assume that chain_delete always suceeds.
4300                  *
4301                  * WARNING! hammer2_chain_repchange() does not have to be
4302                  *          called (and doesn't work anyway because we are
4303                  *          only doing a partial shift).  A recursion that is
4304                  *          in-progress can continue at the current parent
4305                  *          and will be able to properly find its next key.
4306                  */
4307                 error = hammer2_chain_delete_obref(parent, chain, mtid, 0,
4308                                                    &bsave);
4309                 KKASSERT(error == 0);
4310                 hammer2_chain_rename_obref(&ichain, chain, mtid, 0, &bsave);
4311                 hammer2_chain_unlock(chain);
4312                 hammer2_chain_drop(chain);
4313                 KKASSERT(parent->refs > 0);
4314                 chain = NULL;
4315                 base = NULL;    /* safety */
4316                 hammer2_spin_ex(&parent->core.spin);
4317 next_key_spinlocked:
4318                 if (--maxloops == 0)
4319                         panic("hammer2_chain_create_indirect: maxloops");
4320                 reason = 4;
4321                 if (key_next == 0 || key_next > key_end)
4322                         break;
4323                 key_beg = key_next;
4324                 /* loop */
4325         }
4326         hammer2_spin_unex(&parent->core.spin);
4327
4328         /*
4329          * Insert the new indirect block into the parent now that we've
4330          * cleared out some entries in the parent.  We calculated a good
4331          * insertion index in the loop above (ichain->index).
4332          *
4333          * We don't have to set UPDATE here because we mark ichain
4334          * modified down below (so the normal modified -> flush -> set-moved
4335          * sequence applies).
4336          *
4337          * The insertion shouldn't race as this is a completely new block
4338          * and the parent is locked.
4339          */
4340         base = NULL;    /* safety, parent modify may change address */
4341         KKASSERT((ichain->flags & HAMMER2_CHAIN_ONRBTREE) == 0);
4342         KKASSERT(parent->core.live_count < count);
4343         hammer2_chain_insert(parent, ichain,
4344                              HAMMER2_CHAIN_INSERT_SPIN |
4345                              HAMMER2_CHAIN_INSERT_LIVE,
4346                              0);
4347
4348         /*
4349          * Make sure flushes propogate after our manual insertion.
4350          */
4351         hammer2_chain_setflush(ichain);
4352         hammer2_chain_setflush(parent);
4353
4354         /*
4355          * Figure out what to return.
4356          */
4357         if (rounddown2(create_key ^ key, (hammer2_key_t)1 << keybits)) {
4358                 /*
4359                  * Key being created is outside the key range,
4360                  * return the original parent.
4361                  */
4362                 hammer2_chain_unlock(ichain);
4363                 hammer2_chain_drop(ichain);
4364         } else {
4365                 /*
4366                  * Otherwise its in the range, return the new parent.
4367                  * (leave both the new and old parent locked).
4368                  */
4369                 parent = ichain;
4370         }
4371
4372         return(parent);
4373 }
4374
4375 /*
4376  * Do maintenance on an indirect chain.  Both parent and chain are locked.
4377  *
4378  * Returns non-zero if (chain) is deleted, either due to being empty or
4379  * because its children were safely moved into the parent.
4380  */
4381 int
4382 hammer2_chain_indirect_maintenance(hammer2_chain_t *parent,
4383                                    hammer2_chain_t *chain)
4384 {
4385         hammer2_blockref_t *chain_base;
4386         hammer2_blockref_t *base;
4387         hammer2_blockref_t *bref;
4388         hammer2_blockref_t bsave;
4389         hammer2_key_t key_next;
4390         hammer2_key_t key_beg;
4391         hammer2_key_t key_end;
4392         hammer2_chain_t *sub;
4393         int chain_count;
4394         int count;
4395         int error;
4396         int generation;
4397
4398         /*
4399          * Make sure we have an accurate live_count
4400          */
4401         if ((chain->flags & (HAMMER2_CHAIN_INITIAL |
4402                              HAMMER2_CHAIN_COUNTEDBREFS)) == 0) {
4403                 base = &chain->data->npdata[0];
4404                 count = chain->bytes / sizeof(hammer2_blockref_t);
4405                 hammer2_chain_countbrefs(chain, base, count);
4406         }
4407
4408         /*
4409          * If the indirect block is empty we can delete it.
4410          * (ignore deletion error)
4411          */
4412         if (chain->core.live_count == 0 && RB_EMPTY(&chain->core.rbtree)) {
4413                 hammer2_chain_delete(parent, chain,
4414                                      chain->bref.modify_tid,
4415                                      HAMMER2_DELETE_PERMANENT);
4416                 hammer2_chain_repchange(parent, chain);
4417                 return 1;
4418         }
4419
4420         base = hammer2_chain_base_and_count(parent, &count);
4421
4422         if ((parent->flags & (HAMMER2_CHAIN_INITIAL |
4423                              HAMMER2_CHAIN_COUNTEDBREFS)) == 0) {
4424                 hammer2_chain_countbrefs(parent, base, count);
4425         }
4426
4427         /*
4428          * Determine if we can collapse chain into parent, calculate
4429          * hysteresis for chain emptiness.
4430          */
4431         if (parent->core.live_count + chain->core.live_count - 1 > count)
4432                 return 0;
4433         chain_count = chain->bytes / sizeof(hammer2_blockref_t);
4434         if (chain->core.live_count > chain_count * 3 / 4)
4435                 return 0;
4436
4437         /*
4438          * Ok, theoretically we can collapse chain's contents into
4439          * parent.  chain is locked, but any in-memory children of chain
4440          * are not.  For this to work, we must be able to dispose of any
4441          * in-memory children of chain.
4442          *
4443          * For now require that there are no in-memory children of chain.
4444          *
4445          * WARNING! Both chain and parent must remain locked across this
4446          *          entire operation.
4447          */
4448
4449         /*
4450          * Parent must be marked modified.  Don't try to collapse it if we
4451          * can't mark it modified.  Once modified, destroy chain to make room
4452          * and to get rid of what will be a conflicting key (this is included
4453          * in the calculation above).  Finally, move the children of chain
4454          * into chain's parent.
4455          *
4456          * This order creates an accounting problem for bref.embed.stats
4457          * because we destroy chain before we remove its children.  Any
4458          * elements whos blockref is already synchronized will be counted
4459          * twice.  To deal with the problem we clean out chain's stats prior
4460          * to deleting it.
4461          */
4462         error = hammer2_chain_modify(parent, 0, 0, 0);
4463         if (error) {
4464                 krateprintf(&krate_h2me, "hammer2: indirect_maint: %s\n",
4465                             hammer2_error_str(error));
4466                 return 0;
4467         }
4468         error = hammer2_chain_modify(chain, chain->bref.modify_tid, 0, 0);
4469         if (error) {
4470                 krateprintf(&krate_h2me, "hammer2: indirect_maint: %s\n",
4471                             hammer2_error_str(error));
4472                 return 0;
4473         }
4474
4475         chain->bref.embed.stats.inode_count = 0;
4476         chain->bref.embed.stats.data_count = 0;
4477         error = hammer2_chain_delete(parent, chain,
4478                                      chain->bref.modify_tid,
4479                                      HAMMER2_DELETE_PERMANENT);
4480         KKASSERT(error == 0);
4481
4482         /*
4483          * The combined_find call requires core.spin to be held.  One would
4484          * think there wouldn't be any conflicts since we hold chain
4485          * exclusively locked, but the caching mechanism for 0-ref children
4486          * does not require a chain lock.
