2 * Copyright (c) 1998-2002 Luigi Rizzo, Universita` di Pisa
3 * Portions Copyright (c) 2000 Akamba Corp.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * $FreeBSD: src/sys/netinet/ip_dummynet.c,v 1.24.2.22 2003/05/13 09:31:06 maxim Exp $
33 * This module implements IP dummynet, a bandwidth limiter/delay emulator.
34 * Description of the data structures used is in ip_dummynet.h
35 * Here you mainly find the following blocks of code:
36 * + variable declarations;
37 * + heap management functions;
38 * + scheduler and dummynet functions;
39 * + configuration and initialization.
41 * Most important Changes:
44 * 010124: Fixed WF2Q behaviour
45 * 010122: Fixed spl protection.
46 * 000601: WF2Q support
47 * 000106: Large rewrite, use heaps to handle very many pipes.
48 * 980513: Initial release
51 #include <sys/param.h>
52 #include <sys/kernel.h>
53 #include <sys/malloc.h>
55 #include <sys/socketvar.h>
56 #include <sys/sysctl.h>
57 #include <sys/systimer.h>
58 #include <sys/thread2.h>
60 #include <net/ethernet.h>
61 #include <net/netmsg2.h>
62 #include <net/route.h>
64 #include <netinet/in_var.h>
65 #include <netinet/ip_var.h>
67 #include <net/dummynet/ip_dummynet.h>
70 #define DPRINTF(fmt, ...) kprintf(fmt, __VA_ARGS__)
72 #define DPRINTF(fmt, ...) ((void)0)
75 #ifndef DN_CALLOUT_FREQ_MAX
76 #define DN_CALLOUT_FREQ_MAX 10000
80 * The maximum/minimum hash table size for queues.
81 * These values must be a power of 2.
83 #define DN_MIN_HASH_SIZE 4
84 #define DN_MAX_HASH_SIZE 65536
87 * Some macros are used to compare key values and handle wraparounds.
88 * MAX64 returns the largest of two key values.
90 #define DN_KEY_LT(a, b) ((int64_t)((a) - (b)) < 0)
91 #define DN_KEY_LEQ(a, b) ((int64_t)((a) - (b)) <= 0)
92 #define DN_KEY_GT(a, b) ((int64_t)((a) - (b)) > 0)
93 #define DN_KEY_GEQ(a, b) ((int64_t)((a) - (b)) >= 0)
94 #define MAX64(x, y) ((((int64_t)((y) - (x))) > 0) ? (y) : (x))
96 #define DN_NR_HASH_MAX 16
97 #define DN_NR_HASH_MASK (DN_NR_HASH_MAX - 1)
98 #define DN_NR_HASH(nr) \
99 ((((nr) >> 12) ^ ((nr) >> 8) ^ ((nr) >> 4) ^ (nr)) & DN_NR_HASH_MASK)
101 MALLOC_DEFINE(M_DUMMYNET, "dummynet", "dummynet heap");
103 extern int ip_dn_cpu;
105 static dn_key curr_time = 0; /* current simulation time */
106 static int dn_hash_size = 64; /* default hash size */
107 static int pipe_expire = 1; /* expire queue if empty */
108 static int dn_max_ratio = 16; /* max queues/buckets ratio */
111 * Statistics on number of queue searches and search steps
114 static int search_steps;
119 static int red_lookup_depth = 256; /* default lookup table depth */
120 static int red_avg_pkt_size = 512; /* default medium packet size */
121 static int red_max_pkt_size = 1500;/* default max packet size */
124 * Three heaps contain queues and pipes that the scheduler handles:
126 * + ready_heap contains all dn_flow_queue related to fixed-rate pipes.
127 * + wfq_ready_heap contains the pipes associated with WF2Q flows
128 * + extract_heap contains pipes associated with delay lines.
130 static struct dn_heap ready_heap;
131 static struct dn_heap extract_heap;
132 static struct dn_heap wfq_ready_heap;
134 static struct dn_pipe_head pipe_table[DN_NR_HASH_MAX];
135 static struct dn_flowset_head flowset_table[DN_NR_HASH_MAX];
138 * Variables for dummynet systimer
140 static struct netmsg_base dn_netmsg;
141 static struct systimer dn_clock;
142 static int dn_hz = 1000;
144 static int sysctl_dn_hz(SYSCTL_HANDLER_ARGS);
146 SYSCTL_DECL(_net_inet_ip_dummynet);
148 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, hash_size, CTLFLAG_RW,
149 &dn_hash_size, 0, "Default hash table size");
150 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, curr_time, CTLFLAG_RD,
151 &curr_time, 0, "Current tick");
152 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, expire, CTLFLAG_RW,
153 &pipe_expire, 0, "Expire queue if empty");
154 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, max_chain_len, CTLFLAG_RW,
155 &dn_max_ratio, 0, "Max ratio between dynamic queues and buckets");
157 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, ready_heap, CTLFLAG_RD,
158 &ready_heap.size, 0, "Size of ready heap");
159 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, extract_heap, CTLFLAG_RD,
160 &extract_heap.size, 0, "Size of extract heap");
162 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, searches, CTLFLAG_RD,
163 &searches, 0, "Number of queue searches");
164 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, search_steps, CTLFLAG_RD,
165 &search_steps, 0, "Number of queue search steps");
167 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_lookup_depth, CTLFLAG_RD,
168 &red_lookup_depth, 0, "Depth of RED lookup table");
169 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_avg_pkt_size, CTLFLAG_RD,
170 &red_avg_pkt_size, 0, "RED Medium packet size");
171 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_max_pkt_size, CTLFLAG_RD,
172 &red_max_pkt_size, 0, "RED Max packet size");
174 SYSCTL_PROC(_net_inet_ip_dummynet, OID_AUTO, hz, CTLTYPE_INT | CTLFLAG_RW,
175 0, 0, sysctl_dn_hz, "I", "Dummynet callout frequency");
177 static int heap_init(struct dn_heap *, int);
178 static int heap_insert(struct dn_heap *, dn_key, void *);
179 static void heap_extract(struct dn_heap *, void *);
181 static void transmit_event(struct dn_pipe *);
182 static void ready_event(struct dn_flow_queue *);
183 static void ready_event_wfq(struct dn_pipe *);
185 static int config_pipe(struct dn_ioc_pipe *);
186 static void dummynet_flush(void);
188 static void dummynet_clock(systimer_t, int, struct intrframe *);
189 static void dummynet(netmsg_t);
191 static struct dn_pipe *dn_find_pipe(int);
192 static struct dn_flow_set *dn_locate_flowset(int, int);
194 typedef void (*dn_pipe_iter_t)(struct dn_pipe *, void *);
195 static void dn_iterate_pipe(dn_pipe_iter_t, void *);
197 typedef void (*dn_flowset_iter_t)(struct dn_flow_set *, void *);
198 static void dn_iterate_flowset(dn_flowset_iter_t, void *);
200 static ip_dn_io_t dummynet_io;
201 static ip_dn_ctl_t dummynet_ctl;
204 * Heap management functions.
206 * In the heap, first node is element 0. Children of i are 2i+1 and 2i+2.
207 * Some macros help finding parent/children so we can optimize them.
209 * heap_init() is called to expand the heap when needed.
210 * Increment size in blocks of 16 entries.
211 * XXX failure to allocate a new element is a pretty bad failure
212 * as we basically stall a whole queue forever!!
