igb: Setup TX rings' intr CPUID properly if MSI/legacy intr is used
[dragonfly.git] / sys / dev / netif / igb / if_igb.c
1 /*
2  * Copyright (c) 2001-2011, Intel Corporation 
3  * All rights reserved.
4  * 
5  * Redistribution and use in source and binary forms, with or without 
6  * modification, are permitted provided that the following conditions are met:
7  * 
8  *  1. Redistributions of source code must retain the above copyright notice, 
9  *     this list of conditions and the following disclaimer.
10  * 
11  *  2. Redistributions in binary form must reproduce the above copyright 
12  *     notice, this list of conditions and the following disclaimer in the 
13  *     documentation and/or other materials provided with the distribution.
14  * 
15  *  3. Neither the name of the Intel Corporation nor the names of its 
16  *     contributors may be used to endorse or promote products derived from 
17  *     this software without specific prior written permission.
18  * 
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31
32 #include "opt_ifpoll.h"
33 #include "opt_igb.h"
34
35 #include <sys/param.h>
36 #include <sys/bus.h>
37 #include <sys/endian.h>
38 #include <sys/interrupt.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 #include <sys/mbuf.h>
42 #include <sys/proc.h>
43 #include <sys/rman.h>
44 #include <sys/serialize.h>
45 #include <sys/serialize2.h>
46 #include <sys/socket.h>
47 #include <sys/sockio.h>
48 #include <sys/sysctl.h>
49 #include <sys/systm.h>
50
51 #include <net/bpf.h>
52 #include <net/ethernet.h>
53 #include <net/if.h>
54 #include <net/if_arp.h>
55 #include <net/if_dl.h>
56 #include <net/if_media.h>
57 #include <net/ifq_var.h>
58 #include <net/toeplitz.h>
59 #include <net/toeplitz2.h>
60 #include <net/vlan/if_vlan_var.h>
61 #include <net/vlan/if_vlan_ether.h>
62 #include <net/if_poll.h>
63
64 #include <netinet/in_systm.h>
65 #include <netinet/in.h>
66 #include <netinet/ip.h>
67 #include <netinet/tcp.h>
68 #include <netinet/udp.h>
69
70 #include <bus/pci/pcivar.h>
71 #include <bus/pci/pcireg.h>
72
73 #include <dev/netif/ig_hal/e1000_api.h>
74 #include <dev/netif/ig_hal/e1000_82575.h>
75 #include <dev/netif/igb/if_igb.h>
76
77 #ifdef IGB_RSS_DEBUG
78 #define IGB_RSS_DPRINTF(sc, lvl, fmt, ...) \
79 do { \
80         if (sc->rss_debug >= lvl) \
81                 if_printf(&sc->arpcom.ac_if, fmt, __VA_ARGS__); \
82 } while (0)
83 #else   /* !IGB_RSS_DEBUG */
84 #define IGB_RSS_DPRINTF(sc, lvl, fmt, ...)      ((void)0)
85 #endif  /* IGB_RSS_DEBUG */
86
87 #define IGB_NAME        "Intel(R) PRO/1000 "
88 #define IGB_DEVICE(id)  \
89         { IGB_VENDOR_ID, E1000_DEV_ID_##id, IGB_NAME #id }
90 #define IGB_DEVICE_NULL { 0, 0, NULL }
91
92 static struct igb_device {
93         uint16_t        vid;
94         uint16_t        did;
95         const char      *desc;
96 } igb_devices[] = {
97         IGB_DEVICE(82575EB_COPPER),
98         IGB_DEVICE(82575EB_FIBER_SERDES),
99         IGB_DEVICE(82575GB_QUAD_COPPER),
100         IGB_DEVICE(82576),
101         IGB_DEVICE(82576_NS),
102         IGB_DEVICE(82576_NS_SERDES),
103         IGB_DEVICE(82576_FIBER),
104         IGB_DEVICE(82576_SERDES),
105         IGB_DEVICE(82576_SERDES_QUAD),
106         IGB_DEVICE(82576_QUAD_COPPER),
107         IGB_DEVICE(82576_QUAD_COPPER_ET2),
108         IGB_DEVICE(82576_VF),
109         IGB_DEVICE(82580_COPPER),
110         IGB_DEVICE(82580_FIBER),
111         IGB_DEVICE(82580_SERDES),
112         IGB_DEVICE(82580_SGMII),
113         IGB_DEVICE(82580_COPPER_DUAL),
114         IGB_DEVICE(82580_QUAD_FIBER),
115         IGB_DEVICE(DH89XXCC_SERDES),
116         IGB_DEVICE(DH89XXCC_SGMII),
117         IGB_DEVICE(DH89XXCC_SFP),
118         IGB_DEVICE(DH89XXCC_BACKPLANE),
119         IGB_DEVICE(I350_COPPER),
120         IGB_DEVICE(I350_FIBER),
121         IGB_DEVICE(I350_SERDES),
122         IGB_DEVICE(I350_SGMII),
123         IGB_DEVICE(I350_VF),
124
125         /* required last entry */
126         IGB_DEVICE_NULL
127 };
128
129 static int      igb_probe(device_t);
130 static int      igb_attach(device_t);
131 static int      igb_detach(device_t);
132 static int      igb_shutdown(device_t);
133 static int      igb_suspend(device_t);
134 static int      igb_resume(device_t);
135
136 static boolean_t igb_is_valid_ether_addr(const uint8_t *);
137 static void     igb_setup_ifp(struct igb_softc *);
138 static boolean_t igb_txcsum_ctx(struct igb_tx_ring *, struct mbuf *);
139 static int      igb_tso_pullup(struct igb_tx_ring *, struct mbuf **);
140 static void     igb_tso_ctx(struct igb_tx_ring *, struct mbuf *, uint32_t *);
141 static void     igb_add_sysctl(struct igb_softc *);
142 static int      igb_sysctl_intr_rate(SYSCTL_HANDLER_ARGS);
143 static int      igb_sysctl_msix_rate(SYSCTL_HANDLER_ARGS);
144 static int      igb_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS);
145 static int      igb_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS);
146 static int      igb_sysctl_rx_wreg_nsegs(SYSCTL_HANDLER_ARGS);
147 static void     igb_set_ring_inuse(struct igb_softc *, boolean_t);
148 static int      igb_get_rxring_inuse(const struct igb_softc *, boolean_t);
149 static int      igb_get_txring_inuse(const struct igb_softc *, boolean_t);
150 #ifdef IFPOLL_ENABLE
151 static int      igb_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS);
152 static int      igb_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS);
153 #endif
154
155 static void     igb_vf_init_stats(struct igb_softc *);
156 static void     igb_reset(struct igb_softc *);
157 static void     igb_update_stats_counters(struct igb_softc *);
158 static void     igb_update_vf_stats_counters(struct igb_softc *);
159 static void     igb_update_link_status(struct igb_softc *);
160 static void     igb_init_tx_unit(struct igb_softc *);
161 static void     igb_init_rx_unit(struct igb_softc *);
162
163 static void     igb_set_vlan(struct igb_softc *);
164 static void     igb_set_multi(struct igb_softc *);
165 static void     igb_set_promisc(struct igb_softc *);
166 static void     igb_disable_promisc(struct igb_softc *);
167
168 static int      igb_alloc_rings(struct igb_softc *);
169 static void     igb_free_rings(struct igb_softc *);
170 static int      igb_create_tx_ring(struct igb_tx_ring *);
171 static int      igb_create_rx_ring(struct igb_rx_ring *);
172 static void     igb_free_tx_ring(struct igb_tx_ring *);
173 static void     igb_free_rx_ring(struct igb_rx_ring *);
174 static void     igb_destroy_tx_ring(struct igb_tx_ring *, int);
175 static void     igb_destroy_rx_ring(struct igb_rx_ring *, int);
176 static void     igb_init_tx_ring(struct igb_tx_ring *);
177 static int      igb_init_rx_ring(struct igb_rx_ring *);
178 static int      igb_newbuf(struct igb_rx_ring *, int, boolean_t);
179 static int      igb_encap(struct igb_tx_ring *, struct mbuf **, int *, int *);
180 static void     igb_rx_refresh(struct igb_rx_ring *, int);
181
182 static void     igb_stop(struct igb_softc *);
183 static void     igb_init(void *);
184 static int      igb_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
185 static void     igb_media_status(struct ifnet *, struct ifmediareq *);
186 static int      igb_media_change(struct ifnet *);
187 static void     igb_timer(void *);
188 static void     igb_watchdog(struct ifaltq_subque *);
189 static void     igb_start(struct ifnet *, struct ifaltq_subque *);
190 #ifdef IFPOLL_ENABLE
191 static void     igb_npoll(struct ifnet *, struct ifpoll_info *);
192 static void     igb_npoll_rx(struct ifnet *, void *, int);
193 static void     igb_npoll_tx(struct ifnet *, void *, int);
194 static void     igb_npoll_status(struct ifnet *);
195 #endif
196 static void     igb_serialize(struct ifnet *, enum ifnet_serialize);
197 static void     igb_deserialize(struct ifnet *, enum ifnet_serialize);
198 static int      igb_tryserialize(struct ifnet *, enum ifnet_serialize);
199 #ifdef INVARIANTS
200 static void     igb_serialize_assert(struct ifnet *, enum ifnet_serialize,
201                     boolean_t);
202 #endif
203
204 static void     igb_intr(void *);
205 static void     igb_intr_shared(void *);
206 static void     igb_rxeof(struct igb_rx_ring *, int);
207 static void     igb_txeof(struct igb_tx_ring *);
208 static void     igb_set_eitr(struct igb_softc *, int, int);
209 static void     igb_enable_intr(struct igb_softc *);
210 static void     igb_disable_intr(struct igb_softc *);
211 static void     igb_init_unshared_intr(struct igb_softc *);
212 static void     igb_init_intr(struct igb_softc *);
213 static int      igb_setup_intr(struct igb_softc *);
214 static void     igb_set_txintr_mask(struct igb_tx_ring *, int *, int);
215 static void     igb_set_rxintr_mask(struct igb_rx_ring *, int *, int);
216 static void     igb_set_intr_mask(struct igb_softc *);
217 static int      igb_alloc_intr(struct igb_softc *);
218 static void     igb_free_intr(struct igb_softc *);
219 static void     igb_teardown_intr(struct igb_softc *);
220 static void     igb_msix_try_alloc(struct igb_softc *);
221 static void     igb_msix_free(struct igb_softc *, boolean_t);
222 static int      igb_msix_setup(struct igb_softc *);
223 static void     igb_msix_teardown(struct igb_softc *, int);
224 static void     igb_msix_rx(void *);
225 static void     igb_msix_tx(void *);
226 static void     igb_msix_status(void *);
227
228 /* Management and WOL Support */
229 static void     igb_get_mgmt(struct igb_softc *);
230 static void     igb_rel_mgmt(struct igb_softc *);
231 static void     igb_get_hw_control(struct igb_softc *);
232 static void     igb_rel_hw_control(struct igb_softc *);
233 static void     igb_enable_wol(device_t);
234
235 static device_method_t igb_methods[] = {
236         /* Device interface */
237         DEVMETHOD(device_probe,         igb_probe),
238         DEVMETHOD(device_attach,        igb_attach),
239         DEVMETHOD(device_detach,        igb_detach),
240         DEVMETHOD(device_shutdown,      igb_shutdown),
241         DEVMETHOD(device_suspend,       igb_suspend),
242         DEVMETHOD(device_resume,        igb_resume),
243         { 0, 0 }
244 };
245
246 static driver_t igb_driver = {
247         "igb",
248         igb_methods,
249         sizeof(struct igb_softc),
250 };
251
252 static devclass_t igb_devclass;
253
254 DECLARE_DUMMY_MODULE(if_igb);
255 MODULE_DEPEND(igb, ig_hal, 1, 1, 1);
256 DRIVER_MODULE(if_igb, pci, igb_driver, igb_devclass, NULL, NULL);
257
258 static int      igb_rxd = IGB_DEFAULT_RXD;
259 static int      igb_txd = IGB_DEFAULT_TXD;
260 static int      igb_rxr = 0;
261 static int      igb_txr = 0;
262 static int      igb_msi_enable = 1;
263 static int      igb_msix_enable = 1;
264 static int      igb_eee_disabled = 1;   /* Energy Efficient Ethernet */
265 static int      igb_fc_setting = e1000_fc_full;
266
267 /*
268  * DMA Coalescing, only for i350 - default to off,
269  * this feature is for power savings
270  */
271 static int      igb_dma_coalesce = 0;
272
273 TUNABLE_INT("hw.igb.rxd", &igb_rxd);
274 TUNABLE_INT("hw.igb.txd", &igb_txd);
275 TUNABLE_INT("hw.igb.rxr", &igb_rxr);
276 TUNABLE_INT("hw.igb.txr", &igb_txr);
277 TUNABLE_INT("hw.igb.msi.enable", &igb_msi_enable);
278 TUNABLE_INT("hw.igb.msix.enable", &igb_msix_enable);
279 TUNABLE_INT("hw.igb.fc_setting", &igb_fc_setting);
280
281 /* i350 specific */
282 TUNABLE_INT("hw.igb.eee_disabled", &igb_eee_disabled);
283 TUNABLE_INT("hw.igb.dma_coalesce", &igb_dma_coalesce);
284
285 static __inline void
286 igb_rxcsum(uint32_t staterr, struct mbuf *mp)
287 {
288         /* Ignore Checksum bit is set */
289         if (staterr & E1000_RXD_STAT_IXSM)
290                 return;
291
292         if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
293             E1000_RXD_STAT_IPCS)
294                 mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
295
296         if (staterr & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) {
297                 if ((staterr & E1000_RXDEXT_STATERR_TCPE) == 0) {
298                         mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
299                             CSUM_PSEUDO_HDR | CSUM_FRAG_NOT_CHECKED;
300                         mp->m_pkthdr.csum_data = htons(0xffff);
301                 }
302         }
303 }
304
305 static __inline struct pktinfo *
306 igb_rssinfo(struct mbuf *m, struct pktinfo *pi,
307     uint32_t hash, uint32_t hashtype, uint32_t staterr)
308 {
309         switch (hashtype) {
310         case E1000_RXDADV_RSSTYPE_IPV4_TCP:
311                 pi->pi_netisr = NETISR_IP;
312                 pi->pi_flags = 0;
313                 pi->pi_l3proto = IPPROTO_TCP;
314                 break;
315
316         case E1000_RXDADV_RSSTYPE_IPV4:
317                 if (staterr & E1000_RXD_STAT_IXSM)
318                         return NULL;
319
320                 if ((staterr &
321                      (E1000_RXD_STAT_TCPCS | E1000_RXDEXT_STATERR_TCPE)) ==
322                     E1000_RXD_STAT_TCPCS) {
323                         pi->pi_netisr = NETISR_IP;
324                         pi->pi_flags = 0;
325                         pi->pi_l3proto = IPPROTO_UDP;
326                         break;
327                 }
328                 /* FALL THROUGH */
329         default:
330                 return NULL;
331         }
332
333         m->m_flags |= M_HASH;
334         m->m_pkthdr.hash = toeplitz_hash(hash);
335         return pi;
336 }
337
338 static int
339 igb_probe(device_t dev)
340 {
341         const struct igb_device *d;
342         uint16_t vid, did;
343
344         vid = pci_get_vendor(dev);
345         did = pci_get_device(dev);
346
347         for (d = igb_devices; d->desc != NULL; ++d) {
348                 if (vid == d->vid && did == d->did) {
349                         device_set_desc(dev, d->desc);
350                         return 0;
351                 }
352         }
353         return ENXIO;
354 }
355
356 static int
357 igb_attach(device_t dev)
358 {
359         struct igb_softc *sc = device_get_softc(dev);
360         uint16_t eeprom_data;
361         int error = 0, i, j, ring_max;
362 #ifdef IFPOLL_ENABLE
363         int offset, offset_def;
364 #endif
365
366 #ifdef notyet
367         /* SYSCTL stuff */
368         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
369             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
370             OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
371             igb_sysctl_nvm_info, "I", "NVM Information");
372         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
373             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
374             OID_AUTO, "flow_control", CTLTYPE_INT|CTLFLAG_RW,
375             adapter, 0, igb_set_flowcntl, "I", "Flow Control");
376 #endif
377
378         callout_init_mp(&sc->timer);
379         lwkt_serialize_init(&sc->main_serialize);
380
381         if_initname(&sc->arpcom.ac_if, device_get_name(dev),
382             device_get_unit(dev));
383         sc->dev = sc->osdep.dev = dev;
384
385         /*
386          * Determine hardware and mac type
387          */
388         sc->hw.vendor_id = pci_get_vendor(dev);
389         sc->hw.device_id = pci_get_device(dev);
390         sc->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
391         sc->hw.subsystem_vendor_id = pci_read_config(dev, PCIR_SUBVEND_0, 2);
392         sc->hw.subsystem_device_id = pci_read_config(dev, PCIR_SUBDEV_0, 2);
393
394         if (e1000_set_mac_type(&sc->hw))
395                 return ENXIO;
396
397         /* Are we a VF device? */
398         if (sc->hw.mac.type == e1000_vfadapt ||
399             sc->hw.mac.type == e1000_vfadapt_i350)
400                 sc->vf_ifp = 1;
401         else
402                 sc->vf_ifp = 0;
403
404         /*
405          * Configure total supported RX/TX ring count
406          */
407         switch (sc->hw.mac.type) {
408         case e1000_82575:
409                 ring_max = IGB_MAX_RING_82575;
410                 break;
411         case e1000_82580:
412                 ring_max = IGB_MAX_RING_82580;
413                 break;
414         case e1000_i350:
415                 ring_max = IGB_MAX_RING_I350;
416                 break;
417         case e1000_82576:
418                 ring_max = IGB_MAX_RING_82576;
419                 break;
420         default:
421                 ring_max = IGB_MIN_RING;
422                 break;
423         }
424
425         sc->rx_ring_cnt = device_getenv_int(dev, "rxr", igb_rxr);
426         sc->rx_ring_cnt = if_ring_count2(sc->rx_ring_cnt, ring_max);
427 #ifdef IGB_RSS_DEBUG
428         sc->rx_ring_cnt = device_getenv_int(dev, "rxr_debug", sc->rx_ring_cnt);
429 #endif
430         sc->rx_ring_inuse = sc->rx_ring_cnt;
431
432         sc->tx_ring_cnt = device_getenv_int(dev, "txr", igb_txr);
433         sc->tx_ring_cnt = if_ring_count2(sc->tx_ring_cnt, /* XXX ring_max */1);
434 #ifdef IGB_TSS_DEBUG
435         sc->tx_ring_cnt = device_getenv_int(dev, "txr_debug", sc->tx_ring_cnt);
436 #endif
437         sc->tx_ring_inuse = sc->tx_ring_cnt;
438
439         /* Enable bus mastering */
440         pci_enable_busmaster(dev);
441
442         /*
443          * Allocate IO memory
444          */
445         sc->mem_rid = PCIR_BAR(0);
446         sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
447             RF_ACTIVE);
448         if (sc->mem_res == NULL) {
449                 device_printf(dev, "Unable to allocate bus resource: memory\n");
450                 error = ENXIO;
451                 goto failed;
452         }
453         sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->mem_res);
454         sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->mem_res);
455
456         sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
457
458         /* Save PCI command register for Shared Code */
459         sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
460         sc->hw.back = &sc->osdep;
461
462         /* Do Shared Code initialization */
463         if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
464                 device_printf(dev, "Setup of Shared code failed\n");
465                 error = ENXIO;
466                 goto failed;
467         }
468
469         e1000_get_bus_info(&sc->hw);
470
471         sc->hw.mac.autoneg = DO_AUTO_NEG;
472         sc->hw.phy.autoneg_wait_to_complete = FALSE;
473         sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
474
475         /* Copper options */
476         if (sc->hw.phy.media_type == e1000_media_type_copper) {
477                 sc->hw.phy.mdix = AUTO_ALL_MODES;
478                 sc->hw.phy.disable_polarity_correction = FALSE;
479                 sc->hw.phy.ms_type = IGB_MASTER_SLAVE;
480         }
481
482         /* Set the frame limits assuming  standard ethernet sized frames. */
483         sc->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
484
485         /* Allocate RX/TX rings */
486         error = igb_alloc_rings(sc);
487         if (error)
488                 goto failed;
489
490 #ifdef IFPOLL_ENABLE
491         /*
492          * NPOLLING RX CPU offset
493          */
494         if (sc->rx_ring_cnt == ncpus2) {
495                 offset = 0;
496         } else {
497                 offset_def = (sc->rx_ring_cnt * device_get_unit(dev)) % ncpus2;
498                 offset = device_getenv_int(dev, "npoll.rxoff", offset_def);
499                 if (offset >= ncpus2 ||
500                     offset % sc->rx_ring_cnt != 0) {
501                         device_printf(dev, "invalid npoll.rxoff %d, use %d\n",
502                             offset, offset_def);
503                         offset = offset_def;
504                 }
505         }
506         sc->rx_npoll_off = offset;
507
508         /*
509          * NPOLLING TX CPU offset
510          */
511         if (sc->tx_ring_cnt == ncpus2) {
512                 offset = 0;
513         } else {
514                 offset_def = (sc->tx_ring_cnt * device_get_unit(dev)) % ncpus2;
515                 offset = device_getenv_int(dev, "npoll.txoff", offset_def);
516                 if (offset >= ncpus2 ||
517                     offset % sc->tx_ring_cnt != 0) {
518                         device_printf(dev, "invalid npoll.txoff %d, use %d\n",
519                             offset, offset_def);
520                         offset = offset_def;
521                 }
522         }
523         sc->tx_npoll_off = offset;
524 #endif
525
526         /* Allocate interrupt */
527         error = igb_alloc_intr(sc);
528         if (error)
529                 goto failed;
530
531         /*
532          * Setup serializers
533          */
534         i = 0;
535         sc->serializes[i++] = &sc->main_serialize;
536
537         sc->tx_serialize = i;
538         for (j = 0; j < sc->tx_ring_cnt; ++j)
539                 sc->serializes[i++] = &sc->tx_rings[j].tx_serialize;
540
541         sc->rx_serialize = i;
542         for (j = 0; j < sc->rx_ring_cnt; ++j)
543                 sc->serializes[i++] = &sc->rx_rings[j].rx_serialize;
544
545         sc->serialize_cnt = i;
546         KKASSERT(sc->serialize_cnt <= IGB_NSERIALIZE);
547
548         /* Allocate the appropriate stats memory */
549         if (sc->vf_ifp) {
550                 sc->stats = kmalloc(sizeof(struct e1000_vf_stats), M_DEVBUF,
551                     M_WAITOK | M_ZERO);
552                 igb_vf_init_stats(sc);
553         } else {
554                 sc->stats = kmalloc(sizeof(struct e1000_hw_stats), M_DEVBUF,
555                     M_WAITOK | M_ZERO);
556         }
557
558         /* Allocate multicast array memory. */
559         sc->mta = kmalloc(ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
560             M_DEVBUF, M_WAITOK);
561
562         /* Some adapter-specific advanced features */
563         if (sc->hw.mac.type >= e1000_i350) {
564 #ifdef notyet
565                 igb_set_sysctl_value(adapter, "dma_coalesce",
566                     "configure dma coalesce",
567                     &adapter->dma_coalesce, igb_dma_coalesce);
568                 igb_set_sysctl_value(adapter, "eee_disabled",
569                     "enable Energy Efficient Ethernet",
570                     &adapter->hw.dev_spec._82575.eee_disable,
571                     igb_eee_disabled);
572 #else
573                 sc->dma_coalesce = igb_dma_coalesce;
574                 sc->hw.dev_spec._82575.eee_disable = igb_eee_disabled;
575 #endif
576                 e1000_set_eee_i350(&sc->hw);
577         }
578
579         /*
580          * Start from a known state, this is important in reading the nvm and
581          * mac from that.
