bge: Add commented out code to set "clear ticks upon TX"
[dragonfly.git] / sys / dev / netif / bge / if_bge.c
1 /*
2  * Copyright (c) 2001 Wind River Systems
3  * Copyright (c) 1997, 1998, 1999, 2001
4  *      Bill Paul <wpaul@windriver.com>.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *      This product includes software developed by Bill Paul.
17  * 4. Neither the name of the author nor the names of any co-contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31  * THE POSSIBILITY OF SUCH DAMAGE.
32  *
33  * $FreeBSD: src/sys/dev/bge/if_bge.c,v 1.3.2.39 2005/07/03 03:41:18 silby Exp $
34  */
35
36 /*
37  * Broadcom BCM570x family gigabit ethernet driver for FreeBSD.
38  * 
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Engineer, Wind River Systems
41  */
42
43 /*
44  * The Broadcom BCM5700 is based on technology originally developed by
45  * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
46  * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
47  * two on-board MIPS R4000 CPUs and can have as much as 16MB of external
48  * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
49  * frames, highly configurable RX filtering, and 16 RX and TX queues
50  * (which, along with RX filter rules, can be used for QOS applications).
51  * Other features, such as TCP segmentation, may be available as part
52  * of value-added firmware updates. Unlike the Tigon I and Tigon II,
53  * firmware images can be stored in hardware and need not be compiled
54  * into the driver.
55  *
56  * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
57  * function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
58  * 
59  * The BCM5701 is a single-chip solution incorporating both the BCM5700
60  * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
61  * does not support external SSRAM.
62  *
63  * Broadcom also produces a variation of the BCM5700 under the "Altima"
64  * brand name, which is functionally similar but lacks PCI-X support.
65  *
66  * Without external SSRAM, you can only have at most 4 TX rings,
67  * and the use of the mini RX ring is disabled. This seems to imply
68  * that these features are simply not available on the BCM5701. As a
69  * result, this driver does not implement any support for the mini RX
70  * ring.
71  */
72
73 #include "opt_polling.h"
74
75 #include <sys/param.h>
76 #include <sys/bus.h>
77 #include <sys/endian.h>
78 #include <sys/kernel.h>
79 #include <sys/ktr.h>
80 #include <sys/interrupt.h>
81 #include <sys/mbuf.h>
82 #include <sys/malloc.h>
83 #include <sys/queue.h>
84 #include <sys/rman.h>
85 #include <sys/serialize.h>
86 #include <sys/socket.h>
87 #include <sys/sockio.h>
88 #include <sys/sysctl.h>
89
90 #include <net/bpf.h>
91 #include <net/ethernet.h>
92 #include <net/if.h>
93 #include <net/if_arp.h>
94 #include <net/if_dl.h>
95 #include <net/if_media.h>
96 #include <net/if_types.h>
97 #include <net/ifq_var.h>
98 #include <net/vlan/if_vlan_var.h>
99 #include <net/vlan/if_vlan_ether.h>
100
101 #include <dev/netif/mii_layer/mii.h>
102 #include <dev/netif/mii_layer/miivar.h>
103 #include <dev/netif/mii_layer/brgphyreg.h>
104
105 #include <bus/pci/pcidevs.h>
106 #include <bus/pci/pcireg.h>
107 #include <bus/pci/pcivar.h>
108
109 #include <dev/netif/bge/if_bgereg.h>
110
111 /* "device miibus" required.  See GENERIC if you get errors here. */
112 #include "miibus_if.h"
113
114 #define BGE_CSUM_FEATURES       (CSUM_IP | CSUM_TCP)
115 #define BGE_MIN_FRAME           60
116
117 static const struct bge_type bge_devs[] = {
118         { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C996,
119                 "3COM 3C996 Gigabit Ethernet" },
120
121         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700,
122                 "Alteon BCM5700 Gigabit Ethernet" },
123         { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5701,
124                 "Alteon BCM5701 Gigabit Ethernet" },
125
126         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000,
127                 "Altima AC1000 Gigabit Ethernet" },
128         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001,
129                 "Altima AC1002 Gigabit Ethernet" },
130         { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100,
131                 "Altima AC9100 Gigabit Ethernet" },
132
133         { PCI_VENDOR_APPLE, PCI_PRODUCT_APPLE_BCM5701,
134                 "Apple BCM5701 Gigabit Ethernet" },
135
136         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700,
137                 "Broadcom BCM5700 Gigabit Ethernet" },
138         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701,
139                 "Broadcom BCM5701 Gigabit Ethernet" },
140         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702,
141                 "Broadcom BCM5702 Gigabit Ethernet" },
142         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X,
143                 "Broadcom BCM5702X Gigabit Ethernet" },
144         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702_ALT,
145                 "Broadcom BCM5702 Gigabit Ethernet" },
146         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703,
147                 "Broadcom BCM5703 Gigabit Ethernet" },
148         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X,
149                 "Broadcom BCM5703X Gigabit Ethernet" },
150         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703A3,
151                 "Broadcom BCM5703 Gigabit Ethernet" },
152         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C,
153                 "Broadcom BCM5704C Dual Gigabit Ethernet" },
154         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S,
155                 "Broadcom BCM5704S Dual Gigabit Ethernet" },
156         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S_ALT,
157                 "Broadcom BCM5704S Dual Gigabit Ethernet" },
158         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705,
159                 "Broadcom BCM5705 Gigabit Ethernet" },
160         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705F,
161                 "Broadcom BCM5705F Gigabit Ethernet" },
162         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705K,
163                 "Broadcom BCM5705K Gigabit Ethernet" },
164         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M,
165                 "Broadcom BCM5705M Gigabit Ethernet" },
166         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
167                 "Broadcom BCM5705M Gigabit Ethernet" },
168         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714,
169                 "Broadcom BCM5714C Gigabit Ethernet" },
170         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714S,
171                 "Broadcom BCM5714S Gigabit Ethernet" },
172         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715,
173                 "Broadcom BCM5715 Gigabit Ethernet" },
174         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715S,
175                 "Broadcom BCM5715S Gigabit Ethernet" },
176         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5720,
177                 "Broadcom BCM5720 Gigabit Ethernet" },
178         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5721,
179                 "Broadcom BCM5721 Gigabit Ethernet" },
180         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5722,
181                 "Broadcom BCM5722 Gigabit Ethernet" },
182         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5723,
183                 "Broadcom BCM5723 Gigabit Ethernet" },
184         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750,
185                 "Broadcom BCM5750 Gigabit Ethernet" },
186         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750M,
187                 "Broadcom BCM5750M Gigabit Ethernet" },
188         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751,
189                 "Broadcom BCM5751 Gigabit Ethernet" },
190         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751F,
191                 "Broadcom BCM5751F Gigabit Ethernet" },
192         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751M,
193                 "Broadcom BCM5751M Gigabit Ethernet" },
194         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752,
195                 "Broadcom BCM5752 Gigabit Ethernet" },
196         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752M,
197                 "Broadcom BCM5752M Gigabit Ethernet" },
198         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753,
199                 "Broadcom BCM5753 Gigabit Ethernet" },
200         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753F,
201                 "Broadcom BCM5753F Gigabit Ethernet" },
202         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753M,
203                 "Broadcom BCM5753M Gigabit Ethernet" },
204         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754,
205                 "Broadcom BCM5754 Gigabit Ethernet" },
206         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754M,
207                 "Broadcom BCM5754M Gigabit Ethernet" },
208         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755,
209                 "Broadcom BCM5755 Gigabit Ethernet" },
210         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755M,
211                 "Broadcom BCM5755M Gigabit Ethernet" },
212         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5756,
213                 "Broadcom BCM5756 Gigabit Ethernet" },
214         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761,
215                 "Broadcom BCM5761 Gigabit Ethernet" },
216         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761E,
217                 "Broadcom BCM5761E Gigabit Ethernet" },
218         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761S,
219                 "Broadcom BCM5761S Gigabit Ethernet" },
220         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761SE,
221                 "Broadcom BCM5761SE Gigabit Ethernet" },
222         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5764,
223                 "Broadcom BCM5764 Gigabit Ethernet" },
224         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780,
225                 "Broadcom BCM5780 Gigabit Ethernet" },
226         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780S,
227                 "Broadcom BCM5780S Gigabit Ethernet" },
228         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5781,
229                 "Broadcom BCM5781 Gigabit Ethernet" },
230         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782,
231                 "Broadcom BCM5782 Gigabit Ethernet" },
232         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5784,
233                 "Broadcom BCM5784 Gigabit Ethernet" },
234         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785F,
235                 "Broadcom BCM5785F Gigabit Ethernet" },
236         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785G,
237                 "Broadcom BCM5785G Gigabit Ethernet" },
238         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5786,
239                 "Broadcom BCM5786 Gigabit Ethernet" },
240         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787,
241                 "Broadcom BCM5787 Gigabit Ethernet" },
242         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787F,
243                 "Broadcom BCM5787F Gigabit Ethernet" },
244         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787M,
245                 "Broadcom BCM5787M Gigabit Ethernet" },
246         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5788,
247                 "Broadcom BCM5788 Gigabit Ethernet" },
248         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5789,
249                 "Broadcom BCM5789 Gigabit Ethernet" },
250         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901,
251                 "Broadcom BCM5901 Fast Ethernet" },
252         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2,
253                 "Broadcom BCM5901A2 Fast Ethernet" },
254         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5903M,
255                 "Broadcom BCM5903M Fast Ethernet" },
256         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906,
257                 "Broadcom BCM5906 Fast Ethernet"},
258         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906M,
259                 "Broadcom BCM5906M Fast Ethernet"},
260         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57760,
261                 "Broadcom BCM57760 Gigabit Ethernet"},
262         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57780,
263                 "Broadcom BCM57780 Gigabit Ethernet"},
264         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57788,
265                 "Broadcom BCM57788 Gigabit Ethernet"},
266         { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57790,
267                 "Broadcom BCM57790 Gigabit Ethernet"},
268         { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
269                 "SysKonnect Gigabit Ethernet" },
270
271         { 0, 0, NULL }
272 };
273
274 #define BGE_IS_JUMBO_CAPABLE(sc)        ((sc)->bge_flags & BGE_FLAG_JUMBO)
275 #define BGE_IS_5700_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
276 #define BGE_IS_5705_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5705_PLUS)
277 #define BGE_IS_5714_FAMILY(sc)          ((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
278 #define BGE_IS_575X_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_575X_PLUS)
279 #define BGE_IS_5755_PLUS(sc)            ((sc)->bge_flags & BGE_FLAG_5755_PLUS)
280 #define BGE_IS_5788(sc)                 ((sc)->bge_flags & BGE_FLAG_5788)
281
282 #define BGE_IS_CRIPPLED(sc)             \
283         (BGE_IS_5788((sc)) || (sc)->bge_asicrev == BGE_ASICREV_BCM5700)
284
285 typedef int     (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
286
287 static int      bge_probe(device_t);
288 static int      bge_attach(device_t);
289 static int      bge_detach(device_t);
290 static void     bge_txeof(struct bge_softc *, uint16_t);
291 static void     bge_rxeof(struct bge_softc *, uint16_t);
292
293 static void     bge_tick(void *);
294 static void     bge_stats_update(struct bge_softc *);
295 static void     bge_stats_update_regs(struct bge_softc *);
296 static struct mbuf *
297                 bge_defrag_shortdma(struct mbuf *);
298 static int      bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
299
300 #ifdef DEVICE_POLLING
301 static void     bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
302 #endif
303 static void     bge_intr(void *);
304 static void     bge_intr_status_tag(void *);
305 static void     bge_enable_intr(struct bge_softc *);
306 static void     bge_disable_intr(struct bge_softc *);
307 static void     bge_start(struct ifnet *);
308 static int      bge_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
309 static void     bge_init(void *);
310 static void     bge_stop(struct bge_softc *);
311 static void     bge_watchdog(struct ifnet *);
312 static void     bge_shutdown(device_t);
313 static int      bge_suspend(device_t);
314 static int      bge_resume(device_t);
315 static int      bge_ifmedia_upd(struct ifnet *);
316 static void     bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
317
318 static uint8_t  bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
319 static int      bge_read_nvram(struct bge_softc *, caddr_t, int, int);
320
321 static uint8_t  bge_eeprom_getbyte(struct bge_softc *, uint32_t, uint8_t *);
322 static int      bge_read_eeprom(struct bge_softc *, caddr_t, uint32_t, size_t);
323
324 static void     bge_setmulti(struct bge_softc *);
325 static void     bge_setpromisc(struct bge_softc *);
326
327 static int      bge_alloc_jumbo_mem(struct bge_softc *);
328 static void     bge_free_jumbo_mem(struct bge_softc *);
329 static struct bge_jslot
330                 *bge_jalloc(struct bge_softc *);
331 static void     bge_jfree(void *);
332 static void     bge_jref(void *);
333 static int      bge_newbuf_std(struct bge_softc *, int, int);
334 static int      bge_newbuf_jumbo(struct bge_softc *, int, int);
335 static void     bge_setup_rxdesc_std(struct bge_softc *, int);
336 static void     bge_setup_rxdesc_jumbo(struct bge_softc *, int);
337 static int      bge_init_rx_ring_std(struct bge_softc *);
338 static void     bge_free_rx_ring_std(struct bge_softc *);
339 static int      bge_init_rx_ring_jumbo(struct bge_softc *);
340 static void     bge_free_rx_ring_jumbo(struct bge_softc *);
341 static void     bge_free_tx_ring(struct bge_softc *);
342 static int      bge_init_tx_ring(struct bge_softc *);
343
344 static int      bge_chipinit(struct bge_softc *);
345 static int      bge_blockinit(struct bge_softc *);
346 static void     bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
347
348 static uint32_t bge_readmem_ind(struct bge_softc *, uint32_t);
349 static void     bge_writemem_ind(struct bge_softc *, uint32_t, uint32_t);
350 #ifdef notdef
351 static uint32_t bge_readreg_ind(struct bge_softc *, uint32_t);
352 #endif
353 static void     bge_writereg_ind(struct bge_softc *, uint32_t, uint32_t);
354 static void     bge_writemem_direct(struct bge_softc *, uint32_t, uint32_t);
355 static void     bge_writembx(struct bge_softc *, int, int);
356
357 static int      bge_miibus_readreg(device_t, int, int);
358 static int      bge_miibus_writereg(device_t, int, int, int);
359 static void     bge_miibus_statchg(device_t);
360 static void     bge_bcm5700_link_upd(struct bge_softc *, uint32_t);
361 static void     bge_tbi_link_upd(struct bge_softc *, uint32_t);
362 static void     bge_copper_link_upd(struct bge_softc *, uint32_t);
363 static void     bge_autopoll_link_upd(struct bge_softc *, uint32_t);
364 static void     bge_link_poll(struct bge_softc *);
365
366 static void     bge_reset(struct bge_softc *);
367
368 static int      bge_dma_alloc(struct bge_softc *);
369 static void     bge_dma_free(struct bge_softc *);
370 static int      bge_dma_block_alloc(struct bge_softc *, bus_size_t,
371                                     bus_dma_tag_t *, bus_dmamap_t *,
372                                     void **, bus_addr_t *);
373 static void     bge_dma_block_free(bus_dma_tag_t, bus_dmamap_t, void *);
374
375 static int      bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
376 static int      bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
377 static int      bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
378 static int      bge_get_eaddr(struct bge_softc *, uint8_t[]);
379
380 static void     bge_coal_change(struct bge_softc *);
381 static int      bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS);
382 static int      bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS);
383 static int      bge_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS);
384 static int      bge_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS);
385 static int      bge_sysctl_rx_coal_ticks_int(SYSCTL_HANDLER_ARGS);
386 static int      bge_sysctl_tx_coal_ticks_int(SYSCTL_HANDLER_ARGS);
387 static int      bge_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS);
388 static int      bge_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS);
389 static int      bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *,
390                     int, int, uint32_t);
391
392 /*
393  * Set following tunable to 1 for some IBM blade servers with the DNLK
394  * switch module. Auto negotiation is broken for those configurations.
395  */
396 static int      bge_fake_autoneg = 0;
397 TUNABLE_INT("hw.bge.fake_autoneg", &bge_fake_autoneg);
398
399 #if !defined(KTR_IF_BGE)
400 #define KTR_IF_BGE      KTR_ALL
401 #endif
402 KTR_INFO_MASTER(if_bge);
403 KTR_INFO(KTR_IF_BGE, if_bge, intr, 0, "intr");
404 KTR_INFO(KTR_IF_BGE, if_bge, rx_pkt, 1, "rx_pkt");
405 KTR_INFO(KTR_IF_BGE, if_bge, tx_pkt, 2, "tx_pkt");
406 #define logif(name)     KTR_LOG(if_bge_ ## name)
407
408 static device_method_t bge_methods[] = {
409         /* Device interface */
410         DEVMETHOD(device_probe,         bge_probe),
411         DEVMETHOD(device_attach,        bge_attach),
412         DEVMETHOD(device_detach,        bge_detach),
413         DEVMETHOD(device_shutdown,      bge_shutdown),
414         DEVMETHOD(device_suspend,       bge_suspend),
415         DEVMETHOD(device_resume,        bge_resume),
416
417         /* bus interface */
418         DEVMETHOD(bus_print_child,      bus_generic_print_child),
419         DEVMETHOD(bus_driver_added,     bus_generic_driver_added),
420
421         /* MII interface */
422         DEVMETHOD(miibus_readreg,       bge_miibus_readreg),
423         DEVMETHOD(miibus_writereg,      bge_miibus_writereg),
424         DEVMETHOD(miibus_statchg,       bge_miibus_statchg),
425
426         { 0, 0 }
427 };
428
429 static DEFINE_CLASS_0(bge, bge_driver, bge_methods, sizeof(struct bge_softc));
430 static devclass_t bge_devclass;
431
432 DECLARE_DUMMY_MODULE(if_bge);
433 DRIVER_MODULE(if_bge, pci, bge_driver, bge_devclass, NULL, NULL);
434 DRIVER_MODULE(miibus, bge, miibus_driver, miibus_devclass, NULL, NULL);
435
436 static uint32_t
437 bge_readmem_ind(struct bge_softc *sc, uint32_t off)
438 {
439         device_t dev = sc->bge_dev;
440         uint32_t val;
441
442         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
443             off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
444                 return 0;
445
446         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
447         val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
448         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
449         return (val);
450 }
451
452 static void
453 bge_writemem_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
454 {
455         device_t dev = sc->bge_dev;
456
457         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
458             off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
459                 return;
460
461         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
462         pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
463         pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
464 }
465
466 #ifdef notdef
467 static uint32_t
468 bge_readreg_ind(struct bge_softc *sc, uin32_t off)
469 {
470         device_t dev = sc->bge_dev;
471
472         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
473         return(pci_read_config(dev, BGE_PCI_REG_DATA, 4));
474 }
475 #endif
476
477 static void
478 bge_writereg_ind(struct bge_softc *sc, uint32_t off, uint32_t val)
479 {
480         device_t dev = sc->bge_dev;
481
482         pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
483         pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
484 }
485
486 static void
487 bge_writemem_direct(struct bge_softc *sc, uint32_t off, uint32_t val)
488 {
489         CSR_WRITE_4(sc, off, val);
490 }
491
492 static void
493 bge_writembx(struct bge_softc *sc, int off, int val)
494 {
495         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
496                 off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
497
498         CSR_WRITE_4(sc, off, val);
499         if (sc->bge_mbox_reorder)
500                 CSR_READ_4(sc, off);
501 }
502
503 static uint8_t
504 bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
505 {
506         uint32_t access, byte = 0;
507         int i;
508
509         /* Lock. */
510         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
511         for (i = 0; i < 8000; i++) {
512                 if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
513                         break;
514                 DELAY(20);
515         }
516         if (i == 8000)
517                 return (1);
518
519         /* Enable access. */
520         access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
521         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
522
523         CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
524         CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
525         for (i = 0; i < BGE_TIMEOUT * 10; i++) {
526                 DELAY(10);
527                 if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
528                         DELAY(10);
529                         break;
530                 }
531         }
532
533         if (i == BGE_TIMEOUT * 10) {
534                 if_printf(&sc->arpcom.ac_if, "nvram read timed out\n");
535                 return (1);
536         }
537
538         /* Get result. */
539         byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
540
541         *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
542
543         /* Disable access. */
544         CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
545
546         /* Unlock. */
547         CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
548         CSR_READ_4(sc, BGE_NVRAM_SWARB);
549
550         return (0);
551 }
552
553 /*
554  * Read a sequence of bytes from NVRAM.
