2 * Copyright (c) 1990 University of Utah.
3 * Copyright (c) 1991 The Regents of the University of California.
5 * Copyright (c) 1993, 1994 John S. Dyson
6 * Copyright (c) 1995, David Greenman
8 * This code is derived from software contributed to Berkeley by
9 * the Systems Programming Group of the University of Utah Computer
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by the University of
23 * California, Berkeley and its contributors.
24 * 4. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * from: @(#)vnode_pager.c 7.5 (Berkeley) 4/20/91
41 * $FreeBSD: src/sys/vm/vnode_pager.c,v 1.116.2.7 2002/12/31 09:34:51 dillon Exp $
42 * $DragonFly: src/sys/vm/vnode_pager.c,v 1.35 2007/07/30 21:41:30 dillon Exp $
46 * Page to/from files (vnodes).
51 * Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will
52 * greatly re-simplify the vnode_pager.
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/kernel.h>
59 #include <sys/vnode.h>
60 #include <sys/mount.h>
62 #include <sys/vmmeter.h>
64 #include <sys/sfbuf.h>
65 #include <sys/thread2.h>
68 #include <vm/vm_object.h>
69 #include <vm/vm_page.h>
70 #include <vm/vm_pager.h>
71 #include <vm/vm_map.h>
72 #include <vm/vnode_pager.h>
73 #include <vm/vm_extern.h>
75 static off_t vnode_pager_addr (struct vnode *vp, off_t loffset, int *run);
76 static void vnode_pager_iodone (struct bio *bio);
77 static int vnode_pager_input_smlfs (vm_object_t object, vm_page_t m);
78 static int vnode_pager_input_old (vm_object_t object, vm_page_t m);
79 static void vnode_pager_dealloc (vm_object_t);
80 static int vnode_pager_getpages (vm_object_t, vm_page_t *, int, int);
81 static void vnode_pager_putpages (vm_object_t, vm_page_t *, int, boolean_t, int *);
82 static boolean_t vnode_pager_haspage (vm_object_t, vm_pindex_t, int *, int *);
84 struct pagerops vnodepagerops = {
94 static struct krate vbadrate = { 1 };
95 static struct krate vresrate = { 1 };
97 int vnode_pbuf_freecnt = -1; /* start out unlimited */
100 * Allocate (or lookup) pager for a vnode.
101 * Handle is a vnode pointer.
104 vnode_pager_alloc(void *handle, off_t size, vm_prot_t prot, off_t offset)
110 * Pageout to vnode, no can do yet.
116 * XXX hack - This initialization should be put somewhere else.
118 if (vnode_pbuf_freecnt < 0) {
119 vnode_pbuf_freecnt = nswbuf / 2 + 1;
122 vp = (struct vnode *) handle;
125 * Prevent race condition when allocating the object. This
126 * can happen with NFS vnodes since the nfsnode isn't locked.
128 while (vp->v_flag & VOLOCK) {
129 vp->v_flag |= VOWANT;
130 tsleep(vp, 0, "vnpobj", 0);
132 vp->v_flag |= VOLOCK;
135 * If the object is being terminated, wait for it to
138 while (((object = vp->v_object) != NULL) &&
139 (object->flags & OBJ_DEAD)) {
140 vm_object_dead_sleep(object, "vadead");
143 if (vp->v_sysref.refcnt <= 0)
144 panic("vnode_pager_alloc: no vnode reference");
146 if (object == NULL) {
148 * And an object of the appropriate size
150 object = vm_object_allocate(OBJT_VNODE, OFF_TO_IDX(round_page(size)));
152 object->handle = handle;
153 vp->v_object = object;
154 vp->v_filesize = size;
157 if (vp->v_filesize != size)
158 kprintf("vnode_pager_alloc: Warning, filesize mismatch %lld/%lld\n", vp->v_filesize, size);
162 vp->v_flag &= ~VOLOCK;
163 if (vp->v_flag & VOWANT) {
164 vp->v_flag &= ~VOWANT;
171 vnode_pager_dealloc(vm_object_t object)
173 struct vnode *vp = object->handle;
176 panic("vnode_pager_dealloc: pager already dealloced");
178 vm_object_pip_wait(object, "vnpdea");
180 object->handle = NULL;
181 object->type = OBJT_DEAD;
183 vp->v_filesize = NOOFFSET;
184 vp->v_flag &= ~(VTEXT | VOBJBUF);
188 * Return whether the vnode pager has the requested page. Return the
189 * number of disk-contiguous pages before and after the requested page,
190 * not including the requested page.