4487          */
4488         hammer2_spin_ex(&chain->core.spin);
4489
4490         key_next = 0;
4491         key_beg = 0;
4492         key_end = HAMMER2_KEY_MAX;
4493         for (;;) {
4494                 chain_base = &chain->data->npdata[0];
4495                 chain_count = chain->bytes / sizeof(hammer2_blockref_t);
4496                 sub = hammer2_combined_find(chain, chain_base, chain_count,
4497                                             &key_next,
4498                                             key_beg, key_end,
4499                                             &bref);
4500                 generation = chain->core.generation;
4501                 if (bref == NULL)
4502                         break;
4503                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4504
4505                 bsave = *bref;
4506                 if (sub) {
4507                         hammer2_chain_ref(sub);
4508                         hammer2_spin_unex(&chain->core.spin);
4509                         hammer2_chain_lock(sub, HAMMER2_RESOLVE_NEVER);
4510                 } else {
4511                         hammer2_spin_unex(&chain->core.spin);
4512                         sub = hammer2_chain_get(chain, generation, &bsave,
4513                                                 HAMMER2_RESOLVE_NEVER);
4514                         if (sub == NULL) {
4515                                 hammer2_spin_ex(&chain->core.spin);
4516                                 continue;
4517                         }
4518                 }
4519                 if (bcmp(&bsave, &sub->bref, sizeof(bsave)) ||
4520                     sub->parent != chain ||
4521                     (sub->flags & HAMMER2_CHAIN_DELETED)) {
4522                         hammer2_chain_unlock(sub);
4523                         hammer2_chain_drop(sub);
4524                         hammer2_spin_ex(&chain->core.spin);
4525                         sub = NULL;     /* safety */
4526                         continue;
4527                 }
4528                 error = hammer2_chain_delete_obref(chain, sub,
4529                                                    sub->bref.modify_tid, 0,
4530                                                    &bsave);
4531                 KKASSERT(error == 0);
4532                 hammer2_chain_rename_obref(&parent, sub,
4533                                      sub->bref.modify_tid,
4534                                      HAMMER2_INSERT_SAMEPARENT, &bsave);
4535                 hammer2_chain_unlock(sub);
4536                 hammer2_chain_drop(sub);
4537                 hammer2_spin_ex(&chain->core.spin);
4538
4539                 if (key_next == 0)
4540                         break;
4541                 key_beg = key_next;
4542         }
4543         hammer2_spin_unex(&chain->core.spin);
4544
4545         hammer2_chain_repchange(parent, chain);
4546
4547         return 1;
4548 }
4549
4550 /*
4551  * Freemap indirect blocks
4552  *
4553  * Calculate the keybits and highside/lowside of the freemap node the
4554  * caller is creating.
4555  *
4556  * This routine will specify the next higher-level freemap key/radix
4557  * representing the lowest-ordered set.  By doing so, eventually all
4558  * low-ordered sets will be moved one level down.
4559  *
4560  * We have to be careful here because the freemap reserves a limited
4561  * number of blocks for a limited number of levels.  So we can't just
4562  * push indiscriminately.
4563  */
4564 int
4565 hammer2_chain_indkey_freemap(hammer2_chain_t *parent, hammer2_key_t *keyp,
4566                              int keybits, hammer2_blockref_t *base, int count)
4567 {
4568         hammer2_chain_t *chain;
4569         hammer2_blockref_t *bref;
4570         hammer2_key_t key;
4571         hammer2_key_t key_beg;
4572         hammer2_key_t key_end;
4573         hammer2_key_t key_next;
4574         int locount;
4575         int hicount;
4576         int maxloops = 300000;
4577
4578         key = *keyp;
4579         locount = 0;
4580         hicount = 0;
4581         keybits = 64;
4582
4583         /*
4584          * Calculate the range of keys in the array being careful to skip
4585          * slots which are overridden with a deletion.
4586          */
4587         key_beg = 0;
4588         key_end = HAMMER2_KEY_MAX;
4589         hammer2_spin_ex(&parent->core.spin);
4590
4591         for (;;) {
4592                 if (--maxloops == 0) {
4593                         panic("indkey_freemap shit %p %p:%d\n",
4594                               parent, base, count);
4595                 }
4596                 chain = hammer2_combined_find(parent, base, count,
4597                                               &key_next,
4598                                               key_beg, key_end,
4599                                               &bref);
4600
4601                 /*
4602                  * Exhausted search
4603                  */
4604                 if (bref == NULL)
4605                         break;
4606
4607                 /*
4608                  * Skip deleted chains.
4609                  */
4610                 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4611                         if (key_next == 0 || key_next > key_end)
4612                                 break;
4613                         key_beg = key_next;
4614                         continue;
4615                 }
4616
4617                 /*
4618                  * Use the full live (not deleted) element for the scan
4619                  * iteration.  HAMMER2 does not allow partial replacements.
4620                  *
4621                  * XXX should be built into hammer2_combined_find().
4622                  */
4623                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4624
4625                 if (keybits > bref->keybits) {
4626                         key = bref->key;
4627                         keybits = bref->keybits;
4628                 } else if (keybits == bref->keybits && bref->key < key) {
4629                         key = bref->key;
4630                 }
4631                 if (key_next == 0)
4632                         break;
4633                 key_beg = key_next;
4634         }
4635         hammer2_spin_unex(&parent->core.spin);
4636
4637         /*
4638          * Return the keybits for a higher-level FREEMAP_NODE covering
4639          * this node.
4640          */
4641         switch(keybits) {
4642         case HAMMER2_FREEMAP_LEVEL0_RADIX:
4643                 keybits = HAMMER2_FREEMAP_LEVEL1_RADIX;
4644                 break;
4645         case HAMMER2_FREEMAP_LEVEL1_RADIX:
4646                 keybits = HAMMER2_FREEMAP_LEVEL2_RADIX;
4647                 break;
4648         case HAMMER2_FREEMAP_LEVEL2_RADIX:
4649                 keybits = HAMMER2_FREEMAP_LEVEL3_RADIX;
4650                 break;
4651         case HAMMER2_FREEMAP_LEVEL3_RADIX:
4652                 keybits = HAMMER2_FREEMAP_LEVEL4_RADIX;
4653                 break;
4654         case HAMMER2_FREEMAP_LEVEL4_RADIX:
4655                 keybits = HAMMER2_FREEMAP_LEVEL5_RADIX;
4656                 break;
4657         case HAMMER2_FREEMAP_LEVEL5_RADIX:
4658                 panic("hammer2_chain_indkey_freemap: level too high");
4659                 break;
4660         default:
4661                 panic("hammer2_chain_indkey_freemap: bad radix");
4662                 break;
4663         }
4664         *keyp = key;
4665
4666         return (keybits);
4667 }
4668
4669 /*
4670  * File indirect blocks
4671  *
4672  * Calculate the key/keybits for the indirect block to create by scanning
4673  * existing keys.  The key being created is also passed in *keyp and can be
4674  * inside or outside the indirect block.  Regardless, the indirect block
4675  * must hold at least two keys in order to guarantee sufficient space.
4676  *
4677  * We use a modified version of the freemap's fixed radix tree, but taylored
4678  * for file data.  Basically we configure an indirect block encompassing the
4679  * smallest key.
4680  */
4681 static int
4682 hammer2_chain_indkey_file(hammer2_chain_t *parent, hammer2_key_t *keyp,
4683                             int keybits, hammer2_blockref_t *base, int count,
4684                             int ncount)
4685 {
4686         hammer2_chain_t *chain;
4687         hammer2_blockref_t *bref;
4688         hammer2_key_t key;
4689         hammer2_key_t key_beg;
4690         hammer2_key_t key_end;
4691         hammer2_key_t key_next;
4692         int nradix;
4693         int locount;
4694         int hicount;
4695         int maxloops = 300000;
4696
4697         key = *keyp;
4698         locount = 0;
4699         hicount = 0;
4700         keybits = 64;
4701
4702         /*
4703          * Calculate the range of keys in the array being careful to skip
4704          * slots which are overridden with a deletion.
4705          *
4706          * Locate the smallest key.
4707          */
4708         key_beg = 0;
4709         key_end = HAMMER2_KEY_MAX;
4710         hammer2_spin_ex(&parent->core.spin);
4711
4712         for (;;) {
4713                 if (--maxloops == 0) {
4714                         panic("indkey_freemap shit %p %p:%d\n",
4715                               parent, base, count);
4716                 }
4717                 chain = hammer2_combined_find(parent, base, count,
4718                                               &key_next,
4719                                               key_beg, key_end,
4720                                               &bref);
4721
4722                 /*
4723                  * Exhausted search
4724                  */
4725                 if (bref == NULL)
4726                         break;
4727
4728                 /*
4729                  * Skip deleted chains.
4730                  */
4731                 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4732                         if (key_next == 0 || key_next > key_end)
4733                                 break;
4734                         key_beg = key_next;
4735                         continue;
4736                 }
4737
4738                 /*
4739                  * Use the full live (not deleted) element for the scan
4740                  * iteration.  HAMMER2 does not allow partial replacements.
4741                  *
4742                  * XXX should be built into hammer2_combined_find().
4743                  */
4744                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4745
4746                 if (keybits > bref->keybits) {
4747                         key = bref->key;
4748                         keybits = bref->keybits;
4749                 } else if (keybits == bref->keybits && bref->key < key) {
4750                         key = bref->key;
4751                 }
4752                 if (key_next == 0)
4753                         break;
4754                 key_beg = key_next;
4755         }
4756         hammer2_spin_unex(&parent->core.spin);
4757
4758         /*
4759          * Calculate the static keybits for a higher-level indirect block
4760          * that contains the key.