555  */
556 static int
557 bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
558 {
559         int err = 0, i;
560         uint8_t byte = 0;
561
562         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
563                 return (1);
564
565         for (i = 0; i < cnt; i++) {
566                 err = bge_nvram_getbyte(sc, off + i, &byte);
567                 if (err)
568                         break;
569                 *(dest + i) = byte;
570         }
571
572         return (err ? 1 : 0);
573 }
574
575 /*
576  * Read a byte of data stored in the EEPROM at address 'addr.' The
577  * BCM570x supports both the traditional bitbang interface and an
578  * auto access interface for reading the EEPROM. We use the auto
579  * access method.
580  */
581 static uint8_t
582 bge_eeprom_getbyte(struct bge_softc *sc, uint32_t addr, uint8_t *dest)
583 {
584         int i;
585         uint32_t byte = 0;
586
587         /*
588          * Enable use of auto EEPROM access so we can avoid
589          * having to use the bitbang method.
590          */
591         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
592
593         /* Reset the EEPROM, load the clock period. */
594         CSR_WRITE_4(sc, BGE_EE_ADDR,
595             BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
596         DELAY(20);
597
598         /* Issue the read EEPROM command. */
599         CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
600
601         /* Wait for completion */
602         for(i = 0; i < BGE_TIMEOUT * 10; i++) {
603                 DELAY(10);
604                 if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
605                         break;
606         }
607
608         if (i == BGE_TIMEOUT) {
609                 if_printf(&sc->arpcom.ac_if, "eeprom read timed out\n");
610                 return(1);
611         }
612
613         /* Get result. */
614         byte = CSR_READ_4(sc, BGE_EE_DATA);
615
616         *dest = (byte >> ((addr % 4) * 8)) & 0xFF;
617
618         return(0);
619 }
620
621 /*
622  * Read a sequence of bytes from the EEPROM.
623  */
624 static int
625 bge_read_eeprom(struct bge_softc *sc, caddr_t dest, uint32_t off, size_t len)
626 {
627         size_t i;
628         int err;
629         uint8_t byte;
630
631         for (byte = 0, err = 0, i = 0; i < len; i++) {
632                 err = bge_eeprom_getbyte(sc, off + i, &byte);
633                 if (err)
634                         break;
635                 *(dest + i) = byte;
636         }
637
638         return(err ? 1 : 0);
639 }
640
641 static int
642 bge_miibus_readreg(device_t dev, int phy, int reg)
643 {
644         struct bge_softc *sc = device_get_softc(dev);
645         uint32_t val;
646         int i;
647
648         KASSERT(phy == sc->bge_phyno,
649             ("invalid phyno %d, should be %d", phy, sc->bge_phyno));
650
651         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
652         if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
653                 CSR_WRITE_4(sc, BGE_MI_MODE,
654                     sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
655                 DELAY(80);
656         }
657
658         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
659             BGE_MIPHY(phy) | BGE_MIREG(reg));
660
661         /* Poll for the PHY register access to complete. */
662         for (i = 0; i < BGE_TIMEOUT; i++) {
663                 DELAY(10);
664                 val = CSR_READ_4(sc, BGE_MI_COMM);
665                 if ((val & BGE_MICOMM_BUSY) == 0) {
666                         DELAY(5);
667                         val = CSR_READ_4(sc, BGE_MI_COMM);
668                         break;
669                 }
670         }
671         if (i == BGE_TIMEOUT) {
672                 if_printf(&sc->arpcom.ac_if, "PHY read timed out "
673                     "(phy %d, reg %d, val 0x%08x)\n", phy, reg, val);
674                 val = 0;
675         }
676
677         /* Restore the autopoll bit if necessary. */
678         if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
679                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
680                 DELAY(80);
681         }
682
683         if (val & BGE_MICOMM_READFAIL)
684                 return 0;
685
686         return (val & 0xFFFF);
687 }
688
689 static int
690 bge_miibus_writereg(device_t dev, int phy, int reg, int val)
691 {
692         struct bge_softc *sc = device_get_softc(dev);
693         int i;
694
695         KASSERT(phy == sc->bge_phyno,
696             ("invalid phyno %d, should be %d", phy, sc->bge_phyno));
697
698         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
699             (reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
700                return 0;
701
702         /* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
703         if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
704                 CSR_WRITE_4(sc, BGE_MI_MODE,
705                     sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
706                 DELAY(80);
707         }
708
709         CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
710             BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
711
712         for (i = 0; i < BGE_TIMEOUT; i++) {
713                 DELAY(10);
714                 if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
715                         DELAY(5);
716                         CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
717                         break;
718                 }
719         }
720         if (i == BGE_TIMEOUT) {
721                 if_printf(&sc->arpcom.ac_if, "PHY write timed out "
722                     "(phy %d, reg %d, val %d)\n", phy, reg, val);
723         }
724
725         /* Restore the autopoll bit if necessary. */
726         if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
727                 CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
728                 DELAY(80);
729         }
730
731         return 0;
732 }
733
734 static void
735 bge_miibus_statchg(device_t dev)
736 {
737         struct bge_softc *sc;
738         struct mii_data *mii;
739
740         sc = device_get_softc(dev);
741         mii = device_get_softc(sc->bge_miibus);
742
743         if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
744             (IFM_ACTIVE | IFM_AVALID)) {
745                 switch (IFM_SUBTYPE(mii->mii_media_active)) {
746                 case IFM_10_T:
747                 case IFM_100_TX:
748                         sc->bge_link = 1;
749                         break;
750                 case IFM_1000_T:
751                 case IFM_1000_SX:
752                 case IFM_2500_SX:
753                         if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
754                                 sc->bge_link = 1;
755                         else
756                                 sc->bge_link = 0;
757                         break;
758                 default:
759                         sc->bge_link = 0;
760                         break;
761                 }
762         } else {
763                 sc->bge_link = 0;
764         }
765         if (sc->bge_link == 0)
766                 return;
767
768         BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
769         if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
770             IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) {
771                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
772         } else {
773                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
774         }
775
776         if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
777                 BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
778         } else {
779                 BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
780         }
781 }
782
783 /*
784  * Memory management for jumbo frames.
785  */
786 static int
787 bge_alloc_jumbo_mem(struct bge_softc *sc)
788 {
789         struct ifnet *ifp = &sc->arpcom.ac_if;
790         struct bge_jslot *entry;
791         uint8_t *ptr;
792         bus_addr_t paddr;
793         int i, error;
794
795         /*
796          * Create tag for jumbo mbufs.
797          * This is really a bit of a kludge. We allocate a special
798          * jumbo buffer pool which (thanks to the way our DMA
799          * memory allocation works) will consist of contiguous
800          * pages. This means that even though a jumbo buffer might
801          * be larger than a page size, we don't really need to
802          * map it into more than one DMA segment. However, the
803          * default mbuf tag will result in multi-segment mappings,
804          * so we have to create a special jumbo mbuf tag that
805          * lets us get away with mapping the jumbo buffers as
806          * a single segment. I think eventually the driver should
807          * be changed so that it uses ordinary mbufs and cluster
808          * buffers, i.e. jumbo frames can span multiple DMA
809          * descriptors. But that's a project for another day.
810          */
811
812         /*
813          * Create DMA stuffs for jumbo RX ring.
814          */
815         error = bge_dma_block_alloc(sc, BGE_JUMBO_RX_RING_SZ,
816                                     &sc->bge_cdata.bge_rx_jumbo_ring_tag,
817                                     &sc->bge_cdata.bge_rx_jumbo_ring_map,
818                                     (void *)&sc->bge_ldata.bge_rx_jumbo_ring,
819                                     &sc->bge_ldata.bge_rx_jumbo_ring_paddr);
820         if (error) {
821                 if_printf(ifp, "could not create jumbo RX ring\n");
822                 return error;
823         }
824
825         /*
826          * Create DMA stuffs for jumbo buffer block.
827          */
828         error = bge_dma_block_alloc(sc, BGE_JMEM,
829                                     &sc->bge_cdata.bge_jumbo_tag,
830                                     &sc->bge_cdata.bge_jumbo_map,
831                                     (void **)&sc->bge_ldata.bge_jumbo_buf,
832                                     &paddr);
833         if (error) {
834                 if_printf(ifp, "could not create jumbo buffer\n");
835                 return error;
836         }
837
838         SLIST_INIT(&sc->bge_jfree_listhead);
839
840         /*
841          * Now divide it up into 9K pieces and save the addresses
842          * in an array. Note that we play an evil trick here by using
843          * the first few bytes in the buffer to hold the the address
844          * of the softc structure for this interface. This is because
845          * bge_jfree() needs it, but it is called by the mbuf management
846          * code which will not pass it to us explicitly.
847          */
848         for (i = 0, ptr = sc->bge_ldata.bge_jumbo_buf; i < BGE_JSLOTS; i++) {
849                 entry = &sc->bge_cdata.bge_jslots[i];
850                 entry->bge_sc = sc;
851                 entry->bge_buf = ptr;
852                 entry->bge_paddr = paddr;
853                 entry->bge_inuse = 0;
854                 entry->bge_slot = i;
855                 SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jslot_link);
856
857                 ptr += BGE_JLEN;
858                 paddr += BGE_JLEN;
859         }
860         return 0;
861 }
862
863 static void
864 bge_free_jumbo_mem(struct bge_softc *sc)
865 {
866         /* Destroy jumbo RX ring. */
867         bge_dma_block_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
868                            sc->bge_cdata.bge_rx_jumbo_ring_map,
869                            sc->bge_ldata.bge_rx_jumbo_ring);
870
871         /* Destroy jumbo buffer block. */
872         bge_dma_block_free(sc->bge_cdata.bge_jumbo_tag,
873                            sc->bge_cdata.bge_jumbo_map,
874                            sc->bge_ldata.bge_jumbo_buf);
875 }
876
877 /*
878  * Allocate a jumbo buffer.
879  */
880 static struct bge_jslot *
881 bge_jalloc(struct bge_softc *sc)
882 {
883         struct bge_jslot *entry;
884
885         lwkt_serialize_enter(&sc->bge_jslot_serializer);
886         entry = SLIST_FIRST(&sc->bge_jfree_listhead);
887         if (entry) {
888                 SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jslot_link);
889                 entry->bge_inuse = 1;
890         } else {
891                 if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
892         }
893         lwkt_serialize_exit(&sc->bge_jslot_serializer);
894         return(entry);
895 }
896
897 /*
898  * Adjust usage count on a jumbo buffer.
899  */
900 static void
901 bge_jref(void *arg)
902 {
903         struct bge_jslot *entry = (struct bge_jslot *)arg;
904         struct bge_softc *sc = entry->bge_sc;
905
906         if (sc == NULL)
907                 panic("bge_jref: can't find softc pointer!");
908
909         if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
910                 panic("bge_jref: asked to reference buffer "
911                     "that we don't manage!");
912         } else if (entry->bge_inuse == 0) {
913                 panic("bge_jref: buffer already free!");
914         } else {
915                 atomic_add_int(&entry->bge_inuse, 1);
916         }
917 }
918
919 /*
920  * Release a jumbo buffer.
921  */
922 static void
923 bge_jfree(void *arg)
924 {
925         struct bge_jslot *entry = (struct bge_jslot *)arg;
926         struct bge_softc *sc = entry->bge_sc;
927
928         if (sc == NULL)
929                 panic("bge_jfree: can't find softc pointer!");
930
931         if (&sc->bge_cdata.bge_jslots[entry->bge_slot] != entry) {
932                 panic("bge_jfree: asked to free buffer that we don't manage!");
933         } else if (entry->bge_inuse == 0) {
934                 panic("bge_jfree: buffer already free!");
935         } else {
936                 /*
937                  * Possible MP race to 0, use the serializer.  The atomic insn
938                  * is still needed for races against bge_jref().
939                  */
940                 lwkt_serialize_enter(&sc->bge_jslot_serializer);
941                 atomic_subtract_int(&entry->bge_inuse, 1);
942                 if (entry->bge_inuse == 0) {
943                         SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, 
944                                           entry, jslot_link);
945                 }
946                 lwkt_serialize_exit(&sc->bge_jslot_serializer);
947         }
948 }
949
950
951 /*
952  * Intialize a standard receive ring descriptor.
953  */
954 static int
955 bge_newbuf_std(struct bge_softc *sc, int i, int init)
956 {
957         struct mbuf *m_new = NULL;
958         bus_dma_segment_t seg;
959         bus_dmamap_t map;
960         int error, nsegs;
961
962         m_new = m_getcl(init ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
963         if (m_new == NULL)
964                 return ENOBUFS;
965         m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
966
967         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
968                 m_adj(m_new, ETHER_ALIGN);
969
970         error = bus_dmamap_load_mbuf_segment(sc->bge_cdata.bge_rx_mtag,
971                         sc->bge_cdata.bge_rx_tmpmap, m_new,
972                         &seg, 1, &nsegs, BUS_DMA_NOWAIT);
973         if (error) {
974                 m_freem(m_new);
975                 return error;
976         }
977
978         if (!init) {
979                 bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
980                                 sc->bge_cdata.bge_rx_std_dmamap[i],
981                                 BUS_DMASYNC_POSTREAD);
982                 bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
983                         sc->bge_cdata.bge_rx_std_dmamap[i]);
984         }
985
986         map = sc->bge_cdata.bge_rx_tmpmap;
987         sc->bge_cdata.bge_rx_tmpmap = sc->bge_cdata.bge_rx_std_dmamap[i];
988         sc->bge_cdata.bge_rx_std_dmamap[i] = map;
989
990         sc->bge_cdata.bge_rx_std_chain[i].bge_mbuf = m_new;
991         sc->bge_cdata.bge_rx_std_chain[i].bge_paddr = seg.ds_addr;
992
993         bge_setup_rxdesc_std(sc, i);
994         return 0;
995 }
996
997 static void
998 bge_setup_rxdesc_std(struct bge_softc *sc, int i)
999 {
1000         struct bge_rxchain *rc;
1001         struct bge_rx_bd *r;
1002
1003         rc = &sc->bge_cdata.bge_rx_std_chain[i];
1004         r = &sc->bge_ldata.bge_rx_std_ring[i];
1005
1006         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr);
1007         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr);
1008         r->bge_len = rc->bge_mbuf->m_len;
1009         r->bge_idx = i;
1010         r->bge_flags = BGE_RXBDFLAG_END;
1011 }
1012
1013 /*
1014  * Initialize a jumbo receive ring descriptor. This allocates
1015  * a jumbo buffer from the pool managed internally by the driver.
1016  */
1017 static int
1018 bge_newbuf_jumbo(struct bge_softc *sc, int i, int init)
1019 {
1020         struct mbuf *m_new = NULL;
1021         struct bge_jslot *buf;
1022         bus_addr_t paddr;
1023
1024         /* Allocate the mbuf. */
1025         MGETHDR(m_new, init ? MB_WAIT : MB_DONTWAIT, MT_DATA);
1026         if (m_new == NULL)
1027                 return ENOBUFS;
1028
1029         /* Allocate the jumbo buffer */
1030         buf = bge_jalloc(sc);
1031         if (buf == NULL) {
1032                 m_freem(m_new);
1033                 return ENOBUFS;
1034         }
1035
1036         /* Attach the buffer to the mbuf. */
1037         m_new->m_ext.ext_arg = buf;
1038         m_new->m_ext.ext_buf = buf->bge_buf;
1039         m_new->m_ext.ext_free = bge_jfree;
1040         m_new->m_ext.ext_ref = bge_jref;
1041         m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
1042
1043         m_new->m_flags |= M_EXT;
1044
1045         m_new->m_data = m_new->m_ext.ext_buf;
1046         m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
1047
1048         paddr = buf->bge_paddr;
1049         if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0) {
1050                 m_adj(m_new, ETHER_ALIGN);
1051                 paddr += ETHER_ALIGN;
1052         }
1053
1054         /* Save necessary information */
1055         sc->bge_cdata.bge_rx_jumbo_chain[i].bge_mbuf = m_new;
1056         sc->bge_cdata.bge_rx_jumbo_chain[i].bge_paddr = paddr;
1057
1058         /* Set up the descriptor. */
1059         bge_setup_rxdesc_jumbo(sc, i);
1060         return 0;
1061 }
1062
1063 static void
1064 bge_setup_rxdesc_jumbo(struct bge_softc *sc, int i)
1065 {
1066         struct bge_rx_bd *r;
1067         struct bge_rxchain *rc;
1068
1069         r = &sc->bge_ldata.bge_rx_jumbo_ring[i];
1070         rc = &sc->bge_cdata.bge_rx_jumbo_chain[i];
1071
1072         r->bge_addr.bge_addr_lo = BGE_ADDR_LO(rc->bge_paddr);
1073         r->bge_addr.bge_addr_hi = BGE_ADDR_HI(rc->bge_paddr);
1074         r->bge_len = rc->bge_mbuf->m_len;
1075         r->bge_idx = i;
1076         r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
1077 }
1078
1079 static int
1080 bge_init_rx_ring_std(struct bge_softc *sc)
1081 {
1082         int i, error;
1083
1084         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1085                 error = bge_newbuf_std(sc, i, 1);
1086                 if (error)
1087                         return error;
1088         };
1089
1090         sc->bge_std = BGE_STD_RX_RING_CNT - 1;
1091         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
1092
1093         return(0);
1094 }
1095
1096 static void
1097 bge_free_rx_ring_std(struct bge_softc *sc)
1098 {
1099         int i;
1100
1101         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1102                 struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_std_chain[i];
1103
1104                 if (rc->bge_mbuf != NULL) {
1105                         bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1106                                           sc->bge_cdata.bge_rx_std_dmamap[i]);
1107                         m_freem(rc->bge_mbuf);
1108                         rc->bge_mbuf = NULL;
1109                 }
1110                 bzero(&sc->bge_ldata.bge_rx_std_ring[i],
1111                     sizeof(struct bge_rx_bd));
1112         }
1113 }
1114
1115 static int
1116 bge_init_rx_ring_jumbo(struct bge_softc *sc)
1117 {
1118         struct bge_rcb *rcb;
1119         int i, error;
1120
1121         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1122                 error = bge_newbuf_jumbo(sc, i, 1);
1123                 if (error)
1124                         return error;
1125         };
1126
1127         sc->bge_jumbo = BGE_JUMBO_RX_RING_CNT - 1;
1128
1129         rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1130         rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0);
1131         CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1132
1133         bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
1134
1135         return(0);
1136 }
1137
1138 static void
1139 bge_free_rx_ring_jumbo(struct bge_softc *sc)
1140 {
1141         int i;
1142
1143         for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1144                 struct bge_rxchain *rc = &sc->bge_cdata.bge_rx_jumbo_chain[i];
1145
1146                 if (rc->bge_mbuf != NULL) {
1147                         m_freem(rc->bge_mbuf);
1148                         rc->bge_mbuf = NULL;
1149                 }
1150                 bzero(&sc->bge_ldata.bge_rx_jumbo_ring[i],
1151                     sizeof(struct bge_rx_bd));
1152         }
1153 }
1154
1155 static void
1156 bge_free_tx_ring(struct bge_softc *sc)
1157 {
1158         int i;
1159
1160         for (i = 0; i < BGE_TX_RING_CNT; i++) {
1161                 if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1162                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1163                                           sc->bge_cdata.bge_tx_dmamap[i]);
1164                         m_freem(sc->bge_cdata.bge_tx_chain[i]);
1165                         sc->bge_cdata.bge_tx_chain[i] = NULL;
1166                 }
1167                 bzero(&sc->bge_ldata.bge_tx_ring[i],
1168                     sizeof(struct bge_tx_bd));
1169         }
1170 }
1171
1172 static int
1173 bge_init_tx_ring(struct bge_softc *sc)
1174 {
1175         sc->bge_txcnt = 0;
1176         sc->bge_tx_saved_considx = 0;
1177         sc->bge_tx_prodidx = 0;
1178
1179         /* Initialize transmit producer index for host-memory send ring. */
1180         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1181
1182         /* 5700 b2 errata */
1183         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1184                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1185
1186         bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1187         /* 5700 b2 errata */
1188         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1189                 bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1190
1191         return(0);
1192 }
1193
1194 static void
1195 bge_setmulti(struct bge_softc *sc)
1196 {
1197         struct ifnet *ifp;
1198         struct ifmultiaddr *ifma;
1199         uint32_t hashes[4] = { 0, 0, 0, 0 };
1200         int h, i;
1201
1202         ifp = &sc->arpcom.ac_if;
1203
1204         if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
1205                 for (i = 0; i < 4; i++)
1206                         CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1207                 return;
1208         }
1209
1210         /* First, zot all the existing filters. */
1211         for (i = 0; i < 4; i++)
1212                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1213
1214         /* Now program new ones. */
1215         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1216                 if (ifma->ifma_addr->sa_family != AF_LINK)
1217                         continue;
1218                 h = ether_crc32_le(
1219                     LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1220                     ETHER_ADDR_LEN) & 0x7f;
1221                 hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1222         }
1223
1224         for (i = 0; i < 4; i++)
1225                 CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1226 }
1227
1228 /*
1229  * Do endian, PCI and DMA initialization. Also check the on-board ROM
1230  * self-test results.