582          */
583         e1000_reset_hw(&sc->hw);
584
585         /* Make sure we have a good EEPROM before we read from it */
586         if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
587                 /*
588                  * Some PCI-E parts fail the first check due to
589                  * the link being in sleep state, call it again,
590                  * if it fails a second time its a real issue.
591                  */
592                 if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
593                         device_printf(dev,
594                             "The EEPROM Checksum Is Not Valid\n");
595                         error = EIO;
596                         goto failed;
597                 }
598         }
599
600         /* Copy the permanent MAC address out of the EEPROM */
601         if (e1000_read_mac_addr(&sc->hw) < 0) {
602                 device_printf(dev, "EEPROM read error while reading MAC"
603                     " address\n");
604                 error = EIO;
605                 goto failed;
606         }
607         if (!igb_is_valid_ether_addr(sc->hw.mac.addr)) {
608                 device_printf(dev, "Invalid MAC address\n");
609                 error = EIO;
610                 goto failed;
611         }
612
613         /* Setup OS specific network interface */
614         igb_setup_ifp(sc);
615
616         /* Add sysctl tree, must after igb_setup_ifp() */
617         igb_add_sysctl(sc);
618
619         /* Now get a good starting state */
620         igb_reset(sc);
621
622         /* Initialize statistics */
623         igb_update_stats_counters(sc);
624
625         sc->hw.mac.get_link_status = 1;
626         igb_update_link_status(sc);
627
628         /* Indicate SOL/IDER usage */
629         if (e1000_check_reset_block(&sc->hw)) {
630                 device_printf(dev,
631                     "PHY reset is blocked due to SOL/IDER session.\n");
632         }
633
634         /* Determine if we have to control management hardware */
635         if (e1000_enable_mng_pass_thru(&sc->hw))
636                 sc->flags |= IGB_FLAG_HAS_MGMT;
637
638         /*
639          * Setup Wake-on-Lan
640          */
641         /* APME bit in EEPROM is mapped to WUC.APME */
642         eeprom_data = E1000_READ_REG(&sc->hw, E1000_WUC) & E1000_WUC_APME;
643         if (eeprom_data)
644                 sc->wol = E1000_WUFC_MAG;
645         /* XXX disable WOL */
646         sc->wol = 0; 
647
648 #ifdef notyet
649         /* Register for VLAN events */
650         adapter->vlan_attach = EVENTHANDLER_REGISTER(vlan_config,
651              igb_register_vlan, adapter, EVENTHANDLER_PRI_FIRST);
652         adapter->vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig,
653              igb_unregister_vlan, adapter, EVENTHANDLER_PRI_FIRST);
654 #endif
655
656 #ifdef notyet
657         igb_add_hw_stats(adapter);
658 #endif
659
660         error = igb_setup_intr(sc);
661         if (error) {
662                 ether_ifdetach(&sc->arpcom.ac_if);
663                 goto failed;
664         }
665
666         for (i = 0; i < sc->tx_ring_cnt; ++i) {
667                 struct ifaltq_subque *ifsq =
668                     ifq_get_subq(&sc->arpcom.ac_if.if_snd, i);
669                 struct igb_tx_ring *txr = &sc->tx_rings[i];
670
671                 ifsq_set_cpuid(ifsq, txr->tx_intr_cpuid);
672                 ifsq_set_priv(ifsq, txr);
673                 txr->ifsq = ifsq;
674
675                 ifsq_watchdog_init(&txr->tx_watchdog, ifsq, igb_watchdog);
676         }
677
678         return 0;
679
680 failed:
681         igb_detach(dev);
682         return error;
683 }
684
685 static int
686 igb_detach(device_t dev)
687 {
688         struct igb_softc *sc = device_get_softc(dev);
689
690         if (device_is_attached(dev)) {
691                 struct ifnet *ifp = &sc->arpcom.ac_if;
692
693                 ifnet_serialize_all(ifp);
694
695                 igb_stop(sc);
696
697                 e1000_phy_hw_reset(&sc->hw);
698
699                 /* Give control back to firmware */
700                 igb_rel_mgmt(sc);
701                 igb_rel_hw_control(sc);
702
703                 if (sc->wol) {
704                         E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
705                         E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
706                         igb_enable_wol(dev);
707                 }
708
709                 igb_teardown_intr(sc);
710
711                 ifnet_deserialize_all(ifp);
712
713                 ether_ifdetach(ifp);
714         } else if (sc->mem_res != NULL) {
715                 igb_rel_hw_control(sc);
716         }
717         bus_generic_detach(dev);
718
719         if (sc->sysctl_tree != NULL)
720                 sysctl_ctx_free(&sc->sysctl_ctx);
721
722         igb_free_intr(sc);
723
724         if (sc->msix_mem_res != NULL) {
725                 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_mem_rid,
726                     sc->msix_mem_res);
727         }
728         if (sc->mem_res != NULL) {
729                 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid,
730                     sc->mem_res);
731         }
732
733         igb_free_rings(sc);
734
735         if (sc->mta != NULL)
736                 kfree(sc->mta, M_DEVBUF);
737         if (sc->stats != NULL)
738                 kfree(sc->stats, M_DEVBUF);
739
740         return 0;
741 }
742
743 static int
744 igb_shutdown(device_t dev)
745 {
746         return igb_suspend(dev);
747 }
748
749 static int
750 igb_suspend(device_t dev)
751 {
752         struct igb_softc *sc = device_get_softc(dev);
753         struct ifnet *ifp = &sc->arpcom.ac_if;
754
755         ifnet_serialize_all(ifp);
756
757         igb_stop(sc);
758
759         igb_rel_mgmt(sc);
760         igb_rel_hw_control(sc);
761
762         if (sc->wol) {
763                 E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
764                 E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
765                 igb_enable_wol(dev);
766         }
767
768         ifnet_deserialize_all(ifp);
769
770         return bus_generic_suspend(dev);
771 }
772
773 static int
774 igb_resume(device_t dev)
775 {
776         struct igb_softc *sc = device_get_softc(dev);
777         struct ifnet *ifp = &sc->arpcom.ac_if;
778         int i;
779
780         ifnet_serialize_all(ifp);
781
782         igb_init(sc);
783         igb_get_mgmt(sc);
784
785         for (i = 0; i < sc->tx_ring_inuse; ++i)
786                 ifsq_devstart_sched(sc->tx_rings[i].ifsq);
787
788         ifnet_deserialize_all(ifp);
789
790         return bus_generic_resume(dev);
791 }
792
793 static int
794 igb_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
795 {
796         struct igb_softc *sc = ifp->if_softc;
797         struct ifreq *ifr = (struct ifreq *)data;
798         int max_frame_size, mask, reinit;
799         int error = 0;
800
801         ASSERT_IFNET_SERIALIZED_ALL(ifp);
802
803         switch (command) {
804         case SIOCSIFMTU:
805                 max_frame_size = 9234;
806                 if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
807                     ETHER_CRC_LEN) {
808                         error = EINVAL;
809                         break;
810                 }
811
812                 ifp->if_mtu = ifr->ifr_mtu;
813                 sc->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
814                     ETHER_CRC_LEN;
815
816                 if (ifp->if_flags & IFF_RUNNING)
817                         igb_init(sc);
818                 break;
819
820         case SIOCSIFFLAGS:
821                 if (ifp->if_flags & IFF_UP) {
822                         if (ifp->if_flags & IFF_RUNNING) {
823                                 if ((ifp->if_flags ^ sc->if_flags) &
824                                     (IFF_PROMISC | IFF_ALLMULTI)) {
825                                         igb_disable_promisc(sc);
826                                         igb_set_promisc(sc);
827                                 }
828                         } else {
829                                 igb_init(sc);
830                         }
831                 } else if (ifp->if_flags & IFF_RUNNING) {
832                         igb_stop(sc);
833                 }
834                 sc->if_flags = ifp->if_flags;
835                 break;
836
837         case SIOCADDMULTI:
838         case SIOCDELMULTI:
839                 if (ifp->if_flags & IFF_RUNNING) {
840                         igb_disable_intr(sc);
841                         igb_set_multi(sc);
842 #ifdef IFPOLL_ENABLE
843                         if (!(ifp->if_flags & IFF_NPOLLING))
844 #endif
845                                 igb_enable_intr(sc);
846                 }
847                 break;
848
849         case SIOCSIFMEDIA:
850                 /*
851                  * As the speed/duplex settings are being
852                  * changed, we need toreset the PHY.
853                  */
854                 sc->hw.phy.reset_disable = FALSE;
855
856                 /* Check SOL/IDER usage */
857                 if (e1000_check_reset_block(&sc->hw)) {
858                         if_printf(ifp, "Media change is "
859                             "blocked due to SOL/IDER session.\n");
860                         break;
861                 }
862                 /* FALL THROUGH */
863
864         case SIOCGIFMEDIA:
865                 error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
866                 break;
867
868         case SIOCSIFCAP:
869                 reinit = 0;
870                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
871                 if (mask & IFCAP_RXCSUM) {
872                         ifp->if_capenable ^= IFCAP_RXCSUM;
873                         reinit = 1;
874                 }
875                 if (mask & IFCAP_VLAN_HWTAGGING) {
876                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
877                         reinit = 1;
878                 }
879                 if (mask & IFCAP_TXCSUM) {
880                         ifp->if_capenable ^= IFCAP_TXCSUM;
881                         if (ifp->if_capenable & IFCAP_TXCSUM)
882                                 ifp->if_hwassist |= IGB_CSUM_FEATURES;
883                         else
884                                 ifp->if_hwassist &= ~IGB_CSUM_FEATURES;
885                 }
886                 if (mask & IFCAP_TSO) {
887                         ifp->if_capenable ^= IFCAP_TSO;
888                         if (ifp->if_capenable & IFCAP_TSO)
889                                 ifp->if_hwassist |= CSUM_TSO;
890                         else
891                                 ifp->if_hwassist &= ~CSUM_TSO;
892                 }
893                 if (mask & IFCAP_RSS)
894                         ifp->if_capenable ^= IFCAP_RSS;
895                 if (reinit && (ifp->if_flags & IFF_RUNNING))
896                         igb_init(sc);
897                 break;
898
899         default:
900                 error = ether_ioctl(ifp, command, data);
901                 break;
902         }
903         return error;
904 }
905
906 static void
907 igb_init(void *xsc)
908 {
909         struct igb_softc *sc = xsc;
910         struct ifnet *ifp = &sc->arpcom.ac_if;
911         boolean_t polling;
912         int i;
913
914         ASSERT_IFNET_SERIALIZED_ALL(ifp);
915
916         igb_stop(sc);
917
918         /* Get the latest mac address, User can use a LAA */
919         bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
920
921         /* Put the address into the Receive Address Array */
922         e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
923
924         igb_reset(sc);
925         igb_update_link_status(sc);
926
927         E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
928
929         /* Configure for OS presence */
930         igb_get_mgmt(sc);
931
932         polling = FALSE;
933 #ifdef IFPOLL_ENABLE
934         if (ifp->if_flags & IFF_NPOLLING)
935                 polling = TRUE;
936 #endif
937
938         /* Configured used RX/TX rings */
939         igb_set_ring_inuse(sc, polling);
940         ifq_set_subq_mask(&ifp->if_snd, sc->tx_ring_inuse - 1);
941
942         /* Initialize interrupt */
943         igb_init_intr(sc);
944
945         /* Prepare transmit descriptors and buffers */
946         for (i = 0; i < sc->tx_ring_inuse; ++i)
947                 igb_init_tx_ring(&sc->tx_rings[i]);
948         igb_init_tx_unit(sc);
949
950         /* Setup Multicast table */
951         igb_set_multi(sc);
952
953 #if 0
954         /*
955          * Figure out the desired mbuf pool
956          * for doing jumbo/packetsplit
957          */
958         if (adapter->max_frame_size <= 2048)
959                 adapter->rx_mbuf_sz = MCLBYTES;
960         else if (adapter->max_frame_size <= 4096)
961                 adapter->rx_mbuf_sz = MJUMPAGESIZE;
962         else
963                 adapter->rx_mbuf_sz = MJUM9BYTES;
964 #endif
965
966         /* Prepare receive descriptors and buffers */
967         for (i = 0; i < sc->rx_ring_inuse; ++i) {
968                 int error;
969
970                 error = igb_init_rx_ring(&sc->rx_rings[i]);
971                 if (error) {
972                         if_printf(ifp, "Could not setup receive structures\n");
973                         igb_stop(sc);
974                         return;
975                 }
976         }
977         igb_init_rx_unit(sc);
978
979         /* Enable VLAN support */
980         if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
981                 igb_set_vlan(sc);
982
983         /* Don't lose promiscuous settings */
984         igb_set_promisc(sc);
985
986         ifp->if_flags |= IFF_RUNNING;
987         for (i = 0; i < sc->tx_ring_inuse; ++i) {
988                 ifsq_clr_oactive(sc->tx_rings[i].ifsq);
989                 ifsq_watchdog_start(&sc->tx_rings[i].tx_watchdog);
990         }
991
992         if (polling || sc->intr_type == PCI_INTR_TYPE_MSIX)
993                 sc->timer_cpuid = 0; /* XXX fixed */
994         else
995                 sc->timer_cpuid = rman_get_cpuid(sc->intr_res);
996         callout_reset_bycpu(&sc->timer, hz, igb_timer, sc, sc->timer_cpuid);
997         e1000_clear_hw_cntrs_base_generic(&sc->hw);
998
999         /* This clears any pending interrupts */
1000         E1000_READ_REG(&sc->hw, E1000_ICR);
1001
1002         /*
1003          * Only enable interrupts if we are not polling, make sure
1004          * they are off otherwise.
1005          */
1006         if (polling) {
1007                 igb_disable_intr(sc);
1008         } else {
1009                 igb_enable_intr(sc);
1010                 E1000_WRITE_REG(&sc->hw, E1000_ICS, E1000_ICS_LSC);
1011         }
1012
1013         /* Set Energy Efficient Ethernet */
1014         e1000_set_eee_i350(&sc->hw);
1015
1016         /* Don't reset the phy next time init gets called */
1017         sc->hw.phy.reset_disable = TRUE;
1018 }
1019
1020 static void
1021 igb_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1022 {
1023         struct igb_softc *sc = ifp->if_softc;
1024         u_char fiber_type = IFM_1000_SX;
1025
1026         ASSERT_IFNET_SERIALIZED_ALL(ifp);
1027
1028         igb_update_link_status(sc);
1029
1030         ifmr->ifm_status = IFM_AVALID;
1031         ifmr->ifm_active = IFM_ETHER;
1032
1033         if (!sc->link_active)
1034                 return;
1035
1036         ifmr->ifm_status |= IFM_ACTIVE;
1037
1038         if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1039             sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1040                 ifmr->ifm_active |= fiber_type | IFM_FDX;
1041         } else {
1042                 switch (sc->link_speed) {
1043                 case 10:
1044                         ifmr->ifm_active |= IFM_10_T;
1045                         break;
1046
1047                 case 100:
1048                         ifmr->ifm_active |= IFM_100_TX;
1049                         break;
1050
1051                 case 1000:
1052                         ifmr->ifm_active |= IFM_1000_T;
1053                         break;
1054                 }
1055                 if (sc->link_duplex == FULL_DUPLEX)
1056                         ifmr->ifm_active |= IFM_FDX;
1057                 else
1058                         ifmr->ifm_active |= IFM_HDX;
1059         }
1060 }
1061
1062 static int
1063 igb_media_change(struct ifnet *ifp)
1064 {
1065         struct igb_softc *sc = ifp->if_softc;
1066         struct ifmedia *ifm = &sc->media;
1067
1068         ASSERT_IFNET_SERIALIZED_ALL(ifp);
1069
1070         if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1071                 return EINVAL;
1072
1073         switch (IFM_SUBTYPE(ifm->ifm_media)) {
1074         case IFM_AUTO:
1075                 sc->hw.mac.autoneg = DO_AUTO_NEG;
1076                 sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
1077                 break;
1078
1079         case IFM_1000_LX:
1080         case IFM_1000_SX:
1081         case IFM_1000_T:
1082                 sc->hw.mac.autoneg = DO_AUTO_NEG;
1083                 sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
1084                 break;
1085
1086         case IFM_100_TX:
1087                 sc->hw.mac.autoneg = FALSE;
1088                 sc->hw.phy.autoneg_advertised = 0;
1089                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1090                         sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
1091                 else
1092                         sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
1093                 break;
1094
1095         case IFM_10_T:
1096                 sc->hw.mac.autoneg = FALSE;
1097                 sc->hw.phy.autoneg_advertised = 0;
1098                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
1099                         sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
1100                 else
1101                         sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
1102                 break;
1103
1104         default:
1105                 if_printf(ifp, "Unsupported media type\n");
1106                 break;
1107         }
1108
1109         igb_init(sc);
1110
1111         return 0;
1112 }
1113
1114 static void
1115 igb_set_promisc(struct igb_softc *sc)
1116 {
1117         struct ifnet *ifp = &sc->arpcom.ac_if;
1118         struct e1000_hw *hw = &sc->hw;
1119         uint32_t reg;
1120
1121         if (sc->vf_ifp) {
1122                 e1000_promisc_set_vf(hw, e1000_promisc_enabled);
1123                 return;
1124         }
1125
1126         reg = E1000_READ_REG(hw, E1000_RCTL);
1127         if (ifp->if_flags & IFF_PROMISC) {
1128                 reg |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1129                 E1000_WRITE_REG(hw, E1000_RCTL, reg);
1130         } else if (ifp->if_flags & IFF_ALLMULTI) {
1131                 reg |= E1000_RCTL_MPE;
1132                 reg &= ~E1000_RCTL_UPE;
1133                 E1000_WRITE_REG(hw, E1000_RCTL, reg);
1134         }
1135 }
1136
1137 static void
1138 igb_disable_promisc(struct igb_softc *sc)
1139 {
1140         struct e1000_hw *hw = &sc->hw;
1141         uint32_t reg;
1142
1143         if (sc->vf_ifp) {
1144                 e1000_promisc_set_vf(hw, e1000_promisc_disabled);
1145                 return;
1146         }
1147         reg = E1000_READ_REG(hw, E1000_RCTL);
1148         reg &= ~E1000_RCTL_UPE;
1149         reg &= ~E1000_RCTL_MPE;
1150         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1151 }
1152
1153 static void
1154 igb_set_multi(struct igb_softc *sc)
1155 {
1156         struct ifnet *ifp = &sc->arpcom.ac_if;
1157         struct ifmultiaddr *ifma;
1158         uint32_t reg_rctl = 0;
1159         uint8_t *mta;
1160         int mcnt = 0;
1161
1162         mta = sc->mta;
1163         bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
1164
1165         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1166                 if (ifma->ifma_addr->sa_family != AF_LINK)
1167                         continue;
1168
1169                 if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
1170                         break;
1171
1172                 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1173                     &mta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN);
1174                 mcnt++;
1175         }
1176
1177         if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1178                 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1179                 reg_rctl |= E1000_RCTL_MPE;
1180                 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1181         } else {
1182                 e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1183         }
1184 }
1185
1186 static void
1187 igb_timer(void *xsc)
1188 {
1189         struct igb_softc *sc = xsc;
1190
1191         lwkt_serialize_enter(&sc->main_serialize);
1192
1193         igb_update_link_status(sc);
1194         igb_update_stats_counters(sc);
1195
1196         callout_reset_bycpu(&sc->timer, hz, igb_timer, sc, sc->timer_cpuid);
1197
1198         lwkt_serialize_exit(&sc->main_serialize);
1199 }
1200
1201 static void
1202 igb_update_link_status(struct igb_softc *sc)
1203 {
1204         struct ifnet *ifp = &sc->arpcom.ac_if;
1205         struct e1000_hw *hw = &sc->hw;
1206         uint32_t link_check, thstat, ctrl;
1207
1208         link_check = thstat = ctrl = 0;
1209
1210         /* Get the cached link value or read for real */
1211         switch (hw->phy.media_type) {
1212         case e1000_media_type_copper:
1213                 if (hw->mac.get_link_status) {
1214                         /* Do the work to read phy */
1215                         e1000_check_for_link(hw);
1216                         link_check = !hw->mac.get_link_status;
1217                 } else {
1218                         link_check = TRUE;
1219                 }
1220                 break;
1221
1222         case e1000_media_type_fiber:
1223                 e1000_check_for_link(hw);
1224                 link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1225                 break;
1226
1227         case e1000_media_type_internal_serdes:
1228                 e1000_check_for_link(hw);
1229                 link_check = hw->mac.serdes_has_link;
1230                 break;
1231
1232         /* VF device is type_unknown */
1233         case e1000_media_type_unknown:
1234                 e1000_check_for_link(hw);
1235                 link_check = !hw->mac.get_link_status;
1236                 /* Fall thru */
1237         default:
1238                 break;
1239         }
1240
1241         /* Check for thermal downshift or shutdown */
1242         if (hw->mac.type == e1000_i350) {
1243                 thstat = E1000_READ_REG(hw, E1000_THSTAT);
1244                 ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
1245         }
1246
1247         /* Now we check if a transition has happened */
1248         if (link_check && sc->link_active == 0) {
1249                 e1000_get_speed_and_duplex(hw, 
1250                     &sc->link_speed, &sc->link_duplex);
1251                 if (bootverbose) {
1252                         if_printf(ifp, "Link is up %d Mbps %s\n",
1253                             sc->link_speed,
1254                             sc->link_duplex == FULL_DUPLEX ?
