gdb - Local mods (compile)
[dragonfly.git] / contrib / gdb-7 / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2    process.
3
4    Copyright (C) 1986-2015 Free Software Foundation, Inc.
5
6    This file is part of GDB.
7
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17
18    You should have received a copy of the GNU General Public License
19    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdb_wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "cli/cli-script.h"
32 #include "target.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include <signal.h>
38 #include "inf-loop.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "observer.h"
42 #include "language.h"
43 #include "solib.h"
44 #include "main.h"
45 #include "dictionary.h"
46 #include "block.h"
47 #include "mi/mi-common.h"
48 #include "event-top.h"
49 #include "record.h"
50 #include "record-full.h"
51 #include "inline-frame.h"
52 #include "jit.h"
53 #include "tracepoint.h"
54 #include "continuations.h"
55 #include "interps.h"
56 #include "skip.h"
57 #include "probe.h"
58 #include "objfiles.h"
59 #include "completer.h"
60 #include "target-descriptions.h"
61 #include "target-dcache.h"
62 #include "terminal.h"
63 #include "solist.h"
64
65 /* Prototypes for local functions */
66
67 static void signals_info (char *, int);
68
69 static void handle_command (char *, int);
70
71 static void sig_print_info (enum gdb_signal);
72
73 static void sig_print_header (void);
74
75 static void resume_cleanups (void *);
76
77 static int hook_stop_stub (void *);
78
79 static int restore_selected_frame (void *);
80
81 static int follow_fork (void);
82
83 static int follow_fork_inferior (int follow_child, int detach_fork);
84
85 static void follow_inferior_reset_breakpoints (void);
86
87 static void set_schedlock_func (char *args, int from_tty,
88                                 struct cmd_list_element *c);
89
90 static int currently_stepping (struct thread_info *tp);
91
92 void _initialize_infrun (void);
93
94 void nullify_last_target_wait_ptid (void);
95
96 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
97
98 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
99
100 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
101
102 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
103
104 /* When set, stop the 'step' command if we enter a function which has
105    no line number information.  The normal behavior is that we step
106    over such function.  */
107 int step_stop_if_no_debug = 0;
108 static void
109 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
110                             struct cmd_list_element *c, const char *value)
111 {
112   fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
113 }
114
115 /* In asynchronous mode, but simulating synchronous execution.  */
116
117 int sync_execution = 0;
118
119 /* proceed and normal_stop use this to notify the user when the
120    inferior stopped in a different thread than it had been running
121    in.  */
122
123 static ptid_t previous_inferior_ptid;
124
125 /* If set (default for legacy reasons), when following a fork, GDB
126    will detach from one of the fork branches, child or parent.
127    Exactly which branch is detached depends on 'set follow-fork-mode'
128    setting.  */
129
130 static int detach_fork = 1;
131
132 int debug_displaced = 0;
133 static void
134 show_debug_displaced (struct ui_file *file, int from_tty,
135                       struct cmd_list_element *c, const char *value)
136 {
137   fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
138 }
139
140 unsigned int debug_infrun = 0;
141 static void
142 show_debug_infrun (struct ui_file *file, int from_tty,
143                    struct cmd_list_element *c, const char *value)
144 {
145   fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
146 }
147
148
149 /* Support for disabling address space randomization.  */
150
151 int disable_randomization = 1;
152
153 static void
154 show_disable_randomization (struct ui_file *file, int from_tty,
155                             struct cmd_list_element *c, const char *value)
156 {
157   if (target_supports_disable_randomization ())
158     fprintf_filtered (file,
159                       _("Disabling randomization of debuggee's "
160                         "virtual address space is %s.\n"),
161                       value);
162   else
163     fputs_filtered (_("Disabling randomization of debuggee's "
164                       "virtual address space is unsupported on\n"
165                       "this platform.\n"), file);
166 }
167
168 static void
169 set_disable_randomization (char *args, int from_tty,
170                            struct cmd_list_element *c)
171 {
172   if (!target_supports_disable_randomization ())
173     error (_("Disabling randomization of debuggee's "
174              "virtual address space is unsupported on\n"
175              "this platform."));
176 }
177
178 /* User interface for non-stop mode.  */
179
180 int non_stop = 0;
181 static int non_stop_1 = 0;
182
183 static void
184 set_non_stop (char *args, int from_tty,
185               struct cmd_list_element *c)
186 {
187   if (target_has_execution)
188     {
189       non_stop_1 = non_stop;
190       error (_("Cannot change this setting while the inferior is running."));
191     }
192
193   non_stop = non_stop_1;
194 }
195
196 static void
197 show_non_stop (struct ui_file *file, int from_tty,
198                struct cmd_list_element *c, const char *value)
199 {
200   fprintf_filtered (file,
201                     _("Controlling the inferior in non-stop mode is %s.\n"),
202                     value);
203 }
204
205 /* "Observer mode" is somewhat like a more extreme version of
206    non-stop, in which all GDB operations that might affect the
207    target's execution have been disabled.  */
208
209 int observer_mode = 0;
210 static int observer_mode_1 = 0;
211
212 static void
213 set_observer_mode (char *args, int from_tty,
214                    struct cmd_list_element *c)
215 {
216   if (target_has_execution)
217     {
218       observer_mode_1 = observer_mode;
219       error (_("Cannot change this setting while the inferior is running."));
220     }
221
222   observer_mode = observer_mode_1;
223
224   may_write_registers = !observer_mode;
225   may_write_memory = !observer_mode;
226   may_insert_breakpoints = !observer_mode;
227   may_insert_tracepoints = !observer_mode;
228   /* We can insert fast tracepoints in or out of observer mode,
229      but enable them if we're going into this mode.  */
230   if (observer_mode)
231     may_insert_fast_tracepoints = 1;
232   may_stop = !observer_mode;
233   update_target_permissions ();
234
235   /* Going *into* observer mode we must force non-stop, then
236      going out we leave it that way.  */
237   if (observer_mode)
238     {
239       pagination_enabled = 0;
240       non_stop = non_stop_1 = 1;
241     }
242
243   if (from_tty)
244     printf_filtered (_("Observer mode is now %s.\n"),
245                      (observer_mode ? "on" : "off"));
246 }
247
248 static void
249 show_observer_mode (struct ui_file *file, int from_tty,
250                     struct cmd_list_element *c, const char *value)
251 {
252   fprintf_filtered (file, _("Observer mode is %s.\n"), value);
253 }
254
255 /* This updates the value of observer mode based on changes in
256    permissions.  Note that we are deliberately ignoring the values of
257    may-write-registers and may-write-memory, since the user may have
258    reason to enable these during a session, for instance to turn on a
259    debugging-related global.  */
260
261 void
262 update_observer_mode (void)
263 {
264   int newval;
265
266   newval = (!may_insert_breakpoints
267             && !may_insert_tracepoints
268             && may_insert_fast_tracepoints
269             && !may_stop
270             && non_stop);
271
272   /* Let the user know if things change.  */
273   if (newval != observer_mode)
274     printf_filtered (_("Observer mode is now %s.\n"),
275                      (newval ? "on" : "off"));
276
277   observer_mode = observer_mode_1 = newval;
278 }
279
280 /* Tables of how to react to signals; the user sets them.  */
281
282 static unsigned char *signal_stop;
283 static unsigned char *signal_print;
284 static unsigned char *signal_program;
285
286 /* Table of signals that are registered with "catch signal".  A
287    non-zero entry indicates that the signal is caught by some "catch
288    signal" command.  This has size GDB_SIGNAL_LAST, to accommodate all
289    signals.  */
290 static unsigned char *signal_catch;
291
292 /* Table of signals that the target may silently handle.
293    This is automatically determined from the flags above,
294    and simply cached here.  */
295 static unsigned char *signal_pass;
296
297 #define SET_SIGS(nsigs,sigs,flags) \
298   do { \
299     int signum = (nsigs); \
300     while (signum-- > 0) \
301       if ((sigs)[signum]) \
302         (flags)[signum] = 1; \
303   } while (0)
304
305 #define UNSET_SIGS(nsigs,sigs,flags) \
306   do { \
307     int signum = (nsigs); \
308     while (signum-- > 0) \
309       if ((sigs)[signum]) \
310         (flags)[signum] = 0; \
311   } while (0)
312
313 /* Update the target's copy of SIGNAL_PROGRAM.  The sole purpose of
314    this function is to avoid exporting `signal_program'.  */
315
316 void
317 update_signals_program_target (void)
318 {
319   target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
320 }
321
322 /* Value to pass to target_resume() to cause all threads to resume.  */
323
324 #define RESUME_ALL minus_one_ptid
325
326 /* Command list pointer for the "stop" placeholder.  */
327
328 static struct cmd_list_element *stop_command;
329
330 /* Nonzero if we want to give control to the user when we're notified
331    of shared library events by the dynamic linker.  */
332 int stop_on_solib_events;
333
334 /* Enable or disable optional shared library event breakpoints
335    as appropriate when the above flag is changed.  */
336
337 static void
338 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
339 {
340   update_solib_breakpoints ();
341 }
342
343 static void
344 show_stop_on_solib_events (struct ui_file *file, int from_tty,
345                            struct cmd_list_element *c, const char *value)
346 {
347   fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
348                     value);
349 }
350
351 /* Nonzero means expecting a trace trap
352    and should stop the inferior and return silently when it happens.  */
353
354 int stop_after_trap;
355
356 /* Nonzero after stop if current stack frame should be printed.  */
357
358 static int stop_print_frame;
359
360 /* This is a cached copy of the pid/waitstatus of the last event
361    returned by target_wait()/deprecated_target_wait_hook().  This
362    information is returned by get_last_target_status().  */
363 static ptid_t target_last_wait_ptid;
364 static struct target_waitstatus target_last_waitstatus;
365
366 static void context_switch (ptid_t ptid);
367
368 void init_thread_stepping_state (struct thread_info *tss);
369
370 static const char follow_fork_mode_child[] = "child";
371 static const char follow_fork_mode_parent[] = "parent";
372
373 static const char *const follow_fork_mode_kind_names[] = {
374   follow_fork_mode_child,
375   follow_fork_mode_parent,
376   NULL
377 };
378
379 static const char *follow_fork_mode_string = follow_fork_mode_parent;
380 static void
381 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
382                               struct cmd_list_element *c, const char *value)
383 {
384   fprintf_filtered (file,
385                     _("Debugger response to a program "
386                       "call of fork or vfork is \"%s\".\n"),
387                     value);
388 }
389 \f
390
391 /* Handle changes to the inferior list based on the type of fork,
392    which process is being followed, and whether the other process
393    should be detached.  On entry inferior_ptid must be the ptid of
394    the fork parent.  At return inferior_ptid is the ptid of the
395    followed inferior.  */
396
397 static int
398 follow_fork_inferior (int follow_child, int detach_fork)
399 {
400   int has_vforked;
401   ptid_t parent_ptid, child_ptid;
402
403   has_vforked = (inferior_thread ()->pending_follow.kind
404                  == TARGET_WAITKIND_VFORKED);
405   parent_ptid = inferior_ptid;
406   child_ptid = inferior_thread ()->pending_follow.value.related_pid;
407
408   if (has_vforked
409       && !non_stop /* Non-stop always resumes both branches.  */
410       && (!target_is_async_p () || sync_execution)
411       && !(follow_child || detach_fork || sched_multi))
412     {
413       /* The parent stays blocked inside the vfork syscall until the
414          child execs or exits.  If we don't let the child run, then
415          the parent stays blocked.  If we're telling the parent to run
416          in the foreground, the user will not be able to ctrl-c to get
417          back the terminal, effectively hanging the debug session.  */
418       fprintf_filtered (gdb_stderr, _("\
419 Can not resume the parent process over vfork in the foreground while\n\
420 holding the child stopped.  Try \"set detach-on-fork\" or \
421 \"set schedule-multiple\".\n"));
422       /* FIXME output string > 80 columns.  */
423       return 1;
424     }
425
426   if (!follow_child)
427     {
428       /* Detach new forked process?  */
429       if (detach_fork)
430         {
431           struct cleanup *old_chain;
432
433           /* Before detaching from the child, remove all breakpoints
434              from it.  If we forked, then this has already been taken
435              care of by infrun.c.  If we vforked however, any
436              breakpoint inserted in the parent is visible in the
437              child, even those added while stopped in a vfork
438              catchpoint.  This will remove the breakpoints from the
439              parent also, but they'll be reinserted below.  */
440           if (has_vforked)
441             {
442               /* Keep breakpoints list in sync.  */
443               remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
444             }
445
446           if (info_verbose || debug_infrun)
447             {
448               /* Ensure that we have a process ptid.  */
449               ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
450
451               target_terminal_ours_for_output ();
452               fprintf_filtered (gdb_stdlog,
453                                 _("Detaching after %s from child %s.\n"),
454                                 has_vforked ? "vfork" : "fork",
455                                 target_pid_to_str (process_ptid));
456             }
457         }
458       else
459         {
460           struct inferior *parent_inf, *child_inf;
461           struct cleanup *old_chain;
462
463           /* Add process to GDB's tables.  */
464           child_inf = add_inferior (ptid_get_pid (child_ptid));
465
466           parent_inf = current_inferior ();
467           child_inf->attach_flag = parent_inf->attach_flag;
468           copy_terminal_info (child_inf, parent_inf);
469           child_inf->gdbarch = parent_inf->gdbarch;
470           copy_inferior_target_desc_info (child_inf, parent_inf);
471
472           old_chain = save_inferior_ptid ();
473           save_current_program_space ();
474
475           inferior_ptid = child_ptid;
476           add_thread (inferior_ptid);
477           child_inf->symfile_flags = SYMFILE_NO_READ;
478
479           /* If this is a vfork child, then the address-space is
480              shared with the parent.  */
481           if (has_vforked)
482             {
483               child_inf->pspace = parent_inf->pspace;
484               child_inf->aspace = parent_inf->aspace;
485
486               /* The parent will be frozen until the child is done
487                  with the shared region.  Keep track of the
488                  parent.  */
489               child_inf->vfork_parent = parent_inf;
490               child_inf->pending_detach = 0;
491               parent_inf->vfork_child = child_inf;
492               parent_inf->pending_detach = 0;
493             }
494           else
495             {
496               child_inf->aspace = new_address_space ();
497               child_inf->pspace = add_program_space (child_inf->aspace);
498               child_inf->removable = 1;
499               set_current_program_space (child_inf->pspace);
500               clone_program_space (child_inf->pspace, parent_inf->pspace);
501
502               /* Let the shared library layer (e.g., solib-svr4) learn
503                  about this new process, relocate the cloned exec, pull
504                  in shared libraries, and install the solib event
505                  breakpoint.  If a "cloned-VM" event was propagated
506                  better throughout the core, this wouldn't be
507                  required.  */
508               solib_create_inferior_hook (0);
509             }
510
511           do_cleanups (old_chain);
512         }
513
514       if (has_vforked)
515         {
516           struct inferior *parent_inf;
517
518           parent_inf = current_inferior ();
519
520           /* If we detached from the child, then we have to be careful
521              to not insert breakpoints in the parent until the child
522              is done with the shared memory region.  However, if we're
523              staying attached to the child, then we can and should
524              insert breakpoints, so that we can debug it.  A
525              subsequent child exec or exit is enough to know when does
526              the child stops using the parent's address space.  */
527           parent_inf->waiting_for_vfork_done = detach_fork;
528           parent_inf->pspace->breakpoints_not_allowed = detach_fork;
529         }
530     }
531   else
532     {
533       /* Follow the child.  */
534       struct inferior *parent_inf, *child_inf;
535       struct program_space *parent_pspace;
536
537       if (info_verbose || debug_infrun)
538         {
539           target_terminal_ours_for_output ();
540           fprintf_filtered (gdb_stdlog,
541                             _("Attaching after %s %s to child %s.\n"),
542                             target_pid_to_str (parent_ptid),
543                             has_vforked ? "vfork" : "fork",
544                             target_pid_to_str (child_ptid));
545         }
546
547       /* Add the new inferior first, so that the target_detach below
548          doesn't unpush the target.  */
549
550       child_inf = add_inferior (ptid_get_pid (child_ptid));
551
552       parent_inf = current_inferior ();
553       child_inf->attach_flag = parent_inf->attach_flag;
554       copy_terminal_info (child_inf, parent_inf);
555       child_inf->gdbarch = parent_inf->gdbarch;
556       copy_inferior_target_desc_info (child_inf, parent_inf);
557
558       parent_pspace = parent_inf->pspace;
559
560       /* If we're vforking, we want to hold on to the parent until the
561          child exits or execs.  At child exec or exit time we can
562          remove the old breakpoints from the parent and detach or
563          resume debugging it.  Otherwise, detach the parent now; we'll
564          want to reuse it's program/address spaces, but we can't set
565          them to the child before removing breakpoints from the
566          parent, otherwise, the breakpoints module could decide to
567          remove breakpoints from the wrong process (since they'd be
568          assigned to the same address space).  */
569
570       if (has_vforked)
571         {
572           gdb_assert (child_inf->vfork_parent == NULL);
573           gdb_assert (parent_inf->vfork_child == NULL);
574           child_inf->vfork_parent = parent_inf;
575           child_inf->pending_detach = 0;
576           parent_inf->vfork_child = child_inf;
577           parent_inf->pending_detach = detach_fork;
578           parent_inf->waiting_for_vfork_done = 0;
579         }
580       else if (detach_fork)
581         {
582           if (info_verbose || debug_infrun)
583             {
584               /* Ensure that we have a process ptid.  */
585               ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
586
587               target_terminal_ours_for_output ();
588               fprintf_filtered (gdb_stdlog,
589                                 _("Detaching after fork from "
590                                   "child %s.\n"),
591                                 target_pid_to_str (process_ptid));
592             }
593
594           target_detach (NULL, 0);
595         }
596
597       /* Note that the detach above makes PARENT_INF dangling.  */
598
599       /* Add the child thread to the appropriate lists, and switch to
600          this new thread, before cloning the program space, and
601          informing the solib layer about this new process.  */
602
603       inferior_ptid = child_ptid;
604       add_thread (inferior_ptid);
605
606       /* If this is a vfork child, then the address-space is shared
607          with the parent.  If we detached from the parent, then we can
608          reuse the parent's program/address spaces.  */
609       if (has_vforked || detach_fork)
610         {
611           child_inf->pspace = parent_pspace;
612           child_inf->aspace = child_inf->pspace->aspace;
613         }
614       else
615         {
616           child_inf->aspace = new_address_space ();
617           child_inf->pspace = add_program_space (child_inf->aspace);
618           child_inf->removable = 1;
619           child_inf->symfile_flags = SYMFILE_NO_READ;
620           set_current_program_space (child_inf->pspace);
621           clone_program_space (child_inf->pspace, parent_pspace);
622
623           /* Let the shared library layer (e.g., solib-svr4) learn
624              about this new process, relocate the cloned exec, pull in
625              shared libraries, and install the solib event breakpoint.