1231  */
1232 static int
1233 bge_chipinit(struct bge_softc *sc)
1234 {
1235         int i;
1236         uint32_t dma_rw_ctl;
1237         uint16_t val;
1238
1239         /* Set endian type before we access any non-PCI registers. */
1240         pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL,
1241             BGE_INIT | sc->bge_pci_miscctl, 4);
1242
1243         /* Clear the MAC control register */
1244         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
1245
1246         /*
1247          * Clear the MAC statistics block in the NIC's
1248          * internal memory.
1249          */
1250         for (i = BGE_STATS_BLOCK;
1251             i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1252                 BGE_MEMWIN_WRITE(sc, i, 0);
1253
1254         for (i = BGE_STATUS_BLOCK;
1255             i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1256                 BGE_MEMWIN_WRITE(sc, i, 0);
1257
1258         if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1259                 /*
1260                  * Fix data corruption caused by non-qword write with WB.
1261                  * Fix master abort in PCI mode.
1262                  * Fix PCI latency timer.
1263                  */
1264                 val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1265                 val |= (1 << 10) | (1 << 12) | (1 << 13);
1266                 pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1267         }
1268
1269         /* Set up the PCI DMA control register. */
1270         if (sc->bge_flags & BGE_FLAG_PCIE) {
1271                 /* PCI Express */
1272                 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1273                     (0xf << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1274                     (0x2 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1275         } else if (sc->bge_flags & BGE_FLAG_PCIX) {
1276                 /* PCI-X bus */
1277                 if (BGE_IS_5714_FAMILY(sc)) {
1278                         dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD;
1279                         dma_rw_ctl &= ~BGE_PCIDMARWCTL_ONEDMA_ATONCE; /* XXX */
1280                         /* XXX magic values, Broadcom-supplied Linux driver */
1281                         if (sc->bge_asicrev == BGE_ASICREV_BCM5780) {
1282                                 dma_rw_ctl |= (1 << 20) | (1 << 18) | 
1283                                     BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1284                         } else {
1285                                 dma_rw_ctl |= (1 << 20) | (1 << 18) | (1 << 15);
1286                         }
1287                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
1288                         /*
1289                          * In the BCM5703, the DMA read watermark should
1290                          * be set to less than or equal to the maximum
1291                          * memory read byte count of the PCI-X command
1292                          * register.
1293                          */
1294                         dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1295                             (0x4 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1296                             (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1297                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1298                         /*
1299                          * The 5704 uses a different encoding of read/write
1300                          * watermarks.
1301                          */
1302                         dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1303                             (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1304                             (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
1305                 } else {
1306                         dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1307                             (0x3 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1308                             (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1309                             (0x0F);
1310                 }
1311
1312                 /*
1313                  * 5703 and 5704 need ONEDMA_AT_ONCE as a workaround
1314                  * for hardware bugs.
1315                  */
1316                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1317                     sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1318                         uint32_t tmp;
1319
1320                         tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
1321                         if (tmp == 0x6 || tmp == 0x7)
1322                                 dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE;
1323                 }
1324         } else {
1325                 /* Conventional PCI bus */
1326                 dma_rw_ctl = BGE_PCI_READ_CMD|BGE_PCI_WRITE_CMD |
1327                     (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
1328                     (0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
1329                     (0x0F);
1330         }
1331
1332         if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1333             sc->bge_asicrev == BGE_ASICREV_BCM5704 ||
1334             sc->bge_asicrev == BGE_ASICREV_BCM5705)
1335                 dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1336         pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1337
1338         /*
1339          * Set up general mode register.
1340          */
1341         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS|
1342             BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS|
1343             BGE_MODECTL_TX_NO_PHDR_CSUM);
1344
1345         /*
1346          * BCM5701 B5 have a bug causing data corruption when using
1347          * 64-bit DMA reads, which can be terminated early and then
1348          * completed later as 32-bit accesses, in combination with
1349          * certain bridges.
1350          */
1351         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1352             sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1353                 BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
1354
1355         /*
1356          * Disable memory write invalidate.  Apparently it is not supported
1357          * properly by these devices.
1358          */
1359         PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1360
1361         /* Set the timer prescaler (always 66Mhz) */
1362         CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
1363
1364         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1365                 DELAY(40);      /* XXX */
1366
1367                 /* Put PHY into ready state */
1368                 BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1369                 CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1370                 DELAY(40);
1371         }
1372
1373         return(0);
1374 }
1375
1376 static int
1377 bge_blockinit(struct bge_softc *sc)
1378 {
1379         struct bge_rcb *rcb;
1380         bus_size_t vrcb;
1381         bge_hostaddr taddr;
1382         uint32_t val;
1383         int i, limit;
1384
1385         /*
1386          * Initialize the memory window pointer register so that
1387          * we can access the first 32K of internal NIC RAM. This will
1388          * allow us to set up the TX send ring RCBs and the RX return
1389          * ring RCBs, plus other things which live in NIC memory.
1390          */
1391         CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1392
1393         /* Note: the BCM5704 has a smaller mbuf space than other chips. */
1394
1395         if (!BGE_IS_5705_PLUS(sc)) {
1396                 /* Configure mbuf memory pool */
1397                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1398                 if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1399                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1400                 else
1401                         CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1402
1403                 /* Configure DMA resource pool */
1404                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1405                     BGE_DMA_DESCRIPTORS);
1406                 CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1407         }
1408
1409         /* Configure mbuf pool watermarks */
1410         if (!BGE_IS_5705_PLUS(sc)) {
1411                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1412                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1413                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1414         } else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1415                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1416                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1417                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1418         } else {
1419                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1420                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1421                 CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1422         }
1423
1424         /* Configure DMA resource watermarks */
1425         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1426         CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1427
1428         /* Enable buffer manager */
1429         CSR_WRITE_4(sc, BGE_BMAN_MODE,
1430             BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN);
1431
1432         /* Poll for buffer manager start indication */
1433         for (i = 0; i < BGE_TIMEOUT; i++) {
1434                 if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1435                         break;
1436                 DELAY(10);
1437         }
1438
1439         if (i == BGE_TIMEOUT) {
1440                 if_printf(&sc->arpcom.ac_if,
1441                           "buffer manager failed to start\n");
1442                 return(ENXIO);
1443         }
1444
1445         /* Enable flow-through queues */
1446         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
1447         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
1448
1449         /* Wait until queue initialization is complete */
1450         for (i = 0; i < BGE_TIMEOUT; i++) {
1451                 if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
1452                         break;
1453                 DELAY(10);
1454         }
1455
1456         if (i == BGE_TIMEOUT) {
1457                 if_printf(&sc->arpcom.ac_if,
1458                           "flow-through queue init failed\n");
1459                 return(ENXIO);
1460         }
1461
1462         /*
1463          * Summary of rings supported by the controller:
1464          *
1465          * Standard Receive Producer Ring
1466          * - This ring is used to feed receive buffers for "standard"
1467          *   sized frames (typically 1536 bytes) to the controller.
1468          *
1469          * Jumbo Receive Producer Ring
1470          * - This ring is used to feed receive buffers for jumbo sized
1471          *   frames (i.e. anything bigger than the "standard" frames)
1472          *   to the controller.
1473          *
1474          * Mini Receive Producer Ring
1475          * - This ring is used to feed receive buffers for "mini"
1476          *   sized frames to the controller.
1477          * - This feature required external memory for the controller
1478          *   but was never used in a production system.  Should always
1479          *   be disabled.
1480          *
1481          * Receive Return Ring
1482          * - After the controller has placed an incoming frame into a
1483          *   receive buffer that buffer is moved into a receive return
1484          *   ring.  The driver is then responsible to passing the
1485          *   buffer up to the stack.  Many versions of the controller
1486          *   support multiple RR rings.
1487          *
1488          * Send Ring
1489          * - This ring is used for outgoing frames.  Many versions of
1490          *   the controller support multiple send rings.
1491          */
1492
1493         /* Initialize the standard receive producer ring control block. */
1494         rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
1495         rcb->bge_hostaddr.bge_addr_lo =
1496             BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
1497         rcb->bge_hostaddr.bge_addr_hi =
1498             BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
1499         if (BGE_IS_5705_PLUS(sc)) {
1500                 /*
1501                  * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
1502                  * Bits 15-2 : Reserved (should be 0)
1503                  * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1504                  * Bit 0     : Reserved
1505                  */
1506                 rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
1507         } else {
1508                 /*
1509                  * Ring size is always XXX entries
1510                  * Bits 31-16: Maximum RX frame size
1511                  * Bits 15-2 : Reserved (should be 0)
1512                  * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
1513                  * Bit 0     : Reserved
1514                  */
1515                 rcb->bge_maxlen_flags =
1516                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
1517         }
1518         rcb->bge_nicaddr = BGE_STD_RX_RINGS;
1519         /* Write the standard receive producer ring control block. */
1520         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
1521         CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
1522         CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1523         CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
1524         /* Reset the standard receive producer ring producer index. */
1525         bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
1526
1527         /*
1528          * Initialize the jumbo RX producer ring control
1529          * block.  We set the 'ring disabled' bit in the
1530          * flags field until we're actually ready to start
1531          * using this ring (i.e. once we set the MTU
1532          * high enough to require it).
1533          */
1534         if (BGE_IS_JUMBO_CAPABLE(sc)) {
1535                 rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1536                 /* Get the jumbo receive producer ring RCB parameters. */
1537                 rcb->bge_hostaddr.bge_addr_lo =
1538                     BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1539                 rcb->bge_hostaddr.bge_addr_hi =
1540                     BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
1541                 rcb->bge_maxlen_flags =
1542                     BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
1543                     BGE_RCB_FLAG_RING_DISABLED);
1544                 rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
1545                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
1546                     rcb->bge_hostaddr.bge_addr_hi);
1547                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
1548                     rcb->bge_hostaddr.bge_addr_lo);
1549                 /* Program the jumbo receive producer ring RCB parameters. */
1550                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
1551                     rcb->bge_maxlen_flags);
1552                 CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
1553                 /* Reset the jumbo receive producer ring producer index. */
1554                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
1555         }
1556
1557         /* Disable the mini receive producer ring RCB. */
1558         if (BGE_IS_5700_FAMILY(sc)) {
1559                 rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
1560                 rcb->bge_maxlen_flags =
1561                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
1562                 CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
1563                     rcb->bge_maxlen_flags);
1564                 /* Reset the mini receive producer ring producer index. */
1565                 bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
1566         }
1567
1568         /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
1569         if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
1570             (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
1571              sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
1572              sc->bge_chipid == BGE_CHIPID_BCM5906_A2)) {
1573                 CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
1574                     (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
1575         }
1576
1577         /*
1578          * The BD ring replenish thresholds control how often the
1579          * hardware fetches new BD's from the producer rings in host
1580          * memory.  Setting the value too low on a busy system can
1581          * starve the hardware and recue the throughpout.
1582          *
1583          * Set the BD ring replentish thresholds. The recommended
1584          * values are 1/8th the number of descriptors allocated to
1585          * each ring.
1586          */
1587         if (BGE_IS_5705_PLUS(sc))
1588                 val = 8;
1589         else
1590                 val = BGE_STD_RX_RING_CNT / 8;
1591         CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
1592         if (BGE_IS_JUMBO_CAPABLE(sc)) {
1593                 CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
1594                     BGE_JUMBO_RX_RING_CNT/8);
1595         }
1596
1597         /*
1598          * Disable all send rings by setting the 'ring disabled' bit
1599          * in the flags field of all the TX send ring control blocks,
1600          * located in NIC memory.
1601          */
1602         if (!BGE_IS_5705_PLUS(sc)) {
1603                 /* 5700 to 5704 had 16 send rings. */
1604                 limit = BGE_TX_RINGS_EXTSSRAM_MAX;
1605         } else {
1606                 limit = 1;
1607         }
1608         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1609         for (i = 0; i < limit; i++) {
1610                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1611                     BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
1612                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1613                 vrcb += sizeof(struct bge_rcb);
1614         }
1615
1616         /* Configure send ring RCB 0 (we use only the first ring) */
1617         vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
1618         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
1619         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1620         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1621         RCB_WRITE_4(sc, vrcb, bge_nicaddr,
1622             BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
1623         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1624             BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
1625
1626         /*
1627          * Disable all receive return rings by setting the
1628          * 'ring diabled' bit in the flags field of all the receive
1629          * return ring control blocks, located in NIC memory.
1630          */
1631         if (!BGE_IS_5705_PLUS(sc))
1632                 limit = BGE_RX_RINGS_MAX;
1633         else if (sc->bge_asicrev == BGE_ASICREV_BCM5755)
1634                 limit = 4;
1635         else
1636                 limit = 1;
1637         /* Disable all receive return rings. */
1638         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1639         for (i = 0; i < limit; i++) {
1640                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
1641                 RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
1642                 RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1643                     BGE_RCB_FLAG_RING_DISABLED);
1644                 RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1645                 bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
1646                     (i * (sizeof(uint64_t))), 0);
1647                 vrcb += sizeof(struct bge_rcb);
1648         }
1649
1650         /*
1651          * Set up receive return ring 0.  Note that the NIC address
1652          * for RX return rings is 0x0.  The return rings live entirely
1653          * within the host, so the nicaddr field in the RCB isn't used.
1654          */
1655         vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
1656         BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
1657         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
1658         RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
1659         RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
1660         RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
1661             BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
1662
1663         /* Set random backoff seed for TX */
1664         CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
1665             sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] +
1666             sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] +
1667             sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] +
1668             BGE_TX_BACKOFF_SEED_MASK);
1669
1670         /* Set inter-packet gap */
1671         CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
1672
1673         /*
1674          * Specify which ring to use for packets that don't match
1675          * any RX rules.
1676          */
1677         CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
1678
1679         /*
1680          * Configure number of RX lists. One interrupt distribution
1681          * list, sixteen active lists, one bad frames class.
1682          */
1683         CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
1684
1685         /* Inialize RX list placement stats mask. */
1686         CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
1687         CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
1688
1689         /* Disable host coalescing until we get it set up */
1690         CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
1691
1692         /* Poll to make sure it's shut down. */
1693         for (i = 0; i < BGE_TIMEOUT; i++) {
1694                 if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
1695                         break;
1696                 DELAY(10);
1697         }
1698
1699         if (i == BGE_TIMEOUT) {
1700                 if_printf(&sc->arpcom.ac_if,
1701                           "host coalescing engine failed to idle\n");
1702                 return(ENXIO);
1703         }
1704
1705         /* Set up host coalescing defaults */
1706         CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
1707         CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
1708         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_coal_bds);
1709         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_coal_bds);
1710         if (!BGE_IS_5705_PLUS(sc)) {
1711                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT,
1712                     sc->bge_rx_coal_ticks_int);
1713                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT,
1714                     sc->bge_tx_coal_ticks_int);
1715         }
1716         /*
1717          * NOTE:
1718          * The datasheet (57XX-PG105-R) says BCM5705+ do not
1719          * have following two registers; obviously it is wrong.
1720          */
1721         CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, sc->bge_rx_coal_bds_int);
1722         CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, sc->bge_tx_coal_bds_int);
1723
1724         /* Set up address of statistics block */
1725         if (!BGE_IS_5705_PLUS(sc)) {
1726                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
1727                     BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
1728                 CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
1729                     BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
1730
1731                 CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
1732                 CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
1733                 CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
1734         }
1735
1736         /* Set up address of status block */
1737         bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
1738         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
1739             BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
1740         CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
1741             BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
1742
1743         /*
1744          * Set up status block partail update size.
1745          *
1746          * Because only single TX ring, RX produce ring and Rx return ring
1747          * are used, ask device to update only minimum part of status block
1748          * except for BCM5700 AX/BX, whose status block partial update size
1749          * can't be configured.
1750          */
1751         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1752             sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
1753                 /* XXX Actually reserved on BCM5700 AX/BX */
1754                 val = BGE_STATBLKSZ_FULL;
1755         } else {
1756                 val = BGE_STATBLKSZ_32BYTE;
1757         }
1758 #if 0
1759         /*
1760          * Does not seem to have visible effect in both
1761          * bulk data (1472B UDP datagram) and tiny data
1762          * (18B UDP datagram) TX tests.
1763          */
1764         if (!BGE_IS_CRIPPLED(sc))
1765                 val |= BGE_HCCMODE_CLRTICK_TX;
1766 #endif
1767
1768         /* Turn on host coalescing state machine */
1769         CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
1770
1771         /* Turn on RX BD completion state machine and enable attentions */
1772         CSR_WRITE_4(sc, BGE_RBDC_MODE,
1773             BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN);
1774
1775         /* Turn on RX list placement state machine */
1776         CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
1777
1778         /* Turn on RX list selector state machine. */
1779         if (!BGE_IS_5705_PLUS(sc))
1780                 CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
1781
1782         val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
1783             BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
1784             BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
1785             BGE_MACMODE_FRMHDR_DMA_ENB;
1786
1787         if (sc->bge_flags & BGE_FLAG_TBI)
1788                 val |= BGE_PORTMODE_TBI;
1789         else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
1790                 val |= BGE_PORTMODE_GMII;
1791         else
1792                 val |= BGE_PORTMODE_MII;
1793
1794         /* Turn on DMA, clear stats */
1795         CSR_WRITE_4(sc, BGE_MAC_MODE, val);
1796
1797         /* Set misc. local control, enable interrupts on attentions */
1798         CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
1799
1800 #ifdef notdef
1801         /* Assert GPIO pins for PHY reset */
1802         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
1803             BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
1804         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
1805             BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
1806 #endif
1807
1808         /* Turn on DMA completion state machine */
1809         if (!BGE_IS_5705_PLUS(sc))
1810                 CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
1811
1812         /* Turn on write DMA state machine */
1813         val = BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
1814         if (BGE_IS_5755_PLUS(sc)) {
1815                 /* Enable host coalescing bug fix. */
1816                 val |= BGE_WDMAMODE_STATUS_TAG_FIX;
1817         }
1818         if (sc->bge_asicrev == BGE_ASICREV_BCM5785) {
1819                 /* Request larger DMA burst size to get better performance. */
1820                 val |= BGE_WDMAMODE_BURST_ALL_DATA;
1821         }
1822         CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
1823         DELAY(40);
1824
1825         if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
1826             sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1827             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1828             sc->bge_asicrev == BGE_ASICREV_BCM57780) {
1829                 /*
1830                  * Enable fix for read DMA FIFO overruns.
1831                  * The fix is to limit the number of RX BDs
1832                  * the hardware would fetch at a fime.