1255                             "Full Duplex" : "Half Duplex");
1256                 }
1257                 sc->link_active = 1;
1258
1259                 ifp->if_baudrate = sc->link_speed * 1000000;
1260                 if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1261                     (thstat & E1000_THSTAT_LINK_THROTTLE))
1262                         if_printf(ifp, "Link: thermal downshift\n");
1263                 /* This can sleep */
1264                 ifp->if_link_state = LINK_STATE_UP;
1265                 if_link_state_change(ifp);
1266         } else if (!link_check && sc->link_active == 1) {
1267                 ifp->if_baudrate = sc->link_speed = 0;
1268                 sc->link_duplex = 0;
1269                 if (bootverbose)
1270                         if_printf(ifp, "Link is Down\n");
1271                 if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1272                     (thstat & E1000_THSTAT_PWR_DOWN))
1273                         if_printf(ifp, "Link: thermal shutdown\n");
1274                 sc->link_active = 0;
1275                 /* This can sleep */
1276                 ifp->if_link_state = LINK_STATE_DOWN;
1277                 if_link_state_change(ifp);
1278         }
1279 }
1280
1281 static void
1282 igb_stop(struct igb_softc *sc)
1283 {
1284         struct ifnet *ifp = &sc->arpcom.ac_if;
1285         int i;
1286
1287         ASSERT_IFNET_SERIALIZED_ALL(ifp);
1288
1289         igb_disable_intr(sc);
1290
1291         callout_stop(&sc->timer);
1292
1293         ifp->if_flags &= ~IFF_RUNNING;
1294         for (i = 0; i < sc->tx_ring_cnt; ++i) {
1295                 ifsq_clr_oactive(sc->tx_rings[i].ifsq);
1296                 ifsq_watchdog_stop(&sc->tx_rings[i].tx_watchdog);
1297                 sc->tx_rings[i].tx_flags &= ~IGB_TXFLAG_ENABLED;
1298         }
1299
1300         e1000_reset_hw(&sc->hw);
1301         E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1302
1303         e1000_led_off(&sc->hw);
1304         e1000_cleanup_led(&sc->hw);
1305
1306         for (i = 0; i < sc->tx_ring_cnt; ++i)
1307                 igb_free_tx_ring(&sc->tx_rings[i]);
1308         for (i = 0; i < sc->rx_ring_cnt; ++i)
1309                 igb_free_rx_ring(&sc->rx_rings[i]);
1310 }
1311
1312 static void
1313 igb_reset(struct igb_softc *sc)
1314 {
1315         struct ifnet *ifp = &sc->arpcom.ac_if;
1316         struct e1000_hw *hw = &sc->hw;
1317         struct e1000_fc_info *fc = &hw->fc;
1318         uint32_t pba = 0;
1319         uint16_t hwm;
1320
1321         /* Let the firmware know the OS is in control */
1322         igb_get_hw_control(sc);
1323
1324         /*
1325          * Packet Buffer Allocation (PBA)
1326          * Writing PBA sets the receive portion of the buffer
1327          * the remainder is used for the transmit buffer.
1328          */
1329         switch (hw->mac.type) {
1330         case e1000_82575:
1331                 pba = E1000_PBA_32K;
1332                 break;
1333
1334         case e1000_82576:
1335         case e1000_vfadapt:
1336                 pba = E1000_READ_REG(hw, E1000_RXPBS);
1337                 pba &= E1000_RXPBS_SIZE_MASK_82576;
1338                 break;
1339
1340         case e1000_82580:
1341         case e1000_i350:
1342         case e1000_vfadapt_i350:
1343                 pba = E1000_READ_REG(hw, E1000_RXPBS);
1344                 pba = e1000_rxpbs_adjust_82580(pba);
1345                 break;
1346                 /* XXX pba = E1000_PBA_35K; */
1347
1348         default:
1349                 break;
1350         }
1351
1352         /* Special needs in case of Jumbo frames */
1353         if (hw->mac.type == e1000_82575 && ifp->if_mtu > ETHERMTU) {
1354                 uint32_t tx_space, min_tx, min_rx;
1355
1356                 pba = E1000_READ_REG(hw, E1000_PBA);
1357                 tx_space = pba >> 16;
1358                 pba &= 0xffff;
1359
1360                 min_tx = (sc->max_frame_size +
1361                     sizeof(struct e1000_tx_desc) - ETHER_CRC_LEN) * 2;
1362                 min_tx = roundup2(min_tx, 1024);
1363                 min_tx >>= 10;
1364                 min_rx = sc->max_frame_size;
1365                 min_rx = roundup2(min_rx, 1024);
1366                 min_rx >>= 10;
1367                 if (tx_space < min_tx && (min_tx - tx_space) < pba) {
1368                         pba = pba - (min_tx - tx_space);
1369                         /*
1370                          * if short on rx space, rx wins
1371                          * and must trump tx adjustment
1372                          */
1373                         if (pba < min_rx)
1374                                 pba = min_rx;
1375                 }
1376                 E1000_WRITE_REG(hw, E1000_PBA, pba);
1377         }
1378
1379         /*
1380          * These parameters control the automatic generation (Tx) and
1381          * response (Rx) to Ethernet PAUSE frames.
1382          * - High water mark should allow for at least two frames to be
1383          *   received after sending an XOFF.
1384          * - Low water mark works best when it is very near the high water mark.
1385          *   This allows the receiver to restart by sending XON when it has
1386          *   drained a bit.
1387          */
1388         hwm = min(((pba << 10) * 9 / 10),
1389             ((pba << 10) - 2 * sc->max_frame_size));
1390
1391         if (hw->mac.type < e1000_82576) {
1392                 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
1393                 fc->low_water = fc->high_water - 8;
1394         } else {
1395                 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1396                 fc->low_water = fc->high_water - 16;
1397         }
1398         fc->pause_time = IGB_FC_PAUSE_TIME;
1399         fc->send_xon = TRUE;
1400
1401         /* Issue a global reset */
1402         e1000_reset_hw(hw);
1403         E1000_WRITE_REG(hw, E1000_WUC, 0);
1404
1405         if (e1000_init_hw(hw) < 0)
1406                 if_printf(ifp, "Hardware Initialization Failed\n");
1407
1408         /* Setup DMA Coalescing */
1409         if (hw->mac.type == e1000_i350 && sc->dma_coalesce) {
1410                 uint32_t reg;
1411
1412                 hwm = (pba - 4) << 10;
1413                 reg = ((pba - 6) << E1000_DMACR_DMACTHR_SHIFT)
1414                     & E1000_DMACR_DMACTHR_MASK;
1415
1416                 /* transition to L0x or L1 if available..*/
1417                 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
1418
1419                 /* timer = +-1000 usec in 32usec intervals */
1420                 reg |= (1000 >> 5);
1421                 E1000_WRITE_REG(hw, E1000_DMACR, reg);
1422
1423                 /* No lower threshold */
1424                 E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
1425
1426                 /* set hwm to PBA -  2 * max frame size */
1427                 E1000_WRITE_REG(hw, E1000_FCRTC, hwm);
1428
1429                 /* Set the interval before transition */
1430                 reg = E1000_READ_REG(hw, E1000_DMCTLX);
1431                 reg |= 0x800000FF; /* 255 usec */
1432                 E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
1433
1434                 /* free space in tx packet buffer to wake from DMA coal */
1435                 E1000_WRITE_REG(hw, E1000_DMCTXTH,
1436                     (20480 - (2 * sc->max_frame_size)) >> 6);
1437
1438                 /* make low power state decision controlled by DMA coal */
1439                 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
1440                 E1000_WRITE_REG(hw, E1000_PCIEMISC,
1441                     reg | E1000_PCIEMISC_LX_DECISION);
1442                 if_printf(ifp, "DMA Coalescing enabled\n");
1443         }
1444
1445         E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1446         e1000_get_phy_info(hw);
1447         e1000_check_for_link(hw);
1448 }
1449
1450 static void
1451 igb_setup_ifp(struct igb_softc *sc)
1452 {
1453         struct ifnet *ifp = &sc->arpcom.ac_if;
1454
1455         ifp->if_softc = sc;
1456         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1457         ifp->if_init = igb_init;
1458         ifp->if_ioctl = igb_ioctl;
1459         ifp->if_start = igb_start;
1460         ifp->if_serialize = igb_serialize;
1461         ifp->if_deserialize = igb_deserialize;
1462         ifp->if_tryserialize = igb_tryserialize;
1463 #ifdef INVARIANTS
1464         ifp->if_serialize_assert = igb_serialize_assert;
1465 #endif
1466 #ifdef IFPOLL_ENABLE
1467         ifp->if_npoll = igb_npoll;
1468 #endif
1469
1470         ifq_set_maxlen(&ifp->if_snd, sc->tx_rings[0].num_tx_desc - 1);
1471         ifq_set_ready(&ifp->if_snd);
1472         ifq_set_subq_cnt(&ifp->if_snd, sc->tx_ring_cnt);
1473
1474         ifp->if_mapsubq = ifq_mapsubq_mask;
1475         ifq_set_subq_mask(&ifp->if_snd, 0);
1476
1477         ether_ifattach(ifp, sc->hw.mac.addr, NULL);
1478
1479         ifp->if_capabilities =
1480             IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_TSO;
1481         if (IGB_ENABLE_HWRSS(sc))
1482                 ifp->if_capabilities |= IFCAP_RSS;
1483         ifp->if_capenable = ifp->if_capabilities;
1484         ifp->if_hwassist = IGB_CSUM_FEATURES | CSUM_TSO;
1485
1486         /*
1487          * Tell the upper layer(s) we support long frames
1488          */
1489         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1490
1491         /*
1492          * Specify the media types supported by this adapter and register
1493          * callbacks to update media and link information
1494          */
1495         ifmedia_init(&sc->media, IFM_IMASK, igb_media_change, igb_media_status);
1496         if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1497             sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1498                 ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
1499                     0, NULL);
1500                 ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
1501         } else {
1502                 ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1503                 ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
1504                     0, NULL);
1505                 ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1506                 ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
1507                     0, NULL);
1508                 if (sc->hw.phy.type != e1000_phy_ife) {
1509                         ifmedia_add(&sc->media,
1510                             IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1511                         ifmedia_add(&sc->media,
1512                             IFM_ETHER | IFM_1000_T, 0, NULL);
1513                 }
1514         }
1515         ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1516         ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
1517 }
1518
1519 static void
1520 igb_add_sysctl(struct igb_softc *sc)
1521 {
1522         char node[32];
1523         int i;
1524
1525         sysctl_ctx_init(&sc->sysctl_ctx);
1526         sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
1527             SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
1528             device_get_nameunit(sc->dev), CTLFLAG_RD, 0, "");
1529         if (sc->sysctl_tree == NULL) {
1530                 device_printf(sc->dev, "can't add sysctl node\n");
1531                 return;
1532         }
1533
1534         SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1535             OID_AUTO, "rxr", CTLFLAG_RD, &sc->rx_ring_cnt, 0, "# of RX rings");
1536         SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1537             OID_AUTO, "rxr_inuse", CTLFLAG_RD, &sc->rx_ring_inuse, 0,
1538             "# of RX rings used");
1539         SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1540             OID_AUTO, "txr", CTLFLAG_RD, &sc->tx_ring_cnt, 0, "# of TX rings");
1541         SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1542             OID_AUTO, "txr_inuse", CTLFLAG_RD, &sc->tx_ring_inuse, 0,
1543             "# of TX rings used");
1544         SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1545             OID_AUTO, "rxd", CTLFLAG_RD, &sc->rx_rings[0].num_rx_desc, 0,
1546             "# of RX descs");
1547         SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1548             OID_AUTO, "txd", CTLFLAG_RD, &sc->tx_rings[0].num_tx_desc, 0,
1549             "# of TX descs");
1550
1551         if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
1552                 SYSCTL_ADD_PROC(&sc->sysctl_ctx,
1553                     SYSCTL_CHILDREN(sc->sysctl_tree),
1554                     OID_AUTO, "intr_rate", CTLTYPE_INT | CTLFLAG_RW,
1555                     sc, 0, igb_sysctl_intr_rate, "I", "interrupt rate");
1556         } else {
1557                 for (i = 0; i < sc->msix_cnt; ++i) {
1558                         struct igb_msix_data *msix = &sc->msix_data[i];
1559
1560                         ksnprintf(node, sizeof(node), "msix%d_rate", i);
1561                         SYSCTL_ADD_PROC(&sc->sysctl_ctx,
1562                             SYSCTL_CHILDREN(sc->sysctl_tree),
1563                             OID_AUTO, node, CTLTYPE_INT | CTLFLAG_RW,
1564                             msix, 0, igb_sysctl_msix_rate, "I",
1565                             msix->msix_rate_desc);
1566                 }
1567         }
1568
1569         SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1570             OID_AUTO, "tx_intr_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1571             sc, 0, igb_sysctl_tx_intr_nsegs, "I",
1572             "# of segments per TX interrupt");
1573
1574         SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1575             OID_AUTO, "tx_wreg_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1576             sc, 0, igb_sysctl_tx_wreg_nsegs, "I",
1577             "# of segments sent before write to hardware register");
1578
1579         SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1580             OID_AUTO, "rx_wreg_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1581             sc, 0, igb_sysctl_rx_wreg_nsegs, "I",
1582             "# of segments received before write to hardware register");
1583
1584 #ifdef IFPOLL_ENABLE
1585         SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1586             OID_AUTO, "npoll_rxoff", CTLTYPE_INT|CTLFLAG_RW,
1587             sc, 0, igb_sysctl_npoll_rxoff, "I", "NPOLLING RX cpu offset");
1588         SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1589             OID_AUTO, "npoll_txoff", CTLTYPE_INT|CTLFLAG_RW,
1590             sc, 0, igb_sysctl_npoll_txoff, "I", "NPOLLING TX cpu offset");
1591 #endif
1592
1593 #ifdef IGB_RSS_DEBUG
1594         SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1595             OID_AUTO, "rss_debug", CTLFLAG_RW, &sc->rss_debug, 0,
1596             "RSS debug level");
1597         for (i = 0; i < sc->rx_ring_cnt; ++i) {
1598                 ksnprintf(node, sizeof(node), "rx%d_pkt", i);
1599                 SYSCTL_ADD_ULONG(&sc->sysctl_ctx,
1600                     SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, node,
1601                     CTLFLAG_RW, &sc->rx_rings[i].rx_packets, "RXed packets");
1602         }
1603 #endif
1604 #ifdef IGB_TSS_DEBUG
1605         for  (i = 0; i < sc->tx_ring_cnt; ++i) {
1606                 ksnprintf(node, sizeof(node), "tx%d_pkt", i);
1607                 SYSCTL_ADD_ULONG(&sc->sysctl_ctx,
1608                     SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO, node,
1609                     CTLFLAG_RW, &sc->tx_rings[i].tx_packets, "TXed packets");
1610         }
1611 #endif
1612 }
1613
1614 static int
1615 igb_alloc_rings(struct igb_softc *sc)
1616 {
1617         int error, i;
1618
1619         /*
1620          * Create top level busdma tag
1621          */
1622         error = bus_dma_tag_create(NULL, 1, 0,
1623             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1624             BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
1625             &sc->parent_tag);
1626         if (error) {
1627                 device_printf(sc->dev, "could not create top level DMA tag\n");
1628                 return error;
1629         }
1630
1631         /*
1632          * Allocate TX descriptor rings and buffers
1633          */
1634         sc->tx_rings = kmalloc_cachealign(
1635             sizeof(struct igb_tx_ring) * sc->tx_ring_cnt,
1636             M_DEVBUF, M_WAITOK | M_ZERO);
1637         for (i = 0; i < sc->tx_ring_cnt; ++i) {
1638                 struct igb_tx_ring *txr = &sc->tx_rings[i];
1639
1640                 /* Set up some basics */
1641                 txr->sc = sc;
1642                 txr->me = i;
1643                 lwkt_serialize_init(&txr->tx_serialize);
1644
1645                 error = igb_create_tx_ring(txr);
1646                 if (error)
1647                         return error;
1648         }
1649
1650         /*
1651          * Allocate RX descriptor rings and buffers
1652          */ 
1653         sc->rx_rings = kmalloc_cachealign(
1654             sizeof(struct igb_rx_ring) * sc->rx_ring_cnt,
1655             M_DEVBUF, M_WAITOK | M_ZERO);
1656         for (i = 0; i < sc->rx_ring_cnt; ++i) {
1657                 struct igb_rx_ring *rxr = &sc->rx_rings[i];
1658
1659                 /* Set up some basics */
1660                 rxr->sc = sc;
1661                 rxr->me = i;
1662                 lwkt_serialize_init(&rxr->rx_serialize);
1663
1664                 error = igb_create_rx_ring(rxr);
1665                 if (error)
1666                         return error;
1667         }
1668
1669         return 0;
1670 }
1671
1672 static void
1673 igb_free_rings(struct igb_softc *sc)
1674 {
1675         int i;
1676
1677         if (sc->tx_rings != NULL) {
1678                 for (i = 0; i < sc->tx_ring_cnt; ++i) {
1679                         struct igb_tx_ring *txr = &sc->tx_rings[i];
1680
1681                         igb_destroy_tx_ring(txr, txr->num_tx_desc);
1682                 }
1683                 kfree(sc->tx_rings, M_DEVBUF);
1684         }
1685
1686         if (sc->rx_rings != NULL) {
1687                 for (i = 0; i < sc->rx_ring_cnt; ++i) {
1688                         struct igb_rx_ring *rxr = &sc->rx_rings[i];
1689
1690                         igb_destroy_rx_ring(rxr, rxr->num_rx_desc);
1691                 }
1692                 kfree(sc->rx_rings, M_DEVBUF);
1693         }
1694 }
1695
1696 static int
1697 igb_create_tx_ring(struct igb_tx_ring *txr)
1698 {
1699         int tsize, error, i, ntxd;
1700
1701         /*
1702          * Validate number of transmit descriptors. It must not exceed
1703          * hardware maximum, and must be multiple of IGB_DBA_ALIGN.
