igb: Enable multiple hardware TX queues
[dragonfly.git] / sys / dev / netif / igb / if_igb.c
1 /*
2  * Copyright (c) 2001-2011, Intel Corporation 
3  * All rights reserved.
4  * 
5  * Redistribution and use in source and binary forms, with or without 
6  * modification, are permitted provided that the following conditions are met:
7  * 
8  *  1. Redistributions of source code must retain the above copyright notice, 
9  *     this list of conditions and the following disclaimer.
10  * 
11  *  2. Redistributions in binary form must reproduce the above copyright 
12  *     notice, this list of conditions and the following disclaimer in the 
13  *     documentation and/or other materials provided with the distribution.
14  * 
15  *  3. Neither the name of the Intel Corporation nor the names of its 
16  *     contributors may be used to endorse or promote products derived from 
17  *     this software without specific prior written permission.
18  * 
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31
32 #include "opt_ifpoll.h"
33 #include "opt_igb.h"
34
35 #include <sys/param.h>
36 #include <sys/bus.h>
37 #include <sys/endian.h>
38 #include <sys/interrupt.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/proc.h>
43 #include <sys/rman.h>
44 #include <sys/serialize.h>
45 #include <sys/serialize2.h>
46 #include <sys/socket.h>
47 #include <sys/sockio.h>
48 #include <sys/sysctl.h>
49 #include <sys/systm.h>
50
51 #include <net/bpf.h>
52 #include <net/ethernet.h>
53 #include <net/if.h>
54 #include <net/if_arp.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/ifq_var.h>
58 #include <net/toeplitz.h>
59 #include <net/toeplitz2.h>
60 #include <net/vlan/if_vlan_var.h>
61 #include <net/vlan/if_vlan_ether.h>
62 #include <net/if_poll.h>
63
64 #include <netinet/in_systm.h>
65 #include <netinet/in.h>
66 #include <netinet/ip.h>
67 #include <netinet/tcp.h>
68 #include <netinet/udp.h>
69
70 #include <bus/pci/pcivar.h>
71 #include <bus/pci/pcireg.h>
72
73 #include <dev/netif/ig_hal/e1000_api.h>
74 #include <dev/netif/ig_hal/e1000_82575.h>
75 #include <dev/netif/igb/if_igb.h>
76
77 #ifdef IGB_RSS_DEBUG
78 #define IGB_RSS_DPRINTF(sc, lvl, fmt, ...) \
79 do { \
80         if (sc->rss_debug >= lvl) \
81                 if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
82 } while (0)
83 #else   /* !IGB_RSS_DEBUG */
84 #define IGB_RSS_DPRINTF(sc, lvl, fmt, ...)      ((void)0)
85 #endif  /* IGB_RSS_DEBUG */
86
87 #define IGB_NAME        "Intel(R) PRO/1000 "
88 #define IGB_DEVICE(id)  \
89         { IGB_VENDOR_ID, E1000_DEV_ID_##id, IGB_NAME #id }
90 #define IGB_DEVICE_NULL { 0, 0, NULL }
91
92 static struct igb_device {
93         uint16_t        vid;
94         uint16_t        did;
95         const char      *desc;
96 } igb_devices[] = {
97         IGB_DEVICE(82575EB_COPPER),
98         IGB_DEVICE(82575EB_FIBER_SERDES),
99         IGB_DEVICE(82575GB_QUAD_COPPER),
100         IGB_DEVICE(82576),
101         IGB_DEVICE(82576_NS),
102         IGB_DEVICE(82576_NS_SERDES),
103         IGB_DEVICE(82576_FIBER),
104         IGB_DEVICE(82576_SERDES),
105         IGB_DEVICE(82576_SERDES_QUAD),
106         IGB_DEVICE(82576_QUAD_COPPER),
107         IGB_DEVICE(82576_QUAD_COPPER_ET2),
108         IGB_DEVICE(82576_VF),
109         IGB_DEVICE(82580_COPPER),
110         IGB_DEVICE(82580_FIBER),
111         IGB_DEVICE(82580_SERDES),
112         IGB_DEVICE(82580_SGMII),
113         IGB_DEVICE(82580_COPPER_DUAL),
114         IGB_DEVICE(82580_QUAD_FIBER),
115         IGB_DEVICE(DH89XXCC_SERDES),
116         IGB_DEVICE(DH89XXCC_SGMII),
117         IGB_DEVICE(DH89XXCC_SFP),
118         IGB_DEVICE(DH89XXCC_BACKPLANE),
119         IGB_DEVICE(I350_COPPER),
120         IGB_DEVICE(I350_FIBER),
121         IGB_DEVICE(I350_SERDES),
122         IGB_DEVICE(I350_SGMII),
123         IGB_DEVICE(I350_VF),
124
125         /* required last entry */
126         IGB_DEVICE_NULL
127 };
128
129 static int      igb_probe(device_t);
130 static int      igb_attach(device_t);
131 static int      igb_detach(device_t);
132 static int      igb_shutdown(device_t);
133 static int      igb_suspend(device_t);
134 static int      igb_resume(device_t);
135
136 static boolean_t igb_is_valid_ether_addr(const uint8_t *);
137 static void     igb_setup_ifp(struct igb_softc *);
138 static boolean_t igb_txcsum_ctx(struct igb_tx_ring *, struct mbuf *);
139 static int      igb_tso_pullup(struct igb_tx_ring *, struct mbuf **);
140 static void     igb_tso_ctx(struct igb_tx_ring *, struct mbuf *, uint32_t *);
141 static void     igb_add_sysctl(struct igb_softc *);
142 static int      igb_sysctl_intr_rate(SYSCTL_HANDLER_ARGS);
143 static int      igb_sysctl_msix_rate(SYSCTL_HANDLER_ARGS);
144 static int      igb_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS);
145 static int      igb_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS);
146 static int      igb_sysctl_rx_wreg_nsegs(SYSCTL_HANDLER_ARGS);
147 static void     igb_set_ring_inuse(struct igb_softc *, boolean_t);
148 static int      igb_get_rxring_inuse(const struct igb_softc *, boolean_t);
149 static int      igb_get_txring_inuse(const struct igb_softc *, boolean_t);
150 #ifdef IFPOLL_ENABLE
151 static int      igb_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS);
152 static int      igb_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS);
153 #endif
154
155 static void     igb_vf_init_stats(struct igb_softc *);
156 static void     igb_reset(struct igb_softc *);
157 static void     igb_update_stats_counters(struct igb_softc *);
158 static void     igb_update_vf_stats_counters(struct igb_softc *);
159 static void     igb_update_link_status(struct igb_softc *);
160 static void     igb_init_tx_unit(struct igb_softc *);
161 static void     igb_init_rx_unit(struct igb_softc *);
162
163 static void     igb_set_vlan(struct igb_softc *);
164 static void     igb_set_multi(struct igb_softc *);
165 static void     igb_set_promisc(struct igb_softc *);
166 static void     igb_disable_promisc(struct igb_softc *);
167
168 static int      igb_alloc_rings(struct igb_softc *);
169 static void     igb_free_rings(struct igb_softc *);
170 static int      igb_create_tx_ring(struct igb_tx_ring *);
171 static int      igb_create_rx_ring(struct igb_rx_ring *);
172 static void     igb_free_tx_ring(struct igb_tx_ring *);
173 static void     igb_free_rx_ring(struct igb_rx_ring *);
174 static void     igb_destroy_tx_ring(struct igb_tx_ring *, int);
175 static void     igb_destroy_rx_ring(struct igb_rx_ring *, int);
176 static void     igb_init_tx_ring(struct igb_tx_ring *);
177 static int      igb_init_rx_ring(struct igb_rx_ring *);
178 static int      igb_newbuf(struct igb_rx_ring *, int, boolean_t);
179 static int      igb_encap(struct igb_tx_ring *, struct mbuf **, int *, int *);
180 static void     igb_rx_refresh(struct igb_rx_ring *, int);
181 static void     igb_setup_serializer(struct igb_softc *);
182
183 static void     igb_stop(struct igb_softc *);
184 static void     igb_init(void *);
185 static int      igb_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
186 static void     igb_media_status(struct ifnet *, struct ifmediareq *);
187 static int      igb_media_change(struct ifnet *);
188 static void     igb_timer(void *);
189 static void     igb_watchdog(struct ifaltq_subque *);
190 static void     igb_start(struct ifnet *, struct ifaltq_subque *);
191 #ifdef IFPOLL_ENABLE
192 static void     igb_npoll(struct ifnet *, struct ifpoll_info *);
193 static void     igb_npoll_rx(struct ifnet *, void *, int);
194 static void     igb_npoll_tx(struct ifnet *, void *, int);
195 static void     igb_npoll_status(struct ifnet *);
196 #endif
197 static void     igb_serialize(struct ifnet *, enum ifnet_serialize);
198 static void     igb_deserialize(struct ifnet *, enum ifnet_serialize);
199 static int      igb_tryserialize(struct ifnet *, enum ifnet_serialize);
200 #ifdef INVARIANTS
201 static void     igb_serialize_assert(struct ifnet *, enum ifnet_serialize,
202                     boolean_t);
203 #endif
204
205 static void     igb_intr(void *);
206 static void     igb_intr_shared(void *);
207 static void     igb_rxeof(struct igb_rx_ring *, int);
208 static void     igb_txeof(struct igb_tx_ring *);
209 static void     igb_set_eitr(struct igb_softc *, int, int);
210 static void     igb_enable_intr(struct igb_softc *);
211 static void     igb_disable_intr(struct igb_softc *);
212 static void     igb_init_unshared_intr(struct igb_softc *);
213 static void     igb_init_intr(struct igb_softc *);
214 static int      igb_setup_intr(struct igb_softc *);
215 static void     igb_set_txintr_mask(struct igb_tx_ring *, int *, int);
216 static void     igb_set_rxintr_mask(struct igb_rx_ring *, int *, int);
217 static void     igb_set_intr_mask(struct igb_softc *);
218 static int      igb_alloc_intr(struct igb_softc *);
219 static void     igb_free_intr(struct igb_softc *);
220 static void     igb_teardown_intr(struct igb_softc *);
221 static void     igb_msix_try_alloc(struct igb_softc *);
222 static void     igb_msix_rx_conf(struct igb_softc *, int, int *, int);
223 static void     igb_msix_tx_conf(struct igb_softc *, int, int *, int);
224 static void     igb_msix_free(struct igb_softc *, boolean_t);
225 static int      igb_msix_setup(struct igb_softc *);
226 static void     igb_msix_teardown(struct igb_softc *, int);
227 static void     igb_msix_rx(void *);
228 static void     igb_msix_tx(void *);
229 static void     igb_msix_status(void *);
230 static void     igb_msix_rxtx(void *);
231
232 /* Management and WOL Support */
233 static void     igb_get_mgmt(struct igb_softc *);
234 static void     igb_rel_mgmt(struct igb_softc *);
235 static void     igb_get_hw_control(struct igb_softc *);
236 static void     igb_rel_hw_control(struct igb_softc *);
237 static void     igb_enable_wol(device_t);
238
239 static device_method_t igb_methods[] = {
240         /* Device interface */
241         DEVMETHOD(device_probe,         igb_probe),
242         DEVMETHOD(device_attach,        igb_attach),
243         DEVMETHOD(device_detach,        igb_detach),
244         DEVMETHOD(device_shutdown,      igb_shutdown),
245         DEVMETHOD(device_suspend,       igb_suspend),
246         DEVMETHOD(device_resume,        igb_resume),
247         { 0, 0 }
248 };
249
250 static driver_t igb_driver = {
251         "igb",
252         igb_methods,
253         sizeof(struct igb_softc),
254 };
255
256 static devclass_t igb_devclass;
257
258 DECLARE_DUMMY_MODULE(if_igb);
259 MODULE_DEPEND(igb, ig_hal, 1, 1, 1);
260 DRIVER_MODULE(if_igb, pci, igb_driver, igb_devclass, NULL, NULL);
261
262 static int      igb_rxd = IGB_DEFAULT_RXD;
263 static int      igb_txd = IGB_DEFAULT_TXD;
264 static int      igb_rxr = 0;
265 static int      igb_txr = 0;
266 static int      igb_msi_enable = 1;
267 static int      igb_msix_enable = 1;
268 static int      igb_eee_disabled = 1;   /* Energy Efficient Ethernet */
269 static int      igb_fc_setting = e1000_fc_full;
270
271 /*
272  * DMA Coalescing, only for i350 - default to off,
273  * this feature is for power savings
274  */
275 static int      igb_dma_coalesce = 0;
276
277 TUNABLE_INT("hw.igb.rxd", &igb_rxd);
278 TUNABLE_INT("hw.igb.txd", &igb_txd);
279 TUNABLE_INT("hw.igb.rxr", &igb_rxr);
280 TUNABLE_INT("hw.igb.txr", &igb_txr);
281 TUNABLE_INT("hw.igb.msi.enable", &igb_msi_enable);
282 TUNABLE_INT("hw.igb.msix.enable", &igb_msix_enable);
283 TUNABLE_INT("hw.igb.fc_setting", &igb_fc_setting);
284
285 /* i350 specific */
286 TUNABLE_INT("hw.igb.eee_disabled", &igb_eee_disabled);
287 TUNABLE_INT("hw.igb.dma_coalesce", &igb_dma_coalesce);
288
289 static __inline void
290 igb_rxcsum(uint32_t staterr, struct mbuf *mp)
291 {
292         /* Ignore Checksum bit is set */
293         if (staterr & E1000_RXD_STAT_IXSM)
294                 return;
295
296         if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
297             E1000_RXD_STAT_IPCS)
298                 mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
299
300         if (staterr & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) {
301                 if ((staterr & E1000_RXDEXT_STATERR_TCPE) == 0) {
302                         mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
303                             CSUM_PSEUDO_HDR | CSUM_FRAG_NOT_CHECKED;
304                         mp->m_pkthdr.csum_data = htons(0xffff);
305                 }
306         }
307 }
308
309 static __inline struct pktinfo *
310 igb_rssinfo(struct mbuf *m, struct pktinfo *pi,
311     uint32_t hash, uint32_t hashtype, uint32_t staterr)
312 {
313         switch (hashtype) {
314         case E1000_RXDADV_RSSTYPE_IPV4_TCP:
315                 pi->pi_netisr = NETISR_IP;
316                 pi->pi_flags = 0;
317                 pi->pi_l3proto = IPPROTO_TCP;
318                 break;
319
320         case E1000_RXDADV_RSSTYPE_IPV4:
321                 if (staterr & E1000_RXD_STAT_IXSM)
322                         return NULL;
323
324                 if ((staterr &
325                      (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
326                     E1000_RXD_STAT_TCPCS) {
327                         pi->pi_netisr = NETISR_IP;
328                         pi->pi_flags = 0;
329                         pi->pi_l3proto = IPPROTO_UDP;
330                         break;
331                 }
332                 /* FALL THROUGH */
333         default:
334                 return NULL;
335         }
336
337         m->m_flags |= M_HASH;
338         m->m_pkthdr.hash = toeplitz_hash(hash);
339         return pi;
340 }
341
342 static int
343 igb_probe(device_t dev)
344 {
345         const struct igb_device *d;
346         uint16_t vid, did;
347
348         vid = pci_get_vendor(dev);
349         did = pci_get_device(dev);
350
351         for (d = igb_devices; d->desc != NULL; ++d) {
352                 if (vid == d->vid && did == d->did) {
353                         device_set_desc(dev, d->desc);
354                         return 0;
355                 }
356         }
357         return ENXIO;
358 }
359
360 static int
361 igb_attach(device_t dev)
362 {
363         struct igb_softc *sc = device_get_softc(dev);
364         uint16_t eeprom_data;
365         int error = 0, i, ring_max;
366 #ifdef IFPOLL_ENABLE
367         int offset, offset_def;
368 #endif
369
370 #ifdef notyet
371         /* SYSCTL stuff */
372         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
373             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
374             OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
375             igb_sysctl_nvm_info, "I", "NVM Information");
376         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
377             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
378             OID_AUTO, "flow_control", CTLTYPE_INT|CTLFLAG_RW,
379             adapter, 0, igb_set_flowcntl, "I", "Flow Control");
380 #endif
381
382         callout_init_mp(&sc->timer);
383         lwkt_serialize_init(&sc->main_serialize);
384
385         if_initname(&sc->arpcom.ac_if, device_get_name(dev),
386             device_get_unit(dev));
387         sc->dev = sc->osdep.dev = dev;
388
389         /*
390          * Determine hardware and mac type
391          */
392         sc->hw.vendor_id = pci_get_vendor(dev);
393         sc->hw.device_id = pci_get_device(dev);
394         sc->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
395         sc->hw.subsystem_vendor_id = pci_read_config(dev, PCIR_SUBVEND_0, 2);
396         sc->hw.subsystem_device_id = pci_read_config(dev, PCIR_SUBDEV_0, 2);
397
398         if (e1000_set_mac_type(&sc->hw))
399                 return ENXIO;
400
401         /* Are we a VF device? */
402         if (sc->hw.mac.type == e1000_vfadapt ||
403             sc->hw.mac.type == e1000_vfadapt_i350)
404                 sc->vf_ifp = 1;
405         else
406                 sc->vf_ifp = 0;
407
408         /*
409          * Configure total supported RX/TX ring count
410          */
411         switch (sc->hw.mac.type) {
412         case e1000_82575:
413                 ring_max = IGB_MAX_RING_82575;
414                 break;
415         case e1000_82580:
416                 ring_max = IGB_MAX_RING_82580;
417                 break;
418         case e1000_i350:
419                 ring_max = IGB_MAX_RING_I350;
420                 break;
421         case e1000_82576:
422                 ring_max = IGB_MAX_RING_82576;
423                 break;
424         default:
425                 ring_max = IGB_MIN_RING;
426                 break;
427         }
428
429         sc->rx_ring_cnt = device_getenv_int(dev, "rxr", igb_rxr);
430         sc->rx_ring_cnt = if_ring_count2(sc->rx_ring_cnt, ring_max);
431 #ifdef IGB_RSS_DEBUG
432         sc->rx_ring_cnt = device_getenv_int(dev, "rxr_debug", sc->rx_ring_cnt);
433 #endif
434         sc->rx_ring_inuse = sc->rx_ring_cnt;
435
436         sc->tx_ring_cnt = device_getenv_int(dev, "txr", igb_txr);
437         sc->tx_ring_cnt = if_ring_count2(sc->tx_ring_cnt, ring_max);
438 #ifdef IGB_TSS_DEBUG
439         sc->tx_ring_cnt = device_getenv_int(dev, "txr_debug", sc->tx_ring_cnt);
440 #endif
441         sc->tx_ring_inuse = sc->tx_ring_cnt;
442
443         /* Enable bus mastering */
444         pci_enable_busmaster(dev);
445
446         /*
447          * Allocate IO memory
448          */
449         sc->mem_rid = PCIR_BAR(0);
450         sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
451             RF_ACTIVE);
452         if (sc->mem_res == NULL) {
453                 device_printf(dev, "Unable to allocate bus resource: memory\n");
454                 error = ENXIO;
455                 goto failed;
456         }
457         sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->mem_res);
458         sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->mem_res);
459
460         sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
461
462         /* Save PCI command register for Shared Code */
463         sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
464         sc->hw.back = &sc->osdep;
465
466         /* Do Shared Code initialization */
467         if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
468                 device_printf(dev, "Setup of Shared code failed\n");
469                 error = ENXIO;
470                 goto failed;
471         }
472
473         e1000_get_bus_info(&sc->hw);
474
475         sc->hw.mac.autoneg = DO_AUTO_NEG;
476         sc->hw.phy.autoneg_wait_to_complete = FALSE;
477         sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
478
479         /* Copper options */
480         if (sc->hw.phy.media_type == e1000_media_type_copper) {
481                 sc->hw.phy.mdix = AUTO_ALL_MODES;
482                 sc->hw.phy.disable_polarity_correction = FALSE;
483                 sc->hw.phy.ms_type = IGB_MASTER_SLAVE;
484         }
485
486         /* Set the frame limits assuming  standard ethernet sized frames. */
487         sc->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
488
489         /* Allocate RX/TX rings */
490         error = igb_alloc_rings(sc);
491         if (error)
492                 goto failed;
493
494 #ifdef IFPOLL_ENABLE
495         /*
496          * NPOLLING RX CPU offset
497          */
498         if (sc->rx_ring_cnt == ncpus2) {
499                 offset = 0;
500         } else {
501                 offset_def = (sc->rx_ring_cnt * device_get_unit(dev)) % ncpus2;
502                 offset = device_getenv_int(dev, "npoll.rxoff", offset_def);
503                 if (offset >= ncpus2 ||
504                     offset % sc->rx_ring_cnt != 0) {
505                         device_printf(dev, "invalid npoll.rxoff %d, use %d\n",
506                             offset, offset_def);
507                         offset = offset_def;
508                 }
509         }
510         sc->rx_npoll_off = offset;
511
512         /*
513          * NPOLLING TX CPU offset
514          */
515         if (sc->tx_ring_cnt == ncpus2) {
516                 offset = 0;
517         } else {
518                 offset_def = (sc->tx_ring_cnt * device_get_unit(dev)) % ncpus2;
519                 offset = device_getenv_int(dev, "npoll.txoff", offset_def);
520                 if (offset >= ncpus2 ||
521                     offset % sc->tx_ring_cnt != 0) {
522                         device_printf(dev, "invalid npoll.txoff %d, use %d\n",
523                             offset, offset_def);
524                         offset = offset_def;
525                 }
526         }
527         sc->tx_npoll_off = offset;
528 #endif
529
530         /* Allocate interrupt */
531         error = igb_alloc_intr(sc);
532         if (error)
533                 goto failed;
534
535         /* Setup serializers */
536         igb_setup_serializer(sc);
537
538         /* Allocate the appropriate stats memory */
539         if (sc->vf_ifp) {
540                 sc->stats = kmalloc(sizeof(struct e1000_vf_stats), M_DEVBUF,
541                     M_WAITOK | M_ZERO);
542                 igb_vf_init_stats(sc);
543         } else {
544                 sc->stats = kmalloc(sizeof(struct e1000_hw_stats), M_DEVBUF,
545                     M_WAITOK | M_ZERO);
546         }
547
548         /* Allocate multicast array memory. */
549         sc->mta = kmalloc(ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
550             M_DEVBUF, M_WAITOK);
551
552         /* Some adapter-specific advanced features */
553         if (sc->hw.mac.type >= e1000_i350) {
554 #ifdef notyet
555                 igb_set_sysctl_value(adapter, "dma_coalesce",
556                     "configure dma coalesce",
557                     &adapter->dma_coalesce, igb_dma_coalesce);
558                 igb_set_sysctl_value(adapter, "eee_disabled",
559                     "enable Energy Efficient Ethernet",
560                     &adapter->hw.dev_spec._82575.eee_disable,
561                     igb_eee_disabled);
562 #else
563                 sc->dma_coalesce = igb_dma_coalesce;
564                 sc->hw.dev_spec._82575.eee_disable = igb_eee_disabled;
565 #endif
566                 e1000_set_eee_i350(&sc->hw);
567         }
568
569         /*
570          * Start from a known state, this is important in reading the nvm and
571          * mac from that.