1833                  */
1834                 val = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
1835                 CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL,
1836                     val| BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
1837         }
1838
1839         /* Turn on read DMA state machine */
1840         val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
1841         if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
1842             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
1843             sc->bge_asicrev == BGE_ASICREV_BCM57780)
1844                 val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
1845                   BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
1846                   BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
1847         if (sc->bge_flags & BGE_FLAG_PCIE)
1848                 val |= BGE_RDMAMODE_FIFO_LONG_BURST;
1849         CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
1850         DELAY(40);
1851
1852         /* Turn on RX data completion state machine */
1853         CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
1854
1855         /* Turn on RX BD initiator state machine */
1856         CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
1857
1858         /* Turn on RX data and RX BD initiator state machine */
1859         CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
1860
1861         /* Turn on Mbuf cluster free state machine */
1862         if (!BGE_IS_5705_PLUS(sc))
1863                 CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
1864
1865         /* Turn on send BD completion state machine */
1866         CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
1867
1868         /* Turn on send data completion state machine */
1869         val = BGE_SDCMODE_ENABLE;
1870         if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
1871                 val |= BGE_SDCMODE_CDELAY; 
1872         CSR_WRITE_4(sc, BGE_SDC_MODE, val);
1873
1874         /* Turn on send data initiator state machine */
1875         CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
1876
1877         /* Turn on send BD initiator state machine */
1878         CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
1879
1880         /* Turn on send BD selector state machine */
1881         CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
1882
1883         CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
1884         CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
1885             BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER);
1886
1887         /* ack/clear link change events */
1888         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1889             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1890             BGE_MACSTAT_LINK_CHANGED);
1891         CSR_WRITE_4(sc, BGE_MI_STS, 0);
1892
1893         /*
1894          * Enable attention when the link has changed state for
1895          * devices that use auto polling.
1896          */
1897         if (sc->bge_flags & BGE_FLAG_TBI) {
1898                 CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
1899         } else {
1900                 if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
1901                         CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1902                         DELAY(80);
1903                 }
1904                 if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
1905                     sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
1906                         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
1907                             BGE_EVTENB_MI_INTERRUPT);
1908                 }
1909         }
1910
1911         /*
1912          * Clear any pending link state attention.
1913          * Otherwise some link state change events may be lost until attention
1914          * is cleared by bge_intr() -> bge_softc.bge_link_upd() sequence.
1915          * It's not necessary on newer BCM chips - perhaps enabling link
1916          * state change attentions implies clearing pending attention.
1917          */
1918         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
1919             BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
1920             BGE_MACSTAT_LINK_CHANGED);
1921
1922         /* Enable link state change attentions. */
1923         BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
1924
1925         return(0);
1926 }
1927
1928 /*
1929  * Probe for a Broadcom chip. Check the PCI vendor and device IDs
1930  * against our list and return its name if we find a match. Note
1931  * that since the Broadcom controller contains VPD support, we
1932  * can get the device name string from the controller itself instead
1933  * of the compiled-in string. This is a little slow, but it guarantees
1934  * we'll always announce the right product name.
1935  */
1936 static int
1937 bge_probe(device_t dev)
1938 {
1939         const struct bge_type *t;
1940         uint16_t product, vendor;
1941
1942         product = pci_get_device(dev);
1943         vendor = pci_get_vendor(dev);
1944
1945         for (t = bge_devs; t->bge_name != NULL; t++) {
1946                 if (vendor == t->bge_vid && product == t->bge_did)
1947                         break;
1948         }
1949         if (t->bge_name == NULL)
1950                 return(ENXIO);
1951
1952         device_set_desc(dev, t->bge_name);
1953         return(0);
1954 }
1955
1956 static int
1957 bge_attach(device_t dev)
1958 {
1959         struct ifnet *ifp;
1960         struct bge_softc *sc;
1961         uint32_t hwcfg = 0, misccfg;
1962         int error = 0, rid, capmask;
1963         uint8_t ether_addr[ETHER_ADDR_LEN];
1964         uint16_t product, vendor;
1965         driver_intr_t *intr_func;
1966
1967         sc = device_get_softc(dev);
1968         sc->bge_dev = dev;
1969         callout_init(&sc->bge_stat_timer);
1970         lwkt_serialize_init(&sc->bge_jslot_serializer);
1971
1972 #ifndef BURN_BRIDGES
1973         if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1974                 uint32_t irq, mem;
1975
1976                 irq = pci_read_config(dev, PCIR_INTLINE, 4);
1977                 mem = pci_read_config(dev, BGE_PCI_BAR0, 4);
1978
1979                 device_printf(dev, "chip is in D%d power mode "
1980                     "-- setting to D0\n", pci_get_powerstate(dev));
1981
1982                 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1983
1984                 pci_write_config(dev, PCIR_INTLINE, irq, 4);
1985                 pci_write_config(dev, BGE_PCI_BAR0, mem, 4);
1986         }
1987 #endif  /* !BURN_BRIDGE */
1988
1989         /*
1990          * Map control/status registers.
1991          */
1992         pci_enable_busmaster(dev);
1993
1994         rid = BGE_PCI_BAR0;
1995         sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1996             RF_ACTIVE);
1997
1998         if (sc->bge_res == NULL) {
1999                 device_printf(dev, "couldn't map memory\n");
2000                 return ENXIO;
2001         }
2002
2003         sc->bge_btag = rman_get_bustag(sc->bge_res);
2004         sc->bge_bhandle = rman_get_bushandle(sc->bge_res);
2005
2006         /* Save various chip information */
2007         sc->bge_chipid =
2008             pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2009             BGE_PCIMISCCTL_ASICREV_SHIFT;
2010         if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG)
2011                 sc->bge_chipid = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
2012         sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
2013         sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
2014
2015         /* Save chipset family. */
2016         switch (sc->bge_asicrev) {
2017         case BGE_ASICREV_BCM5755:
2018         case BGE_ASICREV_BCM5761:
2019         case BGE_ASICREV_BCM5784:
2020         case BGE_ASICREV_BCM5785:
2021         case BGE_ASICREV_BCM5787:
2022         case BGE_ASICREV_BCM57780:
2023             sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
2024                 BGE_FLAG_5705_PLUS;
2025             break;
2026
2027         case BGE_ASICREV_BCM5700:
2028         case BGE_ASICREV_BCM5701:
2029         case BGE_ASICREV_BCM5703:
2030         case BGE_ASICREV_BCM5704:
2031                 sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
2032                 break;
2033
2034         case BGE_ASICREV_BCM5714_A0:
2035         case BGE_ASICREV_BCM5780:
2036         case BGE_ASICREV_BCM5714:
2037                 sc->bge_flags |= BGE_FLAG_5714_FAMILY;
2038                 /* Fall through */
2039
2040         case BGE_ASICREV_BCM5750:
2041         case BGE_ASICREV_BCM5752:
2042         case BGE_ASICREV_BCM5906:
2043                 sc->bge_flags |= BGE_FLAG_575X_PLUS;
2044                 /* Fall through */
2045
2046         case BGE_ASICREV_BCM5705:
2047                 sc->bge_flags |= BGE_FLAG_5705_PLUS;
2048                 break;
2049         }
2050
2051         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
2052                 sc->bge_flags |= BGE_FLAG_NO_EEPROM;
2053
2054         misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
2055         if (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2056             (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
2057              misccfg == BGE_MISCCFG_BOARD_ID_5788M))
2058                 sc->bge_flags |= BGE_FLAG_5788;
2059
2060         /* BCM5755 or higher and BCM5906 have short DMA bug. */
2061         if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
2062                 sc->bge_flags |= BGE_FLAG_SHORTDMA;
2063
2064         /*
2065          * Check if this is a PCI-X or PCI Express device.
2066          */
2067         if (BGE_IS_5705_PLUS(sc)) {
2068                 if (pci_is_pcie(dev)) {
2069                         sc->bge_flags |= BGE_FLAG_PCIE;
2070                         sc->bge_pciecap = pci_get_pciecap_ptr(sc->bge_dev);
2071                         pcie_set_max_readrq(dev, PCIEM_DEVCTL_MAX_READRQ_4096);
2072                 }
2073         } else {
2074                 /*
2075                  * Check if the device is in PCI-X Mode.
2076                  * (This bit is not valid on PCI Express controllers.)
2077                  */
2078                 if ((pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4) &
2079                     BGE_PCISTATE_PCI_BUSMODE) == 0) {
2080                         sc->bge_flags |= BGE_FLAG_PCIX;
2081                         sc->bge_pcixcap = pci_get_pcixcap_ptr(sc->bge_dev);
2082                         sc->bge_mbox_reorder = device_getenv_int(sc->bge_dev,
2083                             "mbox_reorder", 0);
2084                 }
2085         }
2086         device_printf(dev, "CHIP ID 0x%08x; "
2087                       "ASIC REV 0x%02x; CHIP REV 0x%02x; %s\n",
2088                       sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev,
2089                       (sc->bge_flags & BGE_FLAG_PCIX) ? "PCI-X"
2090                       : ((sc->bge_flags & BGE_FLAG_PCIE) ?
2091                         "PCI-E" : "PCI"));
2092
2093         /*
2094          * The 40bit DMA bug applies to the 5714/5715 controllers and is
2095          * not actually a MAC controller bug but an issue with the embedded
2096          * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
2097          */
2098         if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
2099                 sc->bge_flags |= BGE_FLAG_MAXADDR_40BIT;
2100
2101         /* Identify the chips that use an CPMU. */
2102         if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2103             sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2104             sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2105             sc->bge_asicrev == BGE_ASICREV_BCM57780)
2106                 sc->bge_flags |= BGE_FLAG_CPMU;
2107
2108         /*
2109          * When using the BCM5701 in PCI-X mode, data corruption has
2110          * been observed in the first few bytes of some received packets.
2111          * Aligning the packet buffer in memory eliminates the corruption.
2112          * Unfortunately, this misaligns the packet payloads.  On platforms
2113          * which do not support unaligned accesses, we will realign the
2114          * payloads by copying the received packets.
2115          */
2116         if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
2117             (sc->bge_flags & BGE_FLAG_PCIX))
2118                 sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
2119
2120         if (!BGE_IS_CRIPPLED(sc)) {
2121                 if (device_getenv_int(dev, "status_tag", 1)) {
2122                         sc->bge_flags |= BGE_FLAG_STATUS_TAG;
2123                         sc->bge_pci_miscctl = BGE_PCIMISCCTL_TAGGED_STATUS;
2124                         if (bootverbose)
2125                                 device_printf(dev, "enable status tag\n");
2126                 }
2127         }
2128
2129         /*
2130          * Set various PHY quirk flags.
2131          */
2132         product = pci_get_device(dev);
2133         vendor = pci_get_vendor(dev);
2134
2135         if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
2136              sc->bge_asicrev == BGE_ASICREV_BCM5701) &&
2137             pci_get_subvendor(dev) == PCI_VENDOR_DELL)
2138                 sc->bge_phy_flags |= BGE_PHY_NO_3LED;
2139
2140         capmask = MII_CAPMASK_DEFAULT;
2141         if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
2142              (misccfg == 0x4000 || misccfg == 0x8000)) ||
2143             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2144              vendor == PCI_VENDOR_BROADCOM &&
2145              (product == PCI_PRODUCT_BROADCOM_BCM5901 ||
2146               product == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
2147               product == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
2148             (vendor == PCI_VENDOR_BROADCOM &&
2149              (product == PCI_PRODUCT_BROADCOM_BCM5751F ||
2150               product == PCI_PRODUCT_BROADCOM_BCM5753F ||
2151               product == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
2152             product == PCI_PRODUCT_BROADCOM_BCM57790 ||
2153             sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2154                 /* 10/100 only */
2155                 capmask &= ~BMSR_EXTSTAT;
2156         }
2157
2158         sc->bge_phy_flags |= BGE_PHY_WIRESPEED;
2159         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
2160             (sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
2161              (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
2162               sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
2163             sc->bge_asicrev == BGE_ASICREV_BCM5906)
2164                 sc->bge_phy_flags &= ~BGE_PHY_WIRESPEED;
2165
2166         if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
2167             sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
2168                 sc->bge_phy_flags |= BGE_PHY_CRC_BUG;
2169
2170         if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
2171             sc->bge_chiprev == BGE_CHIPREV_5704_AX)
2172                 sc->bge_phy_flags |= BGE_PHY_ADC_BUG;
2173
2174         if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
2175                 sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG;
2176
2177         if (BGE_IS_5705_PLUS(sc) &&
2178             sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
2179             /* sc->bge_asicrev != BGE_ASICREV_BCM5717 && */
2180             sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
2181             /* sc->bge_asicrev != BGE_ASICREV_BCM57765 && */
2182             sc->bge_asicrev != BGE_ASICREV_BCM57780) {
2183                 if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2184                     sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2185                     sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2186                     sc->bge_asicrev == BGE_ASICREV_BCM5787) {
2187                         if (product != PCI_PRODUCT_BROADCOM_BCM5722 &&
2188                             product != PCI_PRODUCT_BROADCOM_BCM5756)
2189                                 sc->bge_phy_flags |= BGE_PHY_JITTER_BUG;
2190                         if (product == PCI_PRODUCT_BROADCOM_BCM5755M)
2191                                 sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM;
2192                 } else {
2193                         sc->bge_phy_flags |= BGE_PHY_BER_BUG;
2194                 }
2195         }
2196
2197         /* Allocate interrupt */
2198         rid = 0;
2199         sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
2200             RF_SHAREABLE | RF_ACTIVE);
2201         if (sc->bge_irq == NULL) {
2202                 device_printf(dev, "couldn't map interrupt\n");
2203                 error = ENXIO;
2204                 goto fail;
2205         }
2206
2207         /* Initialize if_name earlier, so if_printf could be used */
2208         ifp = &sc->arpcom.ac_if;
2209         if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2210
2211         /* Try to reset the chip. */
2212         bge_reset(sc);
2213
2214         if (bge_chipinit(sc)) {
2215                 device_printf(dev, "chip initialization failed\n");
2216                 error = ENXIO;
2217                 goto fail;
2218         }
2219
2220         /*
2221          * Get station address
2222          */
2223         error = bge_get_eaddr(sc, ether_addr);
2224         if (error) {
2225                 device_printf(dev, "failed to read station address\n");
2226                 goto fail;
2227         }
2228
2229         /* 5705/5750 limits RX return ring to 512 entries. */
2230         if (BGE_IS_5705_PLUS(sc))
2231                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
2232         else
2233                 sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
2234
2235         error = bge_dma_alloc(sc);
2236         if (error)
2237                 goto fail;
2238
2239         /* Set default tuneable values. */
2240         sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
2241         sc->bge_rx_coal_ticks = BGE_RX_COAL_TICKS_DEF;
2242         sc->bge_tx_coal_ticks = BGE_TX_COAL_TICKS_DEF;
2243         sc->bge_rx_coal_bds = BGE_RX_COAL_BDS_DEF;
2244         sc->bge_tx_coal_bds = BGE_TX_COAL_BDS_DEF;
2245         if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2246                 sc->bge_rx_coal_ticks_int = BGE_RX_COAL_TICKS_DEF;
2247                 sc->bge_tx_coal_ticks_int = BGE_TX_COAL_TICKS_DEF;
2248                 sc->bge_rx_coal_bds_int = BGE_RX_COAL_BDS_DEF;
2249                 sc->bge_tx_coal_bds_int = BGE_TX_COAL_BDS_DEF;
2250         } else {
2251                 sc->bge_rx_coal_ticks_int = BGE_RX_COAL_TICKS_MIN;
2252                 sc->bge_tx_coal_ticks_int = BGE_TX_COAL_TICKS_MIN;
2253                 sc->bge_rx_coal_bds_int = BGE_RX_COAL_BDS_MIN;
2254                 sc->bge_tx_coal_bds_int = BGE_TX_COAL_BDS_MIN;
2255         }
2256
2257         /* Set up ifnet structure */
2258         ifp->if_softc = sc;
2259         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
2260         ifp->if_ioctl = bge_ioctl;
2261         ifp->if_start = bge_start;
2262 #ifdef DEVICE_POLLING
2263         ifp->if_poll = bge_poll;
2264 #endif
2265         ifp->if_watchdog = bge_watchdog;
2266         ifp->if_init = bge_init;
2267         ifp->if_mtu = ETHERMTU;
2268         ifp->if_capabilities = IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
2269         ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1);
2270         ifq_set_ready(&ifp->if_snd);
2271
2272         /*
2273          * 5700 B0 chips do not support checksumming correctly due
2274          * to hardware bugs.
2275          */
2276         if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0) {
2277                 ifp->if_capabilities |= IFCAP_HWCSUM;
2278                 ifp->if_hwassist = BGE_CSUM_FEATURES;
2279         }
2280         ifp->if_capenable = ifp->if_capabilities;
2281
2282         /*
2283          * Figure out what sort of media we have by checking the
2284          * hardware config word in the first 32k of NIC internal memory,
2285          * or fall back to examining the EEPROM if necessary.
2286          * Note: on some BCM5700 cards, this value appears to be unset.
2287          * If that's the case, we have to rely on identifying the NIC
2288          * by its PCI subsystem ID, as we do below for the SysKonnect
2289          * SK-9D41.
2290          */
2291         if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
2292                 hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
2293         } else {
2294                 if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
2295                                     sizeof(hwcfg))) {
2296                         device_printf(dev, "failed to read EEPROM\n");
2297                         error = ENXIO;
2298                         goto fail;
2299                 }
2300                 hwcfg = ntohl(hwcfg);
2301         }
2302
2303         /* The SysKonnect SK-9D41 is a 1000baseSX card. */
2304         if (pci_get_subvendor(dev) == PCI_PRODUCT_SCHNEIDERKOCH_SK_9D41 ||
2305             (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
2306                 if (BGE_IS_5714_FAMILY(sc))
2307                         sc->bge_flags |= BGE_FLAG_MII_SERDES;
2308                 else
2309                         sc->bge_flags |= BGE_FLAG_TBI;
2310         }
2311
2312         /* Setup MI MODE */
2313         if (sc->bge_flags & BGE_FLAG_CPMU)
2314                 sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
2315         else
2316                 sc->bge_mi_mode = BGE_MIMODE_BASE;
2317         if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705) {
2318                 /* Enable auto polling for BCM570[0-5]. */
2319                 sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
2320         }
2321
2322         /* Setup link status update stuffs */
2323         if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2324             sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
2325                 sc->bge_link_upd = bge_bcm5700_link_upd;
2326                 sc->bge_link_chg = BGE_MACSTAT_MI_INTERRUPT;
2327         } else if (sc->bge_flags & BGE_FLAG_TBI) {
2328                 sc->bge_link_upd = bge_tbi_link_upd;
2329                 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2330         } else if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2331                 sc->bge_link_upd = bge_autopoll_link_upd;
2332                 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2333         } else {
2334                 sc->bge_link_upd = bge_copper_link_upd;
2335                 sc->bge_link_chg = BGE_MACSTAT_LINK_CHANGED;
2336         }
2337
2338         /*
2339          * Broadcom's own driver always assumes the internal
2340          * PHY is at GMII address 1.  On some chips, the PHY responds
2341          * to accesses at all addresses, which could cause us to
2342          * bogusly attach the PHY 32 times at probe type.  Always
2343          * restricting the lookup to address 1 is simpler than
2344          * trying to figure out which chips revisions should be
2345          * special-cased.
2346          */
2347         sc->bge_phyno = 1;
2348
2349         if (sc->bge_flags & BGE_FLAG_TBI) {
2350                 ifmedia_init(&sc->bge_ifmedia, IFM_IMASK,
2351                     bge_ifmedia_upd, bge_ifmedia_sts);
2352                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
2353                 ifmedia_add(&sc->bge_ifmedia,
2354                     IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
2355                 ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
2356                 ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO);
2357                 sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
2358         } else {
2359                 struct mii_probe_args mii_args;
2360
2361                 mii_probe_args_init(&mii_args, bge_ifmedia_upd, bge_ifmedia_sts);
2362                 mii_args.mii_probemask = 1 << sc->bge_phyno;
2363                 mii_args.mii_capmask = capmask;
2364
2365                 error = mii_probe(dev, &sc->bge_miibus, &mii_args);
2366                 if (error) {
2367                         device_printf(dev, "MII without any PHY!\n");
2368                         goto fail;
2369                 }
2370         }
2371
2372         /*
2373          * Create sysctl nodes.
