2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * from: @(#)vm_object.c 8.5 (Berkeley) 3/22/94
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
54 * Carnegie Mellon requests users of this software to return to
56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
57 * School of Computer Science
58 * Carnegie Mellon University
59 * Pittsburgh PA 15213-3890
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
64 * $FreeBSD: src/sys/vm/vm_object.c,v 1.171.2.8 2003/05/26 19:17:56 alc Exp $
65 * $DragonFly: src/sys/vm/vm_object.c,v 1.29 2006/12/28 21:24:02 dillon Exp $
69 * Virtual memory object module.
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/proc.h> /* for curproc, pageproc */
75 #include <sys/vnode.h>
76 #include <sys/vmmeter.h>
78 #include <sys/mount.h>
79 #include <sys/kernel.h>
80 #include <sys/sysctl.h>
83 #include <vm/vm_param.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_pager.h>
90 #include <vm/swap_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/vm_zone.h>
95 #define EASY_SCAN_FACTOR 8
97 static void vm_object_qcollapse(vm_object_t object);
98 static int vm_object_page_collect_flush(vm_object_t object, vm_page_t p,
102 * Virtual memory objects maintain the actual data
103 * associated with allocated virtual memory. A given
104 * page of memory exists within exactly one object.
106 * An object is only deallocated when all "references"
107 * are given up. Only one "reference" to a given
108 * region of an object should be writeable.
110 * Associated with each object is a list of all resident
111 * memory pages belonging to that object; this list is
112 * maintained by the "vm_page" module, and locked by the object's
115 * Each object also records a "pager" routine which is
116 * used to retrieve (and store) pages to the proper backing
117 * storage. In addition, objects may be backed by other
118 * objects from which they were virtual-copied.
120 * The only items within the object structure which are
121 * modified after time of creation are:
122 * reference count locked by object's lock
123 * pager routine locked by object's lock
127 struct object_q vm_object_list;
128 struct vm_object kernel_object;
130 static long vm_object_count; /* count of all objects */
131 extern int vm_pageout_page_count;
133 static long object_collapses;
134 static long object_bypasses;
135 static int next_index;
136 static vm_zone_t obj_zone;
137 static struct vm_zone obj_zone_store;
138 static int object_hash_rand;
139 #define VM_OBJECTS_INIT 256
140 static struct vm_object vm_objects_init[VM_OBJECTS_INIT];
143 _vm_object_allocate(objtype_t type, vm_size_t size, vm_object_t object)
146 RB_INIT(&object->rb_memq);
147 LIST_INIT(&object->shadow_head);
151 object->ref_count = 1;
153 if ((object->type == OBJT_DEFAULT) || (object->type == OBJT_SWAP))
154 vm_object_set_flag(object, OBJ_ONEMAPPING);
155 object->paging_in_progress = 0;
156 object->resident_page_count = 0;
157 object->shadow_count = 0;
158 object->pg_color = next_index;
159 if ( size > (PQ_L2_SIZE / 3 + PQ_PRIME1))
160 incr = PQ_L2_SIZE / 3 + PQ_PRIME1;
163 next_index = (next_index + incr) & PQ_L2_MASK;
164 object->handle = NULL;
165 object->backing_object = NULL;
166 object->backing_object_offset = (vm_ooffset_t) 0;
168 * Try to generate a number that will spread objects out in the
169 * hash table. We 'wipe' new objects across the hash in 128 page
170 * increments plus 1 more to offset it a little more by the time
173 object->hash_rand = object_hash_rand - 129;
175 object->generation++;
178 TAILQ_INSERT_TAIL(&vm_object_list, object, object_list);
180 object_hash_rand = object->hash_rand;
187 * Initialize the VM objects module.
192 TAILQ_INIT(&vm_object_list);
194 _vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(KvaEnd),
197 obj_zone = &obj_zone_store;
198 zbootinit(obj_zone, "VM OBJECT", sizeof (struct vm_object),
199 vm_objects_init, VM_OBJECTS_INIT);
203 vm_object_init2(void)
205 zinitna(obj_zone, NULL, NULL, 0, 0, ZONE_PANICFAIL, 1);
209 * vm_object_allocate:
211 * Returns a new object with the given size.
215 vm_object_allocate(objtype_t type, vm_size_t size)
219 result = (vm_object_t) zalloc(obj_zone);
221 _vm_object_allocate(type, size, result);
228 * vm_object_reference:
230 * Gets another reference to the given object.
233 vm_object_reference(vm_object_t object)
239 if (object->type == OBJT_VNODE) {
240 vref(object->handle);
241 /* XXX what if the vnode is being destroyed? */
246 vm_object_vndeallocate(vm_object_t object)
248 struct vnode *vp = (struct vnode *) object->handle;
250 KASSERT(object->type == OBJT_VNODE,
251 ("vm_object_vndeallocate: not a vnode object"));
252 KASSERT(vp != NULL, ("vm_object_vndeallocate: missing vp"));
254 if (object->ref_count == 0) {
255 vprint("vm_object_vndeallocate", vp);
256 panic("vm_object_vndeallocate: bad object reference count");
261 if (object->ref_count == 0)
262 vp->v_flag &= ~VTEXT;
267 * vm_object_deallocate:
269 * Release a reference to the specified object,
270 * gained either through a vm_object_allocate
271 * or a vm_object_reference call. When all references
272 * are gone, storage associated with this object
273 * may be relinquished.
275 * No object may be locked.
