Upgrade GCC from 4.7.2 to 4.7.3 on the vendor branch
[dragonfly.git] / contrib / gcc-4.7 / gcc / graphite-dependences.c
1 /* Data dependence analysis for Graphite.
2    Copyright (C) 2009, 2010, 2013 Free Software Foundation, Inc.
3    Contributed by Sebastian Pop <sebastian.pop@amd.com> and
4    Konrad Trifunovic <konrad.trifunovic@inria.fr>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tree-flow.h"
26 #include "tree-dump.h"
27 #include "cfgloop.h"
28 #include "tree-chrec.h"
29 #include "tree-data-ref.h"
30 #include "tree-scalar-evolution.h"
31 #include "sese.h"
32
33 #ifdef HAVE_cloog
34 #include "ppl_c.h"
35 #include "graphite-ppl.h"
36 #include "graphite-poly.h"
37 #include "graphite-dependences.h"
38 #include "graphite-cloog-util.h"
39
40 /* Comparison function for poly_ddr hash table.  */
41
42 int
43 eq_poly_ddr_p (const void *pddr1, const void *pddr2)
44 {
45   const struct poly_ddr *p1 = (const struct poly_ddr *) pddr1;
46   const struct poly_ddr *p2 = (const struct poly_ddr *) pddr2;
47
48   return (PDDR_SOURCE (p1) == PDDR_SOURCE (p2)
49           && PDDR_SINK (p1) == PDDR_SINK (p2));
50 }
51
52 /* Hash function for poly_ddr hashtable.  */
53
54 hashval_t
55 hash_poly_ddr_p (const void *pddr)
56 {
57   const struct poly_ddr *p = (const struct poly_ddr *) pddr;
58
59   return (hashval_t) ((intptr_t) PDDR_SOURCE (p) + (intptr_t) PDDR_SINK (p));
60 }
61
62 /* Returns true when PDDR has no dependence.  */
63
64 static bool
65 pddr_is_empty (poly_ddr_p pddr)
66 {
67   if (!pddr)
68     return true;
69
70   gcc_assert (PDDR_KIND (pddr) != unknown_dependence);
71
72   return PDDR_KIND (pddr) == no_dependence ? true : false;
73 }
74
75 /* Prints to FILE the layout of the dependence polyhedron of PDDR:
76
77    T1|I1|T2|I2|S1|S2|G
78
79    with
80    | T1 and T2 the scattering dimensions for PDDR_SOURCE and PDDR_SINK
81    | I1 and I2 the iteration domains
82    | S1 and S2 the subscripts
83    | G the global parameters.  */
84
85 static void
86 print_dependence_polyhedron_layout (FILE *file, poly_ddr_p pddr)
87 {
88   poly_dr_p pdr1 = PDDR_SOURCE (pddr);
89   poly_dr_p pdr2 = PDDR_SINK (pddr);
90   poly_bb_p pbb1 = PDR_PBB (pdr1);
91   poly_bb_p pbb2 = PDR_PBB (pdr2);
92
93   graphite_dim_t i;
94   graphite_dim_t tdim1 = PDDR_ORIGINAL_SCATTERING_P (pddr) ?
95     pbb_nb_scattering_orig (pbb1) : pbb_nb_scattering_transform (pbb1);
96   graphite_dim_t tdim2 = PDDR_ORIGINAL_SCATTERING_P (pddr) ?