1704          */
1705         ntxd = device_getenv_int(txr->sc->dev, "txd", igb_txd);
1706         if ((ntxd * sizeof(struct e1000_tx_desc)) % IGB_DBA_ALIGN != 0 ||
1707             ntxd > IGB_MAX_TXD || ntxd < IGB_MIN_TXD) {
1708                 device_printf(txr->sc->dev,
1709                     "Using %d TX descriptors instead of %d!\n",
1710                     IGB_DEFAULT_TXD, ntxd);
1711                 txr->num_tx_desc = IGB_DEFAULT_TXD;
1712         } else {
1713                 txr->num_tx_desc = ntxd;
1714         }
1715
1716         /*
1717          * Allocate TX descriptor ring
1718          */
1719         tsize = roundup2(txr->num_tx_desc * sizeof(union e1000_adv_tx_desc),
1720             IGB_DBA_ALIGN);
1721         txr->txdma.dma_vaddr = bus_dmamem_coherent_any(txr->sc->parent_tag,
1722             IGB_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
1723             &txr->txdma.dma_tag, &txr->txdma.dma_map, &txr->txdma.dma_paddr);
1724         if (txr->txdma.dma_vaddr == NULL) {
1725                 device_printf(txr->sc->dev,
1726                     "Unable to allocate TX Descriptor memory\n");
1727                 return ENOMEM;
1728         }
1729         txr->tx_base = txr->txdma.dma_vaddr;
1730         bzero(txr->tx_base, tsize);
1731
1732         tsize = __VM_CACHELINE_ALIGN(
1733             sizeof(struct igb_tx_buf) * txr->num_tx_desc);
1734         txr->tx_buf = kmalloc_cachealign(tsize, M_DEVBUF, M_WAITOK | M_ZERO);
1735
1736         /*
1737          * Allocate TX head write-back buffer
1738          */
1739         txr->tx_hdr = bus_dmamem_coherent_any(txr->sc->parent_tag,
1740             __VM_CACHELINE_SIZE, __VM_CACHELINE_SIZE, BUS_DMA_WAITOK,
1741             &txr->tx_hdr_dtag, &txr->tx_hdr_dmap, &txr->tx_hdr_paddr);
1742         if (txr->tx_hdr == NULL) {
1743                 device_printf(txr->sc->dev,
1744                     "Unable to allocate TX head write-back buffer\n");
1745                 return ENOMEM;
1746         }
1747
1748         /*
1749          * Create DMA tag for TX buffers
1750          */
1751         error = bus_dma_tag_create(txr->sc->parent_tag,
1752             1, 0,               /* alignment, bounds */
1753             BUS_SPACE_MAXADDR,  /* lowaddr */
1754             BUS_SPACE_MAXADDR,  /* highaddr */
1755             NULL, NULL,         /* filter, filterarg */
1756             IGB_TSO_SIZE,       /* maxsize */
1757             IGB_MAX_SCATTER,    /* nsegments */
1758             PAGE_SIZE,          /* maxsegsize */
1759             BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
1760             BUS_DMA_ONEBPAGE,   /* flags */
1761             &txr->tx_tag);
1762         if (error) {
1763                 device_printf(txr->sc->dev, "Unable to allocate TX DMA tag\n");
1764                 kfree(txr->tx_buf, M_DEVBUF);
1765                 txr->tx_buf = NULL;
1766                 return error;
1767         }
1768
1769         /*
1770          * Create DMA maps for TX buffers
1771          */
1772         for (i = 0; i < txr->num_tx_desc; ++i) {
1773                 struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1774
1775                 error = bus_dmamap_create(txr->tx_tag,
1776                     BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE, &txbuf->map);
1777                 if (error) {
1778                         device_printf(txr->sc->dev,
1779                             "Unable to create TX DMA map\n");
1780                         igb_destroy_tx_ring(txr, i);
1781                         return error;
1782                 }
1783         }
1784
1785         if (txr->sc->hw.mac.type == e1000_82575)
1786                 txr->tx_flags |= IGB_TXFLAG_TSO_IPLEN0;
1787
1788         /*
1789          * Initialize various watermark
1790          */
1791         txr->spare_desc = IGB_TX_SPARE;
1792         txr->intr_nsegs = txr->num_tx_desc / 16;
1793         txr->wreg_nsegs = IGB_DEF_TXWREG_NSEGS;
1794         txr->oact_hi_desc = txr->num_tx_desc / 2;
1795         txr->oact_lo_desc = txr->num_tx_desc / 8;
1796         if (txr->oact_lo_desc > IGB_TX_OACTIVE_MAX)
1797                 txr->oact_lo_desc = IGB_TX_OACTIVE_MAX;
1798         if (txr->oact_lo_desc < txr->spare_desc + IGB_TX_RESERVED)
1799                 txr->oact_lo_desc = txr->spare_desc + IGB_TX_RESERVED;
1800
1801         return 0;
1802 }
1803
1804 static void
1805 igb_free_tx_ring(struct igb_tx_ring *txr)
1806 {
1807         int i;
1808
1809         for (i = 0; i < txr->num_tx_desc; ++i) {
1810                 struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1811
1812                 if (txbuf->m_head != NULL) {
1813                         bus_dmamap_unload(txr->tx_tag, txbuf->map);
1814                         m_freem(txbuf->m_head);
1815                         txbuf->m_head = NULL;
1816                 }
1817         }
1818 }
1819
1820 static void
1821 igb_destroy_tx_ring(struct igb_tx_ring *txr, int ndesc)
1822 {
1823         int i;
1824
1825         if (txr->txdma.dma_vaddr != NULL) {
1826                 bus_dmamap_unload(txr->txdma.dma_tag, txr->txdma.dma_map);
1827                 bus_dmamem_free(txr->txdma.dma_tag, txr->txdma.dma_vaddr,
1828                     txr->txdma.dma_map);
1829                 bus_dma_tag_destroy(txr->txdma.dma_tag);
1830                 txr->txdma.dma_vaddr = NULL;
1831         }
1832
1833         if (txr->tx_hdr != NULL) {
1834                 bus_dmamap_unload(txr->tx_hdr_dtag, txr->tx_hdr_dmap);
1835                 bus_dmamem_free(txr->tx_hdr_dtag, txr->tx_hdr,
1836                     txr->tx_hdr_dmap);
1837                 bus_dma_tag_destroy(txr->tx_hdr_dtag);
1838                 txr->tx_hdr = NULL;
1839         }
1840
1841         if (txr->tx_buf == NULL)
1842                 return;
1843
1844         for (i = 0; i < ndesc; ++i) {
1845                 struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1846
1847                 KKASSERT(txbuf->m_head == NULL);
1848                 bus_dmamap_destroy(txr->tx_tag, txbuf->map);
1849         }
1850         bus_dma_tag_destroy(txr->tx_tag);
1851
1852         kfree(txr->tx_buf, M_DEVBUF);
1853         txr->tx_buf = NULL;
1854 }
1855
1856 static void
1857 igb_init_tx_ring(struct igb_tx_ring *txr)
1858 {
1859         /* Clear the old descriptor contents */
1860         bzero(txr->tx_base,
1861             sizeof(union e1000_adv_tx_desc) * txr->num_tx_desc);
1862
1863         /* Clear TX head write-back buffer */
1864         *(txr->tx_hdr) = 0;
1865
1866         /* Reset indices */
1867         txr->next_avail_desc = 0;
1868         txr->next_to_clean = 0;
1869         txr->tx_nsegs = 0;
1870
1871         /* Set number of descriptors available */
1872         txr->tx_avail = txr->num_tx_desc;
1873
1874         /* Enable this TX ring */
1875         txr->tx_flags |= IGB_TXFLAG_ENABLED;
1876 }
1877
1878 static void
1879 igb_init_tx_unit(struct igb_softc *sc)
1880 {
1881         struct e1000_hw *hw = &sc->hw;
1882         uint32_t tctl;
1883         int i;
1884
1885         /* Setup the Tx Descriptor Rings */
1886         for (i = 0; i < sc->tx_ring_inuse; ++i) {
1887                 struct igb_tx_ring *txr = &sc->tx_rings[i];
1888                 uint64_t bus_addr = txr->txdma.dma_paddr;
1889                 uint64_t hdr_paddr = txr->tx_hdr_paddr;
1890                 uint32_t txdctl = 0;
1891                 uint32_t dca_txctrl;
1892
1893                 E1000_WRITE_REG(hw, E1000_TDLEN(i),
1894                     txr->num_tx_desc * sizeof(struct e1000_tx_desc));
1895                 E1000_WRITE_REG(hw, E1000_TDBAH(i),
1896                     (uint32_t)(bus_addr >> 32));
1897                 E1000_WRITE_REG(hw, E1000_TDBAL(i),
1898                     (uint32_t)bus_addr);
1899
1900                 /* Setup the HW Tx Head and Tail descriptor pointers */
1901                 E1000_WRITE_REG(hw, E1000_TDT(i), 0);
1902                 E1000_WRITE_REG(hw, E1000_TDH(i), 0);
1903
1904                 dca_txctrl = E1000_READ_REG(hw, E1000_DCA_TXCTRL(i));
1905                 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1906                 E1000_WRITE_REG(hw, E1000_DCA_TXCTRL(i), dca_txctrl);
1907
1908                 /*
1909                  * Don't set WB_on_EITR:
1910                  * - 82575 does not have it
1911                  * - It almost has no effect on 82576, see:
1912                  *   82576 specification update errata #26
1913                  * - It causes unnecessary bus traffic
1914                  */
1915                 E1000_WRITE_REG(hw, E1000_TDWBAH(i),
1916                     (uint32_t)(hdr_paddr >> 32));
1917                 E1000_WRITE_REG(hw, E1000_TDWBAL(i),
1918                     ((uint32_t)hdr_paddr) | E1000_TX_HEAD_WB_ENABLE);
1919
1920                 /*
1921                  * WTHRESH is ignored by the hardware, since header
1922                  * write back mode is used.
1923                  */
1924                 txdctl |= IGB_TX_PTHRESH;
1925                 txdctl |= IGB_TX_HTHRESH << 8;
1926                 txdctl |= IGB_TX_WTHRESH << 16;
1927                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1928                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
1929         }
1930
1931         if (sc->vf_ifp)
1932                 return;
1933
1934         e1000_config_collision_dist(hw);
1935
1936         /* Program the Transmit Control Register */
1937         tctl = E1000_READ_REG(hw, E1000_TCTL);
1938         tctl &= ~E1000_TCTL_CT;
1939         tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
1940             (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
1941
1942         /* This write will effectively turn on the transmit unit. */
1943         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1944 }
1945
1946 static boolean_t
1947 igb_txcsum_ctx(struct igb_tx_ring *txr, struct mbuf *mp)
1948 {
1949         struct e1000_adv_tx_context_desc *TXD;
1950         uint32_t vlan_macip_lens, type_tucmd_mlhl, mss_l4len_idx;
1951         int ehdrlen, ctxd, ip_hlen = 0;
1952         boolean_t offload = TRUE;
1953
1954         if ((mp->m_pkthdr.csum_flags & IGB_CSUM_FEATURES) == 0)
1955                 offload = FALSE;
1956
1957         vlan_macip_lens = type_tucmd_mlhl = mss_l4len_idx = 0;
1958
1959         ctxd = txr->next_avail_desc;
1960         TXD = (struct e1000_adv_tx_context_desc *)&txr->tx_base[ctxd];
1961
1962         /*
1963          * In advanced descriptors the vlan tag must 
1964          * be placed into the context descriptor, thus
1965          * we need to be here just for that setup.
1966          */
1967         if (mp->m_flags & M_VLANTAG) {
1968                 uint16_t vlantag;
1969
1970                 vlantag = htole16(mp->m_pkthdr.ether_vlantag);
1971                 vlan_macip_lens |= (vlantag << E1000_ADVTXD_VLAN_SHIFT);
1972         } else if (!offload) {
1973                 return FALSE;
1974         }
1975
1976         ehdrlen = mp->m_pkthdr.csum_lhlen;
1977         KASSERT(ehdrlen > 0, ("invalid ether hlen"));
1978
1979         /* Set the ether header length */
1980         vlan_macip_lens |= ehdrlen << E1000_ADVTXD_MACLEN_SHIFT;
1981         if (mp->m_pkthdr.csum_flags & CSUM_IP) {
1982                 type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
1983                 ip_hlen = mp->m_pkthdr.csum_iphlen;
1984                 KASSERT(ip_hlen > 0, ("invalid ip hlen"));
1985         }
1986         vlan_macip_lens |= ip_hlen;
1987
1988         type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
1989         if (mp->m_pkthdr.csum_flags & CSUM_TCP)
1990                 type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
1991         else if (mp->m_pkthdr.csum_flags & CSUM_UDP)
1992                 type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP;
1993
1994         /* 82575 needs the queue index added */
1995         if (txr->sc->hw.mac.type == e1000_82575)
1996                 mss_l4len_idx = txr->me << 4;
1997
1998         /* Now copy bits into descriptor */
1999         TXD->vlan_macip_lens = htole32(vlan_macip_lens);
2000         TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
2001         TXD->seqnum_seed = htole32(0);
2002         TXD->mss_l4len_idx = htole32(mss_l4len_idx);
2003
2004         /* We've consumed the first desc, adjust counters */
2005         if (++ctxd == txr->num_tx_desc)
2006                 ctxd = 0;
2007         txr->next_avail_desc = ctxd;
2008         --txr->tx_avail;
2009
2010         return offload;
2011 }
2012
2013 static void
2014 igb_txeof(struct igb_tx_ring *txr)
2015 {
2016         struct ifnet *ifp = &txr->sc->arpcom.ac_if;
2017         int first, hdr, avail;
2018
2019         if (txr->tx_avail == txr->num_tx_desc)
2020                 return;
2021
2022         first = txr->next_to_clean;
2023         hdr = *(txr->tx_hdr);
2024
2025         if (first == hdr)
2026                 return;
2027
2028         avail = txr->tx_avail;
2029         while (first != hdr) {
2030                 struct igb_tx_buf *txbuf = &txr->tx_buf[first];
2031
2032                 ++avail;
2033                 if (txbuf->m_head) {
2034                         bus_dmamap_unload(txr->tx_tag, txbuf->map);
2035                         m_freem(txbuf->m_head);
2036                         txbuf->m_head = NULL;
2037                         ++ifp->if_opackets;
2038                 }
2039                 if (++first == txr->num_tx_desc)
2040                         first = 0;
2041         }
2042         txr->next_to_clean = first;
2043         txr->tx_avail = avail;
2044
2045         /*
2046          * If we have a minimum free, clear OACTIVE
2047          * to tell the stack that it is OK to send packets.
2048          */
2049         if (IGB_IS_NOT_OACTIVE(txr)) {
2050                 ifsq_clr_oactive(txr->ifsq);
2051
2052                 /*
2053                  * We have enough TX descriptors, turn off
2054                  * the watchdog.  We allow small amount of
2055                  * packets (roughly intr_nsegs) pending on
2056                  * the transmit ring.
2057                  */
2058                 txr->tx_watchdog.wd_timer = 0;
2059         }
2060 }
2061
2062 static int
2063 igb_create_rx_ring(struct igb_rx_ring *rxr)
2064 {
2065         int rsize, i, error, nrxd;
2066
2067         /*
2068          * Validate number of receive descriptors. It must not exceed
2069          * hardware maximum, and must be multiple of IGB_DBA_ALIGN.
2070          */
2071         nrxd = device_getenv_int(rxr->sc->dev, "rxd", igb_rxd);
2072         if ((nrxd * sizeof(struct e1000_rx_desc)) % IGB_DBA_ALIGN != 0 ||
2073             nrxd > IGB_MAX_RXD || nrxd < IGB_MIN_RXD) {
2074                 device_printf(rxr->sc->dev,
2075                     "Using %d RX descriptors instead of %d!\n",
2076                     IGB_DEFAULT_RXD, nrxd);
2077                 rxr->num_rx_desc = IGB_DEFAULT_RXD;
2078         } else {
2079                 rxr->num_rx_desc = nrxd;
2080         }
2081
2082         /*
2083          * Allocate RX descriptor ring
2084          */
2085         rsize = roundup2(rxr->num_rx_desc * sizeof(union e1000_adv_rx_desc),
2086             IGB_DBA_ALIGN);
2087         rxr->rxdma.dma_vaddr = bus_dmamem_coherent_any(rxr->sc->parent_tag,
2088             IGB_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
2089             &rxr->rxdma.dma_tag, &rxr->rxdma.dma_map,
2090             &rxr->rxdma.dma_paddr);
2091         if (rxr->rxdma.dma_vaddr == NULL) {
2092                 device_printf(rxr->sc->dev,
2093                     "Unable to allocate RxDescriptor memory\n");
2094                 return ENOMEM;
2095         }
2096         rxr->rx_base = rxr->rxdma.dma_vaddr;
2097         bzero(rxr->rx_base, rsize);
2098
2099         rsize = __VM_CACHELINE_ALIGN(
2100             sizeof(struct igb_rx_buf) * rxr->num_rx_desc);
2101         rxr->rx_buf = kmalloc_cachealign(rsize, M_DEVBUF, M_WAITOK | M_ZERO);
2102
2103         /*
2104          * Create DMA tag for RX buffers
2105          */
2106         error = bus_dma_tag_create(rxr->sc->parent_tag,
2107             1, 0,               /* alignment, bounds */
2108             BUS_SPACE_MAXADDR,  /* lowaddr */
2109             BUS_SPACE_MAXADDR,  /* highaddr */
2110             NULL, NULL,         /* filter, filterarg */
2111             MCLBYTES,           /* maxsize */
2112             1,                  /* nsegments */
2113             MCLBYTES,           /* maxsegsize */
2114             BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
2115             &rxr->rx_tag);
2116         if (error) {
2117                 device_printf(rxr->sc->dev,
2118                     "Unable to create RX payload DMA tag\n");
2119                 kfree(rxr->rx_buf, M_DEVBUF);
2120                 rxr->rx_buf = NULL;
2121                 return error;
2122         }
2123
2124         /*
2125          * Create spare DMA map for RX buffers
2126          */
2127         error = bus_dmamap_create(rxr->rx_tag, BUS_DMA_WAITOK,
2128             &rxr->rx_sparemap);
2129         if (error) {
2130                 device_printf(rxr->sc->dev,
2131                     "Unable to create spare RX DMA maps\n");
2132                 bus_dma_tag_destroy(rxr->rx_tag);
2133                 kfree(rxr->rx_buf, M_DEVBUF);
2134                 rxr->rx_buf = NULL;
2135                 return error;
2136         }
2137
2138         /*
2139          * Create DMA maps for RX buffers
2140          */
2141         for (i = 0; i < rxr->num_rx_desc; i++) {
2142                 struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2143
2144                 error = bus_dmamap_create(rxr->rx_tag,
2145                     BUS_DMA_WAITOK, &rxbuf->map);
2146                 if (error) {
2147                         device_printf(rxr->sc->dev,
2148                             "Unable to create RX DMA maps\n");
2149                         igb_destroy_rx_ring(rxr, i);
2150                         return error;
2151                 }
2152         }
2153
2154         /*
2155          * Initialize various watermark
2156          */
2157         rxr->wreg_nsegs = IGB_DEF_RXWREG_NSEGS;
2158
2159         return 0;
2160 }
2161
2162 static void
2163 igb_free_rx_ring(struct igb_rx_ring *rxr)
2164 {
2165         int i;
2166
2167         for (i = 0; i < rxr->num_rx_desc; ++i) {
2168                 struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2169
2170                 if (rxbuf->m_head != NULL) {
2171                         bus_dmamap_unload(rxr->rx_tag, rxbuf->map);
2172                         m_freem(rxbuf->m_head);
2173                         rxbuf->m_head = NULL;
2174                 }
2175         }
2176
2177         if (rxr->fmp != NULL)
2178                 m_freem(rxr->fmp);
2179         rxr->fmp = NULL;
2180         rxr->lmp = NULL;
2181 }
2182
2183 static void
2184 igb_destroy_rx_ring(struct igb_rx_ring *rxr, int ndesc)
2185 {
2186         int i;
2187
2188         if (rxr->rxdma.dma_vaddr != NULL) {
2189                 bus_dmamap_unload(rxr->rxdma.dma_tag, rxr->rxdma.dma_map);
2190                 bus_dmamem_free(rxr->rxdma.dma_tag, rxr->rxdma.dma_vaddr,
2191                     rxr->rxdma.dma_map);
2192                 bus_dma_tag_destroy(rxr->rxdma.dma_tag);
2193                 rxr->rxdma.dma_vaddr = NULL;
2194         }
2195
2196         if (rxr->rx_buf == NULL)
2197                 return;
2198
2199         for (i = 0; i < ndesc; ++i) {
2200                 struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2201
2202                 KKASSERT(rxbuf->m_head == NULL);
2203                 bus_dmamap_destroy(rxr->rx_tag, rxbuf->map);
2204         }
2205         bus_dmamap_destroy(rxr->rx_tag, rxr->rx_sparemap);
2206         bus_dma_tag_destroy(rxr->rx_tag);
2207
2208         kfree(rxr->rx_buf, M_DEVBUF);
2209         rxr->rx_buf = NULL;
2210 }
2211
2212 static void
2213 igb_setup_rxdesc(union e1000_adv_rx_desc *rxd, const struct igb_rx_buf *rxbuf)
2214 {
2215         rxd->read.pkt_addr = htole64(rxbuf->paddr);
2216         rxd->wb.upper.status_error = 0;
2217 }
2218
2219 static int
2220 igb_newbuf(struct igb_rx_ring *rxr, int i, boolean_t wait)
2221 {
2222         struct mbuf *m;
2223         bus_dma_segment_t seg;
2224         bus_dmamap_t map;
2225         struct igb_rx_buf *rxbuf;
2226         int error, nseg;
2227
2228         m = m_getcl(wait ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
2229         if (m == NULL) {
2230                 if (wait) {
2231                         if_printf(&rxr->sc->arpcom.ac_if,
2232                             "Unable to allocate RX mbuf\n");
2233                 }
2234                 return ENOBUFS;
2235         }
2236         m->m_len = m->m_pkthdr.len = MCLBYTES;
2237
2238         if (rxr->sc->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2239                 m_adj(m, ETHER_ALIGN);
2240
2241         error = bus_dmamap_load_mbuf_segment(rxr->rx_tag,
2242             rxr->rx_sparemap, m, &seg, 1, &nseg, BUS_DMA_NOWAIT);
2243         if (error) {
2244                 m_freem(m);
2245                 if (wait) {
2246                         if_printf(&rxr->sc->arpcom.ac_if,
2247                             "Unable to load RX mbuf\n");
2248                 }
2249                 return error;
2250         }
2251
2252         rxbuf = &rxr->rx_buf[i];
2253         if (rxbuf->m_head != NULL)
2254                 bus_dmamap_unload(rxr->rx_tag, rxbuf->map);
2255
2256         map = rxbuf->map;
2257         rxbuf->map = rxr->rx_sparemap;
2258         rxr->rx_sparemap = map;
2259
2260         rxbuf->m_head = m;
2261         rxbuf->paddr = seg.ds_addr;
2262
2263         igb_setup_rxdesc(&rxr->rx_base[i], rxbuf);
2264         return 0;
2265 }
2266
2267 static int
2268 igb_init_rx_ring(struct igb_rx_ring *rxr)
2269 {
2270         int i;
2271
2272         /* Clear the ring contents */
2273         bzero(rxr->rx_base,
2274             rxr->num_rx_desc * sizeof(union e1000_adv_rx_desc));
2275
2276         /* Now replenish the ring mbufs */
2277         for (i = 0; i < rxr->num_rx_desc; ++i) {
2278                 int error;
2279
2280                 error = igb_newbuf(rxr, i, TRUE);
2281                 if (error)
2282                         return error;
2283         }
2284
2285         /* Setup our descriptor indices */
2286         rxr->next_to_check = 0;
2287
2288         rxr->fmp = NULL;
2289         rxr->lmp = NULL;
2290         rxr->discard = FALSE;
2291
2292         return 0;
2293 }
2294
2295 static void
2296 igb_init_rx_unit(struct igb_softc *sc)
2297 {
2298         struct ifnet *ifp = &sc->arpcom.ac_if;
2299         struct e1000_hw *hw = &sc->hw;
2300         uint32_t rctl, rxcsum, srrctl = 0;
2301         int i;
2302
2303         /*
2304          * Make sure receives are disabled while setting
2305          * up the descriptor ring
2306          */
2307         rctl = E1000_READ_REG(hw, E1000_RCTL);
2308         E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2309
2310 #if 0
2311         /*
2312         ** Set up for header split
2313         */
2314         if (igb_header_split) {
2315                 /* Use a standard mbuf for the header */
2316                 srrctl |= IGB_HDR_BUF << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2317                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2318         } else
2319 #endif
2320                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2321
2322         /*
2323         ** Set up for jumbo frames
2324         */
2325         if (ifp->if_mtu > ETHERMTU) {
2326                 rctl |= E1000_RCTL_LPE;
2327 #if 0
2328                 if (adapter->rx_mbuf_sz == MJUMPAGESIZE) {
2329                         srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2330                         rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
2331                 } else if (adapter->rx_mbuf_sz > MJUMPAGESIZE) {
2332                         srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2333                         rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
2334                 }
2335                 /* Set maximum packet len */
2336                 psize = adapter->max_frame_size;
2337                 /* are we on a vlan? */
2338                 if (adapter->ifp->if_vlantrunk != NULL)
2339                         psize += VLAN_TAG_SIZE;
2340                 E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize);
2341 #else
2342                 srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2343                 rctl |= E1000_RCTL_SZ_2048;
2344 #endif
2345         } else {
2346                 rctl &= ~E1000_RCTL_LPE;
2347                 srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2348                 rctl |= E1000_RCTL_SZ_2048;
2349         }
2350
2351         /* Setup the Base and Length of the Rx Descriptor Rings */
2352         for (i = 0; i < sc->rx_ring_inuse; ++i) {
2353                 struct igb_rx_ring *rxr = &sc->rx_rings[i];
2354                 uint64_t bus_addr = rxr->rxdma.dma_paddr;
2355                 uint32_t rxdctl;
2356
2357                 E1000_WRITE_REG(hw, E1000_RDLEN(i),
2358                     rxr->num_rx_desc * sizeof(struct e1000_rx_desc));
2359                 E1000_WRITE_REG(hw, E1000_RDBAH(i),
2360                     (uint32_t)(bus_addr >> 32));
2361                 E1000_WRITE_REG(hw, E1000_RDBAL(i),
2362                     (uint32_t)bus_addr);
2363                 E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
2364                 /* Enable this Queue */
2365                 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
2366                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2367                 rxdctl &= 0xFFF00000;
2368                 rxdctl |= IGB_RX_PTHRESH;
2369                 rxdctl |= IGB_RX_HTHRESH << 8;
2370                 /*
2371                  * Don't set WTHRESH to a value above 1 on 82576, see:
2372                  * 82576 specification update errata #26
2373                  */
2374                 rxdctl |= IGB_RX_WTHRESH << 16;
2375                 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
2376         }
2377
2378         rxcsum = E1000_READ_REG(&sc->hw, E1000_RXCSUM);
2379         rxcsum &= ~(E1000_RXCSUM_PCSS_MASK | E1000_RXCSUM_IPPCSE);
2380
2381         /*
2382          * Receive Checksum Offload for TCP and UDP
2383          *
2384          * Checksum offloading is also enabled if multiple receive
2385          * queue is to be supported, since we need it to figure out
2386          * fragments.
