kernel - Fix serious bug in MAP_STACK, deprecate auto-grow semantics
[dragonfly.git] / sys / vm / vm_map.c
1 /*
2  * Copyright (c) 1991, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  * Copyright (c) 2003-2017 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * The Mach Operating System project at Carnegie-Mellon University.
8  *
9  * This code is derived from software contributed to The DragonFly Project
10  * by Matthew Dillon <dillon@backplane.com>
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *      from: @(#)vm_map.c      8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_map.c,v 1.187.2.19 2003/05/27 00:47:02 alc Exp $
65  */
66
67 /*
68  *      Virtual memory mapping module.
69  */
70
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/kernel.h>
74 #include <sys/proc.h>
75 #include <sys/serialize.h>
76 #include <sys/lock.h>
77 #include <sys/vmmeter.h>
78 #include <sys/mman.h>
79 #include <sys/vnode.h>
80 #include <sys/resourcevar.h>
81 #include <sys/shm.h>
82 #include <sys/tree.h>
83 #include <sys/malloc.h>
84 #include <sys/objcache.h>
85 #include <sys/kern_syscall.h>
86
87 #include <vm/vm.h>
88 #include <vm/vm_param.h>
89 #include <vm/pmap.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_page.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_pager.h>
94 #include <vm/vm_kern.h>
95 #include <vm/vm_extern.h>
96 #include <vm/swap_pager.h>
97 #include <vm/vm_zone.h>
98
99 #include <sys/random.h>
100 #include <sys/sysctl.h>
101 #include <sys/spinlock.h>
102
103 #include <sys/thread2.h>
104 #include <sys/spinlock2.h>
105
106 /*
107  * Virtual memory maps provide for the mapping, protection, and sharing
108  * of virtual memory objects.  In addition, this module provides for an
109  * efficient virtual copy of memory from one map to another.
110  *
111  * Synchronization is required prior to most operations.
112  *
113  * Maps consist of an ordered doubly-linked list of simple entries.
114  * A hint and a RB tree is used to speed-up lookups.
115  *
116  * Callers looking to modify maps specify start/end addresses which cause
117  * the related map entry to be clipped if necessary, and then later
118  * recombined if the pieces remained compatible.
119  *
120  * Virtual copy operations are performed by copying VM object references
121  * from one map to another, and then marking both regions as copy-on-write.
122  */
123 static boolean_t vmspace_ctor(void *obj, void *privdata, int ocflags);
124 static void vmspace_dtor(void *obj, void *privdata);
125 static void vmspace_terminate(struct vmspace *vm, int final);
126
127 MALLOC_DEFINE(M_VMSPACE, "vmspace", "vmspace objcache backingstore");
128 static struct objcache *vmspace_cache;
129
130 /*
131  * per-cpu page table cross mappings are initialized in early boot
132  * and might require a considerable number of vm_map_entry structures.
133  */
134 #define MAPENTRYBSP_CACHE       (MAXCPU+1)
135 #define MAPENTRYAP_CACHE        8
136
137 /*
138  * Partioning threaded programs with large anonymous memory areas can
139  * improve concurrent fault performance.
140  */
141 #define MAP_ENTRY_PARTITION_SIZE        ((vm_offset_t)(32 * 1024 * 1024))
142 #define MAP_ENTRY_PARTITION_MASK        (MAP_ENTRY_PARTITION_SIZE - 1)
143
144 #define VM_MAP_ENTRY_WITHIN_PARTITION(entry)    \
145         ((((entry)->start ^ (entry)->end) & ~MAP_ENTRY_PARTITION_MASK) == 0)
146
147 static struct vm_zone mapentzone_store;
148 static vm_zone_t mapentzone;
149
150 static struct vm_map_entry map_entry_init[MAX_MAPENT];
151 static struct vm_map_entry cpu_map_entry_init_bsp[MAPENTRYBSP_CACHE];
152 static struct vm_map_entry cpu_map_entry_init_ap[MAXCPU][MAPENTRYAP_CACHE];
153
154 static int randomize_mmap;
155 SYSCTL_INT(_vm, OID_AUTO, randomize_mmap, CTLFLAG_RW, &randomize_mmap, 0,
156     "Randomize mmap offsets");
157 static int vm_map_relock_enable = 1;
158 SYSCTL_INT(_vm, OID_AUTO, map_relock_enable, CTLFLAG_RW,
159            &vm_map_relock_enable, 0, "insert pop pgtable optimization");
160 static int vm_map_partition_enable = 1;
161 SYSCTL_INT(_vm, OID_AUTO, map_partition_enable, CTLFLAG_RW,
162            &vm_map_partition_enable, 0, "Break up larger vm_map_entry's");
163
164 static void vmspace_drop_notoken(struct vmspace *vm);
165 static void vm_map_entry_shadow(vm_map_entry_t entry, int addref);
166 static vm_map_entry_t vm_map_entry_create(vm_map_t map, int *);
167 static void vm_map_entry_dispose (vm_map_t map, vm_map_entry_t entry, int *);
168 static void _vm_map_clip_end (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
169 static void _vm_map_clip_start (vm_map_t, vm_map_entry_t, vm_offset_t, int *);
170 static void vm_map_entry_delete (vm_map_t, vm_map_entry_t, int *);
171 static void vm_map_entry_unwire (vm_map_t, vm_map_entry_t);
172 static void vm_map_copy_entry (vm_map_t, vm_map_t, vm_map_entry_t,
173                 vm_map_entry_t);
174 static void vm_map_unclip_range (vm_map_t map, vm_map_entry_t start_entry,
175                 vm_offset_t start, vm_offset_t end, int *countp, int flags);
176 static void vm_map_entry_partition(vm_map_t map, vm_map_entry_t entry,
177                 vm_offset_t vaddr, int *countp);
178
179 /*
180  * Initialize the vm_map module.  Must be called before any other vm_map
181  * routines.
182  *
183  * Map and entry structures are allocated from the general purpose
184  * memory pool with some exceptions:
185  *
186  *      - The kernel map is allocated statically.
187  *      - Initial kernel map entries are allocated out of a static pool.
188  *      - We must set ZONE_SPECIAL here or the early boot code can get
189  *        stuck if there are >63 cores.
190  *
191  *      These restrictions are necessary since malloc() uses the
192  *      maps and requires map entries.
193  *
194  * Called from the low level boot code only.
195  */
196 void
197 vm_map_startup(void)
198 {
199         mapentzone = &mapentzone_store;
200         zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
201                   map_entry_init, MAX_MAPENT);
202         mapentzone_store.zflags |= ZONE_SPECIAL;
203 }
204
205 /*
206  * Called prior to any vmspace allocations.
207  *
208  * Called from the low level boot code only.
209  */
210 void
211 vm_init2(void) 
212 {
213         vmspace_cache = objcache_create_mbacked(M_VMSPACE,
214                                                 sizeof(struct vmspace),
215                                                 0, ncpus * 4,
216                                                 vmspace_ctor, vmspace_dtor,
217                                                 NULL);
218         zinitna(mapentzone, NULL, 0, 0, ZONE_USE_RESERVE | ZONE_SPECIAL);
219         pmap_init2();
220         vm_object_init2();
221 }
222
223 /*
224  * objcache support.  We leave the pmap root cached as long as possible
225  * for performance reasons.
226  */
227 static
228 boolean_t
229 vmspace_ctor(void *obj, void *privdata, int ocflags)
230 {
231         struct vmspace *vm = obj;
232
233         bzero(vm, sizeof(*vm));
234         vm->vm_refcnt = VM_REF_DELETED;
235
236         return 1;
237 }
238
239 static
240 void
241 vmspace_dtor(void *obj, void *privdata)
242 {
243         struct vmspace *vm = obj;
244
245         KKASSERT(vm->vm_refcnt == VM_REF_DELETED);
246         pmap_puninit(vmspace_pmap(vm));
247 }
248
249 /*
250  * Red black tree functions
251  *
252  * The caller must hold the related map lock.
253  */
254 static int rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b);
255 RB_GENERATE(vm_map_rb_tree, vm_map_entry, rb_entry, rb_vm_map_compare);
256
257 /* a->start is address, and the only field has to be initialized */
258 static int
259 rb_vm_map_compare(vm_map_entry_t a, vm_map_entry_t b)
260 {
261         if (a->start < b->start)
262                 return(-1);
263         else if (a->start > b->start)
264                 return(1);
265         return(0);
266 }
267
268 /*
269  * Initialize vmspace ref/hold counts vmspace0.  There is a holdcnt for
270  * every refcnt.
271  */
272 void
273 vmspace_initrefs(struct vmspace *vm)
274 {
275         vm->vm_refcnt = 1;
276         vm->vm_holdcnt = 1;
277 }
278
279 /*
280  * Allocate a vmspace structure, including a vm_map and pmap.
281  * Initialize numerous fields.  While the initial allocation is zerod,
282  * subsequence reuse from the objcache leaves elements of the structure
283  * intact (particularly the pmap), so portions must be zerod.
284  *
285  * Returns a referenced vmspace.
286  *
287  * No requirements.
288  */
289 struct vmspace *
290 vmspace_alloc(vm_offset_t min, vm_offset_t max)
291 {
292         struct vmspace *vm;
293
294         vm = objcache_get(vmspace_cache, M_WAITOK);
295
296         bzero(&vm->vm_startcopy,
297               (char *)&vm->vm_endcopy - (char *)&vm->vm_startcopy);
298         vm_map_init(&vm->vm_map, min, max, NULL);       /* initializes token */
299
300         /*
301          * NOTE: hold to acquires token for safety.
302          *
303          * On return vmspace is referenced (refs=1, hold=1).  That is,
304          * each refcnt also has a holdcnt.  There can be additional holds
305          * (holdcnt) above and beyond the refcnt.  Finalization is handled in
306          * two stages, one on refs 1->0, and the the second on hold 1->0.
307          */
308         KKASSERT(vm->vm_holdcnt == 0);
309         KKASSERT(vm->vm_refcnt == VM_REF_DELETED);
310         vmspace_initrefs(vm);
311         vmspace_hold(vm);
312         pmap_pinit(vmspace_pmap(vm));           /* (some fields reused) */
313         vm->vm_map.pmap = vmspace_pmap(vm);     /* XXX */
314         vm->vm_shm = NULL;
315         vm->vm_flags = 0;
316         cpu_vmspace_alloc(vm);
317         vmspace_drop(vm);
318
319         return (vm);
320 }
321
322 /*
323  * NOTE: Can return 0 if the vmspace is exiting.
324  */
325 int
326 vmspace_getrefs(struct vmspace *vm)
327 {
328         int32_t n;
329
330         n = vm->vm_refcnt;
331         cpu_ccfence();
332         if (n & VM_REF_DELETED)
333                 n = -1;
334         return n;
335 }
336
337 void
338 vmspace_hold(struct vmspace *vm)
339 {
340         atomic_add_int(&vm->vm_holdcnt, 1);
341         lwkt_gettoken(&vm->vm_map.token);
342 }
343
344 /*
345  * Drop with final termination interlock.
346  */
347 void
348 vmspace_drop(struct vmspace *vm)
349 {
350         lwkt_reltoken(&vm->vm_map.token);
351         vmspace_drop_notoken(vm);
352 }
353
354 static void
355 vmspace_drop_notoken(struct vmspace *vm)
356 {
357         if (atomic_fetchadd_int(&vm->vm_holdcnt, -1) == 1) {
358                 if (vm->vm_refcnt & VM_REF_DELETED)
359                         vmspace_terminate(vm, 1);
360         }
361 }
362
363 /*
364  * A vmspace object must not be in a terminated state to be able to obtain
365  * additional refs on it.
366  *
367  * These are official references to the vmspace, the count is used to check
368  * for vmspace sharing.  Foreign accessors should use 'hold' and not 'ref'.
369  *
370  * XXX we need to combine hold & ref together into one 64-bit field to allow
371  * holds to prevent stage-1 termination.
372  */
373 void
374 vmspace_ref(struct vmspace *vm)
375 {
376         uint32_t n;
377
378         atomic_add_int(&vm->vm_holdcnt, 1);
379         n = atomic_fetchadd_int(&vm->vm_refcnt, 1);
380         KKASSERT((n & VM_REF_DELETED) == 0);
381 }
382
383 /*
384  * Release a ref on the vmspace.  On the 1->0 transition we do stage-1
385  * termination of the vmspace.  Then, on the final drop of the hold we
386  * will do stage-2 final termination.
387  */
388 void
389 vmspace_rel(struct vmspace *vm)
390 {
391         uint32_t n;
392
393         /*
394          * Drop refs.  Each ref also has a hold which is also dropped.
395          *
396          * When refs hits 0 compete to get the VM_REF_DELETED flag (hold
397          * prevent finalization) to start termination processing.
398          * Finalization occurs when the last hold count drops to 0.
399          */
400         n = atomic_fetchadd_int(&vm->vm_refcnt, -1) - 1;
401         while (n == 0) {
402                 if (atomic_cmpset_int(&vm->vm_refcnt, 0, VM_REF_DELETED)) {
403                         vmspace_terminate(vm, 0);
404                         break;
405                 }
406                 n = vm->vm_refcnt;
407                 cpu_ccfence();
408         }
409         vmspace_drop_notoken(vm);
410 }
411
412 /*
413  * This is called during exit indicating that the vmspace is no
414  * longer in used by an exiting process, but the process has not yet
415  * been reaped.
416  *
417  * We drop refs, allowing for stage-1 termination, but maintain a holdcnt
418  * to prevent stage-2 until the process is reaped.  Note hte order of
419  * operation, we must hold first.
420  *
421  * No requirements.
422  */
423 void
424 vmspace_relexit(struct vmspace *vm)
425 {
426         atomic_add_int(&vm->vm_holdcnt, 1);
427         vmspace_rel(vm);
428 }
429
430 /*
431  * Called during reap to disconnect the remainder of the vmspace from
432  * the process.  On the hold drop the vmspace termination is finalized.
433  *
434  * No requirements.
435  */
436 void
437 vmspace_exitfree(struct proc *p)
438 {
439         struct vmspace *vm;
440
441         vm = p->p_vmspace;
442         p->p_vmspace = NULL;
443         vmspace_drop_notoken(vm);
444 }
445
446 /*
447  * Called in two cases:
448  *
449  * (1) When the last refcnt is dropped and the vmspace becomes inactive,
450  *     called with final == 0.  refcnt will be (u_int)-1 at this point,
451  *     and holdcnt will still be non-zero.
452  *
453  * (2) When holdcnt becomes 0, called with final == 1.  There should no
454  *     longer be anyone with access to the vmspace.
455  *
456  * VMSPACE_EXIT1 flags the primary deactivation
457  * VMSPACE_EXIT2 flags the last reap
458  */
459 static void
460 vmspace_terminate(struct vmspace *vm, int final)
461 {
462         int count;
463
464         lwkt_gettoken(&vm->vm_map.token);
465         if (final == 0) {
466                 KKASSERT((vm->vm_flags & VMSPACE_EXIT1) == 0);
467                 vm->vm_flags |= VMSPACE_EXIT1;
468
469                 /*
470                  * Get rid of most of the resources.  Leave the kernel pmap
471                  * intact.
472                  *
473                  * If the pmap does not contain wired pages we can bulk-delete
474                  * the pmap as a performance optimization before removing the
475                  * related mappings.
476                  *
477                  * If the pmap contains wired pages we cannot do this
478                  * pre-optimization because currently vm_fault_unwire()
479                  * expects the pmap pages to exist and will not decrement
480                  * p->wire_count if they do not.
481                  */
482                 shmexit(vm);
483                 if (vmspace_pmap(vm)->pm_stats.wired_count) {
484                         vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
485                                       VM_MAX_USER_ADDRESS);
486                         pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
487                                           VM_MAX_USER_ADDRESS);
488                 } else {
489                         pmap_remove_pages(vmspace_pmap(vm), VM_MIN_USER_ADDRESS,
490                                           VM_MAX_USER_ADDRESS);
491                         vm_map_remove(&vm->vm_map, VM_MIN_USER_ADDRESS,
492                                       VM_MAX_USER_ADDRESS);
493                 }
494                 lwkt_reltoken(&vm->vm_map.token);
495         } else {
496                 KKASSERT((vm->vm_flags & VMSPACE_EXIT1) != 0);
497                 KKASSERT((vm->vm_flags & VMSPACE_EXIT2) == 0);
498
499                 /*
500                  * Get rid of remaining basic resources.
501                  */
502                 vm->vm_flags |= VMSPACE_EXIT2;
503                 shmexit(vm);
504
505                 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
506                 vm_map_lock(&vm->vm_map);
507                 cpu_vmspace_free(vm);
508
509                 /*
510                  * Lock the map, to wait out all other references to it.
511                  * Delete all of the mappings and pages they hold, then call
512                  * the pmap module to reclaim anything left.
513                  */
514                 vm_map_delete(&vm->vm_map,
515                               vm_map_min(&vm->vm_map),
516                               vm_map_max(&vm->vm_map),
517                               &count);
518                 vm_map_unlock(&vm->vm_map);
519                 vm_map_entry_release(count);
520
521                 pmap_release(vmspace_pmap(vm));
522                 lwkt_reltoken(&vm->vm_map.token);
523                 objcache_put(vmspace_cache, vm);
524         }
525 }
526
527 /*
528  * Swap useage is determined by taking the proportional swap used by
529  * VM objects backing the VM map.  To make up for fractional losses,
530  * if the VM object has any swap use at all the associated map entries
531  * count for at least 1 swap page.
532  *
533  * No requirements.
534  */
535 vm_offset_t
536 vmspace_swap_count(struct vmspace *vm)
537 {
538         vm_map_t map = &vm->vm_map;
539         vm_map_entry_t cur;
540         vm_object_t object;
541         vm_offset_t count = 0;
542         vm_offset_t n;
543
544         vmspace_hold(vm);
545
546         RB_FOREACH(cur, vm_map_rb_tree, &map->rb_root) {
547                 switch(cur->maptype) {
548                 case VM_MAPTYPE_NORMAL:
549                 case VM_MAPTYPE_VPAGETABLE:
550                         if ((object = cur->object.vm_object) == NULL)
551                                 break;
552                         if (object->swblock_count) {
553                                 n = (cur->end - cur->start) / PAGE_SIZE;
554                                 count += object->swblock_count *
555                                     SWAP_META_PAGES * n / object->size + 1;
556                         }
557                         break;
558                 default:
559                         break;
560                 }
561         }
562         vmspace_drop(vm);
563
564         return(count);
565 }
566
567 /*
568  * Calculate the approximate number of anonymous pages in use by
569  * this vmspace.  To make up for fractional losses, we count each
570  * VM object as having at least 1 anonymous page.
571  *
572  * No requirements.
573  */
574 vm_offset_t
575 vmspace_anonymous_count(struct vmspace *vm)
576 {
577         vm_map_t map = &vm->vm_map;
578         vm_map_entry_t cur;
579         vm_object_t object;
580         vm_offset_t count = 0;
581
582         vmspace_hold(vm);
583         RB_FOREACH(cur, vm_map_rb_tree, &map->rb_root) {
584                 switch(cur->maptype) {
585                 case VM_MAPTYPE_NORMAL:
586                 case VM_MAPTYPE_VPAGETABLE:
587                         if ((object = cur->object.vm_object) == NULL)
588                                 break;
589                         if (object->type != OBJT_DEFAULT &&
590                             object->type != OBJT_SWAP) {
591                                 break;
592                         }
593                         count += object->resident_page_count;
594                         break;
595                 default:
596                         break;
597                 }
598         }
599         vmspace_drop(vm);
600
601         return(count);
602 }
603
604 /*
605  * Initialize an existing vm_map structure such as that in the vmspace
606  * structure.  The pmap is initialized elsewhere.
607  *
608  * No requirements.
609  */
610 void
611 vm_map_init(struct vm_map *map, vm_offset_t min_addr, vm_offset_t max_addr,
612             pmap_t pmap)
613 {
614         RB_INIT(&map->rb_root);
615         spin_init(&map->ilock_spin, "ilock");
616         map->ilock_base = NULL;
617         map->nentries = 0;
618         map->size = 0;
619         map->system_map = 0;
620         vm_map_min(map) = min_addr;
621         vm_map_max(map) = max_addr;
622         map->pmap = pmap;
623         map->timestamp = 0;
624         map->flags = 0;
625         bzero(&map->freehint, sizeof(map->freehint));
626         lwkt_token_init(&map->token, "vm_map");
627         lockinit(&map->lock, "vm_maplk", (hz + 9) / 10, 0);
628 }
629
630 /*
631  * Find the first possible free address for the specified request length.