626              If a "cloned-VM" event was propagated better throughout
627              the core, this wouldn't be required.  */
628           solib_create_inferior_hook (0);
629         }
630     }
631
632   return target_follow_fork (follow_child, detach_fork);
633 }
634
635 /* Tell the target to follow the fork we're stopped at.  Returns true
636    if the inferior should be resumed; false, if the target for some
637    reason decided it's best not to resume.  */
638
639 static int
640 follow_fork (void)
641 {
642   int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
643   int should_resume = 1;
644   struct thread_info *tp;
645
646   /* Copy user stepping state to the new inferior thread.  FIXME: the
647      followed fork child thread should have a copy of most of the
648      parent thread structure's run control related fields, not just these.
649      Initialized to avoid "may be used uninitialized" warnings from gcc.  */
650   struct breakpoint *step_resume_breakpoint = NULL;
651   struct breakpoint *exception_resume_breakpoint = NULL;
652   CORE_ADDR step_range_start = 0;
653   CORE_ADDR step_range_end = 0;
654   struct frame_id step_frame_id = { 0 };
655   struct interp *command_interp = NULL;
656
657   if (!non_stop)
658     {
659       ptid_t wait_ptid;
660       struct target_waitstatus wait_status;
661
662       /* Get the last target status returned by target_wait().  */
663       get_last_target_status (&wait_ptid, &wait_status);
664
665       /* If not stopped at a fork event, then there's nothing else to
666          do.  */
667       if (wait_status.kind != TARGET_WAITKIND_FORKED
668           && wait_status.kind != TARGET_WAITKIND_VFORKED)
669         return 1;
670
671       /* Check if we switched over from WAIT_PTID, since the event was
672          reported.  */
673       if (!ptid_equal (wait_ptid, minus_one_ptid)
674           && !ptid_equal (inferior_ptid, wait_ptid))
675         {
676           /* We did.  Switch back to WAIT_PTID thread, to tell the
677              target to follow it (in either direction).  We'll
678              afterwards refuse to resume, and inform the user what
679              happened.  */
680           switch_to_thread (wait_ptid);
681           should_resume = 0;
682         }
683     }
684
685   tp = inferior_thread ();
686
687   /* If there were any forks/vforks that were caught and are now to be
688      followed, then do so now.  */
689   switch (tp->pending_follow.kind)
690     {
691     case TARGET_WAITKIND_FORKED:
692     case TARGET_WAITKIND_VFORKED:
693       {
694         ptid_t parent, child;
695
696         /* If the user did a next/step, etc, over a fork call,
697            preserve the stepping state in the fork child.  */
698         if (follow_child && should_resume)
699           {
700             step_resume_breakpoint = clone_momentary_breakpoint
701                                          (tp->control.step_resume_breakpoint);
702             step_range_start = tp->control.step_range_start;
703             step_range_end = tp->control.step_range_end;
704             step_frame_id = tp->control.step_frame_id;
705             exception_resume_breakpoint
706               = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
707             command_interp = tp->control.command_interp;
708
709             /* For now, delete the parent's sr breakpoint, otherwise,
710                parent/child sr breakpoints are considered duplicates,
711                and the child version will not be installed.  Remove
712                this when the breakpoints module becomes aware of
713                inferiors and address spaces.  */
714             delete_step_resume_breakpoint (tp);
715             tp->control.step_range_start = 0;
716             tp->control.step_range_end = 0;
717             tp->control.step_frame_id = null_frame_id;
718             delete_exception_resume_breakpoint (tp);
719             tp->control.command_interp = NULL;
720           }
721
722         parent = inferior_ptid;
723         child = tp->pending_follow.value.related_pid;
724
725         /* Set up inferior(s) as specified by the caller, and tell the
726            target to do whatever is necessary to follow either parent
727            or child.  */
728         if (follow_fork_inferior (follow_child, detach_fork))
729           {
730             /* Target refused to follow, or there's some other reason
731                we shouldn't resume.  */
732             should_resume = 0;
733           }
734         else
735           {
736             /* This pending follow fork event is now handled, one way
737                or another.  The previous selected thread may be gone
738                from the lists by now, but if it is still around, need
739                to clear the pending follow request.  */
740             tp = find_thread_ptid (parent);
741             if (tp)
742               tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
743
744             /* This makes sure we don't try to apply the "Switched
745                over from WAIT_PID" logic above.  */
746             nullify_last_target_wait_ptid ();
747
748             /* If we followed the child, switch to it...  */
749             if (follow_child)
750               {
751                 switch_to_thread (child);
752
753                 /* ... and preserve the stepping state, in case the
754                    user was stepping over the fork call.  */
755                 if (should_resume)
756                   {
757                     tp = inferior_thread ();
758                     tp->control.step_resume_breakpoint
759                       = step_resume_breakpoint;
760                     tp->control.step_range_start = step_range_start;
761                     tp->control.step_range_end = step_range_end;
762                     tp->control.step_frame_id = step_frame_id;
763                     tp->control.exception_resume_breakpoint
764                       = exception_resume_breakpoint;
765                     tp->control.command_interp = command_interp;
766                   }
767                 else
768                   {
769                     /* If we get here, it was because we're trying to
770                        resume from a fork catchpoint, but, the user
771                        has switched threads away from the thread that
772                        forked.  In that case, the resume command
773                        issued is most likely not applicable to the
774                        child, so just warn, and refuse to resume.  */
775                     warning (_("Not resuming: switched threads "
776                                "before following fork child.\n"));
777                   }
778
779                 /* Reset breakpoints in the child as appropriate.  */
780                 follow_inferior_reset_breakpoints ();
781               }
782             else
783               switch_to_thread (parent);
784           }
785       }
786       break;
787     case TARGET_WAITKIND_SPURIOUS:
788       /* Nothing to follow.  */
789       break;
790     default:
791       internal_error (__FILE__, __LINE__,
792                       "Unexpected pending_follow.kind %d\n",
793                       tp->pending_follow.kind);
794       break;
795     }
796
797   return should_resume;
798 }
799
800 static void
801 follow_inferior_reset_breakpoints (void)
802 {
803   struct thread_info *tp = inferior_thread ();
804
805   /* Was there a step_resume breakpoint?  (There was if the user
806      did a "next" at the fork() call.)  If so, explicitly reset its
807      thread number.  Cloned step_resume breakpoints are disabled on
808      creation, so enable it here now that it is associated with the
809      correct thread.
810
811      step_resumes are a form of bp that are made to be per-thread.
812      Since we created the step_resume bp when the parent process
813      was being debugged, and now are switching to the child process,
814      from the breakpoint package's viewpoint, that's a switch of
815      "threads".  We must update the bp's notion of which thread
816      it is for, or it'll be ignored when it triggers.  */
817
818   if (tp->control.step_resume_breakpoint)
819     {
820       breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
821       tp->control.step_resume_breakpoint->loc->enabled = 1;
822     }
823
824   /* Treat exception_resume breakpoints like step_resume breakpoints.  */
825   if (tp->control.exception_resume_breakpoint)
826     {
827       breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
828       tp->control.exception_resume_breakpoint->loc->enabled = 1;
829     }
830
831   /* Reinsert all breakpoints in the child.  The user may have set
832      breakpoints after catching the fork, in which case those
833      were never set in the child, but only in the parent.  This makes
834      sure the inserted breakpoints match the breakpoint list.  */
835
836   breakpoint_re_set ();
837   insert_breakpoints ();
838 }
839
840 /* The child has exited or execed: resume threads of the parent the
841    user wanted to be executing.  */
842
843 static int
844 proceed_after_vfork_done (struct thread_info *thread,
845                           void *arg)
846 {
847   int pid = * (int *) arg;
848
849   if (ptid_get_pid (thread->ptid) == pid
850       && is_running (thread->ptid)
851       && !is_executing (thread->ptid)
852       && !thread->stop_requested
853       && thread->suspend.stop_signal == GDB_SIGNAL_0)
854     {
855       if (debug_infrun)
856         fprintf_unfiltered (gdb_stdlog,
857                             "infrun: resuming vfork parent thread %s\n",
858                             target_pid_to_str (thread->ptid));
859
860       switch_to_thread (thread->ptid);
861       clear_proceed_status (0);
862       proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
863     }
864
865   return 0;
866 }
867
868 /* Called whenever we notice an exec or exit event, to handle
869    detaching or resuming a vfork parent.  */
870
871 static void
872 handle_vfork_child_exec_or_exit (int exec)
873 {
874   struct inferior *inf = current_inferior ();
875
876   if (inf->vfork_parent)
877     {
878       int resume_parent = -1;
879
880       /* This exec or exit marks the end of the shared memory region
881          between the parent and the child.  If the user wanted to
882          detach from the parent, now is the time.  */
883
884       if (inf->vfork_parent->pending_detach)
885         {
886           struct thread_info *tp;
887           struct cleanup *old_chain;
888           struct program_space *pspace;
889           struct address_space *aspace;
890
891           /* follow-fork child, detach-on-fork on.  */
892
893           inf->vfork_parent->pending_detach = 0;
894
895           if (!exec)
896             {
897               /* If we're handling a child exit, then inferior_ptid
898                  points at the inferior's pid, not to a thread.  */
899               old_chain = save_inferior_ptid ();
900               save_current_program_space ();
901               save_current_inferior ();
902             }
903           else
904             old_chain = save_current_space_and_thread ();
905
906           /* We're letting loose of the parent.  */
907           tp = any_live_thread_of_process (inf->vfork_parent->pid);
908           switch_to_thread (tp->ptid);
909
910           /* We're about to detach from the parent, which implicitly
911              removes breakpoints from its address space.  There's a
912              catch here: we want to reuse the spaces for the child,
913              but, parent/child are still sharing the pspace at this
914              point, although the exec in reality makes the kernel give
915              the child a fresh set of new pages.  The problem here is
916              that the breakpoints module being unaware of this, would
917              likely chose the child process to write to the parent
918              address space.  Swapping the child temporarily away from
919              the spaces has the desired effect.  Yes, this is "sort
920              of" a hack.  */
921
922           pspace = inf->pspace;
923           aspace = inf->aspace;
924           inf->aspace = NULL;
925           inf->pspace = NULL;
926
927           if (debug_infrun || info_verbose)
928             {
929               target_terminal_ours_for_output ();
930
931               if (exec)
932                 {
933                   fprintf_filtered (gdb_stdlog,
934                                     _("Detaching vfork parent process "
935                                       "%d after child exec.\n"),
936                                     inf->vfork_parent->pid);
937                 }
938               else
939                 {
940                   fprintf_filtered (gdb_stdlog,
941                                     _("Detaching vfork parent process "
942                                       "%d after child exit.\n"),
943                                     inf->vfork_parent->pid);
944                 }
945             }
946
947           target_detach (NULL, 0);
948
949           /* Put it back.  */
950           inf->pspace = pspace;
951           inf->aspace = aspace;
952
953           do_cleanups (old_chain);
954         }
955       else if (exec)
956         {
957           /* We're staying attached to the parent, so, really give the
958              child a new address space.  */
959           inf->pspace = add_program_space (maybe_new_address_space ());
960           inf->aspace = inf->pspace->aspace;
961           inf->removable = 1;
962           set_current_program_space (inf->pspace);
963
964           resume_parent = inf->vfork_parent->pid;
965
966           /* Break the bonds.  */
967           inf->vfork_parent->vfork_child = NULL;
968         }
969       else
970         {
971           struct cleanup *old_chain;
972           struct program_space *pspace;
973
974           /* If this is a vfork child exiting, then the pspace and
975              aspaces were shared with the parent.  Since we're
976              reporting the process exit, we'll be mourning all that is
977              found in the address space, and switching to null_ptid,
978              preparing to start a new inferior.  But, since we don't
979              want to clobber the parent's address/program spaces, we
980              go ahead and create a new one for this exiting
981              inferior.  */
982
983           /* Switch to null_ptid, so that clone_program_space doesn't want
984              to read the selected frame of a dead process.  */
985           old_chain = save_inferior_ptid ();
986           inferior_ptid = null_ptid;
987
988           /* This inferior is dead, so avoid giving the breakpoints
989              module the option to write through to it (cloning a
990              program space resets breakpoints).  */
991           inf->aspace = NULL;
992           inf->pspace = NULL;
993           pspace = add_program_space (maybe_new_address_space ());
994           set_current_program_space (pspace);
995           inf->removable = 1;
996           inf->symfile_flags = SYMFILE_NO_READ;
997           clone_program_space (pspace, inf->vfork_parent->pspace);
998           inf->pspace = pspace;
999           inf->aspace = pspace->aspace;
1000
1001           /* Put back inferior_ptid.  We'll continue mourning this
1002              inferior.  */
1003           do_cleanups (old_chain);
1004
1005           resume_parent = inf->vfork_parent->pid;
1006           /* Break the bonds.  */
1007           inf->vfork_parent->vfork_child = NULL;
1008         }
1009
1010       inf->vfork_parent = NULL;
1011
1012       gdb_assert (current_program_space == inf->pspace);
1013
1014       if (non_stop && resume_parent != -1)
1015         {
1016           /* If the user wanted the parent to be running, let it go
1017              free now.  */
1018           struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1019
1020           if (debug_infrun)
1021             fprintf_unfiltered (gdb_stdlog,
1022                                 "infrun: resuming vfork parent process %d\n",
1023                                 resume_parent);
1024
1025           iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1026
1027           do_cleanups (old_chain);
1028         }
1029     }
1030 }
1031
1032 /* Enum strings for "set|show follow-exec-mode".  */
1033
1034 static const char follow_exec_mode_new[] = "new";
1035 static const char follow_exec_mode_same[] = "same";
1036 static const char *const follow_exec_mode_names[] =
1037 {
1038   follow_exec_mode_new,
1039   follow_exec_mode_same,
1040   NULL,
1041 };
1042
1043 static const char *follow_exec_mode_string = follow_exec_mode_same;
1044 static void
1045 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1046                               struct cmd_list_element *c, const char *value)
1047 {
1048   fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"),  value);
1049 }
1050
1051 /* EXECD_PATHNAME is assumed to be non-NULL.  */
1052
1053 static void
1054 follow_exec (ptid_t ptid, char *execd_pathname)
1055 {
1056   struct thread_info *th, *tmp;
1057   struct inferior *inf = current_inferior ();
1058   int pid = ptid_get_pid (ptid);
1059
1060   /* This is an exec event that we actually wish to pay attention to.