213 * Returns 1 on error, 0 on success
215 #define HEAP_FATHER(x) (((x) - 1) / 2)
216 #define HEAP_LEFT(x) (2*(x) + 1)
217 #define HEAP_IS_LEFT(x) ((x) & 1)
218 #define HEAP_RIGHT(x) (2*(x) + 2)
219 #define HEAP_SWAP(a, b, buffer) { buffer = a; a = b; b = buffer; }
220 #define HEAP_INCREMENT 15
223 heap_init(struct dn_heap *h, int new_size)
225 struct dn_heap_entry *p;
227 if (h->size >= new_size) {
228 kprintf("%s, Bogus call, have %d want %d\n", __func__,
233 new_size = (new_size + HEAP_INCREMENT) & ~HEAP_INCREMENT;
234 p = kmalloc(new_size * sizeof(*p), M_DUMMYNET, M_WAITOK | M_ZERO);
236 bcopy(h->p, p, h->size * sizeof(*p));
237 kfree(h->p, M_DUMMYNET);
245 * Insert element in heap. Normally, p != NULL, we insert p in
246 * a new position and bubble up. If p == NULL, then the element is
247 * already in place, and key is the position where to start the
249 * Returns 1 on failure (cannot allocate new heap entry)
251 * If offset > 0 the position (index, int) of the element in the heap is
252 * also stored in the element itself at the given offset in bytes.
254 #define SET_OFFSET(heap, node) \
255 if (heap->offset > 0) \
256 *((int *)((char *)(heap->p[node].object) + heap->offset)) = node;
259 * RESET_OFFSET is used for sanity checks. It sets offset to an invalid value.
261 #define RESET_OFFSET(heap, node) \
262 if (heap->offset > 0) \
263 *((int *)((char *)(heap->p[node].object) + heap->offset)) = -1;
266 heap_insert(struct dn_heap *h, dn_key key1, void *p)
270 if (p == NULL) { /* Data already there, set starting point */
272 } else { /* Insert new element at the end, possibly resize */
274 if (son == h->size) { /* Need resize... */
275 if (heap_init(h, h->elements + 1))
276 return 1; /* Failure... */
278 h->p[son].object = p;
279 h->p[son].key = key1;
283 while (son > 0) { /* Bubble up */
284 int father = HEAP_FATHER(son);
285 struct dn_heap_entry tmp;
287 if (DN_KEY_LT(h->p[father].key, h->p[son].key))
288 break; /* Found right position */
290 /* 'son' smaller than 'father', swap and repeat */
291 HEAP_SWAP(h->p[son], h->p[father], tmp);
300 * Remove top element from heap, or obj if obj != NULL
303 heap_extract(struct dn_heap *h, void *obj)
305 int child, father, max = h->elements - 1;
308 kprintf("warning, extract from empty heap 0x%p\n", h);
312 father = 0; /* Default: move up smallest child */
313 if (obj != NULL) { /* Extract specific element, index is at offset */
315 panic("%s from middle not supported on this heap!!!", __func__);
317 father = *((int *)((char *)obj + h->offset));
318 if (father < 0 || father >= h->elements) {
319 panic("%s father %d out of bound 0..%d", __func__,
320 father, h->elements);
323 RESET_OFFSET(h, father);
325 child = HEAP_LEFT(father); /* Left child */
326 while (child <= max) { /* Valid entry */
327 if (child != max && DN_KEY_LT(h->p[child + 1].key, h->p[child].key))
328 child = child + 1; /* Take right child, otherwise left */
329 h->p[father] = h->p[child];
330 SET_OFFSET(h, father);
332 child = HEAP_LEFT(child); /* Left child for next loop */
337 * Fill hole with last entry and bubble up, reusing the insert code
339 h->p[father] = h->p[max];
340 heap_insert(h, father, NULL); /* This one cannot fail */
345 * heapify() will reorganize data inside an array to maintain the
346 * heap property. It is needed when we delete a bunch of entries.
349 heapify(struct dn_heap *h)
353 for (i = 0; i < h->elements; i++)
354 heap_insert(h, i , NULL);
358 * Cleanup the heap and free data structure
361 heap_free(struct dn_heap *h)
364 kfree(h->p, M_DUMMYNET);
365 bzero(h, sizeof(*h));
369 * --- End of heap management functions ---
373 * Scheduler functions:
375 * transmit_event() is called when the delay-line needs to enter
376 * the scheduler, either because of existing pkts getting ready,
377 * or new packets entering the queue. The event handled is the delivery
378 * time of the packet.
380 * ready_event() does something similar with fixed-rate queues, and the
381 * event handled is the finish time of the head pkt.
383 * ready_event_wfq() does something similar with WF2Q queues, and the
384 * event handled is the start time of the head pkt.
386 * In all cases, we make sure that the data structures are consistent
387 * before passing pkts out, because this might trigger recursive
388 * invocations of the procedures.
391 transmit_event(struct dn_pipe *pipe)
395 while ((pkt = TAILQ_FIRST(&pipe->p_queue)) &&
396 DN_KEY_LEQ(pkt->output_time, curr_time)) {
397 TAILQ_REMOVE(&pipe->p_queue, pkt, dn_next);
398 ip_dn_packet_redispatch(pkt);
402 * If there are leftover packets, put into the heap for next event
404 if ((pkt = TAILQ_FIRST(&pipe->p_queue)) != NULL) {
406 * XXX should check errors on heap_insert, by draining the
407 * whole pipe and hoping in the future we are more successful
409 heap_insert(&extract_heap, pkt->output_time, pipe);
414 * The following macro computes how many ticks we have to wait
415 * before being able to transmit a packet. The credit is taken from
416 * either a pipe (WF2Q) or a flow_queue (per-flow queueing)
418 #define SET_TICKS(pkt, q, p) \
419 (pkt->dn_m->m_pkthdr.len*8*dn_hz - (q)->numbytes + p->bandwidth - 1 ) / \
423 * Extract pkt from queue, compute output time (could be now)
424 * and put into delay line (p_queue)
427 move_pkt(struct dn_pkt *pkt, struct dn_flow_queue *q,
428 struct dn_pipe *p, int len)
430 TAILQ_REMOVE(&q->queue, pkt, dn_next);
434 pkt->output_time = curr_time + p->delay;
436 TAILQ_INSERT_TAIL(&p->p_queue, pkt, dn_next);
440 * ready_event() is invoked every time the queue must enter the
441 * scheduler, either because the first packet arrives, or because
442 * a previously scheduled event fired.
443 * On invokation, drain as many pkts as possible (could be 0) and then
444 * if there are leftover packets reinsert the pkt in the scheduler.
447 ready_event(struct dn_flow_queue *q)
450 struct dn_pipe *p = q->fs->pipe;
454 kprintf("ready_event- pipe is gone\n");
457 p_was_empty = TAILQ_EMPTY(&p->p_queue);
460 * Schedule fixed-rate queues linked to this pipe:
461 * Account for the bw accumulated since last scheduling, then
462 * drain as many pkts as allowed by q->numbytes and move to
463 * the delay line (in p) computing output time.
464 * bandwidth==0 (no limit) means we can drain the whole queue,
465 * setting len_scaled = 0 does the job.
467 q->numbytes += (curr_time - q->sched_time) * p->bandwidth;
468 while ((pkt = TAILQ_FIRST(&q->queue)) != NULL) {
469 int len = pkt->dn_m->m_pkthdr.len;
470 int len_scaled = p->bandwidth ? len*8*dn_hz : 0;
472 if (len_scaled > q->numbytes)
474 q->numbytes -= len_scaled;
475 move_pkt(pkt, q, p, len);
479 * If we have more packets queued, schedule next ready event
480 * (can only occur when bandwidth != 0, otherwise we would have
481 * flushed the whole queue in the previous loop).
482 * To this purpose we record the current time and compute how many
483 * ticks to go for the finish time of the packet.
485 if ((pkt = TAILQ_FIRST(&q->queue)) != NULL) {
486 /* This implies bandwidth != 0 */
487 dn_key t = SET_TICKS(pkt, q, p); /* ticks i have to wait */
489 q->sched_time = curr_time;
492 * XXX should check errors on heap_insert, and drain the whole
493 * queue on error hoping next time we are luckier.