632  * Returns 0 if we don't have one cached.
633  */
634 static
635 vm_offset_t
636 vm_map_freehint_find(vm_map_t map, vm_size_t length, vm_size_t align)
637 {
638         vm_map_freehint_t *scan;
639
640         scan = &map->freehint[0];
641         while (scan < &map->freehint[VM_MAP_FFCOUNT]) {
642                 if (scan->length == length && scan->align == align)
643                         return(scan->start);
644                 ++scan;
645         }
646         return 0;
647 }
648
649 /*
650  * Unconditionally set the freehint.  Called by vm_map_findspace() after
651  * it finds an address.  This will help us iterate optimally on the next
652  * similar findspace.
653  */
654 static
655 void
656 vm_map_freehint_update(vm_map_t map, vm_offset_t start,
657                        vm_size_t length, vm_size_t align)
658 {
659         vm_map_freehint_t *scan;
660
661         scan = &map->freehint[0];
662         while (scan < &map->freehint[VM_MAP_FFCOUNT]) {
663                 if (scan->length == length && scan->align == align) {
664                         scan->start = start;
665                         return;
666                 }
667                 ++scan;
668         }
669         scan = &map->freehint[map->freehint_newindex & VM_MAP_FFMASK];
670         scan->start = start;
671         scan->align = align;
672         scan->length = length;
673         ++map->freehint_newindex;
674 }
675
676 /*
677  * Update any existing freehints (for any alignment), for the hole we just
678  * added.
679  */
680 static
681 void
682 vm_map_freehint_hole(vm_map_t map, vm_offset_t start, vm_size_t length)
683 {
684         vm_map_freehint_t *scan;
685
686         scan = &map->freehint[0];
687         while (scan < &map->freehint[VM_MAP_FFCOUNT]) {
688                 if (scan->length <= length && scan->start > start)
689                         scan->start = start;
690                 ++scan;
691         }
692 }
693
694 /*
695  * Shadow the vm_map_entry's object.  This typically needs to be done when
696  * a write fault is taken on an entry which had previously been cloned by
697  * fork().  The shared object (which might be NULL) must become private so
698  * we add a shadow layer above it.
699  *
700  * Object allocation for anonymous mappings is defered as long as possible.
701  * When creating a shadow, however, the underlying object must be instantiated
702  * so it can be shared.
703  *
704  * If the map segment is governed by a virtual page table then it is
705  * possible to address offsets beyond the mapped area.  Just allocate
706  * a maximally sized object for this case.
707  *
708  * If addref is non-zero an additional reference is added to the returned
709  * entry.  This mechanic exists because the additional reference might have
710  * to be added atomically and not after return to prevent a premature
711  * collapse.
712  *
713  * The vm_map must be exclusively locked.
714  * No other requirements.
715  */
716 static
717 void
718 vm_map_entry_shadow(vm_map_entry_t entry, int addref)
719 {
720         if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
721                 vm_object_shadow(&entry->object.vm_object, &entry->offset,
722                                  0x7FFFFFFF, addref);   /* XXX */
723         } else {
724                 vm_object_shadow(&entry->object.vm_object, &entry->offset,
725                                  atop(entry->end - entry->start), addref);
726         }
727         entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
728 }
729
730 /*
731  * Allocate an object for a vm_map_entry.
732  *
733  * Object allocation for anonymous mappings is defered as long as possible.
734  * This function is called when we can defer no longer, generally when a map
735  * entry might be split or forked or takes a page fault.
736  *
737  * If the map segment is governed by a virtual page table then it is
738  * possible to address offsets beyond the mapped area.  Just allocate
739  * a maximally sized object for this case.
740  *
741  * The vm_map must be exclusively locked.
742  * No other requirements.
743  */
744 void 
745 vm_map_entry_allocate_object(vm_map_entry_t entry)
746 {
747         vm_object_t obj;
748
749         if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
750                 obj = vm_object_allocate(OBJT_DEFAULT, 0x7FFFFFFF); /* XXX */
751         } else {
752                 obj = vm_object_allocate(OBJT_DEFAULT,
753                                          atop(entry->end - entry->start));
754         }
755         entry->object.vm_object = obj;
756         entry->offset = 0;
757 }
758
759 /*
760  * Set an initial negative count so the first attempt to reserve
761  * space preloads a bunch of vm_map_entry's for this cpu.  Also
762  * pre-allocate 2 vm_map_entries which will be needed by zalloc() to
763  * map a new page for vm_map_entry structures.  SMP systems are
764  * particularly sensitive.
765  *
766  * This routine is called in early boot so we cannot just call
767  * vm_map_entry_reserve().
768  *
769  * Called from the low level boot code only (for each cpu)
770  *
771  * WARNING! Take care not to have too-big a static/BSS structure here
772  *          as MAXCPU can be 256+, otherwise the loader's 64MB heap
773  *          can get blown out by the kernel plus the initrd image.
774  */
775 void
776 vm_map_entry_reserve_cpu_init(globaldata_t gd)
777 {
778         vm_map_entry_t entry;
779         int count;
780         int i;
781
782         atomic_add_int(&gd->gd_vme_avail, -MAP_RESERVE_COUNT * 2);
783         if (gd->gd_cpuid == 0) {
784                 entry = &cpu_map_entry_init_bsp[0];
785                 count = MAPENTRYBSP_CACHE;
786         } else {
787                 entry = &cpu_map_entry_init_ap[gd->gd_cpuid][0];
788                 count = MAPENTRYAP_CACHE;
789         }
790         for (i = 0; i < count; ++i, ++entry) {
791                 MAPENT_FREELIST(entry) = gd->gd_vme_base;
792                 gd->gd_vme_base = entry;
793         }
794 }
795
796 /*
797  * Reserves vm_map_entry structures so code later-on can manipulate
798  * map_entry structures within a locked map without blocking trying
799  * to allocate a new vm_map_entry.
800  *
801  * No requirements.
802  *
803  * WARNING!  We must not decrement gd_vme_avail until after we have
804  *           ensured that sufficient entries exist, otherwise we can
805  *           get into an endless call recursion in the zalloc code
806  *           itself.
807  */
808 int
809 vm_map_entry_reserve(int count)
810 {
811         struct globaldata *gd = mycpu;
812         vm_map_entry_t entry;
813
814         /*
815          * Make sure we have enough structures in gd_vme_base to handle
816          * the reservation request.
817          *
818          * Use a critical section to protect against VM faults.  It might
819          * not be needed, but we have to be careful here.
820          */
821         if (gd->gd_vme_avail < count) {
822                 crit_enter();
823                 while (gd->gd_vme_avail < count) {
824                         entry = zalloc(mapentzone);
825                         MAPENT_FREELIST(entry) = gd->gd_vme_base;
826                         gd->gd_vme_base = entry;
827                         atomic_add_int(&gd->gd_vme_avail, 1);
828                 }
829                 crit_exit();
830         }
831         atomic_add_int(&gd->gd_vme_avail, -count);
832
833         return(count);
834 }
835
836 /*
837  * Releases previously reserved vm_map_entry structures that were not
838  * used.  If we have too much junk in our per-cpu cache clean some of
839  * it out.
840  *
841  * No requirements.
842  */
843 void
844 vm_map_entry_release(int count)
845 {
846         struct globaldata *gd = mycpu;
847         vm_map_entry_t entry;
848         vm_map_entry_t efree;
849
850         count = atomic_fetchadd_int(&gd->gd_vme_avail, count) + count;
851         if (gd->gd_vme_avail > MAP_RESERVE_SLOP) {
852                 efree = NULL;
853                 crit_enter();
854                 while (gd->gd_vme_avail > MAP_RESERVE_HYST) {
855                         entry = gd->gd_vme_base;
856                         KKASSERT(entry != NULL);
857                         gd->gd_vme_base = MAPENT_FREELIST(entry);
858                         atomic_add_int(&gd->gd_vme_avail, -1);
859                         MAPENT_FREELIST(entry) = efree;
860                         efree = entry;
861                 }
862                 crit_exit();
863                 while ((entry = efree) != NULL) {
864                         efree = MAPENT_FREELIST(efree);
865                         zfree(mapentzone, entry);
866                 }
867         }
868 }
869
870 /*
871  * Reserve map entry structures for use in kernel_map itself.  These
872  * entries have *ALREADY* been reserved on a per-cpu basis when the map
873  * was inited.  This function is used by zalloc() to avoid a recursion
874  * when zalloc() itself needs to allocate additional kernel memory.
875  *
876  * This function works like the normal reserve but does not load the
877  * vm_map_entry cache (because that would result in an infinite
878  * recursion).  Note that gd_vme_avail may go negative.  This is expected.
879  *
880  * Any caller of this function must be sure to renormalize after
881  * potentially eating entries to ensure that the reserve supply
882  * remains intact.
883  *
884  * No requirements.
885  */
886 int
887 vm_map_entry_kreserve(int count)
888 {
889         struct globaldata *gd = mycpu;
890
891         atomic_add_int(&gd->gd_vme_avail, -count);
892         KASSERT(gd->gd_vme_base != NULL,
893                 ("no reserved entries left, gd_vme_avail = %d",
894                 gd->gd_vme_avail));
895         return(count);
896 }
897
898 /*
899  * Release previously reserved map entries for kernel_map.  We do not
900  * attempt to clean up like the normal release function as this would
901  * cause an unnecessary (but probably not fatal) deep procedure call.
902  *
903  * No requirements.
904  */
905 void
906 vm_map_entry_krelease(int count)
907 {
908         struct globaldata *gd = mycpu;
909
910         atomic_add_int(&gd->gd_vme_avail, count);
911 }
912
913 /*
914  * Allocates a VM map entry for insertion.  No entry fields are filled in.
915  *
916  * The entries should have previously been reserved.  The reservation count
917  * is tracked in (*countp).
918  *
919  * No requirements.
920  */
921 static vm_map_entry_t
922 vm_map_entry_create(vm_map_t map, int *countp)
923 {
924         struct globaldata *gd = mycpu;
925         vm_map_entry_t entry;
926
927         KKASSERT(*countp > 0);
928         --*countp;
929         crit_enter();
930         entry = gd->gd_vme_base;
931         KASSERT(entry != NULL, ("gd_vme_base NULL! count %d", *countp));
932         gd->gd_vme_base = MAPENT_FREELIST(entry);
933         crit_exit();
934
935         return(entry);
936 }
937
938 /*
939  * Dispose of a vm_map_entry that is no longer being referenced.
940  *
941  * No requirements.
942  */
943 static void
944 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry, int *countp)
945 {
946         struct globaldata *gd = mycpu;
947
948         ++*countp;
949         crit_enter();
950         MAPENT_FREELIST(entry) = gd->gd_vme_base;
951         gd->gd_vme_base = entry;
952         crit_exit();
953 }
954
955
956 /*
957  * Insert/remove entries from maps.
958  *
959  * The related map must be exclusively locked.
960  * The caller must hold map->token
961  * No other requirements.
962  */
963 static __inline void
964 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry)
965 {
966         ASSERT_VM_MAP_LOCKED(map);
967
968         map->nentries++;
969         if (vm_map_rb_tree_RB_INSERT(&map->rb_root, entry))
970                 panic("vm_map_entry_link: dup addr map %p ent %p", map, entry);
971 }
972
973 static __inline void
974 vm_map_entry_unlink(vm_map_t map,
975                     vm_map_entry_t entry)
976 {
977         ASSERT_VM_MAP_LOCKED(map);
978
979         if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
980                 panic("vm_map_entry_unlink: attempt to mess with "
981                       "locked entry! %p", entry);
982         }
983         vm_map_rb_tree_RB_REMOVE(&map->rb_root, entry);
984         map->nentries--;
985 }
986
987 /*
988  * Finds the map entry containing (or immediately preceding) the specified
989  * address in the given map.  The entry is returned in (*entry).
990  *
991  * The boolean result indicates whether the address is actually contained
992  * in the map.
993  *
994  * The related map must be locked.
995  * No other requirements.
996  */
997 boolean_t
998 vm_map_lookup_entry(vm_map_t map, vm_offset_t address, vm_map_entry_t *entry)
999 {
1000         vm_map_entry_t tmp;
1001         vm_map_entry_t last;
1002
1003         ASSERT_VM_MAP_LOCKED(map);
1004
1005         /*
1006          * Locate the record from the top of the tree.  'last' tracks the
1007          * closest prior record and is returned if no match is found, which
1008          * in binary tree terms means tracking the most recent right-branch
1009          * taken.  If there is no prior record, *entry is set to NULL.
1010          */
1011         last = NULL;
1012         tmp = RB_ROOT(&map->rb_root);
1013
1014         while (tmp) {
1015                 if (address >= tmp->start) {
1016                         if (address < tmp->end) {
1017                                 *entry = tmp;
1018                                 return(TRUE);
1019                         }
1020                         last = tmp;
1021                         tmp = RB_RIGHT(tmp, rb_entry);
1022                 } else {
1023                         tmp = RB_LEFT(tmp, rb_entry);
1024                 }
1025         }
1026         *entry = last;
1027         return (FALSE);
1028 }
1029
1030 /*
1031  * Inserts the given whole VM object into the target map at the specified
1032  * address range.  The object's size should match that of the address range.
1033  *
1034  * The map must be exclusively locked.
1035  * The object must be held.
1036  * The caller must have reserved sufficient vm_map_entry structures.
1037  *
1038  * If object is non-NULL, ref count must be bumped by caller prior to
1039  * making call to account for the new entry.
1040  */
1041 int
1042 vm_map_insert(vm_map_t map, int *countp, void *map_object, void *map_aux,
1043               vm_ooffset_t offset, vm_offset_t start, vm_offset_t end,
1044               vm_maptype_t maptype, vm_subsys_t id,
1045               vm_prot_t prot, vm_prot_t max, int cow)
1046 {
1047         vm_map_entry_t new_entry;
1048         vm_map_entry_t prev_entry;
1049         vm_map_entry_t next;
1050         vm_map_entry_t temp_entry;
1051         vm_eflags_t protoeflags;
1052         int must_drop = 0;
1053         vm_object_t object;
1054
1055         if (maptype == VM_MAPTYPE_UKSMAP)
1056                 object = NULL;
1057         else
1058                 object = map_object;
1059
1060         ASSERT_VM_MAP_LOCKED(map);
1061         if (object)
1062                 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1063
1064         /*
1065          * Check that the start and end points are not bogus.
1066          */
1067         if ((start < vm_map_min(map)) || (end > vm_map_max(map)) ||
1068             (start >= end)) {
1069                 return (KERN_INVALID_ADDRESS);
1070         }
1071
1072         /*
1073          * Find the entry prior to the proposed starting address; if it's part
1074          * of an existing entry, this range is bogus.
1075          */
1076         if (vm_map_lookup_entry(map, start, &temp_entry))
1077                 return (KERN_NO_SPACE);
1078         prev_entry = temp_entry;
1079
1080         /*
1081          * Assert that the next entry doesn't overlap the end point.
1082          */
1083         if (prev_entry)
1084                 next = vm_map_rb_tree_RB_NEXT(prev_entry);
1085         else
1086                 next = RB_MIN(vm_map_rb_tree, &map->rb_root);
1087         if (next && next->start < end)
1088                 return (KERN_NO_SPACE);
1089
1090         protoeflags = 0;
1091
1092         if (cow & MAP_COPY_ON_WRITE)
1093                 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1094
1095         if (cow & MAP_NOFAULT) {
1096                 protoeflags |= MAP_ENTRY_NOFAULT;
1097
1098                 KASSERT(object == NULL,
1099                         ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1100         }
1101         if (cow & MAP_DISABLE_SYNCER)
1102                 protoeflags |= MAP_ENTRY_NOSYNC;
1103         if (cow & MAP_DISABLE_COREDUMP)
1104                 protoeflags |= MAP_ENTRY_NOCOREDUMP;
1105         if (cow & MAP_IS_STACK)
1106                 protoeflags |= MAP_ENTRY_STACK;
1107         if (cow & MAP_IS_KSTACK)
1108                 protoeflags |= MAP_ENTRY_KSTACK;
1109
1110         lwkt_gettoken(&map->token);
1111
1112         if (object) {
1113                 /*
1114                  * When object is non-NULL, it could be shared with another
1115                  * process.  We have to set or clear OBJ_ONEMAPPING 
1116                  * appropriately.
1117                  *
1118                  * NOTE: This flag is only applicable to DEFAULT and SWAP
1119                  *       objects and will already be clear in other types
1120                  *       of objects, so a shared object lock is ok for
1121                  *       VNODE objects.
1122                  */
1123                 if ((object->ref_count > 1) || (object->shadow_count != 0)) {
1124                         vm_object_clear_flag(object, OBJ_ONEMAPPING);
1125                 }
1126         }
1127         else if (prev_entry &&
1128                  (prev_entry->eflags == protoeflags) &&
1129                  (prev_entry->end == start) &&
1130                  (prev_entry->wired_count == 0) &&
1131                  (prev_entry->id == id) &&
1132                  prev_entry->maptype == maptype &&
1133                  maptype == VM_MAPTYPE_NORMAL &&
1134                  ((prev_entry->object.vm_object == NULL) ||
1135                   vm_object_coalesce(prev_entry->object.vm_object,
1136                                      OFF_TO_IDX(prev_entry->offset),
1137                                      (vm_size_t)(prev_entry->end - prev_entry->start),
1138                                      (vm_size_t)(end - prev_entry->end)))) {
1139                 /*
1140                  * We were able to extend the object.  Determine if we
1141                  * can extend the previous map entry to include the 
1142                  * new range as well.
1143                  */
1144                 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
1145                     (prev_entry->protection == prot) &&
1146                     (prev_entry->max_protection == max)) {
1147                         map->size += (end - prev_entry->end);
1148                         prev_entry->end = end;
1149                         vm_map_simplify_entry(map, prev_entry, countp);
1150                         lwkt_reltoken(&map->token);
1151                         return (KERN_SUCCESS);
1152                 }
1153
1154                 /*
1155                  * If we can extend the object but cannot extend the
1156                  * map entry, we have to create a new map entry.  We
1157                  * must bump the ref count on the extended object to
1158                  * account for it.  object may be NULL.
1159                  *
1160                  * XXX if object is NULL should we set offset to 0 here ?
1161                  */
1162                 object = prev_entry->object.vm_object;
1163                 offset = prev_entry->offset +
1164                         (prev_entry->end - prev_entry->start);
1165                 if (object) {
1166                         vm_object_hold(object);
1167                         vm_object_chain_wait(object, 0);
1168                         vm_object_reference_locked(object);
1169                         must_drop = 1;
1170                         map_object = object;
1171                 }
1172         }
1173
1174         /*
1175          * NOTE: if conditionals fail, object can be NULL here.  This occurs
1176          * in things like the buffer map where we manage kva but do not manage
1177          * backing objects.
1178          */
1179
1180         /*
1181          * Create a new entry
1182          */
1183
1184         new_entry = vm_map_entry_create(map, countp);
1185         new_entry->start = start;
1186         new_entry->end = end;
1187         new_entry->id = id;
1188
1189         new_entry->maptype = maptype;
1190         new_entry->eflags = protoeflags;
1191         new_entry->object.map_object = map_object;
1192         new_entry->aux.master_pde = 0;          /* in case size is different */
1193         new_entry->aux.map_aux = map_aux;
1194         new_entry->offset = offset;
1195
1196         new_entry->inheritance = VM_INHERIT_DEFAULT;
1197         new_entry->protection = prot;
1198         new_entry->max_protection = max;
1199         new_entry->wired_count = 0;
1200
1201         /*
1202          * Insert the new entry into the list
1203          */
1204
1205         vm_map_entry_link(map, new_entry);
1206         map->size += new_entry->end - new_entry->start;
1207
1208         /*
1209          * Don't worry about updating freehint[] when inserting, allow
1210          * addresses to be lower than the actual first free spot.
1211          */
1212 #if 0
1213         /*
1214          * Temporarily removed to avoid MAP_STACK panic, due to
1215          * MAP_STACK being a huge hack.  Will be added back in
1216          * when MAP_STACK (and the user stack mapping) is fixed.