2387          */
2388         if ((ifp->if_capenable & IFCAP_RXCSUM) || IGB_ENABLE_HWRSS(sc)) {
2389                 /*
2390                  * NOTE:
2391                  * PCSD must be enabled to enable multiple
2392                  * receive queues.
2393                  */
2394                 rxcsum |= E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2395                     E1000_RXCSUM_PCSD;
2396         } else {
2397                 rxcsum &= ~(E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL |
2398                     E1000_RXCSUM_PCSD);
2399         }
2400         E1000_WRITE_REG(&sc->hw, E1000_RXCSUM, rxcsum);
2401
2402         if (IGB_ENABLE_HWRSS(sc)) {
2403                 uint8_t key[IGB_NRSSRK * IGB_RSSRK_SIZE];
2404                 uint32_t reta_shift;
2405                 int j, r;
2406
2407                 /*
2408                  * NOTE:
2409                  * When we reach here, RSS has already been disabled
2410                  * in igb_stop(), so we could safely configure RSS key
2411                  * and redirect table.
2412                  */
2413
2414                 /*
2415                  * Configure RSS key
2416                  */
2417                 toeplitz_get_key(key, sizeof(key));
2418                 for (i = 0; i < IGB_NRSSRK; ++i) {
2419                         uint32_t rssrk;
2420
2421                         rssrk = IGB_RSSRK_VAL(key, i);
2422                         IGB_RSS_DPRINTF(sc, 1, "rssrk%d 0x%08x\n", i, rssrk);
2423
2424                         E1000_WRITE_REG(hw, E1000_RSSRK(i), rssrk);
2425                 }
2426
2427                 /*
2428                  * Configure RSS redirect table in following fashion:
2429                  * (hash & ring_cnt_mask) == rdr_table[(hash & rdr_table_mask)]
2430                  */
2431                 reta_shift = IGB_RETA_SHIFT;
2432                 if (hw->mac.type == e1000_82575)
2433                         reta_shift = IGB_RETA_SHIFT_82575;
2434
2435                 r = 0;
2436                 for (j = 0; j < IGB_NRETA; ++j) {
2437                         uint32_t reta = 0;
2438
2439                         for (i = 0; i < IGB_RETA_SIZE; ++i) {
2440                                 uint32_t q;
2441
2442                                 q = (r % sc->rx_ring_inuse) << reta_shift;
2443                                 reta |= q << (8 * i);
2444                                 ++r;
2445                         }
2446                         IGB_RSS_DPRINTF(sc, 1, "reta 0x%08x\n", reta);
2447                         E1000_WRITE_REG(hw, E1000_RETA(j), reta);
2448                 }
2449
2450                 /*
2451                  * Enable multiple receive queues.
2452                  * Enable IPv4 RSS standard hash functions.
2453                  * Disable RSS interrupt on 82575
2454                  */
2455                 E1000_WRITE_REG(&sc->hw, E1000_MRQC,
2456                                 E1000_MRQC_ENABLE_RSS_4Q |
2457                                 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2458                                 E1000_MRQC_RSS_FIELD_IPV4);
2459         }
2460
2461         /* Setup the Receive Control Register */
2462         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2463         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2464             E1000_RCTL_RDMTS_HALF |
2465             (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2466         /* Strip CRC bytes. */
2467         rctl |= E1000_RCTL_SECRC;
2468         /* Make sure VLAN Filters are off */
2469         rctl &= ~E1000_RCTL_VFE;
2470         /* Don't store bad packets */
2471         rctl &= ~E1000_RCTL_SBP;
2472
2473         /* Enable Receives */
2474         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2475
2476         /*
2477          * Setup the HW Rx Head and Tail Descriptor Pointers
2478          *   - needs to be after enable
2479          */
2480         for (i = 0; i < sc->rx_ring_inuse; ++i) {
2481                 struct igb_rx_ring *rxr = &sc->rx_rings[i];
2482
2483                 E1000_WRITE_REG(hw, E1000_RDH(i), rxr->next_to_check);
2484                 E1000_WRITE_REG(hw, E1000_RDT(i), rxr->num_rx_desc - 1);
2485         }
2486 }
2487
2488 static void
2489 igb_rx_refresh(struct igb_rx_ring *rxr, int i)
2490 {
2491         if (--i < 0)
2492                 i = rxr->num_rx_desc - 1;
2493         E1000_WRITE_REG(&rxr->sc->hw, E1000_RDT(rxr->me), i);
2494 }
2495
2496 static void
2497 igb_rxeof(struct igb_rx_ring *rxr, int count)
2498 {
2499         struct ifnet *ifp = &rxr->sc->arpcom.ac_if;
2500         union e1000_adv_rx_desc *cur;
2501         uint32_t staterr;
2502         int i, ncoll = 0;
2503
2504         i = rxr->next_to_check;
2505         cur = &rxr->rx_base[i];
2506         staterr = le32toh(cur->wb.upper.status_error);
2507
2508         if ((staterr & E1000_RXD_STAT_DD) == 0)
2509                 return;
2510
2511         while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
2512                 struct pktinfo *pi = NULL, pi0;
2513                 struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2514                 struct mbuf *m = NULL;
2515                 boolean_t eop;
2516
2517                 eop = (staterr & E1000_RXD_STAT_EOP) ? TRUE : FALSE;
2518                 if (eop)
2519                         --count;
2520
2521                 ++ncoll;
2522                 if ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) == 0 &&
2523                     !rxr->discard) {
2524                         struct mbuf *mp = rxbuf->m_head;
2525                         uint32_t hash, hashtype;
2526                         uint16_t vlan;
2527                         int len;
2528
2529                         len = le16toh(cur->wb.upper.length);
2530                         if (rxr->sc->hw.mac.type == e1000_i350 &&
2531                             (staterr & E1000_RXDEXT_STATERR_LB))
2532                                 vlan = be16toh(cur->wb.upper.vlan);
2533                         else
2534                                 vlan = le16toh(cur->wb.upper.vlan);
2535
2536                         hash = le32toh(cur->wb.lower.hi_dword.rss);
2537                         hashtype = le32toh(cur->wb.lower.lo_dword.data) &
2538                             E1000_RXDADV_RSSTYPE_MASK;
2539
2540                         IGB_RSS_DPRINTF(rxr->sc, 10,
2541                             "ring%d, hash 0x%08x, hashtype %u\n",
2542                             rxr->me, hash, hashtype);
2543
2544                         bus_dmamap_sync(rxr->rx_tag, rxbuf->map,
2545                             BUS_DMASYNC_POSTREAD);
2546
2547                         if (igb_newbuf(rxr, i, FALSE) != 0) {
2548                                 ifp->if_iqdrops++;
2549                                 goto discard;
2550                         }
2551
2552                         mp->m_len = len;
2553                         if (rxr->fmp == NULL) {
2554                                 mp->m_pkthdr.len = len;
2555                                 rxr->fmp = mp;
2556                                 rxr->lmp = mp;
2557                         } else {
2558                                 rxr->lmp->m_next = mp;
2559                                 rxr->lmp = rxr->lmp->m_next;
2560                                 rxr->fmp->m_pkthdr.len += len;
2561                         }
2562
2563                         if (eop) {
2564                                 m = rxr->fmp;
2565                                 rxr->fmp = NULL;
2566                                 rxr->lmp = NULL;
2567
2568                                 m->m_pkthdr.rcvif = ifp;
2569                                 ifp->if_ipackets++;
2570
2571                                 if (ifp->if_capenable & IFCAP_RXCSUM)
2572                                         igb_rxcsum(staterr, m);
2573
2574                                 if (staterr & E1000_RXD_STAT_VP) {
2575                                         m->m_pkthdr.ether_vlantag = vlan;
2576                                         m->m_flags |= M_VLANTAG;
2577                                 }
2578
2579                                 if (ifp->if_capenable & IFCAP_RSS) {
2580                                         pi = igb_rssinfo(m, &pi0,
2581                                             hash, hashtype, staterr);
2582                                 }
2583 #ifdef IGB_RSS_DEBUG
2584                                 rxr->rx_packets++;
2585 #endif
2586                         }
2587                 } else {
2588                         ifp->if_ierrors++;
2589 discard:
2590                         igb_setup_rxdesc(cur, rxbuf);
2591                         if (!eop)
2592                                 rxr->discard = TRUE;
2593                         else
2594                                 rxr->discard = FALSE;
2595                         if (rxr->fmp != NULL) {
2596                                 m_freem(rxr->fmp);
2597                                 rxr->fmp = NULL;
2598                                 rxr->lmp = NULL;
2599                         }
2600                         m = NULL;
2601                 }
2602
2603                 if (m != NULL)
2604                         ether_input_pkt(ifp, m, pi);
2605
2606                 /* Advance our pointers to the next descriptor. */
2607                 if (++i == rxr->num_rx_desc)
2608                         i = 0;
2609
2610                 if (ncoll >= rxr->wreg_nsegs) {
2611                         igb_rx_refresh(rxr, i);
2612                         ncoll = 0;
2613                 }
2614
2615                 cur = &rxr->rx_base[i];
2616                 staterr = le32toh(cur->wb.upper.status_error);
2617         }
2618         rxr->next_to_check = i;
2619
2620         if (ncoll > 0)
2621                 igb_rx_refresh(rxr, i);
2622 }
2623
2624
2625 static void
2626 igb_set_vlan(struct igb_softc *sc)
2627 {
2628         struct e1000_hw *hw = &sc->hw;
2629         uint32_t reg;
2630 #if 0
2631         struct ifnet *ifp = sc->arpcom.ac_if;
2632 #endif
2633
2634         if (sc->vf_ifp) {
2635                 e1000_rlpml_set_vf(hw, sc->max_frame_size + VLAN_TAG_SIZE);
2636                 return;
2637         }
2638
2639         reg = E1000_READ_REG(hw, E1000_CTRL);
2640         reg |= E1000_CTRL_VME;
2641         E1000_WRITE_REG(hw, E1000_CTRL, reg);
2642
2643 #if 0
2644         /* Enable the Filter Table */
2645         if (ifp->if_capenable & IFCAP_VLAN_HWFILTER) {
2646                 reg = E1000_READ_REG(hw, E1000_RCTL);
2647                 reg &= ~E1000_RCTL_CFIEN;
2648                 reg |= E1000_RCTL_VFE;
2649                 E1000_WRITE_REG(hw, E1000_RCTL, reg);
2650         }
2651 #endif
2652
2653         /* Update the frame size */
2654         E1000_WRITE_REG(&sc->hw, E1000_RLPML,
2655             sc->max_frame_size + VLAN_TAG_SIZE);
2656
2657 #if 0
2658         /* Don't bother with table if no vlans */
2659         if ((adapter->num_vlans == 0) ||
2660             ((ifp->if_capenable & IFCAP_VLAN_HWFILTER) == 0))
2661                 return;
2662         /*
2663         ** A soft reset zero's out the VFTA, so
2664         ** we need to repopulate it now.
2665         */
2666         for (int i = 0; i < IGB_VFTA_SIZE; i++)
2667                 if (adapter->shadow_vfta[i] != 0) {
2668                         if (adapter->vf_ifp)
2669                                 e1000_vfta_set_vf(hw,
2670                                     adapter->shadow_vfta[i], TRUE);
2671                         else
2672                                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
2673                                  i, adapter->shadow_vfta[i]);
2674                 }
2675 #endif
2676 }
2677
2678 static void
2679 igb_enable_intr(struct igb_softc *sc)
2680 {
2681         if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
2682                 lwkt_serialize_handler_enable(&sc->main_serialize);
2683         } else {
2684                 int i;
2685
2686                 for (i = 0; i < sc->msix_cnt; ++i) {
2687                         lwkt_serialize_handler_enable(
2688                             sc->msix_data[i].msix_serialize);
2689                 }
2690         }
2691
2692         if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0) {
2693                 if (sc->intr_type == PCI_INTR_TYPE_MSIX)
2694                         E1000_WRITE_REG(&sc->hw, E1000_EIAC, sc->intr_mask);
2695                 else
2696                         E1000_WRITE_REG(&sc->hw, E1000_EIAC, 0);
2697                 E1000_WRITE_REG(&sc->hw, E1000_EIAM, sc->intr_mask);
2698                 E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->intr_mask);
2699                 E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
2700         } else {
2701                 E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
2702         }
2703         E1000_WRITE_FLUSH(&sc->hw);
2704 }
2705
2706 static void
2707 igb_disable_intr(struct igb_softc *sc)
2708 {
2709         if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0) {
2710                 E1000_WRITE_REG(&sc->hw, E1000_EIMC, 0xffffffff);
2711                 E1000_WRITE_REG(&sc->hw, E1000_EIAC, 0);
2712         }
2713         E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
2714         E1000_WRITE_FLUSH(&sc->hw);
2715
2716         if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
2717                 lwkt_serialize_handler_disable(&sc->main_serialize);
2718         } else {
2719                 int i;
2720
2721                 for (i = 0; i < sc->msix_cnt; ++i) {
2722                         lwkt_serialize_handler_disable(
2723                             sc->msix_data[i].msix_serialize);
2724                 }
2725         }
2726 }
2727
2728 /*
2729  * Bit of a misnomer, what this really means is
2730  * to enable OS management of the system... aka
2731  * to disable special hardware management features 
2732  */
2733 static void
2734 igb_get_mgmt(struct igb_softc *sc)
2735 {
2736         if (sc->flags & IGB_FLAG_HAS_MGMT) {
2737                 int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
2738                 int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2739
2740                 /* disable hardware interception of ARP */
2741                 manc &= ~E1000_MANC_ARP_EN;
2742
2743                 /* enable receiving management packets to the host */
2744                 manc |= E1000_MANC_EN_MNG2HOST;
2745                 manc2h |= 1 << 5; /* Mng Port 623 */
2746                 manc2h |= 1 << 6; /* Mng Port 664 */
2747                 E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
2748                 E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2749         }
2750 }
2751
2752 /*
2753  * Give control back to hardware management controller
2754  * if there is one.
2755  */
2756 static void
2757 igb_rel_mgmt(struct igb_softc *sc)
2758 {
2759         if (sc->flags & IGB_FLAG_HAS_MGMT) {
2760                 int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2761
2762                 /* Re-enable hardware interception of ARP */
2763                 manc |= E1000_MANC_ARP_EN;
2764                 manc &= ~E1000_MANC_EN_MNG2HOST;
2765
2766                 E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2767         }
2768 }
2769
2770 /*
2771  * Sets CTRL_EXT:DRV_LOAD bit.
2772  *
2773  * For ASF and Pass Through versions of f/w this means that
2774  * the driver is loaded. 
2775  */
2776 static void
2777 igb_get_hw_control(struct igb_softc *sc)
2778 {
2779         uint32_t ctrl_ext;
2780
2781         if (sc->vf_ifp)
2782                 return;
2783
2784         /* Let firmware know the driver has taken over */
2785         ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2786         E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2787             ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2788 }
2789
2790 /*
2791  * Resets CTRL_EXT:DRV_LOAD bit.
2792  *
2793  * For ASF and Pass Through versions of f/w this means that the
2794  * driver is no longer loaded.
2795  */
2796 static void
2797 igb_rel_hw_control(struct igb_softc *sc)
2798 {
2799         uint32_t ctrl_ext;
2800
2801         if (sc->vf_ifp)
2802                 return;
2803
2804         /* Let firmware taken over control of h/w */
2805         ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2806         E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2807             ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2808 }
2809
2810 static int
2811 igb_is_valid_ether_addr(const uint8_t *addr)
2812 {
2813         uint8_t zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
2814
2815         if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
2816                 return FALSE;
2817         return TRUE;
2818 }
2819
2820 /*
2821  * Enable PCI Wake On Lan capability
2822  */
2823 static void
2824 igb_enable_wol(device_t dev)
2825 {
2826         uint16_t cap, status;
2827         uint8_t id;
2828
2829         /* First find the capabilities pointer*/
2830         cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
2831
2832         /* Read the PM Capabilities */
2833         id = pci_read_config(dev, cap, 1);
2834         if (id != PCIY_PMG)     /* Something wrong */
2835                 return;
2836
2837         /*
2838          * OK, we have the power capabilities,
2839          * so now get the status register
2840          */
2841         cap += PCIR_POWER_STATUS;
2842         status = pci_read_config(dev, cap, 2);
2843         status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2844         pci_write_config(dev, cap, status, 2);
2845 }
2846
2847 static void
2848 igb_update_stats_counters(struct igb_softc *sc)
2849 {
2850         struct e1000_hw *hw = &sc->hw;
2851         struct e1000_hw_stats *stats;
2852         struct ifnet *ifp = &sc->arpcom.ac_if;
2853
2854         /* 
2855          * The virtual function adapter has only a
2856          * small controlled set of stats, do only 
2857          * those and return.
2858          */
2859         if (sc->vf_ifp) {
2860                 igb_update_vf_stats_counters(sc);
2861                 return;
2862         }
2863         stats = sc->stats;
2864
2865         if (sc->hw.phy.media_type == e1000_media_type_copper ||
2866             (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
2867                 stats->symerrs +=
2868                     E1000_READ_REG(hw,E1000_SYMERRS);
2869                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
2870         }
2871
2872         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
2873         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
2874         stats->scc += E1000_READ_REG(hw, E1000_SCC);
2875         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
2876
2877         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
2878         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
2879         stats->colc += E1000_READ_REG(hw, E1000_COLC);
2880         stats->dc += E1000_READ_REG(hw, E1000_DC);
2881         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
2882         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
2883         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
2884
2885         /*
2886          * For watchdog management we need to know if we have been
2887          * paused during the last interval, so capture that here.