2374          */
2375         sysctl_ctx_init(&sc->bge_sysctl_ctx);
2376         sc->bge_sysctl_tree = SYSCTL_ADD_NODE(&sc->bge_sysctl_ctx,
2377                                               SYSCTL_STATIC_CHILDREN(_hw),
2378                                               OID_AUTO,
2379                                               device_get_nameunit(dev),
2380                                               CTLFLAG_RD, 0, "");
2381         if (sc->bge_sysctl_tree == NULL) {
2382                 device_printf(dev, "can't add sysctl node\n");
2383                 error = ENXIO;
2384                 goto fail;
2385         }
2386
2387         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2388                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2389                         OID_AUTO, "rx_coal_ticks",
2390                         CTLTYPE_INT | CTLFLAG_RW,
2391                         sc, 0, bge_sysctl_rx_coal_ticks, "I",
2392                         "Receive coalescing ticks (usec).");
2393         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2394                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2395                         OID_AUTO, "tx_coal_ticks",
2396                         CTLTYPE_INT | CTLFLAG_RW,
2397                         sc, 0, bge_sysctl_tx_coal_ticks, "I",
2398                         "Transmit coalescing ticks (usec).");
2399         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2400                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2401                         OID_AUTO, "rx_coal_bds",
2402                         CTLTYPE_INT | CTLFLAG_RW,
2403                         sc, 0, bge_sysctl_rx_coal_bds, "I",
2404                         "Receive max coalesced BD count.");
2405         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2406                         SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2407                         OID_AUTO, "tx_coal_bds",
2408                         CTLTYPE_INT | CTLFLAG_RW,
2409                         sc, 0, bge_sysctl_tx_coal_bds, "I",
2410                         "Transmit max coalesced BD count.");
2411         if (sc->bge_flags & BGE_FLAG_PCIE) {
2412                 /*
2413                  * A common design characteristic for many Broadcom
2414                  * client controllers is that they only support a
2415                  * single outstanding DMA read operation on the PCIe
2416                  * bus. This means that it will take twice as long to
2417                  * fetch a TX frame that is split into header and
2418                  * payload buffers as it does to fetch a single,
2419                  * contiguous TX frame (2 reads vs. 1 read). For these
2420                  * controllers, coalescing buffers to reduce the number
2421                  * of memory reads is effective way to get maximum
2422                  * performance(about 940Mbps).  Without collapsing TX
2423                  * buffers the maximum TCP bulk transfer performance
2424                  * is about 850Mbps. However forcing coalescing mbufs
2425                  * consumes a lot of CPU cycles, so leave it off by
2426                  * default.
2427                  */
2428                 SYSCTL_ADD_INT(&sc->bge_sysctl_ctx,
2429                                SYSCTL_CHILDREN(sc->bge_sysctl_tree),
2430                                OID_AUTO, "force_defrag", CTLFLAG_RW,
2431                                &sc->bge_force_defrag, 0,
2432                                "Force defragment on TX path");
2433         }
2434         if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2435                 if (!BGE_IS_5705_PLUS(sc)) {
2436                         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2437                             SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2438                             "rx_coal_ticks_int", CTLTYPE_INT | CTLFLAG_RW,
2439                             sc, 0, bge_sysctl_rx_coal_ticks_int, "I",
2440                             "Receive coalescing ticks "
2441                             "during interrupt (usec).");
2442                         SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2443                             SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2444                             "tx_coal_ticks_int", CTLTYPE_INT | CTLFLAG_RW,
2445                             sc, 0, bge_sysctl_tx_coal_ticks_int, "I",
2446                             "Transmit coalescing ticks "
2447                             "during interrupt (usec).");
2448                 }
2449                 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2450                     SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2451                     "rx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2452                     sc, 0, bge_sysctl_rx_coal_bds_int, "I",
2453                     "Receive max coalesced BD count during interrupt.");
2454                 SYSCTL_ADD_PROC(&sc->bge_sysctl_ctx,
2455                     SYSCTL_CHILDREN(sc->bge_sysctl_tree), OID_AUTO,
2456                     "tx_coal_bds_int", CTLTYPE_INT | CTLFLAG_RW,
2457                     sc, 0, bge_sysctl_tx_coal_bds_int, "I",
2458                     "Transmit max coalesced BD count during interrupt.");
2459         }
2460
2461         /*
2462          * Call MI attach routine.
2463          */
2464         ether_ifattach(ifp, ether_addr, NULL);
2465
2466         if (sc->bge_flags & BGE_FLAG_STATUS_TAG)
2467                 intr_func = bge_intr_status_tag;
2468         else
2469                 intr_func = bge_intr;
2470
2471         error = bus_setup_intr(dev, sc->bge_irq, INTR_MPSAFE, intr_func, sc,
2472             &sc->bge_intrhand, ifp->if_serializer);
2473         if (error) {
2474                 ether_ifdetach(ifp);
2475                 device_printf(dev, "couldn't set up irq\n");
2476                 goto fail;
2477         }
2478
2479         ifp->if_cpuid = rman_get_cpuid(sc->bge_irq);
2480         KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
2481
2482         return(0);
2483 fail:
2484         bge_detach(dev);
2485         return(error);
2486 }
2487
2488 static int
2489 bge_detach(device_t dev)
2490 {
2491         struct bge_softc *sc = device_get_softc(dev);
2492
2493         if (device_is_attached(dev)) {
2494                 struct ifnet *ifp = &sc->arpcom.ac_if;
2495
2496                 lwkt_serialize_enter(ifp->if_serializer);
2497                 bge_stop(sc);
2498                 bge_reset(sc);
2499                 bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
2500                 lwkt_serialize_exit(ifp->if_serializer);
2501
2502                 ether_ifdetach(ifp);
2503         }
2504
2505         if (sc->bge_flags & BGE_FLAG_TBI)
2506                 ifmedia_removeall(&sc->bge_ifmedia);
2507         if (sc->bge_miibus)
2508                 device_delete_child(dev, sc->bge_miibus);
2509         bus_generic_detach(dev);
2510
2511         if (sc->bge_irq != NULL)
2512                 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->bge_irq);
2513
2514         if (sc->bge_res != NULL)
2515                 bus_release_resource(dev, SYS_RES_MEMORY,
2516                     BGE_PCI_BAR0, sc->bge_res);
2517
2518         if (sc->bge_sysctl_tree != NULL)
2519                 sysctl_ctx_free(&sc->bge_sysctl_ctx);
2520
2521         bge_dma_free(sc);
2522
2523         return 0;
2524 }
2525
2526 static void
2527 bge_reset(struct bge_softc *sc)
2528 {
2529         device_t dev;
2530         uint32_t cachesize, command, pcistate, reset;
2531         void (*write_op)(struct bge_softc *, uint32_t, uint32_t);
2532         int i, val = 0;
2533
2534         dev = sc->bge_dev;
2535
2536         if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
2537             sc->bge_asicrev != BGE_ASICREV_BCM5906) {
2538                 if (sc->bge_flags & BGE_FLAG_PCIE)
2539                         write_op = bge_writemem_direct;
2540                 else
2541                         write_op = bge_writemem_ind;
2542         } else {
2543                 write_op = bge_writereg_ind;
2544         }
2545
2546         /* Save some important PCI state. */
2547         cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
2548         command = pci_read_config(dev, BGE_PCI_CMD, 4);
2549         pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
2550
2551         pci_write_config(dev, BGE_PCI_MISC_CTL,
2552             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2553             BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2554             sc->bge_pci_miscctl, 4);
2555
2556         /* Disable fastboot on controllers that support it. */
2557         if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
2558             BGE_IS_5755_PLUS(sc)) {
2559                 if (bootverbose)
2560                         if_printf(&sc->arpcom.ac_if, "Disabling fastboot\n");
2561                 CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
2562         }
2563
2564         /*
2565          * Write the magic number to SRAM at offset 0xB50.
2566          * When firmware finishes its initialization it will
2567          * write ~BGE_MAGIC_NUMBER to the same location.
2568          */
2569         bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
2570
2571         reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1);
2572
2573         /* XXX: Broadcom Linux driver. */
2574         if (sc->bge_flags & BGE_FLAG_PCIE) {
2575                 if (CSR_READ_4(sc, 0x7e2c) == 0x60)     /* PCIE 1.0 */
2576                         CSR_WRITE_4(sc, 0x7e2c, 0x20);
2577                 if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
2578                         /* Prevent PCIE link training during global reset */
2579                         CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29));
2580                         reset |= (1<<29);
2581                 }
2582         }
2583
2584         /* 
2585          * Set GPHY Power Down Override to leave GPHY
2586          * powered up in D0 uninitialized.
2587          */
2588         if (BGE_IS_5705_PLUS(sc) && (sc->bge_flags & BGE_FLAG_CPMU) == 0)
2589                 reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
2590
2591         /* Issue global reset */
2592         write_op(sc, BGE_MISC_CFG, reset);
2593
2594         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2595                 uint32_t status, ctrl;
2596
2597                 status = CSR_READ_4(sc, BGE_VCPU_STATUS);
2598                 CSR_WRITE_4(sc, BGE_VCPU_STATUS,
2599                     status | BGE_VCPU_STATUS_DRV_RESET);
2600                 ctrl = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
2601                 CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
2602                     ctrl & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
2603         }
2604
2605         DELAY(1000);
2606
2607         /* XXX: Broadcom Linux driver. */
2608         if (sc->bge_flags & BGE_FLAG_PCIE) {
2609                 uint16_t devctl;
2610
2611                 if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
2612                         uint32_t v;
2613
2614                         DELAY(500000); /* wait for link training to complete */
2615                         v = pci_read_config(dev, 0xc4, 4);
2616                         pci_write_config(dev, 0xc4, v | (1<<15), 4);
2617                 }
2618
2619                 /* Clear enable no snoop and disable relaxed ordering. */
2620                 devctl = pci_read_config(dev,
2621                     sc->bge_pciecap + PCIER_DEVCTRL, 2);
2622                 devctl &= ~(PCIEM_DEVCTL_RELAX_ORDER | PCIEM_DEVCTL_NOSNOOP);
2623                 pci_write_config(dev, sc->bge_pciecap + PCIER_DEVCTRL,
2624                     devctl, 2);
2625
2626                 /* Clear error status. */
2627                 pci_write_config(dev, sc->bge_pciecap + PCIER_DEVSTS,
2628                     PCIEM_DEVSTS_CORR_ERR |
2629                     PCIEM_DEVSTS_NFATAL_ERR |
2630                     PCIEM_DEVSTS_FATAL_ERR |
2631                     PCIEM_DEVSTS_UNSUPP_REQ, 2);
2632         }
2633
2634         /* Reset some of the PCI state that got zapped by reset */
2635         pci_write_config(dev, BGE_PCI_MISC_CTL,
2636             BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR|
2637             BGE_HIF_SWAP_OPTIONS|BGE_PCIMISCCTL_PCISTATE_RW|
2638             sc->bge_pci_miscctl, 4);
2639         pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
2640         pci_write_config(dev, BGE_PCI_CMD, command, 4);
2641         write_op(sc, BGE_MISC_CFG, (65 << 1));
2642
2643         /*
2644          * Disable PCI-X relaxed ordering to ensure status block update
2645          * comes first then packet buffer DMA. Otherwise driver may
2646          * read stale status block.
2647          */
2648         if (sc->bge_flags & BGE_FLAG_PCIX) {
2649                 uint16_t devctl;
2650
2651                 devctl = pci_read_config(dev,
2652                     sc->bge_pcixcap + PCIXR_COMMAND, 2);
2653                 devctl &= ~PCIXM_COMMAND_ERO;
2654                 if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
2655                         devctl &= ~PCIXM_COMMAND_MAX_READ;
2656                         devctl |= PCIXM_COMMAND_MAX_READ_2048;
2657                 } else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
2658                         devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
2659                             PCIXM_COMMAND_MAX_READ);
2660                         devctl |= PCIXM_COMMAND_MAX_READ_2048;
2661                 }
2662                 pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
2663                     devctl, 2);
2664         }
2665
2666         /* Enable memory arbiter. */
2667         if (BGE_IS_5714_FAMILY(sc)) {
2668                 uint32_t val;
2669
2670                 val = CSR_READ_4(sc, BGE_MARB_MODE);
2671                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
2672         } else {
2673                 CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
2674         }
2675
2676         if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2677                 for (i = 0; i < BGE_TIMEOUT; i++) {
2678                         val = CSR_READ_4(sc, BGE_VCPU_STATUS);
2679                         if (val & BGE_VCPU_STATUS_INIT_DONE)
2680                                 break;
2681                         DELAY(100);
2682                 }
2683                 if (i == BGE_TIMEOUT) {
2684                         if_printf(&sc->arpcom.ac_if, "reset timed out\n");
2685                         return;
2686                 }
2687         } else {
2688                 /*
2689                  * Poll until we see the 1's complement of the magic number.
2690                  * This indicates that the firmware initialization
2691                  * is complete.
2692                  */
2693                 for (i = 0; i < BGE_FIRMWARE_TIMEOUT; i++) {
2694                         val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
2695                         if (val == ~BGE_MAGIC_NUMBER)
2696                                 break;
2697                         DELAY(10);
2698                 }
2699                 if (i == BGE_FIRMWARE_TIMEOUT) {
2700                         if_printf(&sc->arpcom.ac_if, "firmware handshake "
2701                                   "timed out, found 0x%08x\n", val);
2702                         return;
2703                 }
2704         }
2705
2706         /*
2707          * XXX Wait for the value of the PCISTATE register to
2708          * return to its original pre-reset state. This is a
2709          * fairly good indicator of reset completion. If we don't
2710          * wait for the reset to fully complete, trying to read
2711          * from the device's non-PCI registers may yield garbage
2712          * results.
2713          */
2714         for (i = 0; i < BGE_TIMEOUT; i++) {
2715                 if (pci_read_config(dev, BGE_PCI_PCISTATE, 4) == pcistate)
2716                         break;
2717                 DELAY(10);
2718         }
2719
2720         /* Fix up byte swapping */
2721         CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
2722             BGE_MODECTL_BYTESWAP_DATA);
2723
2724         CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
2725
2726         /*
2727          * The 5704 in TBI mode apparently needs some special
2728          * adjustment to insure the SERDES drive level is set
2729          * to 1.2V.
2730          */
2731         if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
2732             (sc->bge_flags & BGE_FLAG_TBI)) {
2733                 uint32_t serdescfg;
2734
2735                 serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
2736                 serdescfg = (serdescfg & ~0xFFF) | 0x880;
2737                 CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
2738         }
2739
2740         /* XXX: Broadcom Linux driver. */
2741         if ((sc->bge_flags & BGE_FLAG_PCIE) &&
2742             sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
2743             sc->bge_asicrev != BGE_ASICREV_BCM5785) {
2744                 uint32_t v;
2745
2746                 /* Enable Data FIFO protection. */
2747                 v = CSR_READ_4(sc, 0x7c00);
2748                 CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
2749         }
2750
2751         DELAY(10000);
2752 }
2753
2754 /*
2755  * Frame reception handling. This is called if there's a frame
2756  * on the receive return list.
2757  *
2758  * Note: we have to be able to handle two possibilities here:
2759  * 1) the frame is from the jumbo recieve ring
2760  * 2) the frame is from the standard receive ring
2761  */
2762
2763 static void
2764 bge_rxeof(struct bge_softc *sc, uint16_t rx_prod)
2765 {
2766         struct ifnet *ifp;
2767         int stdcnt = 0, jumbocnt = 0;
2768
2769         ifp = &sc->arpcom.ac_if;
2770
2771         while (sc->bge_rx_saved_considx != rx_prod) {
2772                 struct bge_rx_bd        *cur_rx;
2773                 uint32_t                rxidx;
2774                 struct mbuf             *m = NULL;
2775                 uint16_t                vlan_tag = 0;
2776                 int                     have_tag = 0;
2777
2778                 cur_rx =
2779             &sc->bge_ldata.bge_rx_return_ring[sc->bge_rx_saved_considx];
2780
2781                 rxidx = cur_rx->bge_idx;
2782                 BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt);
2783                 logif(rx_pkt);
2784
2785                 if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
2786                         have_tag = 1;
2787                         vlan_tag = cur_rx->bge_vlan_tag;
2788                 }
2789
2790                 if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
2791                         BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
2792                         jumbocnt++;
2793
2794                         if (rxidx != sc->bge_jumbo) {
2795                                 ifp->if_ierrors++;
2796                                 if_printf(ifp, "sw jumbo index(%d) "
2797                                     "and hw jumbo index(%d) mismatch, drop!\n",
2798                                     sc->bge_jumbo, rxidx);
2799                                 bge_setup_rxdesc_jumbo(sc, rxidx);
2800                                 continue;
2801                         }
2802
2803                         m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx].bge_mbuf;
2804                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2805                                 ifp->if_ierrors++;
2806                                 bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo);
2807                                 continue;
2808                         }
2809                         if (bge_newbuf_jumbo(sc, sc->bge_jumbo, 0)) {
2810                                 ifp->if_ierrors++;
2811                                 bge_setup_rxdesc_jumbo(sc, sc->bge_jumbo);
2812                                 continue;
2813                         }
2814                 } else {
2815                         BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
2816                         stdcnt++;
2817
2818                         if (rxidx != sc->bge_std) {
2819                                 ifp->if_ierrors++;
2820                                 if_printf(ifp, "sw std index(%d) "
2821                                     "and hw std index(%d) mismatch, drop!\n",
2822                                     sc->bge_std, rxidx);
2823                                 bge_setup_rxdesc_std(sc, rxidx);
2824                                 continue;
2825                         }
2826
2827                         m = sc->bge_cdata.bge_rx_std_chain[rxidx].bge_mbuf;
2828                         if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
2829                                 ifp->if_ierrors++;
2830                                 bge_setup_rxdesc_std(sc, sc->bge_std);
2831                                 continue;
2832                         }
2833                         if (bge_newbuf_std(sc, sc->bge_std, 0)) {
2834                                 ifp->if_ierrors++;
2835                                 bge_setup_rxdesc_std(sc, sc->bge_std);
2836                                 continue;
2837                         }
2838                 }
2839
2840                 ifp->if_ipackets++;
2841 #if !defined(__i386__) && !defined(__x86_64__)
2842                 /*
2843                  * The x86 allows unaligned accesses, but for other
2844                  * platforms we must make sure the payload is aligned.
2845                  */
2846                 if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
2847                         bcopy(m->m_data, m->m_data + ETHER_ALIGN,
2848                             cur_rx->bge_len);
2849                         m->m_data += ETHER_ALIGN;
2850                 }
2851 #endif
2852                 m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
2853                 m->m_pkthdr.rcvif = ifp;
2854
2855                 if (ifp->if_capenable & IFCAP_RXCSUM) {
2856                         if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
2857                                 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2858                                 if ((cur_rx->bge_ip_csum ^ 0xffff) == 0)
2859                                         m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2860                         }
2861                         if ((cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) &&
2862                             m->m_pkthdr.len >= BGE_MIN_FRAME) {
2863                                 m->m_pkthdr.csum_data =
2864                                         cur_rx->bge_tcp_udp_csum;
2865                                 m->m_pkthdr.csum_flags |=
2866                                         CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2867                         }
2868                 }
2869
2870                 /*
2871                  * If we received a packet with a vlan tag, pass it
2872                  * to vlan_input() instead of ether_input().
2873                  */
2874                 if (have_tag) {
2875                         m->m_flags |= M_VLANTAG;
2876                         m->m_pkthdr.ether_vlantag = vlan_tag;
2877                         have_tag = vlan_tag = 0;
2878                 }
2879                 ifp->if_input(ifp, m);
2880         }
2881
2882         bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
2883         if (stdcnt)
2884                 bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
2885         if (jumbocnt)
2886                 bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
2887 }
2888
2889 static void
2890 bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
2891 {
2892         struct bge_tx_bd *cur_tx = NULL;
2893         struct ifnet *ifp;
2894
2895         ifp = &sc->arpcom.ac_if;
2896
2897         /*
2898          * Go through our tx ring and free mbufs for those
2899          * frames that have been sent.
2900          */
2901         while (sc->bge_tx_saved_considx != tx_cons) {
2902                 uint32_t idx = 0;
2903
2904                 idx = sc->bge_tx_saved_considx;
2905                 cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
2906                 if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
2907                         ifp->if_opackets++;
2908                 if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
2909                         bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
2910                             sc->bge_cdata.bge_tx_dmamap[idx]);
2911                         m_freem(sc->bge_cdata.bge_tx_chain[idx]);
2912                         sc->bge_cdata.bge_tx_chain[idx] = NULL;
2913                 }
2914                 sc->bge_txcnt--;
2915                 BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
2916                 logif(tx_pkt);
2917         }
2918
2919         if (cur_tx != NULL &&
2920             (BGE_TX_RING_CNT - sc->bge_txcnt) >=
2921             (BGE_NSEG_RSVD + BGE_NSEG_SPARE))
2922                 ifp->if_flags &= ~IFF_OACTIVE;
2923
2924         if (sc->bge_txcnt == 0)
2925                 ifp->if_timer = 0;
2926
2927         if (!ifq_is_empty(&ifp->if_snd))
2928                 if_devstart(ifp);
2929 }
2930
2931 #ifdef DEVICE_POLLING
2932
2933 static void
2934 bge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2935 {
2936         struct bge_softc *sc = ifp->if_softc;
2937         struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
2938         uint16_t rx_prod, tx_cons;
2939
2940         switch(cmd) {
2941         case POLL_REGISTER:
2942                 bge_disable_intr(sc);
2943                 break;
2944         case POLL_DEREGISTER:
2945                 bge_enable_intr(sc);
2946                 break;
2947         case POLL_AND_CHECK_STATUS:
2948                 /*
2949                  * Process link state changes.