1217          */
1218         /*
1219          * It may be possible to simplify the entry
1220          */
1221         vm_map_simplify_entry(map, new_entry, countp);
1222 #endif
1223
1224         /*
1225          * Try to pre-populate the page table.  Mappings governed by virtual
1226          * page tables cannot be prepopulated without a lot of work, so
1227          * don't try.
1228          */
1229         if ((cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) &&
1230             maptype != VM_MAPTYPE_VPAGETABLE &&
1231             maptype != VM_MAPTYPE_UKSMAP) {
1232                 int dorelock = 0;
1233                 if (vm_map_relock_enable && (cow & MAP_PREFAULT_RELOCK)) {
1234                         dorelock = 1;
1235                         vm_object_lock_swap();
1236                         vm_object_drop(object);
1237                 }
1238                 pmap_object_init_pt(map->pmap, start, prot,
1239                                     object, OFF_TO_IDX(offset), end - start,
1240                                     cow & MAP_PREFAULT_PARTIAL);
1241                 if (dorelock) {
1242                         vm_object_hold(object);
1243                         vm_object_lock_swap();
1244                 }
1245         }
1246         if (must_drop)
1247                 vm_object_drop(object);
1248
1249         lwkt_reltoken(&map->token);
1250         return (KERN_SUCCESS);
1251 }
1252
1253 /*
1254  * Find sufficient space for `length' bytes in the given map, starting at
1255  * `start'.  Returns 0 on success, 1 on no space.
1256  *
1257  * This function will returned an arbitrarily aligned pointer.  If no
1258  * particular alignment is required you should pass align as 1.  Note that
1259  * the map may return PAGE_SIZE aligned pointers if all the lengths used in
1260  * the map are a multiple of PAGE_SIZE, even if you pass a smaller align
1261  * argument.
1262  *
1263  * 'align' should be a power of 2 but is not required to be.
1264  *
1265  * The map must be exclusively locked.
1266  * No other requirements.
1267  */
1268 int
1269 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1270                  vm_size_t align, int flags, vm_offset_t *addr)
1271 {
1272         vm_map_entry_t entry;
1273         vm_map_entry_t tmp;
1274         vm_offset_t hole_start;
1275         vm_offset_t end;
1276         vm_offset_t align_mask;
1277
1278         if (start < vm_map_min(map))
1279                 start = vm_map_min(map);
1280         if (start > vm_map_max(map))
1281                 return (1);
1282
1283         /*
1284          * If the alignment is not a power of 2 we will have to use
1285          * a mod/division, set align_mask to a special value.
1286          */
1287         if ((align | (align - 1)) + 1 != (align << 1))
1288                 align_mask = (vm_offset_t)-1;
1289         else
1290                 align_mask = align - 1;
1291
1292         /*
1293          * Use freehint to adjust the start point, hopefully reducing
1294          * the iteration to O(1).
1295          */
1296         hole_start = vm_map_freehint_find(map, length, align);
1297         if (start < hole_start)
1298                 start = hole_start;
1299         if (vm_map_lookup_entry(map, start, &tmp))
1300                 start = tmp->end;
1301         entry = tmp;    /* may be NULL */
1302
1303         /*
1304          * Look through the rest of the map, trying to fit a new region in the
1305          * gap between existing regions, or after the very last region.
1306          */
1307         for (;;) {
1308                 /*
1309                  * Adjust the proposed start by the requested alignment,
1310                  * be sure that we didn't wrap the address.
1311                  */
1312                 if (align_mask == (vm_offset_t)-1)
1313                         end = roundup(start, align);
1314                 else
1315                         end = (start + align_mask) & ~align_mask;
1316                 if (end < start)
1317                         return (1);
1318                 start = end;
1319
1320                 /*
1321                  * Find the end of the proposed new region.  Be sure we didn't
1322                  * go beyond the end of the map, or wrap around the address.
1323                  * Then check to see if this is the last entry or if the 
1324                  * proposed end fits in the gap between this and the next
1325                  * entry.
1326                  */
1327                 end = start + length;
1328                 if (end > vm_map_max(map) || end < start)
1329                         return (1);
1330
1331                 /*
1332                  * Locate the next entry, we can stop if this is the
1333                  * last entry (we know we are in-bounds so that would
1334                  * be a sucess).
1335                  */
1336                 if (entry)
1337                         entry = vm_map_rb_tree_RB_NEXT(entry);
1338                 else
1339                         entry = RB_MIN(vm_map_rb_tree, &map->rb_root);
1340                 if (entry == NULL)
1341                         break;
1342
1343                 /*
1344                  * Determine if the proposed area would overlap the
1345                  * next entry.
1346                  *
1347                  * When matching against a STACK entry, only allow the
1348                  * memory map to intrude on the ungrown portion of the
1349                  * STACK entry when MAP_TRYFIXED is set.
1350                  */
1351                 if (entry->start >= end) {
1352                         if ((entry->eflags & MAP_ENTRY_STACK) == 0)
1353                                 break;
1354                         if (flags & MAP_TRYFIXED)
1355                                 break;
1356                         if (entry->start - entry->aux.avail_ssize >= end)
1357                                 break;
1358                 }
1359                 start = entry->end;
1360         }
1361
1362         /*
1363          * Update the freehint
1364          */
1365         vm_map_freehint_update(map, start, length, align);
1366
1367         /*
1368          * Grow the kernel_map if necessary.  pmap_growkernel() will panic
1369          * if it fails.  The kernel_map is locked and nothing can steal
1370          * our address space if pmap_growkernel() blocks.
1371          *
1372          * NOTE: This may be unconditionally called for kldload areas on
1373          *       x86_64 because these do not bump kernel_vm_end (which would
1374          *       fill 128G worth of page tables!).  Therefore we must not
1375          *       retry.
1376          */
1377         if (map == &kernel_map) {
1378                 vm_offset_t kstop;
1379
1380                 kstop = round_page(start + length);
1381                 if (kstop > kernel_vm_end)
1382                         pmap_growkernel(start, kstop);
1383         }
1384         *addr = start;
1385         return (0);
1386 }
1387
1388 /*
1389  * vm_map_find finds an unallocated region in the target address map with
1390  * the given length and allocates it.  The search is defined to be first-fit
1391  * from the specified address; the region found is returned in the same
1392  * parameter.
1393  *
1394  * If object is non-NULL, ref count must be bumped by caller
1395  * prior to making call to account for the new entry.
1396  *
1397  * No requirements.  This function will lock the map temporarily.
1398  */
1399 int
1400 vm_map_find(vm_map_t map, void *map_object, void *map_aux,
1401             vm_ooffset_t offset, vm_offset_t *addr,
1402             vm_size_t length, vm_size_t align, boolean_t fitit,
1403             vm_maptype_t maptype, vm_subsys_t id,
1404             vm_prot_t prot, vm_prot_t max, int cow)
1405 {
1406         vm_offset_t start;
1407         vm_object_t object;
1408         int result;
1409         int count;
1410
1411         if (maptype == VM_MAPTYPE_UKSMAP)
1412                 object = NULL;
1413         else
1414                 object = map_object;
1415
1416         start = *addr;
1417
1418         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1419         vm_map_lock(map);
1420         if (object)
1421                 vm_object_hold_shared(object);
1422         if (fitit) {
1423                 if (vm_map_findspace(map, start, length, align, 0, addr)) {
1424                         if (object)
1425                                 vm_object_drop(object);
1426                         vm_map_unlock(map);
1427                         vm_map_entry_release(count);
1428                         return (KERN_NO_SPACE);
1429                 }
1430                 start = *addr;
1431         }
1432         result = vm_map_insert(map, &count, map_object, map_aux,
1433                                offset, start, start + length,
1434                                maptype, id, prot, max, cow);
1435         if (object)
1436                 vm_object_drop(object);
1437         vm_map_unlock(map);
1438         vm_map_entry_release(count);
1439
1440         return (result);
1441 }
1442
1443 /*
1444  * Simplify the given map entry by merging with either neighbor.  This
1445  * routine also has the ability to merge with both neighbors.
1446  *
1447  * This routine guarentees that the passed entry remains valid (though
1448  * possibly extended).  When merging, this routine may delete one or
1449  * both neighbors.  No action is taken on entries which have their
1450  * in-transition flag set.
1451  *
1452  * The map must be exclusively locked.
1453  */
1454 void
1455 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry, int *countp)
1456 {
1457         vm_map_entry_t next, prev;
1458         vm_size_t prevsize, esize;
1459
1460         if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1461                 ++mycpu->gd_cnt.v_intrans_coll;
1462                 return;
1463         }
1464
1465         if (entry->maptype == VM_MAPTYPE_SUBMAP)
1466                 return;
1467         if (entry->maptype == VM_MAPTYPE_UKSMAP)
1468                 return;
1469
1470         prev = vm_map_rb_tree_RB_PREV(entry);
1471         if (prev) {
1472                 prevsize = prev->end - prev->start;
1473                 if ( (prev->end == entry->start) &&
1474                      (prev->maptype == entry->maptype) &&
1475                      (prev->object.vm_object == entry->object.vm_object) &&
1476                      (!prev->object.vm_object ||
1477                         (prev->offset + prevsize == entry->offset)) &&
1478                      (prev->eflags == entry->eflags) &&
1479                      (prev->protection == entry->protection) &&
1480                      (prev->max_protection == entry->max_protection) &&
1481                      (prev->inheritance == entry->inheritance) &&
1482                      (prev->id == entry->id) &&
1483                      (prev->wired_count == entry->wired_count)) {
1484                         vm_map_entry_unlink(map, prev);
1485                         entry->start = prev->start;
1486                         entry->offset = prev->offset;
1487                         if (prev->object.vm_object)
1488                                 vm_object_deallocate(prev->object.vm_object);
1489                         vm_map_entry_dispose(map, prev, countp);
1490                 }
1491         }
1492
1493         next = vm_map_rb_tree_RB_NEXT(entry);
1494         if (next) {
1495                 esize = entry->end - entry->start;
1496                 if ((entry->end == next->start) &&
1497                     (next->maptype == entry->maptype) &&
1498                     (next->object.vm_object == entry->object.vm_object) &&
1499                      (!entry->object.vm_object ||
1500                         (entry->offset + esize == next->offset)) &&
1501                     (next->eflags == entry->eflags) &&
1502                     (next->protection == entry->protection) &&
1503                     (next->max_protection == entry->max_protection) &&
1504                     (next->inheritance == entry->inheritance) &&
1505                     (next->id == entry->id) &&
1506                     (next->wired_count == entry->wired_count)) {
1507                         vm_map_entry_unlink(map, next);
1508                         entry->end = next->end;
1509                         if (next->object.vm_object)
1510                                 vm_object_deallocate(next->object.vm_object);
1511                         vm_map_entry_dispose(map, next, countp);
1512                 }
1513         }
1514 }
1515
1516 /*
1517  * Asserts that the given entry begins at or after the specified address.
1518  * If necessary, it splits the entry into two.
1519  */
1520 #define vm_map_clip_start(map, entry, startaddr, countp)                \
1521 {                                                                       \
1522         if (startaddr > entry->start)                                   \
1523                 _vm_map_clip_start(map, entry, startaddr, countp);      \
1524 }
1525
1526 /*
1527  * This routine is called only when it is known that the entry must be split.
1528  *
1529  * The map must be exclusively locked.
1530  */
1531 static void
1532 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start,
1533                    int *countp)
1534 {
1535         vm_map_entry_t new_entry;
1536
1537         /*
1538          * Split off the front portion -- note that we must insert the new
1539          * entry BEFORE this one, so that this entry has the specified
1540          * starting address.
1541          */
1542
1543         vm_map_simplify_entry(map, entry, countp);
1544
1545         /*
1546          * If there is no object backing this entry, we might as well create
1547          * one now.  If we defer it, an object can get created after the map
1548          * is clipped, and individual objects will be created for the split-up
1549          * map.  This is a bit of a hack, but is also about the best place to
1550          * put this improvement.
1551          */
1552         if (entry->object.vm_object == NULL && !map->system_map &&
1553             VM_MAP_ENTRY_WITHIN_PARTITION(entry)) {
1554                 vm_map_entry_allocate_object(entry);
1555         }
1556
1557         new_entry = vm_map_entry_create(map, countp);
1558         *new_entry = *entry;
1559
1560         new_entry->end = start;
1561         entry->offset += (start - entry->start);
1562         entry->start = start;
1563
1564         vm_map_entry_link(map, new_entry);
1565
1566         switch(entry->maptype) {
1567         case VM_MAPTYPE_NORMAL:
1568         case VM_MAPTYPE_VPAGETABLE:
1569                 if (new_entry->object.vm_object) {
1570                         vm_object_hold(new_entry->object.vm_object);
1571                         vm_object_chain_wait(new_entry->object.vm_object, 0);
1572                         vm_object_reference_locked(new_entry->object.vm_object);
1573                         vm_object_drop(new_entry->object.vm_object);
1574                 }
1575                 break;
1576         default:
1577                 break;
1578         }
1579 }
1580
1581 /*
1582  * Asserts that the given entry ends at or before the specified address.
1583  * If necessary, it splits the entry into two.
1584  *
1585  * The map must be exclusively locked.
1586  */
1587 #define vm_map_clip_end(map, entry, endaddr, countp)            \
1588 {                                                               \
1589         if (endaddr < entry->end)                               \
1590                 _vm_map_clip_end(map, entry, endaddr, countp);  \
1591 }
1592
1593 /*
1594  * This routine is called only when it is known that the entry must be split.
1595  *
1596  * The map must be exclusively locked.
1597  */
1598 static void
1599 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end,
1600                  int *countp)
1601 {
1602         vm_map_entry_t new_entry;
1603
1604         /*
1605          * If there is no object backing this entry, we might as well create
1606          * one now.  If we defer it, an object can get created after the map
1607          * is clipped, and individual objects will be created for the split-up
1608          * map.  This is a bit of a hack, but is also about the best place to
1609          * put this improvement.
1610          */
1611
1612         if (entry->object.vm_object == NULL && !map->system_map &&
1613             VM_MAP_ENTRY_WITHIN_PARTITION(entry)) {
1614                 vm_map_entry_allocate_object(entry);
1615         }
1616
1617         /*
1618          * Create a new entry and insert it AFTER the specified entry
1619          */
1620         new_entry = vm_map_entry_create(map, countp);
1621         *new_entry = *entry;
1622
1623         new_entry->start = entry->end = end;
1624         new_entry->offset += (end - entry->start);
1625
1626         vm_map_entry_link(map, new_entry);
1627
1628         switch(entry->maptype) {
1629         case VM_MAPTYPE_NORMAL:
1630         case VM_MAPTYPE_VPAGETABLE:
1631                 if (new_entry->object.vm_object) {
1632                         vm_object_hold(new_entry->object.vm_object);
1633                         vm_object_chain_wait(new_entry->object.vm_object, 0);
1634                         vm_object_reference_locked(new_entry->object.vm_object);
1635                         vm_object_drop(new_entry->object.vm_object);
1636                 }
1637                 break;
1638         default:
1639                 break;
1640         }
1641 }
1642
1643 /*
1644  * Asserts that the starting and ending region addresses fall within the
1645  * valid range for the map.
1646  */
1647 #define VM_MAP_RANGE_CHECK(map, start, end)     \
1648 {                                               \
1649         if (start < vm_map_min(map))            \
1650                 start = vm_map_min(map);        \
1651         if (end > vm_map_max(map))              \
1652                 end = vm_map_max(map);          \
1653         if (start > end)                        \
1654                 start = end;                    \
1655 }
1656
1657 /*
1658  * Used to block when an in-transition collison occurs.  The map
1659  * is unlocked for the sleep and relocked before the return.
1660  */
1661 void
1662 vm_map_transition_wait(vm_map_t map, int relock)
1663 {
1664         tsleep_interlock(map, 0);
1665         vm_map_unlock(map);
1666         tsleep(map, PINTERLOCKED, "vment", 0);
1667         if (relock)
1668                 vm_map_lock(map);
1669 }
1670
1671 /*
1672  * When we do blocking operations with the map lock held it is
1673  * possible that a clip might have occured on our in-transit entry,
1674  * requiring an adjustment to the entry in our loop.  These macros
1675  * help the pageable and clip_range code deal with the case.  The
1676  * conditional costs virtually nothing if no clipping has occured.
1677  */
1678
1679 #define CLIP_CHECK_BACK(entry, save_start)                      \
1680     do {                                                        \
1681             while (entry->start != save_start) {                \
1682                     entry = vm_map_rb_tree_RB_PREV(entry);      \
1683                     KASSERT(entry, ("bad entry clip"));         \
1684             }                                                   \
1685     } while(0)
1686
1687 #define CLIP_CHECK_FWD(entry, save_end)                         \
1688     do {                                                        \
1689             while (entry->end != save_end) {                    \
1690                     entry = vm_map_rb_tree_RB_NEXT(entry);      \
1691                     KASSERT(entry, ("bad entry clip"));         \
1692             }                                                   \
1693     } while(0)
1694
1695
1696 /*
1697  * Clip the specified range and return the base entry.  The
1698  * range may cover several entries starting at the returned base
1699  * and the first and last entry in the covering sequence will be
1700  * properly clipped to the requested start and end address.
1701  *
1702  * If no holes are allowed you should pass the MAP_CLIP_NO_HOLES
1703  * flag.
1704  *
1705  * The MAP_ENTRY_IN_TRANSITION flag will be set for the entries
1706  * covered by the requested range.
1707  *
1708  * The map must be exclusively locked on entry and will remain locked
1709  * on return. If no range exists or the range contains holes and you
1710  * specified that no holes were allowed, NULL will be returned.  This
1711  * routine may temporarily unlock the map in order avoid a deadlock when
1712  * sleeping.
1713  */
1714 static
1715 vm_map_entry_t
1716 vm_map_clip_range(vm_map_t map, vm_offset_t start, vm_offset_t end, 
1717                   int *countp, int flags)
1718 {
1719         vm_map_entry_t start_entry;
1720         vm_map_entry_t entry;
1721         vm_map_entry_t next;
1722
1723         /*
1724          * Locate the entry and effect initial clipping.  The in-transition
1725          * case does not occur very often so do not try to optimize it.
1726          */
1727 again:
1728         if (vm_map_lookup_entry(map, start, &start_entry) == FALSE)
1729                 return (NULL);
1730         entry = start_entry;
1731         if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1732                 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1733                 ++mycpu->gd_cnt.v_intrans_coll;
1734                 ++mycpu->gd_cnt.v_intrans_wait;
1735                 vm_map_transition_wait(map, 1);
1736                 /*
1737                  * entry and/or start_entry may have been clipped while
1738                  * we slept, or may have gone away entirely.  We have
1739                  * to restart from the lookup.
1740                  */
1741                 goto again;
1742         }
1743
1744         /*
1745          * Since we hold an exclusive map lock we do not have to restart
1746          * after clipping, even though clipping may block in zalloc.
1747          */
1748         vm_map_clip_start(map, entry, start, countp);
1749         vm_map_clip_end(map, entry, end, countp);
1750         entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1751
1752         /*
1753          * Scan entries covered by the range.  When working on the next
1754          * entry a restart need only re-loop on the current entry which
1755          * we have already locked, since 'next' may have changed.  Also,
1756          * even though entry is safe, it may have been clipped so we
1757          * have to iterate forwards through the clip after sleeping.
1758          */
1759         for (;;) {
1760                 next = vm_map_rb_tree_RB_NEXT(entry);
1761                 if (next == NULL || next->start >= end)
1762                         break;
1763                 if (flags & MAP_CLIP_NO_HOLES) {
1764                         if (next->start > entry->end) {
1765                                 vm_map_unclip_range(map, start_entry,
1766                                         start, entry->end, countp, flags);
1767                                 return(NULL);
1768                         }
1769                 }
1770
1771                 if (next->eflags & MAP_ENTRY_IN_TRANSITION) {
1772                         vm_offset_t save_end = entry->end;
1773                         next->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1774                         ++mycpu->gd_cnt.v_intrans_coll;
1775                         ++mycpu->gd_cnt.v_intrans_wait;
1776                         vm_map_transition_wait(map, 1);
1777
1778                         /*
1779                          * clips might have occured while we blocked.
1780                          */
1781                         CLIP_CHECK_FWD(entry, save_end);
1782                         CLIP_CHECK_BACK(start_entry, start);
1783                         continue;
1784                 }
1785
1786                 /*
1787                  * No restart necessary even though clip_end may block, we
1788                  * are holding the map lock.