4761          */
4762         *keyp = key;
4763
4764         switch(ncount) {
4765         case HAMMER2_IND_BYTES_MIN / sizeof(hammer2_blockref_t):
4766                 nradix = HAMMER2_IND_RADIX_MIN - HAMMER2_BLOCKREF_RADIX;
4767                 break;
4768         case HAMMER2_IND_BYTES_NOM / sizeof(hammer2_blockref_t):
4769                 nradix = HAMMER2_IND_RADIX_NOM - HAMMER2_BLOCKREF_RADIX;
4770                 break;
4771         case HAMMER2_IND_BYTES_MAX / sizeof(hammer2_blockref_t):
4772                 nradix = HAMMER2_IND_RADIX_MAX - HAMMER2_BLOCKREF_RADIX;
4773                 break;
4774         default:
4775                 panic("bad ncount %d\n", ncount);
4776                 nradix = 0;
4777                 break;
4778         }
4779
4780         /*
4781          * The largest radix that can be returned for an indirect block is
4782          * 63 bits.  (The largest practical indirect block radix is actually
4783          * 62 bits because the top-level inode or volume root contains four
4784          * entries, but allow 63 to be returned).
4785          */
4786         if (nradix >= 64)
4787                 nradix = 63;
4788
4789         return keybits + nradix;
4790 }
4791
4792 #if 1
4793
4794 /*
4795  * Directory indirect blocks.
4796  *
4797  * Covers both the inode index (directory of inodes), and directory contents
4798  * (filenames hardlinked to inodes).
4799  *
4800  * Because directory keys are hashed we generally try to cut the space in
4801  * half.  We accomodate the inode index (which tends to have linearly
4802  * increasing inode numbers) by ensuring that the keyspace is at least large
4803  * enough to fill up the indirect block being created.
4804  */
4805 static int
4806 hammer2_chain_indkey_dir(hammer2_chain_t *parent, hammer2_key_t *keyp,
4807                          int keybits, hammer2_blockref_t *base, int count,
4808                          int ncount)
4809 {
4810         hammer2_blockref_t *bref;
4811         hammer2_chain_t *chain;
4812         hammer2_key_t key_beg;
4813         hammer2_key_t key_end;
4814         hammer2_key_t key_next;
4815         hammer2_key_t key;
4816         int nkeybits;
4817         int locount;
4818         int hicount;
4819         int maxloops = 300000;
4820
4821         /*
4822          * NOTE: We can't take a shortcut here anymore for inodes because
4823          *       the root directory can contain a mix of inodes and directory
4824          *       entries (we used to just return 63 if parent->bref.type was
4825          *       HAMMER2_BREF_TYPE_INODE.
4826          */
4827         key = *keyp;
4828         locount = 0;
4829         hicount = 0;
4830
4831         /*
4832          * Calculate the range of keys in the array being careful to skip
4833          * slots which are overridden with a deletion.
4834          */
4835         key_beg = 0;
4836         key_end = HAMMER2_KEY_MAX;
4837         hammer2_spin_ex(&parent->core.spin);
4838
4839         for (;;) {
4840                 if (--maxloops == 0) {
4841                         panic("indkey_freemap shit %p %p:%d\n",
4842                               parent, base, count);
4843                 }
4844                 chain = hammer2_combined_find(parent, base, count,
4845                                               &key_next,
4846                                               key_beg, key_end,
4847                                               &bref);
4848
4849                 /*
4850                  * Exhausted search
4851                  */
4852                 if (bref == NULL)
4853                         break;
4854
4855                 /*
4856                  * Deleted object
4857                  */
4858                 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
4859                         if (key_next == 0 || key_next > key_end)
4860                                 break;
4861                         key_beg = key_next;
4862                         continue;
4863                 }
4864
4865                 /*
4866                  * Use the full live (not deleted) element for the scan
4867                  * iteration.  HAMMER2 does not allow partial replacements.
4868                  *
4869                  * XXX should be built into hammer2_combined_find().
4870                  */
4871                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
4872
4873                 /*
4874                  * Expand our calculated key range (key, keybits) to fit
4875                  * the scanned key.  nkeybits represents the full range
4876                  * that we will later cut in half (two halves @ nkeybits - 1).
4877                  */
4878                 nkeybits = keybits;
4879                 if (nkeybits < bref->keybits) {
4880                         if (bref->keybits > 64) {
4881                                 kprintf("bad bref chain %p bref %p\n",
4882                                         chain, bref);
4883                                 Debugger("fubar");
4884                         }
4885                         nkeybits = bref->keybits;
4886                 }
4887                 while (nkeybits < 64 &&
4888                        rounddown2(key ^ bref->key, (hammer2_key_t)1 << nkeybits) != 0) {
4889                         ++nkeybits;
4890                 }
4891
4892                 /*
4893                  * If the new key range is larger we have to determine
4894                  * which side of the new key range the existing keys fall
4895                  * under by checking the high bit, then collapsing the
4896                  * locount into the hicount or vise-versa.
4897                  */
4898                 if (keybits != nkeybits) {
4899                         if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
4900                                 hicount += locount;
4901                                 locount = 0;
4902                         } else {
4903                                 locount += hicount;
4904                                 hicount = 0;
4905                         }
4906                         keybits = nkeybits;
4907                 }
4908
4909                 /*
4910                  * The newly scanned key will be in the lower half or the
4911                  * upper half of the (new) key range.
4912                  */
4913                 if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
4914                         ++hicount;
4915                 else
4916                         ++locount;
4917
4918                 if (key_next == 0)
4919                         break;
4920                 key_beg = key_next;
4921         }
4922         hammer2_spin_unex(&parent->core.spin);
4923         bref = NULL;    /* now invalid (safety) */
4924
4925         /*
4926          * Adjust keybits to represent half of the full range calculated
4927          * above (radix 63 max) for our new indirect block.
4928          */
4929         --keybits;
4930
4931         /*
4932          * Expand keybits to hold at least ncount elements.  ncount will be
4933          * a power of 2.  This is to try to completely fill leaf nodes (at
4934          * least for keys which are not hashes).
4935          *
4936          * We aren't counting 'in' or 'out', we are counting 'high side'
4937          * and 'low side' based on the bit at (1LL << keybits).  We want
4938          * everything to be inside in these cases so shift it all to
4939          * the low or high side depending on the new high bit.
4940          */
4941         while (((hammer2_key_t)1 << keybits) < ncount) {
4942                 ++keybits;
4943                 if (key & ((hammer2_key_t)1 << keybits)) {
4944                         hicount += locount;
4945                         locount = 0;
4946                 } else {
4947                         locount += hicount;
4948                         hicount = 0;
4949                 }
4950         }
4951
4952         if (hicount > locount)
4953                 key |= (hammer2_key_t)1 << keybits;
4954         else
4955                 key &= ~(hammer2_key_t)1 << keybits;
4956
4957         *keyp = key;
4958
4959         return (keybits);
4960 }
4961
4962 #else
4963
4964 /*
4965  * Directory indirect blocks.
4966  *
4967  * Covers both the inode index (directory of inodes), and directory contents
4968  * (filenames hardlinked to inodes).
4969  *
4970  * Because directory keys are hashed we generally try to cut the space in
4971  * half.  We accomodate the inode index (which tends to have linearly
4972  * increasing inode numbers) by ensuring that the keyspace is at least large
4973  * enough to fill up the indirect block being created.
4974  */
4975 static int
4976 hammer2_chain_indkey_dir(hammer2_chain_t *parent, hammer2_key_t *keyp,
4977                          int keybits, hammer2_blockref_t *base, int count,
4978                          int ncount)
4979 {
4980         hammer2_blockref_t *bref;
4981         hammer2_chain_t *chain;
4982         hammer2_key_t key_beg;
4983         hammer2_key_t key_end;
4984         hammer2_key_t key_next;
4985         hammer2_key_t key;
4986         int nkeybits;
4987         int locount;
4988         int hicount;
4989         int maxloops = 300000;
4990
4991         /*
4992          * Shortcut if the parent is the inode.  In this situation the
4993          * parent has 4+1 directory entries and we are creating an indirect
4994          * block capable of holding many more.
4995          */
4996         if (parent->bref.type == HAMMER2_BREF_TYPE_INODE) {
4997                 return 63;
4998         }
4999
5000         key = *keyp;
5001         locount = 0;
5002         hicount = 0;
5003
5004         /*
5005          * Calculate the range of keys in the array being careful to skip
5006          * slots which are overridden with a deletion.