495 heap_insert(&ready_heap, curr_time + t, q);
496 } else { /* RED needs to know when the queue becomes empty */
497 q->q_time = curr_time;
502 * If the delay line was empty call transmit_event(p) now.
503 * Otherwise, the scheduler will take care of it.
510 * Called when we can transmit packets on WF2Q queues. Take pkts out of
511 * the queues at their start time, and enqueue into the delay line.
512 * Packets are drained until p->numbytes < 0. As long as
513 * len_scaled >= p->numbytes, the packet goes into the delay line
514 * with a deadline p->delay. For the last packet, if p->numbytes < 0,
515 * there is an additional delay.
518 ready_event_wfq(struct dn_pipe *p)
520 int p_was_empty = TAILQ_EMPTY(&p->p_queue);
521 struct dn_heap *sch = &p->scheduler_heap;
522 struct dn_heap *neh = &p->not_eligible_heap;
524 p->numbytes += (curr_time - p->sched_time) * p->bandwidth;
527 * While we have backlogged traffic AND credit, we need to do
528 * something on the queue.
530 while (p->numbytes >= 0 && (sch->elements > 0 || neh->elements > 0)) {
531 if (sch->elements > 0) { /* Have some eligible pkts to send out */
532 struct dn_flow_queue *q = sch->p[0].object;
533 struct dn_pkt *pkt = TAILQ_FIRST(&q->queue);
534 struct dn_flow_set *fs = q->fs;
535 uint64_t len = pkt->dn_m->m_pkthdr.len;
536 int len_scaled = p->bandwidth ? len*8*dn_hz : 0;
538 heap_extract(sch, NULL); /* Remove queue from heap */
539 p->numbytes -= len_scaled;
540 move_pkt(pkt, q, p, len);
542 p->V += (len << MY_M) / p->sum; /* Update V */
543 q->S = q->F; /* Update start time */
545 if (q->len == 0) { /* Flow not backlogged any more */
547 heap_insert(&p->idle_heap, q->F, q);
548 } else { /* Still backlogged */
550 * Update F and position in backlogged queue, then
551 * put flow in not_eligible_heap (we will fix this later).
553 len = TAILQ_FIRST(&q->queue)->dn_m->m_pkthdr.len;
554 q->F += (len << MY_M) / (uint64_t)fs->weight;
555 if (DN_KEY_LEQ(q->S, p->V))
556 heap_insert(neh, q->S, q);
558 heap_insert(sch, q->F, q);
563 * Now compute V = max(V, min(S_i)). Remember that all elements in
564 * sch have by definition S_i <= V so if sch is not empty, V is surely
565 * the max and we must not update it. Conversely, if sch is empty
566 * we only need to look at neh.
568 if (sch->elements == 0 && neh->elements > 0)
569 p->V = MAX64(p->V, neh->p[0].key);
572 * Move from neh to sch any packets that have become eligible
574 while (neh->elements > 0 && DN_KEY_LEQ(neh->p[0].key, p->V)) {
575 struct dn_flow_queue *q = neh->p[0].object;
577 heap_extract(neh, NULL);
578 heap_insert(sch, q->F, q);
582 if (sch->elements == 0 && neh->elements == 0 && p->numbytes >= 0 &&
583 p->idle_heap.elements > 0) {
585 * No traffic and no events scheduled. We can get rid of idle-heap.
589 for (i = 0; i < p->idle_heap.elements; i++) {
590 struct dn_flow_queue *q = p->idle_heap.p[i].object;
597 p->idle_heap.elements = 0;
601 * If we are getting clocks from dummynet and if we are under credit,
602 * schedule the next ready event.
603 * Also fix the delivery time of the last packet.
605 if (p->numbytes < 0) { /* This implies bandwidth>0 */
606 dn_key t = 0; /* Number of ticks i have to wait */
608 if (p->bandwidth > 0)
609 t = (p->bandwidth - 1 - p->numbytes) / p->bandwidth;
610 TAILQ_LAST(&p->p_queue, dn_pkt_queue)->output_time += t;
611 p->sched_time = curr_time;
614 * XXX should check errors on heap_insert, and drain the whole
615 * queue on error hoping next time we are luckier.
617 heap_insert(&wfq_ready_heap, curr_time + t, p);
621 * If the delay line was empty call transmit_event(p) now.
622 * Otherwise, the scheduler will take care of it.
629 dn_expire_pipe_cb(struct dn_pipe *pipe, void *dummy __unused)
631 if (pipe->idle_heap.elements > 0 &&
632 DN_KEY_LT(pipe->idle_heap.p[0].key, pipe->V)) {
633 struct dn_flow_queue *q = pipe->idle_heap.p[0].object;
635 heap_extract(&pipe->idle_heap, NULL);
636 q->S = q->F + 1; /* Mark timestamp as invalid */
637 pipe->sum -= q->fs->weight;
642 * This is called once per tick, or dn_hz times per second. It is used to
643 * increment the current tick counter and schedule expired events.
646 dummynet(netmsg_t msg)
650 struct dn_heap *heaps[3];
653 heaps[0] = &ready_heap; /* Fixed-rate queues */
654 heaps[1] = &wfq_ready_heap; /* WF2Q queues */
655 heaps[2] = &extract_heap; /* Delay line */
659 lwkt_replymsg(&msg->lmsg, 0);
663 for (i = 0; i < 3; i++) {
665 while (h->elements > 0 && DN_KEY_LEQ(h->p[0].key, curr_time)) {
666 if (h->p[0].key > curr_time) {
667 kprintf("-- dummynet: warning, heap %d is %d ticks late\n",
668 i, (int)(curr_time - h->p[0].key));
671 p = h->p[0].object; /* Store a copy before heap_extract */
672 heap_extract(h, NULL); /* Need to extract before processing */
683 /* Sweep pipes trying to expire idle flow_queues */
684 dn_iterate_pipe(dn_expire_pipe_cb, NULL);
688 * Unconditionally expire empty queues in case of shortage.
689 * Returns the number of queues freed.
692 expire_queues(struct dn_flow_set *fs)
694 int i, initial_elements = fs->rq_elements;
696 if (fs->last_expired == time_second)
699 fs->last_expired = time_second;
701 for (i = 0; i <= fs->rq_size; i++) { /* Last one is overflow */
702 struct dn_flow_queue *q, *qn;
704 LIST_FOREACH_MUTABLE(q, &fs->rq[i], q_link, qn) {
705 if (!TAILQ_EMPTY(&q->queue) || q->S != q->F + 1)
709 * Entry is idle, expire it
711 LIST_REMOVE(q, q_link);
712 kfree(q, M_DUMMYNET);
714 KASSERT(fs->rq_elements > 0,
715 ("invalid rq_elements %d", fs->rq_elements));
719 return initial_elements - fs->rq_elements;
723 * If room, create a new queue and put at head of slot i;
724 * otherwise, create or use the default queue.
726 static struct dn_flow_queue *
727 create_queue(struct dn_flow_set *fs, int i)
729 struct dn_flow_queue *q;
731 if (fs->rq_elements > fs->rq_size * dn_max_ratio &&
732 expire_queues(fs) == 0) {
734 * No way to get room, use or create overflow queue.
737 if (!LIST_EMPTY(&fs->rq[i]))
738 return LIST_FIRST(&fs->rq[i]);
741 q = kmalloc(sizeof(*q), M_DUMMYNET, M_INTWAIT | M_NULLOK | M_ZERO);
747 q->S = q->F + 1; /* hack - mark timestamp as invalid */
748 TAILQ_INIT(&q->queue);
750 LIST_INSERT_HEAD(&fs->rq[i], q, q_link);
757 * Given a flow_set and a pkt in last_pkt, find a matching queue
758 * after appropriate masking. The queue is moved to front
759 * so that further searches take less time.