278 vm_object_deallocate(vm_object_t object)
282 while (object != NULL) {
283 if (object->type == OBJT_VNODE) {
284 vm_object_vndeallocate(object);
288 if (object->ref_count == 0) {
289 panic("vm_object_deallocate: object deallocated too many times: %d", object->type);
290 } else if (object->ref_count > 2) {
296 * Here on ref_count of one or two, which are special cases for
299 if ((object->ref_count == 2) && (object->shadow_count == 0)) {
300 vm_object_set_flag(object, OBJ_ONEMAPPING);
303 } else if ((object->ref_count == 2) && (object->shadow_count == 1)) {
305 if ((object->handle == NULL) &&
306 (object->type == OBJT_DEFAULT ||
307 object->type == OBJT_SWAP)) {
310 robject = LIST_FIRST(&object->shadow_head);
311 KASSERT(robject != NULL,
312 ("vm_object_deallocate: ref_count: %d, shadow_count: %d",
314 object->shadow_count));
315 if ((robject->handle == NULL) &&
316 (robject->type == OBJT_DEFAULT ||
317 robject->type == OBJT_SWAP)) {
319 robject->ref_count++;
322 robject->paging_in_progress ||
323 object->paging_in_progress
325 vm_object_pip_sleep(robject, "objde1");
326 vm_object_pip_sleep(object, "objde2");
329 if (robject->ref_count == 1) {
330 robject->ref_count--;
336 vm_object_collapse(object);
345 if (object->ref_count != 0)
351 temp = object->backing_object;
353 LIST_REMOVE(object, shadow_list);
354 temp->shadow_count--;
356 object->backing_object = NULL;
360 * Don't double-terminate, we could be in a termination
361 * recursion due to the terminate having to sync data
364 if ((object->flags & OBJ_DEAD) == 0)
365 vm_object_terminate(object);
371 * vm_object_terminate actually destroys the specified object, freeing
372 * up all previously used resources.
374 * The object must be locked.
375 * This routine may block.
377 static int vm_object_terminate_callback(vm_page_t p, void *data);
380 vm_object_terminate(vm_object_t object)
383 * Make sure no one uses us.
385 vm_object_set_flag(object, OBJ_DEAD);
388 * wait for the pageout daemon to be done with the object
390 vm_object_pip_wait(object, "objtrm");
392 KASSERT(!object->paging_in_progress,
393 ("vm_object_terminate: pageout in progress"));
396 * Clean and free the pages, as appropriate. All references to the
397 * object are gone, so we don't need to lock it.
399 if (object->type == OBJT_VNODE) {
403 * Clean pages and flush buffers.
405 vm_object_page_clean(object, 0, 0, OBJPC_SYNC);
407 vp = (struct vnode *) object->handle;
408 vinvalbuf(vp, V_SAVE, 0, 0);
412 * Wait for any I/O to complete, after which there had better not
413 * be any references left on the object.
415 vm_object_pip_wait(object, "objtrm");
417 if (object->ref_count != 0)
418 panic("vm_object_terminate: object with references, ref_count=%d", object->ref_count);
421 * Now free any remaining pages. For internal objects, this also
422 * removes them from paging queues. Don't free wired pages, just
423 * remove them from the object.
426 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
427 vm_object_terminate_callback, NULL);
431 * Let the pager know object is dead.
433 vm_pager_deallocate(object);
436 * Remove the object from the global object list.
439 TAILQ_REMOVE(&vm_object_list, object, object_list);
444 if (object->ref_count != 0)
445 panic("vm_object_terminate2: object with references, ref_count=%d", object->ref_count);
448 * Free the space for the object.
450 zfree(obj_zone, object);
454 vm_object_terminate_callback(vm_page_t p, void *data __unused)
456 if (p->busy || (p->flags & PG_BUSY))
457 panic("vm_object_terminate: freeing busy page %p", p);
458 if (p->wire_count == 0) {
461 mycpu->gd_cnt.v_pfree++;
471 * vm_object_page_clean
473 * Clean all dirty pages in the specified range of object. Leaves page
474 * on whatever queue it is currently on. If NOSYNC is set then do not
475 * write out pages with PG_NOSYNC set (originally comes from MAP_NOSYNC),
476 * leaving the object dirty.
478 * When stuffing pages asynchronously, allow clustering. XXX we need a
479 * synchronous clustering mode implementation.
481 * Odd semantics: if start == end, we clean everything.
483 static int vm_object_page_clean_pass1(struct vm_page *p, void *data);
484 static int vm_object_page_clean_pass2(struct vm_page *p, void *data);
487 vm_object_page_clean(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
490 struct rb_vm_page_scan_info info;
496 if (object->type != OBJT_VNODE ||
497 (object->flags & OBJ_MIGHTBEDIRTY) == 0)
500 pagerflags = (flags & (OBJPC_SYNC | OBJPC_INVAL)) ?
501 VM_PAGER_PUT_SYNC : VM_PAGER_CLUSTER_OK;
502 pagerflags |= (flags & OBJPC_INVAL) ? VM_PAGER_PUT_INVAL : 0;
507 * Interlock other major object operations. This allows us to
508 * temporarily clear OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY.
511 vm_object_set_flag(object, OBJ_CLEANING);
514 * Handle 'entire object' case
516 info.start_pindex = start;
518 info.end_pindex = object->size - 1;
520 info.end_pindex = end - 1;
522 wholescan = (start == 0 && info.end_pindex == object->size - 1);
524 info.pagerflags = pagerflags;
525 info.object = object;
528 * If cleaning the entire object do a pass to mark the pages read-only.