193 vnode_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
196 struct vnode *vp = object->handle;
204 * If no vp or vp is doomed or marked transparent to VM, we do not
207 if ((vp == NULL) || (vp->v_flag & VRECLAIMED))
211 * If filesystem no longer mounted or offset beyond end of file we do
214 loffset = IDX_TO_OFF(pindex);
216 if (vp->v_mount == NULL || loffset >= vp->v_filesize)
219 bsize = vp->v_mount->mnt_stat.f_iosize;
220 voff = loffset % bsize;
222 error = VOP_BMAP(vp, loffset - voff, NULL, &doffset, after, before);
225 if (doffset == NOOFFSET)
229 *before = (*before + voff) >> PAGE_SHIFT;
233 if (loffset + *after > vp->v_filesize)
234 *after = vp->v_filesize - loffset;
235 *after >>= PAGE_SHIFT;
243 * Lets the VM system know about a change in size for a file.
244 * We adjust our own internal size and flush any cached pages in
245 * the associated object that are affected by the size change.
247 * NOTE: This routine may be invoked as a result of a pager put
248 * operation (possibly at object termination time), so we must be careful.
250 * NOTE: vp->v_filesize is initialized to NOOFFSET (-1), be sure that
251 * we do not blow up on the case. nsize will always be >= 0, however.
254 vnode_pager_setsize(struct vnode *vp, vm_ooffset_t nsize)
256 vm_pindex_t nobjsize;
257 vm_pindex_t oobjsize;
258 vm_object_t object = vp->v_object;
264 * Hasn't changed size
266 if (nsize == vp->v_filesize)
270 * Has changed size. Adjust the VM object's size and v_filesize
271 * before we start scanning pages to prevent new pages from being
272 * allocated during the scan.
274 nobjsize = OFF_TO_IDX(nsize + PAGE_MASK);
275 oobjsize = object->size;
276 object->size = nobjsize;
279 * File has shrunk. Toss any cached pages beyond the new EOF.
281 if (nsize < vp->v_filesize) {
282 vp->v_filesize = nsize;
283 if (nobjsize < oobjsize) {
284 vm_object_page_remove(object, nobjsize, oobjsize,
288 * This gets rid of garbage at the end of a page that is now
289 * only partially backed by the vnode. Since we are setting
290 * the entire page valid & clean after we are done we have
291 * to be sure that the portion of the page within the file
292 * bounds is already valid. If it isn't then making it
293 * valid would create a corrupt block.
295 if (nsize & PAGE_MASK) {
299 m = vm_page_lookup(object, OFF_TO_IDX(nsize));
301 int base = (int)nsize & PAGE_MASK;
302 int size = PAGE_SIZE - base;
306 * Clear out partial-page garbage in case
307 * the page has been mapped.
309 sf = sf_buf_alloc(m, SFB_CPUPRIVATE);
310 kva = sf_buf_kva(sf);
311 bzero((caddr_t)kva + base, size);
315 * XXX work around SMP data integrity race
316 * by unmapping the page from user processes.
317 * The garbage we just cleared may be mapped
318 * to a user process running on another cpu
319 * and this code is not running through normal
320 * I/O channels which handle SMP issues for
321 * us, so unmap page to synchronize all cpus.
323 * XXX should vm_pager_unmap_page() have
326 vm_page_protect(m, VM_PROT_NONE);
329 * Clear out partial-page dirty bits. This
330 * has the side effect of setting the valid
331 * bits, but that is ok. There are a bunch
332 * of places in the VM system where we expected
333 * m->dirty == VM_PAGE_BITS_ALL. The file EOF
334 * case is one of them. If the page is still
335 * partially dirty, make it fully dirty.
337 * note that we do not clear out the valid
338 * bits. This would prevent bogus_page
339 * replacement from working properly.
341 vm_page_set_validclean(m, base, size);
343 m->dirty = VM_PAGE_BITS_ALL;
347 vp->v_filesize = nsize;
352 vnode_pager_freepage(vm_page_t m)
358 * calculate the disk byte address of specified logical byte offset. The
359 * logical offset will be block-aligned. Return the number of contiguous
360 * pages that may be read from the underlying block device in *run. If
361 * *run is non-NULL, it will be set to a value of at least 1.
364 vnode_pager_addr(struct vnode *vp, off_t loffset, int *run)
375 if (vp->v_mount == NULL)
379 * Align loffset to a block boundary for the BMAP, then adjust the
380 * returned disk address appropriately.