761 static struct dn_flow_queue *
762 find_queue(struct dn_flow_set *fs, struct dn_flow_id *id)
764 struct dn_flow_queue *q;
767 if (!(fs->flags_fs & DN_HAVE_FLOW_MASK)) {
768 q = LIST_FIRST(&fs->rq[0]);
770 struct dn_flow_queue *qn;
772 /* First, do the masking */
773 id->fid_dst_ip &= fs->flow_mask.fid_dst_ip;
774 id->fid_src_ip &= fs->flow_mask.fid_src_ip;
775 id->fid_dst_port &= fs->flow_mask.fid_dst_port;
776 id->fid_src_port &= fs->flow_mask.fid_src_port;
777 id->fid_proto &= fs->flow_mask.fid_proto;
778 id->fid_flags = 0; /* we don't care about this one */
780 /* Then, hash function */
781 i = ((id->fid_dst_ip) & 0xffff) ^
782 ((id->fid_dst_ip >> 15) & 0xffff) ^
783 ((id->fid_src_ip << 1) & 0xffff) ^
784 ((id->fid_src_ip >> 16 ) & 0xffff) ^
785 (id->fid_dst_port << 1) ^ (id->fid_src_port) ^
790 * Finally, scan the current list for a match and
791 * expire idle flow queues
794 LIST_FOREACH_MUTABLE(q, &fs->rq[i], q_link, qn) {
796 if (id->fid_dst_ip == q->id.fid_dst_ip &&
797 id->fid_src_ip == q->id.fid_src_ip &&
798 id->fid_dst_port == q->id.fid_dst_port &&
799 id->fid_src_port == q->id.fid_src_port &&
800 id->fid_proto == q->id.fid_proto &&
801 id->fid_flags == q->id.fid_flags) {
803 } else if (pipe_expire && TAILQ_EMPTY(&q->queue) &&
806 * Entry is idle and not in any heap, expire it
808 LIST_REMOVE(q, q_link);
809 kfree(q, M_DUMMYNET);
811 KASSERT(fs->rq_elements > 0,
812 ("invalid rq_elements %d", fs->rq_elements));
816 if (q && LIST_FIRST(&fs->rq[i]) != q) { /* Found and not in front */
817 LIST_REMOVE(q, q_link);
818 LIST_INSERT_HEAD(&fs->rq[i], q, q_link);
821 if (q == NULL) { /* No match, need to allocate a new entry */
822 q = create_queue(fs, i);
830 red_drops(struct dn_flow_set *fs, struct dn_flow_queue *q, int len)
835 * RED calculates the average queue size (avg) using a low-pass filter
836 * with an exponential weighted (w_q) moving average:
837 * avg <- (1-w_q) * avg + w_q * q_size
838 * where q_size is the queue length (measured in bytes or * packets).
840 * If q_size == 0, we compute the idle time for the link, and set
841 * avg = (1 - w_q)^(idle/s)
842 * where s is the time needed for transmitting a medium-sized packet.
844 * Now, if avg < min_th the packet is enqueued.
845 * If avg > max_th the packet is dropped. Otherwise, the packet is
846 * dropped with probability P function of avg.
850 u_int q_size = (fs->flags_fs & DN_QSIZE_IS_BYTES) ? q->len_bytes : q->len;
852 DPRINTF("\n%d q: %2u ", (int)curr_time, q_size);
854 /* Average queue size estimation */
857 * Queue is not empty, avg <- avg + (q_size - avg) * w_q
859 int diff = SCALE(q_size) - q->avg;
860 int64_t v = SCALE_MUL((int64_t)diff, (int64_t)fs->w_q);
865 * Queue is empty, find for how long the queue has been
866 * empty and use a lookup table for computing
867 * (1 - * w_q)^(idle_time/s) where s is the time to send a
872 u_int t = (curr_time - q->q_time) / fs->lookup_step;
874 q->avg = (t < fs->lookup_depth) ?
875 SCALE_MUL(q->avg, fs->w_q_lookup[t]) : 0;
878 DPRINTF("avg: %u ", SCALE_VAL(q->avg));
882 if (q->avg < fs->min_th) {
888 if (q->avg >= fs->max_th) { /* Average queue >= Max threshold */
889 if (fs->flags_fs & DN_IS_GENTLE_RED) {
891 * According to Gentle-RED, if avg is greater than max_th the
892 * packet is dropped with a probability
893 * p_b = c_3 * avg - c_4
894 * where c_3 = (1 - max_p) / max_th, and c_4 = 1 - 2 * max_p
896 p_b = SCALE_MUL((int64_t)fs->c_3, (int64_t)q->avg) - fs->c_4;
902 } else if (q->avg > fs->min_th) {
904 * We compute p_b using the linear dropping function p_b = c_1 *
905 * avg - c_2, where c_1 = max_p / (max_th - min_th), and c_2 =
906 * max_p * min_th / (max_th - min_th)
908 p_b = SCALE_MUL((int64_t)fs->c_1, (int64_t)q->avg) - fs->c_2;
910 if (fs->flags_fs & DN_QSIZE_IS_BYTES)
911 p_b = (p_b * len) / fs->max_pkt_size;
913 if (++q->count == 0) {
914 q->random = krandom() & 0xffff;
917 * q->count counts packets arrived since last drop, so a greater
918 * value of q->count means a greater packet drop probability.
920 if (SCALE_MUL(p_b, SCALE((int64_t)q->count)) > q->random) {
922 DPRINTF("%s", "- red drop");
923 /* After a drop we calculate a new random value */
924 q->random = krandom() & 0xffff;
928 /* End of RED algorithm */
929 return 0; /* Accept */
933 dn_iterate_pipe(dn_pipe_iter_t func, void *arg)
937 for (i = 0; i < DN_NR_HASH_MAX; ++i) {
938 struct dn_pipe_head *pipe_hdr = &pipe_table[i];
939 struct dn_pipe *pipe, *pipe_next;
941 LIST_FOREACH_MUTABLE(pipe, pipe_hdr, p_link, pipe_next)
947 dn_iterate_flowset(dn_flowset_iter_t func, void *arg)
951 for (i = 0; i < DN_NR_HASH_MAX; ++i) {
952 struct dn_flowset_head *fs_hdr = &flowset_table[i];
953 struct dn_flow_set *fs, *fs_next;
955 LIST_FOREACH_MUTABLE(fs, fs_hdr, fs_link, fs_next)
960 static struct dn_pipe *
961 dn_find_pipe(int pipe_nr)
963 struct dn_pipe_head *pipe_hdr;
966 pipe_hdr = &pipe_table[DN_NR_HASH(pipe_nr)];
967 LIST_FOREACH(p, pipe_hdr, p_link) {
968 if (p->pipe_nr == pipe_nr)
974 static struct dn_flow_set *
975 dn_find_flowset(int fs_nr)
977 struct dn_flowset_head *fs_hdr;
978 struct dn_flow_set *fs;
980 fs_hdr = &flowset_table[DN_NR_HASH(fs_nr)];
981 LIST_FOREACH(fs, fs_hdr, fs_link) {
982 if (fs->fs_nr == fs_nr)
988 static struct dn_flow_set *
989 dn_locate_flowset(int pipe_nr, int is_pipe)
991 struct dn_flow_set *fs = NULL;
994 fs = dn_find_flowset(pipe_nr);
998 p = dn_find_pipe(pipe_nr);
1006 * Dummynet hook for packets. Below 'pipe' is a pipe or a queue
1007 * depending on whether WF2Q or fixed bw is used.
1009 * pipe_nr pipe or queue the packet is destined for.