529 * If everything worked out ok, clear OBJ_WRITEABLE and
534 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
535 vm_object_page_clean_pass1, &info);
536 if (info.error == 0) {
537 vm_object_clear_flag(object,
538 OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
539 if (object->type == OBJT_VNODE &&
540 (vp = (struct vnode *)object->handle) != NULL) {
541 if (vp->v_flag & VOBJDIRTY)
542 vclrflags(vp, VOBJDIRTY);
548 * Do a pass to clean all the dirty pages we find.
552 curgeneration = object->generation;
553 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
554 vm_object_page_clean_pass2, &info);
555 } while (info.error || curgeneration != object->generation);
557 vm_object_clear_flag(object, OBJ_CLEANING);
563 vm_object_page_clean_pass1(struct vm_page *p, void *data)
565 struct rb_vm_page_scan_info *info = data;
567 vm_page_flag_set(p, PG_CLEANCHK);
568 if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC))
571 vm_page_protect(p, VM_PROT_READ);
577 vm_object_page_clean_pass2(struct vm_page *p, void *data)
579 struct rb_vm_page_scan_info *info = data;
583 * Do not mess with pages that were inserted after we started
586 if ((p->flags & PG_CLEANCHK) == 0)
590 * Before wasting time traversing the pmaps, check for trivial
591 * cases where the page cannot be dirty.
593 if (p->valid == 0 || (p->queue - p->pc) == PQ_CACHE) {
594 KKASSERT((p->dirty & p->valid) == 0);
599 * Check whether the page is dirty or not. The page has been set
600 * to be read-only so the check will not race a user dirtying the
603 vm_page_test_dirty(p);
604 if ((p->dirty & p->valid) == 0) {
605 vm_page_flag_clear(p, PG_CLEANCHK);
610 * If we have been asked to skip nosync pages and this is a
611 * nosync page, skip it. Note that the object flags were
612 * not cleared in this case (because pass1 will have returned an
613 * error), so we do not have to set them.
615 if ((info->limit & OBJPC_NOSYNC) && (p->flags & PG_NOSYNC)) {
616 vm_page_flag_clear(p, PG_CLEANCHK);
621 * Flush as many pages as we can. PG_CLEANCHK will be cleared on
622 * the pages that get successfully flushed. Set info->error if
623 * we raced an object modification.
625 n = vm_object_page_collect_flush(info->object, p, info->pagerflags);
632 * This routine must be called within a critical section to properly avoid
633 * an interrupt unbusy/free race that can occur prior to the busy check.
635 * Using the object generation number here to detect page ripout is not
636 * the best idea in the world. XXX
638 * NOTE: we operate under the assumption that a page found to not be busy
639 * will not be ripped out from under us by an interrupt. XXX we should
640 * recode this to explicitly busy the pages.
643 vm_object_page_collect_flush(vm_object_t object, vm_page_t p, int pagerflags)
652 vm_page_t maf[vm_pageout_page_count];
653 vm_page_t mab[vm_pageout_page_count];
654 vm_page_t ma[vm_pageout_page_count];
656 curgeneration = object->generation;
659 while (vm_page_sleep_busy(p, TRUE, "vpcwai")) {
660 if (object->generation != curgeneration) {
664 KKASSERT(p->object == object && p->pindex == pi);
667 for(i = 1; i < vm_pageout_page_count; i++) {
670 if ((tp = vm_page_lookup(object, pi + i)) != NULL) {
671 if ((tp->flags & PG_BUSY) ||
672 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
673 (tp->flags & PG_CLEANCHK) == 0) ||
676 if((tp->queue - tp->pc) == PQ_CACHE) {
677 vm_page_flag_clear(tp, PG_CLEANCHK);
680 vm_page_test_dirty(tp);
681 if ((tp->dirty & tp->valid) == 0) {
682 vm_page_flag_clear(tp, PG_CLEANCHK);
693 chkb = vm_pageout_page_count - maxf;
695 for(i = 1; i < chkb;i++) {
698 if ((tp = vm_page_lookup(object, pi - i)) != NULL) {
699 if ((tp->flags & PG_BUSY) ||
700 ((pagerflags & VM_PAGER_IGNORE_CLEANCHK) == 0 &&
701 (tp->flags & PG_CLEANCHK) == 0) ||
704 if((tp->queue - tp->pc) == PQ_CACHE) {
705 vm_page_flag_clear(tp, PG_CLEANCHK);
708 vm_page_test_dirty(tp);
709 if ((tp->dirty & tp->valid) == 0) {
710 vm_page_flag_clear(tp, PG_CLEANCHK);
721 for(i = 0; i < maxb; i++) {
722 int index = (maxb - i) - 1;
724 vm_page_flag_clear(ma[index], PG_CLEANCHK);
726 vm_page_flag_clear(p, PG_CLEANCHK);
728 for(i = 0; i < maxf; i++) {
729 int index = (maxb + i) + 1;
731 vm_page_flag_clear(ma[index], PG_CLEANCHK);
733 runlen = maxb + maxf + 1;
735 vm_pageout_flush(ma, runlen, pagerflags);
736 for (i = 0; i < runlen; i++) {
737 if (ma[i]->valid & ma[i]->dirty) {
738 vm_page_protect(ma[i], VM_PROT_READ);
739 vm_page_flag_set(ma[i], PG_CLEANCHK);
742 * maxf will end up being the actual number of pages
743 * we wrote out contiguously, non-inclusive of the
744 * first page. We do not count look-behind pages.