572          */
573         e1000_reset_hw(&sc->hw);
574
575         /* Make sure we have a good EEPROM before we read from it */
576         if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
577                 /*
578                  * Some PCI-E parts fail the first check due to
579                  * the link being in sleep state, call it again,
580                  * if it fails a second time its a real issue.
581                  */
582                 if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
583                         device_printf(dev,
584                             "The EEPROM Checksum Is Not Valid\n");
585                         error = EIO;
586                         goto failed;
587                 }
588         }
589
590         /* Copy the permanent MAC address out of the EEPROM */
591         if (e1000_read_mac_addr(&sc->hw) < 0) {
592                 device_printf(dev, "EEPROM read error while reading MAC"
593                     " address\n");
594                 error = EIO;
595                 goto failed;
596         }
597         if (!igb_is_valid_ether_addr(sc->hw.mac.addr)) {
598                 device_printf(dev, "Invalid MAC address\n");
599                 error = EIO;
600                 goto failed;
601         }
602
603         /* Setup OS specific network interface */
604         igb_setup_ifp(sc);
605
606         /* Add sysctl tree, must after igb_setup_ifp() */
607         igb_add_sysctl(sc);
608
609         /* Now get a good starting state */
610         igb_reset(sc);
611
612         /* Initialize statistics */
613         igb_update_stats_counters(sc);
614
615         sc->hw.mac.get_link_status = 1;
616         igb_update_link_status(sc);
617
618         /* Indicate SOL/IDER usage */
619         if (e1000_check_reset_block(&sc->hw)) {
620                 device_printf(dev,
621                     "PHY reset is blocked due to SOL/IDER session.\n");
622         }
623
624         /* Determine if we have to control management hardware */
625         if (e1000_enable_mng_pass_thru(&sc->hw))
626                 sc->flags |= IGB_FLAG_HAS_MGMT;
627
628         /*
629          * Setup Wake-on-Lan
630          */
631         /* APME bit in EEPROM is mapped to WUC.APME */
632         eeprom_data = E1000_READ_REG(&sc->hw, E1000_WUC) & E1000_WUC_APME;
633         if (eeprom_data)
634                 sc->wol = E1000_WUFC_MAG;
635         /* XXX disable WOL */
636         sc->wol = 0; 
637
638 #ifdef notyet
639         /* Register for VLAN events */
640         adapter->vlan_attach = EVENTHANDLER_REGISTER(vlan_config,
641              igb_register_vlan, adapter, EVENTHANDLER_PRI_FIRST);
642         adapter->vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig,
643              igb_unregister_vlan, adapter, EVENTHANDLER_PRI_FIRST);
644 #endif
645
646 #ifdef notyet
647         igb_add_hw_stats(adapter);
648 #endif
649
650         error = igb_setup_intr(sc);
651         if (error) {
652                 ether_ifdetach(&sc->arpcom.ac_if);
653                 goto failed;
654         }
655
656         for (i = 0; i < sc->tx_ring_cnt; ++i) {
657                 struct ifaltq_subque *ifsq =
658                     ifq_get_subq(&sc->arpcom.ac_if.if_snd, i);
659                 struct igb_tx_ring *txr = &sc->tx_rings[i];
660
661                 ifsq_set_cpuid(ifsq, txr->tx_intr_cpuid);
662                 ifsq_set_priv(ifsq, txr);
663                 txr->ifsq = ifsq;
664
665                 ifsq_watchdog_init(&txr->tx_watchdog, ifsq, igb_watchdog);
666         }
667
668         return 0;
669
670 failed:
671         igb_detach(dev);
672         return error;
673 }
674
675 static int
676 igb_detach(device_t dev)
677 {
678         struct igb_softc *sc = device_get_softc(dev);
679
680         if (device_is_attached(dev)) {
681                 struct ifnet *ifp = &sc->arpcom.ac_if;
682
683                 ifnet_serialize_all(ifp);
684
685                 igb_stop(sc);
686
687                 e1000_phy_hw_reset(&sc->hw);
688
689                 /* Give control back to firmware */
690                 igb_rel_mgmt(sc);
691                 igb_rel_hw_control(sc);
692
693                 if (sc->wol) {
694                         E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
695                         E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
696                         igb_enable_wol(dev);
697                 }
698
699                 igb_teardown_intr(sc);
700
701                 ifnet_deserialize_all(ifp);
702
703                 ether_ifdetach(ifp);
704         } else if (sc->mem_res != NULL) {
705                 igb_rel_hw_control(sc);
706         }
707         bus_generic_detach(dev);
708
709         if (sc->sysctl_tree != NULL)
710                 sysctl_ctx_free(&sc->sysctl_ctx);
711
712         igb_free_intr(sc);
713
714         if (sc->msix_mem_res != NULL) {
715                 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_mem_rid,
716                     sc->msix_mem_res);
717         }
718         if (sc->mem_res != NULL) {
719                 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid,
720                     sc->mem_res);
721         }
722
723         igb_free_rings(sc);
724
725         if (sc->mta != NULL)
726                 kfree(sc->mta, M_DEVBUF);
727         if (sc->stats != NULL)
728                 kfree(sc->stats, M_DEVBUF);
729         if (sc->serializes != NULL)
730                 kfree(sc->serializes, M_DEVBUF);
731
732         return 0;
733 }
734
735 static int
736 igb_shutdown(device_t dev)
737 {
738         return igb_suspend(dev);
739 }
740
741 static int
742 igb_suspend(device_t dev)
743 {
744         struct igb_softc *sc = device_get_softc(dev);
745         struct ifnet *ifp = &sc->arpcom.ac_if;
746
747         ifnet_serialize_all(ifp);
748
749         igb_stop(sc);
750
751         igb_rel_mgmt(sc);
752         igb_rel_hw_control(sc);
753
754         if (sc->wol) {
755                 E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
756                 E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
757                 igb_enable_wol(dev);
758         }
759
760         ifnet_deserialize_all(ifp);
761
762         return bus_generic_suspend(dev);
763 }
764
765 static int
766 igb_resume(device_t dev)
767 {
768         struct igb_softc *sc = device_get_softc(dev);
769         struct ifnet *ifp = &sc->arpcom.ac_if;
770         int i;
771
772         ifnet_serialize_all(ifp);
773
774         igb_init(sc);
775         igb_get_mgmt(sc);
776
777         for (i = 0; i < sc->tx_ring_inuse; ++i)
778                 ifsq_devstart_sched(sc->tx_rings[i].ifsq);
779
780         ifnet_deserialize_all(ifp);
781
782         return bus_generic_resume(dev);
783 }
784
785 static int
786 igb_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
787 {
788         struct igb_softc *sc = ifp->if_softc;
789         struct ifreq *ifr = (struct ifreq *)data;
790         int max_frame_size, mask, reinit;
791         int error = 0;
792
793         ASSERT_IFNET_SERIALIZED_ALL(ifp);
794
795         switch (command) {
796         case SIOCSIFMTU:
797                 max_frame_size = 9234;
798                 if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
799                     ETHER_CRC_LEN) {
800                         error = EINVAL;
801                         break;
802                 }
803
804                 ifp->if_mtu = ifr->ifr_mtu;
805                 sc->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
806                     ETHER_CRC_LEN;
807
808                 if (ifp->if_flags & IFF_RUNNING)
809                         igb_init(sc);
810                 break;
811
812         case SIOCSIFFLAGS:
813                 if (ifp->if_flags & IFF_UP) {
814                         if (ifp->if_flags & IFF_RUNNING) {
815                                 if ((ifp->if_flags ^ sc->if_flags) &
816                                     (IFF_PROMISC | IFF_ALLMULTI)) {
817                                         igb_disable_promisc(sc);
818                                         igb_set_promisc(sc);
819                                 }
820                         } else {
821                                 igb_init(sc);
822                         }
823                 } else if (ifp->if_flags & IFF_RUNNING) {
824                         igb_stop(sc);
825                 }
826                 sc->if_flags = ifp->if_flags;
827                 break;
828
829         case SIOCADDMULTI:
830         case SIOCDELMULTI:
831                 if (ifp->if_flags & IFF_RUNNING) {
832                         igb_disable_intr(sc);
833                         igb_set_multi(sc);
834 #ifdef IFPOLL_ENABLE
835                         if (!(ifp->if_flags & IFF_NPOLLING))
836 #endif
837                                 igb_enable_intr(sc);
838                 }
839                 break;
840
841         case SIOCSIFMEDIA:
842                 /*
843                  * As the speed/duplex settings are being
844                  * changed, we need toreset the PHY.
845                  */
846                 sc->hw.phy.reset_disable = FALSE;
847
848                 /* Check SOL/IDER usage */
849                 if (e1000_check_reset_block(&sc->hw)) {
850                         if_printf(ifp, "Media change is "
851                             "blocked due to SOL/IDER session.\n");
852                         break;
853                 }
854                 /* FALL THROUGH */
855
856         case SIOCGIFMEDIA:
857                 error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
858                 break;
859
860         case SIOCSIFCAP:
861                 reinit = 0;
862                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
863                 if (mask & IFCAP_RXCSUM) {
864                         ifp->if_capenable ^= IFCAP_RXCSUM;
865                         reinit = 1;
866                 }
867                 if (mask & IFCAP_VLAN_HWTAGGING) {
868                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
869                         reinit = 1;
870                 }
871                 if (mask & IFCAP_TXCSUM) {
872                         ifp->if_capenable ^= IFCAP_TXCSUM;
873                         if (ifp->if_capenable & IFCAP_TXCSUM)
874                                 ifp->if_hwassist |= IGB_CSUM_FEATURES;
875                         else
876                                 ifp->if_hwassist &= ~IGB_CSUM_FEATURES;
877                 }
878                 if (mask & IFCAP_TSO) {
879                         ifp->if_capenable ^= IFCAP_TSO;
880                         if (ifp->if_capenable & IFCAP_TSO)
881                                 ifp->if_hwassist |= CSUM_TSO;
882                         else
883                                 ifp->if_hwassist &= ~CSUM_TSO;
884                 }
885                 if (mask & IFCAP_RSS)
886                         ifp->if_capenable ^= IFCAP_RSS;
887                 if (reinit && (ifp->if_flags & IFF_RUNNING))
888                         igb_init(sc);
889                 break;
890
891         default:
892                 error = ether_ioctl(ifp, command, data);
893                 break;
894         }
895         return error;
896 }
897
898 static void
899 igb_init(void *xsc)
900 {
901         struct igb_softc *sc = xsc;
902         struct ifnet *ifp = &sc->arpcom.ac_if;
903         boolean_t polling;
904         int i;
905
906         ASSERT_IFNET_SERIALIZED_ALL(ifp);
907
908         igb_stop(sc);
909
910         /* Get the latest mac address, User can use a LAA */
911         bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
912
913         /* Put the address into the Receive Address Array */
914         e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
915
916         igb_reset(sc);
917         igb_update_link_status(sc);
918
919         E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
920
921         /* Configure for OS presence */
922         igb_get_mgmt(sc);
923
924         polling = FALSE;
925 #ifdef IFPOLL_ENABLE
926         if (ifp->if_flags & IFF_NPOLLING)
927                 polling = TRUE;
928 #endif
929
930         /* Configured used RX/TX rings */
931         igb_set_ring_inuse(sc, polling);
932         ifq_set_subq_mask(&ifp->if_snd, sc->tx_ring_inuse - 1);
933
934         /* Initialize interrupt */
935         igb_init_intr(sc);
936
937         /* Prepare transmit descriptors and buffers */
938         for (i = 0; i < sc->tx_ring_inuse; ++i)
939                 igb_init_tx_ring(&sc->tx_rings[i]);
940         igb_init_tx_unit(sc);
941
942         /* Setup Multicast table */
943         igb_set_multi(sc);
944
945 #if 0
946         /*
947          * Figure out the desired mbuf pool
948          * for doing jumbo/packetsplit
949          */
950         if (adapter->max_frame_size <= 2048)
951                 adapter->rx_mbuf_sz = MCLBYTES;
952         else if (adapter->max_frame_size <= 4096)
953                 adapter->rx_mbuf_sz = MJUMPAGESIZE;
954         else
955                 adapter->rx_mbuf_sz = MJUM9BYTES;
956 #endif
957
958         /* Prepare receive descriptors and buffers */
959         for (i = 0; i < sc->rx_ring_inuse; ++i) {
960                 int error;
961
962                 error = igb_init_rx_ring(&sc->rx_rings[i]);
963                 if (error) {
964                         if_printf(ifp, "Could not setup receive structures\n");
965                         igb_stop(sc);
966                         return;
967                 }
968         }
969         igb_init_rx_unit(sc);
970
971         /* Enable VLAN support */
972         if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
973                 igb_set_vlan(sc);
974
975         /* Don't lose promiscuous settings */
976         igb_set_promisc(sc);
977
978         ifp->if_flags |= IFF_RUNNING;
979         for (i = 0; i < sc->tx_ring_inuse; ++i) {
980                 ifsq_clr_oactive(sc->tx_rings[i].ifsq);
981                 ifsq_watchdog_start(&sc->tx_rings[i].tx_watchdog);
982         }
983
984         if (polling || sc->intr_type == PCI_INTR_TYPE_MSIX)
985                 sc->timer_cpuid = 0; /* XXX fixed */
986         else
987                 sc->timer_cpuid = rman_get_cpuid(sc->intr_res);
988         callout_reset_bycpu(&sc->timer, hz, igb_timer, sc, sc->timer_cpuid);
989         e1000_clear_hw_cntrs_base_generic(&sc->hw);
990
991         /* This clears any pending interrupts */
992         E1000_READ_REG(&sc->hw, E1000_ICR);
993
994         /*
995          * Only enable interrupts if we are not polling, make sure
996          * they are off otherwise.
997          */
998         if (polling) {
999                 igb_disable_intr(sc);
1000         } else {
1001                 igb_enable_intr(sc);
1002                 E1000_WRITE_REG(&sc->hw, E1000_ICS, E1000_ICS_LSC);
1003         }
1004
1005         /* Set Energy Efficient Ethernet */
1006         e1000_set_eee_i350(&sc->hw);
1007
1008         /* Don't reset the phy next time init gets called */
1009         sc->hw.phy.reset_disable = TRUE;
1010 }
1011
1012 static void
1013 igb_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1014 {
1015         struct igb_softc *sc = ifp->if_softc;
1016         u_char fiber_type = IFM_1000_SX;
1017
1018         ASSERT_IFNET_SERIALIZED_ALL(ifp);
1019
1020         igb_update_link_status(sc);
1021
1022         ifmr->ifm_status = IFM_AVALID;
1023         ifmr->ifm_active = IFM_ETHER;
1024
1025         if (!sc->link_active)
1026                 return;
1027
1028         ifmr->ifm_status |= IFM_ACTIVE;
1029
1030         if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1031             sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1032                 ifmr->ifm_active |= fiber_type | IFM_FDX;
1033         } else {
1034                 switch (sc->link_speed) {
1035                 case 10:
1036                         ifmr->ifm_active |= IFM_10_T;
1037                         break;
1038
1039                 case 100:
1040                         ifmr->ifm_active |= IFM_100_TX;
1041                         break;
1042
1043                 case 1000:
1044                         ifmr->ifm_active |= IFM_1000_T;
1045                         break;
1046                 }
1047                 if (sc->link_duplex == FULL_DUPLEX)
1048                         ifmr->ifm_active |= IFM_FDX;
1049                 else
1050                         ifmr->ifm_active |= IFM_HDX;
1051         }
1052 }
1053
1054 static int
1055 igb_media_change(struct ifnet *ifp)
1056 {
1057         struct igb_softc *sc = ifp->if_softc;
1058         struct ifmedia *ifm = &sc->media;
1059
1060         ASSERT_IFNET_SERIALIZED_ALL(ifp);
1061
1062         if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1063                 return EINVAL;
1064
1065         switch (IFM_SUBTYPE(ifm->ifm_media)) {
1066         case IFM_AUTO:
1067                 sc->hw.mac.autoneg = DO_AUTO_NEG;
1068                 sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1069                 break;
1070
1071         case IFM_1000_LX:
1072         case IFM_1000_SX:
1073         case IFM_1000_T:
1074                 sc->hw.mac.autoneg = DO_AUTO_NEG;
1075                 sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1076                 break;
1077
1078         case IFM_100_TX:
1079                 sc->hw.mac.autoneg = FALSE;
1080                 sc->hw.phy.autoneg_advertised = 0;
1081                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1082                         sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1083                 else
1084                         sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1085                 break;
1086
1087         case IFM_10_T:
1088                 sc->hw.mac.autoneg = FALSE;
1089                 sc->hw.phy.autoneg_advertised = 0;
1090                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1091                         sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1092                 else
1093                         sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1094                 break;
1095
1096         default:
1097                 if_printf(ifp, "Unsupported media type\n");
1098                 break;
1099         }
1100
1101         igb_init(sc);
1102
1103         return 0;
1104 }
1105
1106 static void
1107 igb_set_promisc(struct igb_softc *sc)
1108 {
1109         struct ifnet *ifp = &sc->arpcom.ac_if;
1110         struct e1000_hw *hw = &sc->hw;
1111         uint32_t reg;
1112
1113         if (sc->vf_ifp) {
1114                 e1000_promisc_set_vf(hw, e1000_promisc_enabled);
1115                 return;
1116         }
1117
1118         reg = E1000_READ_REG(hw, E1000_RCTL);
1119         if (ifp->if_flags & IFF_PROMISC) {
1120                 reg |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1121                 E1000_WRITE_REG(hw, E1000_RCTL, reg);
1122         } else if (ifp->if_flags & IFF_ALLMULTI) {
1123                 reg |= E1000_RCTL_MPE;
1124                 reg &= ~E1000_RCTL_UPE;
1125                 E1000_WRITE_REG(hw, E1000_RCTL, reg);
1126         }
1127 }
1128
1129 static void
1130 igb_disable_promisc(struct igb_softc *sc)
1131 {
1132         struct e1000_hw *hw = &sc->hw;
1133         uint32_t reg;
1134
1135         if (sc->vf_ifp) {
1136                 e1000_promisc_set_vf(hw, e1000_promisc_disabled);
1137                 return;
1138         }
1139         reg = E1000_READ_REG(hw, E1000_RCTL);
1140         reg &= ~E1000_RCTL_UPE;
1141         reg &= ~E1000_RCTL_MPE;
1142         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1143 }
1144
1145 static void
1146 igb_set_multi(struct igb_softc *sc)
1147 {
1148         struct ifnet *ifp = &sc->arpcom.ac_if;
1149         struct ifmultiaddr *ifma;
1150         uint32_t reg_rctl = 0;
1151         uint8_t *mta;
1152         int mcnt = 0;
1153
1154         mta = sc->mta;
1155         bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1156
1157         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1158                 if (ifma->ifma_addr->sa_family != AF_LINK)
1159                         continue;
1160
1161                 if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1162                         break;
1163
1164                 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1165                     &mta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN);
1166                 mcnt++;
1167         }
1168
1169         if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1170                 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1171                 reg_rctl |= E1000_RCTL_MPE;
1172                 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1173         } else {
1174                 e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1175         }
1176 }
1177
1178 static void
1179 igb_timer(void *xsc)
1180 {
1181         struct igb_softc *sc = xsc;
1182
1183         lwkt_serialize_enter(&sc->main_serialize);
1184
1185         igb_update_link_status(sc);
1186         igb_update_stats_counters(sc);
1187
1188         callout_reset_bycpu(&sc->timer, hz, igb_timer, sc, sc->timer_cpuid);
1189
1190         lwkt_serialize_exit(&sc->main_serialize);
1191 }
1192
1193 static void
1194 igb_update_link_status(struct igb_softc *sc)
1195 {
1196         struct ifnet *ifp = &sc->arpcom.ac_if;
1197         struct e1000_hw *hw = &sc->hw;
1198         uint32_t link_check, thstat, ctrl;
1199
1200         link_check = thstat = ctrl = 0;
1201
1202         /* Get the cached link value or read for real */
1203         switch (hw->phy.media_type) {
1204         case e1000_media_type_copper:
1205                 if (hw->mac.get_link_status) {
1206                         /* Do the work to read phy */
1207                         e1000_check_for_link(hw);
1208                         link_check = !hw->mac.get_link_status;
1209                 } else {
1210                         link_check = TRUE;
1211                 }
1212                 break;
1213
1214         case e1000_media_type_fiber:
1215                 e1000_check_for_link(hw);
1216                 link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1217                 break;
1218
1219         case e1000_media_type_internal_serdes:
1220                 e1000_check_for_link(hw);
1221                 link_check = hw->mac.serdes_has_link;
1222                 break;
1223
1224         /* VF device is type_unknown */
1225         case e1000_media_type_unknown:
1226                 e1000_check_for_link(hw);
1227                 link_check = !hw->mac.get_link_status;
1228                 /* Fall thru */
1229         default:
1230                 break;
1231         }
1232
1233         /* Check for thermal downshift or shutdown */
1234         if (hw->mac.type == e1000_i350) {
1235                 thstat = E1000_READ_REG(hw, E1000_THSTAT);
1236                 ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
1237         }
1238
1239         /* Now we check if a transition has happened */
1240         if (link_check && sc->link_active == 0) {
1241                 e1000_get_speed_and_duplex(hw, 
1242                     &sc->link_speed, &sc->link_duplex);
1243                 if (bootverbose) {
1244                         if_printf(ifp, "Link is up %d Mbps %s\n",
1245                             sc->link_speed,
1246                             sc->link_duplex == FULL_DUPLEX ?