1010 * dir where shall we send the packet after dummynet.
1011 * m the mbuf with the packet
1012 * fwa->oif the 'ifp' parameter from the caller.
1013 * NULL in ip_input, destination interface in ip_output
1014 * fwa->ro route parameter (only used in ip_output, NULL otherwise)
1015 * fwa->dst destination address, only used by ip_output
1016 * fwa->rule matching rule, in case of multiple passes
1017 * fwa->flags flags from the caller, only used in ip_output
1020 dummynet_io(struct mbuf *m)
1024 struct dn_flow_set *fs;
1025 struct dn_pipe *pipe;
1026 uint64_t len = m->m_pkthdr.len;
1027 struct dn_flow_queue *q = NULL;
1028 int is_pipe, pipe_nr;
1030 tag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
1031 pkt = m_tag_data(tag);
1033 is_pipe = pkt->dn_flags & DN_FLAGS_IS_PIPE;
1034 pipe_nr = pkt->pipe_nr;
1037 * This is a dummynet rule, so we expect a O_PIPE or O_QUEUE rule
1039 fs = dn_locate_flowset(pipe_nr, is_pipe);
1041 goto dropit; /* This queue/pipe does not exist! */
1044 if (pipe == NULL) { /* Must be a queue, try find a matching pipe */
1045 pipe = dn_find_pipe(fs->parent_nr);
1049 kprintf("No pipe %d for queue %d, drop pkt\n",
1050 fs->parent_nr, fs->fs_nr);
1055 q = find_queue(fs, &pkt->id);
1057 goto dropit; /* Cannot allocate queue */
1060 * Update statistics, then check reasons to drop pkt
1062 q->tot_bytes += len;
1065 if (fs->plr && krandom() < fs->plr)
1066 goto dropit; /* Random pkt drop */
1068 if (fs->flags_fs & DN_QSIZE_IS_BYTES) {
1069 if (q->len_bytes > fs->qsize)
1070 goto dropit; /* Queue size overflow */
1072 if (q->len >= fs->qsize)
1073 goto dropit; /* Queue count overflow */
1076 if ((fs->flags_fs & DN_IS_RED) && red_drops(fs, q, len))
1079 TAILQ_INSERT_TAIL(&q->queue, pkt, dn_next);
1081 q->len_bytes += len;
1083 if (TAILQ_FIRST(&q->queue) != pkt) /* Flow was not idle, we are done */
1087 * If we reach this point the flow was previously idle, so we need
1088 * to schedule it. This involves different actions for fixed-rate
1093 * Fixed-rate queue: just insert into the ready_heap.
1097 if (pipe->bandwidth)
1098 t = SET_TICKS(pkt, q, pipe);
1100 q->sched_time = curr_time;
1101 if (t == 0) /* Must process it now */
1104 heap_insert(&ready_heap, curr_time + t, q);
1108 * First, compute start time S: if the flow was idle (S=F+1)
1109 * set S to the virtual time V for the controlling pipe, and update
1110 * the sum of weights for the pipe; otherwise, remove flow from
1111 * idle_heap and set S to max(F, V).
1112 * Second, compute finish time F = S + len/weight.
1113 * Third, if pipe was idle, update V = max(S, V).
1114 * Fourth, count one more backlogged flow.
1116 if (DN_KEY_GT(q->S, q->F)) { /* Means timestamps are invalid */
1118 pipe->sum += fs->weight; /* Add weight of new queue */
1120 heap_extract(&pipe->idle_heap, q);
1121 q->S = MAX64(q->F, pipe->V);
1123 q->F = q->S + (len << MY_M) / (uint64_t)fs->weight;
1125 if (pipe->not_eligible_heap.elements == 0 &&
1126 pipe->scheduler_heap.elements == 0)
1127 pipe->V = MAX64(q->S, pipe->V);
1132 * Look at eligibility. A flow is not eligibile if S>V (when
1133 * this happens, it means that there is some other flow already
1134 * scheduled for the same pipe, so the scheduler_heap cannot be
1135 * empty). If the flow is not eligible we just store it in the
1136 * not_eligible_heap. Otherwise, we store in the scheduler_heap
1137 * and possibly invoke ready_event_wfq() right now if there is
1139 * Note that for all flows in scheduler_heap (SCH), S_i <= V,
1140 * and for all flows in not_eligible_heap (NEH), S_i > V.
1141 * So when we need to compute max(V, min(S_i)) forall i in SCH+NEH,
1142 * we only need to look into NEH.
1144 if (DN_KEY_GT(q->S, pipe->V)) { /* Not eligible */
1145 if (pipe->scheduler_heap.elements == 0)
1146 kprintf("++ ouch! not eligible but empty scheduler!\n");
1147 heap_insert(&pipe->not_eligible_heap, q->S, q);
1149 heap_insert(&pipe->scheduler_heap, q->F, q);
1150 if (pipe->numbytes >= 0) { /* Pipe is idle */
1151 if (pipe->scheduler_heap.elements != 1)
1152 kprintf("*** OUCH! pipe should have been idle!\n");
1153 DPRINTF("Waking up pipe %d at %d\n",
1154 pipe->pipe_nr, (int)(q->F >> MY_M));
1155 pipe->sched_time = curr_time;
1156 ready_event_wfq(pipe);
1170 * Dispose all packets and flow_queues on a flow_set.
1171 * If all=1, also remove red lookup table and other storage,
1172 * including the descriptor itself.
1173 * For the one in dn_pipe MUST also cleanup ready_heap...
1176 purge_flow_set(struct dn_flow_set *fs, int all)
1180 int rq_elements = 0;
1183 for (i = 0; i <= fs->rq_size; i++) {
1184 struct dn_flow_queue *q;
1186 while ((q = LIST_FIRST(&fs->rq[i])) != NULL) {
1189 while ((pkt = TAILQ_FIRST(&q->queue)) != NULL) {
1190 TAILQ_REMOVE(&q->queue, pkt, dn_next);
1191 ip_dn_packet_free(pkt);
1194 LIST_REMOVE(q, q_link);
1195 kfree(q, M_DUMMYNET);
1202 KASSERT(rq_elements == fs->rq_elements,
1203 ("# rq elements mismatch, freed %d, total %d",
1204 rq_elements, fs->rq_elements));
1205 fs->rq_elements = 0;
1208 /* RED - free lookup table */
1210 kfree(fs->w_q_lookup, M_DUMMYNET);
1213 kfree(fs->rq, M_DUMMYNET);
1216 * If this fs is not part of a pipe, free it
1218 * fs->pipe == NULL could happen, if 'fs' is a WF2Q and
1219 * - No packet belongs to that flow set is delivered by
1220 * dummynet_io(), i.e. parent pipe is not installed yet.
1221 * - Parent pipe is deleted.
1223 if (fs->pipe == NULL || (fs->pipe && fs != &fs->pipe->fs))
1224 kfree(fs, M_DUMMYNET);
1229 * Dispose all packets queued on a pipe (not a flow_set).
1230 * Also free all resources associated to a pipe, which is about
1234 purge_pipe(struct dn_pipe *pipe)
1238 purge_flow_set(&pipe->fs, 1);
1240 while ((pkt = TAILQ_FIRST(&pipe->p_queue)) != NULL) {
1241 TAILQ_REMOVE(&pipe->p_queue, pkt, dn_next);
1242 ip_dn_packet_free(pkt);
1245 heap_free(&pipe->scheduler_heap);
1246 heap_free(&pipe->not_eligible_heap);
1247 heap_free(&pipe->idle_heap);
1251 * Delete all pipes and heaps returning memory.
1254 dummynet_flush(void)
1256 struct dn_pipe_head pipe_list;
1257 struct dn_flowset_head fs_list;
1259 struct dn_flow_set *fs;
1263 * Prevent future matches...