5007          */
5008         key_beg = 0;
5009         key_end = HAMMER2_KEY_MAX;
5010         hammer2_spin_ex(&parent->core.spin);
5011
5012         for (;;) {
5013                 if (--maxloops == 0) {
5014                         panic("indkey_freemap shit %p %p:%d\n",
5015                               parent, base, count);
5016                 }
5017                 chain = hammer2_combined_find(parent, base, count,
5018                                               &key_next,
5019                                               key_beg, key_end,
5020                                               &bref);
5021
5022                 /*
5023                  * Exhausted search
5024                  */
5025                 if (bref == NULL)
5026                         break;
5027
5028                 /*
5029                  * Deleted object
5030                  */
5031                 if (chain && (chain->flags & HAMMER2_CHAIN_DELETED)) {
5032                         if (key_next == 0 || key_next > key_end)
5033                                 break;
5034                         key_beg = key_next;
5035                         continue;
5036                 }
5037
5038                 /*
5039                  * Use the full live (not deleted) element for the scan
5040                  * iteration.  HAMMER2 does not allow partial replacements.
5041                  *
5042                  * XXX should be built into hammer2_combined_find().
5043                  */
5044                 key_next = bref->key + ((hammer2_key_t)1 << bref->keybits);
5045
5046                 /*
5047                  * Expand our calculated key range (key, keybits) to fit
5048                  * the scanned key.  nkeybits represents the full range
5049                  * that we will later cut in half (two halves @ nkeybits - 1).
5050                  */
5051                 nkeybits = keybits;
5052                 if (nkeybits < bref->keybits) {
5053                         if (bref->keybits > 64) {
5054                                 kprintf("bad bref chain %p bref %p\n",
5055                                         chain, bref);
5056                                 Debugger("fubar");
5057                         }
5058                         nkeybits = bref->keybits;
5059                 }
5060                 while (nkeybits < 64 &&
5061                        (~(((hammer2_key_t)1 << nkeybits) - 1) &
5062                         (key ^ bref->key)) != 0) {
5063                         ++nkeybits;
5064                 }
5065
5066                 /*
5067                  * If the new key range is larger we have to determine
5068                  * which side of the new key range the existing keys fall
5069                  * under by checking the high bit, then collapsing the
5070                  * locount into the hicount or vise-versa.
5071                  */
5072                 if (keybits != nkeybits) {
5073                         if (((hammer2_key_t)1 << (nkeybits - 1)) & key) {
5074                                 hicount += locount;
5075                                 locount = 0;
5076                         } else {
5077                                 locount += hicount;
5078                                 hicount = 0;
5079                         }
5080                         keybits = nkeybits;
5081                 }
5082
5083                 /*
5084                  * The newly scanned key will be in the lower half or the
5085                  * upper half of the (new) key range.
5086                  */
5087                 if (((hammer2_key_t)1 << (nkeybits - 1)) & bref->key)
5088                         ++hicount;
5089                 else
5090                         ++locount;
5091
5092                 if (key_next == 0)
5093                         break;
5094                 key_beg = key_next;
5095         }
5096         hammer2_spin_unex(&parent->core.spin);
5097         bref = NULL;    /* now invalid (safety) */
5098
5099         /*
5100          * Adjust keybits to represent half of the full range calculated
5101          * above (radix 63 max) for our new indirect block.
5102          */
5103         --keybits;
5104
5105         /*
5106          * Expand keybits to hold at least ncount elements.  ncount will be
5107          * a power of 2.  This is to try to completely fill leaf nodes (at
5108          * least for keys which are not hashes).
5109          *
5110          * We aren't counting 'in' or 'out', we are counting 'high side'
5111          * and 'low side' based on the bit at (1LL << keybits).  We want
5112          * everything to be inside in these cases so shift it all to
5113          * the low or high side depending on the new high bit.
5114          */
5115         while (((hammer2_key_t)1 << keybits) < ncount) {
5116                 ++keybits;
5117                 if (key & ((hammer2_key_t)1 << keybits)) {
5118                         hicount += locount;
5119                         locount = 0;
5120                 } else {
5121                         locount += hicount;
5122                         hicount = 0;
5123                 }
5124         }
5125
5126         if (hicount > locount)
5127                 key |= (hammer2_key_t)1 << keybits;
5128         else
5129                 key &= ~(hammer2_key_t)1 << keybits;
5130
5131         *keyp = key;
5132
5133         return (keybits);
5134 }
5135
5136 #endif
5137
5138 /*
5139  * Sets CHAIN_DELETED and remove the chain's blockref from the parent if
5140  * it exists.
5141  *
5142  * Both parent and chain must be locked exclusively.
5143  *
5144  * This function will modify the parent if the blockref requires removal
5145  * from the parent's block table.
5146  *
5147  * This function is NOT recursive.  Any entity already pushed into the
5148  * chain (such as an inode) may still need visibility into its contents,
5149  * as well as the ability to read and modify the contents.  For example,
5150  * for an unlinked file which is still open.
5151  *
5152  * Also note that the flusher is responsible for cleaning up empty
5153  * indirect blocks.
5154  */
5155 int
5156 hammer2_chain_delete(hammer2_chain_t *parent, hammer2_chain_t *chain,
5157                      hammer2_tid_t mtid, int flags)
5158 {
5159         int error = 0;
5160
5161         KKASSERT(hammer2_mtx_owned(&chain->lock));
5162
5163         /*
5164          * Nothing to do if already marked.
5165          *
5166          * We need the spinlock on the core whos RBTREE contains chain
5167          * to protect against races.
5168          */
5169         if ((chain->flags & HAMMER2_CHAIN_DELETED) == 0) {
5170                 KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0 &&
5171                          chain->parent == parent);
5172                 error = _hammer2_chain_delete_helper(parent, chain,
5173                                                      mtid, flags, NULL);
5174         }
5175
5176         /*
5177          * Permanent deletions mark the chain as destroyed.
5178          *
5179          * NOTE: We do not setflush the chain unless the deletion is
5180          *       permanent, since the deletion of a chain does not actually
5181          *       require it to be flushed.
5182          */
5183         if (error == 0) {
5184                 if (flags & HAMMER2_DELETE_PERMANENT) {
5185                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
5186                         hammer2_chain_setflush(chain);
5187                 }
5188         }
5189
5190         return error;
5191 }
5192
5193 static int
5194 hammer2_chain_delete_obref(hammer2_chain_t *parent, hammer2_chain_t *chain,
5195                      hammer2_tid_t mtid, int flags,
5196                      hammer2_blockref_t *obref)
5197 {
5198         int error = 0;
5199
5200         KKASSERT(hammer2_mtx_owned(&chain->lock));
5201
5202         /*
5203          * Nothing to do if already marked.
5204          *
5205          * We need the spinlock on the core whos RBTREE contains chain
5206          * to protect against races.
5207          */
5208         obref->type = HAMMER2_BREF_TYPE_EMPTY;
5209         if ((chain->flags & HAMMER2_CHAIN_DELETED) == 0) {
5210                 KKASSERT((chain->flags & HAMMER2_CHAIN_DELETED) == 0 &&
5211                          chain->parent == parent);
5212                 error = _hammer2_chain_delete_helper(parent, chain,
5213                                                      mtid, flags, obref);
5214         }
5215
5216         /*
5217          * Permanent deletions mark the chain as destroyed.
5218          *
5219          * NOTE: We do not setflush the chain unless the deletion is
5220          *       permanent, since the deletion of a chain does not actually
5221          *       require it to be flushed.
5222          */
5223         if (error == 0) {
5224                 if (flags & HAMMER2_DELETE_PERMANENT) {
5225                         atomic_set_int(&chain->flags, HAMMER2_CHAIN_DESTROY);
5226                         hammer2_chain_setflush(chain);
5227                 }
5228         }
5229
5230         return error;
5231 }
5232
5233 /*
5234  * Returns the index of the nearest element in the blockref array >= elm.
5235  * Returns (count) if no element could be found.
5236  *
5237  * Sets *key_nextp to the next key for loop purposes but does not modify
5238  * it if the next key would be higher than the current value of *key_nextp.
5239  * Note that *key_nexp can overflow to 0, which should be tested by the
5240  * caller.
5241  *
5242  * WARNING!  Must be called with parent's spinlock held.  Spinlock remains
5243  *           held through the operation.
5244  */
5245 static int
5246 hammer2_base_find(hammer2_chain_t *parent,
5247                   hammer2_blockref_t *base, int count,
5248                   hammer2_key_t *key_nextp,
5249                   hammer2_key_t key_beg, hammer2_key_t key_end)
5250 {
5251         hammer2_blockref_t *scan;
5252         hammer2_key_t scan_end;
5253         int i;
5254         int limit;
5255
5256         /*
5257          * Require the live chain's already have their core's counted
5258          * so we can optimize operations.
5259          */
5260         KKASSERT(parent->flags & HAMMER2_CHAIN_COUNTEDBREFS);
5261
5262         /*
5263          * Degenerate case
5264          */
5265         if (count == 0 || base == NULL)
5266                 return(count);
5267
5268         /*
5269          * Sequential optimization using parent->cache_index.  This is
5270          * the most likely scenario.