1247                             "Full Duplex" : "Half Duplex");
1248                 }
1249                 sc->link_active = 1;
1250
1251                 ifp->if_baudrate = sc->link_speed * 1000000;
1252                 if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1253                     (thstat & E1000_THSTAT_LINK_THROTTLE))
1254                         if_printf(ifp, "Link: thermal downshift\n");
1255                 /* This can sleep */
1256                 ifp->if_link_state = LINK_STATE_UP;
1257                 if_link_state_change(ifp);
1258         } else if (!link_check && sc->link_active == 1) {
1259                 ifp->if_baudrate = sc->link_speed = 0;
1260                 sc->link_duplex = 0;
1261                 if (bootverbose)
1262                         if_printf(ifp, "Link is Down\n");
1263                 if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1264                     (thstat & E1000_THSTAT_PWR_DOWN))
1265                         if_printf(ifp, "Link: thermal shutdown\n");
1266                 sc->link_active = 0;
1267                 /* This can sleep */
1268                 ifp->if_link_state = LINK_STATE_DOWN;
1269                 if_link_state_change(ifp);
1270         }
1271 }
1272
1273 static void
1274 igb_stop(struct igb_softc *sc)
1275 {
1276         struct ifnet *ifp = &sc->arpcom.ac_if;
1277         int i;
1278
1279         ASSERT_IFNET_SERIALIZED_ALL(ifp);
1280
1281         igb_disable_intr(sc);
1282
1283         callout_stop(&sc->timer);
1284
1285         ifp->if_flags &= ~IFF_RUNNING;
1286         for (i = 0; i < sc->tx_ring_cnt; ++i) {
1287                 ifsq_clr_oactive(sc->tx_rings[i].ifsq);
1288                 ifsq_watchdog_stop(&sc->tx_rings[i].tx_watchdog);
1289                 sc->tx_rings[i].tx_flags &= ~IGB_TXFLAG_ENABLED;
1290         }
1291
1292         e1000_reset_hw(&sc->hw);
1293         E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1294
1295         e1000_led_off(&sc->hw);
1296         e1000_cleanup_led(&sc->hw);
1297
1298         for (i = 0; i < sc->tx_ring_cnt; ++i)
1299                 igb_free_tx_ring(&sc->tx_rings[i]);
1300         for (i = 0; i < sc->rx_ring_cnt; ++i)
1301                 igb_free_rx_ring(&sc->rx_rings[i]);
1302 }
1303
1304 static void
1305 igb_reset(struct igb_softc *sc)
1306 {
1307         struct ifnet *ifp = &sc->arpcom.ac_if;
1308         struct e1000_hw *hw = &sc->hw;
1309         struct e1000_fc_info *fc = &hw->fc;
1310         uint32_t pba = 0;
1311         uint16_t hwm;
1312
1313         /* Let the firmware know the OS is in control */
1314         igb_get_hw_control(sc);
1315
1316         /*
1317          * Packet Buffer Allocation (PBA)
1318          * Writing PBA sets the receive portion of the buffer
1319          * the remainder is used for the transmit buffer.
1320          */
1321         switch (hw->mac.type) {
1322         case e1000_82575:
1323                 pba = E1000_PBA_32K;
1324                 break;
1325
1326         case e1000_82576:
1327         case e1000_vfadapt:
1328                 pba = E1000_READ_REG(hw, E1000_RXPBS);
1329                 pba &= E1000_RXPBS_SIZE_MASK_82576;
1330                 break;
1331
1332         case e1000_82580:
1333         case e1000_i350:
1334         case e1000_vfadapt_i350:
1335                 pba = E1000_READ_REG(hw, E1000_RXPBS);
1336                 pba = e1000_rxpbs_adjust_82580(pba);
1337                 break;
1338                 /* XXX pba = E1000_PBA_35K; */
1339
1340         default:
1341                 break;
1342         }
1343
1344         /* Special needs in case of Jumbo frames */
1345         if (hw->mac.type == e1000_82575 && ifp->if_mtu > ETHERMTU) {
1346                 uint32_t tx_space, min_tx, min_rx;
1347
1348                 pba = E1000_READ_REG(hw, E1000_PBA);
1349                 tx_space = pba >> 16;
1350                 pba &= 0xffff;
1351
1352                 min_tx = (sc->max_frame_size +
1353                     sizeof(struct e1000_tx_desc) - ETHER_CRC_LEN) * 2;
1354                 min_tx = roundup2(min_tx, 1024);
1355                 min_tx >>= 10;
1356                 min_rx = sc->max_frame_size;
1357                 min_rx = roundup2(min_rx, 1024);
1358                 min_rx >>= 10;
1359                 if (tx_space < min_tx && (min_tx - tx_space) < pba) {
1360                         pba = pba - (min_tx - tx_space);
1361                         /*
1362                          * if short on rx space, rx wins
1363                          * and must trump tx adjustment
1364                          */
1365                         if (pba < min_rx)
1366                                 pba = min_rx;
1367                 }
1368                 E1000_WRITE_REG(hw, E1000_PBA, pba);
1369         }
1370
1371         /*
1372          * These parameters control the automatic generation (Tx) and
1373          * response (Rx) to Ethernet PAUSE frames.
1374          * - High water mark should allow for at least two frames to be
1375          *   received after sending an XOFF.
1376          * - Low water mark works best when it is very near the high water mark.
1377          *   This allows the receiver to restart by sending XON when it has
1378          *   drained a bit.
1379          */
1380         hwm = min(((pba << 10) * 9 / 10),
1381             ((pba << 10) - 2 * sc->max_frame_size));
1382
1383         if (hw->mac.type < e1000_82576) {
1384                 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
1385                 fc->low_water = fc->high_water - 8;
1386         } else {
1387                 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1388                 fc->low_water = fc->high_water - 16;
1389         }
1390         fc->pause_time = IGB_FC_PAUSE_TIME;
1391         fc->send_xon = TRUE;
1392
1393         /* Issue a global reset */
1394         e1000_reset_hw(hw);
1395         E1000_WRITE_REG(hw, E1000_WUC, 0);
1396
1397         if (e1000_init_hw(hw) < 0)
1398                 if_printf(ifp, "Hardware Initialization Failed\n");
1399
1400         /* Setup DMA Coalescing */
1401         if (hw->mac.type == e1000_i350 && sc->dma_coalesce) {
1402                 uint32_t reg;
1403
1404                 hwm = (pba - 4) << 10;
1405                 reg = ((pba - 6) << E1000_DMACR_DMACTHR_SHIFT)
1406                     & E1000_DMACR_DMACTHR_MASK;
1407
1408                 /* transition to L0x or L1 if available..*/
1409                 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
1410
1411                 /* timer = +-1000 usec in 32usec intervals */
1412                 reg |= (1000 >> 5);
1413                 E1000_WRITE_REG(hw, E1000_DMACR, reg);
1414
1415                 /* No lower threshold */
1416                 E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
1417
1418                 /* set hwm to PBA -  2 * max frame size */
1419                 E1000_WRITE_REG(hw, E1000_FCRTC, hwm);
1420
1421                 /* Set the interval before transition */
1422                 reg = E1000_READ_REG(hw, E1000_DMCTLX);
1423                 reg |= 0x800000FF; /* 255 usec */
1424                 E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
1425
1426                 /* free space in tx packet buffer to wake from DMA coal */
1427                 E1000_WRITE_REG(hw, E1000_DMCTXTH,
1428                     (20480 - (2 * sc->max_frame_size)) >> 6);
1429
1430                 /* make low power state decision controlled by DMA coal */
1431                 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
1432                 E1000_WRITE_REG(hw, E1000_PCIEMISC,
1433                     reg | E1000_PCIEMISC_LX_DECISION);
1434                 if_printf(ifp, "DMA Coalescing enabled\n");
1435         }
1436
1437         E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1438         e1000_get_phy_info(hw);
1439         e1000_check_for_link(hw);
1440 }
1441
1442 static void
1443 igb_setup_ifp(struct igb_softc *sc)
1444 {
1445         struct ifnet *ifp = &sc->arpcom.ac_if;
1446
1447         ifp->if_softc = sc;
1448         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1449         ifp->if_init = igb_init;
1450         ifp->if_ioctl = igb_ioctl;
1451         ifp->if_start = igb_start;
1452         ifp->if_serialize = igb_serialize;
1453         ifp->if_deserialize = igb_deserialize;
1454         ifp->if_tryserialize = igb_tryserialize;
1455 #ifdef INVARIANTS
1456         ifp->if_serialize_assert = igb_serialize_assert;
1457 #endif
1458 #ifdef IFPOLL_ENABLE
1459         ifp->if_npoll = igb_npoll;
1460 #endif
1461
1462         ifq_set_maxlen(&ifp->if_snd, sc->tx_rings[0].num_tx_desc - 1);
1463         ifq_set_ready(&ifp->if_snd);
1464         ifq_set_subq_cnt(&ifp->if_snd, sc->tx_ring_cnt);
1465
1466         ifp->if_mapsubq = ifq_mapsubq_mask;
1467         ifq_set_subq_mask(&ifp->if_snd, 0);
1468
1469         ether_ifattach(ifp, sc->hw.mac.addr, NULL);
1470
1471         ifp->if_capabilities =
1472             IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_TSO;
1473         if (IGB_ENABLE_HWRSS(sc))
1474                 ifp->if_capabilities |= IFCAP_RSS;
1475         ifp->if_capenable = ifp->if_capabilities;
1476         ifp->if_hwassist = IGB_CSUM_FEATURES | CSUM_TSO;
1477
1478         /*
1479          * Tell the upper layer(s) we support long frames
1480          */
1481         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1482
1483         /*
1484          * Specify the media types supported by this adapter and register
1485          * callbacks to update media and link information
1486          */
1487         ifmedia_init(&sc->media, IFM_IMASK, igb_media_change, igb_media_status);
1488         if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1489             sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1490                 ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
1491                     0, NULL);
1492                 ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
1493         } else {
1494                 ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1495                 ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
1496                     0, NULL);
1497                 ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1498                 ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
1499                     0, NULL);
1500                 if (sc->hw.phy.type != e1000_phy_ife) {
1501                         ifmedia_add(&sc->media,
1502                             IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1503                         ifmedia_add(&sc->media,
1504                             IFM_ETHER | IFM_1000_T, 0, NULL);
1505                 }
1506         }
1507         ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1508         ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
1509 }
1510
1511 static void
1512 igb_add_sysctl(struct igb_softc *sc)
1513 {
1514         char node[32];
1515         int i;
1516
1517         sysctl_ctx_init(&sc->sysctl_ctx);
1518         sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
1519             SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
1520             device_get_nameunit(sc->dev), CTLFLAG_RD, 0, "");
1521         if (sc->sysctl_tree == NULL) {
1522                 device_printf(sc->dev, "can't add sysctl node\n");
1523                 return;
1524         }
1525
1526         SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1527             OID_AUTO, "rxr", CTLFLAG_RD, &sc->rx_ring_cnt, 0, "# of RX rings");
1528         SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1529             OID_AUTO, "rxr_inuse", CTLFLAG_RD, &sc->rx_ring_inuse, 0,
1530             "# of RX rings used");
1531         SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1532             OID_AUTO, "txr", CTLFLAG_RD, &sc->tx_ring_cnt, 0, "# of TX rings");
1533         SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1534             OID_AUTO, "txr_inuse", CTLFLAG_RD, &sc->tx_ring_inuse, 0,
1535             "# of TX rings used");
1536         SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1537             OID_AUTO, "rxd", CTLFLAG_RD, &sc->rx_rings[0].num_rx_desc, 0,
1538             "# of RX descs");
1539         SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1540             OID_AUTO, "txd", CTLFLAG_RD, &sc->tx_rings[0].num_tx_desc, 0,
1541             "# of TX descs");
1542
1543         if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
1544                 SYSCTL_ADD_PROC(&sc->sysctl_ctx,
1545                     SYSCTL_CHILDREN(sc->sysctl_tree),
1546                     OID_AUTO, "intr_rate", CTLTYPE_INT | CTLFLAG_RW,
1547                     sc, 0, igb_sysctl_intr_rate, "I", "interrupt rate");
1548         } else {
1549                 for (i = 0; i < sc->msix_cnt; ++i) {
1550                         struct igb_msix_data *msix = &sc->msix_data[i];
1551
1552                         ksnprintf(node, sizeof(node), "msix%d_rate", i);
1553                         SYSCTL_ADD_PROC(&sc->sysctl_ctx,
1554                             SYSCTL_CHILDREN(sc->sysctl_tree),
1555                             OID_AUTO, node, CTLTYPE_INT | CTLFLAG_RW,
1556                             msix, 0, igb_sysctl_msix_rate, "I",
1557                             msix->msix_rate_desc);
1558                 }
1559         }
1560
1561         SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1562             OID_AUTO, "tx_intr_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1563             sc, 0, igb_sysctl_tx_intr_nsegs, "I",
1564             "# of segments per TX interrupt");
1565
1566         SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1567             OID_AUTO, "tx_wreg_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1568             sc, 0, igb_sysctl_tx_wreg_nsegs, "I",
1569             "# of segments sent before write to hardware register");
1570
1571         SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1572             OID_AUTO, "rx_wreg_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1573             sc, 0, igb_sysctl_rx_wreg_nsegs, "I",
1574             "# of segments received before write to hardware register");
1575
1576 #ifdef IFPOLL_ENABLE
1577         SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1578             OID_AUTO, "npoll_rxoff", CTLTYPE_INT|CTLFLAG_RW,
1579             sc, 0, igb_sysctl_npoll_rxoff, "I", "NPOLLING RX cpu offset");
1580         SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1581             OID_AUTO, "npoll_txoff", CTLTYPE_INT|CTLFLAG_RW,
1582             sc, 0, igb_sysctl_npoll_txoff, "I", "NPOLLING TX cpu offset");
1583 #endif
1584
1585 #ifdef IGB_RSS_DEBUG
1586         SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1587             OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug, 0,
1588             "RSS debug level");
1589         for (i = 0; i < sc->rx_ring_cnt; ++i) {
1590                 ksnprintf(node, sizeof(node), "rx%d_pkt", i);
1591                 SYSCTL_ADD_ULONG(&sc->sysctl_ctx,
1592                     SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, node,
1593                     CTLFLAG_RW, &sc->rx_rings[i].rx_packets, "RXed packets");
1594         }
1595 #endif
1596 #ifdef IGB_TSS_DEBUG
1597         for  (i = 0; i < sc->tx_ring_cnt; ++i) {
1598                 ksnprintf(node, sizeof(node), "tx%d_pkt", i);
1599                 SYSCTL_ADD_ULONG(&sc->sysctl_ctx,
1600                     SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, node,
1601                     CTLFLAG_RW, &sc->tx_rings[i].tx_packets, "TXed packets");
1602         }
1603 #endif
1604 }
1605
1606 static int
1607 igb_alloc_rings(struct igb_softc *sc)
1608 {
1609         int error, i;
1610
1611         /*
1612          * Create top level busdma tag
1613          */
1614         error = bus_dma_tag_create(NULL, 1, 0,
1615             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1616             BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
1617             &sc->parent_tag);
1618         if (error) {
1619                 device_printf(sc->dev, "could not create top level DMA tag\n");
1620                 return error;
1621         }
1622
1623         /*
1624          * Allocate TX descriptor rings and buffers
1625          */
1626         sc->tx_rings = kmalloc_cachealign(
1627             sizeof(struct igb_tx_ring) * sc->tx_ring_cnt,
1628             M_DEVBUF, M_WAITOK | M_ZERO);
1629         for (i = 0; i < sc->tx_ring_cnt; ++i) {
1630                 struct igb_tx_ring *txr = &sc->tx_rings[i];
1631
1632                 /* Set up some basics */
1633                 txr->sc = sc;
1634                 txr->me = i;
1635                 lwkt_serialize_init(&txr->tx_serialize);
1636
1637                 error = igb_create_tx_ring(txr);
1638                 if (error)
1639                         return error;
1640         }
1641
1642         /*
1643          * Allocate RX descriptor rings and buffers
1644          */ 
1645         sc->rx_rings = kmalloc_cachealign(
1646             sizeof(struct igb_rx_ring) * sc->rx_ring_cnt,
1647             M_DEVBUF, M_WAITOK | M_ZERO);
1648         for (i = 0; i < sc->rx_ring_cnt; ++i) {
1649                 struct igb_rx_ring *rxr = &sc->rx_rings[i];
1650
1651                 /* Set up some basics */
1652                 rxr->sc = sc;
1653                 rxr->me = i;
1654                 lwkt_serialize_init(&rxr->rx_serialize);
1655
1656                 error = igb_create_rx_ring(rxr);
1657                 if (error)
1658                         return error;
1659         }
1660
1661         return 0;
1662 }
1663
1664 static void
1665 igb_free_rings(struct igb_softc *sc)
1666 {
1667         int i;
1668
1669         if (sc->tx_rings != NULL) {
1670                 for (i = 0; i < sc->tx_ring_cnt; ++i) {
1671                         struct igb_tx_ring *txr = &sc->tx_rings[i];
1672
1673                         igb_destroy_tx_ring(txr, txr->num_tx_desc);
1674                 }
1675                 kfree(sc->tx_rings, M_DEVBUF);
1676         }
1677
1678         if (sc->rx_rings != NULL) {
1679                 for (i = 0; i < sc->rx_ring_cnt; ++i) {
1680                         struct igb_rx_ring *rxr = &sc->rx_rings[i];
1681
1682                         igb_destroy_rx_ring(rxr, rxr->num_rx_desc);
1683                 }
1684                 kfree(sc->rx_rings, M_DEVBUF);
1685         }
1686 }
1687
1688 static int
1689 igb_create_tx_ring(struct igb_tx_ring *txr)
1690 {
1691         int tsize, error, i, ntxd;
1692
1693         /*
1694          * Validate number of transmit descriptors. It must not exceed
1695          * hardware maximum, and must be multiple of IGB_DBA_ALIGN.