1061      Refresh our symbol table to the newly exec'd program, remove any
1062      momentary bp's, etc.
1063
1064      If there are breakpoints, they aren't really inserted now,
1065      since the exec() transformed our inferior into a fresh set
1066      of instructions.
1067
1068      We want to preserve symbolic breakpoints on the list, since
1069      we have hopes that they can be reset after the new a.out's
1070      symbol table is read.
1071
1072      However, any "raw" breakpoints must be removed from the list
1073      (e.g., the solib bp's), since their address is probably invalid
1074      now.
1075
1076      And, we DON'T want to call delete_breakpoints() here, since
1077      that may write the bp's "shadow contents" (the instruction
1078      value that was overwritten witha TRAP instruction).  Since
1079      we now have a new a.out, those shadow contents aren't valid.  */
1080
1081   mark_breakpoints_out ();
1082
1083   /* The target reports the exec event to the main thread, even if
1084      some other thread does the exec, and even if the main thread was
1085      stopped or already gone.  We may still have non-leader threads of
1086      the process on our list.  E.g., on targets that don't have thread
1087      exit events (like remote); or on native Linux in non-stop mode if
1088      there were only two threads in the inferior and the non-leader
1089      one is the one that execs (and nothing forces an update of the
1090      thread list up to here).  When debugging remotely, it's best to
1091      avoid extra traffic, when possible, so avoid syncing the thread
1092      list with the target, and instead go ahead and delete all threads
1093      of the process but one that reported the event.  Note this must
1094      be done before calling update_breakpoints_after_exec, as
1095      otherwise clearing the threads' resources would reference stale
1096      thread breakpoints -- it may have been one of these threads that
1097      stepped across the exec.  We could just clear their stepping
1098      states, but as long as we're iterating, might as well delete
1099      them.  Deleting them now rather than at the next user-visible
1100      stop provides a nicer sequence of events for user and MI
1101      notifications.  */
1102   ALL_THREADS_SAFE (th, tmp)
1103     if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1104       delete_thread (th->ptid);
1105
1106   /* We also need to clear any left over stale state for the
1107      leader/event thread.  E.g., if there was any step-resume
1108      breakpoint or similar, it's gone now.  We cannot truly
1109      step-to-next statement through an exec().  */
1110   th = inferior_thread ();
1111   th->control.step_resume_breakpoint = NULL;
1112   th->control.exception_resume_breakpoint = NULL;
1113   th->control.single_step_breakpoints = NULL;
1114   th->control.step_range_start = 0;
1115   th->control.step_range_end = 0;
1116
1117   /* The user may have had the main thread held stopped in the
1118      previous image (e.g., schedlock on, or non-stop).  Release
1119      it now.  */
1120   th->stop_requested = 0;
1121
1122   update_breakpoints_after_exec ();
1123
1124   /* What is this a.out's name?  */
1125   printf_unfiltered (_("%s is executing new program: %s\n"),
1126                      target_pid_to_str (inferior_ptid),
1127                      execd_pathname);
1128
1129   /* We've followed the inferior through an exec.  Therefore, the
1130      inferior has essentially been killed & reborn.  */
1131
1132   gdb_flush (gdb_stdout);
1133
1134   breakpoint_init_inferior (inf_execd);
1135
1136   if (*gdb_sysroot != '\0')
1137     {
1138       char *name = exec_file_find (execd_pathname, NULL);
1139
1140       execd_pathname = alloca (strlen (name) + 1);
1141       strcpy (execd_pathname, name);
1142       xfree (name);
1143     }
1144
1145   /* Reset the shared library package.  This ensures that we get a
1146      shlib event when the child reaches "_start", at which point the
1147      dld will have had a chance to initialize the child.  */
1148   /* Also, loading a symbol file below may trigger symbol lookups, and
1149      we don't want those to be satisfied by the libraries of the
1150      previous incarnation of this process.  */
1151   no_shared_libraries (NULL, 0);
1152
1153   if (follow_exec_mode_string == follow_exec_mode_new)
1154     {
1155       struct program_space *pspace;
1156
1157       /* The user wants to keep the old inferior and program spaces
1158          around.  Create a new fresh one, and switch to it.  */
1159
1160       inf = add_inferior (current_inferior ()->pid);
1161       pspace = add_program_space (maybe_new_address_space ());
1162       inf->pspace = pspace;
1163       inf->aspace = pspace->aspace;
1164
1165       exit_inferior_num_silent (current_inferior ()->num);
1166
1167       set_current_inferior (inf);
1168       set_current_program_space (pspace);
1169     }
1170   else
1171     {
1172       /* The old description may no longer be fit for the new image.
1173          E.g, a 64-bit process exec'ed a 32-bit process.  Clear the
1174          old description; we'll read a new one below.  No need to do
1175          this on "follow-exec-mode new", as the old inferior stays
1176          around (its description is later cleared/refetched on
1177          restart).  */
1178       target_clear_description ();
1179     }
1180
1181   gdb_assert (current_program_space == inf->pspace);
1182
1183   /* That a.out is now the one to use.  */
1184   exec_file_attach (execd_pathname, 0);
1185
1186   /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1187      (Position Independent Executable) main symbol file will get applied by
1188      solib_create_inferior_hook below.  breakpoint_re_set would fail to insert
1189      the breakpoints with the zero displacement.  */
1190
1191   symbol_file_add (execd_pathname,
1192                    (inf->symfile_flags
1193                     | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
1194                    NULL, 0);
1195
1196   if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1197     set_initial_language ();
1198
1199   /* If the target can specify a description, read it.  Must do this
1200      after flipping to the new executable (because the target supplied
1201      description must be compatible with the executable's
1202      architecture, and the old executable may e.g., be 32-bit, while
1203      the new one 64-bit), and before anything involving memory or
1204      registers.  */
1205   target_find_description ();
1206
1207   solib_create_inferior_hook (0);
1208
1209   jit_inferior_created_hook ();
1210
1211   breakpoint_re_set ();
1212
1213   /* Reinsert all breakpoints.  (Those which were symbolic have
1214      been reset to the proper address in the new a.out, thanks
1215      to symbol_file_command...).  */
1216   insert_breakpoints ();
1217
1218   /* The next resume of this inferior should bring it to the shlib
1219      startup breakpoints.  (If the user had also set bp's on
1220      "main" from the old (parent) process, then they'll auto-
1221      matically get reset there in the new process.).  */
1222 }
1223
1224 /* Info about an instruction that is being stepped over.  */
1225
1226 struct step_over_info
1227 {
1228   /* If we're stepping past a breakpoint, this is the address space
1229      and address of the instruction the breakpoint is set at.  We'll
1230      skip inserting all breakpoints here.  Valid iff ASPACE is
1231      non-NULL.  */
1232   struct address_space *aspace;
1233   CORE_ADDR address;
1234
1235   /* The instruction being stepped over triggers a nonsteppable
1236      watchpoint.  If true, we'll skip inserting watchpoints.  */
1237   int nonsteppable_watchpoint_p;
1238 };
1239
1240 /* The step-over info of the location that is being stepped over.
1241
1242    Note that with async/breakpoint always-inserted mode, a user might
1243    set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1244    being stepped over.  As setting a new breakpoint inserts all
1245    breakpoints, we need to make sure the breakpoint being stepped over
1246    isn't inserted then.  We do that by only clearing the step-over
1247    info when the step-over is actually finished (or aborted).
1248
1249    Presently GDB can only step over one breakpoint at any given time.
1250    Given threads that can't run code in the same address space as the
1251    breakpoint's can't really miss the breakpoint, GDB could be taught
1252    to step-over at most one breakpoint per address space (so this info
1253    could move to the address space object if/when GDB is extended).
1254    The set of breakpoints being stepped over will normally be much
1255    smaller than the set of all breakpoints, so a flag in the
1256    breakpoint location structure would be wasteful.  A separate list
1257    also saves complexity and run-time, as otherwise we'd have to go
1258    through all breakpoint locations clearing their flag whenever we
1259    start a new sequence.  Similar considerations weigh against storing
1260    this info in the thread object.  Plus, not all step overs actually
1261    have breakpoint locations -- e.g., stepping past a single-step
1262    breakpoint, or stepping to complete a non-continuable
1263    watchpoint.  */
1264 static struct step_over_info step_over_info;
1265
1266 /* Record the address of the breakpoint/instruction we're currently
1267    stepping over.  */
1268
1269 static void
1270 set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1271                     int nonsteppable_watchpoint_p)
1272 {
1273   step_over_info.aspace = aspace;
1274   step_over_info.address = address;
1275   step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1276 }
1277
1278 /* Called when we're not longer stepping over a breakpoint / an
1279    instruction, so all breakpoints are free to be (re)inserted.  */
1280
1281 static void
1282 clear_step_over_info (void)
1283 {
1284   step_over_info.aspace = NULL;
1285   step_over_info.address = 0;
1286   step_over_info.nonsteppable_watchpoint_p = 0;
1287 }
1288
1289 /* See infrun.h.  */
1290
1291 int
1292 stepping_past_instruction_at (struct address_space *aspace,
1293                               CORE_ADDR address)
1294 {
1295   return (step_over_info.aspace != NULL
1296           && breakpoint_address_match (aspace, address,
1297                                        step_over_info.aspace,
1298                                        step_over_info.address));
1299 }
1300
1301 /* See infrun.h.  */
1302
1303 int
1304 stepping_past_nonsteppable_watchpoint (void)
1305 {
1306   return step_over_info.nonsteppable_watchpoint_p;
1307 }
1308
1309 /* Returns true if step-over info is valid.  */
1310
1311 static int
1312 step_over_info_valid_p (void)
1313 {
1314   return (step_over_info.aspace != NULL
1315           || stepping_past_nonsteppable_watchpoint ());
1316 }
1317
1318 \f
1319 /* Displaced stepping.  */
1320
1321 /* In non-stop debugging mode, we must take special care to manage
1322    breakpoints properly; in particular, the traditional strategy for
1323    stepping a thread past a breakpoint it has hit is unsuitable.
1324    'Displaced stepping' is a tactic for stepping one thread past a
1325    breakpoint it has hit while ensuring that other threads running
1326    concurrently will hit the breakpoint as they should.
1327
1328    The traditional way to step a thread T off a breakpoint in a
1329    multi-threaded program in all-stop mode is as follows:
1330
1331    a0) Initially, all threads are stopped, and breakpoints are not
1332        inserted.
1333    a1) We single-step T, leaving breakpoints uninserted.
1334    a2) We insert breakpoints, and resume all threads.
1335
1336    In non-stop debugging, however, this strategy is unsuitable: we
1337    don't want to have to stop all threads in the system in order to
1338    continue or step T past a breakpoint.  Instead, we use displaced
1339    stepping:
1340
1341    n0) Initially, T is stopped, other threads are running, and
1342        breakpoints are inserted.
1343    n1) We copy the instruction "under" the breakpoint to a separate
1344        location, outside the main code stream, making any adjustments
1345        to the instruction, register, and memory state as directed by
1346        T's architecture.
1347    n2) We single-step T over the instruction at its new location.
1348    n3) We adjust the resulting register and memory state as directed
1349        by T's architecture.  This includes resetting T's PC to point
1350        back into the main instruction stream.
1351    n4) We resume T.
1352
1353    This approach depends on the following gdbarch methods:
1354
1355    - gdbarch_max_insn_length and gdbarch_displaced_step_location
1356      indicate where to copy the instruction, and how much space must
1357      be reserved there.  We use these in step n1.