5271          *
5272          * We can avoid trailing empty entries on live chains, otherwise
5273          * we might have to check the whole block array.
5274          */
5275         i = parent->cache_index;        /* SMP RACE OK */
5276         cpu_ccfence();
5277         limit = parent->core.live_zero;
5278         if (i >= limit)
5279                 i = limit - 1;
5280         if (i < 0)
5281                 i = 0;
5282         KKASSERT(i < count);
5283
5284         /*
5285          * Search backwards
5286          */
5287         scan = &base[i];
5288         while (i > 0 && (scan->type == HAMMER2_BREF_TYPE_EMPTY ||
5289             scan->key > key_beg)) {
5290                 --scan;
5291                 --i;
5292         }
5293         parent->cache_index = i;
5294
5295         /*
5296          * Search forwards, stop when we find a scan element which
5297          * encloses the key or until we know that there are no further
5298          * elements.
5299          */
5300         while (i < count) {
5301                 if (scan->type != HAMMER2_BREF_TYPE_EMPTY) {
5302                         scan_end = scan->key +
5303                                    ((hammer2_key_t)1 << scan->keybits) - 1;
5304                         if (scan->key > key_beg || scan_end >= key_beg)
5305                                 break;
5306                 }
5307                 if (i >= limit)
5308                         return (count);
5309                 ++scan;
5310                 ++i;
5311         }
5312         if (i != count) {
5313                 parent->cache_index = i;
5314                 if (i >= limit) {
5315                         i = count;
5316                 } else {
5317                         scan_end = scan->key +
5318                                    ((hammer2_key_t)1 << scan->keybits);
5319                         if (scan_end && (*key_nextp > scan_end ||
5320                                          *key_nextp == 0)) {
5321                                 *key_nextp = scan_end;
5322                         }
5323                 }
5324         }
5325         return (i);
5326 }
5327
5328 /*
5329  * Do a combined search and return the next match either from the blockref
5330  * array or from the in-memory chain.  Sets *bresp to the returned bref in
5331  * both cases, or sets it to NULL if the search exhausted.  Only returns
5332  * a non-NULL chain if the search matched from the in-memory chain.
5333  *
5334  * When no in-memory chain has been found and a non-NULL bref is returned
5335  * in *bresp.
5336  *
5337  *
5338  * The returned chain is not locked or referenced.  Use the returned bref
5339  * to determine if the search exhausted or not.  Iterate if the base find
5340  * is chosen but matches a deleted chain.
5341  *
5342  * WARNING!  Must be called with parent's spinlock held.  Spinlock remains
5343  *           held through the operation.
5344  */
5345 hammer2_chain_t *
5346 hammer2_combined_find(hammer2_chain_t *parent,
5347                       hammer2_blockref_t *base, int count,
5348                       hammer2_key_t *key_nextp,
5349                       hammer2_key_t key_beg, hammer2_key_t key_end,
5350                       hammer2_blockref_t **bresp)
5351 {
5352         hammer2_blockref_t *bref;
5353         hammer2_chain_t *chain;
5354         int i;
5355
5356         /*
5357          * Lookup in block array and in rbtree.
5358          */
5359         *key_nextp = key_end + 1;
5360         i = hammer2_base_find(parent, base, count, key_nextp,
5361                               key_beg, key_end);
5362         chain = hammer2_chain_find(parent, key_nextp, key_beg, key_end);
5363
5364         /*
5365          * Neither matched
5366          */
5367         if (i == count && chain == NULL) {
5368                 *bresp = NULL;
5369                 return(NULL);
5370         }
5371
5372         /*
5373          * Only chain matched.
5374          */
5375         if (i == count) {
5376                 bref = &chain->bref;
5377                 goto found;
5378         }
5379
5380         /*
5381          * Only blockref matched.
5382          */
5383         if (chain == NULL) {
5384                 bref = &base[i];
5385                 goto found;
5386         }
5387
5388         /*
5389          * Both in-memory and blockref matched, select the nearer element.
5390          *
5391          * If both are flush with the left-hand side or both are the
5392          * same distance away, select the chain.  In this situation the
5393          * chain must have been loaded from the matching blockmap.
5394          */
5395         if ((chain->bref.key <= key_beg && base[i].key <= key_beg) ||
5396             chain->bref.key == base[i].key) {
5397                 KKASSERT(chain->bref.key == base[i].key);
5398                 bref = &chain->bref;
5399                 goto found;
5400         }
5401
5402         /*
5403          * Select the nearer key
5404          */
5405         if (chain->bref.key < base[i].key) {
5406                 bref = &chain->bref;
5407         } else {
5408                 bref = &base[i];
5409                 chain = NULL;
5410         }
5411
5412         /*
5413          * If the bref is out of bounds we've exhausted our search.
5414          */
5415 found:
5416         if (bref->key > key_end) {
5417                 *bresp = NULL;
5418                 chain = NULL;
5419         } else {
5420                 *bresp = bref;
5421         }
5422         return(chain);
5423 }
5424
5425 /*
5426  * Locate the specified block array element and delete it.  The element
5427  * must exist.
5428  *
5429  * The spin lock on the related chain must be held.
5430  *
5431  * NOTE: live_count was adjusted when the chain was deleted, so it does not
5432  *       need to be adjusted when we commit the media change.
5433  */
5434 void
5435 hammer2_base_delete(hammer2_chain_t *parent,
5436                     hammer2_blockref_t *base, int count,
5437                     hammer2_chain_t *chain,
5438                     hammer2_blockref_t *obref)
5439 {
5440         hammer2_blockref_t *elm = &chain->bref;
5441         hammer2_blockref_t *scan;
5442         hammer2_key_t key_next;
5443         int i;
5444
5445         /*
5446          * Delete element.  Expect the element to exist.
5447          *
5448          * XXX see caller, flush code not yet sophisticated enough to prevent
5449          *     re-flushed in some cases.
5450          */
5451         key_next = 0; /* max range */
5452         i = hammer2_base_find(parent, base, count, &key_next,
5453                               elm->key, elm->key);
5454         scan = &base[i];
5455         if (i == count || scan->type == HAMMER2_BREF_TYPE_EMPTY ||
5456             scan->key != elm->key ||
5457             ((chain->flags & HAMMER2_CHAIN_BMAPUPD) == 0 &&
5458              scan->keybits != elm->keybits)) {
5459                 hammer2_spin_unex(&parent->core.spin);
5460                 panic("delete base %p element not found at %d/%d elm %p\n",
5461                       base, i, count, elm);
5462                 return;
5463         }
5464
5465         /*
5466          * Update stats and zero the entry.
5467          *
5468          * NOTE: Handle radix == 0 (0 bytes) case.
5469          */
5470         if ((int)(scan->data_off & HAMMER2_OFF_MASK_RADIX)) {
5471                 parent->bref.embed.stats.data_count -= (hammer2_off_t)1 <<
5472                                 (int)(scan->data_off & HAMMER2_OFF_MASK_RADIX);
5473         }
5474         switch(scan->type) {
5475         case HAMMER2_BREF_TYPE_INODE:
5476                 --parent->bref.embed.stats.inode_count;
5477                 /* fall through */
5478         case HAMMER2_BREF_TYPE_DATA:
5479                 if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5480                         atomic_set_int(&chain->flags,
5481                                        HAMMER2_CHAIN_HINT_LEAF_COUNT);
5482                 } else {
5483                         if (parent->bref.leaf_count)
5484                                 --parent->bref.leaf_count;
5485                 }
5486                 /* fall through */
5487         case HAMMER2_BREF_TYPE_INDIRECT:
5488                 if (scan->type != HAMMER2_BREF_TYPE_DATA) {
5489                         parent->bref.embed.stats.data_count -=
5490                                 scan->embed.stats.data_count;
5491                         parent->bref.embed.stats.inode_count -=
5492                                 scan->embed.stats.inode_count;
5493                 }
5494                 if (scan->type == HAMMER2_BREF_TYPE_INODE)
5495                         break;
5496                 if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5497                         atomic_set_int(&chain->flags,
5498                                        HAMMER2_CHAIN_HINT_LEAF_COUNT);
5499                 } else {
5500                         if (parent->bref.leaf_count <= scan->leaf_count)
5501                                 parent->bref.leaf_count = 0;
5502                         else
5503                                 parent->bref.leaf_count -= scan->leaf_count;
5504                 }
5505                 break;
5506         case HAMMER2_BREF_TYPE_DIRENT:
5507                 if (parent->bref.leaf_count == HAMMER2_BLOCKREF_LEAF_MAX) {
5508                         atomic_set_int(&chain->flags,
5509                                        HAMMER2_CHAIN_HINT_LEAF_COUNT);
5510                 } else {
5511                         if (parent->bref.leaf_count)
5512                                 --parent->bref.leaf_count;
5513                 }
5514         default:
5515                 break;
5516         }
5517
5518         if (obref)
5519                 *obref = *scan;
5520         bzero(scan, sizeof(*scan));
5521
5522         /*
5523          * We can only optimize parent->core.live_zero for live chains.