97     pbb_nb_scattering_orig (pbb2) : pbb_nb_scattering_transform (pbb2);
98   graphite_dim_t idim1 = pbb_dim_iter_domain (pbb1);
99   graphite_dim_t idim2 = pbb_dim_iter_domain (pbb2);
100   graphite_dim_t sdim1 = PDR_NB_SUBSCRIPTS (pdr1) + 1;
101   graphite_dim_t sdim2 = PDR_NB_SUBSCRIPTS (pdr2) + 1;
102   graphite_dim_t gdim = scop_nb_params (PBB_SCOP (pbb1));
103
104   fprintf (file, "#  eq");
105
106   for (i = 0; i < tdim1; i++)
107     fprintf (file, "   t1_%d", (int) i);
108   for (i = 0; i < idim1; i++)
109     fprintf (file, "   i1_%d", (int) i);
110   for (i = 0; i < tdim2; i++)
111     fprintf (file, "   t2_%d", (int) i);
112   for (i = 0; i < idim2; i++)
113     fprintf (file, "   i2_%d", (int) i);
114   for (i = 0; i < sdim1; i++)
115     fprintf (file, "   s1_%d", (int) i);
116   for (i = 0; i < sdim2; i++)
117     fprintf (file, "   s2_%d", (int) i);
118   for (i = 0; i < gdim; i++)
119     fprintf (file, "    g_%d", (int) i);
120
121   fprintf (file, "    cst\n");
122 }
123
124 /* Prints to FILE the poly_ddr_p PDDR.  */
125
126 void
127 print_pddr (FILE *file, poly_ddr_p pddr)
128 {
129   fprintf (file, "pddr (kind: ");
130
131   if (PDDR_KIND (pddr) == unknown_dependence)
132     fprintf (file, "unknown_dependence");
133   else if (PDDR_KIND (pddr) == no_dependence)
134     fprintf (file, "no_dependence");
135   else if (PDDR_KIND (pddr) == has_dependence)
136     fprintf (file, "has_dependence");
137
138   fprintf (file, "\n  source ");
139   print_pdr (file, PDDR_SOURCE (pddr), 2);
140
141   fprintf (file, "\n  sink ");
142   print_pdr (file, PDDR_SINK (pddr), 2);
143
144   if (PDDR_KIND (pddr) == has_dependence)
145     {
146       fprintf (file, "\n  dependence polyhedron (\n");
147       print_dependence_polyhedron_layout (file, pddr);
148       ppl_print_powerset_matrix (file, PDDR_DDP (pddr));
149       ppl_io_fprint_Pointset_Powerset_C_Polyhedron (file, PDDR_DDP (pddr));
150       fprintf (file, ")\n");
151     }
152
153   fprintf (file, ")\n");
154 }
155
156 /* Prints to STDERR the poly_ddr_p PDDR.  */
157
158 DEBUG_FUNCTION void
159 debug_pddr (poly_ddr_p pddr)
160 {
161   print_pddr (stderr, pddr);
162 }
163
164
165 /* Remove all the dimensions except alias information at dimension
166    ALIAS_DIM.  */
167
168 static void
169 build_alias_set_powerset (ppl_Pointset_Powerset_C_Polyhedron_t alias_powerset,
170                           ppl_dimension_type alias_dim)
171 {
172   ppl_dimension_type *ds;
173   ppl_dimension_type access_dim;
174   unsigned i, pos;
175
176   ppl_Pointset_Powerset_C_Polyhedron_space_dimension (alias_powerset,
177                                                       &access_dim);
178   ds = XNEWVEC (ppl_dimension_type, access_dim - 1);
179   gcc_assert (alias_dim < access_dim);
180
181   for (pos = 0, i = 0; i < access_dim; i++)
182     if (i != alias_dim)
183       ds[pos++] = i;
184
185   ppl_Pointset_Powerset_C_Polyhedron_remove_space_dimensions (alias_powerset,
186                                                               ds,
187                                                               access_dim - 1);
188   free (ds);
189 }
190
191 /* Return true when PDR1 and PDR2 may alias.  */
192
193 static bool
194 poly_drs_may_alias_p (poly_dr_p pdr1, poly_dr_p pdr2)
195 {
196   ppl_Pointset_Powerset_C_Polyhedron_t alias_powerset1, alias_powerset2;
197   ppl_Pointset_Powerset_C_Polyhedron_t accesses1 = PDR_ACCESSES (pdr1);
198   ppl_Pointset_Powerset_C_Polyhedron_t accesses2 = PDR_ACCESSES (pdr2);
199   ppl_dimension_type alias_dim1 = pdr_alias_set_dim (pdr1);
200   ppl_dimension_type alias_dim2 = pdr_alias_set_dim (pdr2);
201   int empty_p;
202
203   ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
204     (&alias_powerset1, accesses1);
205   ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
206     (&alias_powerset2, accesses2);
207
208   build_alias_set_powerset (alias_powerset1, alias_dim1);
209   build_alias_set_powerset (alias_powerset2, alias_dim2);
210
211   ppl_Pointset_Powerset_C_Polyhedron_intersection_assign
212     (alias_powerset1, alias_powerset2);
213
214   empty_p = ppl_Pointset_Powerset_C_Polyhedron_is_empty (alias_powerset1);
215
216   ppl_delete_Pointset_Powerset_C_Polyhedron (alias_powerset1);
217   ppl_delete_Pointset_Powerset_C_Polyhedron (alias_powerset2);
218
219   return !empty_p;
220 }
221
222 /* Swap [cut0, ..., cut1] to the end of DR: "a CUT0 b CUT1 c" is
223    transformed into "a CUT0 c CUT1' b"
224