1265 LIST_INIT(&pipe_list);
1266 for (i = 0; i < DN_NR_HASH_MAX; ++i) {
1267 struct dn_pipe_head *pipe_hdr = &pipe_table[i];
1269 while ((p = LIST_FIRST(pipe_hdr)) != NULL) {
1270 LIST_REMOVE(p, p_link);
1271 LIST_INSERT_HEAD(&pipe_list, p, p_link);
1275 LIST_INIT(&fs_list);
1276 for (i = 0; i < DN_NR_HASH_MAX; ++i) {
1277 struct dn_flowset_head *fs_hdr = &flowset_table[i];
1279 while ((fs = LIST_FIRST(fs_hdr)) != NULL) {
1280 LIST_REMOVE(fs, fs_link);
1281 LIST_INSERT_HEAD(&fs_list, fs, fs_link);
1285 /* Free heaps so we don't have unwanted events */
1286 heap_free(&ready_heap);
1287 heap_free(&wfq_ready_heap);
1288 heap_free(&extract_heap);
1291 * Now purge all queued pkts and delete all pipes
1293 /* Scan and purge all flow_sets. */
1294 while ((fs = LIST_FIRST(&fs_list)) != NULL) {
1295 LIST_REMOVE(fs, fs_link);
1296 purge_flow_set(fs, 1);
1299 while ((p = LIST_FIRST(&pipe_list)) != NULL) {
1300 LIST_REMOVE(p, p_link);
1302 kfree(p, M_DUMMYNET);
1307 * setup RED parameters
1310 config_red(const struct dn_ioc_flowset *ioc_fs, struct dn_flow_set *x)
1314 x->w_q = ioc_fs->w_q;
1315 x->min_th = SCALE(ioc_fs->min_th);
1316 x->max_th = SCALE(ioc_fs->max_th);
1317 x->max_p = ioc_fs->max_p;
1319 x->c_1 = ioc_fs->max_p / (ioc_fs->max_th - ioc_fs->min_th);
1320 x->c_2 = SCALE_MUL(x->c_1, SCALE(ioc_fs->min_th));
1321 if (x->flags_fs & DN_IS_GENTLE_RED) {
1322 x->c_3 = (SCALE(1) - ioc_fs->max_p) / ioc_fs->max_th;
1323 x->c_4 = (SCALE(1) - 2 * ioc_fs->max_p);
1326 /* If the lookup table already exist, free and create it again */
1327 if (x->w_q_lookup) {
1328 kfree(x->w_q_lookup, M_DUMMYNET);
1329 x->w_q_lookup = NULL ;
1332 if (red_lookup_depth == 0) {
1333 kprintf("net.inet.ip.dummynet.red_lookup_depth must be > 0\n");
1334 kfree(x, M_DUMMYNET);
1337 x->lookup_depth = red_lookup_depth;
1338 x->w_q_lookup = kmalloc(x->lookup_depth * sizeof(int),
1339 M_DUMMYNET, M_WAITOK);
1341 /* Fill the lookup table with (1 - w_q)^x */
1342 x->lookup_step = ioc_fs->lookup_step;
1343 x->lookup_weight = ioc_fs->lookup_weight;
1345 x->w_q_lookup[0] = SCALE(1) - x->w_q;
1346 for (i = 1; i < x->lookup_depth; i++)
1347 x->w_q_lookup[i] = SCALE_MUL(x->w_q_lookup[i - 1], x->lookup_weight);
1349 if (red_avg_pkt_size < 1)
1350 red_avg_pkt_size = 512;
1351 x->avg_pkt_size = red_avg_pkt_size;
1353 if (red_max_pkt_size < 1)
1354 red_max_pkt_size = 1500;
1355 x->max_pkt_size = red_max_pkt_size;
1361 alloc_hash(struct dn_flow_set *x, const struct dn_ioc_flowset *ioc_fs)
1365 if (x->flags_fs & DN_HAVE_FLOW_MASK) {
1366 int l = ioc_fs->rq_size;
1368 /* Allocate some slots */
1372 if (l < DN_MIN_HASH_SIZE)
1373 l = DN_MIN_HASH_SIZE;
1374 else if (l > DN_MAX_HASH_SIZE)
1375 l = DN_MAX_HASH_SIZE;
1379 /* One is enough for null mask */
1382 alloc_size = x->rq_size + 1;
1384 x->rq = kmalloc(alloc_size * sizeof(struct dn_flowqueue_head),
1385 M_DUMMYNET, M_WAITOK | M_ZERO);
1388 for (i = 0; i < alloc_size; ++i)
1389 LIST_INIT(&x->rq[i]);
1393 set_flowid_parms(struct dn_flow_id *id, const struct dn_ioc_flowid *ioc_id)
1395 id->fid_dst_ip = ioc_id->u.ip.dst_ip;
1396 id->fid_src_ip = ioc_id->u.ip.src_ip;
1397 id->fid_dst_port = ioc_id->u.ip.dst_port;
1398 id->fid_src_port = ioc_id->u.ip.src_port;
1399 id->fid_proto = ioc_id->u.ip.proto;
1400 id->fid_flags = ioc_id->u.ip.flags;
1404 set_fs_parms(struct dn_flow_set *x, const struct dn_ioc_flowset *ioc_fs)
1406 x->flags_fs = ioc_fs->flags_fs;
1407 x->qsize = ioc_fs->qsize;
1408 x->plr = ioc_fs->plr;
1409 set_flowid_parms(&x->flow_mask, &ioc_fs->flow_mask);
1410 if (x->flags_fs & DN_QSIZE_IS_BYTES) {
1411 if (x->qsize > 1024 * 1024)
1412 x->qsize = 1024 * 1024;
1414 if (x->qsize == 0 || x->qsize > 100)
1418 /* Configuring RED */
1419 if (x->flags_fs & DN_IS_RED)
1420 config_red(ioc_fs, x); /* XXX should check errors */
1424 * setup pipe or queue parameters.
1428 config_pipe(struct dn_ioc_pipe *ioc_pipe)
1430 struct dn_ioc_flowset *ioc_fs = &ioc_pipe->fs;
1434 * The config program passes parameters as follows:
1435 * bw bits/second (0 means no limits)
1436 * delay ms (must be translated into ticks)
1437 * qsize slots or bytes
1439 ioc_pipe->delay = (ioc_pipe->delay * dn_hz) / 1000;
1442 * We need either a pipe number or a flow_set number
1444 if (ioc_pipe->pipe_nr == 0 && ioc_fs->fs_nr == 0)
1446 if (ioc_pipe->pipe_nr != 0 && ioc_fs->fs_nr != 0)
1450 * Validate pipe number
1452 if (ioc_pipe->pipe_nr > DN_PIPE_NR_MAX || ioc_pipe->pipe_nr < 0)
1456 if (ioc_pipe->pipe_nr != 0) { /* This is a pipe */
1457 struct dn_pipe *x, *p;
1460 p = dn_find_pipe(ioc_pipe->pipe_nr);
1462 if (p == NULL) { /* New pipe */
1463 x = kmalloc(sizeof(struct dn_pipe), M_DUMMYNET, M_WAITOK | M_ZERO);
1464 x->pipe_nr = ioc_pipe->pipe_nr;
1466 TAILQ_INIT(&x->p_queue);
1469 * idle_heap is the only one from which we extract from the middle.