5524          */
5525         if (parent->core.live_zero == i + 1) {
5526                 while (--i >= 0 && base[i].type == HAMMER2_BREF_TYPE_EMPTY)
5527                         ;
5528                 parent->core.live_zero = i + 1;
5529         }
5530
5531         /*
5532          * Clear appropriate blockmap flags in chain.
5533          */
5534         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_BMAPPED |
5535                                         HAMMER2_CHAIN_BMAPUPD);
5536 }
5537
5538 /*
5539  * Insert the specified element.  The block array must not already have the
5540  * element and must have space available for the insertion.
5541  *
5542  * The spin lock on the related chain must be held.
5543  *
5544  * NOTE: live_count was adjusted when the chain was deleted, so it does not
5545  *       need to be adjusted when we commit the media change.
5546  */
5547 void
5548 hammer2_base_insert(hammer2_chain_t *parent,
5549                     hammer2_blockref_t *base, int count,
5550                     hammer2_chain_t *chain, hammer2_blockref_t *elm)
5551 {
5552         hammer2_key_t key_next;
5553         hammer2_key_t xkey;
5554         int i;
5555         int j;
5556         int k;
5557         int l;
5558         int u = 1;
5559
5560         /*
5561          * Insert new element.  Expect the element to not already exist
5562          * unless we are replacing it.
5563          *
5564          * XXX see caller, flush code not yet sophisticated enough to prevent
5565          *     re-flushed in some cases.
5566          */
5567         key_next = 0; /* max range */
5568         i = hammer2_base_find(parent, base, count, &key_next,
5569                               elm->key, elm->key);
5570
5571         /*
5572          * Shortcut fill optimization, typical ordered insertion(s) may not
5573          * require a search.
5574          */
5575         KKASSERT(i >= 0 && i <= count);
5576
5577         /*
5578          * Set appropriate blockmap flags in chain (if not NULL)
5579          */
5580         if (chain)
5581                 atomic_set_int(&chain->flags, HAMMER2_CHAIN_BMAPPED);
5582
5583         /*
5584          * Update stats and zero the entry
5585          */
5586         if ((int)(elm->data_off & HAMMER2_OFF_MASK_RADIX)) {
5587                 parent->bref.embed.stats.data_count += (hammer2_off_t)1 <<
5588                                 (int)(elm->data_off & HAMMER2_OFF_MASK_RADIX);
5589         }
5590         switch(elm->type) {
5591         case HAMMER2_BREF_TYPE_INODE:
5592                 ++parent->bref.embed.stats.inode_count;
5593                 /* fall through */
5594         case HAMMER2_BREF_TYPE_DATA:
5595                 if (parent->bref.leaf_count != HAMMER2_BLOCKREF_LEAF_MAX)
5596                         ++parent->bref.leaf_count;
5597                 /* fall through */
5598         case HAMMER2_BREF_TYPE_INDIRECT:
5599                 if (elm->type != HAMMER2_BREF_TYPE_DATA) {
5600                         parent->bref.embed.stats.data_count +=
5601                                 elm->embed.stats.data_count;
5602                         parent->bref.embed.stats.inode_count +=
5603                                 elm->embed.stats.inode_count;
5604                 }
5605                 if (elm->type == HAMMER2_BREF_TYPE_INODE)
5606                         break;
5607                 if (parent->bref.leaf_count + elm->leaf_count <
5608                     HAMMER2_BLOCKREF_LEAF_MAX) {
5609                         parent->bref.leaf_count += elm->leaf_count;
5610                 } else {
5611                         parent->bref.leaf_count = HAMMER2_BLOCKREF_LEAF_MAX;
5612                 }
5613                 break;
5614         case HAMMER2_BREF_TYPE_DIRENT:
5615                 if (parent->bref.leaf_count != HAMMER2_BLOCKREF_LEAF_MAX)
5616                         ++parent->bref.leaf_count;
5617                 break;
5618         default:
5619                 break;
5620         }
5621
5622
5623         /*
5624          * We can only optimize parent->core.live_zero for live chains.
5625          */
5626         if (i == count && parent->core.live_zero < count) {
5627                 i = parent->core.live_zero++;
5628                 base[i] = *elm;
5629                 return;
5630         }
5631
5632         xkey = elm->key + ((hammer2_key_t)1 << elm->keybits) - 1;
5633         if (i != count && (base[i].key < elm->key || xkey >= base[i].key)) {
5634                 hammer2_spin_unex(&parent->core.spin);
5635                 panic("insert base %p overlapping elements at %d elm %p\n",
5636                       base, i, elm);
5637         }
5638
5639         /*
5640          * Try to find an empty slot before or after.
5641          */
5642         j = i;
5643         k = i;
5644         while (j > 0 || k < count) {
5645                 --j;
5646                 if (j >= 0 && base[j].type == HAMMER2_BREF_TYPE_EMPTY) {
5647                         if (j == i - 1) {
5648                                 base[j] = *elm;
5649                         } else {
5650                                 bcopy(&base[j+1], &base[j],
5651                                       (i - j - 1) * sizeof(*base));
5652                                 base[i - 1] = *elm;
5653                         }
5654                         goto validate;
5655                 }
5656                 ++k;
5657                 if (k < count && base[k].type == HAMMER2_BREF_TYPE_EMPTY) {
5658                         bcopy(&base[i], &base[i+1],
5659                               (k - i) * sizeof(hammer2_blockref_t));
5660                         base[i] = *elm;
5661
5662                         /*
5663                          * We can only update parent->core.live_zero for live
5664                          * chains.
5665                          */
5666                         if (parent->core.live_zero <= k)
5667                                 parent->core.live_zero = k + 1;
5668                         u = 2;
5669                         goto validate;
5670                 }
5671         }
5672         panic("hammer2_base_insert: no room!");
5673
5674         /*
5675          * Debugging
5676          */
5677 validate:
5678         key_next = 0;
5679         for (l = 0; l < count; ++l) {
5680                 if (base[l].type != HAMMER2_BREF_TYPE_EMPTY) {
5681                         key_next = base[l].key +
5682                                    ((hammer2_key_t)1 << base[l].keybits) - 1;
5683                         break;
5684                 }
5685         }
5686         while (++l < count) {
5687                 if (base[l].type != HAMMER2_BREF_TYPE_EMPTY) {
5688                         if (base[l].key <= key_next)
5689                                 panic("base_insert %d %d,%d,%d fail %p:%d", u, i, j, k, base, l);
5690                         key_next = base[l].key +
5691                                    ((hammer2_key_t)1 << base[l].keybits) - 1;
5692
5693                 }
5694         }
5695
5696 }
5697
5698 #if 0
5699
5700 /*
5701  * Sort the blockref array for the chain.  Used by the flush code to
5702  * sort the blockref[] array.
5703  *
5704  * The chain must be exclusively locked AND spin-locked.
5705  */
5706 typedef hammer2_blockref_t *hammer2_blockref_p;
5707
5708 static
5709 int
5710 hammer2_base_sort_callback(const void *v1, const void *v2)
5711 {
5712         hammer2_blockref_p bref1 = *(const hammer2_blockref_p *)v1;
5713         hammer2_blockref_p bref2 = *(const hammer2_blockref_p *)v2;
5714
5715         /*
5716          * Make sure empty elements are placed at the end of the array
5717          */
5718         if (bref1->type == HAMMER2_BREF_TYPE_EMPTY) {
5719                 if (bref2->type == HAMMER2_BREF_TYPE_EMPTY)
5720                         return(0);
5721                 return(1);
5722         } else if (bref2->type == HAMMER2_BREF_TYPE_EMPTY) {
5723                 return(-1);
5724         }
5725
5726         /*
5727          * Sort by key
5728          */
5729         if (bref1->key < bref2->key)
5730                 return(-1);
5731         if (bref1->key > bref2->key)
5732                 return(1);
5733         return(0);
5734 }
5735
5736 void
5737 hammer2_base_sort(hammer2_chain_t *chain)
5738 {
5739         hammer2_blockref_t *base;
5740         int count;
5741
5742         switch(chain->bref.type) {
5743         case HAMMER2_BREF_TYPE_INODE:
5744                 /*
5745                  * Special shortcut for embedded data returns the inode
5746                  * itself.  Callers must detect this condition and access
5747                  * the embedded data (the strategy code does this for us).
5748                  *
5749                  * This is only applicable to regular files and softlinks.