382 bsize = vp->v_mount->mnt_stat.f_iosize;
383 voff = loffset % bsize;
386 * Map the block, adjust the disk offset so it represents the
387 * passed loffset rather then the block containing loffset.
389 error = VOP_BMAP(vp, loffset - voff, &rtvp, &doffset, run, NULL);
390 if (error || doffset == NOOFFSET) {
396 * When calculating *run, which is the number of pages
397 * worth of data which can be read linearly from disk,
398 * the minimum return value is 1 page.
401 *run = (*run - voff) >> PAGE_SHIFT;
411 * interrupt routine for I/O completion
414 vnode_pager_iodone(struct bio *bio)
416 struct buf *bp = bio->bio_buf;
418 bp->b_cmd = BUF_CMD_DONE;
423 * small block file system vnode pager input
426 vnode_pager_input_smlfs(vm_object_t object, vm_page_t m)
429 struct vnode *dp, *vp;
438 if (vp->v_mount == NULL)
441 bsize = vp->v_mount->mnt_stat.f_iosize;
444 VOP_BMAP(vp, (off_t)0, &dp, NULL, NULL, NULL);
446 sf = sf_buf_alloc(m, 0);
447 kva = sf_buf_kva(sf);
449 for (i = 0; i < PAGE_SIZE / bsize; i++) {
452 if (vm_page_bits(i * bsize, bsize) & m->valid)
455 loffset = IDX_TO_OFF(m->pindex) + i * bsize;
456 if (loffset >= vp->v_filesize) {
459 doffset = vnode_pager_addr(vp, loffset, NULL);
461 if (doffset != NOOFFSET) {
462 bp = getpbuf(&vnode_pbuf_freecnt);
464 /* build a minimal buffer header */
465 bp->b_data = (caddr_t) kva + i * bsize;
466 bp->b_bio1.bio_done = vnode_pager_iodone;
467 bp->b_bio1.bio_offset = doffset;
468 bp->b_bcount = bsize;
469 bp->b_runningbufspace = bsize;
470 runningbufspace += bp->b_runningbufspace;
471 bp->b_cmd = BUF_CMD_READ;
474 vn_strategy(dp, &bp->b_bio1);
476 /* we definitely need to be at splvm here */
479 while (bp->b_cmd != BUF_CMD_DONE)
480 tsleep(bp, 0, "vnsrd", 0);
482 if ((bp->b_flags & B_ERROR) != 0)
486 * free the buffer header back to the swap buffer pool
488 relpbuf(bp, &vnode_pbuf_freecnt);
492 vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize);
494 vm_page_set_validclean(m, (i * bsize) & PAGE_MASK, bsize);
495 bzero((caddr_t) kva + i * bsize, bsize);
499 pmap_clear_modify(m);
500 vm_page_flag_clear(m, PG_ZERO);
502 return VM_PAGER_ERROR;
510 * old style vnode pager output routine
513 vnode_pager_input_old(vm_object_t object, vm_page_t m)
527 * Return failure if beyond current EOF
529 if (IDX_TO_OFF(m->pindex) >= vp->v_filesize) {
533 if (IDX_TO_OFF(m->pindex) + size > vp->v_filesize)
534 size = vp->v_filesize - IDX_TO_OFF(m->pindex);
537 * Allocate a kernel virtual address and initialize so that
538 * we can use VOP_READ/WRITE routines.
540 sf = sf_buf_alloc(m, 0);
541 kva = sf_buf_kva(sf);
543 aiov.iov_base = (caddr_t) kva;
545 auio.uio_iov = &aiov;
547 auio.uio_offset = IDX_TO_OFF(m->pindex);
548 auio.uio_segflg = UIO_SYSSPACE;
549 auio.uio_rw = UIO_READ;
550 auio.uio_resid = size;
551 auio.uio_td = curthread;
553 error = VOP_READ(((struct vnode *)object->handle),
554 &auio, 0, proc0.p_ucred);
556 int count = size - auio.uio_resid;
560 else if (count != PAGE_SIZE)
561 bzero((caddr_t) kva + count, PAGE_SIZE - count);
565 pmap_clear_modify(m);
567 vm_page_flag_clear(m, PG_ZERO);
569 m->valid = VM_PAGE_BITS_ALL;
570 return error ? VM_PAGER_ERROR : VM_PAGER_OK;
574 * generic vnode pager input routine
578 * EOPNOTSUPP is no longer legal. For local media VFS's that do not
579 * implement their own VOP_GETPAGES, their VOP_GETPAGES should call to
580 * vnode_pager_generic_getpages() to implement the previous behaviour.