1471 x->idle_heap.size = x->idle_heap.elements = 0;
1472 x->idle_heap.offset = __offsetof(struct dn_flow_queue, heap_pos);
1478 /* Flush accumulated credit for all queues */
1479 for (i = 0; i <= x->fs.rq_size; i++) {
1480 struct dn_flow_queue *q;
1482 LIST_FOREACH(q, &x->fs.rq[i], q_link)
1487 x->bandwidth = ioc_pipe->bandwidth;
1488 x->numbytes = 0; /* Just in case... */
1489 x->delay = ioc_pipe->delay;
1491 set_fs_parms(&x->fs, ioc_fs);
1493 if (x->fs.rq == NULL) { /* A new pipe */
1494 struct dn_pipe_head *pipe_hdr;
1496 alloc_hash(&x->fs, ioc_fs);
1498 pipe_hdr = &pipe_table[DN_NR_HASH(x->pipe_nr)];
1499 LIST_INSERT_HEAD(pipe_hdr, x, p_link);
1501 } else { /* Config flow_set */
1502 struct dn_flow_set *x, *fs;
1504 /* Locate flow_set */
1505 fs = dn_find_flowset(ioc_fs->fs_nr);
1507 if (fs == NULL) { /* New flow_set */
1508 if (ioc_fs->parent_nr == 0) /* Need link to a pipe */
1511 x = kmalloc(sizeof(struct dn_flow_set), M_DUMMYNET,
1513 x->fs_nr = ioc_fs->fs_nr;
1514 x->parent_nr = ioc_fs->parent_nr;
1515 x->weight = ioc_fs->weight;
1518 else if (x->weight > 100)
1521 /* Change parent pipe not allowed; must delete and recreate */
1522 if (ioc_fs->parent_nr != 0 && fs->parent_nr != ioc_fs->parent_nr)
1527 set_fs_parms(x, ioc_fs);
1529 if (x->rq == NULL) { /* A new flow_set */
1530 struct dn_flowset_head *fs_hdr;
1532 alloc_hash(x, ioc_fs);
1534 fs_hdr = &flowset_table[DN_NR_HASH(x->fs_nr)];
1535 LIST_INSERT_HEAD(fs_hdr, x, fs_link);
1545 * Helper function to remove from a heap queues which are linked to
1546 * a flow_set about to be deleted.
1549 fs_remove_from_heap(struct dn_heap *h, struct dn_flow_set *fs)
1551 int i = 0, found = 0;
1553 while (i < h->elements) {
1554 if (((struct dn_flow_queue *)h->p[i].object)->fs == fs) {
1556 h->p[i] = h->p[h->elements];
1567 * helper function to remove a pipe from a heap (can be there at most once)
1570 pipe_remove_from_heap(struct dn_heap *h, struct dn_pipe *p)
1572 if (h->elements > 0) {
1575 for (i = 0; i < h->elements; i++) {
1576 if (h->p[i].object == p) { /* found it */
1578 h->p[i] = h->p[h->elements];
1587 dn_unref_pipe_cb(struct dn_flow_set *fs, void *pipe0)
1589 struct dn_pipe *pipe = pipe0;
1591 if (fs->pipe == pipe) {
1592 kprintf("++ ref to pipe %d from fs %d\n",
1593 pipe->pipe_nr, fs->fs_nr);
1595 purge_flow_set(fs, 0);
1600 * Fully delete a pipe or a queue, cleaning up associated info.
1603 delete_pipe(const struct dn_ioc_pipe *ioc_pipe)
1608 if (ioc_pipe->pipe_nr == 0 && ioc_pipe->fs.fs_nr == 0)
1610 if (ioc_pipe->pipe_nr != 0 && ioc_pipe->fs.fs_nr != 0)
1613 if (ioc_pipe->pipe_nr > DN_NR_HASH_MAX || ioc_pipe->pipe_nr < 0)
1617 if (ioc_pipe->pipe_nr != 0) { /* This is an old-style pipe */
1619 p = dn_find_pipe(ioc_pipe->pipe_nr);
1621 goto back; /* Not found */
1623 /* Unlink from pipe hash table */
1624 LIST_REMOVE(p, p_link);
1626 /* Remove all references to this pipe from flow_sets */
1627 dn_iterate_flowset(dn_unref_pipe_cb, p);
1629 fs_remove_from_heap(&ready_heap, &p->fs);
1630 purge_pipe(p); /* Remove all data associated to this pipe */
1632 /* Remove reference to here from extract_heap and wfq_ready_heap */
1633 pipe_remove_from_heap(&extract_heap, p);
1634 pipe_remove_from_heap(&wfq_ready_heap, p);
1636 kfree(p, M_DUMMYNET);
1637 } else { /* This is a WF2Q queue (dn_flow_set) */
1638 struct dn_flow_set *fs;
1640 /* Locate flow_set */
1641 fs = dn_find_flowset(ioc_pipe->fs.fs_nr);
1643 goto back; /* Not found */
1645 LIST_REMOVE(fs, fs_link);
1647 if ((p = fs->pipe) != NULL) {
1648 /* Update total weight on parent pipe and cleanup parent heaps */
1649 p->sum -= fs->weight * fs->backlogged;
1650 fs_remove_from_heap(&p->not_eligible_heap, fs);
1651 fs_remove_from_heap(&p->scheduler_heap, fs);
1652 #if 1 /* XXX should i remove from idle_heap as well ? */
1653 fs_remove_from_heap(&p->idle_heap, fs);
1656 purge_flow_set(fs, 1);
1665 * helper function used to copy data from kernel in DUMMYNET_GET
1668 dn_copy_flowid(const struct dn_flow_id *id, struct dn_ioc_flowid *ioc_id)
1670 ioc_id->type = ETHERTYPE_IP;
1671 ioc_id->u.ip.dst_ip = id->fid_dst_ip;
1672 ioc_id->u.ip.src_ip = id->fid_src_ip;
1673 ioc_id->u.ip.dst_port = id->fid_dst_port;
1674 ioc_id->u.ip.src_port = id->fid_src_port;
1675 ioc_id->u.ip.proto = id->fid_proto;
1676 ioc_id->u.ip.flags = id->fid_flags;
1680 dn_copy_flowqueues(const struct dn_flow_set *fs, void *bp)
1682 struct dn_ioc_flowqueue *ioc_fq = bp;
1685 for (i = 0; i <= fs->rq_size; i++) {
1686 const struct dn_flow_queue *q;
1688 LIST_FOREACH(q, &fs->rq[i], q_link) {
1689 if (q->hash_slot != i) { /* XXX ASSERT */
1690 kprintf("++ at %d: wrong slot (have %d, "
1691 "should be %d)\n", copied, q->hash_slot, i);
1693 if (q->fs != fs) { /* XXX ASSERT */
1694 kprintf("++ at %d: wrong fs ptr (have %p, should be %p)\n",
1700 ioc_fq->len = q->len;
1701 ioc_fq->len_bytes = q->len_bytes;
1702 ioc_fq->tot_pkts = q->tot_pkts;
1703 ioc_fq->tot_bytes = q->tot_bytes;
1704 ioc_fq->drops = q->drops;
1705 ioc_fq->hash_slot = q->hash_slot;
1708 dn_copy_flowid(&q->id, &ioc_fq->id);
1714 if (copied != fs->rq_elements) { /* XXX ASSERT */
1715 kprintf("++ wrong count, have %d should be %d\n",
1716 copied, fs->rq_elements);
1722 dn_copy_flowset(const struct dn_flow_set *fs, struct dn_ioc_flowset *ioc_fs,
1725 ioc_fs->fs_type = fs_type;
1727 ioc_fs->fs_nr = fs->fs_nr;
1728 ioc_fs->flags_fs = fs->flags_fs;
1729 ioc_fs->parent_nr = fs->parent_nr;
1731 ioc_fs->weight = fs->weight;
1732 ioc_fs->qsize = fs->qsize;
1733 ioc_fs->plr = fs->plr;
1735 ioc_fs->rq_size = fs->rq_size;
1736 ioc_fs->rq_elements = fs->rq_elements;
1738 ioc_fs->w_q = fs->w_q;
1739 ioc_fs->max_th = fs->max_th;
1740 ioc_fs->min_th = fs->min_th;
1741 ioc_fs->max_p = fs->max_p;
1743 dn_copy_flowid(&fs->flow_mask, &ioc_fs->flow_mask);
1747 dn_calc_pipe_size_cb(struct dn_pipe *pipe, void *sz)
1751 *size += sizeof(struct dn_ioc_pipe) +
1752 pipe->fs.rq_elements * sizeof(struct dn_ioc_flowqueue);
1756 dn_calc_fs_size_cb(struct dn_flow_set *fs, void *sz)
1760 *size += sizeof(struct dn_ioc_flowset) +
1761 fs->rq_elements * sizeof(struct dn_ioc_flowqueue);
1765 dn_copyout_pipe_cb(struct dn_pipe *pipe, void *bp0)
1768 struct dn_ioc_pipe *ioc_pipe = (struct dn_ioc_pipe *)(*bp);
1771 * Copy flow set descriptor associated with this pipe
1773 dn_copy_flowset(&pipe->fs, &ioc_pipe->fs, DN_IS_PIPE);
1776 * Copy pipe descriptor
1778 ioc_pipe->bandwidth = pipe->bandwidth;
1779 ioc_pipe->pipe_nr = pipe->pipe_nr;
1780 ioc_pipe->V = pipe->V;
1781 /* Convert delay to milliseconds */
1782 ioc_pipe->delay = (pipe->delay * 1000) / dn_hz;
1785 * Copy flow queue descriptors
1787 *bp += sizeof(*ioc_pipe);
1788 *bp = dn_copy_flowqueues(&pipe->fs, *bp);
1792 dn_copyout_fs_cb(struct dn_flow_set *fs, void *bp0)
1795 struct dn_ioc_flowset *ioc_fs = (struct dn_ioc_flowset *)(*bp);
1798 * Copy flow set descriptor
1800 dn_copy_flowset(fs, ioc_fs, DN_IS_QUEUE);
1803 * Copy flow queue descriptors
1805 *bp += sizeof(*ioc_fs);
1806 *bp = dn_copy_flowqueues(fs, *bp);
1810 dummynet_get(struct dn_sopt *dn_sopt)
1816 * Compute size of data structures: list of pipes and flow_sets.