5750                  */
5751                 if (chain->data->ipdata.meta.op_flags &
5752                     HAMMER2_OPFLAG_DIRECTDATA) {
5753                         return;
5754                 }
5755                 base = &chain->data->ipdata.u.blockset.blockref[0];
5756                 count = HAMMER2_SET_COUNT;
5757                 break;
5758         case HAMMER2_BREF_TYPE_FREEMAP_NODE:
5759         case HAMMER2_BREF_TYPE_INDIRECT:
5760                 /*
5761                  * Optimize indirect blocks in the INITIAL state to avoid
5762                  * I/O.
5763                  */
5764                 KKASSERT((chain->flags & HAMMER2_CHAIN_INITIAL) == 0);
5765                 base = &chain->data->npdata[0];
5766                 count = chain->bytes / sizeof(hammer2_blockref_t);
5767                 break;
5768         case HAMMER2_BREF_TYPE_VOLUME:
5769                 base = &chain->data->voldata.sroot_blockset.blockref[0];
5770                 count = HAMMER2_SET_COUNT;
5771                 break;
5772         case HAMMER2_BREF_TYPE_FREEMAP:
5773                 base = &chain->data->blkset.blockref[0];
5774                 count = HAMMER2_SET_COUNT;
5775                 break;
5776         default:
5777                 kprintf("hammer2_base_sort: unrecognized "
5778                         "blockref(A) type: %d",
5779                         chain->bref.type);
5780                 while (1)
5781                         tsleep(&base, 0, "dead", 0);
5782                 panic("hammer2_base_sort: unrecognized "
5783                       "blockref(A) type: %d",
5784                       chain->bref.type);
5785                 base = NULL;    /* safety */
5786                 count = 0;      /* safety */
5787         }
5788         kqsort(base, count, sizeof(*base), hammer2_base_sort_callback);
5789 }
5790
5791 #endif
5792
5793 /*
5794  * Chain memory management
5795  */
5796 void
5797 hammer2_chain_wait(hammer2_chain_t *chain)
5798 {
5799         tsleep(chain, 0, "chnflw", 1);
5800 }
5801
5802 const hammer2_media_data_t *
5803 hammer2_chain_rdata(hammer2_chain_t *chain)
5804 {
5805         KKASSERT(chain->data != NULL);
5806         return (chain->data);
5807 }
5808
5809 hammer2_media_data_t *
5810 hammer2_chain_wdata(hammer2_chain_t *chain)
5811 {
5812         KKASSERT(chain->data != NULL);
5813         return (chain->data);
5814 }
5815
5816 /*
5817  * Set the check data for a chain.  This can be a heavy-weight operation
5818  * and typically only runs on-flush.  For file data check data is calculated
5819  * when the logical buffers are flushed.
5820  */
5821 void
5822 hammer2_chain_setcheck(hammer2_chain_t *chain, void *bdata)
5823 {
5824         atomic_clear_int(&chain->flags, HAMMER2_CHAIN_NOTTESTED);
5825
5826         switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
5827         case HAMMER2_CHECK_NONE:
5828                 break;
5829         case HAMMER2_CHECK_DISABLED:
5830                 break;
5831         case HAMMER2_CHECK_ISCSI32:
5832                 chain->bref.check.iscsi32.value =
5833                         hammer2_icrc32(bdata, chain->bytes);
5834                 break;
5835         case HAMMER2_CHECK_XXHASH64:
5836                 chain->bref.check.xxhash64.value =
5837                         XXH64(bdata, chain->bytes, XXH_HAMMER2_SEED);
5838                 break;
5839         case HAMMER2_CHECK_SHA192:
5840                 {
5841                         SHA256_CTX hash_ctx;
5842                         union {
5843                                 uint8_t digest[SHA256_DIGEST_LENGTH];
5844                                 uint64_t digest64[SHA256_DIGEST_LENGTH/8];
5845                         } u;
5846
5847                         SHA256_Init(&hash_ctx);
5848                         SHA256_Update(&hash_ctx, bdata, chain->bytes);
5849                         SHA256_Final(u.digest, &hash_ctx);
5850                         u.digest64[2] ^= u.digest64[3];
5851                         bcopy(u.digest,
5852                               chain->bref.check.sha192.data,
5853                               sizeof(chain->bref.check.sha192.data));
5854                 }
5855                 break;
5856         case HAMMER2_CHECK_FREEMAP:
5857                 chain->bref.check.freemap.icrc32 =
5858                         hammer2_icrc32(bdata, chain->bytes);
5859                 break;
5860         default:
5861                 kprintf("hammer2_chain_setcheck: unknown check type %02x\n",
5862                         chain->bref.methods);
5863                 break;
5864         }
5865 }
5866
5867 /*
5868  * Characterize a failed check code and try to trace back to the inode.
5869  */
5870 static void
5871 hammer2_characterize_failed_chain(hammer2_chain_t *chain, uint64_t check,
5872                                   int bits)
5873 {
5874         hammer2_chain_t *lchain;
5875         hammer2_chain_t *ochain;
5876         int did;
5877
5878         did = krateprintf(&krate_h2chk,
5879                 "chain %016jx.%02x (%s) meth=%02x CHECK FAIL "
5880                 "(flags=%08x, bref/data ",
5881                 chain->bref.data_off,
5882                 chain->bref.type,
5883                 hammer2_bref_type_str(chain->bref.type),
5884                 chain->bref.methods,
5885                 chain->flags);
5886         if (did == 0)
5887                 return;
5888
5889         if (bits == 32) {
5890                 kprintf("%08x/%08x)\n",
5891                         chain->bref.check.iscsi32.value,
5892                         (uint32_t)check);
5893         } else {
5894                 kprintf("%016jx/%016jx)\n",
5895                         chain->bref.check.xxhash64.value,
5896                         check);
5897         }
5898
5899         /*
5900          * Run up the chains to try to find the governing inode so we
5901          * can report it.
5902          *
5903          * XXX This error reporting is not really MPSAFE
5904          */
5905         ochain = chain;
5906         lchain = chain;
5907         while (chain && chain->bref.type != HAMMER2_BREF_TYPE_INODE) {
5908                 lchain = chain;
5909                 chain = chain->parent;
5910         }
5911
5912         if (chain && chain->bref.type == HAMMER2_BREF_TYPE_INODE &&
5913             ((chain->bref.flags & HAMMER2_BREF_FLAG_PFSROOT) == 0 ||
5914              (lchain->bref.key & HAMMER2_DIRHASH_VISIBLE))) {
5915                 kprintf("   Resides at/in inode %ld\n",
5916                         chain->bref.key);
5917         } else if (chain && chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
5918                 kprintf("   Resides in inode index - CRITICAL!!!\n");
5919         } else {
5920                 kprintf("   Resides in root index - CRITICAL!!!\n");
5921         }
5922         if (ochain->hmp) {
5923                 const char *pfsname = "UNKNOWN";
5924                 int i;
5925
5926                 if (ochain->pmp) {
5927                         for (i = 0; i < HAMMER2_MAXCLUSTER; ++i) {
5928                                 if (ochain->pmp->pfs_hmps[i] == ochain->hmp &&
5929                                     ochain->pmp->pfs_names[i]) {
5930                                         pfsname = ochain->pmp->pfs_names[i];
5931                                         break;
5932                                 }
5933                         }
5934                 }
5935                 kprintf("   In pfs %s on device %s\n",
5936                         pfsname, ochain->hmp->devrepname);
5937         }
5938 }
5939
5940 /*
5941  * Returns non-zero on success, 0 on failure.