1696          */
1697         ntxd = device_getenv_int(txr->sc->dev, "txd", igb_txd);
1698         if ((ntxd * sizeof(struct e1000_tx_desc)) % IGB_DBA_ALIGN != 0 ||
1699             ntxd > IGB_MAX_TXD || ntxd < IGB_MIN_TXD) {
1700                 device_printf(txr->sc->dev,
1701                     "Using %d TX descriptors instead of %d!\n",
1702                     IGB_DEFAULT_TXD, ntxd);
1703                 txr->num_tx_desc = IGB_DEFAULT_TXD;
1704         } else {
1705                 txr->num_tx_desc = ntxd;
1706         }
1707
1708         /*
1709          * Allocate TX descriptor ring
1710          */
1711         tsize = roundup2(txr->num_tx_desc * sizeof(union e1000_adv_tx_desc),
1712             IGB_DBA_ALIGN);
1713         txr->txdma.dma_vaddr = bus_dmamem_coherent_any(txr->sc->parent_tag,
1714             IGB_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
1715             &txr->txdma.dma_tag, &txr->txdma.dma_map, &txr->txdma.dma_paddr);
1716         if (txr->txdma.dma_vaddr == NULL) {
1717                 device_printf(txr->sc->dev,
1718                     "Unable to allocate TX Descriptor memory\n");
1719                 return ENOMEM;
1720         }
1721         txr->tx_base = txr->txdma.dma_vaddr;
1722         bzero(txr->tx_base, tsize);
1723
1724         tsize = __VM_CACHELINE_ALIGN(
1725             sizeof(struct igb_tx_buf) * txr->num_tx_desc);
1726         txr->tx_buf = kmalloc_cachealign(tsize, M_DEVBUF, M_WAITOK | M_ZERO);
1727
1728         /*
1729          * Allocate TX head write-back buffer
1730          */
1731         txr->tx_hdr = bus_dmamem_coherent_any(txr->sc->parent_tag,
1732             __VM_CACHELINE_SIZE, __VM_CACHELINE_SIZE, BUS_DMA_WAITOK,
1733             &txr->tx_hdr_dtag, &txr->tx_hdr_dmap, &txr->tx_hdr_paddr);
1734         if (txr->tx_hdr == NULL) {
1735                 device_printf(txr->sc->dev,
1736                     "Unable to allocate TX head write-back buffer\n");
1737                 return ENOMEM;
1738         }
1739
1740         /*
1741          * Create DMA tag for TX buffers
1742          */
1743         error = bus_dma_tag_create(txr->sc->parent_tag,
1744             1, 0,               /* alignment, bounds */
1745             BUS_SPACE_MAXADDR,  /* lowaddr */
1746             BUS_SPACE_MAXADDR,  /* highaddr */
1747             NULL, NULL,         /* filter, filterarg */
1748             IGB_TSO_SIZE,       /* maxsize */
1749             IGB_MAX_SCATTER,    /* nsegments */
1750             PAGE_SIZE,          /* maxsegsize */
1751             BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
1752             BUS_DMA_ONEBPAGE,   /* flags */
1753             &txr->tx_tag);
1754         if (error) {
1755                 device_printf(txr->sc->dev, "Unable to allocate TX DMA tag\n");
1756                 kfree(txr->tx_buf, M_DEVBUF);
1757                 txr->tx_buf = NULL;
1758                 return error;
1759         }
1760
1761         /*
1762          * Create DMA maps for TX buffers
1763          */
1764         for (i = 0; i < txr->num_tx_desc; ++i) {
1765                 struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1766
1767                 error = bus_dmamap_create(txr->tx_tag,
1768                     BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE, &txbuf->map);
1769                 if (error) {
1770                         device_printf(txr->sc->dev,
1771                             "Unable to create TX DMA map\n");
1772                         igb_destroy_tx_ring(txr, i);
1773                         return error;
1774                 }
1775         }
1776
1777         if (txr->sc->hw.mac.type == e1000_82575)
1778                 txr->tx_flags |= IGB_TXFLAG_TSO_IPLEN0;
1779
1780         /*
1781          * Initialize various watermark
1782          */
1783         txr->spare_desc = IGB_TX_SPARE;
1784         txr->intr_nsegs = txr->num_tx_desc / 16;
1785         txr->wreg_nsegs = IGB_DEF_TXWREG_NSEGS;
1786         txr->oact_hi_desc = txr->num_tx_desc / 2;
1787         txr->oact_lo_desc = txr->num_tx_desc / 8;
1788         if (txr->oact_lo_desc > IGB_TX_OACTIVE_MAX)
1789                 txr->oact_lo_desc = IGB_TX_OACTIVE_MAX;
1790         if (txr->oact_lo_desc < txr->spare_desc + IGB_TX_RESERVED)
1791                 txr->oact_lo_desc = txr->spare_desc + IGB_TX_RESERVED;
1792
1793         return 0;
1794 }
1795
1796 static void
1797 igb_free_tx_ring(struct igb_tx_ring *txr)
1798 {
1799         int i;
1800
1801         for (i = 0; i < txr->num_tx_desc; ++i) {
1802                 struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1803
1804                 if (txbuf->m_head != NULL) {
1805                         bus_dmamap_unload(txr->tx_tag, txbuf->map);
1806                         m_freem(txbuf->m_head);
1807                         txbuf->m_head = NULL;
1808                 }
1809         }
1810 }
1811
1812 static void
1813 igb_destroy_tx_ring(struct igb_tx_ring *txr, int ndesc)
1814 {
1815         int i;
1816
1817         if (txr->txdma.dma_vaddr != NULL) {
1818                 bus_dmamap_unload(txr->txdma.dma_tag, txr->txdma.dma_map);
1819                 bus_dmamem_free(txr->txdma.dma_tag, txr->txdma.dma_vaddr,
1820                     txr->txdma.dma_map);
1821                 bus_dma_tag_destroy(txr->txdma.dma_tag);
1822                 txr->txdma.dma_vaddr = NULL;
1823         }
1824
1825         if (txr->tx_hdr != NULL) {
1826                 bus_dmamap_unload(txr->tx_hdr_dtag, txr->tx_hdr_dmap);
1827                 bus_dmamem_free(txr->tx_hdr_dtag, txr->tx_hdr,
1828                     txr->tx_hdr_dmap);
1829                 bus_dma_tag_destroy(txr->tx_hdr_dtag);
1830                 txr->tx_hdr = NULL;
1831         }
1832
1833         if (txr->tx_buf == NULL)
1834                 return;
1835
1836         for (i = 0; i < ndesc; ++i) {
1837                 struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1838
1839                 KKASSERT(txbuf->m_head == NULL);
1840                 bus_dmamap_destroy(txr->tx_tag, txbuf->map);
1841         }
1842         bus_dma_tag_destroy(txr->tx_tag);
1843
1844         kfree(txr->tx_buf, M_DEVBUF);
1845         txr->tx_buf = NULL;
1846 }
1847
1848 static void
1849 igb_init_tx_ring(struct igb_tx_ring *txr)
1850 {
1851         /* Clear the old descriptor contents */
1852         bzero(txr->tx_base,
1853             sizeof(union e1000_adv_tx_desc) * txr->num_tx_desc);
1854
1855         /* Clear TX head write-back buffer */
1856         *(txr->tx_hdr) = 0;
1857
1858         /* Reset indices */
1859         txr->next_avail_desc = 0;
1860         txr->next_to_clean = 0;
1861         txr->tx_nsegs = 0;
1862
1863         /* Set number of descriptors available */
1864         txr->tx_avail = txr->num_tx_desc;
1865
1866         /* Enable this TX ring */
1867         txr->tx_flags |= IGB_TXFLAG_ENABLED;
1868 }
1869
1870 static void
1871 igb_init_tx_unit(struct igb_softc *sc)
1872 {
1873         struct e1000_hw *hw = &sc->hw;
1874         uint32_t tctl;
1875         int i;
1876
1877         /* Setup the Tx Descriptor Rings */
1878         for (i = 0; i < sc->tx_ring_inuse; ++i) {
1879                 struct igb_tx_ring *txr = &sc->tx_rings[i];
1880                 uint64_t bus_addr = txr->txdma.dma_paddr;
1881                 uint64_t hdr_paddr = txr->tx_hdr_paddr;
1882                 uint32_t txdctl = 0;
1883                 uint32_t dca_txctrl;
1884
1885                 E1000_WRITE_REG(hw, E1000_TDLEN(i),
1886                     txr->num_tx_desc * sizeof(struct e1000_tx_desc));
1887                 E1000_WRITE_REG(hw, E1000_TDBAH(i),
1888                     (uint32_t)(bus_addr >> 32));
1889                 E1000_WRITE_REG(hw, E1000_TDBAL(i),
1890                     (uint32_t)bus_addr);
1891
1892                 /* Setup the HW Tx Head and Tail descriptor pointers */
1893                 E1000_WRITE_REG(hw, E1000_TDT(i), 0);
1894                 E1000_WRITE_REG(hw, E1000_TDH(i), 0);
1895
1896                 dca_txctrl = E1000_READ_REG(hw, E1000_DCA_TXCTRL(i));
1897                 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1898                 E1000_WRITE_REG(hw, E1000_DCA_TXCTRL(i), dca_txctrl);
1899
1900                 /*
1901                  * Don't set WB_on_EITR:
1902                  * - 82575 does not have it
1903                  * - It almost has no effect on 82576, see:
1904                  *   82576 specification update errata #26
1905                  * - It causes unnecessary bus traffic
1906                  */
1907                 E1000_WRITE_REG(hw, E1000_TDWBAH(i),
1908                     (uint32_t)(hdr_paddr >> 32));
1909                 E1000_WRITE_REG(hw, E1000_TDWBAL(i),
1910                     ((uint32_t)hdr_paddr) | E1000_TX_HEAD_WB_ENABLE);
1911
1912                 /*
1913                  * WTHRESH is ignored by the hardware, since header
1914                  * write back mode is used.
1915                  */
1916                 txdctl |= IGB_TX_PTHRESH;
1917                 txdctl |= IGB_TX_HTHRESH << 8;
1918                 txdctl |= IGB_TX_WTHRESH << 16;
1919                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1920                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
1921         }
1922
1923         if (sc->vf_ifp)
1924                 return;
1925
1926         e1000_config_collision_dist(hw);
1927
1928         /* Program the Transmit Control Register */
1929         tctl = E1000_READ_REG(hw, E1000_TCTL);
1930         tctl &= ~E1000_TCTL_CT;
1931         tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
1932             (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
1933
1934         /* This write will effectively turn on the transmit unit. */
1935         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1936 }
1937
1938 static boolean_t
1939 igb_txcsum_ctx(struct igb_tx_ring *txr, struct mbuf *mp)
1940 {
1941         struct e1000_adv_tx_context_desc *TXD;
1942         uint32_t vlan_macip_lens, type_tucmd_mlhl, mss_l4len_idx;
1943         int ehdrlen, ctxd, ip_hlen = 0;
1944         boolean_t offload = TRUE;
1945
1946         if ((mp->m_pkthdr.csum_flags & IGB_CSUM_FEATURES) == 0)
1947                 offload = FALSE;
1948
1949         vlan_macip_lens = type_tucmd_mlhl = mss_l4len_idx = 0;
1950
1951         ctxd = txr->next_avail_desc;
1952         TXD = (struct e1000_adv_tx_context_desc *)&txr->tx_base[ctxd];
1953
1954         /*
1955          * In advanced descriptors the vlan tag must 
1956          * be placed into the context descriptor, thus
1957          * we need to be here just for that setup.
1958          */
1959         if (mp->m_flags & M_VLANTAG) {
1960                 uint16_t vlantag;
1961
1962                 vlantag = htole16(mp->m_pkthdr.ether_vlantag);
1963                 vlan_macip_lens |= (vlantag << E1000_ADVTXD_VLAN_SHIFT);
1964         } else if (!offload) {
1965                 return FALSE;
1966         }
1967
1968         ehdrlen = mp->m_pkthdr.csum_lhlen;
1969         KASSERT(ehdrlen > 0, ("invalid ether hlen"));
1970
1971         /* Set the ether header length */
1972         vlan_macip_lens |= ehdrlen << E1000_ADVTXD_MACLEN_SHIFT;
1973         if (mp->m_pkthdr.csum_flags & CSUM_IP) {
1974                 type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
1975                 ip_hlen = mp->m_pkthdr.csum_iphlen;
1976                 KASSERT(ip_hlen > 0, ("invalid ip hlen"));
1977         }
1978         vlan_macip_lens |= ip_hlen;
1979
1980         type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
1981         if (mp->m_pkthdr.csum_flags & CSUM_TCP)
1982                 type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
1983         else if (mp->m_pkthdr.csum_flags & CSUM_UDP)
1984                 type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP;
1985
1986         /* 82575 needs the queue index added */
1987         if (txr->sc->hw.mac.type == e1000_82575)
1988                 mss_l4len_idx = txr->me << 4;
1989
1990         /* Now copy bits into descriptor */
1991         TXD->vlan_macip_lens = htole32(vlan_macip_lens);
1992         TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
1993         TXD->seqnum_seed = htole32(0);
1994         TXD->mss_l4len_idx = htole32(mss_l4len_idx);
1995
1996         /* We've consumed the first desc, adjust counters */
1997         if (++ctxd == txr->num_tx_desc)
1998                 ctxd = 0;
1999         txr->next_avail_desc = ctxd;
2000         --txr->tx_avail;
2001
2002         return offload;
2003 }
2004
2005 static void
2006 igb_txeof(struct igb_tx_ring *txr)
2007 {
2008         struct ifnet *ifp = &txr->sc->arpcom.ac_if;
2009         int first, hdr, avail;
2010
2011         if (txr->tx_avail == txr->num_tx_desc)
2012                 return;
2013
2014         first = txr->next_to_clean;
2015         hdr = *(txr->tx_hdr);
2016
2017         if (first == hdr)
2018                 return;
2019
2020         avail = txr->tx_avail;
2021         while (first != hdr) {
2022                 struct igb_tx_buf *txbuf = &txr->tx_buf[first];
2023
2024                 ++avail;
2025                 if (txbuf->m_head) {
2026                         bus_dmamap_unload(txr->tx_tag, txbuf->map);
2027                         m_freem(txbuf->m_head);
2028                         txbuf->m_head = NULL;
2029                         ++ifp->if_opackets;
2030                 }
2031                 if (++first == txr->num_tx_desc)
2032                         first = 0;
2033         }
2034         txr->next_to_clean = first;
2035         txr->tx_avail = avail;
2036
2037         /*
2038          * If we have a minimum free, clear OACTIVE
2039          * to tell the stack that it is OK to send packets.
2040          */
2041         if (IGB_IS_NOT_OACTIVE(txr)) {
2042                 ifsq_clr_oactive(txr->ifsq);
2043
2044                 /*
2045                  * We have enough TX descriptors, turn off
2046                  * the watchdog.  We allow small amount of
2047                  * packets (roughly intr_nsegs) pending on
2048                  * the transmit ring.
2049                  */
2050                 txr->tx_watchdog.wd_timer = 0;
2051         }
2052 }
2053
2054 static int
2055 igb_create_rx_ring(struct igb_rx_ring *rxr)
2056 {
2057         int rsize, i, error, nrxd;
2058
2059         /*
2060          * Validate number of receive descriptors. It must not exceed
2061          * hardware maximum, and must be multiple of IGB_DBA_ALIGN.
2062          */
2063         nrxd = device_getenv_int(rxr->sc->dev, "rxd", igb_rxd);
2064         if ((nrxd * sizeof(struct e1000_rx_desc)) % IGB_DBA_ALIGN != 0 ||
2065             nrxd > IGB_MAX_RXD || nrxd < IGB_MIN_RXD) {
2066                 device_printf(rxr->sc->dev,
2067                     "Using %d RX descriptors instead of %d!\n",
2068                     IGB_DEFAULT_RXD, nrxd);
2069                 rxr->num_rx_desc = IGB_DEFAULT_RXD;
2070         } else {
2071                 rxr->num_rx_desc = nrxd;
2072         }
2073
2074         /*
2075          * Allocate RX descriptor ring
2076          */
2077         rsize = roundup2(rxr->num_rx_desc * sizeof(union e1000_adv_rx_desc),
2078             IGB_DBA_ALIGN);
2079         rxr->rxdma.dma_vaddr = bus_dmamem_coherent_any(rxr->sc->parent_tag,
2080             IGB_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2081             &rxr->rxdma.dma_tag, &rxr->rxdma.dma_map,
2082             &rxr->rxdma.dma_paddr);
2083         if (rxr->rxdma.dma_vaddr == NULL) {
2084                 device_printf(rxr->sc->dev,
2085                     "Unable to allocate RxDescriptor memory\n");
2086                 return ENOMEM;
2087         }
2088         rxr->rx_base = rxr->rxdma.dma_vaddr;
2089         bzero(rxr->rx_base, rsize);
2090
2091         rsize = __VM_CACHELINE_ALIGN(
2092             sizeof(struct igb_rx_buf) * rxr->num_rx_desc);
2093         rxr->rx_buf = kmalloc_cachealign(rsize, M_DEVBUF, M_WAITOK | M_ZERO);
2094
2095         /*
2096          * Create DMA tag for RX buffers
2097          */
2098         error = bus_dma_tag_create(rxr->sc->parent_tag,
2099             1, 0,               /* alignment, bounds */
2100             BUS_SPACE_MAXADDR,  /* lowaddr */
2101             BUS_SPACE_MAXADDR,  /* highaddr */
2102             NULL, NULL,         /* filter, filterarg */
2103             MCLBYTES,           /* maxsize */
2104             1,                  /* nsegments */
2105             MCLBYTES,           /* maxsegsize */
2106             BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2107             &rxr->rx_tag);
2108         if (error) {
2109                 device_printf(rxr->sc->dev,
2110                     "Unable to create RX payload DMA tag\n");
2111                 kfree(rxr->rx_buf, M_DEVBUF);
2112                 rxr->rx_buf = NULL;
2113                 return error;
2114         }
2115
2116         /*
2117          * Create spare DMA map for RX buffers
2118          */
2119         error = bus_dmamap_create(rxr->rx_tag, BUS_DMA_WAITOK,
2120             &rxr->rx_sparemap);
2121         if (error) {
2122                 device_printf(rxr->sc->dev,
2123                     "Unable to create spare RX DMA maps\n");
2124                 bus_dma_tag_destroy(rxr->rx_tag);
2125                 kfree(rxr->rx_buf, M_DEVBUF);
2126                 rxr->rx_buf = NULL;
2127                 return error;
2128         }
2129
2130         /*
2131          * Create DMA maps for RX buffers
2132          */
2133         for (i = 0; i < rxr->num_rx_desc; i++) {
2134                 struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2135
2136                 error = bus_dmamap_create(rxr->rx_tag,
2137                     BUS_DMA_WAITOK, &rxbuf->map);
2138                 if (error) {
2139                         device_printf(rxr->sc->dev,
2140                             "Unable to create RX DMA maps\n");
2141                         igb_destroy_rx_ring(rxr, i);
2142                         return error;
2143                 }
2144         }
2145
2146         /*
2147          * Initialize various watermark
2148          */
2149         rxr->wreg_nsegs = IGB_DEF_RXWREG_NSEGS;
2150
2151         return 0;
2152 }
2153
2154 static void
2155 igb_free_rx_ring(struct igb_rx_ring *rxr)
2156 {
2157         int i;
2158
2159         for (i = 0; i < rxr->num_rx_desc; ++i) {
2160                 struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2161
2162                 if (rxbuf->m_head != NULL) {
2163                         bus_dmamap_unload(rxr->rx_tag, rxbuf->map);
2164                         m_freem(rxbuf->m_head);
2165                         rxbuf->m_head = NULL;
2166                 }
2167         }
2168
2169         if (rxr->fmp != NULL)
2170                 m_freem(rxr->fmp);
2171         rxr->fmp = NULL;
2172         rxr->lmp = NULL;
2173 }
2174
2175 static void
2176 igb_destroy_rx_ring(struct igb_rx_ring *rxr, int ndesc)
2177 {
2178         int i;
2179
2180         if (rxr->rxdma.dma_vaddr != NULL) {
2181                 bus_dmamap_unload(rxr->rxdma.dma_tag, rxr->rxdma.dma_map);
2182                 bus_dmamem_free(rxr->rxdma.dma_tag, rxr->rxdma.dma_vaddr,
2183                     rxr->rxdma.dma_map);
2184                 bus_dma_tag_destroy(rxr->rxdma.dma_tag);
2185                 rxr->rxdma.dma_vaddr = NULL;
2186         }
2187
2188         if (rxr->rx_buf == NULL)
2189                 return;
2190
2191         for (i = 0; i < ndesc; ++i) {
2192                 struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2193
2194                 KKASSERT(rxbuf->m_head == NULL);
2195                 bus_dmamap_destroy(rxr->rx_tag, rxbuf->map);
2196         }
2197         bus_dmamap_destroy(rxr->rx_tag, rxr->rx_sparemap);
2198         bus_dma_tag_destroy(rxr->rx_tag);
2199
2200         kfree(rxr->rx_buf, M_DEVBUF);
2201         rxr->rx_buf = NULL;
2202 }
2203
2204 static void
2205 igb_setup_rxdesc(union e1000_adv_rx_desc *rxd, const struct igb_rx_buf *rxbuf)
2206 {
2207         rxd->read.pkt_addr = htole64(rxbuf->paddr);
2208         rxd->wb.upper.status_error = 0;
2209 }
2210
2211 static int
2212 igb_newbuf(struct igb_rx_ring *rxr, int i, boolean_t wait)
2213 {
2214         struct mbuf *m;
2215         bus_dma_segment_t seg;
2216         bus_dmamap_t map;
2217         struct igb_rx_buf *rxbuf;
2218         int error, nseg;
2219
2220         m = m_getcl(wait ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2221         if (m == NULL) {
2222                 if (wait) {
2223                         if_printf(&rxr->sc->arpcom.ac_if,
2224                             "Unable to allocate RX mbuf\n");
2225                 }
2226                 return ENOBUFS;
2227         }
2228         m->m_len = m->m_pkthdr.len = MCLBYTES;
2229
2230         if (rxr->sc->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2231                 m_adj(m, ETHER_ALIGN);
2232
2233         error = bus_dmamap_load_mbuf_segment(rxr->rx_tag,
2234             rxr->rx_sparemap, m, &seg, 1, &nseg, BUS_DMA_NOWAIT);
2235         if (error) {
2236                 m_freem(m);
2237                 if (wait) {
2238                         if_printf(&rxr->sc->arpcom.ac_if,
2239                             "Unable to load RX mbuf\n");
2240                 }
2241                 return error;
2242         }
2243
2244         rxbuf = &rxr->rx_buf[i];
2245         if (rxbuf->m_head != NULL)
2246                 bus_dmamap_unload(rxr->rx_tag, rxbuf->map);
2247
2248         map = rxbuf->map;
2249         rxbuf->map = rxr->rx_sparemap;
2250         rxr->rx_sparemap = map;
2251
2252         rxbuf->m_head = m;
2253         rxbuf->paddr = seg.ds_addr;
2254
2255         igb_setup_rxdesc(&rxr->rx_base[i], rxbuf);
2256         return 0;
2257 }
2258
2259 static int
2260 igb_init_rx_ring(struct igb_rx_ring *rxr)
2261 {
2262         int i;
2263
2264         /* Clear the ring contents */
2265         bzero(rxr->rx_base,
2266             rxr->num_rx_desc * sizeof(union e1000_adv_rx_desc));
2267
2268         /* Now replenish the ring mbufs */
2269         for (i = 0; i < rxr->num_rx_desc; ++i) {
2270                 int error;
2271
2272                 error = igb_newbuf(rxr, i, TRUE);
2273                 if (error)
2274                         return error;
2275         }
2276
2277         /* Setup our descriptor indices */
2278         rxr->next_to_check = 0;
2279
2280         rxr->fmp = NULL;
2281         rxr->lmp = NULL;
2282         rxr->discard = FALSE;
2283
2284         return 0;
2285 }
2286
2287 static void
2288 igb_init_rx_unit(struct igb_softc *sc)
2289 {
2290         struct ifnet *ifp = &sc->arpcom.ac_if;
2291         struct e1000_hw *hw = &sc->hw;
2292         uint32_t rctl, rxcsum, srrctl = 0;
2293         int i;
2294
2295         /*
2296          * Make sure receives are disabled while setting
2297          * up the descriptor ring
2298          */
2299         rctl = E1000_READ_REG(hw, E1000_RCTL);
2300         E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2301
2302 #if 0
2303         /*
2304         ** Set up for header split
2305         */
2306         if (igb_header_split) {
2307                 /* Use a standard mbuf for the header */
2308                 srrctl |= IGB_HDR_BUF << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2309                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2310         } else
2311 #endif
2312                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2313
2314         /*
2315         ** Set up for jumbo frames
2316         */
2317         if (ifp->if_mtu > ETHERMTU) {
2318                 rctl |= E1000_RCTL_LPE;
2319 #if 0
2320                 if (adapter->rx_mbuf_sz == MJUMPAGESIZE) {
2321                         srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2322                         rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
2323                 } else if (adapter->rx_mbuf_sz > MJUMPAGESIZE) {
2324                         srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2325                         rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
2326                 }
2327                 /* Set maximum packet len */
2328                 psize = adapter->max_frame_size;
2329                 /* are we on a vlan? */
2330                 if (adapter->ifp->if_vlantrunk != NULL)
2331                         psize += VLAN_TAG_SIZE;
2332                 E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize);
2333 #else
2334                 srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2335                 rctl |= E1000_RCTL_SZ_2048;
2336 #endif
2337         } else {
2338                 rctl &= ~E1000_RCTL_LPE;
2339                 srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2340                 rctl |= E1000_RCTL_SZ_2048;
2341         }
2342
2343         /* Setup the Base and Length of the Rx Descriptor Rings */
2344         for (i = 0; i < sc->rx_ring_inuse; ++i) {
2345                 struct igb_rx_ring *rxr = &sc->rx_rings[i];
2346                 uint64_t bus_addr = rxr->rxdma.dma_paddr;
2347                 uint32_t rxdctl;
2348
2349                 E1000_WRITE_REG(hw, E1000_RDLEN(i),
2350                     rxr->num_rx_desc * sizeof(struct e1000_rx_desc));
2351                 E1000_WRITE_REG(hw, E1000_RDBAH(i),
2352                     (uint32_t)(bus_addr >> 32));
2353                 E1000_WRITE_REG(hw, E1000_RDBAL(i),
2354                     (uint32_t)bus_addr);
2355                 E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
2356                 /* Enable this Queue */
2357                 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
2358                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2359                 rxdctl &= 0xFFF00000;
2360                 rxdctl |= IGB_RX_PTHRESH;
2361                 rxdctl |= IGB_RX_HTHRESH << 8;
2362                 /*
2363                  * Don't set WTHRESH to a value above 1 on 82576, see:
2364                  * 82576 specification update errata #26
2365                  */
2366                 rxdctl |= IGB_RX_WTHRESH << 16;
2367                 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
2368         }
2369
2370         rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2371         rxcsum &= ~(E1000_RXCSUM_PCSS_MASK | E1000_RXCSUM_IPPCSE);
2372
2373         /*
2374          * Receive Checksum Offload for TCP and UDP
2375          *
2376          * Checksum offloading is also enabled if multiple receive
2377          * queue is to be supported, since we need it to figure out
2378          * fragments.
