Merge from vendor branch OPENSSH:
[dragonfly.git] / lib / msun / src / e_hypot.c
1 /* @(#)e_hypot.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  *
12  * $FreeBSD: src/lib/msun/src/e_hypot.c,v 1.6 1999/08/28 00:06:31 peter Exp $
13  * $DragonFly: src/lib/msun/src/Attic/e_hypot.c,v 1.2 2003/06/17 04:26:52 dillon Exp $
14  */
15
16 /* __ieee754_hypot(x,y)
17  *
18  * Method :
19  *      If (assume round-to-nearest) z=x*x+y*y
20  *      has error less than sqrt(2)/2 ulp, than
21  *      sqrt(z) has error less than 1 ulp (exercise).
22  *
23  *      So, compute sqrt(x*x+y*y) with some care as
24  *      follows to get the error below 1 ulp:
25  *
26  *      Assume x>y>0;
27  *      (if possible, set rounding to round-to-nearest)
28  *      1. if x > 2y  use
29  *              x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
30  *      where x1 = x with lower 32 bits cleared, x2 = x-x1; else
31  *      2. if x <= 2y use
32  *              t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
33  *      where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
34  *      y1= y with lower 32 bits chopped, y2 = y-y1.
35  *
36  *      NOTE: scaling may be necessary if some argument is too
37  *            large or too tiny
38  *
39  * Special cases:
40  *      hypot(x,y) is INF if x or y is +INF or -INF; else
41  *      hypot(x,y) is NAN if x or y is NAN.
42  *
43  * Accuracy:
44  *      hypot(x,y) returns sqrt(x^2+y^2) with error less
45  *      than 1 ulps (units in the last place)
46  */
47
48 #include "math.h"
49 #include "math_private.h"
50
51 #ifdef __STDC__
52         double __ieee754_hypot(double x, double y)
53 #else
54         double __ieee754_hypot(x,y)
55         double x, y;
56 #endif
57 {
58         double a=x,b=y,t1,t2,y1,y2,w;
59         int32_t j,k,ha,hb;
60
61         GET_HIGH_WORD(ha,x);
62         ha &= 0x7fffffff;
63         GET_HIGH_WORD(hb,y);
64         hb &= 0x7fffffff;
65         if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
66         SET_HIGH_WORD(a,ha);    /* a <- |a| */
67         SET_HIGH_WORD(b,hb);    /* b <- |b| */
68         if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */
69         k=0;
70         if(ha > 0x5f300000) {   /* a>2**500 */
71            if(ha >= 0x7ff00000) {       /* Inf or NaN */
72                u_int32_t low;
73                w = a+b;                 /* for sNaN */
74                GET_LOW_WORD(low,a);
75                if(((ha&0xfffff)|low)==0) w = a;
76                GET_LOW_WORD(low,b);
77                if(((hb^0x7ff00000)|low)==0) w = b;
78                return w;
79            }
80            /* scale a and b by 2**-600 */
81            ha -= 0x25800000; hb -= 0x25800000;  k += 600;
82            SET_HIGH_WORD(a,ha);
83            SET_HIGH_WORD(b,hb);
84         }
85         if(hb < 0x20b00000) {   /* b < 2**-500 */
86             if(hb <= 0x000fffff) {      /* subnormal b or 0 */
87                 u_int32_t low;
88                 GET_LOW_WORD(low,b);
89                 if((hb|low)==0) return a;
90                 t1=0;
91                 SET_HIGH_WORD(t1,0x7fd00000);   /* t1=2^1022 */
92                 b *= t1;
93                 a *= t1;
94                 k -= 1022;
95             } else {            /* scale a and b by 2^600 */
96                 ha += 0x25800000;       /* a *= 2^600 */
97                 hb += 0x25800000;       /* b *= 2^600 */
98                 k -= 600;
99                 SET_HIGH_WORD(a,ha);
100                 SET_HIGH_WORD(b,hb);
101             }
102         }
103     /* medium size a and b */
104         w = a-b;
105         if (w>b) {
106             t1 = 0;
107             SET_HIGH_WORD(t1,ha);
108             t2 = a-t1;
109             w  = __ieee754_sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
110         } else {
111             a  = a+a;
112             y1 = 0;
113             SET_HIGH_WORD(y1,hb);
114             y2 = b - y1;
115             t1 = 0;
116             SET_HIGH_WORD(t1,ha+0x00100000);
117             t2 = a - t1;
118             w  = __ieee754_sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b)));
119         }
120         if(k!=0) {
121             u_int32_t high;
122             t1 = 1.0;
123             GET_HIGH_WORD(high,t1);
124             SET_HIGH_WORD(t1,high+(k<<20));
125             return t1*w;
126         } else return w;
127 }