1789                  */
1790                 vm_map_clip_end(map, next, end, countp);
1791                 next->eflags |= MAP_ENTRY_IN_TRANSITION;
1792                 entry = next;
1793         }
1794         if (flags & MAP_CLIP_NO_HOLES) {
1795                 if (entry->end != end) {
1796                         vm_map_unclip_range(map, start_entry,
1797                                 start, entry->end, countp, flags);
1798                         return(NULL);
1799                 }
1800         }
1801         return(start_entry);
1802 }
1803
1804 /*
1805  * Undo the effect of vm_map_clip_range().  You should pass the same
1806  * flags and the same range that you passed to vm_map_clip_range().
1807  * This code will clear the in-transition flag on the entries and
1808  * wake up anyone waiting.  This code will also simplify the sequence
1809  * and attempt to merge it with entries before and after the sequence.
1810  *
1811  * The map must be locked on entry and will remain locked on return.
1812  *
1813  * Note that you should also pass the start_entry returned by
1814  * vm_map_clip_range().  However, if you block between the two calls
1815  * with the map unlocked please be aware that the start_entry may
1816  * have been clipped and you may need to scan it backwards to find
1817  * the entry corresponding with the original start address.  You are
1818  * responsible for this, vm_map_unclip_range() expects the correct
1819  * start_entry to be passed to it and will KASSERT otherwise.
1820  */
1821 static
1822 void
1823 vm_map_unclip_range(vm_map_t map, vm_map_entry_t start_entry,
1824                     vm_offset_t start, vm_offset_t end,
1825                     int *countp, int flags)
1826 {
1827         vm_map_entry_t entry;
1828
1829         entry = start_entry;
1830
1831         KASSERT(entry->start == start, ("unclip_range: illegal base entry"));
1832         while (entry && entry->start < end) {
1833                 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
1834                         ("in-transition flag not set during unclip on: %p",
1835                         entry));
1836                 KASSERT(entry->end <= end,
1837                         ("unclip_range: tail wasn't clipped"));
1838                 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1839                 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1840                         entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1841                         wakeup(map);
1842                 }
1843                 entry = vm_map_rb_tree_RB_NEXT(entry);
1844         }
1845
1846         /*
1847          * Simplification does not block so there is no restart case.
1848          */
1849         entry = start_entry;
1850         while (entry && entry->start < end) {
1851                 vm_map_simplify_entry(map, entry, countp);
1852                 entry = vm_map_rb_tree_RB_NEXT(entry);
1853         }
1854 }
1855
1856 /*
1857  * Mark the given range as handled by a subordinate map.
1858  *
1859  * This range must have been created with vm_map_find(), and no other
1860  * operations may have been performed on this range prior to calling
1861  * vm_map_submap().
1862  *
1863  * Submappings cannot be removed.
1864  *
1865  * No requirements.
1866  */
1867 int
1868 vm_map_submap(vm_map_t map, vm_offset_t start, vm_offset_t end, vm_map_t submap)
1869 {
1870         vm_map_entry_t entry;
1871         int result = KERN_INVALID_ARGUMENT;
1872         int count;
1873
1874         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1875         vm_map_lock(map);
1876
1877         VM_MAP_RANGE_CHECK(map, start, end);
1878
1879         if (vm_map_lookup_entry(map, start, &entry)) {
1880                 vm_map_clip_start(map, entry, start, &count);
1881         } else if (entry) {
1882                 entry = vm_map_rb_tree_RB_NEXT(entry);
1883         } else {
1884                 entry = RB_MIN(vm_map_rb_tree, &map->rb_root);
1885         }
1886
1887         vm_map_clip_end(map, entry, end, &count);
1888
1889         if ((entry->start == start) && (entry->end == end) &&
1890             ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1891             (entry->object.vm_object == NULL)) {
1892                 entry->object.sub_map = submap;
1893                 entry->maptype = VM_MAPTYPE_SUBMAP;
1894                 result = KERN_SUCCESS;
1895         }
1896         vm_map_unlock(map);
1897         vm_map_entry_release(count);
1898
1899         return (result);
1900 }
1901
1902 /*
1903  * Sets the protection of the specified address region in the target map. 
1904  * If "set_max" is specified, the maximum protection is to be set;
1905  * otherwise, only the current protection is affected.
1906  *
1907  * The protection is not applicable to submaps, but is applicable to normal
1908  * maps and maps governed by virtual page tables.  For example, when operating
1909  * on a virtual page table our protection basically controls how COW occurs
1910  * on the backing object, whereas the virtual page table abstraction itself
1911  * is an abstraction for userland.
1912  *
1913  * No requirements.
1914  */
1915 int
1916 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1917                vm_prot_t new_prot, boolean_t set_max)
1918 {
1919         vm_map_entry_t current;
1920         vm_map_entry_t entry;
1921         int count;
1922
1923         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1924         vm_map_lock(map);
1925
1926         VM_MAP_RANGE_CHECK(map, start, end);
1927
1928         if (vm_map_lookup_entry(map, start, &entry)) {
1929                 vm_map_clip_start(map, entry, start, &count);
1930         } else if (entry) {
1931                 entry = vm_map_rb_tree_RB_NEXT(entry);
1932         } else {
1933                 entry = RB_MIN(vm_map_rb_tree, &map->rb_root);
1934         }
1935
1936         /*
1937          * Make a first pass to check for protection violations.
1938          */
1939         current = entry;
1940         while (current && current->start < end) {
1941                 if (current->maptype == VM_MAPTYPE_SUBMAP) {
1942                         vm_map_unlock(map);
1943                         vm_map_entry_release(count);
1944                         return (KERN_INVALID_ARGUMENT);
1945                 }
1946                 if ((new_prot & current->max_protection) != new_prot) {
1947                         vm_map_unlock(map);
1948                         vm_map_entry_release(count);
1949                         return (KERN_PROTECTION_FAILURE);
1950                 }
1951
1952                 /*
1953                  * When making a SHARED+RW file mmap writable, update
1954                  * v_lastwrite_ts.
1955                  */
1956                 if (new_prot & PROT_WRITE &&
1957                     (current->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
1958                     (current->maptype == VM_MAPTYPE_NORMAL ||
1959                      current->maptype == VM_MAPTYPE_VPAGETABLE) &&
1960                     current->object.vm_object &&
1961                     current->object.vm_object->type == OBJT_VNODE) {
1962                         struct vnode *vp;
1963
1964                         vp = current->object.vm_object->handle;
1965                         if (vp && vn_lock(vp, LK_EXCLUSIVE | LK_RETRY | LK_NOWAIT) == 0) {
1966                                 vfs_timestamp(&vp->v_lastwrite_ts);
1967                                 vsetflags(vp, VLASTWRITETS);
1968                                 vn_unlock(vp);
1969                         }
1970                 }
1971                 current = vm_map_rb_tree_RB_NEXT(current);
1972         }
1973
1974         /*
1975          * Go back and fix up protections. [Note that clipping is not
1976          * necessary the second time.]
1977          */
1978         current = entry;
1979
1980         while (current && current->start < end) {
1981                 vm_prot_t old_prot;
1982
1983                 vm_map_clip_end(map, current, end, &count);
1984
1985                 old_prot = current->protection;
1986                 if (set_max) {
1987                         current->max_protection = new_prot;
1988                         current->protection = new_prot & old_prot;
1989                 } else {
1990                         current->protection = new_prot;
1991                 }
1992
1993                 /*
1994                  * Update physical map if necessary. Worry about copy-on-write
1995                  * here -- CHECK THIS XXX
1996                  */
1997                 if (current->protection != old_prot) {
1998 #define MASK(entry)     (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1999                                                         VM_PROT_ALL)
2000
2001                         pmap_protect(map->pmap, current->start,
2002                             current->end,
2003                             current->protection & MASK(current));
2004 #undef  MASK
2005                 }
2006
2007                 vm_map_simplify_entry(map, current, &count);
2008
2009                 current = vm_map_rb_tree_RB_NEXT(current);
2010         }
2011         vm_map_unlock(map);
2012         vm_map_entry_release(count);
2013         return (KERN_SUCCESS);
2014 }
2015
2016 /*
2017  * This routine traverses a processes map handling the madvise
2018  * system call.  Advisories are classified as either those effecting
2019  * the vm_map_entry structure, or those effecting the underlying
2020  * objects.
2021  *
2022  * The <value> argument is used for extended madvise calls.
2023  *
2024  * No requirements.
2025  */
2026 int
2027 vm_map_madvise(vm_map_t map, vm_offset_t start, vm_offset_t end,
2028                int behav, off_t value)
2029 {
2030         vm_map_entry_t current, entry;
2031         int modify_map = 0;
2032         int error = 0;
2033         int count;
2034
2035         /*
2036          * Some madvise calls directly modify the vm_map_entry, in which case
2037          * we need to use an exclusive lock on the map and we need to perform 
2038          * various clipping operations.  Otherwise we only need a read-lock
2039          * on the map.
2040          */
2041         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2042
2043         switch(behav) {
2044         case MADV_NORMAL:
2045         case MADV_SEQUENTIAL:
2046         case MADV_RANDOM:
2047         case MADV_NOSYNC:
2048         case MADV_AUTOSYNC:
2049         case MADV_NOCORE:
2050         case MADV_CORE:
2051         case MADV_SETMAP:
2052                 modify_map = 1;
2053                 vm_map_lock(map);
2054                 break;
2055         case MADV_INVAL:
2056         case MADV_WILLNEED:
2057         case MADV_DONTNEED:
2058         case MADV_FREE:
2059                 vm_map_lock_read(map);
2060                 break;
2061         default:
2062                 vm_map_entry_release(count);
2063                 return (EINVAL);
2064         }
2065
2066         /*
2067          * Locate starting entry and clip if necessary.
2068          */
2069
2070         VM_MAP_RANGE_CHECK(map, start, end);
2071
2072         if (vm_map_lookup_entry(map, start, &entry)) {
2073                 if (modify_map)
2074                         vm_map_clip_start(map, entry, start, &count);
2075         } else if (entry) {
2076                 entry = vm_map_rb_tree_RB_NEXT(entry);
2077         } else {
2078                 entry = RB_MIN(vm_map_rb_tree, &map->rb_root);
2079         }
2080
2081         if (modify_map) {
2082                 /*
2083                  * madvise behaviors that are implemented in the vm_map_entry.
2084                  *
2085                  * We clip the vm_map_entry so that behavioral changes are
2086                  * limited to the specified address range.
2087                  */
2088                 for (current = entry;
2089                      current && current->start < end;
2090                      current = vm_map_rb_tree_RB_NEXT(current)) {
2091                         /*
2092                          * Ignore submaps
2093                          */
2094                         if (current->maptype == VM_MAPTYPE_SUBMAP)
2095                                 continue;
2096
2097                         vm_map_clip_end(map, current, end, &count);
2098
2099                         switch (behav) {
2100                         case MADV_NORMAL:
2101                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2102                                 break;
2103                         case MADV_SEQUENTIAL:
2104                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2105                                 break;
2106                         case MADV_RANDOM:
2107                                 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2108                                 break;
2109                         case MADV_NOSYNC:
2110                                 current->eflags |= MAP_ENTRY_NOSYNC;
2111                                 break;
2112                         case MADV_AUTOSYNC:
2113                                 current->eflags &= ~MAP_ENTRY_NOSYNC;
2114                                 break;
2115                         case MADV_NOCORE:
2116                                 current->eflags |= MAP_ENTRY_NOCOREDUMP;
2117                                 break;
2118                         case MADV_CORE:
2119                                 current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2120                                 break;
2121                         case MADV_SETMAP:
2122                                 /*
2123                                  * Set the page directory page for a map
2124                                  * governed by a virtual page table.  Mark
2125                                  * the entry as being governed by a virtual
2126                                  * page table if it is not.
2127                                  *
2128                                  * XXX the page directory page is stored
2129                                  * in the avail_ssize field if the map_entry.
2130                                  *
2131                                  * XXX the map simplification code does not
2132                                  * compare this field so weird things may
2133                                  * happen if you do not apply this function
2134                                  * to the entire mapping governed by the
2135                                  * virtual page table.
2136                                  */
2137                                 if (current->maptype != VM_MAPTYPE_VPAGETABLE) {
2138                                         error = EINVAL;
2139                                         break;
2140                                 }
2141                                 current->aux.master_pde = value;
2142                                 pmap_remove(map->pmap,
2143                                             current->start, current->end);
2144                                 break;
2145                         case MADV_INVAL:
2146                                 /*
2147                                  * Invalidate the related pmap entries, used
2148                                  * to flush portions of the real kernel's
2149                                  * pmap when the caller has removed or
2150                                  * modified existing mappings in a virtual
2151                                  * page table.
2152                                  *
2153                                  * (exclusive locked map version does not
2154                                  * need the range interlock).
2155                                  */
2156                                 pmap_remove(map->pmap,
2157                                             current->start, current->end);
2158                                 break;
2159                         default:
2160                                 error = EINVAL;
2161                                 break;
2162                         }
2163                         vm_map_simplify_entry(map, current, &count);
2164                 }
2165                 vm_map_unlock(map);
2166         } else {
2167                 vm_pindex_t pindex;
2168                 vm_pindex_t delta;
2169
2170                 /*
2171                  * madvise behaviors that are implemented in the underlying
2172                  * vm_object.
2173                  *
2174                  * Since we don't clip the vm_map_entry, we have to clip
2175                  * the vm_object pindex and count.
2176                  *
2177                  * NOTE!  These functions are only supported on normal maps,
2178                  *        except MADV_INVAL which is also supported on
2179                  *        virtual page tables.
2180                  */
2181                 for (current = entry;
2182                      current && current->start < end;
2183                      current = vm_map_rb_tree_RB_NEXT(current)) {
2184                         vm_offset_t useStart;
2185
2186                         if (current->maptype != VM_MAPTYPE_NORMAL &&
2187                             (current->maptype != VM_MAPTYPE_VPAGETABLE ||
2188                              behav != MADV_INVAL)) {
2189                                 continue;
2190                         }
2191
2192                         pindex = OFF_TO_IDX(current->offset);
2193                         delta = atop(current->end - current->start);
2194                         useStart = current->start;
2195
2196                         if (current->start < start) {
2197                                 pindex += atop(start - current->start);
2198                                 delta -= atop(start - current->start);
2199                                 useStart = start;
2200                         }
2201                         if (current->end > end)
2202                                 delta -= atop(current->end - end);
2203
2204                         if ((vm_spindex_t)delta <= 0)
2205                                 continue;
2206
2207                         if (behav == MADV_INVAL) {
2208                                 /*
2209                                  * Invalidate the related pmap entries, used
2210                                  * to flush portions of the real kernel's
2211                                  * pmap when the caller has removed or
2212                                  * modified existing mappings in a virtual
2213                                  * page table.
2214                                  *
2215                                  * (shared locked map version needs the
2216                                  * interlock, see vm_fault()).
2217                                  */
2218                                 struct vm_map_ilock ilock;
2219
2220                                 KASSERT(useStart >= VM_MIN_USER_ADDRESS &&
2221                                             useStart + ptoa(delta) <=
2222                                             VM_MAX_USER_ADDRESS,
2223                                          ("Bad range %016jx-%016jx (%016jx)",
2224                                          useStart, useStart + ptoa(delta),
2225                                          delta));
2226                                 vm_map_interlock(map, &ilock,
2227                                                  useStart,
2228                                                  useStart + ptoa(delta));
2229                                 pmap_remove(map->pmap,
2230                                             useStart,
2231                                             useStart + ptoa(delta));
2232                                 vm_map_deinterlock(map, &ilock);
2233                         } else {
2234                                 vm_object_madvise(current->object.vm_object,
2235                                                   pindex, delta, behav);
2236                         }
2237
2238                         /*
2239                          * Try to populate the page table.  Mappings governed
2240                          * by virtual page tables cannot be pre-populated
2241                          * without a lot of work so don't try.
2242                          */
2243                         if (behav == MADV_WILLNEED &&
2244                             current->maptype != VM_MAPTYPE_VPAGETABLE) {
2245                                 pmap_object_init_pt(
2246                                     map->pmap, 
2247                                     useStart,
2248                                     current->protection,
2249                                     current->object.vm_object,
2250                                     pindex, 
2251                                     (count << PAGE_SHIFT),
2252                                     MAP_PREFAULT_MADVISE
2253                                 );
2254                         }
2255                 }
2256                 vm_map_unlock_read(map);
2257         }
2258         vm_map_entry_release(count);
2259         return(error);
2260 }       
2261
2262
2263 /*
2264  * Sets the inheritance of the specified address range in the target map.
2265  * Inheritance affects how the map will be shared with child maps at the
2266  * time of vm_map_fork.
2267  */
2268 int
2269 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2270                vm_inherit_t new_inheritance)
2271 {
2272         vm_map_entry_t entry;
2273         vm_map_entry_t temp_entry;
2274         int count;
2275
2276         switch (new_inheritance) {
2277         case VM_INHERIT_NONE:
2278         case VM_INHERIT_COPY:
2279         case VM_INHERIT_SHARE:
2280                 break;
2281         default:
2282                 return (KERN_INVALID_ARGUMENT);
2283         }
2284
2285         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2286         vm_map_lock(map);
2287
2288         VM_MAP_RANGE_CHECK(map, start, end);
2289
2290         if (vm_map_lookup_entry(map, start, &temp_entry)) {
2291                 entry = temp_entry;
2292                 vm_map_clip_start(map, entry, start, &count);
2293         } else if (temp_entry) {
2294                 entry = vm_map_rb_tree_RB_NEXT(temp_entry);
2295         } else {
2296                 entry = RB_MIN(vm_map_rb_tree, &map->rb_root);
2297         }
2298
2299         while (entry && entry->start < end) {
2300                 vm_map_clip_end(map, entry, end, &count);
2301
2302                 entry->inheritance = new_inheritance;
2303
2304                 vm_map_simplify_entry(map, entry, &count);
2305
2306                 entry = vm_map_rb_tree_RB_NEXT(entry);
2307         }
2308         vm_map_unlock(map);
2309         vm_map_entry_release(count);
2310         return (KERN_SUCCESS);
2311 }
2312
2313 /*
2314  * Implement the semantics of mlock
2315  */
2316 int
2317 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t real_end,
2318               boolean_t new_pageable)
2319 {
2320         vm_map_entry_t entry;
2321         vm_map_entry_t start_entry;
2322         vm_offset_t end;
2323         int rv = KERN_SUCCESS;
2324         int count;
2325
2326         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2327         vm_map_lock(map);
2328         VM_MAP_RANGE_CHECK(map, start, real_end);
2329         end = real_end;
2330
2331         start_entry = vm_map_clip_range(map, start, end, &count,
2332                                         MAP_CLIP_NO_HOLES);
2333         if (start_entry == NULL) {
2334                 vm_map_unlock(map);
2335                 vm_map_entry_release(count);
2336                 return (KERN_INVALID_ADDRESS);
2337         }
2338
2339         if (new_pageable == 0) {
2340                 entry = start_entry;
2341                 while (entry && entry->start < end) {
2342                         vm_offset_t save_start;
2343                         vm_offset_t save_end;
2344
2345                         /*
2346                          * Already user wired or hard wired (trivial cases)
2347                          */
2348                         if (entry->eflags & MAP_ENTRY_USER_WIRED) {
2349                                 entry = vm_map_rb_tree_RB_NEXT(entry);
2350                                 continue;
2351                         }
2352                         if (entry->wired_count != 0) {
2353                                 entry->wired_count++;
2354                                 entry->eflags |= MAP_ENTRY_USER_WIRED;
2355                                 entry = vm_map_rb_tree_RB_NEXT(entry);
2356                                 continue;
2357                         }
2358
2359                         /*
2360                          * A new wiring requires instantiation of appropriate
2361                          * management structures and the faulting in of the
2362                          * page.
2363                          */
2364                         if (entry->maptype == VM_MAPTYPE_NORMAL ||
2365                             entry->maptype == VM_MAPTYPE_VPAGETABLE) {
2366                                 int copyflag = entry->eflags &
2367                                                MAP_ENTRY_NEEDS_COPY;
2368                                 if (copyflag && ((entry->protection &
2369                                                   VM_PROT_WRITE) != 0)) {
2370                                         vm_map_entry_shadow(entry, 0);
2371                                 } else if (entry->object.vm_object == NULL &&
2372                                            !map->system_map) {
2373                                         vm_map_entry_allocate_object(entry);
2374                                 }
2375                         }
2376                         entry->wired_count++;
2377                         entry->eflags |= MAP_ENTRY_USER_WIRED;
2378
2379                         /*
2380                          * Now fault in the area.  Note that vm_fault_wire()
2381                          * may release the map lock temporarily, it will be
2382                          * relocked on return.  The in-transition
2383                          * flag protects the entries. 