2888          */ 
2889         sc->pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
2890         stats->xoffrxc += sc->pause_frames;
2891         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
2892         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
2893         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
2894         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
2895         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
2896         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
2897         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
2898         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
2899         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
2900         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
2901         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
2902         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
2903
2904         /* For the 64-bit byte counters the low dword must be read first. */
2905         /* Both registers clear on the read of the high dword */
2906
2907         stats->gorc += E1000_READ_REG(hw, E1000_GORCL) +
2908             ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
2909         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL) +
2910             ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
2911
2912         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
2913         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
2914         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
2915         stats->roc += E1000_READ_REG(hw, E1000_ROC);
2916         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
2917
2918         stats->tor += E1000_READ_REG(hw, E1000_TORH);
2919         stats->tot += E1000_READ_REG(hw, E1000_TOTH);
2920
2921         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
2922         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
2923         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
2924         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
2925         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
2926         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
2927         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
2928         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
2929         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
2930         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
2931
2932         /* Interrupt Counts */
2933
2934         stats->iac += E1000_READ_REG(hw, E1000_IAC);
2935         stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
2936         stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
2937         stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
2938         stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
2939         stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
2940         stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
2941         stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
2942         stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
2943
2944         /* Host to Card Statistics */
2945
2946         stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
2947         stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
2948         stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
2949         stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
2950         stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
2951         stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
2952         stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
2953         stats->hgorc += (E1000_READ_REG(hw, E1000_HGORCL) +
2954             ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32));
2955         stats->hgotc += (E1000_READ_REG(hw, E1000_HGOTCL) +
2956             ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32));
2957         stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
2958         stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
2959         stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
2960
2961         stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
2962         stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
2963         stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
2964         stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
2965         stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
2966         stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
2967
2968         ifp->if_collisions = stats->colc;
2969
2970         /* Rx Errors */
2971         ifp->if_ierrors = stats->rxerrc + stats->crcerrs + stats->algnerrc +
2972             stats->ruc + stats->roc + stats->mpc + stats->cexterr;
2973
2974         /* Tx Errors */
2975         ifp->if_oerrors = stats->ecol + stats->latecol + sc->watchdog_events;
2976
2977         /* Driver specific counters */
2978         sc->device_control = E1000_READ_REG(hw, E1000_CTRL);
2979         sc->rx_control = E1000_READ_REG(hw, E1000_RCTL);
2980         sc->int_mask = E1000_READ_REG(hw, E1000_IMS);
2981         sc->eint_mask = E1000_READ_REG(hw, E1000_EIMS);
2982         sc->packet_buf_alloc_tx =
2983             ((E1000_READ_REG(hw, E1000_PBA) & 0xffff0000) >> 16);
2984         sc->packet_buf_alloc_rx =
2985             (E1000_READ_REG(hw, E1000_PBA) & 0xffff);
2986 }
2987
2988 static void
2989 igb_vf_init_stats(struct igb_softc *sc)
2990 {
2991         struct e1000_hw *hw = &sc->hw;
2992         struct e1000_vf_stats *stats;
2993
2994         stats = sc->stats;
2995         stats->last_gprc = E1000_READ_REG(hw, E1000_VFGPRC);
2996         stats->last_gorc = E1000_READ_REG(hw, E1000_VFGORC);
2997         stats->last_gptc = E1000_READ_REG(hw, E1000_VFGPTC);
2998         stats->last_gotc = E1000_READ_REG(hw, E1000_VFGOTC);
2999         stats->last_mprc = E1000_READ_REG(hw, E1000_VFMPRC);
3000 }
3001  
3002 static void
3003 igb_update_vf_stats_counters(struct igb_softc *sc)
3004 {
3005         struct e1000_hw *hw = &sc->hw;
3006         struct e1000_vf_stats *stats;
3007
3008         if (sc->link_speed == 0)
3009                 return;
3010
3011         stats = sc->stats;
3012         UPDATE_VF_REG(E1000_VFGPRC, stats->last_gprc, stats->gprc);
3013         UPDATE_VF_REG(E1000_VFGORC, stats->last_gorc, stats->gorc);
3014         UPDATE_VF_REG(E1000_VFGPTC, stats->last_gptc, stats->gptc);
3015         UPDATE_VF_REG(E1000_VFGOTC, stats->last_gotc, stats->gotc);
3016         UPDATE_VF_REG(E1000_VFMPRC, stats->last_mprc, stats->mprc);
3017 }
3018
3019 #ifdef IFPOLL_ENABLE
3020
3021 static void
3022 igb_npoll_status(struct ifnet *ifp)
3023 {
3024         struct igb_softc *sc = ifp->if_softc;
3025         uint32_t reg_icr;
3026
3027         ASSERT_SERIALIZED(&sc->main_serialize);
3028
3029         reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3030         if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3031                 sc->hw.mac.get_link_status = 1;
3032                 igb_update_link_status(sc);
3033         }
3034 }
3035
3036 static void
3037 igb_npoll_tx(struct ifnet *ifp, void *arg, int cycle __unused)
3038 {
3039         struct igb_tx_ring *txr = arg;
3040
3041         ASSERT_SERIALIZED(&txr->tx_serialize);
3042
3043         igb_txeof(txr);
3044         if (!ifsq_is_empty(txr->ifsq))
3045                 ifsq_devstart(txr->ifsq);
3046 }
3047
3048 static void
3049 igb_npoll_rx(struct ifnet *ifp __unused, void *arg, int cycle)
3050 {
3051         struct igb_rx_ring *rxr = arg;
3052
3053         ASSERT_SERIALIZED(&rxr->rx_serialize);
3054
3055         igb_rxeof(rxr, cycle);
3056 }
3057
3058 static void
3059 igb_npoll(struct ifnet *ifp, struct ifpoll_info *info)
3060 {
3061         struct igb_softc *sc = ifp->if_softc;
3062         int i, txr_cnt, rxr_cnt;
3063
3064         ASSERT_IFNET_SERIALIZED_ALL(ifp);
3065
3066         if (info) {
3067                 int off;
3068
3069                 info->ifpi_status.status_func = igb_npoll_status;
3070                 info->ifpi_status.serializer = &sc->main_serialize;
3071
3072                 txr_cnt = igb_get_txring_inuse(sc, TRUE);
3073                 off = sc->tx_npoll_off;
3074                 for (i = 0; i < txr_cnt; ++i) {
3075                         struct igb_tx_ring *txr = &sc->tx_rings[i];
3076                         int idx = i + off;
3077
3078                         KKASSERT(idx < ncpus2);
3079                         info->ifpi_tx[idx].poll_func = igb_npoll_tx;
3080                         info->ifpi_tx[idx].arg = txr;
3081                         info->ifpi_tx[idx].serializer = &txr->tx_serialize;
3082                         ifsq_set_cpuid(txr->ifsq, idx);
3083                 }
3084
3085                 rxr_cnt = igb_get_rxring_inuse(sc, TRUE);
3086                 off = sc->rx_npoll_off;
3087                 for (i = 0; i < rxr_cnt; ++i) {
3088                         struct igb_rx_ring *rxr = &sc->rx_rings[i];
3089                         int idx = i + off;
3090
3091                         KKASSERT(idx < ncpus2);
3092                         info->ifpi_rx[idx].poll_func = igb_npoll_rx;
3093                         info->ifpi_rx[idx].arg = rxr;
3094                         info->ifpi_rx[idx].serializer = &rxr->rx_serialize;
3095                 }
3096
3097                 if (ifp->if_flags & IFF_RUNNING) {
3098                         if (rxr_cnt == sc->rx_ring_inuse &&
3099                             txr_cnt == sc->tx_ring_inuse)
3100                                 igb_disable_intr(sc);
3101                         else
3102                                 igb_init(sc);
3103                 }
3104         } else {
3105                 for (i = 0; i < sc->tx_ring_cnt; ++i) {
3106                         struct igb_tx_ring *txr = &sc->tx_rings[i];
3107
3108                         ifsq_set_cpuid(txr->ifsq, txr->tx_intr_cpuid);
3109                 }
3110
3111                 if (ifp->if_flags & IFF_RUNNING) {
3112                         txr_cnt = igb_get_txring_inuse(sc, FALSE);
3113                         rxr_cnt = igb_get_rxring_inuse(sc, FALSE);
3114
3115                         if (rxr_cnt == sc->rx_ring_inuse &&
3116                             txr_cnt == sc->tx_ring_inuse)
3117                                 igb_enable_intr(sc);
3118                         else
3119                                 igb_init(sc);
3120                 }
3121         }
3122 }
3123
3124 #endif /* IFPOLL_ENABLE */
3125
3126 static void
3127 igb_intr(void *xsc)
3128 {
3129         struct igb_softc *sc = xsc;
3130         struct ifnet *ifp = &sc->arpcom.ac_if;
3131         uint32_t eicr;
3132
3133         ASSERT_SERIALIZED(&sc->main_serialize);
3134
3135         eicr = E1000_READ_REG(&sc->hw, E1000_EICR);
3136
3137         if (eicr == 0)
3138                 return;
3139
3140         if (ifp->if_flags & IFF_RUNNING) {
3141                 struct igb_tx_ring *txr = &sc->tx_rings[0];
3142                 int i;
3143
3144                 for (i = 0; i < sc->rx_ring_inuse; ++i) {
3145                         struct igb_rx_ring *rxr = &sc->rx_rings[i];
3146
3147                         if (eicr & rxr->rx_intr_mask) {
3148                                 lwkt_serialize_enter(&rxr->rx_serialize);
3149                                 igb_rxeof(rxr, -1);
3150                                 lwkt_serialize_exit(&rxr->rx_serialize);
3151                         }
3152                 }
3153
3154                 if (eicr & txr->tx_intr_mask) {
3155                         lwkt_serialize_enter(&txr->tx_serialize);
3156                         igb_txeof(txr);
3157                         if (!ifsq_is_empty(txr->ifsq))
3158                                 ifsq_devstart(txr->ifsq);
3159                         lwkt_serialize_exit(&txr->tx_serialize);
3160                 }
3161         }
3162
3163         if (eicr & E1000_EICR_OTHER) {
3164                 uint32_t icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3165
3166                 /* Link status change */
3167                 if (icr & E1000_ICR_LSC) {
3168                         sc->hw.mac.get_link_status = 1;
3169                         igb_update_link_status(sc);
3170                 }
3171         }
3172
3173         /*
3174          * Reading EICR has the side effect to clear interrupt mask,
3175          * so all interrupts need to be enabled here.
3176          */
3177         E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->intr_mask);
3178 }
3179
3180 static void
3181 igb_intr_shared(void *xsc)
3182 {
3183         struct igb_softc *sc = xsc;
3184         struct ifnet *ifp = &sc->arpcom.ac_if;
3185         uint32_t reg_icr;
3186
3187         ASSERT_SERIALIZED(&sc->main_serialize);
3188
3189         reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
3190
3191         /* Hot eject?  */
3192         if (reg_icr == 0xffffffff)
3193                 return;
3194
3195         /* Definitely not our interrupt.  */
3196         if (reg_icr == 0x0)
3197                 return;
3198
3199         if ((reg_icr & E1000_ICR_INT_ASSERTED) == 0)
3200                 return;
3201
3202         if (ifp->if_flags & IFF_RUNNING) {
3203                 if (reg_icr &
3204                     (E1000_ICR_RXT0 | E1000_ICR_RXDMT0 | E1000_ICR_RXO)) {
3205                         int i;
3206
3207                         for (i = 0; i < sc->rx_ring_inuse; ++i) {
3208                                 struct igb_rx_ring *rxr = &sc->rx_rings[i];
3209
3210                                 lwkt_serialize_enter(&rxr->rx_serialize);
3211                                 igb_rxeof(rxr, -1);
3212                                 lwkt_serialize_exit(&rxr->rx_serialize);
3213                         }
3214                 }
3215
3216                 if (reg_icr & E1000_ICR_TXDW) {
3217                         struct igb_tx_ring *txr = &sc->tx_rings[0];
3218
3219                         lwkt_serialize_enter(&txr->tx_serialize);
3220                         igb_txeof(txr);
3221                         if (!ifsq_is_empty(txr->ifsq))
3222                                 ifsq_devstart(txr->ifsq);
3223                         lwkt_serialize_exit(&txr->tx_serialize);
3224                 }
3225         }
3226
3227         /* Link status change */
3228         if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3229                 sc->hw.mac.get_link_status = 1;
3230                 igb_update_link_status(sc);
3231         }
3232
3233         if (reg_icr & E1000_ICR_RXO)
3234                 sc->rx_overruns++;
3235 }
3236
3237 static int
3238 igb_encap(struct igb_tx_ring *txr, struct mbuf **m_headp,
3239     int *segs_used, int *idx)
3240 {
3241         bus_dma_segment_t segs[IGB_MAX_SCATTER];
3242         bus_dmamap_t map;
3243         struct igb_tx_buf *tx_buf, *tx_buf_mapped;
3244         union e1000_adv_tx_desc *txd = NULL;
3245         struct mbuf *m_head = *m_headp;
3246         uint32_t olinfo_status = 0, cmd_type_len = 0, cmd_rs = 0;
3247         int maxsegs, nsegs, i, j, error;
3248         uint32_t hdrlen = 0;
3249
3250         if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3251                 error = igb_tso_pullup(txr, m_headp);
3252                 if (error)
3253                         return error;
3254                 m_head = *m_headp;
3255         }
3256
3257         /* Set basic descriptor constants */
3258         cmd_type_len |= E1000_ADVTXD_DTYP_DATA;
3259         cmd_type_len |= E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
3260         if (m_head->m_flags & M_VLANTAG)
3261                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
3262
3263         /*
3264          * Map the packet for DMA.
3265          */
3266         tx_buf = &txr->tx_buf[txr->next_avail_desc];
3267         tx_buf_mapped = tx_buf;
3268         map = tx_buf->map;
3269
3270         maxsegs = txr->tx_avail - IGB_TX_RESERVED;
3271         KASSERT(maxsegs >= txr->spare_desc, ("not enough spare TX desc\n"));
3272         if (maxsegs > IGB_MAX_SCATTER)
3273                 maxsegs = IGB_MAX_SCATTER;
3274
3275         error = bus_dmamap_load_mbuf_defrag(txr->tx_tag, map, m_headp,
3276             segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
3277         if (error) {
3278                 if (error == ENOBUFS)
3279                         txr->sc->mbuf_defrag_failed++;
3280                 else
3281                         txr->sc->no_tx_dma_setup++;
3282
3283                 m_freem(*m_headp);
3284                 *m_headp = NULL;
3285                 return error;
3286         }
3287         bus_dmamap_sync(txr->tx_tag, map, BUS_DMASYNC_PREWRITE);
3288
3289         m_head = *m_headp;
3290
3291         /*
3292          * Set up the TX context descriptor, if any hardware offloading is
3293          * needed.  This includes CSUM, VLAN, and TSO.  It will consume one
3294          * TX descriptor.
3295          *
3296          * Unlike these chips' predecessors (em/emx), TX context descriptor
3297          * will _not_ interfere TX data fetching pipelining.
3298          */
3299         if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
3300                 igb_tso_ctx(txr, m_head, &hdrlen);
3301                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
3302                 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
3303                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
3304                 txr->tx_nsegs++;
3305                 (*segs_used)++;
3306         } else if (igb_txcsum_ctx(txr, m_head)) {
3307                 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
3308                         olinfo_status |= (E1000_TXD_POPTS_IXSM << 8);
3309                 if (m_head->m_pkthdr.csum_flags & (CSUM_UDP | CSUM_TCP))
3310                         olinfo_status |= (E1000_TXD_POPTS_TXSM << 8);
3311                 txr->tx_nsegs++;
3312                 (*segs_used)++;
3313         }
3314
3315         *segs_used += nsegs;
3316         txr->tx_nsegs += nsegs;
3317         if (txr->tx_nsegs >= txr->intr_nsegs) {
3318                 /*
3319                  * Report Status (RS) is turned on every intr_nsegs
3320                  * descriptors (roughly).
3321                  */
3322                 txr->tx_nsegs = 0;
3323                 cmd_rs = E1000_ADVTXD_DCMD_RS;
3324         }
3325
3326         /* Calculate payload length */
3327         olinfo_status |= ((m_head->m_pkthdr.len - hdrlen)
3328             << E1000_ADVTXD_PAYLEN_SHIFT);
3329
3330         /* 82575 needs the queue index added */
3331         if (txr->sc->hw.mac.type == e1000_82575)
3332                 olinfo_status |= txr->me << 4;
3333
3334         /* Set up our transmit descriptors */
3335         i = txr->next_avail_desc;
3336         for (j = 0; j < nsegs; j++) {
3337                 bus_size_t seg_len;
3338                 bus_addr_t seg_addr;
3339
3340                 tx_buf = &txr->tx_buf[i];
3341                 txd = (union e1000_adv_tx_desc *)&txr->tx_base[i];
3342                 seg_addr = segs[j].ds_addr;
3343                 seg_len = segs[j].ds_len;
3344
3345                 txd->read.buffer_addr = htole64(seg_addr);
3346                 txd->read.cmd_type_len = htole32(cmd_type_len | seg_len);
3347                 txd->read.olinfo_status = htole32(olinfo_status);
3348                 if (++i == txr->num_tx_desc)
3349                         i = 0;
3350                 tx_buf->m_head = NULL;
3351         }
3352
3353         KASSERT(txr->tx_avail > nsegs, ("invalid avail TX desc\n"));
3354         txr->next_avail_desc = i;
3355         txr->tx_avail -= nsegs;
3356
3357         tx_buf->m_head = m_head;
3358         tx_buf_mapped->map = tx_buf->map;
3359         tx_buf->map = map;
3360
3361         /*
3362          * Last Descriptor of Packet needs End Of Packet (EOP)
3363          */
3364         txd->read.cmd_type_len |= htole32(E1000_ADVTXD_DCMD_EOP | cmd_rs);
3365
3366         /*
3367          * Defer TDT updating, until enough descrptors are setup
3368          */
3369         *idx = i;
3370 #ifdef IGB_TSS_DEBUG
3371         ++txr->tx_packets;
3372 #endif
3373
3374         return 0;
3375 }
3376
3377 static void
3378 igb_start(struct ifnet *ifp, struct ifaltq_subque *ifsq)
3379 {
3380         struct igb_softc *sc = ifp->if_softc;
3381         struct igb_tx_ring *txr = ifsq_get_priv(ifsq);
3382         struct mbuf *m_head;
3383         int idx = -1, nsegs = 0;
3384
3385         KKASSERT(txr->ifsq == ifsq);
3386         ASSERT_SERIALIZED(&txr->tx_serialize);
3387
3388         if ((ifp->if_flags & IFF_RUNNING) == 0 || ifsq_is_oactive(ifsq))
3389                 return;
3390
3391         if (!sc->link_active || (txr->tx_flags & IGB_TXFLAG_ENABLED) == 0) {
3392                 ifsq_purge(ifsq);
3393                 return;
3394         }
3395
3396         if (!IGB_IS_NOT_OACTIVE(txr))
3397                 igb_txeof(txr);
3398
3399         while (!ifsq_is_empty(ifsq)) {
3400                 if (IGB_IS_OACTIVE(txr)) {
3401                         ifsq_set_oactive(ifsq);
3402                         /* Set watchdog on */
3403                         txr->tx_watchdog.wd_timer = 5;
3404                         break;
3405                 }
3406
3407                 m_head = ifsq_dequeue(ifsq, NULL);
3408                 if (m_head == NULL)
3409                         break;
3410
3411                 if (igb_encap(txr, &m_head, &nsegs, &idx)) {
3412                         ifp->if_oerrors++;
3413                         continue;
3414                 }
3415
3416                 if (nsegs >= txr->wreg_nsegs) {
3417                         E1000_WRITE_REG(&txr->sc->hw, E1000_TDT(txr->me), idx);
3418                         idx = -1;
3419                         nsegs = 0;
3420                 }
3421
3422                 /* Send a copy of the frame to the BPF listener */
3423                 ETHER_BPF_MTAP(ifp, m_head);
3424         }
3425         if (idx >= 0)
3426                 E1000_WRITE_REG(&txr->sc->hw, E1000_TDT(txr->me), idx);
3427 }
3428
3429 static void
3430 igb_watchdog(struct ifaltq_subque *ifsq)
3431 {
3432         struct igb_tx_ring *txr = ifsq_get_priv(ifsq);
3433         struct ifnet *ifp = ifsq_get_ifp(ifsq);
3434         struct igb_softc *sc = ifp->if_softc;
3435         int i;
3436
3437         KKASSERT(txr->ifsq == ifsq);
3438         ASSERT_IFNET_SERIALIZED_ALL(ifp);
3439
3440         /* 
3441          * If flow control has paused us since last checking
3442          * it invalidates the watchdog timing, so dont run it.