2950                  */
2951                 bge_link_poll(sc);
2952                 /* Fall through */
2953         case POLL_ONLY:
2954                 if (sc->bge_flags & BGE_FLAG_STATUS_TAG) {
2955                         sc->bge_status_tag = sblk->bge_status_tag;
2956                         /*
2957                          * Use a load fence to ensure that status_tag
2958                          * is saved  before rx_prod and tx_cons.
2959                          */
2960                         cpu_lfence();
2961                 }
2962                 rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
2963                 tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
2964                 if (ifp->if_flags & IFF_RUNNING) {
2965                         rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
2966                         if (sc->bge_rx_saved_considx != rx_prod)
2967                                 bge_rxeof(sc, rx_prod);
2968
2969                         tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
2970                         if (sc->bge_tx_saved_considx != tx_cons)
2971                                 bge_txeof(sc, tx_cons);
2972                 }
2973                 break;
2974         }
2975 }
2976
2977 #endif
2978
2979 static void
2980 bge_intr(void *xsc)
2981 {
2982         struct bge_softc *sc = xsc;
2983         struct ifnet *ifp = &sc->arpcom.ac_if;
2984
2985         logif(intr);
2986
2987         /*
2988          * Ack the interrupt by writing something to BGE_MBX_IRQ0_LO.  Don't
2989          * disable interrupts by writing nonzero like we used to, since with
2990          * our current organization this just gives complications and
2991          * pessimizations for re-enabling interrupts.  We used to have races
2992          * instead of the necessary complications.  Disabling interrupts
2993          * would just reduce the chance of a status update while we are
2994          * running (by switching to the interrupt-mode coalescence
2995          * parameters), but this chance is already very low so it is more
2996          * efficient to get another interrupt than prevent it.
2997          *
2998          * We do the ack first to ensure another interrupt if there is a
2999          * status update after the ack.  We don't check for the status
3000          * changing later because it is more efficient to get another
3001          * interrupt than prevent it, not quite as above (not checking is
3002          * a smaller optimization than not toggling the interrupt enable,
3003          * since checking doesn't involve PCI accesses and toggling require
3004          * the status check).  So toggling would probably be a pessimization
3005          * even with MSI.  It would only be needed for using a task queue.
3006          */
3007         bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
3008
3009         /*
3010          * Process link state changes.
3011          */
3012         bge_link_poll(sc);
3013
3014         if (ifp->if_flags & IFF_RUNNING) {
3015                 struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3016                 uint16_t rx_prod, tx_cons;
3017
3018                 rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3019                 if (sc->bge_rx_saved_considx != rx_prod)
3020                         bge_rxeof(sc, rx_prod);
3021
3022                 tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3023                 if (sc->bge_tx_saved_considx != tx_cons)
3024                         bge_txeof(sc, tx_cons);
3025         }
3026
3027         if (sc->bge_coal_chg)
3028                 bge_coal_change(sc);
3029 }
3030
3031 static void
3032 bge_intr_status_tag(void *xsc)
3033 {
3034         struct bge_softc *sc = xsc;
3035         struct ifnet *ifp = &sc->arpcom.ac_if;
3036         struct bge_status_block *sblk = sc->bge_ldata.bge_status_block;
3037         uint16_t rx_prod, tx_cons;
3038         uint32_t status;
3039
3040         if (sc->bge_status_tag == sblk->bge_status_tag) {
3041                 uint32_t val;
3042
3043                 val = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
3044                 if (val & BGE_PCISTAT_INTR_NOTACT)
3045                         return;
3046         }
3047
3048         /*
3049          * NOTE:
3050          * Interrupt will have to be disabled if tagged status
3051          * is used, else interrupt will always be asserted on
3052          * certain chips (at least on BCM5750 AX/BX).
3053          */
3054         bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
3055
3056         sc->bge_status_tag = sblk->bge_status_tag;
3057         /*
3058          * Use a load fence to ensure that status_tag is saved 
3059          * before rx_prod, tx_cons and status.
3060          */
3061         cpu_lfence();
3062
3063         rx_prod = sblk->bge_idx[0].bge_rx_prod_idx;
3064         tx_cons = sblk->bge_idx[0].bge_tx_cons_idx;
3065         status = sblk->bge_status;
3066
3067         if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) || sc->bge_link_evt)
3068                 bge_link_poll(sc);
3069
3070         if (ifp->if_flags & IFF_RUNNING) {
3071                 if (sc->bge_rx_saved_considx != rx_prod)
3072                         bge_rxeof(sc, rx_prod);
3073
3074                 if (sc->bge_tx_saved_considx != tx_cons)
3075                         bge_txeof(sc, tx_cons);
3076         }
3077
3078         bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
3079
3080         if (sc->bge_coal_chg)
3081                 bge_coal_change(sc);
3082 }
3083
3084 static void
3085 bge_tick(void *xsc)
3086 {
3087         struct bge_softc *sc = xsc;
3088         struct ifnet *ifp = &sc->arpcom.ac_if;
3089
3090         lwkt_serialize_enter(ifp->if_serializer);
3091
3092         if (BGE_IS_5705_PLUS(sc))
3093                 bge_stats_update_regs(sc);
3094         else
3095                 bge_stats_update(sc);
3096
3097         if (sc->bge_flags & BGE_FLAG_TBI) {
3098                 /*
3099                  * Since in TBI mode auto-polling can't be used we should poll
3100                  * link status manually. Here we register pending link event
3101                  * and trigger interrupt.
3102                  */
3103                 sc->bge_link_evt++;
3104                 if (BGE_IS_CRIPPLED(sc))
3105                         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3106                 else
3107                         BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3108         } else if (!sc->bge_link) {
3109                 mii_tick(device_get_softc(sc->bge_miibus));
3110         }
3111
3112         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
3113
3114         lwkt_serialize_exit(ifp->if_serializer);
3115 }
3116
3117 static void
3118 bge_stats_update_regs(struct bge_softc *sc)
3119 {
3120         struct ifnet *ifp = &sc->arpcom.ac_if;
3121         struct bge_mac_stats_regs stats;
3122         uint32_t *s;
3123         int i;
3124
3125         s = (uint32_t *)&stats;
3126         for (i = 0; i < sizeof(struct bge_mac_stats_regs); i += 4) {
3127                 *s = CSR_READ_4(sc, BGE_RX_STATS + i);
3128                 s++;
3129         }
3130
3131         ifp->if_collisions +=
3132            (stats.dot3StatsSingleCollisionFrames +
3133            stats.dot3StatsMultipleCollisionFrames +
3134            stats.dot3StatsExcessiveCollisions +
3135            stats.dot3StatsLateCollisions) -
3136            ifp->if_collisions;
3137 }
3138
3139 static void
3140 bge_stats_update(struct bge_softc *sc)
3141 {
3142         struct ifnet *ifp = &sc->arpcom.ac_if;
3143         bus_size_t stats;
3144
3145         stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
3146
3147 #define READ_STAT(sc, stats, stat)      \
3148         CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
3149
3150         ifp->if_collisions +=
3151            (READ_STAT(sc, stats,
3152                 txstats.dot3StatsSingleCollisionFrames.bge_addr_lo) +
3153             READ_STAT(sc, stats,
3154                 txstats.dot3StatsMultipleCollisionFrames.bge_addr_lo) +
3155             READ_STAT(sc, stats,
3156                 txstats.dot3StatsExcessiveCollisions.bge_addr_lo) +
3157             READ_STAT(sc, stats,
3158                 txstats.dot3StatsLateCollisions.bge_addr_lo)) -
3159            ifp->if_collisions;
3160
3161 #undef READ_STAT
3162
3163 #ifdef notdef
3164         ifp->if_collisions +=
3165            (sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
3166            sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
3167            sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
3168            sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
3169            ifp->if_collisions;
3170 #endif
3171 }
3172
3173 /*
3174  * Encapsulate an mbuf chain in the tx ring  by coupling the mbuf data
3175  * pointers to descriptors.
3176  */
3177 static int
3178 bge_encap(struct bge_softc *sc, struct mbuf **m_head0, uint32_t *txidx)
3179 {
3180         struct bge_tx_bd *d = NULL;
3181         uint16_t csum_flags = 0;
3182         bus_dma_segment_t segs[BGE_NSEG_NEW];
3183         bus_dmamap_t map;
3184         int error, maxsegs, nsegs, idx, i;
3185         struct mbuf *m_head = *m_head0, *m_new;
3186
3187         if (m_head->m_pkthdr.csum_flags) {
3188                 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
3189                         csum_flags |= BGE_TXBDFLAG_IP_CSUM;
3190                 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
3191                         csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
3192                 if (m_head->m_flags & M_LASTFRAG)
3193                         csum_flags |= BGE_TXBDFLAG_IP_FRAG_END;
3194                 else if (m_head->m_flags & M_FRAG)
3195                         csum_flags |= BGE_TXBDFLAG_IP_FRAG;
3196         }
3197
3198         idx = *txidx;
3199         map = sc->bge_cdata.bge_tx_dmamap[idx];
3200
3201         maxsegs = (BGE_TX_RING_CNT - sc->bge_txcnt) - BGE_NSEG_RSVD;
3202         KASSERT(maxsegs >= BGE_NSEG_SPARE,
3203                 ("not enough segments %d", maxsegs));
3204
3205         if (maxsegs > BGE_NSEG_NEW)
3206                 maxsegs = BGE_NSEG_NEW;
3207
3208         /*
3209          * Pad outbound frame to BGE_MIN_FRAME for an unusual reason.
3210          * The bge hardware will pad out Tx runts to BGE_MIN_FRAME,
3211          * but when such padded frames employ the bge IP/TCP checksum
3212          * offload, the hardware checksum assist gives incorrect results
3213          * (possibly from incorporating its own padding into the UDP/TCP
3214          * checksum; who knows).  If we pad such runts with zeros, the
3215          * onboard checksum comes out correct.
3216          */
3217         if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) &&
3218             m_head->m_pkthdr.len < BGE_MIN_FRAME) {
3219                 error = m_devpad(m_head, BGE_MIN_FRAME);
3220                 if (error)
3221                         goto back;
3222         }
3223
3224         if ((sc->bge_flags & BGE_FLAG_SHORTDMA) && m_head->m_next != NULL) {
3225                 m_new = bge_defrag_shortdma(m_head);
3226                 if (m_new == NULL) {
3227                         error = ENOBUFS;
3228                         goto back;
3229                 }
3230                 *m_head0 = m_head = m_new;
3231         }
3232         if (sc->bge_force_defrag && (sc->bge_flags & BGE_FLAG_PCIE) &&
3233             m_head->m_next != NULL) {
3234                 /*
3235                  * Forcefully defragment mbuf chain to overcome hardware
3236                  * limitation which only support a single outstanding
3237                  * DMA read operation.  If it fails, keep moving on using
3238                  * the original mbuf chain.
3239                  */
3240                 m_new = m_defrag(m_head, MB_DONTWAIT);
3241                 if (m_new != NULL)
3242                         *m_head0 = m_head = m_new;
3243         }
3244
3245         error = bus_dmamap_load_mbuf_defrag(sc->bge_cdata.bge_tx_mtag, map,
3246                         m_head0, segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
3247         if (error)
3248                 goto back;
3249
3250         m_head = *m_head0;
3251         bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
3252
3253         for (i = 0; ; i++) {
3254                 d = &sc->bge_ldata.bge_tx_ring[idx];
3255
3256                 d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
3257                 d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
3258                 d->bge_len = segs[i].ds_len;
3259                 d->bge_flags = csum_flags;
3260
3261                 if (i == nsegs - 1)
3262                         break;
3263                 BGE_INC(idx, BGE_TX_RING_CNT);
3264         }
3265         /* Mark the last segment as end of packet... */
3266         d->bge_flags |= BGE_TXBDFLAG_END;
3267
3268         /* Set vlan tag to the first segment of the packet. */
3269         d = &sc->bge_ldata.bge_tx_ring[*txidx];
3270         if (m_head->m_flags & M_VLANTAG) {
3271                 d->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
3272                 d->bge_vlan_tag = m_head->m_pkthdr.ether_vlantag;
3273         } else {
3274                 d->bge_vlan_tag = 0;
3275         }
3276
3277         /*
3278          * Insure that the map for this transmission is placed at
3279          * the array index of the last descriptor in this chain.
3280          */
3281         sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
3282         sc->bge_cdata.bge_tx_dmamap[idx] = map;
3283         sc->bge_cdata.bge_tx_chain[idx] = m_head;
3284         sc->bge_txcnt += nsegs;
3285
3286         BGE_INC(idx, BGE_TX_RING_CNT);
3287         *txidx = idx;
3288 back:
3289         if (error) {
3290                 m_freem(*m_head0);
3291                 *m_head0 = NULL;
3292         }
3293         return error;
3294 }
3295
3296 /*
3297  * Main transmit routine. To avoid having to do mbuf copies, we put pointers
3298  * to the mbuf data regions directly in the transmit descriptors.
3299  */
3300 static void
3301 bge_start(struct ifnet *ifp)
3302 {
3303         struct bge_softc *sc = ifp->if_softc;
3304         struct mbuf *m_head = NULL;
3305         uint32_t prodidx;
3306         int need_trans;
3307
3308         if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
3309                 return;
3310
3311         prodidx = sc->bge_tx_prodidx;
3312
3313         need_trans = 0;
3314         while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
3315                 m_head = ifq_dequeue(&ifp->if_snd, NULL);
3316                 if (m_head == NULL)
3317                         break;
3318
3319                 /*
3320                  * XXX
3321                  * The code inside the if() block is never reached since we
3322                  * must mark CSUM_IP_FRAGS in our if_hwassist to start getting
3323                  * requests to checksum TCP/UDP in a fragmented packet.
3324                  * 
3325                  * XXX
3326                  * safety overkill.  If this is a fragmented packet chain
3327                  * with delayed TCP/UDP checksums, then only encapsulate
3328                  * it if we have enough descriptors to handle the entire
3329                  * chain at once.
3330                  * (paranoia -- may not actually be needed)
3331                  */
3332                 if ((m_head->m_flags & M_FIRSTFRAG) &&
3333                     (m_head->m_pkthdr.csum_flags & CSUM_DELAY_DATA)) {
3334                         if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3335                             m_head->m_pkthdr.csum_data + BGE_NSEG_RSVD) {
3336                                 ifp->if_flags |= IFF_OACTIVE;
3337                                 ifq_prepend(&ifp->if_snd, m_head);
3338                                 break;
3339                         }
3340                 }
3341
3342                 /*
3343                  * Sanity check: avoid coming within BGE_NSEG_RSVD
3344                  * descriptors of the end of the ring.  Also make
3345                  * sure there are BGE_NSEG_SPARE descriptors for
3346                  * jumbo buffers' defragmentation.
3347                  */
3348                 if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
3349                     (BGE_NSEG_RSVD + BGE_NSEG_SPARE)) {
3350                         ifp->if_flags |= IFF_OACTIVE;
3351                         ifq_prepend(&ifp->if_snd, m_head);
3352                         break;
3353                 }
3354
3355                 /*
3356                  * Pack the data into the transmit ring. If we
3357                  * don't have room, set the OACTIVE flag and wait
3358                  * for the NIC to drain the ring.
3359                  */
3360                 if (bge_encap(sc, &m_head, &prodidx)) {
3361                         ifp->if_flags |= IFF_OACTIVE;
3362                         ifp->if_oerrors++;
3363                         break;
3364                 }
3365                 need_trans = 1;
3366
3367                 ETHER_BPF_MTAP(ifp, m_head);
3368         }
3369
3370         if (!need_trans)
3371                 return;
3372
3373         /* Transmit */
3374         bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3375         /* 5700 b2 errata */
3376         if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
3377                 bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
3378
3379         sc->bge_tx_prodidx = prodidx;
3380
3381         /*
3382          * Set a timeout in case the chip goes out to lunch.
3383          */
3384         ifp->if_timer = 5;
3385 }
3386
3387 static void
3388 bge_init(void *xsc)
3389 {
3390         struct bge_softc *sc = xsc;
3391         struct ifnet *ifp = &sc->arpcom.ac_if;
3392         uint16_t *m;
3393         uint32_t mode;
3394
3395         ASSERT_SERIALIZED(ifp->if_serializer);
3396
3397         /* Cancel pending I/O and flush buffers. */
3398         bge_stop(sc);
3399         bge_reset(sc);
3400         bge_chipinit(sc);
3401
3402         /*
3403          * Init the various state machines, ring
3404          * control blocks and firmware.
3405          */
3406         if (bge_blockinit(sc)) {
3407                 if_printf(ifp, "initialization failure\n");
3408                 bge_stop(sc);
3409                 return;
3410         }
3411
3412         /* Specify MTU. */
3413         CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
3414             ETHER_HDR_LEN + ETHER_CRC_LEN + EVL_ENCAPLEN);
3415
3416         /* Load our MAC address. */
3417         m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
3418         CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
3419         CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
3420
3421         /* Enable or disable promiscuous mode as needed. */
3422         bge_setpromisc(sc);
3423
3424         /* Program multicast filter. */
3425         bge_setmulti(sc);
3426
3427         /* Init RX ring. */
3428         if (bge_init_rx_ring_std(sc)) {
3429                 if_printf(ifp, "RX ring initialization failed\n");
3430                 bge_stop(sc);
3431                 return;
3432         }
3433
3434         /*
3435          * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
3436          * memory to insure that the chip has in fact read the first
3437          * entry of the ring.
3438          */
3439         if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
3440                 uint32_t                v, i;
3441                 for (i = 0; i < 10; i++) {
3442                         DELAY(20);
3443                         v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
3444                         if (v == (MCLBYTES - ETHER_ALIGN))
3445                                 break;
3446                 }
3447                 if (i == 10)
3448                         if_printf(ifp, "5705 A0 chip failed to load RX ring\n");
3449         }
3450
3451         /* Init jumbo RX ring. */
3452         if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) {
3453                 if (bge_init_rx_ring_jumbo(sc)) {
3454                         if_printf(ifp, "Jumbo RX ring initialization failed\n");
3455                         bge_stop(sc);
3456                         return;
3457                 }
3458         }
3459
3460         /* Init our RX return ring index */
3461         sc->bge_rx_saved_considx = 0;
3462
3463         /* Init TX ring. */
3464         bge_init_tx_ring(sc);
3465
3466         /* Enable TX MAC state machine lockup fix. */
3467         mode = CSR_READ_4(sc, BGE_TX_MODE);
3468         if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3469                 mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
3470         /* Turn on transmitter */
3471         CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
3472
3473         /* Turn on receiver */
3474         BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3475
3476         /*
3477          * Set the number of good frames to receive after RX MBUF
3478          * Low Watermark has been reached.  After the RX MAC receives
3479          * this number of frames, it will drop subsequent incoming
3480          * frames until the MBUF High Watermark is reached.
3481          */
3482         CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
3483
3484         /* Tell firmware we're alive. */
3485         BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3486
3487         /* Enable host interrupts if polling(4) is not enabled. */
3488         PCI_SETBIT(sc->bge_dev, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA, 4);
3489 #ifdef DEVICE_POLLING
3490         if (ifp->if_flags & IFF_POLLING)
3491                 bge_disable_intr(sc);
3492         else
3493 #endif
3494         bge_enable_intr(sc);
3495
3496         bge_ifmedia_upd(ifp);
3497
3498         ifp->if_flags |= IFF_RUNNING;
3499         ifp->if_flags &= ~IFF_OACTIVE;
3500
3501         callout_reset(&sc->bge_stat_timer, hz, bge_tick, sc);
3502 }
3503
3504 /*
3505  * Set media options.