746 if (i >= maxb + 1 && (maxf > i - maxb - 1))
754 /* XXX I cannot tell if this should be an exported symbol */
756 * vm_object_deactivate_pages
758 * Deactivate all pages in the specified object. (Keep its pages
759 * in memory even though it is no longer referenced.)
761 * The object must be locked.
763 static int vm_object_deactivate_pages_callback(vm_page_t p, void *data);
766 vm_object_deactivate_pages(vm_object_t object)
769 vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
770 vm_object_deactivate_pages_callback, NULL);
775 vm_object_deactivate_pages_callback(vm_page_t p, void *data __unused)
777 vm_page_deactivate(p);
784 * Same as vm_object_pmap_copy, except range checking really
785 * works, and is meant for small sections of an object.
787 * This code protects resident pages by making them read-only
788 * and is typically called on a fork or split when a page
789 * is converted to copy-on-write.
791 * NOTE: If the page is already at VM_PROT_NONE, calling
792 * vm_page_protect will have no effect.
795 vm_object_pmap_copy_1(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
800 if (object == NULL || (object->flags & OBJ_WRITEABLE) == 0)
804 * spl protection needed to prevent races between the lookup,
805 * an interrupt unbusy/free, and our protect call.
808 for (idx = start; idx < end; idx++) {
809 p = vm_page_lookup(object, idx);
812 vm_page_protect(p, VM_PROT_READ);
818 * vm_object_pmap_remove:
820 * Removes all physical pages in the specified
821 * object range from all physical maps.
823 * The object must *not* be locked.
826 static int vm_object_pmap_remove_callback(vm_page_t p, void *data);
829 vm_object_pmap_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end)
831 struct rb_vm_page_scan_info info;
835 info.start_pindex = start;
836 info.end_pindex = end - 1;
838 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
839 vm_object_pmap_remove_callback, &info);
840 if (start == 0 && end == object->size)
841 vm_object_clear_flag(object, OBJ_WRITEABLE);
846 vm_object_pmap_remove_callback(vm_page_t p, void *data __unused)
848 vm_page_protect(p, VM_PROT_NONE);
855 * Implements the madvise function at the object/page level.
857 * MADV_WILLNEED (any object)
859 * Activate the specified pages if they are resident.
861 * MADV_DONTNEED (any object)
863 * Deactivate the specified pages if they are resident.
865 * MADV_FREE (OBJT_DEFAULT/OBJT_SWAP objects,
866 * OBJ_ONEMAPPING only)
868 * Deactivate and clean the specified pages if they are
869 * resident. This permits the process to reuse the pages
870 * without faulting or the kernel to reclaim the pages
874 vm_object_madvise(vm_object_t object, vm_pindex_t pindex, int count, int advise)
876 vm_pindex_t end, tpindex;
883 end = pindex + count;
886 * Locate and adjust resident pages
889 for (; pindex < end; pindex += 1) {
895 * MADV_FREE only operates on OBJT_DEFAULT or OBJT_SWAP pages
896 * and those pages must be OBJ_ONEMAPPING.
898 if (advise == MADV_FREE) {
899 if ((tobject->type != OBJT_DEFAULT &&
900 tobject->type != OBJT_SWAP) ||
901 (tobject->flags & OBJ_ONEMAPPING) == 0) {
907 * spl protection is required to avoid a race between the
908 * lookup, an interrupt unbusy/free, and our busy check.
912 m = vm_page_lookup(tobject, tpindex);
916 * There may be swap even if there is no backing page
918 if (advise == MADV_FREE && tobject->type == OBJT_SWAP)
919 swap_pager_freespace(tobject, tpindex, 1);
925 if (tobject->backing_object == NULL)
927 tpindex += OFF_TO_IDX(tobject->backing_object_offset);
928 tobject = tobject->backing_object;
933 * If the page is busy or not in a normal active state,
934 * we skip it. If the page is not managed there are no
935 * page queues to mess with. Things can break if we mess
936 * with pages in any of the below states.
941 (m->flags & PG_UNMANAGED) ||
942 m->valid != VM_PAGE_BITS_ALL
948 if (vm_page_sleep_busy(m, TRUE, "madvpo")) {
955 * Theoretically once a page is known not to be busy, an
956 * interrupt cannot come along and rip it out from under us.
959 if (advise == MADV_WILLNEED) {
961 } else if (advise == MADV_DONTNEED) {
963 } else if (advise == MADV_FREE) {
965 * Mark the page clean. This will allow the page
966 * to be freed up by the system. However, such pages
967 * are often reused quickly by malloc()/free()
968 * so we do not do anything that would cause
969 * a page fault if we can help it.
971 * Specifically, we do not try to actually free
972 * the page now nor do we try to put it in the
973 * cache (which would cause a page fault on reuse).
975 * But we do make the page is freeable as we
976 * can without actually taking the step of unmapping
979 pmap_clear_modify(m);
983 if (tobject->type == OBJT_SWAP)
984 swap_pager_freespace(tobject, tpindex, 1);
992 * Create a new object which is backed by the
993 * specified existing object range. The source
994 * object reference is deallocated.
996 * The new object and offset into that object
997 * are returned in the source parameters.