1358
1359    - gdbarch_displaced_step_copy_insn copies a instruction to a new
1360      address, and makes any necessary adjustments to the instruction,
1361      register contents, and memory.  We use this in step n1.
1362
1363    - gdbarch_displaced_step_fixup adjusts registers and memory after
1364      we have successfuly single-stepped the instruction, to yield the
1365      same effect the instruction would have had if we had executed it
1366      at its original address.  We use this in step n3.
1367
1368    - gdbarch_displaced_step_free_closure provides cleanup.
1369
1370    The gdbarch_displaced_step_copy_insn and
1371    gdbarch_displaced_step_fixup functions must be written so that
1372    copying an instruction with gdbarch_displaced_step_copy_insn,
1373    single-stepping across the copied instruction, and then applying
1374    gdbarch_displaced_insn_fixup should have the same effects on the
1375    thread's memory and registers as stepping the instruction in place
1376    would have.  Exactly which responsibilities fall to the copy and
1377    which fall to the fixup is up to the author of those functions.
1378
1379    See the comments in gdbarch.sh for details.
1380
1381    Note that displaced stepping and software single-step cannot
1382    currently be used in combination, although with some care I think
1383    they could be made to.  Software single-step works by placing
1384    breakpoints on all possible subsequent instructions; if the
1385    displaced instruction is a PC-relative jump, those breakpoints
1386    could fall in very strange places --- on pages that aren't
1387    executable, or at addresses that are not proper instruction
1388    boundaries.  (We do generally let other threads run while we wait
1389    to hit the software single-step breakpoint, and they might
1390    encounter such a corrupted instruction.)  One way to work around
1391    this would be to have gdbarch_displaced_step_copy_insn fully
1392    simulate the effect of PC-relative instructions (and return NULL)
1393    on architectures that use software single-stepping.
1394
1395    In non-stop mode, we can have independent and simultaneous step
1396    requests, so more than one thread may need to simultaneously step
1397    over a breakpoint.  The current implementation assumes there is
1398    only one scratch space per process.  In this case, we have to
1399    serialize access to the scratch space.  If thread A wants to step
1400    over a breakpoint, but we are currently waiting for some other
1401    thread to complete a displaced step, we leave thread A stopped and
1402    place it in the displaced_step_request_queue.  Whenever a displaced
1403    step finishes, we pick the next thread in the queue and start a new
1404    displaced step operation on it.  See displaced_step_prepare and
1405    displaced_step_fixup for details.  */
1406
1407 struct displaced_step_request
1408 {
1409   ptid_t ptid;
1410   struct displaced_step_request *next;
1411 };
1412
1413 /* Per-inferior displaced stepping state.  */
1414 struct displaced_step_inferior_state
1415 {
1416   /* Pointer to next in linked list.  */
1417   struct displaced_step_inferior_state *next;
1418
1419   /* The process this displaced step state refers to.  */
1420   int pid;
1421
1422   /* A queue of pending displaced stepping requests.  One entry per
1423      thread that needs to do a displaced step.  */
1424   struct displaced_step_request *step_request_queue;
1425
1426   /* If this is not null_ptid, this is the thread carrying out a
1427      displaced single-step in process PID.  This thread's state will
1428      require fixing up once it has completed its step.  */
1429   ptid_t step_ptid;
1430
1431   /* The architecture the thread had when we stepped it.  */
1432   struct gdbarch *step_gdbarch;
1433
1434   /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1435      for post-step cleanup.  */
1436   struct displaced_step_closure *step_closure;
1437
1438   /* The address of the original instruction, and the copy we
1439      made.  */
1440   CORE_ADDR step_original, step_copy;
1441
1442   /* Saved contents of copy area.  */
1443   gdb_byte *step_saved_copy;
1444 };
1445
1446 /* The list of states of processes involved in displaced stepping
1447    presently.  */
1448 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1449
1450 /* Get the displaced stepping state of process PID.  */
1451
1452 static struct displaced_step_inferior_state *
1453 get_displaced_stepping_state (int pid)
1454 {
1455   struct displaced_step_inferior_state *state;
1456
1457   for (state = displaced_step_inferior_states;
1458        state != NULL;
1459        state = state->next)
1460     if (state->pid == pid)
1461       return state;
1462
1463   return NULL;
1464 }
1465
1466 /* Return true if process PID has a thread doing a displaced step.  */
1467
1468 static int
1469 displaced_step_in_progress (int pid)
1470 {
1471   struct displaced_step_inferior_state *displaced;
1472
1473   displaced = get_displaced_stepping_state (pid);
1474   if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1475     return 1;
1476
1477   return 0;
1478 }
1479
1480 /* Add a new displaced stepping state for process PID to the displaced
1481    stepping state list, or return a pointer to an already existing
1482    entry, if it already exists.  Never returns NULL.  */
1483
1484 static struct displaced_step_inferior_state *
1485 add_displaced_stepping_state (int pid)
1486 {
1487   struct displaced_step_inferior_state *state;
1488
1489   for (state = displaced_step_inferior_states;
1490        state != NULL;
1491        state = state->next)
1492     if (state->pid == pid)
1493       return state;
1494
1495   state = xcalloc (1, sizeof (*state));
1496   state->pid = pid;
1497   state->next = displaced_step_inferior_states;
1498   displaced_step_inferior_states = state;
1499
1500   return state;
1501 }
1502
1503 /* If inferior is in displaced stepping, and ADDR equals to starting address
1504    of copy area, return corresponding displaced_step_closure.  Otherwise,
1505    return NULL.  */
1506
1507 struct displaced_step_closure*
1508 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1509 {
1510   struct displaced_step_inferior_state *displaced
1511     = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1512
1513   /* If checking the mode of displaced instruction in copy area.  */
1514   if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1515      && (displaced->step_copy == addr))
1516     return displaced->step_closure;
1517
1518   return NULL;
1519 }
1520
1521 /* Remove the displaced stepping state of process PID.  */
1522
1523 static void
1524 remove_displaced_stepping_state (int pid)
1525 {
1526   struct displaced_step_inferior_state *it, **prev_next_p;
1527
1528   gdb_assert (pid != 0);
1529
1530   it = displaced_step_inferior_states;
1531   prev_next_p = &displaced_step_inferior_states;
1532   while (it)
1533     {
1534       if (it->pid == pid)
1535         {
1536           *prev_next_p = it->next;
1537           xfree (it);
1538           return;
1539         }
1540
1541       prev_next_p = &it->next;
1542       it = *prev_next_p;
1543     }
1544 }
1545
1546 static void
1547 infrun_inferior_exit (struct inferior *inf)
1548 {
1549   remove_displaced_stepping_state (inf->pid);
1550 }
1551
1552 /* If ON, and the architecture supports it, GDB will use displaced
1553    stepping to step over breakpoints.  If OFF, or if the architecture
1554    doesn't support it, GDB will instead use the traditional
1555    hold-and-step approach.  If AUTO (which is the default), GDB will
1556    decide which technique to use to step over breakpoints depending on
1557    which of all-stop or non-stop mode is active --- displaced stepping
1558    in non-stop mode; hold-and-step in all-stop mode.  */
1559
1560 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1561
1562 static void
1563 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1564                                  struct cmd_list_element *c,
1565                                  const char *value)
1566 {
1567   if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1568     fprintf_filtered (file,
1569                       _("Debugger's willingness to use displaced stepping "
1570                         "to step over breakpoints is %s (currently %s).\n"),
1571                       value, non_stop ? "on" : "off");
1572   else
1573     fprintf_filtered (file,
1574                       _("Debugger's willingness to use displaced stepping "
1575                         "to step over breakpoints is %s.\n"), value);
1576 }
1577
1578 /* Return non-zero if displaced stepping can/should be used to step
1579    over breakpoints.  */
1580
1581 static int
1582 use_displaced_stepping (struct gdbarch *gdbarch)
1583 {
1584   return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1585            || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1586           && gdbarch_displaced_step_copy_insn_p (gdbarch)
1587           && find_record_target () == NULL);
1588 }
1589
1590 /* Clean out any stray displaced stepping state.  */
1591 static void
1592 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1593 {
1594   /* Indicate that there is no cleanup pending.  */
1595   displaced->step_ptid = null_ptid;
1596
1597   if (displaced->step_closure)
1598     {
1599       gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1600                                            displaced->step_closure);
1601       displaced->step_closure = NULL;
1602     }
1603 }
1604
1605 static void
1606 displaced_step_clear_cleanup (void *arg)
1607 {
1608   struct displaced_step_inferior_state *state = arg;
1609
1610   displaced_step_clear (state);
1611 }
1612
1613 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline.  */
1614 void
1615 displaced_step_dump_bytes (struct ui_file *file,
1616                            const gdb_byte *buf,
1617                            size_t len)
1618 {
1619   int i;
1620
1621   for (i = 0; i < len; i++)
1622     fprintf_unfiltered (file, "%02x ", buf[i]);
1623   fputs_unfiltered ("\n", file);
1624 }
1625
1626 /* Prepare to single-step, using displaced stepping.
1627
1628    Note that we cannot use displaced stepping when we have a signal to
1629    deliver.  If we have a signal to deliver and an instruction to step
1630    over, then after the step, there will be no indication from the
1631    target whether the thread entered a signal handler or ignored the
1632    signal and stepped over the instruction successfully --- both cases
1633    result in a simple SIGTRAP.  In the first case we mustn't do a
1634    fixup, and in the second case we must --- but we can't tell which.
1635    Comments in the code for 'random signals' in handle_inferior_event
1636    explain how we handle this case instead.
1637
1638    Returns 1 if preparing was successful -- this thread is going to be
1639    stepped now; or 0 if displaced stepping this thread got queued.  */
1640 static int
1641 displaced_step_prepare (ptid_t ptid)
1642 {
1643   struct cleanup *old_cleanups, *ignore_cleanups;
1644   struct thread_info *tp = find_thread_ptid (ptid);
1645   struct regcache *regcache = get_thread_regcache (ptid);
1646   struct gdbarch *gdbarch = get_regcache_arch (regcache);
1647   CORE_ADDR original, copy;
1648   ULONGEST len;
1649   struct displaced_step_closure *closure;
1650   struct displaced_step_inferior_state *displaced;
1651   int status;
1652
1653   /* We should never reach this function if the architecture does not
1654      support displaced stepping.  */
1655   gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1656
1657   /* Disable range stepping while executing in the scratch pad.  We
1658      want a single-step even if executing the displaced instruction in
1659      the scratch buffer lands within the stepping range (e.g., a
1660      jump/branch).  */
1661   tp->control.may_range_step = 0;
1662
1663   /* We have to displaced step one thread at a time, as we only have
1664      access to a single scratch space per inferior.  */
1665
1666   displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1667
1668   if (!ptid_equal (displaced->step_ptid, null_ptid))
1669     {
1670       /* Already waiting for a displaced step to finish.  Defer this
1671          request and place in queue.  */
1672       struct displaced_step_request *req, *new_req;
1673
1674       if (debug_displaced)
1675         fprintf_unfiltered (gdb_stdlog,
1676                             "displaced: defering step of %s\n",
1677                             target_pid_to_str (ptid));
1678
1679       new_req = xmalloc (sizeof (*new_req));
1680       new_req->ptid = ptid;
1681       new_req->next = NULL;
1682
1683       if (displaced->step_request_queue)
1684         {
1685           for (req = displaced->step_request_queue;
1686                req && req->next;
1687                req = req->next)
1688             ;
1689           req->next = new_req;
1690         }
1691       else
1692         displaced->step_request_queue = new_req;
1693
1694       return 0;
1695     }
1696   else
1697     {
1698       if (debug_displaced)
1699         fprintf_unfiltered (gdb_stdlog,
1700                             "displaced: stepping %s now\n",
1701                             target_pid_to_str (ptid));
1702     }
1703
1704   displaced_step_clear (displaced);
1705
1706   old_cleanups = save_inferior_ptid ();
1707   inferior_ptid = ptid;
1708
1709   original = regcache_read_pc (regcache);
1710
1711   copy = gdbarch_displaced_step_location (gdbarch);
1712   len = gdbarch_max_insn_length (gdbarch);
1713
1714   /* Save the original contents of the copy area.  */
1715   displaced->step_saved_copy = xmalloc (len);
1716   ignore_cleanups = make_cleanup (free_current_contents,
1717                                   &displaced->step_saved_copy);
1718   status = target_read_memory (copy, displaced->step_saved_copy, len);
1719   if (status != 0)
1720     throw_error (MEMORY_ERROR,
1721                  _("Error accessing memory address %s (%s) for "
1722                    "displaced-stepping scratch space."),
1723                  paddress (gdbarch, copy), safe_strerror (status));
1724   if (debug_displaced)
1725     {
1726       fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1727                           paddress (gdbarch, copy));
1728       displaced_step_dump_bytes (gdb_stdlog,
1729                                  displaced->step_saved_copy,
1730                                  len);
1731     };
1732
1733   closure = gdbarch_displaced_step_copy_insn (gdbarch,
1734                                               original, copy, regcache);
1735
1736   /* We don't support the fully-simulated case at present.  */
1737   gdb_assert (closure);
1738
1739   /* Save the information we need to fix things up if the step
1740      succeeds.  */
1741   displaced->step_ptid = ptid;
1742   displaced->step_gdbarch = gdbarch;
1743   displaced->step_closure = closure;
1744   displaced->step_original = original;
1745   displaced->step_copy = copy;
1746
1747   make_cleanup (displaced_step_clear_cleanup, displaced);
1748
1749   /* Resume execution at the copy.  */
1750   regcache_write_pc (regcache, copy);
1751
1752   discard_cleanups (ignore_cleanups);
1753
1754   do_cleanups (old_cleanups);
1755
1756   if (debug_displaced)
1757     fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1758                         paddress (gdbarch, copy));
1759
1760   return 1;
1761 }
1762
1763 static void
1764 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1765                    const gdb_byte *myaddr, int len)
1766 {
1767   struct cleanup *ptid_cleanup = save_inferior_ptid ();
1768
1769   inferior_ptid = ptid;
1770   write_memory (memaddr, myaddr, len);
1771   do_cleanups (ptid_cleanup);
1772 }
1773
1774 /* Restore the contents of the copy area for thread PTID.  */
1775
1776 static void
1777 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1778                         ptid_t ptid)
1779 {
1780   ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1781
1782   write_memory_ptid (ptid, displaced->step_copy,
1783                      displaced->step_saved_copy, len);
1784   if (debug_displaced)
1785     fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1786                         target_pid_to_str (ptid),
1787                         paddress (displaced->step_gdbarch,
1788                                   displaced->step_copy));
1789 }
1790
1791 static void
1792 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1793 {
1794   struct cleanup *old_cleanups;
1795   struct displaced_step_inferior_state *displaced
1796     = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1797
1798   /* Was any thread of this process doing a displaced step?  */
1799   if (displaced == NULL)
1800     return;
1801
1802   /* Was this event for the pid we displaced?  */
1803   if (ptid_equal (displaced->step_ptid, null_ptid)
1804       || ! ptid_equal (displaced->step_ptid, event_ptid))
1805     return;
1806
1807   old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1808
1809   displaced_step_restore (displaced, displaced->step_ptid);
1810