3506  */
3507 static int
3508 bge_ifmedia_upd(struct ifnet *ifp)
3509 {
3510         struct bge_softc *sc = ifp->if_softc;
3511
3512         /* If this is a 1000baseX NIC, enable the TBI port. */
3513         if (sc->bge_flags & BGE_FLAG_TBI) {
3514                 struct ifmedia *ifm = &sc->bge_ifmedia;
3515
3516                 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
3517                         return(EINVAL);
3518
3519                 switch(IFM_SUBTYPE(ifm->ifm_media)) {
3520                 case IFM_AUTO:
3521                         /*
3522                          * The BCM5704 ASIC appears to have a special
3523                          * mechanism for programming the autoneg
3524                          * advertisement registers in TBI mode.
3525                          */
3526                         if (!bge_fake_autoneg &&
3527                             sc->bge_asicrev == BGE_ASICREV_BCM5704) {
3528                                 uint32_t sgdig;
3529
3530                                 CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
3531                                 sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
3532                                 sgdig |= BGE_SGDIGCFG_AUTO |
3533                                          BGE_SGDIGCFG_PAUSE_CAP |
3534                                          BGE_SGDIGCFG_ASYM_PAUSE;
3535                                 CSR_WRITE_4(sc, BGE_SGDIG_CFG,
3536                                             sgdig | BGE_SGDIGCFG_SEND);
3537                                 DELAY(5);
3538                                 CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
3539                         }
3540                         break;
3541                 case IFM_1000_SX:
3542                         if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
3543                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
3544                                     BGE_MACMODE_HALF_DUPLEX);
3545                         } else {
3546                                 BGE_SETBIT(sc, BGE_MAC_MODE,
3547                                     BGE_MACMODE_HALF_DUPLEX);
3548                         }
3549                         break;
3550                 default:
3551                         return(EINVAL);
3552                 }
3553         } else {
3554                 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3555
3556                 sc->bge_link_evt++;
3557                 sc->bge_link = 0;
3558                 if (mii->mii_instance) {
3559                         struct mii_softc *miisc;
3560
3561                         LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3562                                 mii_phy_reset(miisc);
3563                 }
3564                 mii_mediachg(mii);
3565
3566                 /*
3567                  * Force an interrupt so that we will call bge_link_upd
3568                  * if needed and clear any pending link state attention.
3569                  * Without this we are not getting any further interrupts
3570                  * for link state changes and thus will not UP the link and
3571                  * not be able to send in bge_start.  The only way to get
3572                  * things working was to receive a packet and get an RX
3573                  * intr.
3574                  *
3575                  * bge_tick should help for fiber cards and we might not
3576                  * need to do this here if BGE_FLAG_TBI is set but as
3577                  * we poll for fiber anyway it should not harm.
3578                  */
3579                 if (BGE_IS_CRIPPLED(sc))
3580                         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
3581                 else
3582                         BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
3583         }
3584         return(0);
3585 }
3586
3587 /*
3588  * Report current media status.
3589  */
3590 static void
3591 bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3592 {
3593         struct bge_softc *sc = ifp->if_softc;
3594
3595         if (sc->bge_flags & BGE_FLAG_TBI) {
3596                 ifmr->ifm_status = IFM_AVALID;
3597                 ifmr->ifm_active = IFM_ETHER;
3598                 if (CSR_READ_4(sc, BGE_MAC_STS) &
3599                     BGE_MACSTAT_TBI_PCS_SYNCHED) {
3600                         ifmr->ifm_status |= IFM_ACTIVE;
3601                 } else {
3602                         ifmr->ifm_active |= IFM_NONE;
3603                         return;
3604                 }
3605
3606                 ifmr->ifm_active |= IFM_1000_SX;
3607                 if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
3608                         ifmr->ifm_active |= IFM_HDX;    
3609                 else
3610                         ifmr->ifm_active |= IFM_FDX;
3611         } else {
3612                 struct mii_data *mii = device_get_softc(sc->bge_miibus);
3613
3614                 mii_pollstat(mii);
3615                 ifmr->ifm_active = mii->mii_media_active;
3616                 ifmr->ifm_status = mii->mii_media_status;
3617         }
3618 }
3619
3620 static int
3621 bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
3622 {
3623         struct bge_softc *sc = ifp->if_softc;
3624         struct ifreq *ifr = (struct ifreq *)data;
3625         int mask, error = 0;
3626
3627         ASSERT_SERIALIZED(ifp->if_serializer);
3628
3629         switch (command) {
3630         case SIOCSIFMTU:
3631                 if ((!BGE_IS_JUMBO_CAPABLE(sc) && ifr->ifr_mtu > ETHERMTU) ||
3632                     (BGE_IS_JUMBO_CAPABLE(sc) &&
3633                      ifr->ifr_mtu > BGE_JUMBO_MTU)) {
3634                         error = EINVAL;
3635                 } else if (ifp->if_mtu != ifr->ifr_mtu) {
3636                         ifp->if_mtu = ifr->ifr_mtu;
3637                         if (ifp->if_flags & IFF_RUNNING)
3638                                 bge_init(sc);
3639                 }
3640                 break;
3641         case SIOCSIFFLAGS:
3642                 if (ifp->if_flags & IFF_UP) {
3643                         if (ifp->if_flags & IFF_RUNNING) {
3644                                 mask = ifp->if_flags ^ sc->bge_if_flags;
3645
3646                                 /*
3647                                  * If only the state of the PROMISC flag
3648                                  * changed, then just use the 'set promisc
3649                                  * mode' command instead of reinitializing
3650                                  * the entire NIC. Doing a full re-init
3651                                  * means reloading the firmware and waiting
3652                                  * for it to start up, which may take a
3653                                  * second or two.  Similarly for ALLMULTI.
3654                                  */
3655                                 if (mask & IFF_PROMISC)
3656                                         bge_setpromisc(sc);
3657                                 if (mask & IFF_ALLMULTI)
3658                                         bge_setmulti(sc);
3659                         } else {
3660                                 bge_init(sc);
3661                         }
3662                 } else if (ifp->if_flags & IFF_RUNNING) {
3663                         bge_stop(sc);
3664                 }
3665                 sc->bge_if_flags = ifp->if_flags;
3666                 break;
3667         case SIOCADDMULTI:
3668         case SIOCDELMULTI:
3669                 if (ifp->if_flags & IFF_RUNNING)
3670                         bge_setmulti(sc);
3671                 break;
3672         case SIOCSIFMEDIA:
3673         case SIOCGIFMEDIA:
3674                 if (sc->bge_flags & BGE_FLAG_TBI) {
3675                         error = ifmedia_ioctl(ifp, ifr,
3676                             &sc->bge_ifmedia, command);
3677                 } else {
3678                         struct mii_data *mii;
3679
3680                         mii = device_get_softc(sc->bge_miibus);
3681                         error = ifmedia_ioctl(ifp, ifr,
3682                                               &mii->mii_media, command);
3683                 }
3684                 break;
3685         case SIOCSIFCAP:
3686                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3687                 if (mask & IFCAP_HWCSUM) {
3688                         ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
3689                         if (IFCAP_HWCSUM & ifp->if_capenable)
3690                                 ifp->if_hwassist = BGE_CSUM_FEATURES;
3691                         else
3692                                 ifp->if_hwassist = 0;
3693                 }
3694                 break;
3695         default:
3696                 error = ether_ioctl(ifp, command, data);
3697                 break;
3698         }
3699         return error;
3700 }
3701
3702 static void
3703 bge_watchdog(struct ifnet *ifp)
3704 {
3705         struct bge_softc *sc = ifp->if_softc;
3706
3707         if_printf(ifp, "watchdog timeout -- resetting\n");
3708
3709         bge_init(sc);
3710
3711         ifp->if_oerrors++;
3712
3713         if (!ifq_is_empty(&ifp->if_snd))
3714                 if_devstart(ifp);
3715 }
3716
3717 /*
3718  * Stop the adapter and free any mbufs allocated to the
3719  * RX and TX lists.
3720  */
3721 static void
3722 bge_stop(struct bge_softc *sc)
3723 {
3724         struct ifnet *ifp = &sc->arpcom.ac_if;
3725
3726         ASSERT_SERIALIZED(ifp->if_serializer);
3727
3728         callout_stop(&sc->bge_stat_timer);
3729
3730         /*
3731          * Disable all of the receiver blocks
3732          */
3733         bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
3734         bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
3735         bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
3736         if (BGE_IS_5700_FAMILY(sc))
3737                 bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
3738         bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
3739         bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
3740         bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
3741
3742         /*
3743          * Disable all of the transmit blocks
3744          */
3745         bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
3746         bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
3747         bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
3748         bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
3749         bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
3750         if (BGE_IS_5700_FAMILY(sc))
3751                 bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
3752         bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
3753
3754         /*
3755          * Shut down all of the memory managers and related
3756          * state machines.
3757          */
3758         bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
3759         bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
3760         if (BGE_IS_5700_FAMILY(sc))
3761                 bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
3762         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
3763         CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
3764         if (!BGE_IS_5705_PLUS(sc)) {
3765                 BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
3766                 BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
3767         }
3768
3769         /* Disable host interrupts. */
3770         bge_disable_intr(sc);
3771
3772         /*
3773          * Tell firmware we're shutting down.
3774          */
3775         BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3776
3777         /* Free the RX lists. */
3778         bge_free_rx_ring_std(sc);
3779
3780         /* Free jumbo RX list. */
3781         if (BGE_IS_JUMBO_CAPABLE(sc))
3782                 bge_free_rx_ring_jumbo(sc);
3783
3784         /* Free TX buffers. */
3785         bge_free_tx_ring(sc);
3786
3787         sc->bge_status_tag = 0;
3788         sc->bge_link = 0;
3789         sc->bge_coal_chg = 0;
3790
3791         sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
3792
3793         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3794         ifp->if_timer = 0;
3795 }
3796
3797 /*
3798  * Stop all chip I/O so that the kernel's probe routines don't
3799  * get confused by errant DMAs when rebooting.
3800  */
3801 static void
3802 bge_shutdown(device_t dev)
3803 {
3804         struct bge_softc *sc = device_get_softc(dev);
3805         struct ifnet *ifp = &sc->arpcom.ac_if;
3806
3807         lwkt_serialize_enter(ifp->if_serializer);
3808         bge_stop(sc);
3809         bge_reset(sc);
3810         lwkt_serialize_exit(ifp->if_serializer);
3811 }
3812
3813 static int
3814 bge_suspend(device_t dev)
3815 {
3816         struct bge_softc *sc = device_get_softc(dev);
3817         struct ifnet *ifp = &sc->arpcom.ac_if;
3818
3819         lwkt_serialize_enter(ifp->if_serializer);
3820         bge_stop(sc);
3821         lwkt_serialize_exit(ifp->if_serializer);
3822
3823         return 0;
3824 }
3825
3826 static int
3827 bge_resume(device_t dev)
3828 {
3829         struct bge_softc *sc = device_get_softc(dev);
3830         struct ifnet *ifp = &sc->arpcom.ac_if;
3831
3832         lwkt_serialize_enter(ifp->if_serializer);
3833
3834         if (ifp->if_flags & IFF_UP) {
3835                 bge_init(sc);
3836
3837                 if (!ifq_is_empty(&ifp->if_snd))
3838                         if_devstart(ifp);
3839         }
3840
3841         lwkt_serialize_exit(ifp->if_serializer);
3842
3843         return 0;
3844 }
3845
3846 static void
3847 bge_setpromisc(struct bge_softc *sc)
3848 {
3849         struct ifnet *ifp = &sc->arpcom.ac_if;
3850
3851         if (ifp->if_flags & IFF_PROMISC)
3852                 BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3853         else
3854                 BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
3855 }
3856
3857 static void
3858 bge_dma_free(struct bge_softc *sc)
3859 {
3860         int i;
3861
3862         /* Destroy RX mbuf DMA stuffs. */
3863         if (sc->bge_cdata.bge_rx_mtag != NULL) {
3864                 for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3865                         bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
3866                             sc->bge_cdata.bge_rx_std_dmamap[i]);
3867                 }
3868                 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
3869                                    sc->bge_cdata.bge_rx_tmpmap);
3870                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
3871         }
3872
3873         /* Destroy TX mbuf DMA stuffs. */
3874         if (sc->bge_cdata.bge_tx_mtag != NULL) {
3875                 for (i = 0; i < BGE_TX_RING_CNT; i++) {
3876                         bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
3877                             sc->bge_cdata.bge_tx_dmamap[i]);
3878                 }
3879                 bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
3880         }
3881
3882         /* Destroy standard RX ring */
3883         bge_dma_block_free(sc->bge_cdata.bge_rx_std_ring_tag,
3884                            sc->bge_cdata.bge_rx_std_ring_map,
3885                            sc->bge_ldata.bge_rx_std_ring);
3886
3887         if (BGE_IS_JUMBO_CAPABLE(sc))
3888                 bge_free_jumbo_mem(sc);
3889
3890         /* Destroy RX return ring */
3891         bge_dma_block_free(sc->bge_cdata.bge_rx_return_ring_tag,
3892                            sc->bge_cdata.bge_rx_return_ring_map,
3893                            sc->bge_ldata.bge_rx_return_ring);
3894
3895         /* Destroy TX ring */
3896         bge_dma_block_free(sc->bge_cdata.bge_tx_ring_tag,
3897                            sc->bge_cdata.bge_tx_ring_map,
3898                            sc->bge_ldata.bge_tx_ring);
3899
3900         /* Destroy status block */
3901         bge_dma_block_free(sc->bge_cdata.bge_status_tag,
3902                            sc->bge_cdata.bge_status_map,
3903                            sc->bge_ldata.bge_status_block);
3904
3905         /* Destroy statistics block */
3906         bge_dma_block_free(sc->bge_cdata.bge_stats_tag,
3907                            sc->bge_cdata.bge_stats_map,
3908                            sc->bge_ldata.bge_stats);
3909
3910         /* Destroy the parent tag */
3911         if (sc->bge_cdata.bge_parent_tag != NULL)
3912                 bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
3913 }
3914
3915 static int
3916 bge_dma_alloc(struct bge_softc *sc)
3917 {
3918         struct ifnet *ifp = &sc->arpcom.ac_if;
3919         int i, error;
3920         bus_addr_t lowaddr;
3921
3922         lowaddr = BUS_SPACE_MAXADDR;
3923         if (sc->bge_flags & BGE_FLAG_MAXADDR_40BIT)
3924                 lowaddr = BGE_DMA_MAXADDR_40BIT;
3925
3926         /*
3927          * Allocate the parent bus DMA tag appropriate for PCI.
3928          *
3929          * All of the NetExtreme/NetLink controllers have 4GB boundary
3930          * DMA bug.
3931          * Whenever an address crosses a multiple of the 4GB boundary
3932          * (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
3933          * from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
3934          * state machine will lockup and cause the device to hang.
3935          */
3936         error = bus_dma_tag_create(NULL, 1, BGE_DMA_BOUNDARY_4G,
3937                                    lowaddr, BUS_SPACE_MAXADDR,
3938                                    NULL, NULL,
3939                                    BUS_SPACE_MAXSIZE_32BIT, 0,
3940                                    BUS_SPACE_MAXSIZE_32BIT,
3941                                    0, &sc->bge_cdata.bge_parent_tag);
3942         if (error) {
3943                 if_printf(ifp, "could not allocate parent dma tag\n");
3944                 return error;
3945         }
3946
3947         /*
3948          * Create DMA tag and maps for RX mbufs.
3949          */
3950         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
3951                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3952                                    NULL, NULL, MCLBYTES, 1, MCLBYTES,
3953                                    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK,
3954                                    &sc->bge_cdata.bge_rx_mtag);
3955         if (error) {
3956                 if_printf(ifp, "could not allocate RX mbuf dma tag\n");
3957                 return error;
3958         }
3959
3960         error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag,
3961                                   BUS_DMA_WAITOK, &sc->bge_cdata.bge_rx_tmpmap);
3962         if (error) {
3963                 bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
3964                 sc->bge_cdata.bge_rx_mtag = NULL;
3965                 return error;
3966         }
3967
3968         for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3969                 error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag,
3970                                           BUS_DMA_WAITOK,
3971                                           &sc->bge_cdata.bge_rx_std_dmamap[i]);
3972                 if (error) {
3973                         int j;
3974
3975                         for (j = 0; j < i; ++j) {
3976                                 bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
3977                                         sc->bge_cdata.bge_rx_std_dmamap[j]);
3978                         }
3979                         bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
3980                         sc->bge_cdata.bge_rx_mtag = NULL;
3981
3982                         if_printf(ifp, "could not create DMA map for RX\n");
3983                         return error;
3984                 }
3985         }
3986
3987         /*
3988          * Create DMA tag and maps for TX mbufs.
3989          */
3990         error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag, 1, 0,
3991                                    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
3992                                    NULL, NULL,
3993                                    BGE_JUMBO_FRAMELEN, BGE_NSEG_NEW, MCLBYTES,
3994                                    BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK |
3995                                    BUS_DMA_ONEBPAGE,
3996                                    &sc->bge_cdata.bge_tx_mtag);
3997         if (error) {
3998                 if_printf(ifp, "could not allocate TX mbuf dma tag\n");
3999                 return error;
4000         }
4001
4002         for (i = 0; i < BGE_TX_RING_CNT; i++) {
4003                 error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag,
4004                                           BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE,
4005                                           &sc->bge_cdata.bge_tx_dmamap[i]);
4006                 if (error) {
4007                         int j;
4008
4009                         for (j = 0; j < i; ++j) {
4010                                 bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
4011                                         sc->bge_cdata.bge_tx_dmamap[j]);
4012                         }
4013                         bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
4014                         sc->bge_cdata.bge_tx_mtag = NULL;
4015
4016                         if_printf(ifp, "could not create DMA map for TX\n");
4017                         return error;
4018                 }
4019         }
4020
4021         /*
4022          * Create DMA stuffs for standard RX ring.
4023          */
4024         error = bge_dma_block_alloc(sc, BGE_STD_RX_RING_SZ,
4025                                     &sc->bge_cdata.bge_rx_std_ring_tag,
4026                                     &sc->bge_cdata.bge_rx_std_ring_map,
4027                                     (void *)&sc->bge_ldata.bge_rx_std_ring,
4028                                     &sc->bge_ldata.bge_rx_std_ring_paddr);
4029         if (error) {
4030                 if_printf(ifp, "could not create std RX ring\n");
4031                 return error;
4032         }
4033
4034         /*
4035          * Create jumbo buffer pool.
4036          */
4037         if (BGE_IS_JUMBO_CAPABLE(sc)) {
4038                 error = bge_alloc_jumbo_mem(sc);
4039                 if (error) {
4040                         if_printf(ifp, "could not create jumbo buffer pool\n");
4041                         return error;
4042                 }
4043         }
4044
4045         /*
4046          * Create DMA stuffs for RX return ring.
4047          */
4048         error = bge_dma_block_alloc(sc, BGE_RX_RTN_RING_SZ(sc),
4049                                     &sc->bge_cdata.bge_rx_return_ring_tag,
4050                                     &sc->bge_cdata.bge_rx_return_ring_map,
4051                                     (void *)&sc->bge_ldata.bge_rx_return_ring,
4052                                     &sc->bge_ldata.bge_rx_return_ring_paddr);
4053         if (error) {
4054                 if_printf(ifp, "could not create RX ret ring\n");
4055                 return error;
4056         }
4057
4058         /*
4059          * Create DMA stuffs for TX ring.
4060          */
4061         error = bge_dma_block_alloc(sc, BGE_TX_RING_SZ,
4062                                     &sc->bge_cdata.bge_tx_ring_tag,
4063                                     &sc->bge_cdata.bge_tx_ring_map,
4064                                     (void *)&sc->bge_ldata.bge_tx_ring,
4065                                     &sc->bge_ldata.bge_tx_ring_paddr);
4066         if (error) {
4067                 if_printf(ifp, "could not create TX ring\n");
4068                 return error;
4069         }
4070
4071         /*
4072          * Create DMA stuffs for status block.
4073          */
4074         error = bge_dma_block_alloc(sc, BGE_STATUS_BLK_SZ,
4075                                     &sc->bge_cdata.bge_status_tag,
4076                                     &sc->bge_cdata.bge_status_map,
4077                                     (void *)&sc->bge_ldata.bge_status_block,
4078                                     &sc->bge_ldata.bge_status_block_paddr);
4079         if (error) {
4080                 if_printf(ifp, "could not create status block\n");
4081                 return error;
4082         }
4083
4084         /*
4085          * Create DMA stuffs for statistics block.