1001 vm_object_shadow(vm_object_t *object, /* IN/OUT */
1002 vm_ooffset_t *offset, /* IN/OUT */
1011 * Don't create the new object if the old object isn't shared.
1014 if (source != NULL &&
1015 source->ref_count == 1 &&
1016 source->handle == NULL &&
1017 (source->type == OBJT_DEFAULT ||
1018 source->type == OBJT_SWAP))
1022 * Allocate a new object with the given length
1025 if ((result = vm_object_allocate(OBJT_DEFAULT, length)) == NULL)
1026 panic("vm_object_shadow: no object for shadowing");
1029 * The new object shadows the source object, adding a reference to it.
1030 * Our caller changes his reference to point to the new object,
1031 * removing a reference to the source object. Net result: no change
1032 * of reference count.
1034 * Try to optimize the result object's page color when shadowing
1035 * in order to maintain page coloring consistency in the combined
1038 result->backing_object = source;
1040 LIST_INSERT_HEAD(&source->shadow_head, result, shadow_list);
1041 source->shadow_count++;
1042 source->generation++;
1043 result->pg_color = (source->pg_color + OFF_TO_IDX(*offset)) & PQ_L2_MASK;
1047 * Store the offset into the source object, and fix up the offset into
1051 result->backing_object_offset = *offset;
1054 * Return the new things
1061 #define OBSC_TEST_ALL_SHADOWED 0x0001
1062 #define OBSC_COLLAPSE_NOWAIT 0x0002
1063 #define OBSC_COLLAPSE_WAIT 0x0004
1065 static int vm_object_backing_scan_callback(vm_page_t p, void *data);
1068 vm_object_backing_scan(vm_object_t object, int op)
1070 struct rb_vm_page_scan_info info;
1071 vm_object_t backing_object;
1074 * spl protection is required to avoid races between the memq/lookup,
1075 * an interrupt doing an unbusy/free, and our busy check. Amoung
1080 backing_object = object->backing_object;
1081 info.backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
1084 * Initial conditions
1087 if (op & OBSC_TEST_ALL_SHADOWED) {
1089 * We do not want to have to test for the existence of
1090 * swap pages in the backing object. XXX but with the
1091 * new swapper this would be pretty easy to do.
1093 * XXX what about anonymous MAP_SHARED memory that hasn't
1094 * been ZFOD faulted yet? If we do not test for this, the
1095 * shadow test may succeed! XXX
1097 if (backing_object->type != OBJT_DEFAULT) {
1102 if (op & OBSC_COLLAPSE_WAIT) {
1103 KKASSERT((backing_object->flags & OBJ_DEAD) == 0);
1104 vm_object_set_flag(backing_object, OBJ_DEAD);
1108 * Our scan. We have to retry if a negative error code is returned,
1109 * otherwise 0 or 1 will be returned in info.error. 0 Indicates that
1110 * the scan had to be stopped because the parent does not completely
1113 info.object = object;
1114 info.backing_object = backing_object;
1118 vm_page_rb_tree_RB_SCAN(&backing_object->rb_memq, NULL,
1119 vm_object_backing_scan_callback,
1121 } while (info.error < 0);
1127 vm_object_backing_scan_callback(vm_page_t p, void *data)
1129 struct rb_vm_page_scan_info *info = data;
1130 vm_object_t backing_object;
1132 vm_pindex_t new_pindex;
1133 vm_pindex_t backing_offset_index;
1136 new_pindex = p->pindex - info->backing_offset_index;
1138 object = info->object;
1139 backing_object = info->backing_object;
1140 backing_offset_index = info->backing_offset_index;
1142 if (op & OBSC_TEST_ALL_SHADOWED) {
1146 * Ignore pages outside the parent object's range
1147 * and outside the parent object's mapping of the
1150 * note that we do not busy the backing object's
1154 p->pindex < backing_offset_index ||
1155 new_pindex >= object->size
1161 * See if the parent has the page or if the parent's
1162 * object pager has the page. If the parent has the
1163 * page but the page is not valid, the parent's
1164 * object pager must have the page.
1166 * If this fails, the parent does not completely shadow
1167 * the object and we might as well give up now.
1170 pp = vm_page_lookup(object, new_pindex);
1172 (pp == NULL || pp->valid == 0) &&
1173 !vm_pager_has_page(object, new_pindex, NULL, NULL)
1175 info->error = 0; /* problemo */
1176 return(-1); /* stop the scan */
1181 * Check for busy page
1184 if (op & (OBSC_COLLAPSE_WAIT | OBSC_COLLAPSE_NOWAIT)) {
1187 if (op & OBSC_COLLAPSE_NOWAIT) {
1189 (p->flags & PG_BUSY) ||
1197 } else if (op & OBSC_COLLAPSE_WAIT) {
1198 if (vm_page_sleep_busy(p, TRUE, "vmocol")) {
1200 * If we slept, anything could have
1201 * happened. Ask that the scan be restarted.
1203 * Since the object is marked dead, the
1204 * backing offset should not have changed.
1217 p->object == backing_object,
1218 ("vm_object_qcollapse(): object mismatch")
1222 * Destroy any associated swap
1224 if (backing_object->type == OBJT_SWAP) {
1225 swap_pager_freespace(
1233 p->pindex < backing_offset_index ||
1234 new_pindex >= object->size
1237 * Page is out of the parent object's range, we
1238 * can simply destroy it.