225    Add NB0 zeros before "a":  "00...0 a CUT0 c CUT1' b"
226    Add NB1 zeros between "a" and "c":  "00...0 a 00...0 c CUT1' b"
227    Add DIM - NB0 - NB1 - PDIM zeros between "c" and "b":
228    "00...0 a 00...0 c 00...0 b".  */
229
230 static ppl_Pointset_Powerset_C_Polyhedron_t
231 map_dr_into_dep_poly (graphite_dim_t dim,
232                       ppl_Pointset_Powerset_C_Polyhedron_t dr,
233                       graphite_dim_t cut0, graphite_dim_t cut1,
234                       graphite_dim_t nb0, graphite_dim_t nb1)
235 {
236   ppl_dimension_type pdim;
237   ppl_dimension_type *map;
238   ppl_Pointset_Powerset_C_Polyhedron_t res;
239   ppl_dimension_type i;
240
241   ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
242     (&res, dr);
243   ppl_Pointset_Powerset_C_Polyhedron_space_dimension (res, &pdim);
244
245   map = (ppl_dimension_type *) XNEWVEC (ppl_dimension_type, pdim);
246
247   /* First mapping: move 'g' vector to right position.  */
248   for (i = 0; i < cut0; i++)
249     map[i] = i;
250
251   for (i = cut0; i < cut1; i++)
252     map[i] = pdim - cut1 + i;
253
254   for (i = cut1; i < pdim; i++)
255     map[i] = cut0 + i - cut1;
256
257   ppl_Pointset_Powerset_C_Polyhedron_map_space_dimensions (res, map, pdim);
258   free (map);
259
260   /* After swapping 's' and 'g' vectors, we have to update a new cut.  */
261   cut1 = pdim - cut1 + cut0;
262
263   ppl_insert_dimensions_pointset (res, 0, nb0);
264   ppl_insert_dimensions_pointset (res, nb0 + cut0, nb1);
265   ppl_insert_dimensions_pointset (res, nb0 + nb1 + cut1,
266                                   dim - nb0 - nb1 - pdim);
267
268   return res;
269 }
270
271 /* Builds subscript equality constraints.  */
272
273 static ppl_Pointset_Powerset_C_Polyhedron_t
274 dr_equality_constraints (graphite_dim_t dim,
275                          graphite_dim_t pos, graphite_dim_t nb_subscripts)
276 {
277   ppl_Polyhedron_t eqs;
278   ppl_Pointset_Powerset_C_Polyhedron_t res;
279   graphite_dim_t i;
280
281   ppl_new_C_Polyhedron_from_space_dimension (&eqs, dim, 0);
282
283   for (i = 0; i < nb_subscripts; i++)
284     {
285       ppl_Constraint_t cstr
286         = ppl_build_relation (dim, pos + i, pos + i + nb_subscripts,
287                               0, PPL_CONSTRAINT_TYPE_EQUAL);
288       ppl_Polyhedron_add_constraint (eqs, cstr);
289       ppl_delete_Constraint (cstr);
290     }
291
292   ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron (&res, eqs);
293   ppl_delete_Polyhedron (eqs);
294   return res;
295 }
296
297 /* Builds scheduling inequality constraints: when DIRECTION is
298    1 builds a GE constraint,
299    0 builds an EQ constraint,
300    -1 builds a LE constraint.
301    DIM is the dimension of the scheduling space.
302    POS and POS + OFFSET are the dimensions that are related.  */
303
304 static ppl_Pointset_Powerset_C_Polyhedron_t
305 build_pairwise_scheduling (graphite_dim_t dim,
306                            graphite_dim_t pos,
307                            graphite_dim_t offset,
308                            int direction)
309 {
310   ppl_Pointset_Powerset_C_Polyhedron_t res;
311   ppl_Polyhedron_t equalities;
312   ppl_Constraint_t cstr;
313   graphite_dim_t a = pos;
314   graphite_dim_t b = pos + offset;
315
316   ppl_new_C_Polyhedron_from_space_dimension (&equalities, dim, 0);
317
318   switch (direction)
319     {
320     case 1:
321       /* Builds "a + 1 <= b.  */
322       cstr = ppl_build_relation (dim, a, b, 1,
323                                  PPL_CONSTRAINT_TYPE_LESS_OR_EQUAL);
324       break;
325
326     case 0:
327       /* Builds "a = b.  */
328       cstr = ppl_build_relation (dim, a, b, 0,
329                                  PPL_CONSTRAINT_TYPE_EQUAL);
330       break;
331
332     case -1:
333       /* Builds "a >= b + 1.  */
334       cstr = ppl_build_relation (dim, a, b, -1,
335                                  PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
336       break;
337
338     default:
339       gcc_unreachable ();
340     }
341
342   ppl_Polyhedron_add_constraint (equalities, cstr);
343   ppl_delete_Constraint (cstr);
344
345   ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron (&res, equalities);
346   ppl_delete_Polyhedron (equalities);
347   return res;
348 }
349
350 /* Add to a non empty polyhedron BAG the precedence constraints for
351    the lexicographical comparison of time vectors in BAG following the
352    lexicographical order.  DIM is the dimension of the polyhedron BAG.