2379          */
2380         if ((ifp->if_capenable & IFCAP_RXCSUM) || IGB_ENABLE_HWRSS(sc)) {
2381                 /*
2382                  * NOTE:
2383                  * PCSD must be enabled to enable multiple
2384                  * receive queues.
2385                  */
2386                 rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2387                     E1000_RXCSUM_PCSD;
2388         } else {
2389                 rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2390                     E1000_RXCSUM_PCSD);
2391         }
2392         E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
2393
2394         if (IGB_ENABLE_HWRSS(sc)) {
2395                 uint8_t key[IGB_NRSSRK * IGB_RSSRK_SIZE];
2396                 uint32_t reta_shift;
2397                 int j, r;
2398
2399                 /*
2400                  * NOTE:
2401                  * When we reach here, RSS has already been disabled
2402                  * in igb_stop(), so we could safely configure RSS key
2403                  * and redirect table.
2404                  */
2405
2406                 /*
2407                  * Configure RSS key
2408                  */
2409                 toeplitz_get_key(key, sizeof(key));
2410                 for (i = 0; i < IGB_NRSSRK; ++i) {
2411                         uint32_t rssrk;
2412
2413                         rssrk = IGB_RSSRK_VAL(key, i);
2414                         IGB_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
2415
2416                         E1000_WRITE_REG(hw, E1000_RSSRK(i), rssrk);
2417                 }
2418
2419                 /*
2420                  * Configure RSS redirect table in following fashion:
2421                  * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2422                  */
2423                 reta_shift = IGB_RETA_SHIFT;
2424                 if (hw->mac.type == e1000_82575)
2425                         reta_shift = IGB_RETA_SHIFT_82575;
2426
2427                 r = 0;
2428                 for (j = 0; j < IGB_NRETA; ++j) {
2429                         uint32_t reta = 0;
2430
2431                         for (i = 0; i < IGB_RETA_SIZE; ++i) {
2432                                 uint32_t q;
2433
2434                                 q = (r % sc->rx_ring_inuse) << reta_shift;
2435                                 reta |= q << (8 * i);
2436                                 ++r;
2437                         }
2438                         IGB_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
2439                         E1000_WRITE_REG(hw, E1000_RETA(j), reta);
2440                 }
2441
2442                 /*
2443                  * Enable multiple receive queues.
2444                  * Enable IPv4 RSS standard hash functions.
2445                  * Disable RSS interrupt on 82575
2446                  */
2447                 E1000_WRITE_REG(&sc->hw, E1000_MRQC,
2448                                 E1000_MRQC_ENABLE_RSS_4Q |
2449                                 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2450                                 E1000_MRQC_RSS_FIELD_IPV4);
2451         }
2452
2453         /* Setup the Receive Control Register */
2454         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2455         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2456             E1000_RCTL_RDMTS_HALF |
2457             (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2458         /* Strip CRC bytes. */
2459         rctl |= E1000_RCTL_SECRC;
2460         /* Make sure VLAN Filters are off */
2461         rctl &= ~E1000_RCTL_VFE;
2462         /* Don't store bad packets */
2463         rctl &= ~E1000_RCTL_SBP;
2464
2465         /* Enable Receives */
2466         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2467
2468         /*
2469          * Setup the HW Rx Head and Tail Descriptor Pointers
2470          *   - needs to be after enable
2471          */
2472         for (i = 0; i < sc->rx_ring_inuse; ++i) {
2473                 struct igb_rx_ring *rxr = &sc->rx_rings[i];
2474
2475                 E1000_WRITE_REG(hw, E1000_RDH(i), rxr->next_to_check);
2476                 E1000_WRITE_REG(hw, E1000_RDT(i), rxr->num_rx_desc - 1);
2477         }
2478 }
2479
2480 static void
2481 igb_rx_refresh(struct igb_rx_ring *rxr, int i)
2482 {
2483         if (--i < 0)
2484                 i = rxr->num_rx_desc - 1;
2485         E1000_WRITE_REG(&rxr->sc->hw, E1000_RDT(rxr->me), i);
2486 }
2487
2488 static void
2489 igb_rxeof(struct igb_rx_ring *rxr, int count)
2490 {
2491         struct ifnet *ifp = &rxr->sc->arpcom.ac_if;
2492         union e1000_adv_rx_desc *cur;
2493         uint32_t staterr;
2494         int i, ncoll = 0;
2495
2496         i = rxr->next_to_check;
2497         cur = &rxr->rx_base[i];
2498         staterr = le32toh(cur->wb.upper.status_error);
2499
2500         if ((staterr & E1000_RXD_STAT_DD) == 0)
2501                 return;
2502
2503         while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
2504                 struct pktinfo *pi = NULL, pi0;
2505                 struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2506                 struct mbuf *m = NULL;
2507                 boolean_t eop;
2508
2509                 eop = (staterr & E1000_RXD_STAT_EOP) ? TRUE : FALSE;
2510                 if (eop)
2511                         --count;
2512
2513                 ++ncoll;
2514                 if ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) == 0 &&
2515                     !rxr->discard) {
2516                         struct mbuf *mp = rxbuf->m_head;
2517                         uint32_t hash, hashtype;
2518                         uint16_t vlan;
2519                         int len;
2520
2521                         len = le16toh(cur->wb.upper.length);
2522                         if (rxr->sc->hw.mac.type == e1000_i350 &&
2523                             (staterr & E1000_RXDEXT_STATERR_LB))
2524                                 vlan = be16toh(cur->wb.upper.vlan);
2525                         else
2526                                 vlan = le16toh(cur->wb.upper.vlan);
2527
2528                         hash = le32toh(cur->wb.lower.hi_dword.rss);
2529                         hashtype = le32toh(cur->wb.lower.lo_dword.data) &
2530                             E1000_RXDADV_RSSTYPE_MASK;
2531
2532                         IGB_RSS_DPRINTF(rxr->sc, 10,
2533                             "ring%d, hash 0x%08x, hashtype %u\n",
2534                             rxr->me, hash, hashtype);
2535
2536                         bus_dmamap_sync(rxr->rx_tag, rxbuf->map,
2537                             BUS_DMASYNC_POSTREAD);
2538
2539                         if (igb_newbuf(rxr, i, FALSE) != 0) {
2540                                 ifp->if_iqdrops++;
2541                                 goto discard;
2542                         }
2543
2544                         mp->m_len = len;
2545                         if (rxr->fmp == NULL) {
2546                                 mp->m_pkthdr.len = len;
2547                                 rxr->fmp = mp;
2548                                 rxr->lmp = mp;
2549                         } else {
2550                                 rxr->lmp->m_next = mp;
2551                                 rxr->lmp = rxr->lmp->m_next;
2552                                 rxr->fmp->m_pkthdr.len += len;
2553                         }
2554
2555                         if (eop) {
2556                                 m = rxr->fmp;
2557                                 rxr->fmp = NULL;
2558                                 rxr->lmp = NULL;
2559
2560                                 m->m_pkthdr.rcvif = ifp;
2561                                 ifp->if_ipackets++;
2562
2563                                 if (ifp->if_capenable & IFCAP_RXCSUM)
2564                                         igb_rxcsum(staterr, m);
2565
2566                                 if (staterr & E1000_RXD_STAT_VP) {
2567                                         m->m_pkthdr.ether_vlantag = vlan;
2568                                         m->m_flags |= M_VLANTAG;
2569                                 }
2570
2571                                 if (ifp->if_capenable & IFCAP_RSS) {
2572                                         pi = igb_rssinfo(m, &pi0,
2573                                             hash, hashtype, staterr);
2574                                 }
2575 #ifdef IGB_RSS_DEBUG
2576                                 rxr->rx_packets++;
2577 #endif
2578                         }
2579                 } else {
2580                         ifp->if_ierrors++;
2581 discard:
2582                         igb_setup_rxdesc(cur, rxbuf);
2583                         if (!eop)
2584                                 rxr->discard = TRUE;
2585                         else
2586                                 rxr->discard = FALSE;
2587                         if (rxr->fmp != NULL) {
2588                                 m_freem(rxr->fmp);
2589                                 rxr->fmp = NULL;
2590                                 rxr->lmp = NULL;
2591                         }
2592                         m = NULL;
2593                 }
2594
2595                 if (m != NULL)
2596                         ether_input_pkt(ifp, m, pi);
2597
2598                 /* Advance our pointers to the next descriptor. */
2599                 if (++i == rxr->num_rx_desc)
2600                         i = 0;
2601
2602                 if (ncoll >= rxr->wreg_nsegs) {
2603                         igb_rx_refresh(rxr, i);
2604                         ncoll = 0;
2605                 }
2606
2607                 cur = &rxr->rx_base[i];
2608                 staterr = le32toh(cur->wb.upper.status_error);
2609         }
2610         rxr->next_to_check = i;
2611
2612         if (ncoll > 0)
2613                 igb_rx_refresh(rxr, i);
2614 }
2615
2616
2617 static void
2618 igb_set_vlan(struct igb_softc *sc)
2619 {
2620         struct e1000_hw *hw = &sc->hw;
2621         uint32_t reg;
2622 #if 0
2623         struct ifnet *ifp = sc->arpcom.ac_if;
2624 #endif
2625
2626         if (sc->vf_ifp) {
2627                 e1000_rlpml_set_vf(hw, sc->max_frame_size + VLAN_TAG_SIZE);
2628                 return;
2629         }
2630
2631         reg = E1000_READ_REG(hw, E1000_CTRL);
2632         reg |= E1000_CTRL_VME;
2633         E1000_WRITE_REG(hw, E1000_CTRL, reg);
2634
2635 #if 0
2636         /* Enable the Filter Table */
2637         if (ifp->if_capenable & IFCAP_VLAN_HWFILTER) {
2638                 reg = E1000_READ_REG(hw, E1000_RCTL);
2639                 reg &= ~E1000_RCTL_CFIEN;
2640                 reg |= E1000_RCTL_VFE;
2641                 E1000_WRITE_REG(hw, E1000_RCTL, reg);
2642         }
2643 #endif
2644
2645         /* Update the frame size */
2646         E1000_WRITE_REG(&sc->hw, E1000_RLPML,
2647             sc->max_frame_size + VLAN_TAG_SIZE);
2648
2649 #if 0
2650         /* Don't bother with table if no vlans */
2651         if ((adapter->num_vlans == 0) ||
2652             ((ifp->if_capenable & IFCAP_VLAN_HWFILTER) == 0))
2653                 return;
2654         /*
2655         ** A soft reset zero's out the VFTA, so
2656         ** we need to repopulate it now.
2657         */
2658         for (int i = 0; i < IGB_VFTA_SIZE; i++)
2659                 if (adapter->shadow_vfta[i] != 0) {
2660                         if (adapter->vf_ifp)
2661                                 e1000_vfta_set_vf(hw,
2662                                     adapter->shadow_vfta[i], TRUE);
2663                         else
2664                                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
2665                                  i, adapter->shadow_vfta[i]);
2666                 }
2667 #endif
2668 }
2669
2670 static void
2671 igb_enable_intr(struct igb_softc *sc)
2672 {
2673         if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
2674                 lwkt_serialize_handler_enable(&sc->main_serialize);
2675         } else {
2676                 int i;
2677
2678                 for (i = 0; i < sc->msix_cnt; ++i) {
2679                         lwkt_serialize_handler_enable(
2680                             sc->msix_data[i].msix_serialize);
2681                 }
2682         }
2683
2684         if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0) {
2685                 if (sc->intr_type == PCI_INTR_TYPE_MSIX)
2686                         E1000_WRITE_REG(&sc->hw, E1000_EIAC, sc->intr_mask);
2687                 else
2688                         E1000_WRITE_REG(&sc->hw, E1000_EIAC, 0);
2689                 E1000_WRITE_REG(&sc->hw, E1000_EIAM, sc->intr_mask);
2690                 E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->intr_mask);
2691                 E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
2692         } else {
2693                 E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
2694         }
2695         E1000_WRITE_FLUSH(&sc->hw);
2696 }
2697
2698 static void
2699 igb_disable_intr(struct igb_softc *sc)
2700 {
2701         if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0) {
2702                 E1000_WRITE_REG(&sc->hw, E1000_EIMC, 0xffffffff);
2703                 E1000_WRITE_REG(&sc->hw, E1000_EIAC, 0);
2704         }
2705         E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
2706         E1000_WRITE_FLUSH(&sc->hw);
2707
2708         if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
2709                 lwkt_serialize_handler_disable(&sc->main_serialize);
2710         } else {
2711                 int i;
2712
2713                 for (i = 0; i < sc->msix_cnt; ++i) {
2714                         lwkt_serialize_handler_disable(
2715                             sc->msix_data[i].msix_serialize);
2716                 }
2717         }
2718 }
2719
2720 /*
2721  * Bit of a misnomer, what this really means is
2722  * to enable OS management of the system... aka
2723  * to disable special hardware management features 
2724  */
2725 static void
2726 igb_get_mgmt(struct igb_softc *sc)
2727 {
2728         if (sc->flags & IGB_FLAG_HAS_MGMT) {
2729                 int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
2730                 int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2731
2732                 /* disable hardware interception of ARP */
2733                 manc &= ~E1000_MANC_ARP_EN;
2734
2735                 /* enable receiving management packets to the host */
2736                 manc |= E1000_MANC_EN_MNG2HOST;
2737                 manc2h |= 1 << 5; /* Mng Port 623 */
2738                 manc2h |= 1 << 6; /* Mng Port 664 */
2739                 E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
2740                 E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2741         }
2742 }
2743
2744 /*
2745  * Give control back to hardware management controller
2746  * if there is one.
2747  */
2748 static void
2749 igb_rel_mgmt(struct igb_softc *sc)
2750 {
2751         if (sc->flags & IGB_FLAG_HAS_MGMT) {
2752                 int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2753
2754                 /* Re-enable hardware interception of ARP */
2755                 manc |= E1000_MANC_ARP_EN;
2756                 manc &= ~E1000_MANC_EN_MNG2HOST;
2757
2758                 E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2759         }
2760 }
2761
2762 /*
2763  * Sets CTRL_EXT:DRV_LOAD bit.
2764  *
2765  * For ASF and Pass Through versions of f/w this means that
2766  * the driver is loaded. 
2767  */
2768 static void
2769 igb_get_hw_control(struct igb_softc *sc)
2770 {
2771         uint32_t ctrl_ext;
2772
2773         if (sc->vf_ifp)
2774                 return;
2775
2776         /* Let firmware know the driver has taken over */
2777         ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2778         E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2779             ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2780 }
2781
2782 /*
2783  * Resets CTRL_EXT:DRV_LOAD bit.
2784  *
2785  * For ASF and Pass Through versions of f/w this means that the
2786  * driver is no longer loaded.
2787  */
2788 static void
2789 igb_rel_hw_control(struct igb_softc *sc)
2790 {
2791         uint32_t ctrl_ext;
2792
2793         if (sc->vf_ifp)
2794                 return;
2795
2796         /* Let firmware taken over control of h/w */
2797         ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2798         E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2799             ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2800 }
2801
2802 static int
2803 igb_is_valid_ether_addr(const uint8_t *addr)
2804 {
2805         uint8_t zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
2806
2807         if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
2808                 return FALSE;
2809         return TRUE;
2810 }
2811
2812 /*
2813  * Enable PCI Wake On Lan capability
2814  */
2815 static void
2816 igb_enable_wol(device_t dev)
2817 {
2818         uint16_t cap, status;
2819         uint8_t id;
2820
2821         /* First find the capabilities pointer*/
2822         cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
2823
2824         /* Read the PM Capabilities */
2825         id = pci_read_config(dev, cap, 1);
2826         if (id != PCIY_PMG)     /* Something wrong */
2827                 return;
2828
2829         /*
2830          * OK, we have the power capabilities,
2831          * so now get the status register
2832          */
2833         cap += PCIR_POWER_STATUS;
2834         status = pci_read_config(dev, cap, 2);
2835         status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2836         pci_write_config(dev, cap, status, 2);
2837 }
2838
2839 static void
2840 igb_update_stats_counters(struct igb_softc *sc)
2841 {
2842         struct e1000_hw *hw = &sc->hw;
2843         struct e1000_hw_stats *stats;
2844         struct ifnet *ifp = &sc->arpcom.ac_if;
2845
2846         /* 
2847          * The virtual function adapter has only a
2848          * small controlled set of stats, do only 
2849          * those and return.
2850          */
2851         if (sc->vf_ifp) {
2852                 igb_update_vf_stats_counters(sc);
2853                 return;
2854         }
2855         stats = sc->stats;
2856
2857         if (sc->hw.phy.media_type == e1000_media_type_copper ||
2858             (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
2859                 stats->symerrs +=
2860                     E1000_READ_REG(hw,E1000_SYMERRS);
2861                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
2862         }
2863
2864         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
2865         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
2866         stats->scc += E1000_READ_REG(hw, E1000_SCC);
2867         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
2868
2869         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
2870         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
2871         stats->colc += E1000_READ_REG(hw, E1000_COLC);
2872         stats->dc += E1000_READ_REG(hw, E1000_DC);
2873         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
2874         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
2875         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
2876
2877         /*
2878          * For watchdog management we need to know if we have been
2879          * paused during the last interval, so capture that here.