2384                          */
2385                         save_start = entry->start;
2386                         save_end = entry->end;
2387                         rv = vm_fault_wire(map, entry, TRUE, 0);
2388                         if (rv) {
2389                                 CLIP_CHECK_BACK(entry, save_start);
2390                                 for (;;) {
2391                                         KASSERT(entry->wired_count == 1, ("bad wired_count on entry"));
2392                                         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2393                                         entry->wired_count = 0;
2394                                         if (entry->end == save_end)
2395                                                 break;
2396                                         entry = vm_map_rb_tree_RB_NEXT(entry);
2397                                         KASSERT(entry,
2398                                              ("bad entry clip during backout"));
2399                                 }
2400                                 end = save_start;       /* unwire the rest */
2401                                 break;
2402                         }
2403                         /*
2404                          * note that even though the entry might have been
2405                          * clipped, the USER_WIRED flag we set prevents
2406                          * duplication so we do not have to do a 
2407                          * clip check.
2408                          */
2409                         entry = vm_map_rb_tree_RB_NEXT(entry);
2410                 }
2411
2412                 /*
2413                  * If we failed fall through to the unwiring section to
2414                  * unwire what we had wired so far.  'end' has already
2415                  * been adjusted.
2416                  */
2417                 if (rv)
2418                         new_pageable = 1;
2419
2420                 /*
2421                  * start_entry might have been clipped if we unlocked the
2422                  * map and blocked.  No matter how clipped it has gotten
2423                  * there should be a fragment that is on our start boundary.
2424                  */
2425                 CLIP_CHECK_BACK(start_entry, start);
2426         }
2427
2428         /*
2429          * Deal with the unwiring case.
2430          */
2431         if (new_pageable) {
2432                 /*
2433                  * This is the unwiring case.  We must first ensure that the
2434                  * range to be unwired is really wired down.  We know there
2435                  * are no holes.
2436                  */
2437                 entry = start_entry;
2438                 while (entry && entry->start < end) {
2439                         if ((entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2440                                 rv = KERN_INVALID_ARGUMENT;
2441                                 goto done;
2442                         }
2443                         KASSERT(entry->wired_count != 0,
2444                                 ("wired count was 0 with USER_WIRED set! %p",
2445                                  entry));
2446                         entry = vm_map_rb_tree_RB_NEXT(entry);
2447                 }
2448
2449                 /*
2450                  * Now decrement the wiring count for each region. If a region
2451                  * becomes completely unwired, unwire its physical pages and
2452                  * mappings.
2453                  */
2454                 /*
2455                  * The map entries are processed in a loop, checking to
2456                  * make sure the entry is wired and asserting it has a wired
2457                  * count. However, another loop was inserted more-or-less in
2458                  * the middle of the unwiring path. This loop picks up the
2459                  * "entry" loop variable from the first loop without first
2460                  * setting it to start_entry. Naturally, the secound loop
2461                  * is never entered and the pages backing the entries are
2462                  * never unwired. This can lead to a leak of wired pages.
2463                  */
2464                 entry = start_entry;
2465                 while (entry && entry->start < end) {
2466                         KASSERT(entry->eflags & MAP_ENTRY_USER_WIRED,
2467                                 ("expected USER_WIRED on entry %p", entry));
2468                         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2469                         entry->wired_count--;
2470                         if (entry->wired_count == 0)
2471                                 vm_fault_unwire(map, entry);
2472                         entry = vm_map_rb_tree_RB_NEXT(entry);
2473                 }
2474         }
2475 done:
2476         vm_map_unclip_range(map, start_entry, start, real_end, &count,
2477                 MAP_CLIP_NO_HOLES);
2478         vm_map_unlock(map);
2479         vm_map_entry_release(count);
2480
2481         return (rv);
2482 }
2483
2484 /*
2485  * Sets the pageability of the specified address range in the target map.
2486  * Regions specified as not pageable require locked-down physical
2487  * memory and physical page maps.
2488  *
2489  * The map must not be locked, but a reference must remain to the map
2490  * throughout the call.
2491  *
2492  * This function may be called via the zalloc path and must properly
2493  * reserve map entries for kernel_map.
2494  *
2495  * No requirements.
2496  */
2497 int
2498 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t real_end, int kmflags)
2499 {
2500         vm_map_entry_t entry;
2501         vm_map_entry_t start_entry;
2502         vm_offset_t end;
2503         int rv = KERN_SUCCESS;
2504         int count;
2505
2506         if (kmflags & KM_KRESERVE)
2507                 count = vm_map_entry_kreserve(MAP_RESERVE_COUNT);
2508         else
2509                 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
2510         vm_map_lock(map);
2511         VM_MAP_RANGE_CHECK(map, start, real_end);
2512         end = real_end;
2513
2514         start_entry = vm_map_clip_range(map, start, end, &count,
2515                                         MAP_CLIP_NO_HOLES);
2516         if (start_entry == NULL) {
2517                 vm_map_unlock(map);
2518                 rv = KERN_INVALID_ADDRESS;
2519                 goto failure;
2520         }
2521         if ((kmflags & KM_PAGEABLE) == 0) {
2522                 /*
2523                  * Wiring.  
2524                  *
2525                  * 1.  Holding the write lock, we create any shadow or zero-fill
2526                  * objects that need to be created. Then we clip each map
2527                  * entry to the region to be wired and increment its wiring
2528                  * count.  We create objects before clipping the map entries
2529                  * to avoid object proliferation.
2530                  *
2531                  * 2.  We downgrade to a read lock, and call vm_fault_wire to
2532                  * fault in the pages for any newly wired area (wired_count is
2533                  * 1).
2534                  *
2535                  * Downgrading to a read lock for vm_fault_wire avoids a 
2536                  * possible deadlock with another process that may have faulted
2537                  * on one of the pages to be wired (it would mark the page busy,
2538                  * blocking us, then in turn block on the map lock that we
2539                  * hold).  Because of problems in the recursive lock package,
2540                  * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
2541                  * any actions that require the write lock must be done
2542                  * beforehand.  Because we keep the read lock on the map, the
2543                  * copy-on-write status of the entries we modify here cannot
2544                  * change.
2545                  */
2546                 entry = start_entry;
2547                 while (entry && entry->start < end) {
2548                         /*
2549                          * Trivial case if the entry is already wired
2550                          */
2551                         if (entry->wired_count) {
2552                                 entry->wired_count++;
2553                                 entry = vm_map_rb_tree_RB_NEXT(entry);
2554                                 continue;
2555                         }
2556
2557                         /*
2558                          * The entry is being newly wired, we have to setup
2559                          * appropriate management structures.  A shadow 
2560                          * object is required for a copy-on-write region,
2561                          * or a normal object for a zero-fill region.  We
2562                          * do not have to do this for entries that point to sub
2563                          * maps because we won't hold the lock on the sub map.
2564                          */
2565                         if (entry->maptype == VM_MAPTYPE_NORMAL ||
2566                             entry->maptype == VM_MAPTYPE_VPAGETABLE) {
2567                                 int copyflag = entry->eflags &
2568                                                MAP_ENTRY_NEEDS_COPY;
2569                                 if (copyflag && ((entry->protection &
2570                                                   VM_PROT_WRITE) != 0)) {
2571                                         vm_map_entry_shadow(entry, 0);
2572                                 } else if (entry->object.vm_object == NULL &&
2573                                            !map->system_map) {
2574                                         vm_map_entry_allocate_object(entry);
2575                                 }
2576                         }
2577                         entry->wired_count++;
2578                         entry = vm_map_rb_tree_RB_NEXT(entry);
2579                 }
2580
2581                 /*
2582                  * Pass 2.
2583                  */
2584
2585                 /*
2586                  * HACK HACK HACK HACK
2587                  *
2588                  * vm_fault_wire() temporarily unlocks the map to avoid
2589                  * deadlocks.  The in-transition flag from vm_map_clip_range
2590                  * call should protect us from changes while the map is
2591                  * unlocked.  T
2592                  *
2593                  * NOTE: Previously this comment stated that clipping might
2594                  *       still occur while the entry is unlocked, but from
2595                  *       what I can tell it actually cannot.
2596                  *
2597                  *       It is unclear whether the CLIP_CHECK_*() calls
2598                  *       are still needed but we keep them in anyway.
2599                  *
2600                  * HACK HACK HACK HACK
2601                  */
2602
2603                 entry = start_entry;
2604                 while (entry && entry->start < end) {
2605                         /*
2606                          * If vm_fault_wire fails for any page we need to undo
2607                          * what has been done.  We decrement the wiring count
2608                          * for those pages which have not yet been wired (now)
2609                          * and unwire those that have (later).
2610                          */
2611                         vm_offset_t save_start = entry->start;
2612                         vm_offset_t save_end = entry->end;
2613
2614                         if (entry->wired_count == 1)
2615                                 rv = vm_fault_wire(map, entry, FALSE, kmflags);
2616                         if (rv) {
2617                                 CLIP_CHECK_BACK(entry, save_start);
2618                                 for (;;) {
2619                                         KASSERT(entry->wired_count == 1,
2620                                           ("wired_count changed unexpectedly"));
2621                                         entry->wired_count = 0;
2622                                         if (entry->end == save_end)
2623                                                 break;
2624                                         entry = vm_map_rb_tree_RB_NEXT(entry);
2625                                         KASSERT(entry,
2626                                           ("bad entry clip during backout"));
2627                                 }
2628                                 end = save_start;
2629                                 break;
2630                         }
2631                         CLIP_CHECK_FWD(entry, save_end);
2632                         entry = vm_map_rb_tree_RB_NEXT(entry);
2633                 }
2634
2635                 /*
2636                  * If a failure occured undo everything by falling through
2637                  * to the unwiring code.  'end' has already been adjusted
2638                  * appropriately.
2639                  */
2640                 if (rv)
2641                         kmflags |= KM_PAGEABLE;
2642
2643                 /*
2644                  * start_entry is still IN_TRANSITION but may have been 
2645                  * clipped since vm_fault_wire() unlocks and relocks the
2646                  * map.  No matter how clipped it has gotten there should
2647                  * be a fragment that is on our start boundary.
2648                  */
2649                 CLIP_CHECK_BACK(start_entry, start);
2650         }
2651
2652         if (kmflags & KM_PAGEABLE) {
2653                 /*
2654                  * This is the unwiring case.  We must first ensure that the
2655                  * range to be unwired is really wired down.  We know there
2656                  * are no holes.
2657                  */
2658                 entry = start_entry;
2659                 while (entry && entry->start < end) {
2660                         if (entry->wired_count == 0) {
2661                                 rv = KERN_INVALID_ARGUMENT;
2662                                 goto done;
2663                         }
2664                         entry = vm_map_rb_tree_RB_NEXT(entry);
2665                 }
2666
2667                 /*
2668                  * Now decrement the wiring count for each region. If a region
2669                  * becomes completely unwired, unwire its physical pages and
2670                  * mappings.
2671                  */
2672                 entry = start_entry;
2673                 while (entry && entry->start < end) {
2674                         entry->wired_count--;
2675                         if (entry->wired_count == 0)
2676                                 vm_fault_unwire(map, entry);
2677                         entry = vm_map_rb_tree_RB_NEXT(entry);
2678                 }
2679         }
2680 done:
2681         vm_map_unclip_range(map, start_entry, start, real_end,
2682                             &count, MAP_CLIP_NO_HOLES);
2683         vm_map_unlock(map);
2684 failure:
2685         if (kmflags & KM_KRESERVE)
2686                 vm_map_entry_krelease(count);
2687         else
2688                 vm_map_entry_release(count);
2689         return (rv);
2690 }
2691
2692 /*
2693  * Mark a newly allocated address range as wired but do not fault in
2694  * the pages.  The caller is expected to load the pages into the object.
2695  *
2696  * The map must be locked on entry and will remain locked on return.
2697  * No other requirements.
2698  */
2699 void
2700 vm_map_set_wired_quick(vm_map_t map, vm_offset_t addr, vm_size_t size,
2701                        int *countp)
2702 {
2703         vm_map_entry_t scan;
2704         vm_map_entry_t entry;
2705
2706         entry = vm_map_clip_range(map, addr, addr + size,
2707                                   countp, MAP_CLIP_NO_HOLES);
2708         scan = entry;
2709         while (scan && scan->start < addr + size) {
2710                 KKASSERT(scan->wired_count == 0);
2711                 scan->wired_count = 1;
2712                 scan = vm_map_rb_tree_RB_NEXT(scan);
2713         }
2714         vm_map_unclip_range(map, entry, addr, addr + size,
2715                             countp, MAP_CLIP_NO_HOLES);
2716 }
2717
2718 /*
2719  * Push any dirty cached pages in the address range to their pager.
2720  * If syncio is TRUE, dirty pages are written synchronously.
2721  * If invalidate is TRUE, any cached pages are freed as well.
2722  *
2723  * This routine is called by sys_msync()
2724  *
2725  * Returns an error if any part of the specified range is not mapped.
2726  *
2727  * No requirements.
2728  */
2729 int
2730 vm_map_clean(vm_map_t map, vm_offset_t start, vm_offset_t end,
2731              boolean_t syncio, boolean_t invalidate)
2732 {
2733         vm_map_entry_t current;
2734         vm_map_entry_t next;
2735         vm_map_entry_t entry;
2736         vm_size_t size;
2737         vm_object_t object;
2738         vm_object_t tobj;
2739         vm_ooffset_t offset;
2740
2741         vm_map_lock_read(map);
2742         VM_MAP_RANGE_CHECK(map, start, end);
2743         if (!vm_map_lookup_entry(map, start, &entry)) {
2744                 vm_map_unlock_read(map);
2745                 return (KERN_INVALID_ADDRESS);
2746         }
2747         lwkt_gettoken(&map->token);
2748
2749         /*
2750          * Make a first pass to check for holes.
2751          */
2752         current = entry;
2753         while (current && current->start < end) {
2754                 if (current->maptype == VM_MAPTYPE_SUBMAP) {
2755                         lwkt_reltoken(&map->token);
2756                         vm_map_unlock_read(map);
2757                         return (KERN_INVALID_ARGUMENT);
2758                 }
2759                 next = vm_map_rb_tree_RB_NEXT(current);
2760                 if (end > current->end &&
2761                     (next == NULL ||
2762                      current->end != next->start)) {
2763                         lwkt_reltoken(&map->token);
2764                         vm_map_unlock_read(map);
2765                         return (KERN_INVALID_ADDRESS);
2766                 }
2767                 current = next;
2768         }
2769
2770         if (invalidate)
2771                 pmap_remove(vm_map_pmap(map), start, end);
2772
2773         /*
2774          * Make a second pass, cleaning/uncaching pages from the indicated
2775          * objects as we go.
2776          */
2777         current = entry;
2778         while (current && current->start < end) {
2779                 offset = current->offset + (start - current->start);
2780                 size = (end <= current->end ? end : current->end) - start;
2781
2782                 switch(current->maptype) {
2783                 case VM_MAPTYPE_SUBMAP:
2784                 {
2785                         vm_map_t smap;
2786                         vm_map_entry_t tentry;
2787                         vm_size_t tsize;
2788
2789                         smap = current->object.sub_map;
2790                         vm_map_lock_read(smap);
2791                         vm_map_lookup_entry(smap, offset, &tentry);
2792                         if (tentry == NULL) {
2793                                 tsize = vm_map_max(smap) - offset;
2794                                 object = NULL;
2795                                 offset = 0 + (offset - vm_map_min(smap));
2796                         } else {
2797                                 tsize = tentry->end - offset;
2798                                 object = tentry->object.vm_object;
2799                                 offset = tentry->offset +
2800                                          (offset - tentry->start);
2801                         }
2802                         vm_map_unlock_read(smap);
2803                         if (tsize < size)
2804                                 size = tsize;
2805                         break;
2806                 }
2807                 case VM_MAPTYPE_NORMAL:
2808                 case VM_MAPTYPE_VPAGETABLE:
2809                         object = current->object.vm_object;
2810                         break;
2811                 default:
2812                         object = NULL;
2813                         break;
2814                 }
2815
2816                 if (object)
2817                         vm_object_hold(object);
2818
2819                 /*
2820                  * Note that there is absolutely no sense in writing out
2821                  * anonymous objects, so we track down the vnode object
2822                  * to write out.
2823                  * We invalidate (remove) all pages from the address space
2824                  * anyway, for semantic correctness.
2825                  *
2826                  * note: certain anonymous maps, such as MAP_NOSYNC maps,
2827                  * may start out with a NULL object.
2828                  */
2829                 while (object && (tobj = object->backing_object) != NULL) {
2830                         vm_object_hold(tobj);
2831                         if (tobj == object->backing_object) {
2832                                 vm_object_lock_swap();
2833                                 offset += object->backing_object_offset;
2834                                 vm_object_drop(object);
2835                                 object = tobj;
2836                                 if (object->size < OFF_TO_IDX(offset + size))
2837                                         size = IDX_TO_OFF(object->size) -
2838                                                offset;
2839                                 break;
2840                         }
2841                         vm_object_drop(tobj);
2842                 }
2843                 if (object && (object->type == OBJT_VNODE) && 
2844                     (current->protection & VM_PROT_WRITE) &&
2845                     (object->flags & OBJ_NOMSYNC) == 0) {
2846                         /*
2847                          * Flush pages if writing is allowed, invalidate them
2848                          * if invalidation requested.  Pages undergoing I/O
2849                          * will be ignored by vm_object_page_remove().
2850                          *
2851                          * We cannot lock the vnode and then wait for paging
2852                          * to complete without deadlocking against vm_fault.
2853                          * Instead we simply call vm_object_page_remove() and
2854                          * allow it to block internally on a page-by-page 
2855                          * basis when it encounters pages undergoing async 
2856                          * I/O.
2857                          */
2858                         int flags;
2859
2860                         /* no chain wait needed for vnode objects */
2861                         vm_object_reference_locked(object);
2862                         vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY);
2863                         flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
2864                         flags |= invalidate ? OBJPC_INVAL : 0;
2865
2866                         /*
2867                          * When operating on a virtual page table just
2868                          * flush the whole object.  XXX we probably ought
2869                          * to 
2870                          */
2871                         switch(current->maptype) {
2872                         case VM_MAPTYPE_NORMAL:
2873                                 vm_object_page_clean(object,
2874                                     OFF_TO_IDX(offset),
2875                                     OFF_TO_IDX(offset + size + PAGE_MASK),
2876                                     flags);
2877                                 break;
2878                         case VM_MAPTYPE_VPAGETABLE:
2879                                 vm_object_page_clean(object, 0, 0, flags);
2880                                 break;
2881                         }
2882                         vn_unlock(((struct vnode *)object->handle));
2883                         vm_object_deallocate_locked(object);
2884                 }
2885                 if (object && invalidate &&
2886                    ((object->type == OBJT_VNODE) ||
2887                     (object->type == OBJT_DEVICE) ||
2888                     (object->type == OBJT_MGTDEVICE))) {
2889                         int clean_only = 
2890                                 ((object->type == OBJT_DEVICE) ||
2891                                 (object->type == OBJT_MGTDEVICE)) ? FALSE : TRUE;
2892                         /* no chain wait needed for vnode/device objects */
2893                         vm_object_reference_locked(object);
2894                         switch(current->maptype) {
2895                         case VM_MAPTYPE_NORMAL:
2896                                 vm_object_page_remove(object,
2897                                     OFF_TO_IDX(offset),
2898                                     OFF_TO_IDX(offset + size + PAGE_MASK),
2899                                     clean_only);
2900                                 break;
2901                         case VM_MAPTYPE_VPAGETABLE:
2902                                 vm_object_page_remove(object, 0, 0, clean_only);
2903                                 break;
2904                         }
2905                         vm_object_deallocate_locked(object);
2906                 }
2907                 start += size;
2908                 if (object)
2909                         vm_object_drop(object);
2910                 current = vm_map_rb_tree_RB_NEXT(current);
2911         }
2912
2913         lwkt_reltoken(&map->token);
2914         vm_map_unlock_read(map);
2915
2916         return (KERN_SUCCESS);
2917 }
2918
2919 /*
2920  * Make the region specified by this entry pageable.