353    TDIM is the number of loops common to the two statements that are
354    compared lexicographically, i.e. the number of loops containing
355    both statements.  OFFSET is the number of dimensions needed to
356    represent the first statement, i.e. dimT1 + dimI1 in the layout of
357    the BAG polyhedron: T1|I1|T2|I2|S1|S2|G.  When DIRECTION is set to
358    1, compute the direct dependence from PDR1 to PDR2, and when
359    DIRECTION is -1, compute the reversed dependence relation, from
360    PDR2 to PDR1.  */
361
362 static ppl_Pointset_Powerset_C_Polyhedron_t
363 build_lexicographical_constraint (ppl_Pointset_Powerset_C_Polyhedron_t bag,
364                                   graphite_dim_t dim,
365                                   graphite_dim_t tdim,
366                                   graphite_dim_t offset,
367                                   int direction)
368 {
369   graphite_dim_t i;
370   ppl_Pointset_Powerset_C_Polyhedron_t res, lex;
371
372   ppl_new_Pointset_Powerset_C_Polyhedron_from_space_dimension (&res, dim, 1);
373
374   lex = build_pairwise_scheduling (dim, 0, offset, direction);
375   ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (lex, bag);
376
377   if (!ppl_powerset_is_empty (lex))
378     ppl_Pointset_Powerset_C_Polyhedron_upper_bound_assign (res, lex);
379
380   ppl_delete_Pointset_Powerset_C_Polyhedron (lex);
381
382   for (i = 0; i < tdim - 1; i++)
383     {
384       ppl_Pointset_Powerset_C_Polyhedron_t sceq;
385
386       sceq = build_pairwise_scheduling (dim, i, offset, 0);
387       ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (bag, sceq);
388       ppl_delete_Pointset_Powerset_C_Polyhedron (sceq);
389
390       if (ppl_powerset_is_empty (bag))
391         break;
392
393       lex = build_pairwise_scheduling (dim, i + 1, offset, direction);
394       ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (lex, bag);
395
396       if (!ppl_powerset_is_empty (lex))
397         ppl_Pointset_Powerset_C_Polyhedron_upper_bound_assign (res, lex);
398
399       ppl_delete_Pointset_Powerset_C_Polyhedron (lex);
400     }
401
402   return res;
403 }
404
405 /* Build the dependence polyhedron for data references PDR1 and PDR2.
406    The layout of the dependence polyhedron is:
407
408    T1|I1|T2|I2|S1|S2|G
409
410    with
411    | T1 and T2 the scattering dimensions for PDR1 and PDR2
412    | I1 and I2 the iteration domains
413    | S1 and S2 the subscripts
414    | G the global parameters.
415
416    When DIRECTION is set to 1, compute the direct dependence from PDR1
417    to PDR2, and when DIRECTION is -1, compute the reversed dependence
418    relation, from PDR2 to PDR1.  */
419
420 static ppl_Pointset_Powerset_C_Polyhedron_t
421 dependence_polyhedron (poly_dr_p pdr1, poly_dr_p pdr2,
422                        int direction, bool original_scattering_p)
423 {
424   poly_bb_p pbb1 = PDR_PBB (pdr1);
425   poly_bb_p pbb2 = PDR_PBB (pdr2);
426   scop_p scop = PBB_SCOP (pbb1);
427   graphite_dim_t tdim1 = original_scattering_p ?
428     pbb_nb_scattering_orig (pbb1) : pbb_nb_scattering_transform (pbb1);
429   graphite_dim_t tdim2 = original_scattering_p ?