1240 vm_page_protect(p, VM_PROT_NONE);
1245 pp = vm_page_lookup(object, new_pindex);
1248 vm_pager_has_page(object, new_pindex, NULL, NULL)
1251 * page already exists in parent OR swap exists
1252 * for this location in the parent. Destroy
1253 * the original page from the backing object.
1255 * Leave the parent's page alone
1257 vm_page_protect(p, VM_PROT_NONE);
1263 * Page does not exist in parent, rename the
1264 * page from the backing object to the main object.
1266 * If the page was mapped to a process, it can remain
1267 * mapped through the rename.
1269 if ((p->queue - p->pc) == PQ_CACHE)
1270 vm_page_deactivate(p);
1272 vm_page_rename(p, object, new_pindex);
1273 /* page automatically made dirty by rename */
1279 * this version of collapse allows the operation to occur earlier and
1280 * when paging_in_progress is true for an object... This is not a complete
1281 * operation, but should plug 99.9% of the rest of the leaks.
1284 vm_object_qcollapse(vm_object_t object)
1286 vm_object_t backing_object = object->backing_object;
1288 if (backing_object->ref_count != 1)
1291 backing_object->ref_count += 2;
1293 vm_object_backing_scan(object, OBSC_COLLAPSE_NOWAIT);
1295 backing_object->ref_count -= 2;
1299 * vm_object_collapse:
1301 * Collapse an object with the object backing it.
1302 * Pages in the backing object are moved into the
1303 * parent, and the backing object is deallocated.
1306 vm_object_collapse(vm_object_t object)
1309 vm_object_t backing_object;
1312 * Verify that the conditions are right for collapse:
1314 * The object exists and the backing object exists.
1319 if ((backing_object = object->backing_object) == NULL)
1323 * we check the backing object first, because it is most likely
1326 if (backing_object->handle != NULL ||
1327 (backing_object->type != OBJT_DEFAULT &&
1328 backing_object->type != OBJT_SWAP) ||
1329 (backing_object->flags & OBJ_DEAD) ||
1330 object->handle != NULL ||
1331 (object->type != OBJT_DEFAULT &&
1332 object->type != OBJT_SWAP) ||
1333 (object->flags & OBJ_DEAD)) {
1338 object->paging_in_progress != 0 ||
1339 backing_object->paging_in_progress != 0
1341 vm_object_qcollapse(object);
1346 * We know that we can either collapse the backing object (if
1347 * the parent is the only reference to it) or (perhaps) have
1348 * the parent bypass the object if the parent happens to shadow
1349 * all the resident pages in the entire backing object.
1351 * This is ignoring pager-backed pages such as swap pages.
1352 * vm_object_backing_scan fails the shadowing test in this
1356 if (backing_object->ref_count == 1) {
1358 * If there is exactly one reference to the backing
1359 * object, we can collapse it into the parent.
1361 vm_object_backing_scan(object, OBSC_COLLAPSE_WAIT);
1364 * Move the pager from backing_object to object.
1367 if (backing_object->type == OBJT_SWAP) {
1368 vm_object_pip_add(backing_object, 1);
1371 * scrap the paging_offset junk and do a
1372 * discrete copy. This also removes major
1373 * assumptions about how the swap-pager
1374 * works from where it doesn't belong. The
1375 * new swapper is able to optimize the
1376 * destroy-source case.
1379 vm_object_pip_add(object, 1);
1383 OFF_TO_IDX(object->backing_object_offset), TRUE);
1384 vm_object_pip_wakeup(object);
1386 vm_object_pip_wakeup(backing_object);
1389 * Object now shadows whatever backing_object did.
1390 * Note that the reference to
1391 * backing_object->backing_object moves from within
1392 * backing_object to within object.
1395 LIST_REMOVE(object, shadow_list);
1396 object->backing_object->shadow_count--;
1397 object->backing_object->generation++;
1398 if (backing_object->backing_object) {
1399 LIST_REMOVE(backing_object, shadow_list);
1400 backing_object->backing_object->shadow_count--;
1401 backing_object->backing_object->generation++;
1403 object->backing_object = backing_object->backing_object;
1404 if (object->backing_object) {
1406 &object->backing_object->shadow_head,
1410 object->backing_object->shadow_count++;
1411 object->backing_object->generation++;
1414 object->backing_object_offset +=
1415 backing_object->backing_object_offset;
1418 * Discard backing_object.
1420 * Since the backing object has no pages, no pager left,
1421 * and no object references within it, all that is
1422 * necessary is to dispose of it.
1425 KASSERT(backing_object->ref_count == 1, ("backing_object %p was somehow re-referenced during collapse!", backing_object));
1426 KASSERT(RB_EMPTY(&backing_object->rb_memq), ("backing_object %p somehow has left over pages during collapse!", backing_object));
1436 zfree(obj_zone, backing_object);
1440 vm_object_t new_backing_object;
1443 * If we do not entirely shadow the backing object,
1444 * there is nothing we can do so we give up.
1447 if (vm_object_backing_scan(object, OBSC_TEST_ALL_SHADOWED) == 0) {
1452 * Make the parent shadow the next object in the
1453 * chain. Deallocating backing_object will not remove
1454 * it, since its reference count is at least 2.