2880          */ 
2881         sc->pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
2882         stats->xoffrxc += sc->pause_frames;
2883         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
2884         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
2885         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
2886         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
2887         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
2888         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
2889         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
2890         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
2891         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
2892         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
2893         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
2894         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
2895
2896         /* For the 64-bit byte counters the low dword must be read first. */
2897         /* Both registers clear on the read of the high dword */
2898
2899         stats->gorc += E1000_READ_REG(hw, E1000_GORCL) +
2900             ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
2901         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL) +
2902             ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
2903
2904         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
2905         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
2906         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
2907         stats->roc += E1000_READ_REG(hw, E1000_ROC);
2908         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
2909
2910         stats->tor += E1000_READ_REG(hw, E1000_TORH);
2911         stats->tot += E1000_READ_REG(hw, E1000_TOTH);
2912
2913         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
2914         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
2915         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
2916         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
2917         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
2918         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
2919         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
2920         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
2921         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
2922         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
2923
2924         /* Interrupt Counts */
2925
2926         stats->iac += E1000_READ_REG(hw, E1000_IAC);
2927         stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
2928         stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
2929         stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
2930         stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
2931         stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
2932         stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
2933         stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
2934         stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
2935
2936         /* Host to Card Statistics */
2937
2938         stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
2939         stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
2940         stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
2941         stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
2942         stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
2943         stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
2944         stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
2945         stats->hgorc += (E1000_READ_REG(hw, E1000_HGORCL) +
2946             ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32));
2947         stats->hgotc += (E1000_READ_REG(hw, E1000_HGOTCL) +
2948             ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32));
2949         stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
2950         stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
2951         stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
2952
2953         stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
2954         stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
2955         stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
2956         stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
2957         stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
2958         stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
2959
2960         ifp->if_collisions = stats->colc;
2961
2962         /* Rx Errors */
2963         ifp->if_ierrors = stats->rxerrc + stats->crcerrs + stats->algnerrc +
2964             stats->ruc + stats->roc + stats->mpc + stats->cexterr;
2965
2966         /* Tx Errors */
2967         ifp->if_oerrors = stats->ecol + stats->latecol + sc->watchdog_events;
2968
2969         /* Driver specific counters */
2970         sc->device_control = E1000_READ_REG(hw, E1000_CTRL);
2971         sc->rx_control = E1000_READ_REG(hw, E1000_RCTL);
2972         sc->int_mask = E1000_READ_REG(hw, E1000_IMS);
2973         sc->eint_mask = E1000_READ_REG(hw, E1000_EIMS);
2974         sc->packet_buf_alloc_tx =
2975             ((E1000_READ_REG(hw, E1000_PBA) & 0xffff0000) >> 16);
2976         sc->packet_buf_alloc_rx =
2977             (E1000_READ_REG(hw, E1000_PBA) & 0xffff);
2978 }
2979
2980 static void
2981 igb_vf_init_stats(struct igb_softc *sc)
2982 {
2983         struct e1000_hw *hw = &sc->hw;
2984         struct e1000_vf_stats *stats;
2985
2986         stats = sc->stats;
2987         stats->last_gprc = E1000_READ_REG(hw, E1000_VFGPRC);
2988         stats->last_gorc = E1000_READ_REG(hw, E1000_VFGORC);
2989         stats->last_gptc = E1000_READ_REG(hw, E1000_VFGPTC);
2990         stats->last_gotc = E1000_READ_REG(hw, E1000_VFGOTC);
2991         stats->last_mprc = E1000_READ_REG(hw, E1000_VFMPRC);
2992 }
2993  
2994 static void
2995 igb_update_vf_stats_counters(struct igb_softc *sc)
2996 {
2997         struct e1000_hw *hw = &sc->hw;
2998         struct e1000_vf_stats *stats;
2999
3000         if (sc->link_speed == 0)
3001                 return;
3002
3003         stats = sc->stats;
3004         UPDATE_VF_REG(E1000_VFGPRC, stats->last_gprc, stats->gprc);
3005         UPDATE_VF_REG(E1000_VFGORC, stats->last_gorc, stats->gorc);
3006         UPDATE_VF_REG(E1000_VFGPTC, stats->last_gptc, stats->gptc);
3007         UPDATE_VF_REG(E1000_VFGOTC, stats->last_gotc, stats->gotc);
3008         UPDATE_VF_REG(E1000_VFMPRC, stats->last_mprc, stats->mprc);
3009 }
3010
3011 #ifdef IFPOLL_ENABLE
3012
3013 static void
3014 igb_npoll_status(struct ifnet *ifp)
3015 {
3016         struct igb_softc *sc = ifp->if_softc;
3017         uint32_t reg_icr;
3018
3019         ASSERT_SERIALIZED(&sc->main_serialize);
3020
3021         reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3022         if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3023                 sc->hw.mac.get_link_status = 1;
3024                 igb_update_link_status(sc);
3025         }
3026 }
3027
3028 static void
3029 igb_npoll_tx(struct ifnet *ifp, void *arg, int cycle __unused)
3030 {
3031         struct igb_tx_ring *txr = arg;
3032
3033         ASSERT_SERIALIZED(&txr->tx_serialize);
3034
3035         igb_txeof(txr);
3036         if (!ifsq_is_empty(txr->ifsq))
3037                 ifsq_devstart(txr->ifsq);
3038 }
3039
3040 static void
3041 igb_npoll_rx(struct ifnet *ifp __unused, void *arg, int cycle)
3042 {
3043         struct igb_rx_ring *rxr = arg;
3044
3045         ASSERT_SERIALIZED(&rxr->rx_serialize);
3046
3047         igb_rxeof(rxr, cycle);
3048 }
3049
3050 static void
3051 igb_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3052 {
3053         struct igb_softc *sc = ifp->if_softc;
3054         int i, txr_cnt, rxr_cnt;
3055
3056         ASSERT_IFNET_SERIALIZED_ALL(ifp);
3057
3058         if (info) {
3059                 int off;
3060
3061                 info->ifpi_status.status_func = igb_npoll_status;
3062                 info->ifpi_status.serializer = &sc->main_serialize;
3063
3064                 txr_cnt = igb_get_txring_inuse(sc, TRUE);
3065                 off = sc->tx_npoll_off;
3066                 for (i = 0; i < txr_cnt; ++i) {
3067                         struct igb_tx_ring *txr = &sc->tx_rings[i];
3068                         int idx = i + off;
3069
3070                         KKASSERT(idx < ncpus2);
3071                         info->ifpi_tx[idx].poll_func = igb_npoll_tx;
3072                         info->ifpi_tx[idx].arg = txr;
3073                         info->ifpi_tx[idx].serializer = &txr->tx_serialize;
3074                         ifsq_set_cpuid(txr->ifsq, idx);
3075                 }
3076
3077                 rxr_cnt = igb_get_rxring_inuse(sc, TRUE);
3078                 off = sc->rx_npoll_off;
3079                 for (i = 0; i < rxr_cnt; ++i) {
3080                         struct igb_rx_ring *rxr = &sc->rx_rings[i];
3081                         int idx = i + off;
3082
3083                         KKASSERT(idx < ncpus2);
3084                         info->ifpi_rx[idx].poll_func = igb_npoll_rx;
3085                         info->ifpi_rx[idx].arg = rxr;
3086                         info->ifpi_rx[idx].serializer = &rxr->rx_serialize;
3087                 }
3088
3089                 if (ifp->if_flags & IFF_RUNNING) {
3090                         if (rxr_cnt == sc->rx_ring_inuse &&
3091                             txr_cnt == sc->tx_ring_inuse)
3092                                 igb_disable_intr(sc);
3093                         else
3094                                 igb_init(sc);
3095                 }
3096         } else {
3097                 for (i = 0; i < sc->tx_ring_cnt; ++i) {
3098                         struct igb_tx_ring *txr = &sc->tx_rings[i];
3099
3100                         ifsq_set_cpuid(txr->ifsq, txr->tx_intr_cpuid);
3101                 }
3102
3103                 if (ifp->if_flags & IFF_RUNNING) {
3104                         txr_cnt = igb_get_txring_inuse(sc, FALSE);
3105                         rxr_cnt = igb_get_rxring_inuse(sc, FALSE);
3106
3107                         if (rxr_cnt == sc->rx_ring_inuse &&
3108                             txr_cnt == sc->tx_ring_inuse)
3109                                 igb_enable_intr(sc);
3110                         else
3111                                 igb_init(sc);
3112                 }
3113         }
3114 }
3115
3116 #endif /* IFPOLL_ENABLE */
3117
3118 static void
3119 igb_intr(void *xsc)
3120 {
3121         struct igb_softc *sc = xsc;
3122         struct ifnet *ifp = &sc->arpcom.ac_if;
3123         uint32_t eicr;
3124
3125         ASSERT_SERIALIZED(&sc->main_serialize);
3126
3127         eicr = E1000_READ_REG(&sc->hw, E1000_EICR);
3128
3129         if (eicr == 0)
3130                 return;
3131
3132         if (ifp->if_flags & IFF_RUNNING) {
3133                 struct igb_tx_ring *txr = &sc->tx_rings[0];
3134                 int i;
3135
3136                 for (i = 0; i < sc->rx_ring_inuse; ++i) {
3137                         struct igb_rx_ring *rxr = &sc->rx_rings[i];
3138
3139                         if (eicr & rxr->rx_intr_mask) {
3140                                 lwkt_serialize_enter(&rxr->rx_serialize);
3141                                 igb_rxeof(rxr, -1);
3142                                 lwkt_serialize_exit(&rxr->rx_serialize);
3143                         }
3144                 }
3145
3146                 if (eicr & txr->tx_intr_mask) {
3147                         lwkt_serialize_enter(&txr->tx_serialize);
3148                         igb_txeof(txr);
3149                         if (!ifsq_is_empty(txr->ifsq))
3150                                 ifsq_devstart(txr->ifsq);
3151                         lwkt_serialize_exit(&txr->tx_serialize);
3152                 }
3153         }
3154
3155         if (eicr & E1000_EICR_OTHER) {
3156                 uint32_t icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3157
3158                 /* Link status change */
3159                 if (icr & E1000_ICR_LSC) {
3160                         sc->hw.mac.get_link_status = 1;
3161                         igb_update_link_status(sc);
3162                 }
3163         }
3164
3165         /*
3166          * Reading EICR has the side effect to clear interrupt mask,
3167          * so all interrupts need to be enabled here.
3168          */
3169         E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->intr_mask);
3170 }
3171
3172 static void
3173 igb_intr_shared(void *xsc)
3174 {
3175         struct igb_softc *sc = xsc;
3176         struct ifnet *ifp = &sc->arpcom.ac_if;
3177         uint32_t reg_icr;
3178
3179         ASSERT_SERIALIZED(&sc->main_serialize);
3180
3181         reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3182
3183         /* Hot eject?  */
3184         if (reg_icr == 0xffffffff)
3185                 return;
3186
3187         /* Definitely not our interrupt.  */
3188         if (reg_icr == 0x0)
3189                 return;
3190
3191         if ((reg_icr & E1000_ICR_INT_ASSERTED) == 0)
3192                 return;
3193
3194         if (ifp->if_flags & IFF_RUNNING) {
3195                 if (reg_icr &
3196                     (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
3197                         int i;
3198
3199                         for (i = 0; i < sc->rx_ring_inuse; ++i) {
3200                                 struct igb_rx_ring *rxr = &sc->rx_rings[i];
3201
3202                                 lwkt_serialize_enter(&rxr->rx_serialize);
3203                                 igb_rxeof(rxr, -1);
3204                                 lwkt_serialize_exit(&rxr->rx_serialize);
3205                         }
3206                 }
3207
3208                 if (reg_icr & E1000_ICR_TXDW) {
3209                         struct igb_tx_ring *txr = &sc->tx_rings[0];
3210
3211                         lwkt_serialize_enter(&txr->tx_serialize);
3212                         igb_txeof(txr);
3213                         if (!ifsq_is_empty(txr->ifsq))
3214                                 ifsq_devstart(txr->ifsq);
3215                         lwkt_serialize_exit(&txr->tx_serialize);
3216                 }
3217         }
3218
3219         /* Link status change */
3220         if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3221                 sc->hw.mac.get_link_status = 1;
3222                 igb_update_link_status(sc);
3223         }
3224
3225         if (reg_icr & E1000_ICR_RXO)
3226                 sc->rx_overruns++;
3227 }
3228
3229 static int
3230 igb_encap(struct igb_tx_ring *txr, struct mbuf **m_headp,
3231     int *segs_used, int *idx)
3232 {
3233         bus_dma_segment_t segs[IGB_MAX_SCATTER];
3234         bus_dmamap_t map;
3235         struct igb_tx_buf *tx_buf, *tx_buf_mapped;
3236         union e1000_adv_tx_desc *txd = NULL;
3237         struct mbuf *m_head = *m_headp;
3238         uint32_t olinfo_status = 0, cmd_type_len = 0, cmd_rs = 0;
3239         int maxsegs, nsegs, i, j, error;
3240         uint32_t hdrlen = 0;
3241
3242         if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3243                 error = igb_tso_pullup(txr, m_headp);
3244                 if (error)
3245                         return error;
3246                 m_head = *m_headp;
3247         }
3248
3249         /* Set basic descriptor constants */
3250         cmd_type_len |= E1000_ADVTXD_DTYP_DATA;
3251         cmd_type_len |= E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
3252         if (m_head->m_flags & M_VLANTAG)
3253                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3254
3255         /*
3256          * Map the packet for DMA.
3257          */
3258         tx_buf = &txr->tx_buf[txr->next_avail_desc];
3259         tx_buf_mapped = tx_buf;
3260         map = tx_buf->map;
3261
3262         maxsegs = txr->tx_avail - IGB_TX_RESERVED;
3263         KASSERT(maxsegs >= txr->spare_desc, ("not enough spare TX desc\n"));
3264         if (maxsegs > IGB_MAX_SCATTER)
3265                 maxsegs = IGB_MAX_SCATTER;
3266
3267         error = bus_dmamap_load_mbuf_defrag(txr->tx_tag, map, m_headp,
3268             segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
3269         if (error) {
3270                 if (error == ENOBUFS)
3271                         txr->sc->mbuf_defrag_failed++;
3272                 else
3273                         txr->sc->no_tx_dma_setup++;
3274
3275                 m_freem(*m_headp);
3276                 *m_headp = NULL;
3277                 return error;
3278         }
3279         bus_dmamap_sync(txr->tx_tag, map, BUS_DMASYNC_PREWRITE);
3280
3281         m_head = *m_headp;
3282
3283         /*
3284          * Set up the TX context descriptor, if any hardware offloading is
3285          * needed.  This includes CSUM, VLAN, and TSO.  It will consume one
3286          * TX descriptor.
3287          *
3288          * Unlike these chips' predecessors (em/emx), TX context descriptor
3289          * will _not_ interfere TX data fetching pipelining.
3290          */
3291         if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3292                 igb_tso_ctx(txr, m_head, &hdrlen);
3293                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3294                 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3295                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3296                 txr->tx_nsegs++;
3297                 (*segs_used)++;
3298         } else if (igb_txcsum_ctx(txr, m_head)) {
3299                 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
3300                         olinfo_status |= (E1000_TXD_POPTS_IXSM << 8);
3301                 if (m_head->m_pkthdr.csum_flags & (CSUM_UDP | CSUM_TCP))
3302                         olinfo_status |= (E1000_TXD_POPTS_TXSM << 8);
3303                 txr->tx_nsegs++;
3304                 (*segs_used)++;
3305         }
3306
3307         *segs_used += nsegs;
3308         txr->tx_nsegs += nsegs;
3309         if (txr->tx_nsegs >= txr->intr_nsegs) {
3310                 /*
3311                  * Report Status (RS) is turned on every intr_nsegs
3312                  * descriptors (roughly).
3313                  */
3314                 txr->tx_nsegs = 0;
3315                 cmd_rs = E1000_ADVTXD_DCMD_RS;
3316         }
3317
3318         /* Calculate payload length */
3319         olinfo_status |= ((m_head->m_pkthdr.len - hdrlen)
3320             << E1000_ADVTXD_PAYLEN_SHIFT);
3321
3322         /* 82575 needs the queue index added */
3323         if (txr->sc->hw.mac.type == e1000_82575)
3324                 olinfo_status |= txr->me << 4;
3325
3326         /* Set up our transmit descriptors */
3327         i = txr->next_avail_desc;
3328         for (j = 0; j < nsegs; j++) {
3329                 bus_size_t seg_len;
3330                 bus_addr_t seg_addr;
3331
3332                 tx_buf = &txr->tx_buf[i];
3333                 txd = (union e1000_adv_tx_desc *)&txr->tx_base[i];
3334                 seg_addr = segs[j].ds_addr;
3335                 seg_len = segs[j].ds_len;
3336
3337                 txd->read.buffer_addr = htole64(seg_addr);
3338                 txd->read.cmd_type_len = htole32(cmd_type_len | seg_len);
3339                 txd->read.olinfo_status = htole32(olinfo_status);
3340                 if (++i == txr->num_tx_desc)
3341                         i = 0;
3342                 tx_buf->m_head = NULL;
3343         }
3344
3345         KASSERT(txr->tx_avail > nsegs, ("invalid avail TX desc\n"));
3346         txr->next_avail_desc = i;
3347         txr->tx_avail -= nsegs;
3348
3349         tx_buf->m_head = m_head;
3350         tx_buf_mapped->map = tx_buf->map;
3351         tx_buf->map = map;
3352
3353         /*
3354          * Last Descriptor of Packet needs End Of Packet (EOP)
3355          */
3356         txd->read.cmd_type_len |= htole32(E1000_ADVTXD_DCMD_EOP | cmd_rs);
3357
3358         /*
3359          * Defer TDT updating, until enough descrptors are setup
3360          */
3361         *idx = i;
3362 #ifdef IGB_TSS_DEBUG
3363         ++txr->tx_packets;
3364 #endif
3365
3366         return 0;
3367 }
3368
3369 static void
3370 igb_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
3371 {
3372         struct igb_softc *sc = ifp->if_softc;
3373         struct igb_tx_ring *txr = ifsq_get_priv(ifsq);
3374         struct mbuf *m_head;
3375         int idx = -1, nsegs = 0;
3376
3377         KKASSERT(txr->ifsq == ifsq);
3378         ASSERT_SERIALIZED(&txr->tx_serialize);
3379
3380         if ((ifp->if_flags & IFF_RUNNING) == 0 || ifsq_is_oactive(ifsq))
3381                 return;
3382
3383         if (!sc->link_active || (txr->tx_flags & IGB_TXFLAG_ENABLED) == 0) {
3384                 ifsq_purge(ifsq);
3385                 return;
3386         }
3387
3388         if (!IGB_IS_NOT_OACTIVE(txr))
3389                 igb_txeof(txr);
3390
3391         while (!ifsq_is_empty(ifsq)) {
3392                 if (IGB_IS_OACTIVE(txr)) {
3393                         ifsq_set_oactive(ifsq);
3394                         /* Set watchdog on */
3395                         txr->tx_watchdog.wd_timer = 5;
3396                         break;
3397                 }
3398
3399                 m_head = ifsq_dequeue(ifsq, NULL);
3400                 if (m_head == NULL)
3401                         break;
3402
3403                 if (igb_encap(txr, &m_head, &nsegs, &idx)) {
3404                         ifp->if_oerrors++;
3405                         continue;
3406                 }
3407
3408                 if (nsegs >= txr->wreg_nsegs) {
3409                         E1000_WRITE_REG(&txr->sc->hw, E1000_TDT(txr->me), idx);
3410                         idx = -1;
3411                         nsegs = 0;
3412                 }
3413
3414                 /* Send a copy of the frame to the BPF listener */
3415                 ETHER_BPF_MTAP(ifp, m_head);
3416         }
3417         if (idx >= 0)
3418                 E1000_WRITE_REG(&txr->sc->hw, E1000_TDT(txr->me), idx);
3419 }
3420
3421 static void
3422 igb_watchdog(struct ifaltq_subque *ifsq)
3423 {
3424         struct igb_tx_ring *txr = ifsq_get_priv(ifsq);
3425         struct ifnet *ifp = ifsq_get_ifp(ifsq);
3426         struct igb_softc *sc = ifp->if_softc;
3427         int i;
3428
3429         KKASSERT(txr->ifsq == ifsq);
3430         ASSERT_IFNET_SERIALIZED_ALL(ifp);
3431
3432         /* 
3433          * If flow control has paused us since last checking
3434          * it invalidates the watchdog timing, so dont run it.