430     pbb_nb_scattering_orig (pbb2) : pbb_nb_scattering_transform (pbb2);
431   graphite_dim_t ddim1 = pbb_dim_iter_domain (pbb1);
432   graphite_dim_t ddim2 = pbb_dim_iter_domain (pbb2);
433   graphite_dim_t sdim1 = PDR_NB_SUBSCRIPTS (pdr1) + 1;
434   graphite_dim_t sdim2 = PDR_NB_SUBSCRIPTS (pdr2) + 1;
435   graphite_dim_t gdim = scop_nb_params (scop);
436   graphite_dim_t dim1 = pdr_dim (pdr1);
437   graphite_dim_t dim2 = pdr_dim (pdr2);
438   graphite_dim_t dim = tdim1 + tdim2 + dim1 + dim2 - gdim;
439   ppl_Pointset_Powerset_C_Polyhedron_t res;
440   ppl_Pointset_Powerset_C_Polyhedron_t idr1, idr2;
441   ppl_Pointset_Powerset_C_Polyhedron_t sc1, sc2, dreq;
442   ppl_Pointset_Powerset_C_Polyhedron_t lex;
443
444   gcc_assert (PBB_SCOP (pbb1) == PBB_SCOP (pbb2));
445
446   combine_context_id_scat (&sc1, pbb1, original_scattering_p);
447   combine_context_id_scat (&sc2, pbb2, original_scattering_p);
448
449   ppl_insert_dimensions_pointset (sc1, tdim1 + ddim1,
450                                   tdim2 + ddim2 + sdim1 + sdim2);
451
452   ppl_insert_dimensions_pointset (sc2, 0, tdim1 + ddim1);
453   ppl_insert_dimensions_pointset (sc2, tdim1 + ddim1 + tdim2 + ddim2,
454                                   sdim1 + sdim2);
455
456   idr1 = map_dr_into_dep_poly (dim, PDR_ACCESSES (pdr1), ddim1, ddim1 + gdim,
457                                tdim1, tdim2 + ddim2);
458   idr2 = map_dr_into_dep_poly (dim, PDR_ACCESSES (pdr2), ddim2, ddim2 + gdim,
459                                tdim1 + ddim1 + tdim2, sdim1);
460
461   /* Now add the subscript equalities.  */
462   dreq = dr_equality_constraints (dim, tdim1 + ddim1 + tdim2 + ddim2, sdim1);
463
464   ppl_new_Pointset_Powerset_C_Polyhedron_from_space_dimension (&res, dim, 0);
465   ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, sc1);
466   ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, sc2);
467   ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, idr1);
468   ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, idr2);
469   ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (res, dreq);
470   ppl_delete_Pointset_Powerset_C_Polyhedron (sc1);
471   ppl_delete_Pointset_Powerset_C_Polyhedron (sc2);
472   ppl_delete_Pointset_Powerset_C_Polyhedron (idr1);
473   ppl_delete_Pointset_Powerset_C_Polyhedron (idr2);
474   ppl_delete_Pointset_Powerset_C_Polyhedron (dreq);
475
476   if (ppl_powerset_is_empty (res))
477     return NULL;
478
479   lex = build_lexicographical_constraint (res, dim, MIN (tdim1, tdim2),
480                                           tdim1 + ddim1, direction);
481   ppl_delete_Pointset_Powerset_C_Polyhedron (res);
482
483   return lex;
484 }
485
486 /* Build the dependence polyhedron for data references PDR1 and PDR2.
487    If possible use already cached information.
488
489    When DIRECTION is set to 1, compute the direct dependence from PDR1
490    to PDR2, and when DIRECTION is -1, compute the reversed dependence
491    relation, from PDR2 to PDR1.  */
492
493 static poly_ddr_p
494 new_poly_ddr (poly_dr_p pdr1, poly_dr_p pdr2,
495               int direction, bool original_scattering_p)
496 {
497   PTR *x = NULL;
498   poly_ddr_p res;
499   bool may_alias;
500
501   /* Return the PDDR from the cache if it already has been computed.  */
502   if (original_scattering_p)
503     {
504       struct poly_ddr tmp;
505       scop_p scop = PBB_SCOP (PDR_PBB (pdr1));
506
507       tmp.source = pdr1;
508       tmp.sink = pdr2;
509       x = htab_find_slot (SCOP_ORIGINAL_PDDRS (scop),
510                           &tmp, INSERT);
511
512       if (x && *x)
513         return (poly_ddr_p) *x;
514     }
515
516   res = XNEW (struct poly_ddr);
517   PDDR_SOURCE (res) = pdr1;
518   PDDR_SINK (res) = pdr2;
519   PDDR_DDP (res) = NULL;
520   PDDR_ORIGINAL_SCATTERING_P (res) = original_scattering_p;
521   PDDR_KIND (res) = unknown_dependence;
522
523   may_alias = poly_drs_may_alias_p (pdr1, pdr2);
524
525   if (!(pdr_read_p (pdr1) && pdr_read_p (pdr2))
526       && PDR_BASE_OBJECT_SET (pdr1) != PDR_BASE_OBJECT_SET (pdr2)
527       && may_alias)
528     PDDR_KIND (res) = unknown_dependence;
529
530   else if (!(pdr_read_p (pdr1) && pdr_read_p (pdr2))