1457 LIST_REMOVE(object, shadow_list);
1458 backing_object->shadow_count--;
1459 backing_object->generation++;
1461 new_backing_object = backing_object->backing_object;
1462 if ((object->backing_object = new_backing_object) != NULL) {
1463 vm_object_reference(new_backing_object);
1465 &new_backing_object->shadow_head,
1469 new_backing_object->shadow_count++;
1470 new_backing_object->generation++;
1471 object->backing_object_offset +=
1472 backing_object->backing_object_offset;
1476 * Drop the reference count on backing_object. Since
1477 * its ref_count was at least 2, it will not vanish;
1478 * so we don't need to call vm_object_deallocate, but
1481 vm_object_deallocate(backing_object);
1486 * Try again with this object's new backing object.
1492 * vm_object_page_remove: [internal]
1494 * Removes all physical pages in the specified
1495 * object range from the object's list of pages.
1497 static int vm_object_page_remove_callback(vm_page_t p, void *data);
1500 vm_object_page_remove(vm_object_t object, vm_pindex_t start, vm_pindex_t end,
1501 boolean_t clean_only)
1503 struct rb_vm_page_scan_info info;
1507 * Degenerate cases and assertions
1509 if (object == NULL || object->resident_page_count == 0)
1511 KASSERT(object->type != OBJT_PHYS,
1512 ("attempt to remove pages from a physical object"));
1515 * Indicate that paging is occuring on the object
1518 vm_object_pip_add(object, 1);
1521 * Figure out the actual removal range and whether we are removing
1522 * the entire contents of the object or not. If removing the entire
1523 * contents, be sure to get all pages, even those that might be
1524 * beyond the end of the object.
1526 info.start_pindex = start;
1528 info.end_pindex = (vm_pindex_t)-1;
1530 info.end_pindex = end - 1;
1531 info.limit = clean_only;
1532 all = (start == 0 && info.end_pindex >= object->size - 1);
1535 * Loop until we are sure we have gotten them all.
1539 vm_page_rb_tree_RB_SCAN(&object->rb_memq, rb_vm_page_scancmp,
1540 vm_object_page_remove_callback, &info);
1541 } while (info.error);
1546 vm_object_pip_wakeup(object);
1551 vm_object_page_remove_callback(vm_page_t p, void *data)
1553 struct rb_vm_page_scan_info *info = data;
1556 * Wired pages cannot be destroyed, but they can be invalidated
1557 * and we do so if clean_only (limit) is not set.
1559 if (p->wire_count != 0) {
1560 vm_page_protect(p, VM_PROT_NONE);
1561 if (info->limit == 0)
1567 * The busy flags are only cleared at
1568 * interrupt -- minimize the spl transitions
1571 if (vm_page_sleep_busy(p, TRUE, "vmopar")) {
1577 * limit is our clean_only flag. If set and the page is dirty, do
1580 if (info->limit && p->valid) {
1581 vm_page_test_dirty(p);
1582 if (p->valid & p->dirty)
1590 vm_page_protect(p, VM_PROT_NONE);
1596 * Routine: vm_object_coalesce
1597 * Function: Coalesces two objects backing up adjoining
1598 * regions of memory into a single object.
1600 * returns TRUE if objects were combined.
1602 * NOTE: Only works at the moment if the second object is NULL -
1603 * if it's not, which object do we lock first?
1606 * prev_object First object to coalesce
1607 * prev_offset Offset into prev_object
1608 * next_object Second object into coalesce
1609 * next_offset Offset into next_object
1611 * prev_size Size of reference to prev_object
1612 * next_size Size of reference to next_object
1615 * The object must *not* be locked.
1618 vm_object_coalesce(vm_object_t prev_object, vm_pindex_t prev_pindex,
1619 vm_size_t prev_size, vm_size_t next_size)
1621 vm_pindex_t next_pindex;
1623 if (prev_object == NULL) {
1627 if (prev_object->type != OBJT_DEFAULT &&
1628 prev_object->type != OBJT_SWAP) {
1633 * Try to collapse the object first
1635 vm_object_collapse(prev_object);
1638 * Can't coalesce if: . more than one reference . paged out . shadows
1639 * another object . has a copy elsewhere (any of which mean that the
1640 * pages not mapped to prev_entry may be in use anyway)
1643 if (prev_object->backing_object != NULL) {
1647 prev_size >>= PAGE_SHIFT;
1648 next_size >>= PAGE_SHIFT;
1649 next_pindex = prev_pindex + prev_size;
1651 if ((prev_object->ref_count > 1) &&
1652 (prev_object->size != next_pindex)) {
1657 * Remove any pages that may still be in the object from a previous
1660 if (next_pindex < prev_object->size) {
1661 vm_object_page_remove(prev_object,
1663 next_pindex + next_size, FALSE);
1664 if (prev_object->type == OBJT_SWAP)
1665 swap_pager_freespace(prev_object,
1666 next_pindex, next_size);
1670 * Extend the object if necessary.