1811   /* Fixup may need to read memory/registers.  Switch to the thread
1812      that we're fixing up.  Also, target_stopped_by_watchpoint checks
1813      the current thread.  */
1814   switch_to_thread (event_ptid);
1815
1816   /* Did the instruction complete successfully?  */
1817   if (signal == GDB_SIGNAL_TRAP
1818       && !(target_stopped_by_watchpoint ()
1819            && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1820                || target_have_steppable_watchpoint)))
1821     {
1822       /* Fix up the resulting state.  */
1823       gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1824                                     displaced->step_closure,
1825                                     displaced->step_original,
1826                                     displaced->step_copy,
1827                                     get_thread_regcache (displaced->step_ptid));
1828     }
1829   else
1830     {
1831       /* Since the instruction didn't complete, all we can do is
1832          relocate the PC.  */
1833       struct regcache *regcache = get_thread_regcache (event_ptid);
1834       CORE_ADDR pc = regcache_read_pc (regcache);
1835
1836       pc = displaced->step_original + (pc - displaced->step_copy);
1837       regcache_write_pc (regcache, pc);
1838     }
1839
1840   do_cleanups (old_cleanups);
1841
1842   displaced->step_ptid = null_ptid;
1843
1844   /* Are there any pending displaced stepping requests?  If so, run
1845      one now.  Leave the state object around, since we're likely to
1846      need it again soon.  */
1847   while (displaced->step_request_queue)
1848     {
1849       struct displaced_step_request *head;
1850       ptid_t ptid;
1851       struct regcache *regcache;
1852       struct gdbarch *gdbarch;
1853       CORE_ADDR actual_pc;
1854       struct address_space *aspace;
1855
1856       head = displaced->step_request_queue;
1857       ptid = head->ptid;
1858       displaced->step_request_queue = head->next;
1859       xfree (head);
1860
1861       context_switch (ptid);
1862
1863       regcache = get_thread_regcache (ptid);
1864       actual_pc = regcache_read_pc (regcache);
1865       aspace = get_regcache_aspace (regcache);
1866       gdbarch = get_regcache_arch (regcache);
1867
1868       if (breakpoint_here_p (aspace, actual_pc))
1869         {
1870           if (debug_displaced)
1871             fprintf_unfiltered (gdb_stdlog,
1872                                 "displaced: stepping queued %s now\n",
1873                                 target_pid_to_str (ptid));
1874
1875           displaced_step_prepare (ptid);
1876
1877           if (debug_displaced)
1878             {
1879               CORE_ADDR actual_pc = regcache_read_pc (regcache);
1880               gdb_byte buf[4];
1881
1882               fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1883                                   paddress (gdbarch, actual_pc));
1884               read_memory (actual_pc, buf, sizeof (buf));
1885               displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1886             }
1887
1888           if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1889                                                     displaced->step_closure))
1890             target_resume (ptid, 1, GDB_SIGNAL_0);
1891           else
1892             target_resume (ptid, 0, GDB_SIGNAL_0);
1893
1894           /* Done, we're stepping a thread.  */
1895           break;
1896         }
1897       else
1898         {
1899           int step;
1900           struct thread_info *tp = inferior_thread ();
1901
1902           /* The breakpoint we were sitting under has since been
1903              removed.  */
1904           tp->control.trap_expected = 0;
1905
1906           /* Go back to what we were trying to do.  */
1907           step = currently_stepping (tp);
1908
1909           if (step)
1910             step = maybe_software_singlestep (gdbarch, actual_pc);
1911
1912           if (debug_displaced)
1913             fprintf_unfiltered (gdb_stdlog,
1914                                 "displaced: breakpoint is gone: %s, step(%d)\n",
1915                                 target_pid_to_str (tp->ptid), step);
1916
1917           target_resume (ptid, step, GDB_SIGNAL_0);
1918           tp->suspend.stop_signal = GDB_SIGNAL_0;
1919
1920           /* This request was discarded.  See if there's any other
1921              thread waiting for its turn.  */
1922         }
1923     }
1924 }
1925
1926 /* Update global variables holding ptids to hold NEW_PTID if they were
1927    holding OLD_PTID.  */
1928 static void
1929 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1930 {
1931   struct displaced_step_request *it;
1932   struct displaced_step_inferior_state *displaced;
1933
1934   if (ptid_equal (inferior_ptid, old_ptid))
1935     inferior_ptid = new_ptid;
1936
1937   for (displaced = displaced_step_inferior_states;
1938        displaced;
1939        displaced = displaced->next)
1940     {
1941       if (ptid_equal (displaced->step_ptid, old_ptid))
1942         displaced->step_ptid = new_ptid;
1943
1944       for (it = displaced->step_request_queue; it; it = it->next)
1945         if (ptid_equal (it->ptid, old_ptid))
1946           it->ptid = new_ptid;
1947     }
1948 }
1949
1950 \f
1951 /* Resuming.  */
1952
1953 /* Things to clean up if we QUIT out of resume ().  */
1954 static void
1955 resume_cleanups (void *ignore)
1956 {
1957   if (!ptid_equal (inferior_ptid, null_ptid))
1958     delete_single_step_breakpoints (inferior_thread ());
1959
1960   normal_stop ();
1961 }
1962
1963 static const char schedlock_off[] = "off";
1964 static const char schedlock_on[] = "on";
1965 static const char schedlock_step[] = "step";
1966 static const char *const scheduler_enums[] = {
1967   schedlock_off,
1968   schedlock_on,
1969   schedlock_step,
1970   NULL
1971 };
1972 static const char *scheduler_mode = schedlock_off;
1973 static void
1974 show_scheduler_mode (struct ui_file *file, int from_tty,
1975                      struct cmd_list_element *c, const char *value)
1976 {
1977   fprintf_filtered (file,
1978                     _("Mode for locking scheduler "
1979                       "during execution is \"%s\".\n"),
1980                     value);
1981 }
1982
1983 static void
1984 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1985 {
1986   if (!target_can_lock_scheduler)
1987     {
1988       scheduler_mode = schedlock_off;
1989       error (_("Target '%s' cannot support this command."), target_shortname);
1990     }
1991 }
1992
1993 /* True if execution commands resume all threads of all processes by
1994    default; otherwise, resume only threads of the current inferior
1995    process.  */
1996 int sched_multi = 0;
1997
1998 /* Try to setup for software single stepping over the specified location.
1999    Return 1 if target_resume() should use hardware single step.
2000
2001    GDBARCH the current gdbarch.
2002    PC the location to step over.  */
2003
2004 static int
2005 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2006 {
2007   int hw_step = 1;
2008
2009   if (execution_direction == EXEC_FORWARD
2010       && gdbarch_software_single_step_p (gdbarch)
2011       && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2012     {
2013       hw_step = 0;
2014     }
2015   return hw_step;
2016 }
2017
2018 /* See infrun.h.  */
2019
2020 ptid_t
2021 user_visible_resume_ptid (int step)
2022 {
2023   ptid_t resume_ptid;
2024
2025   if (non_stop)
2026     {
2027       /* With non-stop mode on, threads are always handled
2028          individually.  */
2029       resume_ptid = inferior_ptid;
2030     }
2031   else if ((scheduler_mode == schedlock_on)
2032            || (scheduler_mode == schedlock_step && step))
2033     {
2034       /* User-settable 'scheduler' mode requires solo thread
2035          resume.  */
2036       resume_ptid = inferior_ptid;
2037     }
2038   else if (!sched_multi && target_supports_multi_process ())
2039     {
2040       /* Resume all threads of the current process (and none of other
2041          processes).  */
2042       resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2043     }
2044   else
2045     {
2046       /* Resume all threads of all processes.  */
2047       resume_ptid = RESUME_ALL;
2048     }
2049
2050   return resume_ptid;
2051 }
2052
2053 /* Wrapper for target_resume, that handles infrun-specific
2054    bookkeeping.  */
2055
2056 static void
2057 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2058 {
2059   struct thread_info *tp = inferior_thread ();
2060
2061   /* Install inferior's terminal modes.  */
2062   target_terminal_inferior ();
2063
2064   /* Avoid confusing the next resume, if the next stop/resume
2065      happens to apply to another thread.  */
2066   tp->suspend.stop_signal = GDB_SIGNAL_0;
2067
2068   /* Advise target which signals may be handled silently.
2069
2070      If we have removed breakpoints because we are stepping over one
2071      in-line (in any thread), we need to receive all signals to avoid
2072      accidentally skipping a breakpoint during execution of a signal
2073      handler.
2074
2075      Likewise if we're displaced stepping, otherwise a trap for a
2076      breakpoint in a signal handler might be confused with the
2077      displaced step finishing.  We don't make the displaced_step_fixup
2078      step distinguish the cases instead, because:
2079
2080      - a backtrace while stopped in the signal handler would show the
2081        scratch pad as frame older than the signal handler, instead of
2082        the real mainline code.
2083
2084      - when the thread is later resumed, the signal handler would
2085        return to the scratch pad area, which would no longer be
2086        valid.  */
2087   if (step_over_info_valid_p ()
2088       || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2089     target_pass_signals (0, NULL);
2090   else
2091     target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2092
2093   target_resume (resume_ptid, step, sig);
2094 }
2095
2096 /* Resume the inferior, but allow a QUIT.  This is useful if the user
2097    wants to interrupt some lengthy single-stepping operation
2098    (for child processes, the SIGINT goes to the inferior, and so
2099    we get a SIGINT random_signal, but for remote debugging and perhaps
2100    other targets, that's not true).
2101
2102    SIG is the signal to give the inferior (zero for none).  */
2103 void
2104 resume (enum gdb_signal sig)
2105 {
2106   struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
2107   struct regcache *regcache = get_current_regcache ();
2108   struct gdbarch *gdbarch = get_regcache_arch (regcache);
2109   struct thread_info *tp = inferior_thread ();
2110   CORE_ADDR pc = regcache_read_pc (regcache);
2111   struct address_space *aspace = get_regcache_aspace (regcache);
2112   ptid_t resume_ptid;
2113   /* This represents the user's step vs continue request.  When
2114      deciding whether "set scheduler-locking step" applies, it's the
2115      user's intention that counts.  */
2116   const int user_step = tp->control.stepping_command;
2117   /* This represents what we'll actually request the target to do.
2118      This can decay from a step to a continue, if e.g., we need to
2119      implement single-stepping with breakpoints (software
2120      single-step).  */
2121   int step;
2122
2123   tp->stepped_breakpoint = 0;
2124
2125   QUIT;
2126
2127   /* Depends on stepped_breakpoint.  */
2128   step = currently_stepping (tp);
2129
2130   if (current_inferior ()->waiting_for_vfork_done)
2131     {
2132       /* Don't try to single-step a vfork parent that is waiting for
2133          the child to get out of the shared memory region (by exec'ing
2134          or exiting).  This is particularly important on software
2135          single-step archs, as the child process would trip on the
2136          software single step breakpoint inserted for the parent
2137          process.  Since the parent will not actually execute any
2138          instruction until the child is out of the shared region (such
2139          are vfork's semantics), it is safe to simply continue it.
2140          Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2141          the parent, and tell it to `keep_going', which automatically
2142          re-sets it stepping.  */
2143       if (debug_infrun)
2144         fprintf_unfiltered (gdb_stdlog,
2145                             "infrun: resume : clear step\n");
2146       step = 0;
2147     }
2148
2149   if (debug_infrun)
2150     fprintf_unfiltered (gdb_stdlog,
2151                         "infrun: resume (step=%d, signal=%s), "
2152                         "trap_expected=%d, current thread [%s] at %s\n",
2153                         step, gdb_signal_to_symbol_string (sig),
2154                         tp->control.trap_expected,
2155                         target_pid_to_str (inferior_ptid),
2156                         paddress (gdbarch, pc));
2157
2158   /* Normally, by the time we reach `resume', the breakpoints are either
2159      removed or inserted, as appropriate.  The exception is if we're sitting
2160      at a permanent breakpoint; we need to step over it, but permanent
2161      breakpoints can't be removed.  So we have to test for it here.  */
2162   if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2163     {
2164       if (sig != GDB_SIGNAL_0)
2165         {
2166           /* We have a signal to pass to the inferior.  The resume
2167              may, or may not take us to the signal handler.  If this
2168              is a step, we'll need to stop in the signal handler, if
2169              there's one, (if the target supports stepping into
2170              handlers), or in the next mainline instruction, if
2171              there's no handler.  If this is a continue, we need to be
2172              sure to run the handler with all breakpoints inserted.
2173              In all cases, set a breakpoint at the current address
2174              (where the handler returns to), and once that breakpoint
2175              is hit, resume skipping the permanent breakpoint.  If
2176              that breakpoint isn't hit, then we've stepped into the
2177              signal handler (or hit some other event).  We'll delete
2178              the step-resume breakpoint then.  */
2179
2180           if (debug_infrun)
2181             fprintf_unfiltered (gdb_stdlog,
2182                                 "infrun: resume: skipping permanent breakpoint, "
2183                                 "deliver signal first\n");
2184
2185           clear_step_over_info ();
2186           tp->control.trap_expected = 0;
2187
2188           if (tp->control.step_resume_breakpoint == NULL)
2189             {
2190               /* Set a "high-priority" step-resume, as we don't want
2191                  user breakpoints at PC to trigger (again) when this
2192                  hits.  */
2193               insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2194               gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2195
2196               tp->step_after_step_resume_breakpoint = step;
2197             }
2198
2199           insert_breakpoints ();
2200         }
2201       else
2202         {
2203           /* There's no signal to pass, we can go ahead and skip the
2204              permanent breakpoint manually.  */
2205           if (debug_infrun)
2206             fprintf_unfiltered (gdb_stdlog,
2207                                 "infrun: resume: skipping permanent breakpoint\n");
2208           gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2209           /* Update pc to reflect the new address from which we will
2210              execute instructions.  */
2211           pc = regcache_read_pc (regcache);
2212
2213           if (step)
2214             {
2215               /* We've already advanced the PC, so the stepping part
2216                  is done.  Now we need to arrange for a trap to be
2217                  reported to handle_inferior_event.  Set a breakpoint
2218                  at the current PC, and run to it.  Don't update
2219                  prev_pc, because if we end in
2220                  switch_back_to_stepped_thread, we want the "expected
2221                  thread advanced also" branch to be taken.  IOW, we
2222                  don't want this thread to step further from PC
2223                  (overstep).  */
2224               gdb_assert (!step_over_info_valid_p ());
2225               insert_single_step_breakpoint (gdbarch, aspace, pc);
2226               insert_breakpoints ();
2227
2228               resume_ptid = user_visible_resume_ptid (user_step);
2229               do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2230               discard_cleanups (old_cleanups);
2231               return;
2232             }
2233         }
2234     }
2235
2236   /* If we have a breakpoint to step over, make sure to do a single
2237      step only.  Same if we have software watchpoints.  */
2238   if (tp->control.trap_expected || bpstat_should_step ())
2239     tp->control.may_range_step = 0;
2240
2241   /* If enabled, step over breakpoints by executing a copy of the
2242      instruction at a different address.