1818 dn_iterate_pipe(dn_calc_pipe_size_cb, &size);
1819 dn_iterate_flowset(dn_calc_fs_size_cb, &size);
1822 * Copyout pipe/flow_set/flow_queue
1824 bp = buf = kmalloc(size, M_TEMP, M_WAITOK | M_ZERO);
1825 dn_iterate_pipe(dn_copyout_pipe_cb, &bp);
1826 dn_iterate_flowset(dn_copyout_fs_cb, &bp);
1828 /* Temp memory will be freed by caller */
1829 dn_sopt->dn_sopt_arg = buf;
1830 dn_sopt->dn_sopt_arglen = size;
1835 * Handler for the various dummynet socket options (get, flush, config, del)
1838 dummynet_ctl(struct dn_sopt *dn_sopt)
1842 switch (dn_sopt->dn_sopt_name) {
1843 case IP_DUMMYNET_GET:
1844 error = dummynet_get(dn_sopt);
1847 case IP_DUMMYNET_FLUSH:
1851 case IP_DUMMYNET_CONFIGURE:
1852 KKASSERT(dn_sopt->dn_sopt_arglen == sizeof(struct dn_ioc_pipe));
1853 error = config_pipe(dn_sopt->dn_sopt_arg);
1856 case IP_DUMMYNET_DEL: /* Remove a pipe or flow_set */
1857 KKASSERT(dn_sopt->dn_sopt_arglen == sizeof(struct dn_ioc_pipe));
1858 error = delete_pipe(dn_sopt->dn_sopt_arg);
1862 kprintf("%s -- unknown option %d\n", __func__, dn_sopt->dn_sopt_name);
1870 dummynet_clock(systimer_t info __unused, int in_ipi __unused,
1871 struct intrframe *frame __unused)
1873 KASSERT(mycpuid == ip_dn_cpu,
1874 ("dummynet systimer comes on cpu%d, should be %d!",
1875 mycpuid, ip_dn_cpu));
1878 if (DUMMYNET_LOADED && (dn_netmsg.lmsg.ms_flags & MSGF_DONE))
1879 lwkt_sendmsg(netisr_portfn(mycpuid), &dn_netmsg.lmsg);
1884 sysctl_dn_hz(SYSCTL_HANDLER_ARGS)
1889 error = sysctl_handle_int(oidp, &val, 0, req);
1890 if (error || req->newptr == NULL)
1894 else if (val > DN_CALLOUT_FREQ_MAX)
1895 val = DN_CALLOUT_FREQ_MAX;
1899 systimer_adjust_periodic(&dn_clock, val);
1906 ip_dn_init_dispatch(netmsg_t msg)
1910 KASSERT(mycpuid == ip_dn_cpu,
1911 ("%s runs on cpu%d, instead of cpu%d", __func__,
1912 mycpuid, ip_dn_cpu));
1916 if (DUMMYNET_LOADED) {
1917 kprintf("DUMMYNET already loaded\n");
1922 kprintf("DUMMYNET initialized (011031)\n");
1924 for (i = 0; i < DN_NR_HASH_MAX; ++i)
1925 LIST_INIT(&pipe_table[i]);
1927 for (i = 0; i < DN_NR_HASH_MAX; ++i)
1928 LIST_INIT(&flowset_table[i]);
1930 ready_heap.size = ready_heap.elements = 0;
1931 ready_heap.offset = 0;
1933 wfq_ready_heap.size = wfq_ready_heap.elements = 0;
1934 wfq_ready_heap.offset = 0;
1936 extract_heap.size = extract_heap.elements = 0;
1937 extract_heap.offset = 0;
1939 ip_dn_ctl_ptr = dummynet_ctl;
1940 ip_dn_io_ptr = dummynet_io;
1942 netmsg_init(&dn_netmsg, NULL, &netisr_adone_rport,
1944 systimer_init_periodic_nq(&dn_clock, dummynet_clock, NULL, dn_hz);
1948 lwkt_replymsg(&msg->lmsg, error);
1954 struct netmsg_base smsg;
1956 if (ip_dn_cpu >= ncpus) {
1957 kprintf("%s: CPU%d does not exist, switch to CPU0\n",
1958 __func__, ip_dn_cpu);
1962 netmsg_init(&smsg, NULL, &curthread->td_msgport,
1963 0, ip_dn_init_dispatch);
1964 lwkt_domsg(netisr_portfn(ip_dn_cpu), &smsg.lmsg, 0);
1965 return smsg.lmsg.ms_error;
1971 ip_dn_stop_dispatch(netmsg_t msg)
1977 ip_dn_ctl_ptr = NULL;
1978 ip_dn_io_ptr = NULL;
1980 systimer_del(&dn_clock);
1983 lwkt_replymsg(&msg->lmsg, 0);
1990 struct netmsg_base smsg;
1992 netmsg_init(&smsg, NULL, &curthread->td_msgport,
1993 0, ip_dn_stop_dispatch);
1994 lwkt_domsg(netisr_portfn(ip_dn_cpu), &smsg.lmsg, 0);
1996 netmsg_service_sync();
1999 #endif /* KLD_MODULE */
2002 dummynet_modevent(module_t mod, int type, void *data)
2006 return ip_dn_init();
2010 kprintf("dummynet statically compiled, cannot unload\n");
2023 static moduledata_t dummynet_mod = {
2028 DECLARE_MODULE(dummynet, dummynet_mod, SI_SUB_PROTO_END, SI_ORDER_ANY);
2029 MODULE_VERSION(dummynet, 1);