5942  */
5943 int
5944 hammer2_chain_testcheck(hammer2_chain_t *chain, void *bdata)
5945 {
5946         uint32_t check32;
5947         uint64_t check64;
5948         int r;
5949
5950         if (chain->flags & HAMMER2_CHAIN_NOTTESTED)
5951                 return 1;
5952
5953         switch(HAMMER2_DEC_CHECK(chain->bref.methods)) {
5954         case HAMMER2_CHECK_NONE:
5955                 r = 1;
5956                 break;
5957         case HAMMER2_CHECK_DISABLED:
5958                 r = 1;
5959                 break;
5960         case HAMMER2_CHECK_ISCSI32:
5961                 check32 = hammer2_icrc32(bdata, chain->bytes);
5962                 r = (chain->bref.check.iscsi32.value == check32);
5963                 if (r == 0) {
5964                         hammer2_characterize_failed_chain(chain, check32, 32);
5965                 }
5966                 hammer2_process_icrc32 += chain->bytes;
5967                 break;
5968         case HAMMER2_CHECK_XXHASH64:
5969                 check64 = XXH64(bdata, chain->bytes, XXH_HAMMER2_SEED);
5970                 r = (chain->bref.check.xxhash64.value == check64);
5971                 if (r == 0) {
5972                         hammer2_characterize_failed_chain(chain, check64, 64);
5973                 }
5974                 hammer2_process_xxhash64 += chain->bytes;
5975                 break;
5976         case HAMMER2_CHECK_SHA192:
5977                 {
5978                         SHA256_CTX hash_ctx;
5979                         union {
5980                                 uint8_t digest[SHA256_DIGEST_LENGTH];
5981                                 uint64_t digest64[SHA256_DIGEST_LENGTH/8];
5982                         } u;
5983
5984                         SHA256_Init(&hash_ctx);
5985                         SHA256_Update(&hash_ctx, bdata, chain->bytes);
5986                         SHA256_Final(u.digest, &hash_ctx);
5987                         u.digest64[2] ^= u.digest64[3];
5988                         if (bcmp(u.digest,
5989                                  chain->bref.check.sha192.data,
5990                                  sizeof(chain->bref.check.sha192.data)) == 0) {
5991                                 r = 1;
5992                         } else {
5993                                 r = 0;
5994                                 krateprintf(&krate_h2chk,
5995                                         "chain %016jx.%02x meth=%02x "
5996                                         "CHECK FAIL\n",
5997                                         chain->bref.data_off,
5998                                         chain->bref.type,
5999                                         chain->bref.methods);
6000                         }
6001                 }
6002                 break;
6003         case HAMMER2_CHECK_FREEMAP:
6004                 r = (chain->bref.check.freemap.icrc32 ==
6005                      hammer2_icrc32(bdata, chain->bytes));
6006                 if (r == 0) {
6007                         int did;
6008
6009                         did = krateprintf(&krate_h2chk,
6010                                           "chain %016jx.%02x meth=%02x "
6011                                           "CHECK FAIL\n",
6012                                           chain->bref.data_off,
6013                                           chain->bref.type,
6014                                           chain->bref.methods);
6015                         if (did) {
6016                                 kprintf("freemap.icrc %08x icrc32 %08x (%d)\n",
6017                                         chain->bref.check.freemap.icrc32,
6018                                         hammer2_icrc32(bdata, chain->bytes),
6019                                         chain->bytes);
6020                                 if (chain->dio) {
6021                                         kprintf("dio %p buf %016jx,%d "
6022                                                 "bdata %p/%p\n",
6023                                                 chain->dio,
6024                                                 chain->dio->bp->b_loffset,
6025                                                 chain->dio->bp->b_bufsize,
6026                                                 bdata,
6027                                                 chain->dio->bp->b_data);
6028                                 }
6029                         }
6030                 }
6031                 break;
6032         default:
6033                 kprintf("hammer2_chain_testcheck: unknown check type %02x\n",
6034                         chain->bref.methods);
6035                 r = 1;
6036                 break;
6037         }
6038         return r;
6039 }
6040
6041 /*
6042  * Acquire the chain and parent representing the specified inode for the
6043  * device at the specified cluster index.
6044  *
6045  * The flags passed in are LOOKUP flags, not RESOLVE flags.
6046  *
6047  * If we are unable to locate the inode, HAMMER2_ERROR_EIO is returned and
6048  * *chainp will be NULL.  *parentp may still be set error or not, or NULL
6049  * if the parent itself could not be resolved.
6050  *
6051  * The caller may pass-in a locked *parentp and/or *chainp, or neither.
6052  * They will be unlocked and released by this function.  The *parentp and
6053  * *chainp representing the located inode are returned locked.
6054  */
6055 int
6056 hammer2_chain_inode_find(hammer2_pfs_t *pmp, hammer2_key_t inum,
6057                          int clindex, int flags,
6058                          hammer2_chain_t **parentp, hammer2_chain_t **chainp)
6059 {
6060         hammer2_chain_t *parent;
6061         hammer2_chain_t *rchain;
6062         hammer2_key_t key_dummy;
6063         hammer2_inode_t *ip;
6064         int resolve_flags;
6065         int error;
6066
6067         resolve_flags = (flags & HAMMER2_LOOKUP_SHARED) ?
6068                         HAMMER2_RESOLVE_SHARED : 0;
6069
6070         /*
6071          * Caller expects us to replace these.
6072          */
6073         if (*chainp) {
6074                 hammer2_chain_unlock(*chainp);
6075                 hammer2_chain_drop(*chainp);
6076                 *chainp = NULL;
6077         }
6078         if (*parentp) {
6079                 hammer2_chain_unlock(*parentp);
6080                 hammer2_chain_drop(*parentp);
6081                 *parentp = NULL;
6082         }
6083
6084         /*
6085          * Be very careful, this is a backend function and we CANNOT
6086          * lock any frontend inode structure we find.  But we have to
6087          * look the inode up this way first in case it exists but is
6088          * detached from the radix tree.
6089          */
6090         ip = hammer2_inode_lookup(pmp, inum);
6091         if (ip) {
6092                 *chainp = hammer2_inode_chain_and_parent(ip, clindex,
6093                                                        parentp,
6094                                                        resolve_flags);
6095                 hammer2_inode_drop(ip);
6096                 if (*chainp)
6097                         return 0;
6098                 hammer2_chain_unlock(*chainp);
6099                 hammer2_chain_drop(*chainp);
6100                 *chainp = NULL;
6101                 if (*parentp) {
6102                         hammer2_chain_unlock(*parentp);
6103                         hammer2_chain_drop(*parentp);
6104                         *parentp = NULL;
6105                 }
6106         }
6107
6108         /*
6109          * Inodes hang off of the iroot (bit 63 is clear, differentiating
6110          * inodes from root directory entries in the key lookup).
6111          */
6112         parent = hammer2_inode_chain(pmp->iroot, clindex, resolve_flags);
6113         rchain = NULL;
6114         if (parent) {
6115                 rchain = hammer2_chain_lookup(&parent, &key_dummy,
6116                                               inum, inum,
6117                                               &error, flags);
6118         } else {
6119                 error = HAMMER2_ERROR_EIO;
6120         }
6121         *parentp = parent;
6122         *chainp = rchain;
6123
6124         return error;
6125 }
6126
6127 /*
6128  * Used by the bulkscan code to snapshot the synchronized storage for
6129  * a volume, allowing it to be scanned concurrently against normal
6130  * operation.
6131  */
6132 hammer2_chain_t *
6133 hammer2_chain_bulksnap(hammer2_dev_t *hmp)
6134 {
6135         hammer2_chain_t *copy;
6136
6137         copy = hammer2_chain_alloc(hmp, hmp->spmp, &hmp->vchain.bref);
6138         copy->data = kmalloc(sizeof(copy->data->voldata),
6139                              hmp->mchain,
6140                              M_WAITOK | M_ZERO);
6141         hammer2_voldata_lock(hmp);
6142         copy->data->voldata = hmp->volsync;
6143         hammer2_voldata_unlock(hmp);
6144
6145         return copy;
6146 }
6147
6148 void
6149 hammer2_chain_bulkdrop(hammer2_chain_t *copy)
6150 {
6151         KKASSERT(copy->bref.type == HAMMER2_BREF_TYPE_VOLUME);
6152         KKASSERT(copy->data);
6153         kfree(copy->data, copy->hmp->mchain);
6154         copy->data = NULL;
6155         atomic_add_long(&hammer2_chain_allocs, -1);
6156         hammer2_chain_drop(copy);
6157 }
6158
6159 /*
6160  * Returns non-zero if the chain (INODE or DIRENT) matches the
6161  * filename.
6162  */
6163 int
6164 hammer2_chain_dirent_test(hammer2_chain_t *chain, const char *name,
6165                           size_t name_len)
6166 {
6167         const hammer2_inode_data_t *ripdata;
6168         const hammer2_dirent_head_t *den;
6169
6170         if (chain->bref.type == HAMMER2_BREF_TYPE_INODE) {
6171                 ripdata = &chain->data->ipdata;
6172                 if (ripdata->meta.name_len == name_len &&
6173                     bcmp(ripdata->filename, name, name_len) == 0) {
6174                         return 1;
6175                 }
6176         }
6177         if (chain->bref.type == HAMMER2_BREF_TYPE_DIRENT &&
6178            chain->bref.embed.dirent.namlen == name_len) {
6179                 den = &chain->bref.embed.dirent;
6180                 if (name_len > sizeof(chain->bref.check.buf) &&
6181                     bcmp(chain->data->buf, name, name_len) == 0) {
6182                         return 1;
6183                 }
6184                 if (name_len <= sizeof(chain->bref.check.buf) &&
6185                     bcmp(chain->bref.check.buf, name, name_len) == 0) {
6186                         return 1;
6187                 }
6188         }
6189         return 0;
6190 }