2921  *
2922  * The vm_map must be exclusively locked.
2923  */
2924 static void 
2925 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2926 {
2927         entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2928         entry->wired_count = 0;
2929         vm_fault_unwire(map, entry);
2930 }
2931
2932 /*
2933  * Deallocate the given entry from the target map.
2934  *
2935  * The vm_map must be exclusively locked.
2936  */
2937 static void
2938 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry, int *countp)
2939 {
2940         vm_map_entry_unlink(map, entry);
2941         map->size -= entry->end - entry->start;
2942
2943         switch(entry->maptype) {
2944         case VM_MAPTYPE_NORMAL:
2945         case VM_MAPTYPE_VPAGETABLE:
2946         case VM_MAPTYPE_SUBMAP:
2947                 vm_object_deallocate(entry->object.vm_object);
2948                 break;
2949         case VM_MAPTYPE_UKSMAP:
2950                 /* XXX TODO */
2951                 break;
2952         default:
2953                 break;
2954         }
2955
2956         vm_map_entry_dispose(map, entry, countp);
2957 }
2958
2959 /*
2960  * Deallocates the given address range from the target map.
2961  *
2962  * The vm_map must be exclusively locked.
2963  */
2964 int
2965 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end, int *countp)
2966 {
2967         vm_object_t object;
2968         vm_map_entry_t entry;
2969         vm_map_entry_t first_entry;
2970         vm_offset_t hole_start;
2971
2972         ASSERT_VM_MAP_LOCKED(map);
2973         lwkt_gettoken(&map->token);
2974 again:
2975         /*
2976          * Find the start of the region, and clip it.  Set entry to point
2977          * at the first record containing the requested address or, if no
2978          * such record exists, the next record with a greater address.  The
2979          * loop will run from this point until a record beyond the termination
2980          * address is encountered.
2981          *
2982          * Adjust freehint[] for either the clip case or the extension case.
2983          *
2984          * GGG see other GGG comment.
2985          */
2986         if (vm_map_lookup_entry(map, start, &first_entry)) {
2987                 entry = first_entry;
2988                 vm_map_clip_start(map, entry, start, countp);
2989                 hole_start = start;
2990         } else {
2991                 if (first_entry) {
2992                         entry = vm_map_rb_tree_RB_NEXT(first_entry);
2993                         if (entry == NULL)
2994                                 hole_start = first_entry->start;
2995                         else
2996                                 hole_start = first_entry->end;
2997                 } else {
2998                         entry = RB_MIN(vm_map_rb_tree, &map->rb_root);
2999                         if (entry == NULL)
3000                                 hole_start = vm_map_min(map);
3001                         else
3002                                 hole_start = vm_map_max(map);
3003                 }
3004         }
3005
3006         /*
3007          * Step through all entries in this region
3008          */
3009         while (entry && entry->start < end) {
3010                 vm_map_entry_t next;
3011                 vm_offset_t s, e;
3012                 vm_pindex_t offidxstart, offidxend, count;
3013
3014                 /*
3015                  * If we hit an in-transition entry we have to sleep and
3016                  * retry.  It's easier (and not really slower) to just retry
3017                  * since this case occurs so rarely and the hint is already
3018                  * pointing at the right place.  We have to reset the
3019                  * start offset so as not to accidently delete an entry
3020                  * another process just created in vacated space.
3021                  */
3022                 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3023                         entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3024                         start = entry->start;
3025                         ++mycpu->gd_cnt.v_intrans_coll;
3026                         ++mycpu->gd_cnt.v_intrans_wait;
3027                         vm_map_transition_wait(map, 1);
3028                         goto again;
3029                 }
3030                 vm_map_clip_end(map, entry, end, countp);
3031
3032                 s = entry->start;
3033                 e = entry->end;
3034                 next = vm_map_rb_tree_RB_NEXT(entry);
3035
3036                 offidxstart = OFF_TO_IDX(entry->offset);
3037                 count = OFF_TO_IDX(e - s);
3038
3039                 switch(entry->maptype) {
3040                 case VM_MAPTYPE_NORMAL:
3041                 case VM_MAPTYPE_VPAGETABLE:
3042                 case VM_MAPTYPE_SUBMAP:
3043                         object = entry->object.vm_object;
3044                         break;
3045                 default:
3046                         object = NULL;
3047                         break;
3048                 }
3049
3050                 /*
3051                  * Unwire before removing addresses from the pmap; otherwise,
3052                  * unwiring will put the entries back in the pmap.
3053                  *
3054                  * Generally speaking, doing a bulk pmap_remove() before
3055                  * removing the pages from the VM object is better at
3056                  * reducing unnecessary IPIs.  The pmap code is now optimized
3057                  * to not blindly iterate the range when pt and pd pages
3058                  * are missing.
3059                  */
3060                 if (entry->wired_count != 0)
3061                         vm_map_entry_unwire(map, entry);
3062
3063                 offidxend = offidxstart + count;
3064
3065                 if (object == &kernel_object) {
3066                         pmap_remove(map->pmap, s, e);
3067                         vm_object_hold(object);
3068                         vm_object_page_remove(object, offidxstart,
3069                                               offidxend, FALSE);
3070                         vm_object_drop(object);
3071                 } else if (object && object->type != OBJT_DEFAULT &&
3072                            object->type != OBJT_SWAP) {
3073                         /*
3074                          * vnode object routines cannot be chain-locked,
3075                          * but since we aren't removing pages from the
3076                          * object here we can use a shared hold.
3077                          */
3078                         vm_object_hold_shared(object);
3079                         pmap_remove(map->pmap, s, e);
3080                         vm_object_drop(object);
3081                 } else if (object) {
3082                         vm_object_hold(object);
3083                         vm_object_chain_acquire(object, 0);
3084                         pmap_remove(map->pmap, s, e);
3085
3086                         if (object != NULL &&
3087                             object->ref_count != 1 &&
3088                             (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) ==
3089                              OBJ_ONEMAPPING &&
3090                             (object->type == OBJT_DEFAULT ||
3091                              object->type == OBJT_SWAP)) {
3092                                 /*
3093                                  * When ONEMAPPING is set we can destroy the
3094                                  * pages underlying the entry's range.
3095                                  */
3096                                 vm_object_collapse(object, NULL);
3097                                 vm_object_page_remove(object, offidxstart,
3098                                                       offidxend, FALSE);
3099                                 if (object->type == OBJT_SWAP) {
3100                                         swap_pager_freespace(object,
3101                                                              offidxstart,
3102                                                              count);
3103                                 }
3104                                 if (offidxend >= object->size &&
3105                                     offidxstart < object->size) {
3106                                         object->size = offidxstart;
3107                                 }
3108                         }
3109                         vm_object_chain_release(object);
3110                         vm_object_drop(object);
3111                 } else if (entry->maptype == VM_MAPTYPE_UKSMAP) {
3112                         pmap_remove(map->pmap, s, e);
3113                 }
3114
3115                 /*
3116                  * Delete the entry (which may delete the object) only after
3117                  * removing all pmap entries pointing to its pages.
3118                  * (Otherwise, its page frames may be reallocated, and any
3119                  * modify bits will be set in the wrong object!)
3120                  */
3121                 vm_map_entry_delete(map, entry, countp);
3122                 entry = next;
3123         }
3124
3125         /*
3126          * We either reached the end and use vm_map_max as the end
3127          * address, or we didn't and we use the next entry as the
3128          * end address.
3129          */
3130         if (entry == NULL) {
3131                 vm_map_freehint_hole(map, hole_start,
3132                                      vm_map_max(map) - hole_start);
3133         } else {
3134                 vm_map_freehint_hole(map, hole_start,
3135                                      entry->start - hole_start);
3136         }
3137
3138         lwkt_reltoken(&map->token);
3139
3140         return (KERN_SUCCESS);
3141 }
3142
3143 /*
3144  * Remove the given address range from the target map.
3145  * This is the exported form of vm_map_delete.
3146  *
3147  * No requirements.
3148  */
3149 int
3150 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3151 {
3152         int result;
3153         int count;
3154
3155         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3156         vm_map_lock(map);
3157         VM_MAP_RANGE_CHECK(map, start, end);
3158         result = vm_map_delete(map, start, end, &count);
3159         vm_map_unlock(map);
3160         vm_map_entry_release(count);
3161
3162         return (result);
3163 }
3164
3165 /*
3166  * Assert that the target map allows the specified privilege on the
3167  * entire address region given.  The entire region must be allocated.
3168  *
3169  * The caller must specify whether the vm_map is already locked or not.
3170  */
3171 boolean_t
3172 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3173                         vm_prot_t protection, boolean_t have_lock)
3174 {
3175         vm_map_entry_t entry;
3176         vm_map_entry_t tmp_entry;
3177         boolean_t result;
3178
3179         if (have_lock == FALSE)
3180                 vm_map_lock_read(map);
3181
3182         if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
3183                 if (have_lock == FALSE)
3184                         vm_map_unlock_read(map);
3185                 return (FALSE);
3186         }
3187         entry = tmp_entry;
3188
3189         result = TRUE;
3190         while (start < end) {
3191                 if (entry == NULL) {
3192                         result = FALSE;
3193                         break;
3194                 }
3195
3196                 /*
3197                  * No holes allowed!
3198                  */
3199
3200                 if (start < entry->start) {
3201                         result = FALSE;
3202                         break;
3203                 }
3204                 /*
3205                  * Check protection associated with entry.
3206                  */
3207
3208                 if ((entry->protection & protection) != protection) {
3209                         result = FALSE;
3210                         break;
3211                 }
3212                 /* go to next entry */
3213                 start = entry->end;
3214                 entry = vm_map_rb_tree_RB_NEXT(entry);
3215         }
3216         if (have_lock == FALSE)
3217                 vm_map_unlock_read(map);
3218         return (result);
3219 }
3220
3221 /*
3222  * If appropriate this function shadows the original object with a new object
3223  * and moves the VM pages from the original object to the new object.
3224  * The original object will also be collapsed, if possible.
3225  *
3226  * Caller must supply entry->object.vm_object held and chain_acquired, and
3227  * should chain_release and drop the object upon return.
3228  *
3229  * We can only do this for normal memory objects with a single mapping, and
3230  * it only makes sense to do it if there are 2 or more refs on the original
3231  * object.  i.e. typically a memory object that has been extended into
3232  * multiple vm_map_entry's with non-overlapping ranges.
3233  *
3234  * This makes it easier to remove unused pages and keeps object inheritance
3235  * from being a negative impact on memory usage.
3236  *
3237  * On return the (possibly new) entry->object.vm_object will have an
3238  * additional ref on it for the caller to dispose of (usually by cloning
3239  * the vm_map_entry).  The additional ref had to be done in this routine
3240  * to avoid racing a collapse.  The object's ONEMAPPING flag will also be
3241  * cleared.
3242  *
3243  * The vm_map must be locked and its token held.
3244  */
3245 static void
3246 vm_map_split(vm_map_entry_t entry, vm_object_t oobject)
3247 {
3248         /* OPTIMIZED */
3249         vm_object_t nobject, bobject;
3250         vm_offset_t s, e;
3251         vm_page_t m;
3252         vm_pindex_t offidxstart, offidxend, idx;
3253         vm_size_t size;
3254         vm_ooffset_t offset;
3255         int useshadowlist;
3256
3257         /*
3258          * Optimize away object locks for vnode objects.  Important exit/exec
3259          * critical path.
3260          *
3261          * OBJ_ONEMAPPING doesn't apply to vnode objects but clear the flag
3262          * anyway.
3263          */
3264         if (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) {
3265                 vm_object_reference_quick(oobject);
3266                 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3267                 return;
3268         }
3269
3270 #if 0
3271         /*
3272          * Original object cannot be split?
3273          */
3274         if (oobject->handle == NULL) {
3275                 vm_object_reference_locked_chain_held(oobject);
3276                 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3277                 return;
3278         }
3279 #endif
3280
3281         /*
3282          * Collapse original object with its backing store as an
3283          * optimization to reduce chain lengths when possible.
3284          *
3285          * If ref_count <= 1 there aren't other non-overlapping vm_map_entry's
3286          * for oobject, so there's no point collapsing it.
3287          *
3288          * Then re-check whether the object can be split.
3289          */
3290         vm_object_collapse(oobject, NULL);
3291
3292         if (oobject->ref_count <= 1 ||
3293             (oobject->type != OBJT_DEFAULT && oobject->type != OBJT_SWAP) ||
3294             (oobject->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) != OBJ_ONEMAPPING) {
3295                 vm_object_reference_locked_chain_held(oobject);
3296                 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3297                 return;
3298         }
3299
3300         /*
3301          * Acquire the chain lock on the backing object.
3302          *
3303          * Give bobject an additional ref count for when it will be shadowed
3304          * by nobject.
3305          */
3306         useshadowlist = 0;
3307         if ((bobject = oobject->backing_object) != NULL) {
3308                 if (bobject->type != OBJT_VNODE) {
3309                         useshadowlist = 1;
3310                         vm_object_hold(bobject);
3311                         vm_object_chain_wait(bobject, 0);
3312                         /* ref for shadowing below */
3313                         vm_object_reference_locked(bobject);
3314                         vm_object_chain_acquire(bobject, 0);
3315                         KKASSERT(oobject->backing_object == bobject);
3316                         KKASSERT((bobject->flags & OBJ_DEAD) == 0);
3317                 } else {
3318                         /*
3319                          * vnodes are not placed on the shadow list but
3320                          * they still get another ref for the backing_object
3321                          * reference.
3322                          */
3323                         vm_object_reference_quick(bobject);
3324                 }
3325         }
3326
3327         /*
3328          * Calculate the object page range and allocate the new object.
3329          */
3330         offset = entry->offset;
3331         s = entry->start;
3332         e = entry->end;
3333
3334         offidxstart = OFF_TO_IDX(offset);
3335         offidxend = offidxstart + OFF_TO_IDX(e - s);
3336         size = offidxend - offidxstart;
3337
3338         switch(oobject->type) {
3339         case OBJT_DEFAULT:
3340                 nobject = default_pager_alloc(NULL, IDX_TO_OFF(size),
3341                                               VM_PROT_ALL, 0);
3342                 break;
3343         case OBJT_SWAP:
3344                 nobject = swap_pager_alloc(NULL, IDX_TO_OFF(size),
3345                                            VM_PROT_ALL, 0);
3346                 break;
3347         default:
3348                 /* not reached */
3349                 nobject = NULL;
3350                 KKASSERT(0);
3351         }
3352
3353         /*
3354          * If we could not allocate nobject just clear ONEMAPPING on
3355          * oobject and return.
3356          */
3357         if (nobject == NULL) {
3358                 if (bobject) {
3359                         if (useshadowlist) {
3360                                 vm_object_chain_release(bobject);
3361                                 vm_object_deallocate(bobject);
3362                                 vm_object_drop(bobject);
3363                         } else {
3364                                 vm_object_deallocate(bobject);
3365                         }
3366                 }
3367                 vm_object_reference_locked_chain_held(oobject);
3368                 vm_object_clear_flag(oobject, OBJ_ONEMAPPING);
3369                 return;
3370         }
3371
3372         /*
3373          * The new object will replace entry->object.vm_object so it needs
3374          * a second reference (the caller expects an additional ref).
3375          */
3376         vm_object_hold(nobject);
3377         vm_object_reference_locked(nobject);
3378         vm_object_chain_acquire(nobject, 0);
3379
3380         /*
3381          * nobject shadows bobject (oobject already shadows bobject).
3382          *
3383          * Adding an object to bobject's shadow list requires refing bobject
3384          * which we did above in the useshadowlist case.
3385          *
3386          * XXX it is unclear if we need to clear ONEMAPPING on bobject here
3387          *     or not.
3388          */
3389         if (bobject) {
3390                 nobject->backing_object_offset =
3391                     oobject->backing_object_offset + IDX_TO_OFF(offidxstart);
3392                 nobject->backing_object = bobject;
3393                 if (useshadowlist) {
3394                         bobject->shadow_count++;
3395                         atomic_add_int(&bobject->generation, 1);
3396                         LIST_INSERT_HEAD(&bobject->shadow_head,
3397                                          nobject, shadow_list);
3398                         vm_object_clear_flag(bobject, OBJ_ONEMAPPING); /*XXX*/
3399                         vm_object_set_flag(nobject, OBJ_ONSHADOW);
3400                 }
3401         }
3402
3403         /*
3404          * Move the VM pages from oobject to nobject
3405          */
3406         for (idx = 0; idx < size; idx++) {
3407                 vm_page_t m;
3408
3409                 m = vm_page_lookup_busy_wait(oobject, offidxstart + idx,
3410                                              TRUE, "vmpg");
3411                 if (m == NULL)
3412                         continue;
3413
3414                 /*
3415                  * We must wait for pending I/O to complete before we can
3416                  * rename the page.
3417                  *
3418                  * We do not have to VM_PROT_NONE the page as mappings should
3419                  * not be changed by this operation.
3420                  *
3421                  * NOTE: The act of renaming a page updates chaingen for both
3422                  *       objects.
3423                  */
3424                 vm_page_rename(m, nobject, idx);
3425                 /* page automatically made dirty by rename and cache handled */
3426                 /* page remains busy */
3427         }
3428
3429         if (oobject->type == OBJT_SWAP) {
3430                 vm_object_pip_add(oobject, 1);
3431                 /*
3432                  * copy oobject pages into nobject and destroy unneeded
3433                  * pages in shadow object.
3434                  */
3435                 swap_pager_copy(oobject, nobject, offidxstart, 0);
3436                 vm_object_pip_wakeup(oobject);
3437         }
3438
3439         /*
3440          * Wakeup the pages we played with.  No spl protection is needed
3441          * for a simple wakeup.
3442          */
3443         for (idx = 0; idx < size; idx++) {
3444                 m = vm_page_lookup(nobject, idx);
3445                 if (m) {
3446                         KKASSERT(m->busy_count & PBUSY_LOCKED);
3447                         vm_page_wakeup(m);
3448                 }
3449         }
3450         entry->object.vm_object = nobject;
3451         entry->offset = 0LL;
3452
3453         /*
3454          * The map is being split and nobject is going to wind up on both
3455          * vm_map_entry's, so make sure OBJ_ONEMAPPING is cleared on
3456          * nobject.
3457          */
3458         vm_object_clear_flag(nobject, OBJ_ONEMAPPING);
3459
3460         /*
3461          * Cleanup
3462          *
3463          * NOTE: There is no need to remove OBJ_ONEMAPPING from oobject, the
3464          *       related pages were moved and are no longer applicable to the
3465          *       original object.
3466          *
3467          * NOTE: Deallocate oobject (due to its entry->object.vm_object being
3468          *       replaced by nobject).
3469          */
3470         vm_object_chain_release(nobject);
3471         vm_object_drop(nobject);
3472         if (bobject && useshadowlist) {
3473                 vm_object_chain_release(bobject);
3474                 vm_object_drop(bobject);
3475         }
3476
3477 #if 0
3478         if (oobject->resident_page_count) {
3479                 kprintf("oobject %p still contains %jd pages!\n",
3480                         oobject, (intmax_t)oobject->resident_page_count);
3481                 for (idx = 0; idx < size; idx++) {
3482                         vm_page_t m;
3483
3484                         m = vm_page_lookup_busy_wait(oobject, offidxstart + idx,
3485                                                      TRUE, "vmpg");
3486                         if (m) {
3487                                 kprintf("oobject %p idx %jd\n",
3488                                         oobject,
3489                                         offidxstart + idx);
3490                                 vm_page_wakeup(m);
3491                         }
3492                 }
3493         }
3494 #endif
3495         /*vm_object_clear_flag(oobject, OBJ_ONEMAPPING);*/
3496         vm_object_deallocate_locked(oobject);
3497 }
3498
3499 /*
3500  * Copies the contents of the source entry to the destination
3501  * entry.  The entries *must* be aligned properly.
3502  *
3503  * The vm_maps must be exclusively locked.
3504  * The vm_map's token must be held.
3505  *
3506  * Because the maps are locked no faults can be in progress during the
3507  * operation.