582 * All other FS's should use the bypass to get to the local media
583 * backing vp's VOP_GETPAGES.
586 vnode_pager_getpages(vm_object_t object, vm_page_t *m, int count, int reqpage)
590 int bytes = count * PAGE_SIZE;
594 * XXX temporary diagnostic message to help track stale FS code,
595 * Returning EOPNOTSUPP from here may make things unhappy.
597 rtval = VOP_GETPAGES(vp, m, bytes, reqpage, 0);
598 if (rtval == EOPNOTSUPP) {
599 kprintf("vnode_pager: *** WARNING *** stale FS getpages\n");
600 rtval = vnode_pager_generic_getpages( vp, m, bytes, reqpage);
607 * This is now called from local media FS's to operate against their
608 * own vnodes if they fail to implement VOP_GETPAGES.
611 vnode_pager_generic_getpages(struct vnode *vp, vm_page_t *m, int bytecount,
616 off_t foff, tfoff, nextoff;
617 int i, size, bsize, first;
626 object = vp->v_object;
627 count = bytecount / PAGE_SIZE;
629 if (vp->v_mount == NULL)
632 bsize = vp->v_mount->mnt_stat.f_iosize;
634 /* get the UNDERLYING device for the file with VOP_BMAP() */
637 * originally, we did not check for an error return value -- assuming
638 * an fs always has a bmap entry point -- that assumption is wrong!!!
640 foff = IDX_TO_OFF(m[reqpage]->pindex);
643 * if we can't bmap, use old VOP code
645 if (VOP_BMAP(vp, (off_t)0, &dp, NULL, NULL, NULL)) {
646 for (i = 0; i < count; i++) {
648 vnode_pager_freepage(m[i]);
651 mycpu->gd_cnt.v_vnodein++;
652 mycpu->gd_cnt.v_vnodepgsin++;
653 return vnode_pager_input_old(object, m[reqpage]);
656 * if the blocksize is smaller than a page size, then use
657 * special small filesystem code. NFS sometimes has a small
658 * blocksize, but it can handle large reads itself.
660 } else if ((PAGE_SIZE / bsize) > 1 &&
661 (vp->v_mount->mnt_stat.f_type != nfs_mount_type)) {
662 for (i = 0; i < count; i++) {
664 vnode_pager_freepage(m[i]);
667 mycpu->gd_cnt.v_vnodein++;
668 mycpu->gd_cnt.v_vnodepgsin++;
669 return vnode_pager_input_smlfs(object, m[reqpage]);
673 * If we have a completely valid page available to us, we can
674 * clean up and return. Otherwise we have to re-read the
677 * Note that this does not work with NFS, so NFS has its own
678 * getpages routine. The problem is that NFS can have partially
679 * valid pages associated with the buffer cache due to the piecemeal
680 * write support. If we were to fall through and re-read the media
681 * as we do here, dirty data could be lost.
684 if (m[reqpage]->valid == VM_PAGE_BITS_ALL) {
685 for (i = 0; i < count; i++) {
687 vnode_pager_freepage(m[i]);
691 m[reqpage]->valid = 0;
694 * here on direct device I/O
699 * calculate the run that includes the required page
701 for(first = 0, i = 0; i < count; i = runend) {
702 firstaddr = vnode_pager_addr(vp, IDX_TO_OFF(m[i]->pindex),
704 if (firstaddr == -1) {
705 if (i == reqpage && foff < vp->v_filesize) {
706 /* XXX no %qd in kernel. */
707 panic("vnode_pager_getpages: unexpected missing page: firstaddr: %012llx, foff: 0x%012llx, v_filesize: 0x%012llx",
708 firstaddr, foff, vp->v_filesize);
710 vnode_pager_freepage(m[i]);
716 if (runend <= reqpage) {
718 for (j = i; j < runend; j++) {
719 vnode_pager_freepage(m[j]);
722 if (runpg < (count - first)) {
723 for (i = first + runpg; i < count; i++)
724 vnode_pager_freepage(m[i]);
725 count = first + runpg;
733 * the first and last page have been calculated now, move input pages
734 * to be zero based...
737 for (i = first; i < count; i++) {
745 * calculate the file virtual address for the transfer
747 foff = IDX_TO_OFF(m[0]->pindex);
750 * calculate the size of the transfer
752 size = count * PAGE_SIZE;
753 if ((foff + size) > vp->v_filesize)
754 size = vp->v_filesize - foff;
757 * round up physical size for real devices.