531            && same_pdr_p (pdr1, pdr2)
532            && may_alias)
533     {
534       PDDR_DDP (res) = dependence_polyhedron (pdr1, pdr2, direction,
535                                               original_scattering_p);
536       if (PDDR_DDP (res))
537         PDDR_KIND (res) = has_dependence;
538       else
539         PDDR_KIND (res) = no_dependence;
540     }
541   else
542     PDDR_KIND (res) = no_dependence;
543
544   if (original_scattering_p)
545     *x = res;
546
547   return res;
548 }
549
550 /* Free the data dependence relation poly_ddr_p P.  */
551
552 void
553 free_poly_ddr (void *p)
554 {
555   poly_ddr_p pddr = (poly_ddr_p) p;
556   ppl_delete_Pointset_Powerset_C_Polyhedron (PDDR_DDP (pddr));
557   free (pddr);
558 }
559
560 /* Return true when the data dependence relation between the data
561    references PDR1 belonging to PBB1 and PDR2 is part of a
562    reduction.  */
563
564 static inline bool
565 reduction_dr_1 (poly_bb_p pbb1, poly_dr_p pdr1, poly_dr_p pdr2)
566 {
567   int i;
568   poly_dr_p pdr;
569
570   FOR_EACH_VEC_ELT (poly_dr_p, PBB_DRS (pbb1), i, pdr)
571     if (PDR_TYPE (pdr) == PDR_WRITE
572         && same_pdr_p (pdr, pdr1) && same_pdr_p (pdr, pdr2))
573       return true;
574
575   return false;
576 }
577
578 /* Return true when the data dependence relation between the data
579    references PDR1 belonging to PBB1 and PDR2 belonging to PBB2 is
580    part of a reduction.  */
581
582 static inline bool
583 reduction_dr_p (poly_dr_p pdr1, poly_dr_p pdr2)
584 {
585   poly_bb_p pbb1 = PDR_PBB (pdr1);
586   poly_bb_p pbb2 = PDR_PBB (pdr2);
587
588   if (PBB_IS_REDUCTION (pbb1))
589     return reduction_dr_1 (pbb1, pdr1, pdr2);
590
591   if (PBB_IS_REDUCTION (pbb2))
592     return reduction_dr_1 (pbb2, pdr2, pdr1);
593
594   return false;
595 }
596
597 /* Returns true when the PBB_TRANSFORMED_SCATTERING functions of PBB1
598    and PBB2 respect the data dependences of PBB_ORIGINAL_SCATTERING
599    functions.  */
600
601 static bool
602 graphite_legal_transform_dr (poly_dr_p pdr1, poly_dr_p pdr2)
603 {
604   ppl_Pointset_Powerset_C_Polyhedron_t po, pt;
605   graphite_dim_t ddim1, otdim1, otdim2, ttdim1, ttdim2;
606   ppl_Pointset_Powerset_C_Polyhedron_t po_temp;
607   ppl_dimension_type pdim;
608   bool is_empty_p;
609   poly_ddr_p opddr, tpddr;
610   poly_bb_p pbb1, pbb2;
611
612   if (reduction_dr_p (pdr1, pdr2))
613     return true;
614
615   /* We build the reverse dependence relation for the transformed
616      scattering, such that when we intersect it with the original PO,
617      we get an empty intersection when the transform is legal:
618      i.e. the transform should reverse no dependences, and so PT, the
619      reversed transformed PDDR, should have no constraint from PO.  */
620   opddr = new_poly_ddr (pdr1, pdr2, 1, true);
621
622   if (PDDR_KIND (opddr) == unknown_dependence)
623     return false;
624
625     /* There are no dependences between PDR1 and PDR2 in the original
626        version of the program, or after the transform, so the
627        transform is legal.  */
628   if (pddr_is_empty (opddr))
629     return true;
630
631   tpddr = new_poly_ddr (pdr1, pdr2, -1, false);
632
633   if (PDDR_KIND (tpddr) == unknown_dependence)
634     {
635       free_poly_ddr (tpddr);
636       return false;
637     }
638
639   if (pddr_is_empty (tpddr))
640     {
641       free_poly_ddr (tpddr);
642       return true;
643     }
644
645   po = PDDR_DDP (opddr);
646   pt = PDDR_DDP (tpddr);
647
648   /* Copy PO into PO_TEMP, such that PO is not destroyed.  PO is
649      stored in a cache and should not be modified or freed.  */
650   ppl_Pointset_Powerset_C_Polyhedron_space_dimension (po, &pdim);
651   ppl_new_Pointset_Powerset_C_Polyhedron_from_space_dimension (&po_temp,
652                                                                pdim, 0);
653   ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (po_temp, po);
654
655   /* Extend PO and PT to have the same dimensions.  */
656   pbb1 = PDR_PBB (pdr1);
657   pbb2 = PDR_PBB (pdr2);
658   ddim1 = pbb_dim_iter_domain (pbb1);
659   otdim1 = pbb_nb_scattering_orig (pbb1);