3508  */
3509 static void
3510 vm_map_copy_entry(vm_map_t src_map, vm_map_t dst_map,
3511                   vm_map_entry_t src_entry, vm_map_entry_t dst_entry)
3512 {
3513         vm_object_t src_object;
3514         vm_object_t oobject;
3515
3516         if (dst_entry->maptype == VM_MAPTYPE_SUBMAP ||
3517             dst_entry->maptype == VM_MAPTYPE_UKSMAP)
3518                 return;
3519         if (src_entry->maptype == VM_MAPTYPE_SUBMAP ||
3520             src_entry->maptype == VM_MAPTYPE_UKSMAP)
3521                 return;
3522
3523         if (src_entry->wired_count == 0) {
3524                 /*
3525                  * If the source entry is marked needs_copy, it is already
3526                  * write-protected.
3527                  *
3528                  * To avoid interacting with a vm_fault that might have
3529                  * released its vm_map, we must acquire the fronting
3530                  * object.
3531                  */
3532                 oobject = src_entry->object.vm_object;
3533                 if (oobject) {
3534                         vm_object_hold(oobject);
3535                         vm_object_chain_acquire(oobject, 0);
3536                 }
3537
3538                 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
3539                         pmap_protect(src_map->pmap,
3540                             src_entry->start,
3541                             src_entry->end,
3542                             src_entry->protection & ~VM_PROT_WRITE);
3543                 }
3544
3545                 /*
3546                  * Make a copy of the object.
3547                  *
3548                  * The object must be locked prior to checking the object type
3549                  * and for the call to vm_object_collapse() and vm_map_split().
3550                  * We cannot use *_hold() here because the split code will
3551                  * probably try to destroy the object.  The lock is a pool
3552                  * token and doesn't care.
3553                  *
3554                  * We must bump src_map->timestamp when setting
3555                  * MAP_ENTRY_NEEDS_COPY to force any concurrent fault
3556                  * to retry, otherwise the concurrent fault might improperly
3557                  * install a RW pte when its supposed to be a RO(COW) pte.
3558                  * This race can occur because a vnode-backed fault may have
3559                  * to temporarily release the map lock.  This was handled
3560                  * when the caller locked the map exclusively.
3561                  */
3562                 if (oobject) {
3563                         vm_map_split(src_entry, oobject);
3564
3565                         src_object = src_entry->object.vm_object;
3566                         dst_entry->object.vm_object = src_object;
3567                         src_entry->eflags |= (MAP_ENTRY_COW |
3568                                               MAP_ENTRY_NEEDS_COPY);
3569                         dst_entry->eflags |= (MAP_ENTRY_COW |
3570                                               MAP_ENTRY_NEEDS_COPY);
3571                         dst_entry->offset = src_entry->offset;
3572                 } else {
3573                         dst_entry->object.vm_object = NULL;
3574                         dst_entry->offset = 0;
3575                 }
3576                 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3577                           dst_entry->end - dst_entry->start,
3578                           src_entry->start);
3579                 if (oobject) {
3580                         vm_object_chain_release(oobject);
3581                         vm_object_drop(oobject);
3582                 }
3583         } else {
3584                 /*
3585                  * Of course, wired down pages can't be set copy-on-write.
3586                  * Cause wired pages to be copied into the new map by
3587                  * simulating faults (the new pages are pageable)
3588                  */
3589                 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
3590         }
3591 }
3592
3593 /*
3594  * vmspace_fork:
3595  * Create a new process vmspace structure and vm_map
3596  * based on those of an existing process.  The new map
3597  * is based on the old map, according to the inheritance
3598  * values on the regions in that map.
3599  *
3600  * The source map must not be locked.
3601  * No requirements.
3602  */
3603 static void vmspace_fork_normal_entry(vm_map_t old_map, vm_map_t new_map,
3604                           vm_map_entry_t old_entry, int *countp);
3605 static void vmspace_fork_uksmap_entry(vm_map_t old_map, vm_map_t new_map,
3606                           vm_map_entry_t old_entry, int *countp);
3607
3608 struct vmspace *
3609 vmspace_fork(struct vmspace *vm1)
3610 {
3611         struct vmspace *vm2;
3612         vm_map_t old_map = &vm1->vm_map;
3613         vm_map_t new_map;
3614         vm_map_entry_t old_entry;
3615         int count;
3616
3617         lwkt_gettoken(&vm1->vm_map.token);
3618         vm_map_lock(old_map);
3619
3620         vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map));
3621         lwkt_gettoken(&vm2->vm_map.token);
3622
3623         /*
3624          * We must bump the timestamp to force any concurrent fault
3625          * to retry.
3626          */
3627         bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
3628               (caddr_t)&vm1->vm_endcopy - (caddr_t)&vm1->vm_startcopy);
3629         new_map = &vm2->vm_map; /* XXX */
3630         new_map->timestamp = 1;
3631
3632         vm_map_lock(new_map);
3633
3634         count = old_map->nentries;
3635         count = vm_map_entry_reserve(count + MAP_RESERVE_COUNT);
3636
3637         RB_FOREACH(old_entry, vm_map_rb_tree, &old_map->rb_root) {
3638                 switch(old_entry->maptype) {
3639                 case VM_MAPTYPE_SUBMAP:
3640                         panic("vm_map_fork: encountered a submap");
3641                         break;
3642                 case VM_MAPTYPE_UKSMAP:
3643                         vmspace_fork_uksmap_entry(old_map, new_map,
3644                                                   old_entry, &count);
3645                         break;
3646                 case VM_MAPTYPE_NORMAL:
3647                 case VM_MAPTYPE_VPAGETABLE:
3648                         vmspace_fork_normal_entry(old_map, new_map,
3649                                                   old_entry, &count);
3650                         break;
3651                 }
3652         }
3653
3654         new_map->size = old_map->size;
3655         vm_map_unlock(old_map);
3656         vm_map_unlock(new_map);
3657         vm_map_entry_release(count);
3658
3659         lwkt_reltoken(&vm2->vm_map.token);
3660         lwkt_reltoken(&vm1->vm_map.token);
3661
3662         return (vm2);
3663 }
3664
3665 static
3666 void
3667 vmspace_fork_normal_entry(vm_map_t old_map, vm_map_t new_map,
3668                           vm_map_entry_t old_entry, int *countp)
3669 {
3670         vm_map_entry_t new_entry;
3671         vm_object_t object;
3672
3673         switch (old_entry->inheritance) {
3674         case VM_INHERIT_NONE:
3675                 break;
3676         case VM_INHERIT_SHARE:
3677                 /*
3678                  * Clone the entry, creating the shared object if
3679                  * necessary.
3680                  */
3681                 if (old_entry->object.vm_object == NULL)
3682                         vm_map_entry_allocate_object(old_entry);
3683
3684                 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3685                         /*
3686                          * Shadow a map_entry which needs a copy,
3687                          * replacing its object with a new object
3688                          * that points to the old one.  Ask the
3689                          * shadow code to automatically add an
3690                          * additional ref.  We can't do it afterwords
3691                          * because we might race a collapse.  The call
3692                          * to vm_map_entry_shadow() will also clear
3693                          * OBJ_ONEMAPPING.
3694                          */
3695                         vm_map_entry_shadow(old_entry, 1);
3696                 } else if (old_entry->object.vm_object) {
3697                         /*
3698                          * We will make a shared copy of the object,
3699                          * and must clear OBJ_ONEMAPPING.
3700                          *
3701                          * Optimize vnode objects.  OBJ_ONEMAPPING
3702                          * is non-applicable but clear it anyway,
3703                          * and its terminal so we don't have to deal
3704                          * with chains.  Reduces SMP conflicts.
3705                          *
3706                          * XXX assert that object.vm_object != NULL
3707                          *     since we allocate it above.
3708                          */
3709                         object = old_entry->object.vm_object;
3710                         if (object->type == OBJT_VNODE) {
3711                                 vm_object_reference_quick(object);
3712                                 vm_object_clear_flag(object,
3713                                                      OBJ_ONEMAPPING);
3714                         } else {
3715                                 vm_object_hold(object);
3716                                 vm_object_chain_wait(object, 0);
3717                                 vm_object_reference_locked(object);
3718                                 vm_object_clear_flag(object,
3719                                                      OBJ_ONEMAPPING);
3720                                 vm_object_drop(object);
3721                         }
3722                 }
3723
3724                 /*
3725                  * Clone the entry.  We've already bumped the ref on
3726                  * any vm_object.
3727                  */
3728                 new_entry = vm_map_entry_create(new_map, countp);
3729                 *new_entry = *old_entry;
3730                 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3731                 new_entry->wired_count = 0;
3732
3733                 /*
3734                  * Insert the entry into the new map -- we know we're
3735                  * inserting at the end of the new map.
3736                  */
3737                 vm_map_entry_link(new_map, new_entry);
3738
3739                 /*
3740                  * Update the physical map
3741                  */
3742                 pmap_copy(new_map->pmap, old_map->pmap,
3743                           new_entry->start,
3744                           (old_entry->end - old_entry->start),
3745                           old_entry->start);
3746                 break;
3747         case VM_INHERIT_COPY:
3748                 /*
3749                  * Clone the entry and link into the map.
3750                  */
3751                 new_entry = vm_map_entry_create(new_map, countp);
3752                 *new_entry = *old_entry;
3753                 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3754                 new_entry->wired_count = 0;
3755                 new_entry->object.vm_object = NULL;
3756                 vm_map_entry_link(new_map, new_entry);
3757                 vm_map_copy_entry(old_map, new_map, old_entry,
3758                                   new_entry);
3759                 break;
3760         }
3761 }
3762
3763 /*
3764  * When forking user-kernel shared maps, the map might change in the
3765  * child so do not try to copy the underlying pmap entries.
3766  */
3767 static
3768 void
3769 vmspace_fork_uksmap_entry(vm_map_t old_map, vm_map_t new_map,
3770                           vm_map_entry_t old_entry, int *countp)
3771 {
3772         vm_map_entry_t new_entry;
3773
3774         new_entry = vm_map_entry_create(new_map, countp);
3775         *new_entry = *old_entry;
3776         new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3777         new_entry->wired_count = 0;
3778         vm_map_entry_link(new_map, new_entry);
3779 }
3780
3781 /*
3782  * Create an auto-grow stack entry
3783  *
3784  * No requirements.
3785  */
3786 int
3787 vm_map_stack (vm_map_t map, vm_offset_t *addrbos, vm_size_t max_ssize,
3788               int flags, vm_prot_t prot, vm_prot_t max, int cow)
3789 {
3790         vm_map_entry_t  prev_entry;
3791         vm_map_entry_t  next;
3792         vm_size_t       init_ssize;
3793         int             rv;
3794         int             count;
3795         vm_offset_t     tmpaddr;
3796
3797         cow |= MAP_IS_STACK;
3798
3799         if (max_ssize < sgrowsiz)
3800                 init_ssize = max_ssize;
3801         else
3802                 init_ssize = sgrowsiz;
3803
3804         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3805         vm_map_lock(map);
3806
3807         /*
3808          * Find space for the mapping
3809          */
3810         if ((flags & (MAP_FIXED | MAP_TRYFIXED)) == 0) {
3811                 if (vm_map_findspace(map, *addrbos, max_ssize, 1,
3812                                      flags, &tmpaddr)) {
3813                         vm_map_unlock(map);
3814                         vm_map_entry_release(count);
3815                         return (KERN_NO_SPACE);
3816                 }
3817                 *addrbos = tmpaddr;
3818         }
3819
3820         /* If addr is already mapped, no go */
3821         if (vm_map_lookup_entry(map, *addrbos, &prev_entry)) {
3822                 vm_map_unlock(map);
3823                 vm_map_entry_release(count);
3824                 return (KERN_NO_SPACE);
3825         }
3826
3827 #if 0
3828         /* XXX already handled by kern_mmap() */
3829         /* If we would blow our VMEM resource limit, no go */
3830         if (map->size + init_ssize >
3831             curproc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
3832                 vm_map_unlock(map);
3833                 vm_map_entry_release(count);
3834                 return (KERN_NO_SPACE);
3835         }
3836 #endif
3837
3838         /*
3839          * If we can't accomodate max_ssize in the current mapping,
3840          * no go.  However, we need to be aware that subsequent user
3841          * mappings might map into the space we have reserved for
3842          * stack, and currently this space is not protected.  
3843          * 
3844          * Hopefully we will at least detect this condition 
3845          * when we try to grow the stack.
3846          */
3847         if (prev_entry)
3848                 next = vm_map_rb_tree_RB_NEXT(prev_entry);
3849         else
3850                 next = RB_MIN(vm_map_rb_tree, &map->rb_root);
3851
3852         if (next && next->start < *addrbos + max_ssize) {
3853                 vm_map_unlock(map);
3854                 vm_map_entry_release(count);
3855                 return (KERN_NO_SPACE);
3856         }
3857
3858         /*
3859          * We initially map a stack of only init_ssize.  We will
3860          * grow as needed later.  Since this is to be a grow 
3861          * down stack, we map at the top of the range.
3862          *
3863          * Note: we would normally expect prot and max to be
3864          * VM_PROT_ALL, and cow to be 0.  Possibly we should
3865          * eliminate these as input parameters, and just
3866          * pass these values here in the insert call.
3867          */
3868         rv = vm_map_insert(map, &count, NULL, NULL,
3869                            0, *addrbos + max_ssize - init_ssize,
3870                            *addrbos + max_ssize,
3871                            VM_MAPTYPE_NORMAL,
3872                            VM_SUBSYS_STACK, prot, max, cow);
3873
3874         /* Now set the avail_ssize amount */
3875         if (rv == KERN_SUCCESS) {
3876                 if (prev_entry)
3877                         next = vm_map_rb_tree_RB_NEXT(prev_entry);
3878                 else
3879                         next = RB_MIN(vm_map_rb_tree, &map->rb_root);
3880                 if (prev_entry != NULL) {
3881                         vm_map_clip_end(map,
3882                                         prev_entry,
3883                                         *addrbos + max_ssize - init_ssize,
3884                                         &count);
3885                 }
3886                 if (next->end   != *addrbos + max_ssize ||
3887                     next->start != *addrbos + max_ssize - init_ssize){
3888                         panic ("Bad entry start/end for new stack entry");
3889                 } else {
3890                         next->aux.avail_ssize = max_ssize - init_ssize;
3891                 }
3892         }
3893
3894         vm_map_unlock(map);
3895         vm_map_entry_release(count);
3896         return (rv);
3897 }
3898
3899 /*
3900  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3901  * desired address is already mapped, or if we successfully grow
3902  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3903  * stack range (this is strange, but preserves compatibility with
3904  * the grow function in vm_machdep.c).
3905  *
3906  * No requirements.
3907  */
3908 int
3909 vm_map_growstack (vm_map_t map, vm_offset_t addr)
3910 {
3911         vm_map_entry_t prev_entry;
3912         vm_map_entry_t stack_entry;
3913         vm_map_entry_t next;
3914         struct vmspace *vm;
3915         struct lwp *lp;
3916         struct proc *p;
3917         vm_offset_t    end;
3918         int grow_amount;
3919         int rv = KERN_SUCCESS;
3920         int is_procstack;
3921         int use_read_lock = 1;
3922         int count;
3923
3924         /*
3925          * Find the vm
3926          */
3927         lp = curthread->td_lwp;
3928         p = curthread->td_proc;
3929         KKASSERT(lp != NULL);
3930         vm = lp->lwp_vmspace;
3931
3932         /*
3933          * Growstack is only allowed on the current process.  We disallow
3934          * other use cases, e.g. trying to access memory via procfs that
3935          * the stack hasn't grown into.
3936          */
3937         if (map != &vm->vm_map) {
3938                 return KERN_FAILURE;
3939         }
3940
3941         count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
3942 Retry:
3943         if (use_read_lock)
3944                 vm_map_lock_read(map);
3945         else
3946                 vm_map_lock(map);
3947
3948         /*
3949          * If addr is already in the entry range, no need to grow.
3950          * prev_entry returns NULL if addr is at the head.
3951          */
3952         if (vm_map_lookup_entry(map, addr, &prev_entry))
3953                 goto done;
3954         if (prev_entry)
3955                 stack_entry = vm_map_rb_tree_RB_NEXT(prev_entry);
3956         else
3957                 stack_entry = RB_MIN(vm_map_rb_tree, &map->rb_root);
3958
3959         if (stack_entry == NULL)
3960                 goto done;
3961         if (prev_entry == NULL)
3962                 end = stack_entry->start - stack_entry->aux.avail_ssize;
3963         else
3964                 end = prev_entry->end;
3965
3966         /*
3967          * This next test mimics the old grow function in vm_machdep.c.
3968          * It really doesn't quite make sense, but we do it anyway
3969          * for compatibility.
3970          *
3971          * If not growable stack, return success.  This signals the
3972          * caller to proceed as he would normally with normal vm.
3973          */
3974         if (stack_entry->aux.avail_ssize < 1 ||
3975             addr >= stack_entry->start ||
3976             addr <  stack_entry->start - stack_entry->aux.avail_ssize) {
3977                 goto done;
3978         } 
3979         
3980         /* Find the minimum grow amount */
3981         grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
3982         if (grow_amount > stack_entry->aux.avail_ssize) {
3983                 rv = KERN_NO_SPACE;
3984                 goto done;
3985         }
3986
3987         /*
3988          * If there is no longer enough space between the entries
3989          * nogo, and adjust the available space.  Note: this 
3990          * should only happen if the user has mapped into the
3991          * stack area after the stack was created, and is
3992          * probably an error.
3993          *
3994          * This also effectively destroys any guard page the user
3995          * might have intended by limiting the stack size.
3996          */
3997         if (grow_amount > stack_entry->start - end) {
3998                 if (use_read_lock && vm_map_lock_upgrade(map)) {
3999                         /* lost lock */
4000                         use_read_lock = 0;
4001                         goto Retry;
4002                 }
4003                 use_read_lock = 0;
4004                 stack_entry->aux.avail_ssize = stack_entry->start - end;
4005                 rv = KERN_NO_SPACE;
4006                 goto done;
4007         }
4008
4009         is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
4010
4011         /* If this is the main process stack, see if we're over the 
4012          * stack limit.
4013          */
4014         if (is_procstack && (vm->vm_ssize + grow_amount >
4015                              p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
4016                 rv = KERN_NO_SPACE;
4017                 goto done;
4018         }
4019
4020         /* Round up the grow amount modulo SGROWSIZ */
4021         grow_amount = roundup (grow_amount, sgrowsiz);
4022         if (grow_amount > stack_entry->aux.avail_ssize) {
4023                 grow_amount = stack_entry->aux.avail_ssize;
4024         }
4025         if (is_procstack && (vm->vm_ssize + grow_amount >
4026                              p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
4027                 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur - vm->vm_ssize;
4028         }
4029
4030         /* If we would blow our VMEM resource limit, no go */
4031         if (map->size + grow_amount > p->p_rlimit[RLIMIT_VMEM].rlim_cur) {
4032                 rv = KERN_NO_SPACE;
4033                 goto done;
4034         }
4035
4036         if (use_read_lock && vm_map_lock_upgrade(map)) {
4037                 /* lost lock */
4038                 use_read_lock = 0;
4039                 goto Retry;
4040         }
4041         use_read_lock = 0;
4042
4043         /* Get the preliminary new entry start value */
4044         addr = stack_entry->start - grow_amount;
4045
4046         /* If this puts us into the previous entry, cut back our growth
4047          * to the available space.  Also, see the note above.
4048          */
4049         if (addr < end) {
4050                 stack_entry->aux.avail_ssize = stack_entry->start - end;
4051                 addr = end;
4052         }
4053
4054         rv = vm_map_insert(map, &count, NULL, NULL,
4055                            0, addr, stack_entry->start,
4056                            VM_MAPTYPE_NORMAL,
4057                            VM_SUBSYS_STACK, VM_PROT_ALL, VM_PROT_ALL, 0);
4058
4059         /* Adjust the available stack space by the amount we grew. */
4060         if (rv == KERN_SUCCESS) {
4061                 if (prev_entry) {
4062                         vm_map_clip_end(map, prev_entry, addr, &count);
4063                         next = vm_map_rb_tree_RB_NEXT(prev_entry);
4064                 } else {
4065                         next = RB_MIN(vm_map_rb_tree, &map->rb_root);
4066                 }
4067                 if (next->end != stack_entry->start  ||
4068                     next->start != addr) {
4069                         panic ("Bad stack grow start/end in new stack entry");
4070                 } else {
4071                         next->aux.avail_ssize =
4072                                 stack_entry->aux.avail_ssize -
4073                                 (next->end - next->start);
4074                         if (is_procstack) {
4075                                 vm->vm_ssize += next->end -
4076                                                 next->start;
4077                         }
4078                 }
4079
4080                 if (map->flags & MAP_WIREFUTURE)
4081                         vm_map_unwire(map, next->start, next->end, FALSE);
4082         }
4083
4084 done:
4085         if (use_read_lock)
4086                 vm_map_unlock_read(map);
4087         else
4088                 vm_map_unlock(map);
4089         vm_map_entry_release(count);
4090         return (rv);
4091 }
4092
4093 /*
4094  * Unshare the specified VM space for exec.  If other processes are
4095  * mapped to it, then create a new one.  The new vmspace is null.