759 if (dp->v_type == VBLK || dp->v_type == VCHR) {
760 int secmask = dp->v_rdev->si_bsize_phys - 1;
761 KASSERT(secmask < PAGE_SIZE, ("vnode_pager_generic_getpages: sector size %d too large\n", secmask + 1));
762 size = (size + secmask) & ~secmask;
765 bp = getpbuf(&vnode_pbuf_freecnt);
766 kva = (vm_offset_t) bp->b_data;
769 * and map the pages to be read into the kva
771 pmap_qenter(kva, m, count);
773 /* build a minimal buffer header */
774 bp->b_bio1.bio_done = vnode_pager_iodone;
775 bp->b_bio1.bio_offset = firstaddr;
777 bp->b_runningbufspace = size;
778 runningbufspace += bp->b_runningbufspace;
779 bp->b_cmd = BUF_CMD_READ;
781 mycpu->gd_cnt.v_vnodein++;
782 mycpu->gd_cnt.v_vnodepgsin += count;
785 vn_strategy(dp, &bp->b_bio1);
788 /* we definitely need to be at splvm here */
790 while (bp->b_cmd != BUF_CMD_DONE)
791 tsleep(bp, 0, "vnread", 0);
793 if ((bp->b_flags & B_ERROR) != 0)
797 if (size != count * PAGE_SIZE)
798 bzero((caddr_t) kva + size, PAGE_SIZE * count - size);
800 pmap_qremove(kva, count);
803 * free the buffer header back to the swap buffer pool
805 relpbuf(bp, &vnode_pbuf_freecnt);
807 for (i = 0, tfoff = foff; i < count; i++, tfoff = nextoff) {
810 nextoff = tfoff + PAGE_SIZE;
813 if (nextoff <= vp->v_filesize) {
815 * Read filled up entire page.
817 mt->valid = VM_PAGE_BITS_ALL;
818 vm_page_undirty(mt); /* should be an assert? XXX */
819 pmap_clear_modify(mt);
822 * Read did not fill up entire page. Since this
823 * is getpages, the page may be mapped, so we have
824 * to zero the invalid portions of the page even
825 * though we aren't setting them valid.
827 * Currently we do not set the entire page valid,
828 * we just try to clear the piece that we couldn't
831 vm_page_set_validclean(mt, 0, vp->v_filesize - tfoff);
832 /* handled by vm_fault now */
833 /* vm_page_zero_invalid(mt, FALSE); */
836 vm_page_flag_clear(mt, PG_ZERO);
840 * whether or not to leave the page activated is up in
841 * the air, but we should put the page on a page queue
842 * somewhere. (it already is in the object). Result:
843 * It appears that empirical results show that
844 * deactivating pages is best.
848 * just in case someone was asking for this page we
849 * now tell them that it is ok to use
852 if (mt->flags & PG_WANTED)
853 vm_page_activate(mt);
855 vm_page_deactivate(mt);
858 vnode_pager_freepage(mt);
863 kprintf("vnode_pager_getpages: I/O read error\n");
865 return (error ? VM_PAGER_ERROR : VM_PAGER_OK);
869 * EOPNOTSUPP is no longer legal. For local media VFS's that do not
870 * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to
871 * vnode_pager_generic_putpages() to implement the previous behaviour.
873 * All other FS's should use the bypass to get to the local media
874 * backing vp's VOP_PUTPAGES.
877 vnode_pager_putpages(vm_object_t object, vm_page_t *m, int count,
878 boolean_t sync, int *rtvals)
882 int bytes = count * PAGE_SIZE;
885 * Force synchronous operation if we are extremely low on memory
886 * to prevent a low-memory deadlock. VOP operations often need to
887 * allocate more memory to initiate the I/O ( i.e. do a BMAP
888 * operation ). The swapper handles the case by limiting the amount
889 * of asynchronous I/O, but that sort of solution doesn't scale well
890 * for the vnode pager without a lot of work.
892 * Also, the backing vnode's iodone routine may not wake the pageout
893 * daemon up. This should be probably be addressed XXX.
896 if ((vmstats.v_free_count + vmstats.v_cache_count) < vmstats.v_pageout_free_min)
900 * Call device-specific putpages function
904 rtval = VOP_PUTPAGES(vp, m, bytes, sync, rtvals, 0);
905 if (rtval == EOPNOTSUPP) {
906 kprintf("vnode_pager: *** WARNING *** stale FS putpages\n");
907 rtval = vnode_pager_generic_putpages( vp, m, bytes, sync, rtvals);
913 * This is now called from local media FS's to operate against their
914 * own vnodes if they fail to implement VOP_PUTPAGES.