3435          */
3436         if (sc->pause_frames) {
3437                 sc->pause_frames = 0;
3438                 txr->tx_watchdog.wd_timer = 5;
3439                 return;
3440         }
3441
3442         if_printf(ifp, "Watchdog timeout -- resetting\n");
3443         if_printf(ifp, "Queue(%d) tdh = %d, hw tdt = %d\n", txr->me,
3444             E1000_READ_REG(&sc->hw, E1000_TDH(txr->me)),
3445             E1000_READ_REG(&sc->hw, E1000_TDT(txr->me)));
3446         if_printf(ifp, "TX(%d) desc avail = %d, "
3447             "Next TX to Clean = %d\n",
3448             txr->me, txr->tx_avail, txr->next_to_clean);
3449
3450         ifp->if_oerrors++;
3451         sc->watchdog_events++;
3452
3453         igb_init(sc);
3454         for (i = 0; i < sc->tx_ring_inuse; ++i)
3455                 ifsq_devstart_sched(sc->tx_rings[i].ifsq);
3456 }
3457
3458 static void
3459 igb_set_eitr(struct igb_softc *sc, int idx, int rate)
3460 {
3461         uint32_t eitr = 0;
3462
3463         if (rate > 0) {
3464                 if (sc->hw.mac.type == e1000_82575) {
3465                         eitr = 1000000000 / 256 / rate;
3466                         /*
3467                          * NOTE:
3468                          * Document is wrong on the 2 bits left shift
3469                          */
3470                 } else {
3471                         eitr = 1000000 / rate;
3472                         eitr <<= IGB_EITR_INTVL_SHIFT;
3473                 }
3474
3475                 if (eitr == 0) {
3476                         /* Don't disable it */
3477                         eitr = 1 << IGB_EITR_INTVL_SHIFT;
3478                 } else if (eitr > IGB_EITR_INTVL_MASK) {
3479                         /* Don't allow it to be too large */
3480                         eitr = IGB_EITR_INTVL_MASK;
3481                 }
3482         }
3483         if (sc->hw.mac.type == e1000_82575)
3484                 eitr |= eitr << 16;
3485         else
3486                 eitr |= E1000_EITR_CNT_IGNR;
3487         E1000_WRITE_REG(&sc->hw, E1000_EITR(idx), eitr);
3488 }
3489
3490 static int
3491 igb_sysctl_intr_rate(SYSCTL_HANDLER_ARGS)
3492 {
3493         struct igb_softc *sc = (void *)arg1;
3494         struct ifnet *ifp = &sc->arpcom.ac_if;
3495         int error, intr_rate;
3496
3497         intr_rate = sc->intr_rate;
3498         error = sysctl_handle_int(oidp, &intr_rate, 0, req);
3499         if (error || req->newptr == NULL)
3500                 return error;
3501         if (intr_rate < 0)
3502                 return EINVAL;
3503
3504         ifnet_serialize_all(ifp);
3505
3506         sc->intr_rate = intr_rate;
3507         if (ifp->if_flags & IFF_RUNNING)
3508                 igb_set_eitr(sc, 0, sc->intr_rate);
3509
3510         if (bootverbose)
3511                 if_printf(ifp, "interrupt rate set to %d/sec\n", sc->intr_rate);
3512
3513         ifnet_deserialize_all(ifp);
3514
3515         return 0;
3516 }
3517
3518 static int
3519 igb_sysctl_msix_rate(SYSCTL_HANDLER_ARGS)
3520 {
3521         struct igb_msix_data *msix = (void *)arg1;
3522         struct igb_softc *sc = msix->msix_sc;
3523         struct ifnet *ifp = &sc->arpcom.ac_if;
3524         int error, msix_rate;
3525
3526         msix_rate = msix->msix_rate;
3527         error = sysctl_handle_int(oidp, &msix_rate, 0, req);
3528         if (error || req->newptr == NULL)
3529                 return error;
3530         if (msix_rate < 0)
3531                 return EINVAL;
3532
3533         lwkt_serialize_enter(msix->msix_serialize);
3534
3535         msix->msix_rate = msix_rate;
3536         if (ifp->if_flags & IFF_RUNNING)
3537                 igb_set_eitr(sc, msix->msix_vector, msix->msix_rate);
3538
3539         if (bootverbose) {
3540                 if_printf(ifp, "%s set to %d/sec\n", msix->msix_rate_desc,
3541                     msix->msix_rate);
3542         }
3543
3544         lwkt_serialize_exit(msix->msix_serialize);
3545
3546         return 0;
3547 }
3548
3549 static int
3550 igb_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS)
3551 {
3552         struct igb_softc *sc = (void *)arg1;
3553         struct ifnet *ifp = &sc->arpcom.ac_if;
3554         struct igb_tx_ring *txr = &sc->tx_rings[0];
3555         int error, nsegs;
3556
3557         nsegs = txr->intr_nsegs;
3558         error = sysctl_handle_int(oidp, &nsegs, 0, req);
3559         if (error || req->newptr == NULL)
3560                 return error;
3561         if (nsegs <= 0)
3562                 return EINVAL;
3563
3564         ifnet_serialize_all(ifp);
3565
3566         if (nsegs >= txr->num_tx_desc - txr->oact_lo_desc ||
3567             nsegs >= txr->oact_hi_desc - IGB_MAX_SCATTER) {
3568                 error = EINVAL;
3569         } else {
3570                 int i;
3571
3572                 error = 0;
3573                 for (i = 0; i < sc->tx_ring_cnt; ++i)
3574                         sc->tx_rings[i].intr_nsegs = nsegs;
3575         }
3576
3577         ifnet_deserialize_all(ifp);
3578
3579         return error;
3580 }
3581
3582 static int
3583 igb_sysctl_rx_wreg_nsegs(SYSCTL_HANDLER_ARGS)
3584 {
3585         struct igb_softc *sc = (void *)arg1;
3586         struct ifnet *ifp = &sc->arpcom.ac_if;
3587         int error, nsegs, i;
3588
3589         nsegs = sc->rx_rings[0].wreg_nsegs;
3590         error = sysctl_handle_int(oidp, &nsegs, 0, req);
3591         if (error || req->newptr == NULL)
3592                 return error;
3593
3594         ifnet_serialize_all(ifp);
3595         for (i = 0; i < sc->rx_ring_cnt; ++i)
3596                 sc->rx_rings[i].wreg_nsegs =nsegs;
3597         ifnet_deserialize_all(ifp);
3598
3599         return 0;
3600 }
3601
3602 static int
3603 igb_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS)
3604 {
3605         struct igb_softc *sc = (void *)arg1;
3606         struct ifnet *ifp = &sc->arpcom.ac_if;
3607         int error, nsegs, i;
3608
3609         nsegs = sc->tx_rings[0].wreg_nsegs;
3610         error = sysctl_handle_int(oidp, &nsegs, 0, req);
3611         if (error || req->newptr == NULL)
3612                 return error;
3613
3614         ifnet_serialize_all(ifp);
3615         for (i = 0; i < sc->tx_ring_cnt; ++i)
3616                 sc->tx_rings[i].wreg_nsegs =nsegs;
3617         ifnet_deserialize_all(ifp);
3618
3619         return 0;
3620 }
3621
3622 #ifdef IFPOLL_ENABLE
3623
3624 static int
3625 igb_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS)
3626 {
3627         struct igb_softc *sc = (void *)arg1;
3628         struct ifnet *ifp = &sc->arpcom.ac_if;
3629         int error, off;
3630
3631         off = sc->rx_npoll_off;
3632         error = sysctl_handle_int(oidp, &off, 0, req);
3633         if (error || req->newptr == NULL)
3634                 return error;
3635         if (off < 0)
3636                 return EINVAL;
3637
3638         ifnet_serialize_all(ifp);
3639         if (off >= ncpus2 || off % sc->rx_ring_cnt != 0) {
3640                 error = EINVAL;
3641         } else {
3642                 error = 0;
3643                 sc->rx_npoll_off = off;
3644         }
3645         ifnet_deserialize_all(ifp);
3646
3647         return error;
3648 }
3649
3650 static int
3651 igb_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS)
3652 {
3653         struct igb_softc *sc = (void *)arg1;
3654         struct ifnet *ifp = &sc->arpcom.ac_if;
3655         int error, off;
3656
3657         off = sc->tx_npoll_off;
3658         error = sysctl_handle_int(oidp, &off, 0, req);
3659         if (error || req->newptr == NULL)
3660                 return error;
3661         if (off < 0)
3662                 return EINVAL;
3663
3664         ifnet_serialize_all(ifp);
3665         if (off >= ncpus2 || off % sc->tx_ring_cnt != 0) {
3666                 error = EINVAL;
3667         } else {
3668                 error = 0;
3669                 sc->tx_npoll_off = off;
3670         }
3671         ifnet_deserialize_all(ifp);
3672
3673         return error;
3674 }
3675
3676 #endif  /* IFPOLL_ENABLE */
3677
3678 static void
3679 igb_init_intr(struct igb_softc *sc)
3680 {
3681         igb_set_intr_mask(sc);
3682
3683         if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0)
3684                 igb_init_unshared_intr(sc);
3685
3686         if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
3687                 igb_set_eitr(sc, 0, sc->intr_rate);
3688         } else {
3689                 int i;
3690
3691                 for (i = 0; i < sc->msix_cnt; ++i)
3692                         igb_set_eitr(sc, i, sc->msix_data[i].msix_rate);
3693         }
3694 }
3695
3696 static void
3697 igb_init_unshared_intr(struct igb_softc *sc)
3698 {
3699         struct e1000_hw *hw = &sc->hw;
3700         const struct igb_rx_ring *rxr;
3701         const struct igb_tx_ring *txr;
3702         uint32_t ivar, index;
3703         int i;
3704
3705         /*
3706          * Enable extended mode
3707          */
3708         if (sc->hw.mac.type != e1000_82575) {
3709                 uint32_t gpie;
3710                 int ivar_max;
3711
3712                 gpie = E1000_GPIE_NSICR;
3713                 if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3714                         gpie |= E1000_GPIE_MSIX_MODE |
3715                             E1000_GPIE_EIAME |
3716                             E1000_GPIE_PBA;
3717                 }
3718                 E1000_WRITE_REG(hw, E1000_GPIE, gpie);
3719
3720                 /*
3721                  * Clear IVARs
3722                  */
3723                 switch (sc->hw.mac.type) {
3724                 case e1000_82580:
3725                         ivar_max = IGB_MAX_IVAR_82580;
3726                         break;
3727
3728                 case e1000_i350:
3729                         ivar_max = IGB_MAX_IVAR_I350;
3730                         break;
3731
3732                 case e1000_vfadapt:
3733                 case e1000_vfadapt_i350:
3734                         ivar_max = IGB_MAX_IVAR_VF;
3735                         break;
3736
3737                 case e1000_82576:
3738                         ivar_max = IGB_MAX_IVAR_82576;
3739                         break;
3740
3741                 default:
3742                         panic("unknown mac type %d\n", sc->hw.mac.type);
3743                 }
3744                 for (i = 0; i < ivar_max; ++i)
3745                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, i, 0);
3746                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, 0);
3747         } else {
3748                 uint32_t tmp;
3749
3750                 KASSERT(sc->intr_type != PCI_INTR_TYPE_MSIX,
3751                     ("82575 w/ MSI-X"));
3752                 tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
3753                 tmp |= E1000_CTRL_EXT_IRCA;
3754                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
3755         }
3756
3757         /*
3758          * Map TX/RX interrupts to EICR
3759          */
3760         switch (sc->hw.mac.type) {
3761         case e1000_82580:
3762         case e1000_i350:
3763         case e1000_vfadapt:
3764         case e1000_vfadapt_i350:
3765                 /* RX entries */
3766                 for (i = 0; i < sc->rx_ring_inuse; ++i) {
3767                         rxr = &sc->rx_rings[i];
3768
3769                         index = i >> 1;
3770                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3771
3772                         if (i & 1) {
3773                                 ivar &= 0xff00ffff;
3774                                 ivar |=
3775                                 (rxr->rx_intr_bit | E1000_IVAR_VALID) << 16;
3776                         } else {
3777                                 ivar &= 0xffffff00;
3778                                 ivar |=
3779                                 (rxr->rx_intr_bit | E1000_IVAR_VALID);
3780                         }
3781                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3782                 }
3783                 /* TX entries */
3784                 for (i = 0; i < sc->tx_ring_inuse; ++i) {
3785                         txr = &sc->tx_rings[i];
3786
3787                         index = i >> 1;
3788                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3789
3790                         if (i & 1) {
3791                                 ivar &= 0x00ffffff;
3792                                 ivar |=
3793                                 (txr->tx_intr_bit | E1000_IVAR_VALID) << 24;
3794                         } else {
3795                                 ivar &= 0xffff00ff;
3796                                 ivar |=
3797                                 (txr->tx_intr_bit | E1000_IVAR_VALID) << 8;
3798                         }
3799                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3800                 }
3801                 if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3802                         ivar = (sc->sts_intr_bit | E1000_IVAR_VALID) << 8;
3803                         E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
3804                 }
3805                 break;
3806
3807         case e1000_82576:
3808                 /* RX entries */
3809                 for (i = 0; i < sc->rx_ring_inuse; ++i) {
3810                         rxr = &sc->rx_rings[i];
3811
3812                         index = i & 0x7; /* Each IVAR has two entries */
3813                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3814
3815                         if (i < 8) {
3816                                 ivar &= 0xffffff00;
3817                                 ivar |=
3818                                 (rxr->rx_intr_bit | E1000_IVAR_VALID);
3819                         } else {
3820                                 ivar &= 0xff00ffff;
3821                                 ivar |=
3822                                 (rxr->rx_intr_bit | E1000_IVAR_VALID) << 16;
3823                         }
3824                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3825                 }
3826                 /* TX entries */
3827                 for (i = 0; i < sc->tx_ring_inuse; ++i) {
3828                         txr = &sc->tx_rings[i];
3829
3830                         index = i & 0x7; /* Each IVAR has two entries */
3831                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3832
3833                         if (i < 8) {
3834                                 ivar &= 0xffff00ff;
3835                                 ivar |=
3836                                 (txr->tx_intr_bit | E1000_IVAR_VALID) << 8;
3837                         } else {
3838                                 ivar &= 0x00ffffff;
3839                                 ivar |=
3840                                 (txr->tx_intr_bit | E1000_IVAR_VALID) << 24;
3841                         }
3842                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3843                 }
3844                 if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3845                         ivar = (sc->sts_intr_bit | E1000_IVAR_VALID) << 8;
3846                         E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
3847                 }
3848                 break;
3849
3850         case e1000_82575:
3851                 /*
3852                  * Enable necessary interrupt bits.
3853                  *
3854                  * The name of the register is confusing; in addition to
3855                  * configuring the first vector of MSI-X, it also configures
3856                  * which bits of EICR could be set by the hardware even when
3857                  * MSI or line interrupt is used; it thus controls interrupt
3858                  * generation.  It MUST be configured explicitly; the default
3859                  * value mentioned in the datasheet is wrong: RX queue0 and
3860                  * TX queue0 are NOT enabled by default.
3861                  */
3862                 E1000_WRITE_REG(&sc->hw, E1000_MSIXBM(0), sc->intr_mask);
3863                 break;
3864
3865         default:
3866                 panic("unknown mac type %d\n", sc->hw.mac.type);
3867         }
3868 }
3869
3870 static int
3871 igb_setup_intr(struct igb_softc *sc)
3872 {
3873         int error, i;
3874
3875         if (sc->intr_type == PCI_INTR_TYPE_MSIX)
3876                 return igb_msix_setup(sc);
3877
3878         error = bus_setup_intr(sc->dev, sc->intr_res, INTR_MPSAFE,
3879             (sc->flags & IGB_FLAG_SHARED_INTR) ? igb_intr_shared : igb_intr,
3880             sc, &sc->intr_tag, &sc->main_serialize);
3881         if (error) {
3882                 device_printf(sc->dev, "Failed to register interrupt handler");
3883                 return error;
3884         }
3885
3886         for (i = 0; i < sc->tx_ring_cnt; ++i)
3887                 sc->tx_rings[i].tx_intr_cpuid = rman_get_cpuid(sc->intr_res);
3888
3889         return 0;
3890 }
3891
3892 static void
3893 igb_set_txintr_mask(struct igb_tx_ring *txr, int *intr_bit0, int intr_bitmax)
3894 {
3895         if (txr->sc->hw.mac.type == e1000_82575) {
3896                 txr->tx_intr_bit = 0;   /* unused */
3897                 switch (txr->me) {
3898                 case 0:
3899                         txr->tx_intr_mask = E1000_EICR_TX_QUEUE0;
3900                         break;
3901                 case 1:
3902                         txr->tx_intr_mask = E1000_EICR_TX_QUEUE1;
3903                         break;
3904                 case 2:
3905                         txr->tx_intr_mask = E1000_EICR_TX_QUEUE2;
3906                         break;
3907                 case 3:
3908                         txr->tx_intr_mask = E1000_EICR_TX_QUEUE3;
3909                         break;
3910                 default:
3911                         panic("unsupported # of TX ring, %d\n", txr->me);
3912                 }
3913         } else {
3914                 int intr_bit = *intr_bit0;
3915
3916                 txr->tx_intr_bit = intr_bit % intr_bitmax;
3917                 txr->tx_intr_mask = 1 << txr->tx_intr_bit;
3918
3919                 *intr_bit0 = intr_bit + 1;
3920         }
3921 }
3922
3923 static void
3924 igb_set_rxintr_mask(struct igb_rx_ring *rxr, int *intr_bit0, int intr_bitmax)
3925 {
3926         if (rxr->sc->hw.mac.type == e1000_82575) {
3927                 rxr->rx_intr_bit = 0;   /* unused */
3928                 switch (rxr->me) {
3929                 case 0:
3930                         rxr->rx_intr_mask = E1000_EICR_RX_QUEUE0;
3931                         break;
3932                 case 1:
3933                         rxr->rx_intr_mask = E1000_EICR_RX_QUEUE1;
3934                         break;
3935                 case 2:
3936                         rxr->rx_intr_mask = E1000_EICR_RX_QUEUE2;
3937                         break;
3938                 case 3:
3939                         rxr->rx_intr_mask = E1000_EICR_RX_QUEUE3;
3940                         break;
3941                 default:
3942                         panic("unsupported # of RX ring, %d\n", rxr->me);
3943                 }
3944         } else {
3945                 int intr_bit = *intr_bit0;
3946
3947                 rxr->rx_intr_bit = intr_bit % intr_bitmax;
3948                 rxr->rx_intr_mask = 1 << rxr->rx_intr_bit;
3949
3950                 *intr_bit0 = intr_bit + 1;
3951         }
3952 }
3953
3954 static void
3955 igb_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
3956 {
3957         struct igb_softc *sc = ifp->if_softc;
3958
3959         ifnet_serialize_array_enter(sc->serializes, sc->serialize_cnt,
3960             sc->tx_serialize, sc->rx_serialize, slz);
3961 }
3962
3963 static void
3964 igb_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3965 {
3966         struct igb_softc *sc = ifp->if_softc;
3967
3968         ifnet_serialize_array_exit(sc->serializes, sc->serialize_cnt,
3969             sc->tx_serialize, sc->rx_serialize, slz);
3970 }
3971
3972 static int
3973 igb_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3974 {
3975         struct igb_softc *sc = ifp->if_softc;
3976
3977         return ifnet_serialize_array_try(sc->serializes, sc->serialize_cnt,
3978             sc->tx_serialize, sc->rx_serialize, slz);
3979 }
3980
3981 #ifdef INVARIANTS
3982
3983 static void
3984 igb_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
3985     boolean_t serialized)
3986 {
3987         struct igb_softc *sc = ifp->if_softc;
3988
3989         ifnet_serialize_array_assert(sc->serializes, sc->serialize_cnt,
3990             sc->tx_serialize, sc->rx_serialize, slz, serialized);
3991 }
3992
3993 #endif  /* INVARIANTS */
3994
3995 static void
3996 igb_set_intr_mask(struct igb_softc *sc)
3997 {
3998         int i;
3999
4000         sc->intr_mask = sc->sts_intr_mask;
4001         for (i = 0; i < sc->rx_ring_inuse; ++i)
4002                 sc->intr_mask |= sc->rx_rings[i].rx_intr_mask;
4003         for (i = 0; i < sc->tx_ring_inuse; ++i)
4004                 sc->intr_mask |= sc->tx_rings[i].tx_intr_mask;
4005         if (bootverbose) {
4006                 if_printf(&sc->arpcom.ac_if, "intr mask 0x%08x\n",
4007                     sc->intr_mask);
4008         }
4009 }
4010
4011 static int
4012 igb_alloc_intr(struct igb_softc *sc)
4013 {
4014         int i, intr_bit, intr_bitmax;
4015         u_int intr_flags;
4016
4017         igb_msix_try_alloc(sc);
4018         if (sc->intr_type == PCI_INTR_TYPE_MSIX)
4019                 goto done;
4020
4021         /*
4022          * Allocate MSI/legacy interrupt resource
4023          */
4024         sc->intr_type = pci_alloc_1intr(sc->dev, igb_msi_enable,
4025             &sc->intr_rid, &intr_flags);
4026
4027         if (sc->intr_type == PCI_INTR_TYPE_LEGACY) {
4028                 int unshared;
4029
4030                 unshared = device_getenv_int(sc->dev, "irq.unshared", 0);
4031                 if (!unshared) {
4032                         sc->flags |= IGB_FLAG_SHARED_INTR;
4033                         if (bootverbose)
4034                                 device_printf(sc->dev, "IRQ shared\n");
4035                 } else {
4036                         intr_flags &= ~RF_SHAREABLE;
4037                         if (bootverbose)
4038                                 device_printf(sc->dev, "IRQ unshared\n");
4039                 }
4040         }
4041
4042         sc->intr_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
4043             &sc->intr_rid, intr_flags);
4044         if (sc->intr_res == NULL) {
4045                 device_printf(sc->dev, "Unable to allocate bus resource: "
4046                     "interrupt\n");
4047                 return ENXIO;
4048         }
4049
4050         /*
4051          * Setup MSI/legacy interrupt mask
4052          */
4053         switch (sc->hw.mac.type) {
4054         case e1000_82575:
4055                 intr_bitmax = IGB_MAX_TXRXINT_82575;
4056                 break;
4057         case e1000_82580:
4058                 intr_bitmax = IGB_MAX_TXRXINT_82580;
4059                 break;
4060         case e1000_i350:
4061                 intr_bitmax = IGB_MAX_TXRXINT_I350;
4062                 break;
4063         case e1000_82576:
4064                 intr_bitmax = IGB_MAX_TXRXINT_82576;
4065                 break;
4066         default:
4067                 intr_bitmax = IGB_MIN_TXRXINT;
4068                 break;
4069         }
4070         intr_bit = 0;
4071         for (i = 0; i < sc->tx_ring_cnt; ++i)
4072                 igb_set_txintr_mask(&sc->tx_rings[i], &intr_bit, intr_bitmax);
4073         for (i = 0; i < sc->rx_ring_cnt; ++i)
4074                 igb_set_rxintr_mask(&sc->rx_rings[i], &intr_bit, intr_bitmax);
4075         sc->sts_intr_bit = 0;
4076         sc->sts_intr_mask = E1000_EICR_OTHER;
4077
4078         /* Initialize interrupt rate */
4079         sc->intr_rate = IGB_INTR_RATE;
4080 done:
4081         igb_set_ring_inuse(sc, FALSE);
4082         igb_set_intr_mask(sc);
4083         return 0;
4084 }
4085
4086 static void
4087 igb_free_intr(struct igb_softc *sc)
4088 {
4089         if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
4090                 if (sc->intr_res != NULL) {
4091                         bus_release_resource(sc->dev, SYS_RES_IRQ, sc->intr_rid,
4092                             sc->intr_res);
4093                 }
4094                 if (sc->intr_type == PCI_INTR_TYPE_MSI)
4095                         pci_release_msi(sc->dev);
4096         } else {
4097                 igb_msix_free(sc, TRUE);
4098         }
4099 }
4100
4101 static void
4102 igb_teardown_intr(struct igb_softc *sc)
4103 {
4104         if (sc->intr_type != PCI_INTR_TYPE_MSIX)
4105                 bus_teardown_intr(sc->dev, sc->intr_res, sc->intr_tag);
4106         else