4086          */
4087         error = bge_dma_block_alloc(sc, BGE_STATS_SZ,
4088                                     &sc->bge_cdata.bge_stats_tag,
4089                                     &sc->bge_cdata.bge_stats_map,
4090                                     (void *)&sc->bge_ldata.bge_stats,
4091                                     &sc->bge_ldata.bge_stats_paddr);
4092         if (error) {
4093                 if_printf(ifp, "could not create stats block\n");
4094                 return error;
4095         }
4096         return 0;
4097 }
4098
4099 static int
4100 bge_dma_block_alloc(struct bge_softc *sc, bus_size_t size, bus_dma_tag_t *tag,
4101                     bus_dmamap_t *map, void **addr, bus_addr_t *paddr)
4102 {
4103         bus_dmamem_t dmem;
4104         int error;
4105
4106         error = bus_dmamem_coherent(sc->bge_cdata.bge_parent_tag, PAGE_SIZE, 0,
4107                                     BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
4108                                     size, BUS_DMA_WAITOK | BUS_DMA_ZERO, &dmem);
4109         if (error)
4110                 return error;
4111
4112         *tag = dmem.dmem_tag;
4113         *map = dmem.dmem_map;
4114         *addr = dmem.dmem_addr;
4115         *paddr = dmem.dmem_busaddr;
4116
4117         return 0;
4118 }
4119
4120 static void
4121 bge_dma_block_free(bus_dma_tag_t tag, bus_dmamap_t map, void *addr)
4122 {
4123         if (tag != NULL) {
4124                 bus_dmamap_unload(tag, map);
4125                 bus_dmamem_free(tag, addr, map);
4126                 bus_dma_tag_destroy(tag);
4127         }
4128 }
4129
4130 /*
4131  * Grrr. The link status word in the status block does
4132  * not work correctly on the BCM5700 rev AX and BX chips,
4133  * according to all available information. Hence, we have
4134  * to enable MII interrupts in order to properly obtain
4135  * async link changes. Unfortunately, this also means that
4136  * we have to read the MAC status register to detect link
4137  * changes, thereby adding an additional register access to
4138  * the interrupt handler.
4139  *
4140  * XXX: perhaps link state detection procedure used for
4141  * BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
4142  */
4143 static void
4144 bge_bcm5700_link_upd(struct bge_softc *sc, uint32_t status __unused)
4145 {
4146         struct ifnet *ifp = &sc->arpcom.ac_if;
4147         struct mii_data *mii = device_get_softc(sc->bge_miibus);
4148
4149         mii_pollstat(mii);
4150
4151         if (!sc->bge_link &&
4152             (mii->mii_media_status & IFM_ACTIVE) &&
4153             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4154                 sc->bge_link++;
4155                 if (bootverbose)
4156                         if_printf(ifp, "link UP\n");
4157         } else if (sc->bge_link &&
4158             (!(mii->mii_media_status & IFM_ACTIVE) ||
4159             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4160                 sc->bge_link = 0;
4161                 if (bootverbose)
4162                         if_printf(ifp, "link DOWN\n");
4163         }
4164
4165         /* Clear the interrupt. */
4166         CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_MI_INTERRUPT);
4167         bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
4168         bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR, BRGPHY_INTRS);
4169 }
4170
4171 static void
4172 bge_tbi_link_upd(struct bge_softc *sc, uint32_t status)
4173 {
4174         struct ifnet *ifp = &sc->arpcom.ac_if;
4175
4176 #define PCS_ENCODE_ERR  (BGE_MACSTAT_PORT_DECODE_ERROR|BGE_MACSTAT_MI_COMPLETE)
4177
4178         /*
4179          * Sometimes PCS encoding errors are detected in
4180          * TBI mode (on fiber NICs), and for some reason
4181          * the chip will signal them as link changes.
4182          * If we get a link change event, but the 'PCS
4183          * encoding error' bit in the MAC status register
4184          * is set, don't bother doing a link check.
4185          * This avoids spurious "gigabit link up" messages
4186          * that sometimes appear on fiber NICs during
4187          * periods of heavy traffic.
4188          */
4189         if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
4190                 if (!sc->bge_link) {
4191                         sc->bge_link++;
4192                         if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4193                                 BGE_CLRBIT(sc, BGE_MAC_MODE,
4194                                     BGE_MACMODE_TBI_SEND_CFGS);
4195                         }
4196                         CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
4197
4198                         if (bootverbose)
4199                                 if_printf(ifp, "link UP\n");
4200
4201                         ifp->if_link_state = LINK_STATE_UP;
4202                         if_link_state_change(ifp);
4203                 }
4204         } else if ((status & PCS_ENCODE_ERR) != PCS_ENCODE_ERR) {
4205                 if (sc->bge_link) {
4206                         sc->bge_link = 0;
4207
4208                         if (bootverbose)
4209                                 if_printf(ifp, "link DOWN\n");
4210
4211                         ifp->if_link_state = LINK_STATE_DOWN;
4212                         if_link_state_change(ifp);
4213                 }
4214         }
4215
4216 #undef PCS_ENCODE_ERR
4217
4218         /* Clear the attention. */
4219         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4220             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4221             BGE_MACSTAT_LINK_CHANGED);
4222 }
4223
4224 static void
4225 bge_copper_link_upd(struct bge_softc *sc, uint32_t status __unused)
4226 {
4227         struct ifnet *ifp = &sc->arpcom.ac_if;
4228         struct mii_data *mii = device_get_softc(sc->bge_miibus);
4229
4230         mii_pollstat(mii);
4231         bge_miibus_statchg(sc->bge_dev);
4232
4233         if (bootverbose) {
4234                 if (sc->bge_link)
4235                         if_printf(ifp, "link UP\n");
4236                 else
4237                         if_printf(ifp, "link DOWN\n");
4238         }
4239
4240         /* Clear the attention. */
4241         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4242             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4243             BGE_MACSTAT_LINK_CHANGED);
4244 }
4245
4246 static void
4247 bge_autopoll_link_upd(struct bge_softc *sc, uint32_t status __unused)
4248 {
4249         struct ifnet *ifp = &sc->arpcom.ac_if;
4250         struct mii_data *mii = device_get_softc(sc->bge_miibus);
4251
4252         mii_pollstat(mii);
4253
4254         if (!sc->bge_link &&
4255             (mii->mii_media_status & IFM_ACTIVE) &&
4256             IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4257                 sc->bge_link++;
4258                 if (bootverbose)
4259                         if_printf(ifp, "link UP\n");
4260         } else if (sc->bge_link &&
4261             (!(mii->mii_media_status & IFM_ACTIVE) ||
4262             IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
4263                 sc->bge_link = 0;
4264                 if (bootverbose)
4265                         if_printf(ifp, "link DOWN\n");
4266         }
4267
4268         /* Clear the attention. */
4269         CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
4270             BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
4271             BGE_MACSTAT_LINK_CHANGED);
4272 }
4273
4274 static int
4275 bge_sysctl_rx_coal_ticks(SYSCTL_HANDLER_ARGS)
4276 {
4277         struct bge_softc *sc = arg1;
4278
4279         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4280             &sc->bge_rx_coal_ticks,
4281             BGE_RX_COAL_TICKS_MIN, BGE_RX_COAL_TICKS_MAX,
4282             BGE_RX_COAL_TICKS_CHG);
4283 }
4284
4285 static int
4286 bge_sysctl_tx_coal_ticks(SYSCTL_HANDLER_ARGS)
4287 {
4288         struct bge_softc *sc = arg1;
4289
4290         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4291             &sc->bge_tx_coal_ticks,
4292             BGE_TX_COAL_TICKS_MIN, BGE_TX_COAL_TICKS_MAX,
4293             BGE_TX_COAL_TICKS_CHG);
4294 }
4295
4296 static int
4297 bge_sysctl_rx_coal_bds(SYSCTL_HANDLER_ARGS)
4298 {
4299         struct bge_softc *sc = arg1;
4300
4301         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4302             &sc->bge_rx_coal_bds,
4303             BGE_RX_COAL_BDS_MIN, BGE_RX_COAL_BDS_MAX,
4304             BGE_RX_COAL_BDS_CHG);
4305 }
4306
4307 static int
4308 bge_sysctl_tx_coal_bds(SYSCTL_HANDLER_ARGS)
4309 {
4310         struct bge_softc *sc = arg1;
4311
4312         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4313             &sc->bge_tx_coal_bds,
4314             BGE_TX_COAL_BDS_MIN, BGE_TX_COAL_BDS_MAX,
4315             BGE_TX_COAL_BDS_CHG);
4316 }
4317
4318 static int
4319 bge_sysctl_rx_coal_ticks_int(SYSCTL_HANDLER_ARGS)
4320 {
4321         struct bge_softc *sc = arg1;
4322
4323         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4324             &sc->bge_rx_coal_ticks_int,
4325             BGE_RX_COAL_TICKS_MIN, BGE_RX_COAL_TICKS_MAX,
4326             BGE_RX_COAL_TICKS_INT_CHG);
4327 }
4328
4329 static int
4330 bge_sysctl_tx_coal_ticks_int(SYSCTL_HANDLER_ARGS)
4331 {
4332         struct bge_softc *sc = arg1;
4333
4334         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4335             &sc->bge_tx_coal_ticks_int,
4336             BGE_TX_COAL_TICKS_MIN, BGE_TX_COAL_TICKS_MAX,
4337             BGE_TX_COAL_TICKS_INT_CHG);
4338 }
4339
4340 static int
4341 bge_sysctl_rx_coal_bds_int(SYSCTL_HANDLER_ARGS)
4342 {
4343         struct bge_softc *sc = arg1;
4344
4345         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4346             &sc->bge_rx_coal_bds_int,
4347             BGE_RX_COAL_BDS_MIN, BGE_RX_COAL_BDS_MAX,
4348             BGE_RX_COAL_BDS_INT_CHG);
4349 }
4350
4351 static int
4352 bge_sysctl_tx_coal_bds_int(SYSCTL_HANDLER_ARGS)
4353 {
4354         struct bge_softc *sc = arg1;
4355
4356         return bge_sysctl_coal_chg(oidp, arg1, arg2, req,
4357             &sc->bge_tx_coal_bds_int,
4358             BGE_TX_COAL_BDS_MIN, BGE_TX_COAL_BDS_MAX,
4359             BGE_TX_COAL_BDS_INT_CHG);
4360 }
4361
4362 static int
4363 bge_sysctl_coal_chg(SYSCTL_HANDLER_ARGS, uint32_t *coal,
4364     int coal_min, int coal_max, uint32_t coal_chg_mask)
4365 {
4366         struct bge_softc *sc = arg1;
4367         struct ifnet *ifp = &sc->arpcom.ac_if;
4368         int error = 0, v;
4369
4370         lwkt_serialize_enter(ifp->if_serializer);
4371
4372         v = *coal;
4373         error = sysctl_handle_int(oidp, &v, 0, req);
4374         if (!error && req->newptr != NULL) {
4375                 if (v < coal_min || v > coal_max) {
4376                         error = EINVAL;
4377                 } else {
4378                         *coal = v;
4379                         sc->bge_coal_chg |= coal_chg_mask;
4380                 }
4381         }
4382
4383         lwkt_serialize_exit(ifp->if_serializer);
4384         return error;
4385 }
4386
4387 static void
4388 bge_coal_change(struct bge_softc *sc)
4389 {
4390         struct ifnet *ifp = &sc->arpcom.ac_if;
4391         uint32_t val;
4392
4393         ASSERT_SERIALIZED(ifp->if_serializer);
4394
4395         if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_CHG) {
4396                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS,
4397                             sc->bge_rx_coal_ticks);
4398                 DELAY(10);
4399                 val = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
4400
4401                 if (bootverbose) {
4402                         if_printf(ifp, "rx_coal_ticks -> %u\n",
4403                                   sc->bge_rx_coal_ticks);
4404                 }
4405         }
4406
4407         if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_CHG) {
4408                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS,
4409                             sc->bge_tx_coal_ticks);
4410                 DELAY(10);
4411                 val = CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS);
4412
4413                 if (bootverbose) {
4414                         if_printf(ifp, "tx_coal_ticks -> %u\n",
4415                                   sc->bge_tx_coal_ticks);
4416                 }
4417         }
4418
4419         if (sc->bge_coal_chg & BGE_RX_COAL_BDS_CHG) {
4420                 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS,
4421                             sc->bge_rx_coal_bds);
4422                 DELAY(10);
4423                 val = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
4424
4425                 if (bootverbose) {
4426                         if_printf(ifp, "rx_coal_bds -> %u\n",
4427                                   sc->bge_rx_coal_bds);
4428                 }
4429         }
4430
4431         if (sc->bge_coal_chg & BGE_TX_COAL_BDS_CHG) {
4432                 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS,
4433                             sc->bge_tx_coal_bds);
4434                 DELAY(10);
4435                 val = CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS);
4436
4437                 if (bootverbose) {
4438                         if_printf(ifp, "tx_max_coal_bds -> %u\n",
4439                                   sc->bge_tx_coal_bds);
4440                 }
4441         }
4442
4443         if (sc->bge_coal_chg & BGE_RX_COAL_TICKS_INT_CHG) {
4444                 CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT,
4445                     sc->bge_rx_coal_ticks_int);
4446                 DELAY(10);
4447                 val = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS_INT);
4448
4449                 if (bootverbose) {
4450                         if_printf(ifp, "rx_coal_ticks_int -> %u\n",
4451                             sc->bge_rx_coal_ticks_int);
4452                 }
4453         }
4454
4455         if (sc->bge_coal_chg & BGE_TX_COAL_TICKS_INT_CHG) {
4456                 CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT,
4457                     sc->bge_tx_coal_ticks_int);
4458                 DELAY(10);
4459                 val = CSR_READ_4(sc, BGE_HCC_TX_COAL_TICKS_INT);
4460
4461                 if (bootverbose) {
4462                         if_printf(ifp, "tx_coal_ticks_int -> %u\n",
4463                             sc->bge_tx_coal_ticks_int);
4464                 }
4465         }
4466
4467         if (sc->bge_coal_chg & BGE_RX_COAL_BDS_INT_CHG) {
4468                 CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT,
4469                     sc->bge_rx_coal_bds_int);
4470                 DELAY(10);
4471                 val = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT);
4472
4473                 if (bootverbose) {
4474                         if_printf(ifp, "rx_coal_bds_int -> %u\n",
4475                             sc->bge_rx_coal_bds_int);
4476                 }
4477         }
4478
4479         if (sc->bge_coal_chg & BGE_TX_COAL_BDS_INT_CHG) {
4480                 CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT,
4481                     sc->bge_tx_coal_bds_int);
4482                 DELAY(10);
4483                 val = CSR_READ_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT);
4484
4485                 if (bootverbose) {
4486                         if_printf(ifp, "tx_coal_bds_int -> %u\n",
4487                             sc->bge_tx_coal_bds_int);
4488                 }
4489         }
4490
4491         sc->bge_coal_chg = 0;
4492 }
4493
4494 static void
4495 bge_enable_intr(struct bge_softc *sc)
4496 {
4497         struct ifnet *ifp = &sc->arpcom.ac_if;
4498
4499         lwkt_serialize_handler_enable(ifp->if_serializer);
4500
4501         /*
4502          * Enable interrupt.
4503          */
4504         bge_writembx(sc, BGE_MBX_IRQ0_LO, sc->bge_status_tag << 24);
4505
4506         /*
4507          * Unmask the interrupt when we stop polling.
4508          */
4509         PCI_CLRBIT(sc->bge_dev, BGE_PCI_MISC_CTL,
4510             BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4511
4512         /*
4513          * Trigger another interrupt, since above writing
4514          * to interrupt mailbox0 may acknowledge pending
4515          * interrupt.
4516          */
4517         BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4518 }
4519
4520 static void
4521 bge_disable_intr(struct bge_softc *sc)
4522 {
4523         struct ifnet *ifp = &sc->arpcom.ac_if;
4524
4525         /*
4526          * Mask the interrupt when we start polling.
4527          */
4528         PCI_SETBIT(sc->bge_dev, BGE_PCI_MISC_CTL,
4529             BGE_PCIMISCCTL_MASK_PCI_INTR, 4);
4530
4531         /*
4532          * Acknowledge possible asserted interrupt.
4533          */
4534         bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
4535
4536         lwkt_serialize_handler_disable(ifp->if_serializer);
4537 }
4538
4539 static int
4540 bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
4541 {
4542         uint32_t mac_addr;
4543         int ret = 1;
4544
4545         mac_addr = bge_readmem_ind(sc, 0x0c14);
4546         if ((mac_addr >> 16) == 0x484b) {
4547                 ether_addr[0] = (uint8_t)(mac_addr >> 8);
4548                 ether_addr[1] = (uint8_t)mac_addr;
4549                 mac_addr = bge_readmem_ind(sc, 0x0c18);
4550                 ether_addr[2] = (uint8_t)(mac_addr >> 24);
4551                 ether_addr[3] = (uint8_t)(mac_addr >> 16);
4552                 ether_addr[4] = (uint8_t)(mac_addr >> 8);
4553                 ether_addr[5] = (uint8_t)mac_addr;
4554                 ret = 0;
4555         }
4556         return ret;
4557 }
4558
4559 static int
4560 bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
4561 {
4562         int mac_offset = BGE_EE_MAC_OFFSET;
4563
4564         if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
4565                 mac_offset = BGE_EE_MAC_OFFSET_5906;
4566
4567         return bge_read_nvram(sc, ether_addr, mac_offset + 2, ETHER_ADDR_LEN);
4568 }
4569
4570 static int
4571 bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
4572 {
4573         if (sc->bge_flags & BGE_FLAG_NO_EEPROM)
4574                 return 1;
4575
4576         return bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
4577                                ETHER_ADDR_LEN);
4578 }
4579
4580 static int
4581 bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
4582 {
4583         static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
4584                 /* NOTE: Order is critical */
4585                 bge_get_eaddr_mem,
4586                 bge_get_eaddr_nvram,
4587                 bge_get_eaddr_eeprom,
4588                 NULL
4589         };
4590         const bge_eaddr_fcn_t *func;
4591
4592         for (func = bge_eaddr_funcs; *func != NULL; ++func) {
4593                 if ((*func)(sc, eaddr) == 0)
4594                         break;
4595         }
4596         return (*func == NULL ? ENXIO : 0);
4597 }
4598
4599 /*
4600  * NOTE: 'm' is not freed upon failure
4601  */
4602 struct mbuf *
4603 bge_defrag_shortdma(struct mbuf *m)
4604 {
4605         struct mbuf *n;
4606         int found;
4607
4608         /*
4609          * If device receive two back-to-back send BDs with less than
4610          * or equal to 8 total bytes then the device may hang.  The two
4611          * back-to-back send BDs must in the same frame for this failure
4612          * to occur.  Scan mbuf chains and see whether two back-to-back
4613          * send BDs are there.  If this is the case, allocate new mbuf
4614          * and copy the frame to workaround the silicon bug.
4615          */
4616         for (n = m, found = 0; n != NULL; n = n->m_next) {
4617                 if (n->m_len < 8) {
4618                         found++;
4619                         if (found > 1)
4620                                 break;
4621                         continue;
4622                 }
4623                 found = 0;
4624         }
4625
4626         if (found > 1)
4627                 n = m_defrag(m, MB_DONTWAIT);
4628         else
4629                 n = m;
4630         return n;
4631 }
4632
4633 static void
4634 bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
4635 {
4636         int i;
4637
4638         BGE_CLRBIT(sc, reg, bit);
4639         for (i = 0; i < BGE_TIMEOUT; i++) {
4640                 if ((CSR_READ_4(sc, reg) & bit) == 0)
4641                         return;
4642                 DELAY(100);
4643         }
4644 }
4645
4646 static void
4647 bge_link_poll(struct bge_softc *sc)
4648 {
4649         uint32_t status;
4650
4651         status = CSR_READ_4(sc, BGE_MAC_STS);
4652         if ((status & sc->bge_link_chg) || sc->bge_link_evt) {
4653                 sc->bge_link_evt = 0;
4654                 sc->bge_link_upd(sc, status);
4655         }
4656 }