1672 if (next_pindex + next_size > prev_object->size)
1673 prev_object->size = next_pindex + next_size;
1679 vm_object_set_writeable_dirty(vm_object_t object)
1683 vm_object_set_flag(object, OBJ_WRITEABLE|OBJ_MIGHTBEDIRTY);
1684 if (object->type == OBJT_VNODE &&
1685 (vp = (struct vnode *)object->handle) != NULL) {
1686 if ((vp->v_flag & VOBJDIRTY) == 0) {
1687 vsetflags(vp, VOBJDIRTY);
1694 #include "opt_ddb.h"
1696 #include <sys/kernel.h>
1698 #include <sys/cons.h>
1700 #include <ddb/ddb.h>
1702 static int _vm_object_in_map (vm_map_t map, vm_object_t object,
1703 vm_map_entry_t entry);
1704 static int vm_object_in_map (vm_object_t object);
1707 _vm_object_in_map(vm_map_t map, vm_object_t object, vm_map_entry_t entry)
1710 vm_map_entry_t tmpe;
1717 tmpe = map->header.next;
1718 entcount = map->nentries;
1719 while (entcount-- && (tmpe != &map->header)) {
1720 if( _vm_object_in_map(map, object, tmpe)) {
1727 switch(entry->maptype) {
1728 case VM_MAPTYPE_SUBMAP:
1729 tmpm = entry->object.sub_map;
1730 tmpe = tmpm->header.next;
1731 entcount = tmpm->nentries;
1732 while (entcount-- && tmpe != &tmpm->header) {
1733 if( _vm_object_in_map(tmpm, object, tmpe)) {
1739 case VM_MAPTYPE_NORMAL:
1740 case VM_MAPTYPE_VPAGETABLE:
1741 obj = entry->object.vm_object;
1745 obj = obj->backing_object;
1754 static int vm_object_in_map_callback(struct proc *p, void *data);
1756 struct vm_object_in_map_info {
1762 vm_object_in_map(vm_object_t object)
1764 struct vm_object_in_map_info info;
1767 info.object = object;
1769 allproc_scan(vm_object_in_map_callback, &info);
1772 if( _vm_object_in_map(&kernel_map, object, 0))
1774 if( _vm_object_in_map(&pager_map, object, 0))
1776 if( _vm_object_in_map(&buffer_map, object, 0))
1782 vm_object_in_map_callback(struct proc *p, void *data)
1784 struct vm_object_in_map_info *info = data;
1787 if (_vm_object_in_map(&p->p_vmspace->vm_map, info->object, 0)) {
1795 DB_SHOW_COMMAND(vmochk, vm_object_check)
1800 * make sure that internal objs are in a map somewhere
1801 * and none have zero ref counts.
1803 for (object = TAILQ_FIRST(&vm_object_list);
1805 object = TAILQ_NEXT(object, object_list)) {
1806 if (object->handle == NULL &&
1807 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1808 if (object->ref_count == 0) {
1809 db_printf("vmochk: internal obj has zero ref count: %ld\n",
1810 (long)object->size);
1812 if (!vm_object_in_map(object)) {
1814 "vmochk: internal obj is not in a map: "
1815 "ref: %d, size: %lu: 0x%lx, backing_object: %p\n",
1816 object->ref_count, (u_long)object->size,
1817 (u_long)object->size,
1818 (void *)object->backing_object);
1825 * vm_object_print: [ debug ]
1827 DB_SHOW_COMMAND(object, vm_object_print_static)
1829 /* XXX convert args. */
1830 vm_object_t object = (vm_object_t)addr;
1831 boolean_t full = have_addr;
1835 /* XXX count is an (unused) arg. Avoid shadowing it. */
1836 #define count was_count
1844 "Object %p: type=%d, size=0x%lx, res=%d, ref=%d, flags=0x%x\n",
1845 object, (int)object->type, (u_long)object->size,
1846 object->resident_page_count, object->ref_count, object->flags);
1848 * XXX no %qd in kernel. Truncate object->backing_object_offset.
1850 db_iprintf(" sref=%d, backing_object(%d)=(%p)+0x%lx\n",
1851 object->shadow_count,
1852 object->backing_object ? object->backing_object->ref_count : 0,
1853 object->backing_object, (long)object->backing_object_offset);
1860 RB_FOREACH(p, vm_page_rb_tree, &object->rb_memq) {
1862 db_iprintf("memory:=");
1863 else if (count == 6) {
1871 db_printf("(off=0x%lx,page=0x%lx)",
1872 (u_long) p->pindex, (u_long) VM_PAGE_TO_PHYS(p));
1882 /* XXX need this non-static entry for calling from vm_map_print. */
1884 vm_object_print(/* db_expr_t */ long addr,
1885 boolean_t have_addr,
1886 /* db_expr_t */ long count,
1889 vm_object_print_static(addr, have_addr, count, modif);
1892 DB_SHOW_COMMAND(vmopag, vm_object_print_pages)
1897 for (object = TAILQ_FIRST(&vm_object_list);
1899 object = TAILQ_NEXT(object, object_list)) {
1900 vm_pindex_t idx, fidx;
1902 vm_paddr_t pa = -1, padiff;
1906 db_printf("new object: %p\n", (void *)object);
1916 osize = object->size;
1919 for (idx = 0; idx < osize; idx++) {
1920 m = vm_page_lookup(object, idx);
1923 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
1924 (long)fidx, rcount, (long)pa);
1939 (VM_PAGE_TO_PHYS(m) == pa + rcount * PAGE_SIZE)) {
1944 padiff = pa + rcount * PAGE_SIZE - VM_PAGE_TO_PHYS(m);
1945 padiff >>= PAGE_SHIFT;
1946 padiff &= PQ_L2_MASK;
1948 pa = VM_PAGE_TO_PHYS(m) - rcount * PAGE_SIZE;
1952 db_printf(" index(%ld)run(%d)pa(0x%lx)",
1953 (long)fidx, rcount, (long)pa);
1954 db_printf("pd(%ld)\n", (long)padiff);
1964 pa = VM_PAGE_TO_PHYS(m);
1968 db_printf(" index(%ld)run(%d)pa(0x%lx)\n",
1969 (long)fidx, rcount, (long)pa);