660   otdim2 = pbb_nb_scattering_orig (pbb2);
661   ttdim1 = pbb_nb_scattering_transform (pbb1);
662   ttdim2 = pbb_nb_scattering_transform (pbb2);
663   ppl_insert_dimensions_pointset (po_temp, otdim1, ttdim1);
664   ppl_insert_dimensions_pointset (po_temp, otdim1 + ttdim1 + ddim1 + otdim2,
665                                   ttdim2);
666   ppl_insert_dimensions_pointset (pt, 0, otdim1);
667   ppl_insert_dimensions_pointset (pt, otdim1 + ttdim1 + ddim1, otdim2);
668
669   ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (po_temp, pt);
670   is_empty_p = ppl_powerset_is_empty (po_temp);
671
672   ppl_delete_Pointset_Powerset_C_Polyhedron (po_temp);
673   free_poly_ddr (tpddr);
674
675   if (dump_file && (dump_flags & TDF_DETAILS))
676     fprintf (dump_file, "\nloop carries dependency.\n");
677
678   return is_empty_p;
679 }
680
681 /* Return true when the data dependence relation for PBB1 and PBB2 is
682    part of a reduction.  */
683
684 static inline bool
685 reduction_ddr_p (poly_bb_p pbb1, poly_bb_p pbb2)
686 {
687   return pbb1 == pbb2 && PBB_IS_REDUCTION (pbb1);
688 }
689
690 /* Iterates over the data references of PBB1 and PBB2 and detect
691    whether the transformed schedule is correct.  */
692
693 static bool
694 graphite_legal_transform_bb (poly_bb_p pbb1, poly_bb_p pbb2)
695 {
696   int i, j;
697   poly_dr_p pdr1, pdr2;
698
699   if (!PBB_PDR_DUPLICATES_REMOVED (pbb1))
700     pbb_remove_duplicate_pdrs (pbb1);
701
702   if (!PBB_PDR_DUPLICATES_REMOVED (pbb2))
703     pbb_remove_duplicate_pdrs (pbb2);
704
705   if (reduction_ddr_p (pbb1, pbb2))
706     return true;
707
708   FOR_EACH_VEC_ELT (poly_dr_p, PBB_DRS (pbb1), i, pdr1)
709     FOR_EACH_VEC_ELT (poly_dr_p, PBB_DRS (pbb2), j, pdr2)
710       if (!graphite_legal_transform_dr (pdr1, pdr2))
711         return false;
712
713   return true;
714 }
715
716 /* Iterates over the SCOP and detect whether the transformed schedule
717    is correct.  */
718
719 bool
720 graphite_legal_transform (scop_p scop)
721 {
722   int i, j;
723   poly_bb_p pbb1, pbb2;
724
725   timevar_push (TV_GRAPHITE_DATA_DEPS);
726
727   FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb1)
728     FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), j, pbb2)
729       if (!graphite_legal_transform_bb (pbb1, pbb2))
730         {
731           timevar_pop (TV_GRAPHITE_DATA_DEPS);
732           return false;
733         }
734
735   timevar_pop (TV_GRAPHITE_DATA_DEPS);
736   return true;
737 }
738
739 /* Returns TRUE when the dependence polyhedron between PDR1 and
740    PDR2 represents a loop carried dependence at level LEVEL.  */
741
742 static bool
743 graphite_carried_dependence_level_k (poly_dr_p pdr1, poly_dr_p pdr2,
744                                      int level)
745 {
746   ppl_Pointset_Powerset_C_Polyhedron_t po;
747   ppl_Pointset_Powerset_C_Polyhedron_t eqpp;
748   poly_bb_p pbb = PDR_PBB (pdr1);
749   graphite_dim_t tdim1 = pbb_nb_scattering_transform (pbb);
750   graphite_dim_t ddim1 = pbb_dim_iter_domain (pbb);
751   ppl_dimension_type dim;
752   bool empty_p;
753   poly_ddr_p pddr = new_poly_ddr (pdr1, pdr2, 1, false);
754   graphite_dim_t pos;
755
756   if (PDDR_KIND (pddr) == unknown_dependence)
757     {
758       free_poly_ddr (pddr);
759       return true;
760     }
761
762   if (pddr_is_empty (pddr))
763     {
764       free_poly_ddr (pddr);
765       return false;
766     }
767
768   po = PDDR_DDP (pddr);
769   ppl_Pointset_Powerset_C_Polyhedron_space_dimension (po, &dim);
770   pos = psct_dynamic_dim (pbb, level);
771   eqpp = build_pairwise_scheduling (dim, pos, tdim1 + ddim1, 1);
772
773   ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (eqpp, po);
774   empty_p = ppl_powerset_is_empty (eqpp);
775
776   ppl_delete_Pointset_Powerset_C_Polyhedron (eqpp);
777   free_poly_ddr (pddr);
778
779   return !empty_p;
780 }
781
782 /* Check data dependency between PBB1 and PBB2 at level LEVEL.  */
783
784 bool
785 dependency_between_pbbs_p (poly_bb_p pbb1, poly_bb_p pbb2, int level)
786 {
787   int i, j;
788   poly_dr_p pdr1, pdr2;
789
790   timevar_push (TV_GRAPHITE_DATA_DEPS);
791
792   FOR_EACH_VEC_ELT (poly_dr_p, PBB_DRS (pbb1), i, pdr1)