4096  *
4097  * No requirements.
4098  */
4099 void
4100 vmspace_exec(struct proc *p, struct vmspace *vmcopy) 
4101 {
4102         struct vmspace *oldvmspace = p->p_vmspace;
4103         struct vmspace *newvmspace;
4104         vm_map_t map = &p->p_vmspace->vm_map;
4105
4106         /*
4107          * If we are execing a resident vmspace we fork it, otherwise
4108          * we create a new vmspace.  Note that exitingcnt is not
4109          * copied to the new vmspace.
4110          */
4111         lwkt_gettoken(&oldvmspace->vm_map.token);
4112         if (vmcopy)  {
4113                 newvmspace = vmspace_fork(vmcopy);
4114                 lwkt_gettoken(&newvmspace->vm_map.token);
4115         } else {
4116                 newvmspace = vmspace_alloc(vm_map_min(map), vm_map_max(map));
4117                 lwkt_gettoken(&newvmspace->vm_map.token);
4118                 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
4119                       (caddr_t)&oldvmspace->vm_endcopy -
4120                        (caddr_t)&oldvmspace->vm_startcopy);
4121         }
4122
4123         /*
4124          * Finish initializing the vmspace before assigning it
4125          * to the process.  The vmspace will become the current vmspace
4126          * if p == curproc.
4127          */
4128         pmap_pinit2(vmspace_pmap(newvmspace));
4129         pmap_replacevm(p, newvmspace, 0);
4130         lwkt_reltoken(&newvmspace->vm_map.token);
4131         lwkt_reltoken(&oldvmspace->vm_map.token);
4132         vmspace_rel(oldvmspace);
4133 }
4134
4135 /*
4136  * Unshare the specified VM space for forcing COW.  This
4137  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4138  */
4139 void
4140 vmspace_unshare(struct proc *p) 
4141 {
4142         struct vmspace *oldvmspace = p->p_vmspace;
4143         struct vmspace *newvmspace;
4144
4145         lwkt_gettoken(&oldvmspace->vm_map.token);
4146         if (vmspace_getrefs(oldvmspace) == 1) {
4147                 lwkt_reltoken(&oldvmspace->vm_map.token);
4148                 return;
4149         }
4150         newvmspace = vmspace_fork(oldvmspace);
4151         lwkt_gettoken(&newvmspace->vm_map.token);
4152         pmap_pinit2(vmspace_pmap(newvmspace));
4153         pmap_replacevm(p, newvmspace, 0);
4154         lwkt_reltoken(&newvmspace->vm_map.token);
4155         lwkt_reltoken(&oldvmspace->vm_map.token);
4156         vmspace_rel(oldvmspace);
4157 }
4158
4159 /*
4160  * vm_map_hint: return the beginning of the best area suitable for
4161  * creating a new mapping with "prot" protection.
4162  *
4163  * No requirements.
4164  */
4165 vm_offset_t
4166 vm_map_hint(struct proc *p, vm_offset_t addr, vm_prot_t prot)
4167 {
4168         struct vmspace *vms = p->p_vmspace;
4169         struct rlimit limit;
4170         rlim_t dsiz;
4171
4172         /*
4173          * Acquire datasize limit for mmap() operation,
4174          * calculate nearest power of 2.
4175          */
4176         if (kern_getrlimit(RLIMIT_DATA, &limit))
4177                 limit.rlim_cur = maxdsiz;
4178         dsiz = limit.rlim_cur;
4179
4180         if (!randomize_mmap || addr != 0) {
4181                 /*
4182                  * Set a reasonable start point for the hint if it was
4183                  * not specified or if it falls within the heap space.
4184                  * Hinted mmap()s do not allocate out of the heap space.
4185                  */
4186                 if (addr == 0 ||
4187                     (addr >= round_page((vm_offset_t)vms->vm_taddr) &&
4188                      addr < round_page((vm_offset_t)vms->vm_daddr + dsiz))) {
4189                         addr = round_page((vm_offset_t)vms->vm_daddr + dsiz);
4190                 }
4191
4192                 return addr;
4193         }
4194
4195         /*
4196          * randomize_mmap && addr == 0.  For now randomize the
4197          * address within a dsiz range beyond the data limit.
4198          */
4199         addr = (vm_offset_t)vms->vm_daddr + dsiz;
4200         if (dsiz)
4201                 addr += (karc4random64() & 0x7FFFFFFFFFFFFFFFLU) % dsiz;
4202         return (round_page(addr));
4203 }
4204
4205 /*
4206  * Finds the VM object, offset, and protection for a given virtual address
4207  * in the specified map, assuming a page fault of the type specified.
4208  *
4209  * Leaves the map in question locked for read; return values are guaranteed
4210  * until a vm_map_lookup_done call is performed.  Note that the map argument
4211  * is in/out; the returned map must be used in the call to vm_map_lookup_done.
4212  *
4213  * A handle (out_entry) is returned for use in vm_map_lookup_done, to make
4214  * that fast.
4215  *
4216  * If a lookup is requested with "write protection" specified, the map may
4217  * be changed to perform virtual copying operations, although the data
4218  * referenced will remain the same.
4219  *
4220  * No requirements.
4221  */
4222 int
4223 vm_map_lookup(vm_map_t *var_map,                /* IN/OUT */
4224               vm_offset_t vaddr,
4225               vm_prot_t fault_typea,
4226               vm_map_entry_t *out_entry,        /* OUT */
4227               vm_object_t *object,              /* OUT */
4228               vm_pindex_t *pindex,              /* OUT */
4229               vm_prot_t *out_prot,              /* OUT */
4230               int *wflags)                      /* OUT */
4231 {
4232         vm_map_entry_t entry;
4233         vm_map_t map = *var_map;
4234         vm_prot_t prot;
4235         vm_prot_t fault_type = fault_typea;
4236         int use_read_lock = 1;
4237         int rv = KERN_SUCCESS;
4238         int count;
4239         thread_t td = curthread;
4240
4241         /*
4242          * vm_map_entry_reserve() implements an important mitigation
4243          * against mmap() span running the kernel out of vm_map_entry
4244          * structures, but it can also cause an infinite call recursion.
4245          * Use td_nest_count to prevent an infinite recursion (allows
4246          * the vm_map code to dig into the pcpu vm_map_entry reserve).
4247          */
4248         count = 0;
4249         if (td->td_nest_count == 0) {
4250                 ++td->td_nest_count;
4251                 count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
4252                 --td->td_nest_count;
4253         }
4254 RetryLookup:
4255         if (use_read_lock)
4256                 vm_map_lock_read(map);
4257         else
4258                 vm_map_lock(map);
4259
4260         /*
4261          * Always do a full lookup.  The hint doesn't get us much anymore
4262          * now that the map is RB'd.
4263          */
4264         cpu_ccfence();
4265         *out_entry = NULL;
4266         *object = NULL;
4267
4268         {
4269                 vm_map_entry_t tmp_entry;
4270
4271                 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) {
4272                         rv = KERN_INVALID_ADDRESS;
4273                         goto done;
4274                 }
4275                 entry = tmp_entry;
4276                 *out_entry = entry;
4277         }
4278         
4279         /*
4280          * Handle submaps.
4281          */
4282         if (entry->maptype == VM_MAPTYPE_SUBMAP) {
4283                 vm_map_t old_map = map;
4284
4285                 *var_map = map = entry->object.sub_map;
4286                 if (use_read_lock)
4287                         vm_map_unlock_read(old_map);
4288                 else
4289                         vm_map_unlock(old_map);
4290                 use_read_lock = 1;
4291                 goto RetryLookup;
4292         }
4293
4294         /*
4295          * Check whether this task is allowed to have this page.
4296          * Note the special case for MAP_ENTRY_COW pages with an override.
4297          * This is to implement a forced COW for debuggers.
4298          */
4299         if (fault_type & VM_PROT_OVERRIDE_WRITE)
4300                 prot = entry->max_protection;
4301         else
4302                 prot = entry->protection;
4303
4304         fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
4305         if ((fault_type & prot) != fault_type) {
4306                 rv = KERN_PROTECTION_FAILURE;
4307                 goto done;
4308         }
4309
4310         if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
4311             (entry->eflags & MAP_ENTRY_COW) &&
4312             (fault_type & VM_PROT_WRITE) &&
4313             (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
4314                 rv = KERN_PROTECTION_FAILURE;
4315                 goto done;
4316         }
4317
4318         /*
4319          * If this page is not pageable, we have to get it for all possible
4320          * accesses.
4321          */
4322         *wflags = 0;
4323         if (entry->wired_count) {
4324                 *wflags |= FW_WIRED;
4325                 prot = fault_type = entry->protection;
4326         }
4327
4328         /*
4329          * Virtual page tables may need to update the accessed (A) bit
4330          * in a page table entry.  Upgrade the fault to a write fault for
4331          * that case if the map will support it.  If the map does not support
4332          * it the page table entry simply will not be updated.
4333          */
4334         if (entry->maptype == VM_MAPTYPE_VPAGETABLE) {
4335                 if (prot & VM_PROT_WRITE)
4336                         fault_type |= VM_PROT_WRITE;
4337         }
4338
4339         if (curthread->td_lwp && curthread->td_lwp->lwp_vmspace &&
4340             pmap_emulate_ad_bits(&curthread->td_lwp->lwp_vmspace->vm_pmap)) {
4341                 if ((prot & VM_PROT_WRITE) == 0)
4342                         fault_type |= VM_PROT_WRITE;
4343         }
4344
4345         /*
4346          * Only NORMAL and VPAGETABLE maps are object-based.  UKSMAPs are not.
4347          */
4348         if (entry->maptype != VM_MAPTYPE_NORMAL &&
4349             entry->maptype != VM_MAPTYPE_VPAGETABLE) {
4350                 *object = NULL;
4351                 goto skip;
4352         }
4353
4354         /*
4355          * If the entry was copy-on-write, we either ...
4356          */
4357         if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4358                 /*
4359                  * If we want to write the page, we may as well handle that
4360                  * now since we've got the map locked.
4361                  *
4362                  * If we don't need to write the page, we just demote the
4363                  * permissions allowed.
4364                  */
4365                 if (fault_type & VM_PROT_WRITE) {
4366                         /*
4367                          * Not allowed if TDF_NOFAULT is set as the shadowing
4368                          * operation can deadlock against the faulting
4369                          * function due to the copy-on-write.
4370                          */
4371                         if (curthread->td_flags & TDF_NOFAULT) {
4372                                 rv = KERN_FAILURE_NOFAULT;
4373                                 goto done;
4374                         }
4375
4376                         /*
4377                          * Make a new object, and place it in the object
4378                          * chain.  Note that no new references have appeared
4379                          * -- one just moved from the map to the new
4380                          * object.
4381                          */
4382                         if (use_read_lock && vm_map_lock_upgrade(map)) {
4383                                 /* lost lock */
4384                                 use_read_lock = 0;
4385                                 goto RetryLookup;
4386                         }
4387                         use_read_lock = 0;
4388                         vm_map_entry_shadow(entry, 0);
4389                         *wflags |= FW_DIDCOW;
4390                 } else {
4391                         /*
4392                          * We're attempting to read a copy-on-write page --
4393                          * don't allow writes.
4394                          */
4395                         prot &= ~VM_PROT_WRITE;
4396                 }
4397         }
4398
4399         /*
4400          * Create an object if necessary.  This code also handles
4401          * partitioning large entries to improve vm_fault performance.
4402          */
4403         if (entry->object.vm_object == NULL && !map->system_map) {
4404                 if (use_read_lock && vm_map_lock_upgrade(map))  {
4405                         /* lost lock */
4406                         use_read_lock = 0;
4407                         goto RetryLookup;
4408                 }
4409                 use_read_lock = 0;
4410
4411                 /*
4412                  * Partition large entries, giving each its own VM object,
4413                  * to improve concurrent fault performance.  This is only
4414                  * applicable to userspace.
4415                  */
4416                 if (map != &kernel_map &&
4417                     entry->maptype == VM_MAPTYPE_NORMAL &&
4418                     ((entry->start ^ entry->end) & ~MAP_ENTRY_PARTITION_MASK) &&
4419                     vm_map_partition_enable) {
4420                         if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
4421                                 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
4422                                 ++mycpu->gd_cnt.v_intrans_coll;
4423                                 ++mycpu->gd_cnt.v_intrans_wait;
4424                                 vm_map_transition_wait(map, 0);
4425                                 goto RetryLookup;
4426                         }
4427                         vm_map_entry_partition(map, entry, vaddr, &count);
4428                 }
4429                 vm_map_entry_allocate_object(entry);
4430         }
4431
4432         /*
4433          * Return the object/offset from this entry.  If the entry was
4434          * copy-on-write or empty, it has been fixed up.
4435          */
4436         *object = entry->object.vm_object;
4437
4438 skip:
4439         *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4440
4441         /*
4442          * Return whether this is the only map sharing this data.  On
4443          * success we return with a read lock held on the map.  On failure
4444          * we return with the map unlocked.
4445          */
4446         *out_prot = prot;
4447 done:
4448         if (rv == KERN_SUCCESS) {
4449                 if (use_read_lock == 0)
4450                         vm_map_lock_downgrade(map);
4451         } else if (use_read_lock) {
4452                 vm_map_unlock_read(map);
4453         } else {
4454                 vm_map_unlock(map);
4455         }
4456         if (count > 0)
4457                 vm_map_entry_release(count);
4458
4459         return (rv);
4460 }
4461
4462 /*
4463  * Releases locks acquired by a vm_map_lookup()
4464  * (according to the handle returned by that lookup).
4465  *
4466  * No other requirements.
4467  */
4468 void
4469 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry, int count)
4470 {
4471         /*
4472          * Unlock the main-level map
4473          */
4474         vm_map_unlock_read(map);
4475         if (count)
4476                 vm_map_entry_release(count);
4477 }
4478
4479 static void
4480 vm_map_entry_partition(vm_map_t map, vm_map_entry_t entry,
4481                        vm_offset_t vaddr, int *countp)
4482 {
4483         vaddr &= ~MAP_ENTRY_PARTITION_MASK;
4484         vm_map_clip_start(map, entry, vaddr, countp);
4485         vaddr += MAP_ENTRY_PARTITION_SIZE;
4486         vm_map_clip_end(map, entry, vaddr, countp);
4487 }
4488
4489 /*
4490  * Quick hack, needs some help to make it more SMP friendly.
4491  */
4492 void
4493 vm_map_interlock(vm_map_t map, struct vm_map_ilock *ilock,
4494                  vm_offset_t ran_beg, vm_offset_t ran_end)
4495 {
4496         struct vm_map_ilock *scan;
4497
4498         ilock->ran_beg = ran_beg;
4499         ilock->ran_end = ran_end;
4500         ilock->flags = 0;
4501
4502         spin_lock(&map->ilock_spin);
4503 restart:
4504         for (scan = map->ilock_base; scan; scan = scan->next) {
4505                 if (ran_end > scan->ran_beg && ran_beg < scan->ran_end) {
4506                         scan->flags |= ILOCK_WAITING;
4507                         ssleep(scan, &map->ilock_spin, 0, "ilock", 0);
4508                         goto restart;
4509                 }
4510         }
4511         ilock->next = map->ilock_base;
4512         map->ilock_base = ilock;
4513         spin_unlock(&map->ilock_spin);
4514 }
4515
4516 void
4517 vm_map_deinterlock(vm_map_t map, struct  vm_map_ilock *ilock)
4518 {
4519         struct vm_map_ilock *scan;
4520         struct vm_map_ilock **scanp;
4521
4522         spin_lock(&map->ilock_spin);
4523         scanp = &map->ilock_base;
4524         while ((scan = *scanp) != NULL) {
4525                 if (scan == ilock) {
4526                         *scanp = ilock->next;
4527                         spin_unlock(&map->ilock_spin);
4528                         if (ilock->flags & ILOCK_WAITING)
4529                                 wakeup(ilock);
4530                         return;
4531                 }
4532                 scanp = &scan->next;
4533         }
4534         spin_unlock(&map->ilock_spin);
4535         panic("vm_map_deinterlock: missing ilock!");
4536 }
4537
4538 #include "opt_ddb.h"
4539 #ifdef DDB
4540 #include <ddb/ddb.h>
4541
4542 /*
4543  * Debugging only
4544  */
4545 DB_SHOW_COMMAND(map, vm_map_print)
4546 {
4547         static int nlines;
4548         /* XXX convert args. */
4549         vm_map_t map = (vm_map_t)addr;
4550         boolean_t full = have_addr;
4551
4552         vm_map_entry_t entry;
4553
4554         db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4555             (void *)map,
4556             (void *)map->pmap, map->nentries, map->timestamp);
4557         nlines++;
4558
4559         if (!full && db_indent)
4560                 return;
4561
4562         db_indent += 2;
4563         RB_FOREACH(entry, vm_map_rb_tree, &map->rb_root) {
4564                 db_iprintf("map entry %p: start=%p, end=%p\n",
4565                     (void *)entry, (void *)entry->start, (void *)entry->end);
4566                 nlines++;
4567                 {
4568                         static char *inheritance_name[4] =
4569                         {"share", "copy", "none", "donate_copy"};
4570
4571                         db_iprintf(" prot=%x/%x/%s",
4572                             entry->protection,
4573                             entry->max_protection,
4574                             inheritance_name[(int)(unsigned char)
4575                                                 entry->inheritance]);
4576                         if (entry->wired_count != 0)
4577                                 db_printf(", wired");
4578                 }
4579                 switch(entry->maptype) {
4580                 case VM_MAPTYPE_SUBMAP:
4581                         /* XXX no %qd in kernel.  Truncate entry->offset. */
4582                         db_printf(", share=%p, offset=0x%lx\n",
4583                             (void *)entry->object.sub_map,
4584                             (long)entry->offset);
4585                         nlines++;
4586
4587                         db_indent += 2;
4588                         vm_map_print((db_expr_t)(intptr_t)
4589                                      entry->object.sub_map,
4590                                      full, 0, NULL);
4591                         db_indent -= 2;
4592                         break;
4593                 case VM_MAPTYPE_NORMAL:
4594                 case VM_MAPTYPE_VPAGETABLE:
4595                         /* XXX no %qd in kernel.  Truncate entry->offset. */
4596                         db_printf(", object=%p, offset=0x%lx",
4597                             (void *)entry->object.vm_object,
4598                             (long)entry->offset);
4599                         if (entry->eflags & MAP_ENTRY_COW)
4600                                 db_printf(", copy (%s)",
4601                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4602                         db_printf("\n");
4603                         nlines++;
4604
4605                         if (entry->object.vm_object) {
4606                                 db_indent += 2;
4607                                 vm_object_print((db_expr_t)(intptr_t)
4608                                                 entry->object.vm_object,
4609                                                 full, 0, NULL);
4610                                 nlines += 4;
4611                                 db_indent -= 2;
4612                         }
4613                         break;
4614                 case VM_MAPTYPE_UKSMAP:
4615                         db_printf(", uksmap=%p, offset=0x%lx",
4616                             (void *)entry->object.uksmap,
4617                             (long)entry->offset);
4618                         if (entry->eflags & MAP_ENTRY_COW)
4619                                 db_printf(", copy (%s)",
4620                                     (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4621                         db_printf("\n");
4622                         nlines++;
4623                         break;
4624                 default:
4625                         break;
4626                 }
4627         }
4628         db_indent -= 2;
4629         if (db_indent == 0)
4630                 nlines = 0;
4631 }
4632
4633 /*
4634  * Debugging only
4635  */
4636 DB_SHOW_COMMAND(procvm, procvm)
4637 {
4638         struct proc *p;
4639
4640         if (have_addr) {
4641                 p = (struct proc *) addr;
4642         } else {
4643                 p = curproc;
4644         }
4645
4646         db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4647             (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4648             (void *)vmspace_pmap(p->p_vmspace));
4649
4650         vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
4651 }
4652
4653 #endif /* DDB */