2243
2244      We can't use displaced stepping when we have a signal to deliver;
2245      the comments for displaced_step_prepare explain why.  The
2246      comments in the handle_inferior event for dealing with 'random
2247      signals' explain what we do instead.
2248
2249      We can't use displaced stepping when we are waiting for vfork_done
2250      event, displaced stepping breaks the vfork child similarly as single
2251      step software breakpoint.  */
2252   if (use_displaced_stepping (gdbarch)
2253       && tp->control.trap_expected
2254       && !step_over_info_valid_p ()
2255       && sig == GDB_SIGNAL_0
2256       && !current_inferior ()->waiting_for_vfork_done)
2257     {
2258       struct displaced_step_inferior_state *displaced;
2259
2260       if (!displaced_step_prepare (inferior_ptid))
2261         {
2262           /* Got placed in displaced stepping queue.  Will be resumed
2263              later when all the currently queued displaced stepping
2264              requests finish.  The thread is not executing at this
2265              point, and the call to set_executing will be made later.
2266              But we need to call set_running here, since from the
2267              user/frontend's point of view, threads were set running.  */
2268           set_running (user_visible_resume_ptid (user_step), 1);
2269           discard_cleanups (old_cleanups);
2270           return;
2271         }
2272
2273       /* Update pc to reflect the new address from which we will execute
2274          instructions due to displaced stepping.  */
2275       pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2276
2277       displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2278       step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2279                                                    displaced->step_closure);
2280     }
2281
2282   /* Do we need to do it the hard way, w/temp breakpoints?  */
2283   else if (step)
2284     step = maybe_software_singlestep (gdbarch, pc);
2285
2286   /* Currently, our software single-step implementation leads to different
2287      results than hardware single-stepping in one situation: when stepping
2288      into delivering a signal which has an associated signal handler,
2289      hardware single-step will stop at the first instruction of the handler,
2290      while software single-step will simply skip execution of the handler.
2291
2292      For now, this difference in behavior is accepted since there is no
2293      easy way to actually implement single-stepping into a signal handler
2294      without kernel support.
2295
2296      However, there is one scenario where this difference leads to follow-on
2297      problems: if we're stepping off a breakpoint by removing all breakpoints
2298      and then single-stepping.  In this case, the software single-step
2299      behavior means that even if there is a *breakpoint* in the signal
2300      handler, GDB still would not stop.
2301
2302      Fortunately, we can at least fix this particular issue.  We detect
2303      here the case where we are about to deliver a signal while software
2304      single-stepping with breakpoints removed.  In this situation, we
2305      revert the decisions to remove all breakpoints and insert single-
2306      step breakpoints, and instead we install a step-resume breakpoint
2307      at the current address, deliver the signal without stepping, and
2308      once we arrive back at the step-resume breakpoint, actually step
2309      over the breakpoint we originally wanted to step over.  */
2310   if (thread_has_single_step_breakpoints_set (tp)
2311       && sig != GDB_SIGNAL_0
2312       && step_over_info_valid_p ())
2313     {
2314       /* If we have nested signals or a pending signal is delivered
2315          immediately after a handler returns, might might already have
2316          a step-resume breakpoint set on the earlier handler.  We cannot
2317          set another step-resume breakpoint; just continue on until the
2318          original breakpoint is hit.  */
2319       if (tp->control.step_resume_breakpoint == NULL)
2320         {
2321           insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2322           tp->step_after_step_resume_breakpoint = 1;
2323         }
2324
2325       delete_single_step_breakpoints (tp);
2326
2327       clear_step_over_info ();
2328       tp->control.trap_expected = 0;
2329
2330       insert_breakpoints ();
2331     }
2332
2333   /* If STEP is set, it's a request to use hardware stepping
2334      facilities.  But in that case, we should never
2335      use singlestep breakpoint.  */
2336   gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2337
2338   /* Decide the set of threads to ask the target to resume.  Start
2339      by assuming everything will be resumed, than narrow the set
2340      by applying increasingly restricting conditions.  */
2341   resume_ptid = user_visible_resume_ptid (user_step);
2342
2343   /* Even if RESUME_PTID is a wildcard, and we end up resuming less
2344      (e.g., we might need to step over a breakpoint), from the
2345      user/frontend's point of view, all threads in RESUME_PTID are now
2346      running.  */
2347   set_running (resume_ptid, 1);
2348
2349   /* Maybe resume a single thread after all.  */
2350   if ((step || thread_has_single_step_breakpoints_set (tp))
2351       && tp->control.trap_expected)
2352     {
2353       /* We're allowing a thread to run past a breakpoint it has
2354          hit, by single-stepping the thread with the breakpoint
2355          removed.  In which case, we need to single-step only this
2356          thread, and keep others stopped, as they can miss this
2357          breakpoint if allowed to run.  */
2358       resume_ptid = inferior_ptid;
2359     }
2360
2361   if (execution_direction != EXEC_REVERSE
2362       && step && breakpoint_inserted_here_p (aspace, pc))
2363     {
2364       /* The only case we currently need to step a breakpoint
2365          instruction is when we have a signal to deliver.  See
2366          handle_signal_stop where we handle random signals that could
2367          take out us out of the stepping range.  Normally, in that
2368          case we end up continuing (instead of stepping) over the
2369          signal handler with a breakpoint at PC, but there are cases
2370          where we should _always_ single-step, even if we have a
2371          step-resume breakpoint, like when a software watchpoint is
2372          set.  Assuming single-stepping and delivering a signal at the
2373          same time would takes us to the signal handler, then we could
2374          have removed the breakpoint at PC to step over it.  However,
2375          some hardware step targets (like e.g., Mac OS) can't step
2376          into signal handlers, and for those, we need to leave the
2377          breakpoint at PC inserted, as otherwise if the handler
2378          recurses and executes PC again, it'll miss the breakpoint.
2379          So we leave the breakpoint inserted anyway, but we need to
2380          record that we tried to step a breakpoint instruction, so
2381          that adjust_pc_after_break doesn't end up confused.  */
2382       gdb_assert (sig != GDB_SIGNAL_0);
2383
2384       tp->stepped_breakpoint = 1;
2385
2386       /* Most targets can step a breakpoint instruction, thus
2387          executing it normally.  But if this one cannot, just
2388          continue and we will hit it anyway.  */
2389       if (gdbarch_cannot_step_breakpoint (gdbarch))
2390         step = 0;
2391     }
2392
2393   if (debug_displaced
2394       && use_displaced_stepping (gdbarch)
2395       && tp->control.trap_expected
2396       && !step_over_info_valid_p ())
2397     {
2398       struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
2399       struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2400       CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2401       gdb_byte buf[4];
2402
2403       fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2404                           paddress (resume_gdbarch, actual_pc));
2405       read_memory (actual_pc, buf, sizeof (buf));
2406       displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2407     }
2408
2409   if (tp->control.may_range_step)
2410     {
2411       /* If we're resuming a thread with the PC out of the step
2412          range, then we're doing some nested/finer run control
2413          operation, like stepping the thread out of the dynamic
2414          linker or the displaced stepping scratch pad.  We
2415          shouldn't have allowed a range step then.  */
2416       gdb_assert (pc_in_thread_step_range (pc, tp));
2417     }
2418
2419   do_target_resume (resume_ptid, step, sig);
2420   discard_cleanups (old_cleanups);
2421 }
2422 \f
2423 /* Proceeding.  */
2424
2425 /* Clear out all variables saying what to do when inferior is continued.
2426    First do this, then set the ones you want, then call `proceed'.  */
2427
2428 static void
2429 clear_proceed_status_thread (struct thread_info *tp)
2430 {
2431   if (debug_infrun)
2432     fprintf_unfiltered (gdb_stdlog,
2433                         "infrun: clear_proceed_status_thread (%s)\n",
2434                         target_pid_to_str (tp->ptid));
2435
2436   /* If this signal should not be seen by program, give it zero.
2437      Used for debugging signals.  */
2438   if (!signal_pass_state (tp->suspend.stop_signal))
2439     tp->suspend.stop_signal = GDB_SIGNAL_0;
2440
2441   tp->control.trap_expected = 0;
2442   tp->control.step_range_start = 0;
2443   tp->control.step_range_end = 0;
2444   tp->control.may_range_step = 0;
2445   tp->control.step_frame_id = null_frame_id;
2446   tp->control.step_stack_frame_id = null_frame_id;
2447   tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2448   tp->control.step_start_function = NULL;
2449   tp->stop_requested = 0;
2450
2451   tp->control.stop_step = 0;
2452
2453   tp->control.proceed_to_finish = 0;
2454
2455   tp->control.command_interp = NULL;
2456   tp->control.stepping_command = 0;
2457
2458   /* Discard any remaining commands or status from previous stop.  */
2459   bpstat_clear (&tp->control.stop_bpstat);
2460 }
2461
2462 void
2463 clear_proceed_status (int step)
2464 {
2465   if (!non_stop)
2466     {
2467       struct thread_info *tp;
2468       ptid_t resume_ptid;
2469
2470       resume_ptid = user_visible_resume_ptid (step);
2471
2472       /* In all-stop mode, delete the per-thread status of all threads
2473          we're about to resume, implicitly and explicitly.  */
2474       ALL_NON_EXITED_THREADS (tp)
2475         {
2476           if (!ptid_match (tp->ptid, resume_ptid))
2477             continue;
2478           clear_proceed_status_thread (tp);
2479         }
2480     }
2481
2482   if (!ptid_equal (inferior_ptid, null_ptid))
2483     {
2484       struct inferior *inferior;
2485
2486       if (non_stop)
2487         {
2488           /* If in non-stop mode, only delete the per-thread status of
2489              the current thread.  */
2490           clear_proceed_status_thread (inferior_thread ());
2491         }
2492
2493       inferior = current_inferior ();
2494       inferior->control.stop_soon = NO_STOP_QUIETLY;
2495     }
2496
2497   stop_after_trap = 0;
2498
2499   clear_step_over_info ();
2500
2501   observer_notify_about_to_proceed ();
2502 }
2503
2504 /* Returns true if TP is still stopped at a breakpoint that needs
2505    stepping-over in order to make progress.  If the breakpoint is gone
2506    meanwhile, we can skip the whole step-over dance.  */
2507
2508 static int
2509 thread_still_needs_step_over (struct thread_info *tp)
2510 {
2511   if (tp->stepping_over_breakpoint)
2512     {
2513       struct regcache *regcache = get_thread_regcache (tp->ptid);
2514
2515       if (breakpoint_here_p (get_regcache_aspace (regcache),
2516                              regcache_read_pc (regcache))
2517           == ordinary_breakpoint_here)
2518         return 1;
2519
2520       tp->stepping_over_breakpoint = 0;
2521     }
2522
2523   return 0;
2524 }
2525
2526 /* Returns true if scheduler locking applies.  STEP indicates whether
2527    we're about to do a step/next-like command to a thread.  */
2528
2529 static int
2530 schedlock_applies (struct thread_info *tp)
2531 {
2532   return (scheduler_mode == schedlock_on
2533           || (scheduler_mode == schedlock_step
2534               && tp->control.stepping_command));
2535 }
2536
2537 /* Look a thread other than EXCEPT that has previously reported a
2538    breakpoint event, and thus needs a step-over in order to make
2539    progress.  Returns NULL is none is found.  */
2540
2541 static struct thread_info *
2542 find_thread_needs_step_over (struct thread_info *except)
2543 {
2544   struct thread_info *tp, *current;
2545
2546   /* With non-stop mode on, threads are always handled individually.  */
2547   gdb_assert (! non_stop);
2548
2549   current = inferior_thread ();
2550
2551   /* If scheduler locking applies, we can avoid iterating over all
2552      threads.  */
2553   if (schedlock_applies (except))
2554     {
2555       if (except != current
2556           && thread_still_needs_step_over (current))
2557         return current;
2558
2559       return NULL;
2560     }
2561
2562   ALL_NON_EXITED_THREADS (tp)
2563     {
2564       /* Ignore the EXCEPT thread.  */
2565       if (tp == except)
2566         continue;
2567       /* Ignore threads of processes we're not resuming.  */
2568       if (!sched_multi
2569           && ptid_get_pid (tp->ptid) != ptid_get_pid (inferior_ptid))
2570         continue;
2571
2572       if (thread_still_needs_step_over (tp))
2573         return tp;
2574     }
2575
2576   return NULL;
2577 }
2578
2579 /* Basic routine for continuing the program in various fashions.
2580
2581    ADDR is the address to resume at, or -1 for resume where stopped.
2582    SIGGNAL is the signal to give it, or 0 for none,
2583    or -1 for act according to how it stopped.
2584    STEP is nonzero if should trap after one instruction.
2585    -1 means return after that and print nothing.
2586    You should probably set various step_... variables
2587    before calling here, if you are stepping.
2588
2589    You should call clear_proceed_status before calling proceed.  */
2590
2591 void
2592 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2593 {
2594   struct regcache *regcache;
2595   struct gdbarch *gdbarch;
2596   struct thread_info *tp;
2597   CORE_ADDR pc;
2598   struct address_space *aspace;
2599
2600   /* If we're stopped at a fork/vfork, follow the branch set by the
2601      "set follow-fork-mode" command; otherwise, we'll just proceed
2602      resuming the current thread.  */
2603   if (!follow_fork ())
2604     {
2605       /* The target for some reason decided not to resume.  */
2606       normal_stop ();
2607       if (target_can_async_p ())
2608         inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2609       return;
2610     }
2611
2612   /* We'll update this if & when we switch to a new thread.  */
2613   previous_inferior_ptid = inferior_ptid;
2614
2615   regcache = get_current_regcache ();
2616   gdbarch = get_regcache_arch (regcache);
2617   aspace = get_regcache_aspace (regcache);
2618   pc = regcache_read_pc (regcache);
2619   tp = inferior_thread ();
2620
2621   /* Fill in with reasonable starting values.  */
2622   init_thread_stepping_state (tp);
2623
2624   if (addr == (CORE_ADDR) -1)
2625     {
2626       if (pc == stop_pc
2627           && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
2628           && execution_direction != EXEC_REVERSE)
2629         /* There is a breakpoint at the address we will resume at,
2630            step one instruction before inserting breakpoints so that
2631            we do not stop right away (and report a second hit at this
2632            breakpoint).
2633
2634            Note, we don't do this in reverse, because we won't
2635            actually be executing the breakpoint insn anyway.