916 * This is typically called indirectly via the pageout daemon and
917 * clustering has already typically occured, so in general we ask the
918 * underlying filesystem to write the data out asynchronously rather
922 vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *m, int bytecount,
923 int flags, int *rtvals)
930 vm_ooffset_t poffset;
936 object = vp->v_object;
937 count = bytecount / PAGE_SIZE;
939 for (i = 0; i < count; i++)
940 rtvals[i] = VM_PAGER_AGAIN;
942 if ((int) m[0]->pindex < 0) {
943 kprintf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%x)\n",
944 (long)m[0]->pindex, m[0]->dirty);
945 rtvals[0] = VM_PAGER_BAD;
949 maxsize = count * PAGE_SIZE;
952 poffset = IDX_TO_OFF(m[0]->pindex);
955 * If the page-aligned write is larger then the actual file we
956 * have to invalidate pages occuring beyond the file EOF. However,
957 * there is an edge case where a file may not be page-aligned where
958 * the last page is partially invalid. In this case the filesystem
959 * may not properly clear the dirty bits for the entire page (which
960 * could be VM_PAGE_BITS_ALL due to the page having been mmap()d).
961 * With the page locked we are free to fix-up the dirty bits here.
963 * We do not under any circumstances truncate the valid bits, as
964 * this will screw up bogus page replacement.
966 if (maxsize + poffset > vp->v_filesize) {
967 if (vp->v_filesize > poffset) {
970 maxsize = vp->v_filesize - poffset;
971 ncount = btoc(maxsize);
972 if ((pgoff = (int)maxsize & PAGE_MASK) != 0) {
973 vm_page_clear_dirty(m[ncount - 1], pgoff,
980 if (ncount < count) {
981 for (i = ncount; i < count; i++) {
982 rtvals[i] = VM_PAGER_BAD;
988 * pageouts are already clustered, use IO_ASYNC to force a bawrite()
989 * rather then a bdwrite() to prevent paging I/O from saturating
990 * the buffer cache. Dummy-up the sequential heuristic to cause
991 * large ranges to cluster. If neither IO_SYNC or IO_ASYNC is set,
992 * the system decides how to cluster.
995 if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL))
997 else if ((flags & VM_PAGER_CLUSTER_OK) == 0)
999 ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0;
1000 ioflags |= IO_SEQMAX << IO_SEQSHIFT;
1002 aiov.iov_base = (caddr_t) 0;
1003 aiov.iov_len = maxsize;
1004 auio.uio_iov = &aiov;
1005 auio.uio_iovcnt = 1;
1006 auio.uio_offset = poffset;
1007 auio.uio_segflg = UIO_NOCOPY;
1008 auio.uio_rw = UIO_WRITE;
1009 auio.uio_resid = maxsize;
1011 error = VOP_WRITE(vp, &auio, ioflags, proc0.p_ucred);
1012 mycpu->gd_cnt.v_vnodeout++;
1013 mycpu->gd_cnt.v_vnodepgsout += ncount;
1016 krateprintf(&vbadrate,
1017 "vnode_pager_putpages: I/O error %d\n", error);
1019 if (auio.uio_resid) {
1020 krateprintf(&vresrate,
1021 "vnode_pager_putpages: residual I/O %d at %lu\n",
1022 auio.uio_resid, (u_long)m[0]->pindex);
1024 for (i = 0; i < ncount; i++) {
1025 rtvals[i] = VM_PAGER_OK;
1031 vnode_pager_lock(vm_object_t object)
1033 struct thread *td = curthread; /* XXX */
1036 for (; object != NULL; object = object->backing_object) {
1037 if (object->type != OBJT_VNODE)
1039 if (object->flags & OBJ_DEAD)
1043 struct vnode *vp = object->handle;
1044 error = vget(vp, LK_SHARED | LK_RETRY | LK_CANRECURSE);
1046 if (object->handle != vp) {
1052 if ((object->flags & OBJ_DEAD) ||
1053 (object->type != OBJT_VNODE)) {
1056 kprintf("vnode_pager_lock: vp %p error %d lockstatus %d, retrying\n", vp, error, lockstatus(&vp->v_lock, td));
1057 tsleep(object->handle, 0, "vnpgrl", hz);