4107                 igb_msix_teardown(sc, sc->msix_cnt);
4108 }
4109
4110 static void
4111 igb_msix_try_alloc(struct igb_softc *sc)
4112 {
4113         int msix_enable, msix_cnt, msix_cnt2, alloc_cnt;
4114         int i, x, error;
4115         int offset, offset_def;
4116         struct igb_msix_data *msix;
4117         boolean_t aggregate, setup = FALSE;
4118
4119         /*
4120          * Don't enable MSI-X on 82575, see:
4121          * 82575 specification update errata #25
4122          */
4123         if (sc->hw.mac.type == e1000_82575)
4124                 return;
4125
4126         /* Don't enable MSI-X on VF */
4127         if (sc->vf_ifp)
4128                 return;
4129
4130         msix_enable = device_getenv_int(sc->dev, "msix.enable",
4131             igb_msix_enable);
4132         if (!msix_enable)
4133                 return;
4134
4135         msix_cnt = pci_msix_count(sc->dev);
4136 #ifdef IGB_MSIX_DEBUG
4137         msix_cnt = device_getenv_int(sc->dev, "msix.count", msix_cnt);
4138 #endif
4139         if (msix_cnt <= 1) {
4140                 /* One MSI-X model does not make sense */
4141                 return;
4142         }
4143
4144         i = 0;
4145         while ((1 << (i + 1)) <= msix_cnt)
4146                 ++i;
4147         msix_cnt2 = 1 << i;
4148
4149         if (bootverbose) {
4150                 device_printf(sc->dev, "MSI-X count %d/%d\n",
4151                     msix_cnt2, msix_cnt);
4152         }
4153
4154         KKASSERT(msix_cnt2 <= msix_cnt);
4155         if (msix_cnt == msix_cnt2) {
4156                 /* We need at least one MSI-X for link status */
4157                 msix_cnt2 >>= 1;
4158                 if (msix_cnt2 <= 1) {
4159                         /* One MSI-X for RX/TX does not make sense */
4160                         device_printf(sc->dev, "not enough MSI-X for TX/RX, "
4161                             "MSI-X count %d/%d\n", msix_cnt2, msix_cnt);
4162                         return;
4163                 }
4164                 KKASSERT(msix_cnt > msix_cnt2);
4165
4166                 if (bootverbose) {
4167                         device_printf(sc->dev, "MSI-X count fixup %d/%d\n",
4168                             msix_cnt2, msix_cnt);
4169                 }
4170         }
4171
4172         sc->rx_ring_msix = sc->rx_ring_cnt;
4173         if (sc->rx_ring_msix > msix_cnt2)
4174                 sc->rx_ring_msix = msix_cnt2;
4175
4176         sc->tx_ring_msix = sc->tx_ring_cnt;
4177         if (sc->tx_ring_msix > msix_cnt2)
4178                 sc->tx_ring_msix = msix_cnt2;
4179
4180         if (msix_cnt >= sc->tx_ring_msix + sc->rx_ring_msix + 1) {
4181                 /*
4182                  * Independent TX/RX MSI-X
4183                  */
4184                 aggregate = FALSE;
4185                 if (bootverbose)
4186                         device_printf(sc->dev, "independent TX/RX MSI-X\n");
4187                 alloc_cnt = sc->tx_ring_msix + sc->rx_ring_msix;
4188         } else {
4189                 /*
4190                  * Aggregate TX/RX MSI-X
4191                  */
4192                 aggregate = TRUE;
4193                 if (bootverbose)
4194                         device_printf(sc->dev, "aggregate TX/RX MSI-X\n");
4195                 alloc_cnt = msix_cnt2;
4196                 if (alloc_cnt > ncpus2)
4197                         alloc_cnt = ncpus2;
4198                 if (sc->rx_ring_msix > alloc_cnt)
4199                         sc->rx_ring_msix = alloc_cnt;
4200                 if (sc->tx_ring_msix > alloc_cnt)
4201                         sc->tx_ring_msix = alloc_cnt;
4202         }
4203         ++alloc_cnt;    /* For link status */
4204
4205         if (bootverbose) {
4206                 device_printf(sc->dev, "MSI-X alloc %d, "
4207                     "RX ring %d, TX ring %d\n", alloc_cnt,
4208                     sc->rx_ring_msix, sc->tx_ring_msix);
4209         }
4210
4211         sc->msix_mem_rid = PCIR_BAR(IGB_MSIX_BAR);
4212         sc->msix_mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
4213             &sc->msix_mem_rid, RF_ACTIVE);
4214         if (sc->msix_mem_res == NULL) {
4215                 device_printf(sc->dev, "Unable to map MSI-X table\n");
4216                 return;
4217         }
4218
4219         sc->msix_cnt = alloc_cnt;
4220         sc->msix_data = kmalloc_cachealign(
4221             sizeof(struct igb_msix_data) * sc->msix_cnt,
4222             M_DEVBUF, M_WAITOK | M_ZERO);
4223         for (x = 0; x < sc->msix_cnt; ++x) {
4224                 msix = &sc->msix_data[x];
4225
4226                 lwkt_serialize_init(&msix->msix_serialize0);
4227                 msix->msix_sc = sc;
4228                 msix->msix_rid = -1;
4229                 msix->msix_vector = x;
4230                 msix->msix_mask = 1 << msix->msix_vector;
4231                 msix->msix_rate = IGB_INTR_RATE;
4232         }
4233
4234         x = 0;
4235         if (!aggregate) {
4236                 /*
4237                  * RX rings
4238                  */
4239                 if (sc->rx_ring_msix == ncpus2) {
4240                         offset = 0;
4241                 } else {
4242                         offset_def = (sc->rx_ring_msix *
4243                             device_get_unit(sc->dev)) % ncpus2;
4244
4245                         offset = device_getenv_int(sc->dev,
4246                             "msix.rxoff", offset_def);
4247                         if (offset >= ncpus2 ||
4248                             offset % sc->rx_ring_msix != 0) {
4249                                 device_printf(sc->dev,
4250                                     "invalid msix.rxoff %d, use %d\n",
4251                                     offset, offset_def);
4252                                 offset = offset_def;
4253                         }
4254                 }
4255                 igb_msix_rx_conf(sc, 0, &x, offset);
4256
4257                 /*
4258                  * TX rings
4259                  */
4260                 if (sc->tx_ring_msix == ncpus2) {
4261                         offset = 0;
4262                 } else {
4263                         offset_def = (sc->tx_ring_msix *
4264                             device_get_unit(sc->dev)) % ncpus2;
4265
4266                         offset = device_getenv_int(sc->dev,
4267                             "msix.txoff", offset_def);
4268                         if (offset >= ncpus2 ||
4269                             offset % sc->tx_ring_msix != 0) {
4270                                 device_printf(sc->dev,
4271                                     "invalid msix.txoff %d, use %d\n",
4272                                     offset, offset_def);
4273                                 offset = offset_def;
4274                         }
4275                 }
4276                 igb_msix_tx_conf(sc, 0, &x, offset);
4277         } else {
4278                 int ring_agg, ring_max;
4279
4280                 ring_agg = sc->rx_ring_msix;
4281                 if (ring_agg > sc->tx_ring_msix)
4282                         ring_agg = sc->tx_ring_msix;
4283
4284                 ring_max = sc->rx_ring_msix;
4285                 if (ring_max < sc->tx_ring_msix)
4286                         ring_max = sc->tx_ring_msix;
4287
4288                 if (ring_max == ncpus2) {
4289                         offset = 0;
4290                 } else {
4291                         offset_def = (ring_max * device_get_unit(sc->dev)) %
4292                             ncpus2;
4293
4294                         offset = device_getenv_int(sc->dev, "msix.off",
4295                             offset_def);
4296                         if (offset >= ncpus2 || offset % ring_max != 0) {
4297                                 device_printf(sc->dev,
4298                                     "invalid msix.off %d, use %d\n",
4299                                     offset, offset_def);
4300                                 offset = offset_def;
4301                         }
4302                 }
4303
4304                 for (i = 0; i < ring_agg; ++i) {
4305                         struct igb_tx_ring *txr = &sc->tx_rings[i];
4306                         struct igb_rx_ring *rxr = &sc->rx_rings[i];
4307
4308                         KKASSERT(x < sc->msix_cnt);
4309                         msix = &sc->msix_data[x++];
4310
4311                         txr->tx_intr_bit = msix->msix_vector;
4312                         txr->tx_intr_mask = msix->msix_mask;
4313                         rxr->rx_intr_bit = msix->msix_vector;
4314                         rxr->rx_intr_mask = msix->msix_mask;
4315
4316                         msix->msix_serialize = &msix->msix_serialize0;
4317                         msix->msix_func = igb_msix_rxtx;
4318                         msix->msix_arg = msix;
4319                         msix->msix_rx = rxr;
4320                         msix->msix_tx = txr;
4321
4322                         msix->msix_cpuid = i + offset;
4323                         KKASSERT(msix->msix_cpuid < ncpus2);
4324                         txr->tx_intr_cpuid = msix->msix_cpuid;
4325
4326                         ksnprintf(msix->msix_desc, sizeof(msix->msix_desc),
4327                             "%s rxtx%d", device_get_nameunit(sc->dev), i);
4328                         msix->msix_rate = IGB_MSIX_RX_RATE;
4329                         ksnprintf(msix->msix_rate_desc,
4330                             sizeof(msix->msix_rate_desc),
4331                             "RXTX%d interrupt rate", i);
4332                 }
4333
4334                 if (ring_agg != ring_max) {
4335                         if (ring_max == sc->tx_ring_msix)
4336                                 igb_msix_tx_conf(sc, i, &x, offset);
4337                         else
4338                                 igb_msix_rx_conf(sc, i, &x, offset);
4339                 }
4340         }
4341
4342         /*
4343          * Link status
4344          */
4345         KKASSERT(x < sc->msix_cnt);
4346         msix = &sc->msix_data[x++];
4347         sc->sts_intr_bit = msix->msix_vector;
4348         sc->sts_intr_mask = msix->msix_mask;
4349
4350         msix->msix_serialize = &sc->main_serialize;
4351         msix->msix_func = igb_msix_status;
4352         msix->msix_arg = sc;
4353         msix->msix_cpuid = 0;
4354         ksnprintf(msix->msix_desc, sizeof(msix->msix_desc), "%s sts",
4355             device_get_nameunit(sc->dev));
4356         ksnprintf(msix->msix_rate_desc, sizeof(msix->msix_rate_desc),
4357             "status interrupt rate");
4358
4359         KKASSERT(x == sc->msix_cnt);
4360
4361         error = pci_setup_msix(sc->dev);
4362         if (error) {
4363                 device_printf(sc->dev, "Setup MSI-X failed\n");
4364                 goto back;
4365         }
4366         setup = TRUE;
4367
4368         for (i = 0; i < sc->msix_cnt; ++i) {
4369                 msix = &sc->msix_data[i];
4370
4371                 error = pci_alloc_msix_vector(sc->dev, msix->msix_vector,
4372                     &msix->msix_rid, msix->msix_cpuid);
4373                 if (error) {
4374                         device_printf(sc->dev,
4375                             "Unable to allocate MSI-X %d on cpu%d\n",
4376                             msix->msix_vector, msix->msix_cpuid);
4377                         goto back;
4378                 }
4379
4380                 msix->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
4381                     &msix->msix_rid, RF_ACTIVE);
4382                 if (msix->msix_res == NULL) {
4383                         device_printf(sc->dev,
4384                             "Unable to allocate MSI-X %d resource\n",
4385                             msix->msix_vector);
4386                         error = ENOMEM;
4387                         goto back;
4388                 }
4389         }
4390
4391         pci_enable_msix(sc->dev);
4392         sc->intr_type = PCI_INTR_TYPE_MSIX;
4393 back:
4394         if (error)
4395                 igb_msix_free(sc, setup);
4396 }
4397
4398 static void
4399 igb_msix_free(struct igb_softc *sc, boolean_t setup)
4400 {
4401         int i;
4402
4403         KKASSERT(sc->msix_cnt > 1);
4404
4405         for (i = 0; i < sc->msix_cnt; ++i) {
4406                 struct igb_msix_data *msix = &sc->msix_data[i];
4407
4408                 if (msix->msix_res != NULL) {
4409                         bus_release_resource(sc->dev, SYS_RES_IRQ,
4410                             msix->msix_rid, msix->msix_res);
4411                 }
4412                 if (msix->msix_rid >= 0)
4413                         pci_release_msix_vector(sc->dev, msix->msix_rid);
4414         }
4415         if (setup)
4416                 pci_teardown_msix(sc->dev);
4417
4418         sc->msix_cnt = 0;
4419         kfree(sc->msix_data, M_DEVBUF);
4420         sc->msix_data = NULL;
4421 }
4422
4423 static int
4424 igb_msix_setup(struct igb_softc *sc)
4425 {
4426         int i;
4427
4428         for (i = 0; i < sc->msix_cnt; ++i) {
4429                 struct igb_msix_data *msix = &sc->msix_data[i];
4430                 int error;
4431
4432                 error = bus_setup_intr_descr(sc->dev, msix->msix_res,
4433                     INTR_MPSAFE, msix->msix_func, msix->msix_arg,
4434                     &msix->msix_handle, msix->msix_serialize, msix->msix_desc);
4435                 if (error) {
4436                         device_printf(sc->dev, "could not set up %s "
4437                             "interrupt handler.\n", msix->msix_desc);
4438                         igb_msix_teardown(sc, i);
4439                         return error;
4440                 }
4441         }
4442         return 0;
4443 }
4444
4445 static void
4446 igb_msix_teardown(struct igb_softc *sc, int msix_cnt)
4447 {
4448         int i;
4449
4450         for (i = 0; i < msix_cnt; ++i) {
4451                 struct igb_msix_data *msix = &sc->msix_data[i];
4452
4453                 bus_teardown_intr(sc->dev, msix->msix_res, msix->msix_handle);
4454         }
4455 }
4456
4457 static void
4458 igb_msix_rx(void *arg)
4459 {
4460         struct igb_rx_ring *rxr = arg;
4461
4462         ASSERT_SERIALIZED(&rxr->rx_serialize);
4463         igb_rxeof(rxr, -1);
4464
4465         E1000_WRITE_REG(&rxr->sc->hw, E1000_EIMS, rxr->rx_intr_mask);
4466 }
4467
4468 static void
4469 igb_msix_tx(void *arg)
4470 {
4471         struct igb_tx_ring *txr = arg;
4472
4473         ASSERT_SERIALIZED(&txr->tx_serialize);
4474
4475         igb_txeof(txr);
4476         if (!ifsq_is_empty(txr->ifsq))
4477                 ifsq_devstart(txr->ifsq);
4478
4479         E1000_WRITE_REG(&txr->sc->hw, E1000_EIMS, txr->tx_intr_mask);
4480 }
4481
4482 static void
4483 igb_msix_status(void *arg)
4484 {
4485         struct igb_softc *sc = arg;
4486         uint32_t icr;
4487
4488         ASSERT_SERIALIZED(&sc->main_serialize);
4489
4490         icr = E1000_READ_REG(&sc->hw, E1000_ICR);
4491         if (icr & E1000_ICR_LSC) {
4492                 sc->hw.mac.get_link_status = 1;
4493                 igb_update_link_status(sc);
4494         }
4495
4496         E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->sts_intr_mask);
4497 }
4498
4499 static void
4500 igb_set_ring_inuse(struct igb_softc *sc, boolean_t polling)
4501 {
4502         sc->rx_ring_inuse = igb_get_rxring_inuse(sc, polling);
4503         sc->tx_ring_inuse = igb_get_txring_inuse(sc, polling);
4504         if (bootverbose) {
4505                 if_printf(&sc->arpcom.ac_if, "RX rings %d/%d, TX rings %d/%d\n",
4506                     sc->rx_ring_inuse, sc->rx_ring_cnt,
4507                     sc->tx_ring_inuse, sc->tx_ring_cnt);
4508         }
4509 }
4510
4511 static int
4512 igb_get_rxring_inuse(const struct igb_softc *sc, boolean_t polling)
4513 {
4514         if (!IGB_ENABLE_HWRSS(sc))
4515                 return 1;
4516
4517         if (polling)
4518                 return sc->rx_ring_cnt;
4519         else if (sc->intr_type != PCI_INTR_TYPE_MSIX)
4520                 return IGB_MIN_RING_RSS;
4521         else
4522                 return sc->rx_ring_msix;
4523 }
4524
4525 static int
4526 igb_get_txring_inuse(const struct igb_softc *sc, boolean_t polling)
4527 {
4528         if (!IGB_ENABLE_HWTSS(sc))
4529                 return 1;
4530
4531         if (polling)
4532                 return sc->tx_ring_cnt;
4533         else if (sc->intr_type != PCI_INTR_TYPE_MSIX)
4534                 return IGB_MIN_RING;
4535         else
4536                 return sc->tx_ring_msix;
4537 }
4538
4539 static int
4540 igb_tso_pullup(struct igb_tx_ring *txr, struct mbuf **mp)
4541 {
4542         int hoff, iphlen, thoff;
4543         struct mbuf *m;
4544
4545         m = *mp;
4546         KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4547
4548         iphlen = m->m_pkthdr.csum_iphlen;
4549         thoff = m->m_pkthdr.csum_thlen;
4550         hoff = m->m_pkthdr.csum_lhlen;
4551
4552         KASSERT(iphlen > 0, ("invalid ip hlen"));
4553         KASSERT(thoff > 0, ("invalid tcp hlen"));
4554         KASSERT(hoff > 0, ("invalid ether hlen"));
4555
4556         if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
4557                 m = m_pullup(m, hoff + iphlen + thoff);
4558                 if (m == NULL) {
4559                         *mp = NULL;
4560                         return ENOBUFS;
4561                 }
4562                 *mp = m;
4563         }
4564         if (txr->tx_flags & IGB_TXFLAG_TSO_IPLEN0) {
4565                 struct ip *ip;
4566
4567                 ip = mtodoff(m, struct ip *, hoff);
4568                 ip->ip_len = 0;
4569         }
4570
4571         return 0;
4572 }
4573
4574 static void
4575 igb_tso_ctx(struct igb_tx_ring *txr, struct mbuf *m, uint32_t *hlen)
4576 {
4577         struct e1000_adv_tx_context_desc *TXD;
4578         uint32_t vlan_macip_lens, type_tucmd_mlhl, mss_l4len_idx;
4579         int hoff, ctxd, iphlen, thoff;
4580
4581         iphlen = m->m_pkthdr.csum_iphlen;
4582         thoff = m->m_pkthdr.csum_thlen;
4583         hoff = m->m_pkthdr.csum_lhlen;
4584
4585         vlan_macip_lens = type_tucmd_mlhl = mss_l4len_idx = 0;
4586
4587         ctxd = txr->next_avail_desc;
4588         TXD = (struct e1000_adv_tx_context_desc *)&txr->tx_base[ctxd];
4589
4590         if (m->m_flags & M_VLANTAG) {
4591                 uint16_t vlantag;
4592
4593                 vlantag = htole16(m->m_pkthdr.ether_vlantag);
4594                 vlan_macip_lens |= (vlantag << E1000_ADVTXD_VLAN_SHIFT);
4595         }
4596
4597         vlan_macip_lens |= (hoff << E1000_ADVTXD_MACLEN_SHIFT);
4598         vlan_macip_lens |= iphlen;
4599
4600         type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4601         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
4602         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
4603
4604         mss_l4len_idx |= (m->m_pkthdr.tso_segsz << E1000_ADVTXD_MSS_SHIFT);
4605         mss_l4len_idx |= (thoff << E1000_ADVTXD_L4LEN_SHIFT);
4606         /* 82575 needs the queue index added */
4607         if (txr->sc->hw.mac.type == e1000_82575)
4608                 mss_l4len_idx |= txr->me << 4;
4609
4610         TXD->vlan_macip_lens = htole32(vlan_macip_lens);
4611         TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
4612         TXD->seqnum_seed = htole32(0);
4613         TXD->mss_l4len_idx = htole32(mss_l4len_idx);
4614
4615         /* We've consumed the first desc, adjust counters */
4616         if (++ctxd == txr->num_tx_desc)
4617                 ctxd = 0;
4618         txr->next_avail_desc = ctxd;
4619         --txr->tx_avail;
4620
4621         *hlen = hoff + iphlen + thoff;
4622 }
4623
4624 static void
4625 igb_setup_serializer(struct igb_softc *sc)
4626 {
4627         const struct igb_msix_data *msix;
4628         int i, j;
4629
4630         /*
4631          * Allocate serializer array
4632          */
4633
4634         /* Main + TX + RX */
4635         sc->serialize_cnt = 1 + sc->tx_ring_cnt + sc->rx_ring_cnt;
4636
4637         /* Aggregate TX/RX MSI-X */
4638         for (i = 0; i < sc->msix_cnt; ++i) {
4639                 msix = &sc->msix_data[i];
4640                 if (msix->msix_serialize == &msix->msix_serialize0)
4641                         sc->serialize_cnt++;
4642         }
4643
4644         sc->serializes =
4645             kmalloc(sc->serialize_cnt * sizeof(struct lwkt_serialize *),
4646                 M_DEVBUF, M_WAITOK | M_ZERO);
4647
4648         /*
4649          * Setup serializers
4650          *
4651          * NOTE: Order is critical
4652          */
4653
4654         i = 0;
4655         KKASSERT(i < sc->serialize_cnt);
4656         sc->serializes[i++] = &sc->main_serialize;
4657
4658         for (j = 0; j < sc->msix_cnt; ++j) {
4659                 msix = &sc->msix_data[j];
4660                 if (msix->msix_serialize == &msix->msix_serialize0) {
4661                         KKASSERT(i < sc->serialize_cnt);
4662                         sc->serializes[i++] = msix->msix_serialize;
4663                 }
4664         }
4665
4666         sc->tx_serialize = i;
4667         for (j = 0; j < sc->tx_ring_cnt; ++j) {
4668                 KKASSERT(i < sc->serialize_cnt);
4669                 sc->serializes[i++] = &sc->tx_rings[j].tx_serialize;
4670         }
4671
4672         sc->rx_serialize = i;
4673         for (j = 0; j < sc->rx_ring_cnt; ++j) {
4674                 KKASSERT(i < sc->serialize_cnt);
4675                 sc->serializes[i++] = &sc->rx_rings[j].rx_serialize;
4676         }
4677
4678         KKASSERT(i == sc->serialize_cnt);
4679 }
4680
4681 static void
4682 igb_msix_rx_conf(struct igb_softc *sc, int i, int *x0, int offset)
4683 {
4684         int x = *x0;
4685
4686         for (; i < sc->rx_ring_msix; ++i) {
4687                 struct igb_rx_ring *rxr = &sc->rx_rings[i];
4688                 struct igb_msix_data *msix;
4689
4690                 KKASSERT(x < sc->msix_cnt);
4691                 msix = &sc->msix_data[x++];
4692
4693                 rxr->rx_intr_bit = msix->msix_vector;
4694                 rxr->rx_intr_mask = msix->msix_mask;
4695
4696                 msix->msix_serialize = &rxr->rx_serialize;
4697                 msix->msix_func = igb_msix_rx;
4698                 msix->msix_arg = rxr;
4699
4700                 msix->msix_cpuid = i + offset;
4701                 KKASSERT(msix->msix_cpuid < ncpus2);
4702
4703                 ksnprintf(msix->msix_desc, sizeof(msix->msix_desc), "%s rx%d",
4704                     device_get_nameunit(sc->dev), i);
4705
4706                 msix->msix_rate = IGB_MSIX_RX_RATE;
4707                 ksnprintf(msix->msix_rate_desc, sizeof(msix->msix_rate_desc),
4708                     "RX%d interrupt rate", i);
4709         }
4710         *x0 = x;
4711 }
4712
4713 static void
4714 igb_msix_tx_conf(struct igb_softc *sc, int i, int *x0, int offset)
4715 {
4716         int x = *x0;
4717
4718         for (; i < sc->tx_ring_msix; ++i) {
4719                 struct igb_tx_ring *txr = &sc->tx_rings[i];
4720                 struct igb_msix_data *msix;
4721
4722                 KKASSERT(x < sc->msix_cnt);
4723                 msix = &sc->msix_data[x++];
4724
4725                 txr->tx_intr_bit = msix->msix_vector;
4726                 txr->tx_intr_mask = msix->msix_mask;
4727
4728                 msix->msix_serialize = &txr->tx_serialize;
4729                 msix->msix_func = igb_msix_tx;
4730                 msix->msix_arg = txr;
4731
4732                 msix->msix_cpuid = i + offset;
4733                 KKASSERT(msix->msix_cpuid < ncpus2);
4734                 txr->tx_intr_cpuid = msix->msix_cpuid;
4735
4736                 ksnprintf(msix->msix_desc, sizeof(msix->msix_desc), "%s tx%d",
4737                     device_get_nameunit(sc->dev), i);
4738
4739                 msix->msix_rate = IGB_MSIX_TX_RATE;
4740                 ksnprintf(msix->msix_rate_desc, sizeof(msix->msix_rate_desc),
4741                     "TX%d interrupt rate", i);
4742         }
4743         *x0 = x;
4744 }
4745
4746 static void
4747 igb_msix_rxtx(void *arg)
4748 {
4749         struct igb_msix_data *msix = arg;
4750         struct igb_rx_ring *rxr = msix->msix_rx;
4751         struct igb_tx_ring *txr = msix->msix_tx;
4752
4753         ASSERT_SERIALIZED(&msix->msix_serialize0);
4754
4755         lwkt_serialize_enter(&rxr->rx_serialize);
4756         igb_rxeof(rxr, -1);
4757         lwkt_serialize_exit(&rxr->rx_serialize);
4758
4759         lwkt_serialize_enter(&txr->tx_serialize);
4760         igb_txeof(txr);
4761         if (!ifsq_is_empty(txr->ifsq))
4762                 ifsq_devstart(txr->ifsq);
4763         lwkt_serialize_exit(&txr->tx_serialize);
4764
4765         E1000_WRITE_REG(&msix->msix_sc->hw, E1000_EIMS, msix->msix_mask);
4766 }