2636            We'll be (un-)executing the previous instruction.  */
2637         tp->stepping_over_breakpoint = 1;
2638       else if (gdbarch_single_step_through_delay_p (gdbarch)
2639                && gdbarch_single_step_through_delay (gdbarch,
2640                                                      get_current_frame ()))
2641         /* We stepped onto an instruction that needs to be stepped
2642            again before re-inserting the breakpoint, do so.  */
2643         tp->stepping_over_breakpoint = 1;
2644     }
2645   else
2646     {
2647       regcache_write_pc (regcache, addr);
2648     }
2649
2650   if (siggnal != GDB_SIGNAL_DEFAULT)
2651     tp->suspend.stop_signal = siggnal;
2652
2653   /* Record the interpreter that issued the execution command that
2654      caused this thread to resume.  If the top level interpreter is
2655      MI/async, and the execution command was a CLI command
2656      (next/step/etc.), we'll want to print stop event output to the MI
2657      console channel (the stepped-to line, etc.), as if the user
2658      entered the execution command on a real GDB console.  */
2659   inferior_thread ()->control.command_interp = command_interp ();
2660
2661   if (debug_infrun)
2662     fprintf_unfiltered (gdb_stdlog,
2663                         "infrun: proceed (addr=%s, signal=%s)\n",
2664                         paddress (gdbarch, addr),
2665                         gdb_signal_to_symbol_string (siggnal));
2666
2667   if (non_stop)
2668     /* In non-stop, each thread is handled individually.  The context
2669        must already be set to the right thread here.  */
2670     ;
2671   else
2672     {
2673       struct thread_info *step_over;
2674
2675       /* In a multi-threaded task we may select another thread and
2676          then continue or step.
2677
2678          But if the old thread was stopped at a breakpoint, it will
2679          immediately cause another breakpoint stop without any
2680          execution (i.e. it will report a breakpoint hit incorrectly).
2681          So we must step over it first.
2682
2683          Look for a thread other than the current (TP) that reported a
2684          breakpoint hit and hasn't been resumed yet since.  */
2685       step_over = find_thread_needs_step_over (tp);
2686       if (step_over != NULL)
2687         {
2688           if (debug_infrun)
2689             fprintf_unfiltered (gdb_stdlog,
2690                                 "infrun: need to step-over [%s] first\n",
2691                                 target_pid_to_str (step_over->ptid));
2692
2693           /* Store the prev_pc for the stepping thread too, needed by
2694              switch_back_to_stepped_thread.  */
2695           tp->prev_pc = regcache_read_pc (get_current_regcache ());
2696           switch_to_thread (step_over->ptid);
2697           tp = step_over;
2698         }
2699     }
2700
2701   /* If we need to step over a breakpoint, and we're not using
2702      displaced stepping to do so, insert all breakpoints (watchpoints,
2703      etc.) but the one we're stepping over, step one instruction, and
2704      then re-insert the breakpoint when that step is finished.  */
2705   if (tp->stepping_over_breakpoint && !use_displaced_stepping (gdbarch))
2706     {
2707       struct regcache *regcache = get_current_regcache ();
2708
2709       set_step_over_info (get_regcache_aspace (regcache),
2710                           regcache_read_pc (regcache), 0);
2711     }
2712   else
2713     clear_step_over_info ();
2714
2715   insert_breakpoints ();
2716
2717   tp->control.trap_expected = tp->stepping_over_breakpoint;
2718
2719   annotate_starting ();
2720
2721   /* Make sure that output from GDB appears before output from the
2722      inferior.  */
2723   gdb_flush (gdb_stdout);
2724
2725   /* Refresh prev_pc value just prior to resuming.  This used to be
2726      done in stop_waiting, however, setting prev_pc there did not handle
2727      scenarios such as inferior function calls or returning from
2728      a function via the return command.  In those cases, the prev_pc
2729      value was not set properly for subsequent commands.  The prev_pc value 
2730      is used to initialize the starting line number in the ecs.  With an 
2731      invalid value, the gdb next command ends up stopping at the position
2732      represented by the next line table entry past our start position.
2733      On platforms that generate one line table entry per line, this
2734      is not a problem.  However, on the ia64, the compiler generates
2735      extraneous line table entries that do not increase the line number.
2736      When we issue the gdb next command on the ia64 after an inferior call
2737      or a return command, we often end up a few instructions forward, still 
2738      within the original line we started.
2739
2740      An attempt was made to refresh the prev_pc at the same time the
2741      execution_control_state is initialized (for instance, just before
2742      waiting for an inferior event).  But this approach did not work
2743      because of platforms that use ptrace, where the pc register cannot
2744      be read unless the inferior is stopped.  At that point, we are not
2745      guaranteed the inferior is stopped and so the regcache_read_pc() call
2746      can fail.  Setting the prev_pc value here ensures the value is updated
2747      correctly when the inferior is stopped.  */
2748   tp->prev_pc = regcache_read_pc (get_current_regcache ());
2749
2750   /* Resume inferior.  */
2751   resume (tp->suspend.stop_signal);
2752
2753   /* Wait for it to stop (if not standalone)
2754      and in any case decode why it stopped, and act accordingly.  */
2755   /* Do this only if we are not using the event loop, or if the target
2756      does not support asynchronous execution.  */
2757   if (!target_can_async_p ())
2758     {
2759       wait_for_inferior ();
2760       normal_stop ();
2761     }
2762 }
2763 \f
2764
2765 /* Start remote-debugging of a machine over a serial link.  */
2766
2767 void
2768 start_remote (int from_tty)
2769 {
2770   struct inferior *inferior;
2771
2772   inferior = current_inferior ();
2773   inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2774
2775   /* Always go on waiting for the target, regardless of the mode.  */
2776   /* FIXME: cagney/1999-09-23: At present it isn't possible to
2777      indicate to wait_for_inferior that a target should timeout if
2778      nothing is returned (instead of just blocking).  Because of this,
2779      targets expecting an immediate response need to, internally, set
2780      things up so that the target_wait() is forced to eventually
2781      timeout.  */
2782   /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2783      differentiate to its caller what the state of the target is after
2784      the initial open has been performed.  Here we're assuming that
2785      the target has stopped.  It should be possible to eventually have
2786      target_open() return to the caller an indication that the target
2787      is currently running and GDB state should be set to the same as
2788      for an async run.  */
2789   wait_for_inferior ();
2790
2791   /* Now that the inferior has stopped, do any bookkeeping like
2792      loading shared libraries.  We want to do this before normal_stop,
2793      so that the displayed frame is up to date.  */
2794   post_create_inferior (&current_target, from_tty);
2795
2796   normal_stop ();
2797 }
2798
2799 /* Initialize static vars when a new inferior begins.  */
2800
2801 void
2802 init_wait_for_inferior (void)
2803 {
2804   /* These are meaningless until the first time through wait_for_inferior.  */
2805
2806   breakpoint_init_inferior (inf_starting);
2807
2808   clear_proceed_status (0);
2809
2810   target_last_wait_ptid = minus_one_ptid;
2811
2812   previous_inferior_ptid = inferior_ptid;
2813
2814   /* Discard any skipped inlined frames.  */
2815   clear_inline_frame_state (minus_one_ptid);
2816 }
2817
2818 \f
2819 /* Data to be passed around while handling an event.  This data is
2820    discarded between events.  */
2821 struct execution_control_state
2822 {
2823   ptid_t ptid;
2824   /* The thread that got the event, if this was a thread event; NULL
2825      otherwise.  */
2826   struct thread_info *event_thread;
2827
2828   struct target_waitstatus ws;
2829   int stop_func_filled_in;
2830   CORE_ADDR stop_func_start;
2831   CORE_ADDR stop_func_end;
2832   const char *stop_func_name;
2833   int wait_some_more;
2834
2835   /* True if the event thread hit the single-step breakpoint of
2836      another thread.  Thus the event doesn't cause a stop, the thread
2837      needs to be single-stepped past the single-step breakpoint before
2838      we can switch back to the original stepping thread.  */
2839   int hit_singlestep_breakpoint;
2840 };
2841
2842 static void handle_inferior_event (struct execution_control_state *ecs);
2843
2844 static void handle_step_into_function (struct gdbarch *gdbarch,
2845                                        struct execution_control_state *ecs);
2846 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2847                                                 struct execution_control_state *ecs);
2848 static void handle_signal_stop (struct execution_control_state *ecs);
2849 static void check_exception_resume (struct execution_control_state *,
2850                                     struct frame_info *);
2851
2852 static void end_stepping_range (struct execution_control_state *ecs);
2853 static void stop_waiting (struct execution_control_state *ecs);
2854 static void prepare_to_wait (struct execution_control_state *ecs);
2855 static void keep_going (struct execution_control_state *ecs);
2856 static void process_event_stop_test (struct execution_control_state *ecs);
2857 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
2858
2859 /* Callback for iterate over threads.  If the thread is stopped, but
2860    the user/frontend doesn't know about that yet, go through
2861    normal_stop, as if the thread had just stopped now.  ARG points at
2862    a ptid.  If PTID is MINUS_ONE_PTID, applies to all threads.  If
2863    ptid_is_pid(PTID) is true, applies to all threads of the process
2864    pointed at by PTID.  Otherwise, apply only to the thread pointed by
2865    PTID.  */
2866
2867 static int
2868 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2869 {
2870   ptid_t ptid = * (ptid_t *) arg;
2871
2872   if ((ptid_equal (info->ptid, ptid)
2873        || ptid_equal (minus_one_ptid, ptid)
2874        || (ptid_is_pid (ptid)
2875            && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2876       && is_running (info->ptid)
2877       && !is_executing (info->ptid))
2878     {
2879       struct cleanup *old_chain;
2880       struct execution_control_state ecss;
2881       struct execution_control_state *ecs = &ecss;
2882
2883       memset (ecs, 0, sizeof (*ecs));
2884
2885       old_chain = make_cleanup_restore_current_thread ();
2886
2887       overlay_cache_invalid = 1;
2888       /* Flush target cache before starting to handle each event.
2889          Target was running and cache could be stale.  This is just a
2890          heuristic.  Running threads may modify target memory, but we
2891          don't get any event.  */
2892       target_dcache_invalidate ();
2893
2894       /* Go through handle_inferior_event/normal_stop, so we always
2895          have consistent output as if the stop event had been
2896          reported.  */
2897       ecs->ptid = info->ptid;
2898       ecs->event_thread = find_thread_ptid (info->ptid);
2899       ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2900       ecs->ws.value.sig = GDB_SIGNAL_0;
2901
2902       handle_inferior_event (ecs);
2903
2904       if (!ecs->wait_some_more)
2905         {
2906           struct thread_info *tp;
2907
2908           normal_stop ();
2909
2910           /* Finish off the continuations.  */
2911           tp = inferior_thread ();
2912           do_all_intermediate_continuations_thread (tp, 1);
2913           do_all_continuations_thread (tp, 1);
2914         }
2915
2916       do_cleanups (old_chain);
2917     }
2918
2919   return 0;
2920 }
2921
2922 /* This function is attached as a "thread_stop_requested" observer.
2923    Cleanup local state that assumed the PTID was to be resumed, and
2924    report the stop to the frontend.  */
2925
2926 static void
2927 infrun_thread_stop_requested (ptid_t ptid)
2928 {
2929   struct displaced_step_inferior_state *displaced;
2930
2931   /* PTID was requested to stop.  Remove it from the displaced
2932      stepping queue, so we don't try to resume it automatically.  */
2933
2934   for (displaced = displaced_step_inferior_states;
2935        displaced;
2936        displaced = displaced->next)
2937     {
2938       struct displaced_step_request *it, **prev_next_p;
2939
2940       it = displaced->step_request_queue;
2941       prev_next_p = &displaced->step_request_queue;
2942       while (it)
2943         {
2944           if (ptid_match (it->ptid, ptid))
2945             {
2946               *prev_next_p = it->next;
2947               it->next = NULL;
2948               xfree (it);
2949             }
2950           else
2951             {
2952               prev_next_p = &it->next;
2953             }
2954
2955           it = *prev_next_p;
2956         }
2957     }
2958
2959   iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2960 }
2961
2962 static void
2963 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2964 {
2965   if (ptid_equal (target_last_wait_ptid, tp->ptid))
2966     nullify_last_target_wait_ptid ();
2967 }
2968
2969 /* Delete the step resume, single-step and longjmp/exception resume
2970    breakpoints of TP.  */
2971
2972 static void
2973 delete_thread_infrun_breakpoints (struct thread_info *tp)
2974 {
2975   delete_step_resume_breakpoint (tp);
2976   delete_exception_resume_breakpoint (tp);
2977   delete_single_step_breakpoints (tp);
2978 }
2979
2980 /* If the target still has execution, call FUNC for each thread that
2981    just stopped.  In all-stop, that's all the non-exited threads; in
2982    non-stop, that's the current thread, only.  */
2983
2984 typedef void (*for_each_just_stopped_thread_callback_func)
2985   (struct thread_info *tp);
2986
2987 static void
2988 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
2989 {
2990   if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
2991     return;
2992
2993   if (non_stop)
2994     {
2995       /* If in non-stop mode, only the current thread stopped.  */
2996       func (inferior_thread ());
2997     }
2998   else
2999     {
3000       struct thread_info *tp;
3001
3002       /* In all-stop mode, all threads have stopped.  */
3003       ALL_NON_EXITED_THREADS (tp)
3004         {
3005           func (tp);
3006         }
3007     }
3008 }
3009
3010 /* Delete the step resume and longjmp/exception resume breakpoints of
3011    the threads that just stopped.  */
3012
3013 static void
3014 delete_just_stopped_threads_infrun_breakpoints (void)
3015 {
3016   for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3017 }
3018
3019 /* Delete the single-step breakpoints of the threads that just
3020    stopped.  */
3021
3022 static void
3023 delete_just_stopped_threads_single_step_breakpoints (void)
3024 {
3025   for_each_just_stopped_thread (delete_single_step_breakpoints);
3026 }
3027
3028 /* A cleanup wrapper.  */
3029
3030 static void
3031 delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
3032 {
3033   delete_just_stopped_threads_infrun_breakpoints ();
3034 }
3035
3036 /* Pretty print the results of target_wait, for debugging purposes.  */
3037
3038 static void
3039 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3040                            const struct target_waitstatus *ws)
3041 {
3042   char *status_string = target_waitstatus_to_string (ws);
3043   struct ui_file *tmp_stream = mem_fileopen ();
3044   char *text;
3045
3046   /* The text is split over several lines because it was getting too long.