793     FOR_EACH_VEC_ELT (poly_dr_p, PBB_DRS (pbb2), j, pdr2)
794       if (graphite_carried_dependence_level_k (pdr1, pdr2, level))
795         {
796           timevar_pop (TV_GRAPHITE_DATA_DEPS);
797           return true;
798         }
799
800   timevar_pop (TV_GRAPHITE_DATA_DEPS);
801   return false;
802 }
803
804 /* When ORIG is true, pretty print to FILE all the original data
805    dependences of SCoP in DOT format, otherwise print the transformed
806    data deps.  */
807
808 static void
809 dot_deps_stmt_2 (FILE *file, scop_p scop, bool orig)
810 {
811   int i, j, k, l;
812   poly_bb_p pbb1, pbb2;
813   poly_dr_p pdr1, pdr2;
814
815   FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb1)
816     FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), j, pbb2)
817       {
818         FOR_EACH_VEC_ELT (poly_dr_p, PBB_DRS (pbb1), k, pdr1)
819           FOR_EACH_VEC_ELT (poly_dr_p, PBB_DRS (pbb2), l, pdr2)
820             {
821               poly_ddr_p pddr = new_poly_ddr (pdr1, pdr2, 1, orig);
822
823               if (!pddr_is_empty (pddr))
824                 {
825                   fprintf (file, orig ? "OS%d -> OS%d\n" : "TS%d -> TS%d\n",
826                            pbb_index (pbb1), pbb_index (pbb2));
827
828                   free_poly_ddr (pddr);
829                   goto done;
830                 }
831
832               free_poly_ddr (pddr);
833             }
834       done:;
835       }
836 }
837
838 /* Pretty print to FILE all the data dependences of SCoP in DOT
839    format.  */
840
841 static void
842 dot_deps_stmt_1 (FILE *file, scop_p scop)
843 {
844   fputs ("digraph all {\n", file);
845
846   dot_deps_stmt_2 (file, scop, true);
847   dot_deps_stmt_2 (file, scop, false);
848
849   fputs ("}\n\n", file);
850 }
851
852 /* When ORIG is true, pretty print to FILE all the original data
853    dependences of SCoP in DOT format, otherwise print the transformed
854    data deps.  */
855
856 static void
857 dot_deps_2 (FILE *file, scop_p scop, bool orig)
858 {
859   int i, j, k, l;
860   poly_bb_p pbb1, pbb2;
861   poly_dr_p pdr1, pdr2;
862
863   FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb1)
864     FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), j, pbb2)
865       FOR_EACH_VEC_ELT (poly_dr_p, PBB_DRS (pbb1), k, pdr1)
866         FOR_EACH_VEC_ELT (poly_dr_p, PBB_DRS (pbb2), l, pdr2)
867           {
868             poly_ddr_p pddr = new_poly_ddr (pdr1, pdr2, 1, orig);
869
870             if (!pddr_is_empty (pddr))
871               fprintf (file, orig
872                        ? "OS%d_D%d -> OS%d_D%d\n" : "TS%d_D%d -> TS%d_D%d\n",
873                        pbb_index (pbb1), PDR_ID (pdr1),
874                        pbb_index (pbb2), PDR_ID (pdr2));
875
876             free_poly_ddr (pddr);
877           }
878 }
879
880 /* Pretty print to FILE all the data dependences of SCoP in DOT
881    format.  */
882
883 static void
884 dot_deps_1 (FILE *file, scop_p scop)
885 {
886   fputs ("digraph all {\n", file);
887
888   dot_deps_2 (file, scop, true);
889   dot_deps_2 (file, scop, false);
890
891   fputs ("}\n\n", file);
892 }
893
894 /* Display all the data dependences in SCoP using dotty.  */
895
896 DEBUG_FUNCTION void
897 dot_deps (scop_p scop)
898 {
899   /* When debugging, enable the following code.  This cannot be used
900      in production compilers because it calls "system".  */
901 #if 0
902   FILE *stream = fopen ("/tmp/scopdeps.dot", "w");
903   gcc_assert (stream);
904
905   dot_deps_1 (stream, scop);
906   fclose (stream);
907
908   system ("dotty /tmp/scopdeps.dot &");
909 #else
910   dot_deps_1 (stderr, scop);
911 #endif
912 }
913
914 /* Display all the statement dependences in SCoP using dotty.  */
915
916 DEBUG_FUNCTION void
917 dot_deps_stmt (scop_p scop)
918 {
919   /* When debugging, enable the following code.  This cannot be used
920      in production compilers because it calls "system".  */
921 #if 0
922   FILE *stream = fopen ("/tmp/scopdeps.dot", "w");
923   gcc_assert (stream);
924
925   dot_deps_stmt_1 (stream, scop);
926   fclose (stream);
927
928   system ("dotty /tmp/scopdeps.dot &");
929 #else
930   dot_deps_stmt_1 (stderr, scop);
931 #endif
932 }
933
934 #endif