3443          */
3444         if (sc->pause_frames) {
3445                 sc->pause_frames = 0;
3446                 txr->tx_watchdog.wd_timer = 5;
3447                 return;
3448         }
3449
3450         if_printf(ifp, "Watchdog timeout -- resetting\n");
3451         if_printf(ifp, "Queue(%d) tdh = %d, hw tdt = %d\n", txr->me,
3452             E1000_READ_REG(&sc->hw, E1000_TDH(txr->me)),
3453             E1000_READ_REG(&sc->hw, E1000_TDT(txr->me)));
3454         if_printf(ifp, "TX(%d) desc avail = %d, "
3455             "Next TX to Clean = %d\n",
3456             txr->me, txr->tx_avail, txr->next_to_clean);
3457
3458         ifp->if_oerrors++;
3459         sc->watchdog_events++;
3460
3461         igb_init(sc);
3462         for (i = 0; i < sc->tx_ring_inuse; ++i)
3463                 ifsq_devstart_sched(sc->tx_rings[i].ifsq);
3464 }
3465
3466 static void
3467 igb_set_eitr(struct igb_softc *sc, int idx, int rate)
3468 {
3469         uint32_t eitr = 0;
3470
3471         if (rate > 0) {
3472                 if (sc->hw.mac.type == e1000_82575) {
3473                         eitr = 1000000000 / 256 / rate;
3474                         /*
3475                          * NOTE:
3476                          * Document is wrong on the 2 bits left shift
3477                          */
3478                 } else {
3479                         eitr = 1000000 / rate;
3480                         eitr <<= IGB_EITR_INTVL_SHIFT;
3481                 }
3482
3483                 if (eitr == 0) {
3484                         /* Don't disable it */
3485                         eitr = 1 << IGB_EITR_INTVL_SHIFT;
3486                 } else if (eitr > IGB_EITR_INTVL_MASK) {
3487                         /* Don't allow it to be too large */
3488                         eitr = IGB_EITR_INTVL_MASK;
3489                 }
3490         }
3491         if (sc->hw.mac.type == e1000_82575)
3492                 eitr |= eitr << 16;
3493         else
3494                 eitr |= E1000_EITR_CNT_IGNR;
3495         E1000_WRITE_REG(&sc->hw, E1000_EITR(idx), eitr);
3496 }
3497
3498 static int
3499 igb_sysctl_intr_rate(SYSCTL_HANDLER_ARGS)
3500 {
3501         struct igb_softc *sc = (void *)arg1;
3502         struct ifnet *ifp = &sc->arpcom.ac_if;
3503         int error, intr_rate;
3504
3505         intr_rate = sc->intr_rate;
3506         error = sysctl_handle_int(oidp, &intr_rate, 0, req);
3507         if (error || req->newptr == NULL)
3508                 return error;
3509         if (intr_rate < 0)
3510                 return EINVAL;
3511
3512         ifnet_serialize_all(ifp);
3513
3514         sc->intr_rate = intr_rate;
3515         if (ifp->if_flags & IFF_RUNNING)
3516                 igb_set_eitr(sc, 0, sc->intr_rate);
3517
3518         if (bootverbose)
3519                 if_printf(ifp, "interrupt rate set to %d/sec\n", sc->intr_rate);
3520
3521         ifnet_deserialize_all(ifp);
3522
3523         return 0;
3524 }
3525
3526 static int
3527 igb_sysctl_msix_rate(SYSCTL_HANDLER_ARGS)
3528 {
3529         struct igb_msix_data *msix = (void *)arg1;
3530         struct igb_softc *sc = msix->msix_sc;
3531         struct ifnet *ifp = &sc->arpcom.ac_if;
3532         int error, msix_rate;
3533
3534         msix_rate = msix->msix_rate;
3535         error = sysctl_handle_int(oidp, &msix_rate, 0, req);
3536         if (error || req->newptr == NULL)
3537                 return error;
3538         if (msix_rate < 0)
3539                 return EINVAL;
3540
3541         lwkt_serialize_enter(msix->msix_serialize);
3542
3543         msix->msix_rate = msix_rate;
3544         if (ifp->if_flags & IFF_RUNNING)
3545                 igb_set_eitr(sc, msix->msix_vector, msix->msix_rate);
3546
3547         if (bootverbose) {
3548                 if_printf(ifp, "%s set to %d/sec\n", msix->msix_rate_desc,
3549                     msix->msix_rate);
3550         }
3551
3552         lwkt_serialize_exit(msix->msix_serialize);
3553
3554         return 0;
3555 }
3556
3557 static int
3558 igb_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS)
3559 {
3560         struct igb_softc *sc = (void *)arg1;
3561         struct ifnet *ifp = &sc->arpcom.ac_if;
3562         struct igb_tx_ring *txr = &sc->tx_rings[0];
3563         int error, nsegs;
3564
3565         nsegs = txr->intr_nsegs;
3566         error = sysctl_handle_int(oidp, &nsegs, 0, req);
3567         if (error || req->newptr == NULL)
3568                 return error;
3569         if (nsegs <= 0)
3570                 return EINVAL;
3571
3572         ifnet_serialize_all(ifp);
3573
3574         if (nsegs >= txr->num_tx_desc - txr->oact_lo_desc ||
3575             nsegs >= txr->oact_hi_desc - IGB_MAX_SCATTER) {
3576                 error = EINVAL;
3577         } else {
3578                 int i;
3579
3580                 error = 0;
3581                 for (i = 0; i < sc->tx_ring_cnt; ++i)
3582                         sc->tx_rings[i].intr_nsegs = nsegs;
3583         }
3584
3585         ifnet_deserialize_all(ifp);
3586
3587         return error;
3588 }
3589
3590 static int
3591 igb_sysctl_rx_wreg_nsegs(SYSCTL_HANDLER_ARGS)
3592 {
3593         struct igb_softc *sc = (void *)arg1;
3594         struct ifnet *ifp = &sc->arpcom.ac_if;
3595         int error, nsegs, i;
3596
3597         nsegs = sc->rx_rings[0].wreg_nsegs;
3598         error = sysctl_handle_int(oidp, &nsegs, 0, req);
3599         if (error || req->newptr == NULL)
3600                 return error;
3601
3602         ifnet_serialize_all(ifp);
3603         for (i = 0; i < sc->rx_ring_cnt; ++i)
3604                 sc->rx_rings[i].wreg_nsegs =nsegs;
3605         ifnet_deserialize_all(ifp);
3606
3607         return 0;
3608 }
3609
3610 static int
3611 igb_sysctl_tx_wreg_nsegs(SYSCTL_HANDLER_ARGS)
3612 {
3613         struct igb_softc *sc = (void *)arg1;
3614         struct ifnet *ifp = &sc->arpcom.ac_if;
3615         int error, nsegs, i;
3616
3617         nsegs = sc->tx_rings[0].wreg_nsegs;
3618         error = sysctl_handle_int(oidp, &nsegs, 0, req);
3619         if (error || req->newptr == NULL)
3620                 return error;
3621
3622         ifnet_serialize_all(ifp);
3623         for (i = 0; i < sc->tx_ring_cnt; ++i)
3624                 sc->tx_rings[i].wreg_nsegs =nsegs;
3625         ifnet_deserialize_all(ifp);
3626
3627         return 0;
3628 }
3629
3630 #ifdef IFPOLL_ENABLE
3631
3632 static int
3633 igb_sysctl_npoll_rxoff(SYSCTL_HANDLER_ARGS)
3634 {
3635         struct igb_softc *sc = (void *)arg1;
3636         struct ifnet *ifp = &sc->arpcom.ac_if;
3637         int error, off;
3638
3639         off = sc->rx_npoll_off;
3640         error = sysctl_handle_int(oidp, &off, 0, req);
3641         if (error || req->newptr == NULL)
3642                 return error;
3643         if (off < 0)
3644                 return EINVAL;
3645
3646         ifnet_serialize_all(ifp);
3647         if (off >= ncpus2 || off % sc->rx_ring_cnt != 0) {
3648                 error = EINVAL;
3649         } else {
3650                 error = 0;
3651                 sc->rx_npoll_off = off;
3652         }
3653         ifnet_deserialize_all(ifp);
3654
3655         return error;
3656 }
3657
3658 static int
3659 igb_sysctl_npoll_txoff(SYSCTL_HANDLER_ARGS)
3660 {
3661         struct igb_softc *sc = (void *)arg1;
3662         struct ifnet *ifp = &sc->arpcom.ac_if;
3663         int error, off;
3664
3665         off = sc->tx_npoll_off;
3666         error = sysctl_handle_int(oidp, &off, 0, req);
3667         if (error || req->newptr == NULL)
3668                 return error;
3669         if (off < 0)
3670                 return EINVAL;
3671
3672         ifnet_serialize_all(ifp);
3673         if (off >= ncpus2 || off % sc->tx_ring_cnt != 0) {
3674                 error = EINVAL;
3675         } else {
3676                 error = 0;
3677                 sc->tx_npoll_off = off;
3678         }
3679         ifnet_deserialize_all(ifp);
3680
3681         return error;
3682 }
3683
3684 #endif  /* IFPOLL_ENABLE */
3685
3686 static void
3687 igb_init_intr(struct igb_softc *sc)
3688 {
3689         igb_set_intr_mask(sc);
3690
3691         if ((sc->flags & IGB_FLAG_SHARED_INTR) == 0)
3692                 igb_init_unshared_intr(sc);
3693
3694         if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
3695                 igb_set_eitr(sc, 0, sc->intr_rate);
3696         } else {
3697                 int i;
3698
3699                 for (i = 0; i < sc->msix_cnt; ++i)
3700                         igb_set_eitr(sc, i, sc->msix_data[i].msix_rate);
3701         }
3702 }
3703
3704 static void
3705 igb_init_unshared_intr(struct igb_softc *sc)
3706 {
3707         struct e1000_hw *hw = &sc->hw;
3708         const struct igb_rx_ring *rxr;
3709         const struct igb_tx_ring *txr;
3710         uint32_t ivar, index;
3711         int i;
3712
3713         /*
3714          * Enable extended mode
3715          */
3716         if (sc->hw.mac.type != e1000_82575) {
3717                 uint32_t gpie;
3718                 int ivar_max;
3719
3720                 gpie = E1000_GPIE_NSICR;
3721                 if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3722                         gpie |= E1000_GPIE_MSIX_MODE |
3723                             E1000_GPIE_EIAME |
3724                             E1000_GPIE_PBA;
3725                 }
3726                 E1000_WRITE_REG(hw, E1000_GPIE, gpie);
3727
3728                 /*
3729                  * Clear IVARs
3730                  */
3731                 switch (sc->hw.mac.type) {
3732                 case e1000_82580:
3733                         ivar_max = IGB_MAX_IVAR_82580;
3734                         break;
3735
3736                 case e1000_i350:
3737                         ivar_max = IGB_MAX_IVAR_I350;
3738                         break;
3739
3740                 case e1000_vfadapt:
3741                 case e1000_vfadapt_i350:
3742                         ivar_max = IGB_MAX_IVAR_VF;
3743                         break;
3744
3745                 case e1000_82576:
3746                         ivar_max = IGB_MAX_IVAR_82576;
3747                         break;
3748
3749                 default:
3750                         panic("unknown mac type %d\n", sc->hw.mac.type);
3751                 }
3752                 for (i = 0; i < ivar_max; ++i)
3753                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, i, 0);
3754                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, 0);
3755         } else {
3756                 uint32_t tmp;
3757
3758                 KASSERT(sc->intr_type != PCI_INTR_TYPE_MSIX,
3759                     ("82575 w/ MSI-X"));
3760                 tmp = E1000_READ_REG(hw, E1000_CTRL_EXT);
3761                 tmp |= E1000_CTRL_EXT_IRCA;
3762                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmp);
3763         }
3764
3765         /*
3766          * Map TX/RX interrupts to EICR
3767          */
3768         switch (sc->hw.mac.type) {
3769         case e1000_82580:
3770         case e1000_i350:
3771         case e1000_vfadapt:
3772         case e1000_vfadapt_i350:
3773                 /* RX entries */
3774                 for (i = 0; i < sc->rx_ring_inuse; ++i) {
3775                         rxr = &sc->rx_rings[i];
3776
3777                         index = i >> 1;
3778                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3779
3780                         if (i & 1) {
3781                                 ivar &= 0xff00ffff;
3782                                 ivar |=
3783                                 (rxr->rx_intr_bit | E1000_IVAR_VALID) << 16;
3784                         } else {
3785                                 ivar &= 0xffffff00;
3786                                 ivar |=
3787                                 (rxr->rx_intr_bit | E1000_IVAR_VALID);
3788                         }
3789                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3790                 }
3791                 /* TX entries */
3792                 for (i = 0; i < sc->tx_ring_inuse; ++i) {
3793                         txr = &sc->tx_rings[i];
3794
3795                         index = i >> 1;
3796                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3797
3798                         if (i & 1) {
3799                                 ivar &= 0x00ffffff;
3800                                 ivar |=
3801                                 (txr->tx_intr_bit | E1000_IVAR_VALID) << 24;
3802                         } else {
3803                                 ivar &= 0xffff00ff;
3804                                 ivar |=
3805                                 (txr->tx_intr_bit | E1000_IVAR_VALID) << 8;
3806                         }
3807                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3808                 }
3809                 if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3810                         ivar = (sc->sts_intr_bit | E1000_IVAR_VALID) << 8;
3811                         E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
3812                 }
3813                 break;
3814
3815         case e1000_82576:
3816                 /* RX entries */
3817                 for (i = 0; i < sc->rx_ring_inuse; ++i) {
3818                         rxr = &sc->rx_rings[i];
3819
3820                         index = i & 0x7; /* Each IVAR has two entries */
3821                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3822
3823                         if (i < 8) {
3824                                 ivar &= 0xffffff00;
3825                                 ivar |=
3826                                 (rxr->rx_intr_bit | E1000_IVAR_VALID);
3827                         } else {
3828                                 ivar &= 0xff00ffff;
3829                                 ivar |=
3830                                 (rxr->rx_intr_bit | E1000_IVAR_VALID) << 16;
3831                         }
3832                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3833                 }
3834                 /* TX entries */
3835                 for (i = 0; i < sc->tx_ring_inuse; ++i) {
3836                         txr = &sc->tx_rings[i];
3837
3838                         index = i & 0x7; /* Each IVAR has two entries */
3839                         ivar = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
3840
3841                         if (i < 8) {
3842                                 ivar &= 0xffff00ff;
3843                                 ivar |=
3844                                 (txr->tx_intr_bit | E1000_IVAR_VALID) << 8;
3845                         } else {
3846                                 ivar &= 0x00ffffff;
3847                                 ivar |=
3848                                 (txr->tx_intr_bit | E1000_IVAR_VALID) << 24;
3849                         }
3850                         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, ivar);
3851                 }
3852                 if (sc->intr_type == PCI_INTR_TYPE_MSIX) {
3853                         ivar = (sc->sts_intr_bit | E1000_IVAR_VALID) << 8;
3854                         E1000_WRITE_REG(hw, E1000_IVAR_MISC, ivar);
3855                 }
3856                 break;
3857
3858         case e1000_82575:
3859                 /*
3860                  * Enable necessary interrupt bits.
3861                  *
3862                  * The name of the register is confusing; in addition to
3863                  * configuring the first vector of MSI-X, it also configures
3864                  * which bits of EICR could be set by the hardware even when
3865                  * MSI or line interrupt is used; it thus controls interrupt
3866                  * generation.  It MUST be configured explicitly; the default
3867                  * value mentioned in the datasheet is wrong: RX queue0 and
3868                  * TX queue0 are NOT enabled by default.
3869                  */
3870                 E1000_WRITE_REG(&sc->hw, E1000_MSIXBM(0), sc->intr_mask);
3871                 break;
3872
3873         default:
3874                 panic("unknown mac type %d\n", sc->hw.mac.type);
3875         }
3876 }
3877
3878 static int
3879 igb_setup_intr(struct igb_softc *sc)
3880 {
3881         int error, i;
3882
3883         if (sc->intr_type == PCI_INTR_TYPE_MSIX)
3884                 return igb_msix_setup(sc);
3885
3886         error = bus_setup_intr(sc->dev, sc->intr_res, INTR_MPSAFE,
3887             (sc->flags & IGB_FLAG_SHARED_INTR) ? igb_intr_shared : igb_intr,
3888             sc, &sc->intr_tag, &sc->main_serialize);
3889         if (error) {
3890                 device_printf(sc->dev, "Failed to register interrupt handler");
3891                 return error;
3892         }
3893
3894         for (i = 0; i < sc->tx_ring_cnt; ++i)
3895                 sc->tx_rings[i].tx_intr_cpuid = rman_get_cpuid(sc->intr_res);
3896
3897         return 0;
3898 }
3899
3900 static void
3901 igb_set_txintr_mask(struct igb_tx_ring *txr, int *intr_bit0, int intr_bitmax)
3902 {
3903         if (txr->sc->hw.mac.type == e1000_82575) {
3904                 txr->tx_intr_bit = 0;   /* unused */
3905                 switch (txr->me) {
3906                 case 0:
3907                         txr->tx_intr_mask = E1000_EICR_TX_QUEUE0;
3908                         break;
3909                 case 1:
3910                         txr->tx_intr_mask = E1000_EICR_TX_QUEUE1;
3911                         break;
3912                 case 2:
3913                         txr->tx_intr_mask = E1000_EICR_TX_QUEUE2;
3914                         break;
3915                 case 3:
3916                         txr->tx_intr_mask = E1000_EICR_TX_QUEUE3;
3917                         break;
3918                 default:
3919                         panic("unsupported # of TX ring, %d\n", txr->me);
3920                 }
3921         } else {
3922                 int intr_bit = *intr_bit0;
3923
3924                 txr->tx_intr_bit = intr_bit % intr_bitmax;
3925                 txr->tx_intr_mask = 1 << txr->tx_intr_bit;
3926
3927                 *intr_bit0 = intr_bit + 1;
3928         }
3929 }
3930
3931 static void
3932 igb_set_rxintr_mask(struct igb_rx_ring *rxr, int *intr_bit0, int intr_bitmax)
3933 {
3934         if (rxr->sc->hw.mac.type == e1000_82575) {
3935                 rxr->rx_intr_bit = 0;   /* unused */
3936                 switch (rxr->me) {
3937                 case 0:
3938                         rxr->rx_intr_mask = E1000_EICR_RX_QUEUE0;
3939                         break;
3940                 case 1:
3941                         rxr->rx_intr_mask = E1000_EICR_RX_QUEUE1;
3942                         break;
3943                 case 2:
3944                         rxr->rx_intr_mask = E1000_EICR_RX_QUEUE2;
3945                         break;
3946                 case 3:
3947                         rxr->rx_intr_mask = E1000_EICR_RX_QUEUE3;
3948                         break;
3949                 default:
3950                         panic("unsupported # of RX ring, %d\n", rxr->me);
3951                 }
3952         } else {
3953                 int intr_bit = *intr_bit0;
3954
3955                 rxr->rx_intr_bit = intr_bit % intr_bitmax;
3956                 rxr->rx_intr_mask = 1 << rxr->rx_intr_bit;
3957
3958                 *intr_bit0 = intr_bit + 1;
3959         }
3960 }
3961
3962 static void
3963 igb_serialize(struct ifnet *ifp, enum ifnet_serialize slz)
3964 {
3965         struct igb_softc *sc = ifp->if_softc;
3966
3967         ifnet_serialize_array_enter(sc->serializes, sc->serialize_cnt,
3968             sc->tx_serialize, sc->rx_serialize, slz);
3969 }
3970
3971 static void
3972 igb_deserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3973 {
3974         struct igb_softc *sc = ifp->if_softc;
3975
3976         ifnet_serialize_array_exit(sc->serializes, sc->serialize_cnt,
3977             sc->tx_serialize, sc->rx_serialize, slz);
3978 }
3979
3980 static int
3981 igb_tryserialize(struct ifnet *ifp, enum ifnet_serialize slz)
3982 {
3983         struct igb_softc *sc = ifp->if_softc;
3984
3985         return ifnet_serialize_array_try(sc->serializes, sc->serialize_cnt,
3986             sc->tx_serialize, sc->rx_serialize, slz);
3987 }
3988
3989 #ifdef INVARIANTS
3990
3991 static void
3992 igb_serialize_assert(struct ifnet *ifp, enum ifnet_serialize slz,
3993     boolean_t serialized)
3994 {
3995         struct igb_softc *sc = ifp->if_softc;
3996
3997         ifnet_serialize_array_assert(sc->serializes, sc->serialize_cnt,
3998             sc->tx_serialize, sc->rx_serialize, slz, serialized);
3999 }
4000
4001 #endif  /* INVARIANTS */
4002
4003 static void
4004 igb_set_intr_mask(struct igb_softc *sc)
4005 {
4006         int i;
4007
4008         sc->intr_mask = sc->sts_intr_mask;
4009         for (i = 0; i < sc->rx_ring_inuse; ++i)
4010                 sc->intr_mask |= sc->rx_rings[i].rx_intr_mask;
4011         for (i = 0; i < sc->tx_ring_inuse; ++i)
4012                 sc->intr_mask |= sc->tx_rings[i].tx_intr_mask;
4013         if (bootverbose) {
4014                 if_printf(&sc->arpcom.ac_if, "intr mask 0x%08x\n",
4015                     sc->intr_mask);
4016         }
4017 }
4018
4019 static int
4020 igb_alloc_intr(struct igb_softc *sc)
4021 {
4022         int i, intr_bit, intr_bitmax;
4023         u_int intr_flags;
4024
4025         igb_msix_try_alloc(sc);
4026         if (sc->intr_type == PCI_INTR_TYPE_MSIX)
4027                 goto done;
4028
4029         /*
4030          * Allocate MSI/legacy interrupt resource
4031          */
4032         sc->intr_type = pci_alloc_1intr(sc->dev, igb_msi_enable,
4033             &sc->intr_rid, &intr_flags);
4034
4035         if (sc->intr_type == PCI_INTR_TYPE_LEGACY) {
4036                 int unshared;
4037
4038                 unshared = device_getenv_int(sc->dev, "irq.unshared", 0);
4039                 if (!unshared) {
4040                         sc->flags |= IGB_FLAG_SHARED_INTR;
4041                         if (bootverbose)
4042                                 device_printf(sc->dev, "IRQ shared\n");
4043                 } else {
4044                         intr_flags &= ~RF_SHAREABLE;
4045                         if (bootverbose)
4046                                 device_printf(sc->dev, "IRQ unshared\n");
4047                 }
4048         }
4049
4050         sc->intr_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
4051             &sc->intr_rid, intr_flags);
4052         if (sc->intr_res == NULL) {
4053                 device_printf(sc->dev, "Unable to allocate bus resource: "
4054                     "interrupt\n");
4055                 return ENXIO;
4056         }
4057
4058         /*
4059          * Setup MSI/legacy interrupt mask
4060          */
4061         switch (sc->hw.mac.type) {
4062         case e1000_82575:
4063                 intr_bitmax = IGB_MAX_TXRXINT_82575;
4064                 break;
4065         case e1000_82580:
4066                 intr_bitmax = IGB_MAX_TXRXINT_82580;
4067                 break;
4068         case e1000_i350:
4069                 intr_bitmax = IGB_MAX_TXRXINT_I350;
4070                 break;
4071         case e1000_82576:
4072                 intr_bitmax = IGB_MAX_TXRXINT_82576;
4073                 break;
4074         default:
4075                 intr_bitmax = IGB_MIN_TXRXINT;
4076                 break;
4077         }
4078         intr_bit = 0;
4079         for (i = 0; i < sc->tx_ring_cnt; ++i)
4080                 igb_set_txintr_mask(&sc->tx_rings[i], &intr_bit, intr_bitmax);
4081         for (i = 0; i < sc->rx_ring_cnt; ++i)
4082                 igb_set_rxintr_mask(&sc->rx_rings[i], &intr_bit, intr_bitmax);
4083         sc->sts_intr_bit = 0;
4084         sc->sts_intr_mask = E1000_EICR_OTHER;
4085
4086         /* Initialize interrupt rate */
4087         sc->intr_rate = IGB_INTR_RATE;
4088 done:
4089         igb_set_ring_inuse(sc, FALSE);
4090         igb_set_intr_mask(sc);
4091         return 0;
4092 }
4093
4094 static void
4095 igb_free_intr(struct igb_softc *sc)
4096 {
4097         if (sc->intr_type != PCI_INTR_TYPE_MSIX) {
4098                 if (sc->intr_res != NULL) {
4099                         bus_release_resource(sc->dev, SYS_RES_IRQ, sc->intr_rid,
4100                             sc->intr_res);
4101                 }
4102                 if (sc->intr_type == PCI_INTR_TYPE_MSI)
4103                         pci_release_msi(sc->dev);
4104         } else {
4105                 igb_msix_free(sc, TRUE);
4106         }
4107 }
4108
4109 static void
4110 igb_teardown_intr(struct igb_softc *sc)
4111 {
4112         if (sc->intr_type != PCI_INTR_TYPE_MSIX)
4113                 bus_teardown_intr(sc->dev, sc->intr_res, sc->intr_tag);
4114         else
4115                 igb_msix_teardown(sc, sc->msix_cnt);
4116 }
4117
4118 static void
4119 igb_msix_try_alloc(struct igb_softc *sc)
4120 {
4121         int msix_enable, msix_cnt, msix_cnt2, alloc_cnt;
4122         int i, x, error;
4123         struct igb_msix_data *msix;
4124         boolean_t aggregate, setup = FALSE;
4125
4126         /*
4127          * Don't enable MSI-X on 82575, see:
4128          * 82575 specification update errata #25
4129          */
4130         if (sc->hw.mac.type == e1000_82575)
4131                 return;
4132
4133         /* Don't enable MSI-X on VF */
4134         if (sc->vf_ifp)
4135                 return;
4136
4137         msix_enable = device_getenv_int(sc->dev, "msix.enable",
4138             igb_msix_enable);
4139         if (!msix_enable)
4140                 return;
4141
4142         msix_cnt = pci_msix_count(sc->dev);
4143 #ifdef IGB_MSIX_DEBUG
4144         msix_cnt = device_getenv_int(sc->dev, "msix.count", msix_cnt);
4145 #endif
4146         if (msix_cnt <= 1) {
4147                 /* One MSI-X model does not make sense */
4148                 return;
4149         }
4150
4151         i = 0;
4152         while ((1 << (i + 1)) <= msix_cnt)
4153                 ++i;
4154         msix_cnt2 = 1 << i;
4155
4156         if (bootverbose) {
4157                 device_printf(sc->dev, "MSI-X count %d/%d\n",
4158                     msix_cnt2, msix_cnt);
4159         }
4160
4161         KKASSERT(msix_cnt2 <= msix_cnt);
4162         if (msix_cnt == msix_cnt2) {
4163                 /* We need at least one MSI-X for link status */
4164                 msix_cnt2 >>= 1;
4165                 if (msix_cnt2 <= 1) {
4166                         /* One MSI-X for RX/TX does not make sense */
4167                         device_printf(sc->dev, "not enough MSI-X for TX/RX, "
4168                             "MSI-X count %d/%d\n", msix_cnt2, msix_cnt);
4169                         return;
4170                 }
4171                 KKASSERT(msix_cnt > msix_cnt2);
4172
4173                 if (bootverbose) {
4174                         device_printf(sc->dev, "MSI-X count fixup %d/%d\n",
4175                             msix_cnt2, msix_cnt);
4176                 }
4177         }
4178
4179         sc->rx_ring_msix = sc->rx_ring_cnt;
4180         if (sc->rx_ring_msix > msix_cnt2)
4181                 sc->rx_ring_msix = msix_cnt2;
4182
4183         sc->tx_ring_msix = sc->tx_ring_cnt;
4184         if (sc->tx_ring_msix > msix_cnt2)
4185                 sc->tx_ring_msix = msix_cnt2;
4186
4187         if (msix_cnt >= sc->tx_ring_msix + sc->rx_ring_msix + 1) {
4188                 /*
4189                  * Independent TX/RX MSI-X
4190                  */
4191                 aggregate = FALSE;
4192                 if (bootverbose)
4193                         device_printf(sc->dev, "independent TX/RX MSI-X\n");
4194                 alloc_cnt = sc->tx_ring_msix + sc->rx_ring_msix;
4195         } else {
4196                 /*
4197                  * Aggregate TX/RX MSI-X
4198                  */
4199                 aggregate = TRUE;
4200                 if (bootverbose)
4201                         device_printf(sc->dev, "aggregate TX/RX MSI-X\n");
4202                 alloc_cnt = msix_cnt2;
4203                 if (alloc_cnt > ncpus2)
4204                         alloc_cnt = ncpus2;
4205                 if (sc->rx_ring_msix > alloc_cnt)
4206                         sc->rx_ring_msix = alloc_cnt;
4207                 if (sc->tx_ring_msix > alloc_cnt)
4208                         sc->tx_ring_msix = alloc_cnt;
4209         }
4210         ++alloc_cnt;    /* For link status */
4211
4212         if (bootverbose) {
4213                 device_printf(sc->dev, "MSI-X alloc %d, "
4214                     "RX ring %d, TX ring %d\n", alloc_cnt,
4215                     sc->rx_ring_msix, sc->tx_ring_msix);
4216         }
4217
4218         sc->msix_mem_rid = PCIR_BAR(IGB_MSIX_BAR);
4219         sc->msix_mem_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
4220             &sc->msix_mem_rid, RF_ACTIVE);
4221         if (sc->msix_mem_res == NULL) {
4222                 device_printf(sc->dev, "Unable to map MSI-X table\n");
4223                 return;
4224         }
4225
4226         sc->msix_cnt = alloc_cnt;
4227         sc->msix_data = kmalloc_cachealign(
4228             sizeof(struct igb_msix_data) * sc->msix_cnt,
4229             M_DEVBUF, M_WAITOK | M_ZERO);
4230         for (x = 0; x < sc->msix_cnt; ++x) {
4231                 msix = &sc->msix_data[x];
4232
4233                 lwkt_serialize_init(&msix->msix_serialize0);
4234                 msix->msix_sc = sc;
4235                 msix->msix_rid = -1;
4236                 msix->msix_vector = x;
4237                 msix->msix_mask = 1 << msix->msix_vector;
4238                 msix->msix_rate = IGB_INTR_RATE;
4239         }
4240
4241         x = 0;
4242         if (!aggregate) {
4243                 int offset, offset_def;
4244
4245                 /*
4246                  * RX rings
4247                  */
4248                 if (sc->rx_ring_msix == ncpus2) {
4249                         offset = 0;
4250                 } else {
4251                         offset_def = (sc->rx_ring_msix *
4252                             device_get_unit(sc->dev)) % ncpus2;
4253
4254                         offset = device_getenv_int(sc->dev,
4255                             "msix.rxoff", offset_def);
4256                         if (offset >= ncpus2 ||
4257                             offset % sc->rx_ring_msix != 0) {
4258                                 device_printf(sc->dev,
4259                                     "invalid msix.rxoff %d, use %d\n",
4260                                     offset, offset_def);
4261                                 offset = offset_def;
4262                         }
4263                 }
4264
4265                 for (i = 0; i < sc->rx_ring_msix; ++i) {
4266                         struct igb_rx_ring *rxr = &sc->rx_rings[i];
4267
4268                         KKASSERT(x < sc->msix_cnt);
4269                         msix = &sc->msix_data[x++];
4270                         rxr->rx_intr_bit = msix->msix_vector;
4271                         rxr->rx_intr_mask = msix->msix_mask;
4272
4273                         msix->msix_serialize = &rxr->rx_serialize;
4274                         msix->msix_func = igb_msix_rx;
4275                         msix->msix_arg = rxr;
4276                         msix->msix_cpuid = i + offset;
4277                         KKASSERT(msix->msix_cpuid < ncpus2);
4278                         ksnprintf(msix->msix_desc, sizeof(msix->msix_desc),
4279                             "%s rx%d", device_get_nameunit(sc->dev), i);
4280                         msix->msix_rate = IGB_MSIX_RX_RATE;
4281                         ksnprintf(msix->msix_rate_desc,
4282                             sizeof(msix->msix_rate_desc),
4283                             "RX%d interrupt rate", i);
4284                 }
4285
4286                 /*
4287                  * TX rings
4288                  */
4289                 if (sc->tx_ring_msix == ncpus2) {
4290                         offset = 0;
4291                 } else {
4292                         offset_def = (sc->tx_ring_msix *
4293                             device_get_unit(sc->dev)) % ncpus2;
4294
4295                         offset = device_getenv_int(sc->dev,
4296                             "msix.txoff", offset_def);
4297                         if (offset >= ncpus2 ||
4298                             offset % sc->tx_ring_msix != 0) {
4299                                 device_printf(sc->dev,
4300                                     "invalid msix.txoff %d, use %d\n",
4301                                     offset, offset_def);
4302                                 offset = offset_def;
4303                         }
4304                 }
4305
4306                 for (i = 0; i < sc->tx_ring_msix; ++i) {
4307                         struct igb_tx_ring *txr = &sc->tx_rings[i];
4308
4309                         KKASSERT(x < sc->msix_cnt);
4310                         msix = &sc->msix_data[x++];
4311                         txr->tx_intr_bit = msix->msix_vector;
4312                         txr->tx_intr_mask = msix->msix_mask;
4313
4314                         msix->msix_serialize = &txr->tx_serialize;
4315                         msix->msix_func = igb_msix_tx;
4316                         msix->msix_arg = txr;
4317                         msix->msix_cpuid = i + offset;
4318                         txr->tx_intr_cpuid = msix->msix_cpuid;
4319                         KKASSERT(msix->msix_cpuid < ncpus2);
4320                         ksnprintf(msix->msix_desc, sizeof(msix->msix_desc),
4321                             "%s tx%d", device_get_nameunit(sc->dev), i);
4322                         msix->msix_rate = IGB_MSIX_TX_RATE;
4323                         ksnprintf(msix->msix_rate_desc,
4324                             sizeof(msix->msix_rate_desc),
4325                             "TX%d interrupt rate", i);
4326                 }
4327         } else {
4328                 /* TODO */
4329                 error = EOPNOTSUPP;
4330                 goto back;
4331         }
4332
4333         /*
4334          * Link status
4335          */
4336         KKASSERT(x < sc->msix_cnt);
4337         msix = &sc->msix_data[x++];
4338         sc->sts_intr_bit = msix->msix_vector;
4339         sc->sts_intr_mask = msix->msix_mask;
4340
4341         msix->msix_serialize = &sc->main_serialize;
4342         msix->msix_func = igb_msix_status;
4343         msix->msix_arg = sc;
4344         msix->msix_cpuid = 0;
4345         ksnprintf(msix->msix_desc, sizeof(msix->msix_desc), "%s sts",
4346             device_get_nameunit(sc->dev));
4347         ksnprintf(msix->msix_rate_desc, sizeof(msix->msix_rate_desc),
4348             "status interrupt rate");
4349
4350         KKASSERT(x == sc->msix_cnt);
4351
4352         error = pci_setup_msix(sc->dev);
4353         if (error) {
4354                 device_printf(sc->dev, "Setup MSI-X failed\n");
4355                 goto back;
4356         }
4357         setup = TRUE;
4358
4359         for (i = 0; i < sc->msix_cnt; ++i) {
4360                 msix = &sc->msix_data[i];
4361
4362                 error = pci_alloc_msix_vector(sc->dev, msix->msix_vector,
4363                     &msix->msix_rid, msix->msix_cpuid);
4364                 if (error) {
4365                         device_printf(sc->dev,
4366                             "Unable to allocate MSI-X %d on cpu%d\n",
4367                             msix->msix_vector, msix->msix_cpuid);
4368                         goto back;
4369                 }
4370
4371                 msix->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ,
4372                     &msix->msix_rid, RF_ACTIVE);
4373                 if (msix->msix_res == NULL) {
4374                         device_printf(sc->dev,
4375                             "Unable to allocate MSI-X %d resource\n",
4376                             msix->msix_vector);
4377                         error = ENOMEM;
4378                         goto back;
4379                 }
4380         }
4381
4382         pci_enable_msix(sc->dev);
4383         sc->intr_type = PCI_INTR_TYPE_MSIX;
4384 back:
4385         if (error)
4386                 igb_msix_free(sc, setup);
4387 }
4388
4389 static void
4390 igb_msix_free(struct igb_softc *sc, boolean_t setup)
4391 {
4392         int i;
4393
4394         KKASSERT(sc->msix_cnt > 1);
4395
4396         for (i = 0; i < sc->msix_cnt; ++i) {
4397                 struct igb_msix_data *msix = &sc->msix_data[i];
4398
4399                 if (msix->msix_res != NULL) {
4400                         bus_release_resource(sc->dev, SYS_RES_IRQ,
4401                             msix->msix_rid, msix->msix_res);
4402                 }
4403                 if (msix->msix_rid >= 0)
4404                         pci_release_msix_vector(sc->dev, msix->msix_rid);
4405         }
4406         if (setup)
4407                 pci_teardown_msix(sc->dev);
4408
4409         sc->msix_cnt = 0;
4410         kfree(sc->msix_data, M_DEVBUF);
4411         sc->msix_data = NULL;
4412 }
4413
4414 static int
4415 igb_msix_setup(struct igb_softc *sc)
4416 {
4417         int i;
4418
4419         for (i = 0; i < sc->msix_cnt; ++i) {
4420                 struct igb_msix_data *msix = &sc->msix_data[i];
4421                 int error;
4422
4423                 error = bus_setup_intr_descr(sc->dev, msix->msix_res,
4424                     INTR_MPSAFE, msix->msix_func, msix->msix_arg,
4425                     &msix->msix_handle, msix->msix_serialize, msix->msix_desc);
4426                 if (error) {
4427                         device_printf(sc->dev, "could not set up %s "
4428                             "interrupt handler.\n", msix->msix_desc);
4429                         igb_msix_teardown(sc, i);
4430                         return error;
4431                 }
4432         }
4433         return 0;
4434 }
4435
4436 static void
4437 igb_msix_teardown(struct igb_softc *sc, int msix_cnt)
4438 {
4439         int i;
4440
4441         for (i = 0; i < msix_cnt; ++i) {
4442                 struct igb_msix_data *msix = &sc->msix_data[i];
4443
4444                 bus_teardown_intr(sc->dev, msix->msix_res, msix->msix_handle);
4445         }
4446 }
4447
4448 static void
4449 igb_msix_rx(void *arg)
4450 {
4451         struct igb_rx_ring *rxr = arg;
4452
4453         ASSERT_SERIALIZED(&rxr->rx_serialize);
4454         igb_rxeof(rxr, -1);
4455
4456         E1000_WRITE_REG(&rxr->sc->hw, E1000_EIMS, rxr->rx_intr_mask);
4457 }
4458
4459 static void
4460 igb_msix_tx(void *arg)
4461 {
4462         struct igb_tx_ring *txr = arg;
4463
4464         ASSERT_SERIALIZED(&txr->tx_serialize);
4465
4466         igb_txeof(txr);
4467         if (!ifsq_is_empty(txr->ifsq))
4468                 ifsq_devstart(txr->ifsq);
4469
4470         E1000_WRITE_REG(&txr->sc->hw, E1000_EIMS, txr->tx_intr_mask);
4471 }
4472
4473 static void
4474 igb_msix_status(void *arg)
4475 {
4476         struct igb_softc *sc = arg;
4477         uint32_t icr;
4478
4479         ASSERT_SERIALIZED(&sc->main_serialize);
4480
4481         icr = E1000_READ_REG(&sc->hw, E1000_ICR);
4482         if (icr & E1000_ICR_LSC) {
4483                 sc->hw.mac.get_link_status = 1;
4484                 igb_update_link_status(sc);
4485         }
4486
4487         E1000_WRITE_REG(&sc->hw, E1000_EIMS, sc->sts_intr_mask);
4488 }
4489
4490 static void
4491 igb_set_ring_inuse(struct igb_softc *sc, boolean_t polling)
4492 {
4493         sc->rx_ring_inuse = igb_get_rxring_inuse(sc, polling);
4494         sc->tx_ring_inuse = igb_get_txring_inuse(sc, polling);
4495         if (bootverbose) {
4496                 if_printf(&sc->arpcom.ac_if, "RX rings %d/%d, TX rings %d/%d\n",
4497                     sc->rx_ring_inuse, sc->rx_ring_cnt,
4498                     sc->tx_ring_inuse, sc->tx_ring_cnt);
4499         }
4500 }
4501
4502 static int
4503 igb_get_rxring_inuse(const struct igb_softc *sc, boolean_t polling)
4504 {
4505         if (!IGB_ENABLE_HWRSS(sc))
4506                 return 1;
4507
4508         if (polling)
4509                 return sc->rx_ring_cnt;
4510         else if (sc->intr_type != PCI_INTR_TYPE_MSIX)
4511                 return IGB_MIN_RING_RSS;
4512         else
4513                 return sc->rx_ring_msix;
4514 }
4515
4516 static int
4517 igb_get_txring_inuse(const struct igb_softc *sc, boolean_t polling)
4518 {
4519         if (!IGB_ENABLE_HWTSS(sc))
4520                 return 1;
4521
4522         if (polling)
4523                 return sc->tx_ring_cnt;
4524         else if (sc->intr_type != PCI_INTR_TYPE_MSIX)
4525                 return IGB_MIN_RING;
4526         else
4527                 return sc->tx_ring_msix;
4528 }
4529
4530 static int
4531 igb_tso_pullup(struct igb_tx_ring *txr, struct mbuf **mp)
4532 {
4533         int hoff, iphlen, thoff;
4534         struct mbuf *m;
4535
4536         m = *mp;
4537         KASSERT(M_WRITABLE(m), ("TSO mbuf not writable"));
4538
4539         iphlen = m->m_pkthdr.csum_iphlen;
4540         thoff = m->m_pkthdr.csum_thlen;
4541         hoff = m->m_pkthdr.csum_lhlen;
4542
4543         KASSERT(iphlen > 0, ("invalid ip hlen"));
4544         KASSERT(thoff > 0, ("invalid tcp hlen"));
4545         KASSERT(hoff > 0, ("invalid ether hlen"));
4546
4547         if (__predict_false(m->m_len < hoff + iphlen + thoff)) {
4548                 m = m_pullup(m, hoff + iphlen + thoff);
4549                 if (m == NULL) {
4550                         *mp = NULL;
4551                         return ENOBUFS;
4552                 }
4553                 *mp = m;
4554         }
4555         if (txr->tx_flags & IGB_TXFLAG_TSO_IPLEN0) {
4556                 struct ip *ip;
4557
4558                 ip = mtodoff(m, struct ip *, hoff);
4559                 ip->ip_len = 0;
4560         }
4561
4562         return 0;
4563 }
4564
4565 static void
4566 igb_tso_ctx(struct igb_tx_ring *txr, struct mbuf *m, uint32_t *hlen)
4567 {
4568         struct e1000_adv_tx_context_desc *TXD;
4569         uint32_t vlan_macip_lens, type_tucmd_mlhl, mss_l4len_idx;
4570         int hoff, ctxd, iphlen, thoff;
4571
4572         iphlen = m->m_pkthdr.csum_iphlen;
4573         thoff = m->m_pkthdr.csum_thlen;
4574         hoff = m->m_pkthdr.csum_lhlen;
4575
4576         vlan_macip_lens = type_tucmd_mlhl = mss_l4len_idx = 0;
4577
4578         ctxd = txr->next_avail_desc;
4579         TXD = (struct e1000_adv_tx_context_desc *)&txr->tx_base[ctxd];
4580
4581         if (m->m_flags & M_VLANTAG) {
4582                 uint16_t vlantag;
4583
4584                 vlantag = htole16(m->m_pkthdr.ether_vlantag);
4585                 vlan_macip_lens |= (vlantag << E1000_ADVTXD_VLAN_SHIFT);
4586         }
4587
4588         vlan_macip_lens |= (hoff << E1000_ADVTXD_MACLEN_SHIFT);
4589         vlan_macip_lens |= iphlen;
4590
4591         type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4592         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
4593         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
4594
4595         mss_l4len_idx |= (m->m_pkthdr.tso_segsz << E1000_ADVTXD_MSS_SHIFT);
4596         mss_l4len_idx |= (thoff << E1000_ADVTXD_L4LEN_SHIFT);
4597         /* 82575 needs the queue index added */
4598         if (txr->sc->hw.mac.type == e1000_82575)
4599                 mss_l4len_idx |= txr->me << 4;
4600
4601         TXD->vlan_macip_lens = htole32(vlan_macip_lens);
4602         TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
4603         TXD->seqnum_seed = htole32(0);
4604         TXD->mss_l4len_idx = htole32(mss_l4len_idx);
4605
4606         /* We've consumed the first desc, adjust counters */
4607         if (++ctxd == txr->num_tx_desc)
4608                 ctxd = 0;
4609         txr->next_avail_desc = ctxd;
4610         --txr->tx_avail;
4611
4612         *hlen = hoff + iphlen + thoff;
4613 }