3047      Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3048      output as a unit; we want only one timestamp printed if debug_timestamp
3049      is set.  */
3050
3051   fprintf_unfiltered (tmp_stream,
3052                       "infrun: target_wait (%d.%ld.%ld",
3053                       ptid_get_pid (waiton_ptid),
3054                       ptid_get_lwp (waiton_ptid),
3055                       ptid_get_tid (waiton_ptid));
3056   if (ptid_get_pid (waiton_ptid) != -1)
3057     fprintf_unfiltered (tmp_stream,
3058                         " [%s]", target_pid_to_str (waiton_ptid));
3059   fprintf_unfiltered (tmp_stream, ", status) =\n");
3060   fprintf_unfiltered (tmp_stream,
3061                       "infrun:   %d.%ld.%ld [%s],\n",
3062                       ptid_get_pid (result_ptid),
3063                       ptid_get_lwp (result_ptid),
3064                       ptid_get_tid (result_ptid),
3065                       target_pid_to_str (result_ptid));
3066   fprintf_unfiltered (tmp_stream,
3067                       "infrun:   %s\n",
3068                       status_string);
3069
3070   text = ui_file_xstrdup (tmp_stream, NULL);
3071
3072   /* This uses %s in part to handle %'s in the text, but also to avoid
3073      a gcc error: the format attribute requires a string literal.  */
3074   fprintf_unfiltered (gdb_stdlog, "%s", text);
3075
3076   xfree (status_string);
3077   xfree (text);
3078   ui_file_delete (tmp_stream);
3079 }
3080
3081 /* Prepare and stabilize the inferior for detaching it.  E.g.,
3082    detaching while a thread is displaced stepping is a recipe for
3083    crashing it, as nothing would readjust the PC out of the scratch
3084    pad.  */
3085
3086 void
3087 prepare_for_detach (void)
3088 {
3089   struct inferior *inf = current_inferior ();
3090   ptid_t pid_ptid = pid_to_ptid (inf->pid);
3091   struct cleanup *old_chain_1;
3092   struct displaced_step_inferior_state *displaced;
3093
3094   displaced = get_displaced_stepping_state (inf->pid);
3095
3096   /* Is any thread of this process displaced stepping?  If not,
3097      there's nothing else to do.  */
3098   if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3099     return;
3100
3101   if (debug_infrun)
3102     fprintf_unfiltered (gdb_stdlog,
3103                         "displaced-stepping in-process while detaching");
3104
3105   old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3106   inf->detaching = 1;
3107
3108   while (!ptid_equal (displaced->step_ptid, null_ptid))
3109     {
3110       struct cleanup *old_chain_2;
3111       struct execution_control_state ecss;
3112       struct execution_control_state *ecs;
3113
3114       ecs = &ecss;
3115       memset (ecs, 0, sizeof (*ecs));
3116
3117       overlay_cache_invalid = 1;
3118       /* Flush target cache before starting to handle each event.
3119          Target was running and cache could be stale.  This is just a
3120          heuristic.  Running threads may modify target memory, but we
3121          don't get any event.  */
3122       target_dcache_invalidate ();
3123
3124       if (deprecated_target_wait_hook)
3125         ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
3126       else
3127         ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
3128
3129       if (debug_infrun)
3130         print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3131
3132       /* If an error happens while handling the event, propagate GDB's
3133          knowledge of the executing state to the frontend/user running
3134          state.  */
3135       old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3136                                   &minus_one_ptid);
3137
3138       /* Now figure out what to do with the result of the result.  */
3139       handle_inferior_event (ecs);
3140
3141       /* No error, don't finish the state yet.  */
3142       discard_cleanups (old_chain_2);
3143
3144       /* Breakpoints and watchpoints are not installed on the target
3145          at this point, and signals are passed directly to the
3146          inferior, so this must mean the process is gone.  */
3147       if (!ecs->wait_some_more)
3148         {
3149           discard_cleanups (old_chain_1);
3150           error (_("Program exited while detaching"));
3151         }
3152     }
3153
3154   discard_cleanups (old_chain_1);
3155 }
3156
3157 /* Wait for control to return from inferior to debugger.
3158
3159    If inferior gets a signal, we may decide to start it up again
3160    instead of returning.  That is why there is a loop in this function.
3161    When this function actually returns it means the inferior
3162    should be left stopped and GDB should read more commands.  */
3163
3164 void
3165 wait_for_inferior (void)
3166 {
3167   struct cleanup *old_cleanups;
3168   struct cleanup *thread_state_chain;
3169
3170   if (debug_infrun)
3171     fprintf_unfiltered
3172       (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3173
3174   old_cleanups
3175     = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3176                     NULL);
3177
3178   /* If an error happens while handling the event, propagate GDB's
3179      knowledge of the executing state to the frontend/user running
3180      state.  */
3181   thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3182
3183   while (1)
3184     {
3185       struct execution_control_state ecss;
3186       struct execution_control_state *ecs = &ecss;
3187       ptid_t waiton_ptid = minus_one_ptid;
3188
3189       memset (ecs, 0, sizeof (*ecs));
3190
3191       overlay_cache_invalid = 1;
3192
3193       /* Flush target cache before starting to handle each event.
3194          Target was running and cache could be stale.  This is just a
3195          heuristic.  Running threads may modify target memory, but we
3196          don't get any event.  */
3197       target_dcache_invalidate ();
3198
3199       if (deprecated_target_wait_hook)
3200         ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
3201       else
3202         ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
3203
3204       if (debug_infrun)
3205         print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3206
3207       /* Now figure out what to do with the result of the result.  */
3208       handle_inferior_event (ecs);
3209
3210       if (!ecs->wait_some_more)
3211         break;
3212     }
3213
3214   /* No error, don't finish the state yet.  */
3215   discard_cleanups (thread_state_chain);
3216
3217   do_cleanups (old_cleanups);
3218 }
3219
3220 /* Cleanup that reinstalls the readline callback handler, if the
3221    target is running in the background.  If while handling the target
3222    event something triggered a secondary prompt, like e.g., a
3223    pagination prompt, we'll have removed the callback handler (see
3224    gdb_readline_wrapper_line).  Need to do this as we go back to the
3225    event loop, ready to process further input.  Note this has no
3226    effect if the handler hasn't actually been removed, because calling
3227    rl_callback_handler_install resets the line buffer, thus losing
3228    input.  */
3229
3230 static void
3231 reinstall_readline_callback_handler_cleanup (void *arg)
3232 {
3233   if (!interpreter_async)
3234     {
3235       /* We're not going back to the top level event loop yet.  Don't
3236          install the readline callback, as it'd prep the terminal,
3237          readline-style (raw, noecho) (e.g., --batch).  We'll install
3238          it the next time the prompt is displayed, when we're ready
3239          for input.  */
3240       return;
3241     }
3242
3243   if (async_command_editing_p && !sync_execution)
3244     gdb_rl_callback_handler_reinstall ();
3245 }
3246
3247 /* Asynchronous version of wait_for_inferior.  It is called by the
3248    event loop whenever a change of state is detected on the file
3249    descriptor corresponding to the target.  It can be called more than
3250    once to complete a single execution command.  In such cases we need
3251    to keep the state in a global variable ECSS.  If it is the last time
3252    that this function is called for a single execution command, then
3253    report to the user that the inferior has stopped, and do the
3254    necessary cleanups.  */
3255
3256 void
3257 fetch_inferior_event (void *client_data)
3258 {
3259   struct execution_control_state ecss;
3260   struct execution_control_state *ecs = &ecss;
3261   struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3262   struct cleanup *ts_old_chain;
3263   int was_sync = sync_execution;
3264   int cmd_done = 0;
3265   ptid_t waiton_ptid = minus_one_ptid;
3266
3267   memset (ecs, 0, sizeof (*ecs));
3268
3269   /* End up with readline processing input, if necessary.  */
3270   make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3271
3272   /* We're handling a live event, so make sure we're doing live
3273      debugging.  If we're looking at traceframes while the target is
3274      running, we're going to need to get back to that mode after
3275      handling the event.  */
3276   if (non_stop)
3277     {
3278       make_cleanup_restore_current_traceframe ();
3279       set_current_traceframe (-1);
3280     }
3281
3282   if (non_stop)
3283     /* In non-stop mode, the user/frontend should not notice a thread
3284        switch due to internal events.  Make sure we reverse to the
3285        user selected thread and frame after handling the event and
3286        running any breakpoint commands.  */
3287     make_cleanup_restore_current_thread ();
3288
3289   overlay_cache_invalid = 1;
3290   /* Flush target cache before starting to handle each event.  Target
3291      was running and cache could be stale.  This is just a heuristic.
3292      Running threads may modify target memory, but we don't get any
3293      event.  */
3294   target_dcache_invalidate ();
3295
3296   make_cleanup_restore_integer (&execution_direction);
3297   execution_direction = target_execution_direction ();
3298
3299   if (deprecated_target_wait_hook)
3300     ecs->ptid =
3301       deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
3302   else
3303     ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
3304
3305   if (debug_infrun)
3306     print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3307
3308   /* If an error happens while handling the event, propagate GDB's
3309      knowledge of the executing state to the frontend/user running
3310      state.  */
3311   if (!non_stop)
3312     ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3313   else
3314     ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3315
3316   /* Get executed before make_cleanup_restore_current_thread above to apply
3317      still for the thread which has thrown the exception.  */
3318   make_bpstat_clear_actions_cleanup ();
3319
3320   make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3321
3322   /* Now figure out what to do with the result of the result.  */
3323   handle_inferior_event (ecs);
3324
3325   if (!ecs->wait_some_more)
3326     {
3327       struct inferior *inf = find_inferior_ptid (ecs->ptid);
3328
3329       delete_just_stopped_threads_infrun_breakpoints ();
3330
3331       /* We may not find an inferior if this was a process exit.  */
3332       if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3333         normal_stop ();
3334
3335       if (target_has_execution
3336           && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
3337           && ecs->ws.kind != TARGET_WAITKIND_EXITED
3338           && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3339           && ecs->event_thread->step_multi
3340           && ecs->event_thread->control.stop_step)
3341         inferior_event_handler (INF_EXEC_CONTINUE, NULL);
3342       else
3343         {
3344           inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3345           cmd_done = 1;
3346         }
3347     }
3348
3349   /* No error, don't finish the thread states yet.  */
3350   discard_cleanups (ts_old_chain);
3351
3352   /* Revert thread and frame.  */
3353   do_cleanups (old_chain);
3354
3355   /* If the inferior was in sync execution mode, and now isn't,
3356      restore the prompt (a synchronous execution command has finished,
3357      and we're ready for input).  */
3358   if (interpreter_async && was_sync && !sync_execution)
3359     observer_notify_sync_execution_done ();
3360
3361   if (cmd_done
3362       && !was_sync
3363       && exec_done_display_p
3364       && (ptid_equal (inferior_ptid, null_ptid)
3365           || !is_running (inferior_ptid)))
3366     printf_unfiltered (_("completed.\n"));
3367 }
3368
3369 /* Record the frame and location we're currently stepping through.  */
3370 void
3371 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3372 {
3373   struct thread_info *tp = inferior_thread ();
3374
3375   tp->control.step_frame_id = get_frame_id (frame);
3376   tp->control.step_stack_frame_id = get_stack_frame_id (frame);
3377
3378   tp->current_symtab = sal.symtab;
3379   tp->current_line = sal.line;
3380 }
3381
3382 /* Clear context switchable stepping state.  */
3383
3384 void
3385 init_thread_stepping_state (struct thread_info *tss)
3386 {
3387   tss->stepped_breakpoint = 0;
3388   tss->stepping_over_breakpoint = 0;
3389   tss->stepping_over_watchpoint = 0;
3390   tss->step_after_step_resume_breakpoint = 0;
3391 }
3392
3393 /* Set the cached copy of the last ptid/waitstatus.  */
3394
3395 static void
3396 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3397 {
3398   target_last_wait_ptid = ptid;
3399   target_last_waitstatus = status;
3400 }
3401
3402 /* Return the cached copy of the last pid/waitstatus returned by
3403    target_wait()/deprecated_target_wait_hook().  The data is actually
3404    cached by handle_inferior_event(), which gets called immediately
3405    after target_wait()/deprecated_target_wait_hook().  */
3406
3407 void
3408 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
3409 {
3410   *ptidp = target_last_wait_ptid;
3411   *status = target_last_waitstatus;
3412 }
3413
3414 void
3415 nullify_last_target_wait_ptid (void)
3416 {
3417   target_last_wait_ptid = minus_one_ptid;
3418 }
3419
3420 /* Switch thread contexts.  */
3421
3422 static void
3423 context_switch (ptid_t ptid)
3424 {
3425   if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
3426     {
3427       fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3428                           target_pid_to_str (inferior_ptid));
3429       fprintf_unfiltered (gdb_stdlog, "to %s\n",
3430                           target_pid_to_str (ptid));
3431     }
3432
3433   switch_to_thread (ptid);
3434 }
3435
3436 static void
3437 adjust_pc_after_break (struct execution_control_state *ecs)
3438 {
3439   struct regcache *regcache;
3440   struct gdbarch *gdbarch;
3441   struct address_space *aspace;
3442   CORE_ADDR breakpoint_pc, decr_pc;
3443
3444   /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP.  If
3445      we aren't, just return.
3446
3447      We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
3448      affected by gdbarch_decr_pc_after_break.  Other waitkinds which are
3449      implemented by software breakpoints should be handled through the normal
3450      breakpoint layer.
3451
3452      NOTE drow/2004-01-31: On some targets, breakpoints may generate
3453      different signals (SIGILL or SIGEMT for instance), but it is less
3454      clear where the PC is pointing afterwards.  It may not match
3455      gdbarch_decr_pc_after_break.  I don't know any specific target that
3456      generates these signals at breakpoints (the code has been in GDB since at
3457      least 1992) so I can not guess how to handle them here.
3458
3459      In earlier versions of GDB, a target with 
3460      gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
3461      watchpoint affected by gdbarch_decr_pc_after_break.  I haven't found any
3462      target with both of these set in GDB history, and it seems unlikely to be
3463      correct, so gdbarch_have_nonsteppable_watchpoint is not checked here.  */
3464
3465   if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
3466     return;
3467
3468   if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
3469     return;
3470
3471   /* In reverse execution, when a breakpoint is hit, the instruction
3472      under it has already been de-executed.  The reported PC always
3473      points at the breakpoint address, so adjusting it further would
3474      be wrong.  E.g., consider this case on a decr_pc_after_break == 1
3475      architecture:
3476
3477        B1         0x08000000 :   INSN1
3478        B2         0x08000001 :   INSN2
3479                   0x08000002 :   INSN3
3480             PC -> 0x08000003 :   INSN4
3481
3482      Say you're stopped at 0x08000003 as above.  Reverse continuing
3483      from that point should hit B2 as below.  Reading the PC when the
3484      SIGTRAP is reported should read 0x08000001 and INSN2 should have
3485      been de-executed already.
3486
3487        B1         0x08000000 :   INSN1
3488        B2   PC -> 0x08000001 :   INSN2
3489                   0x08000002 :   INSN3
3490                   0x08000003 :   INSN4
3491
3492      We can't apply the same logic as for forward execution, because
3493      we would wrongly adjust the PC to 0x08000000, since there's a
3494      breakpoint at PC - 1.  We'd then report a hit on B1, although
3495      INSN1 hadn't been de-executed yet.  Doing nothing is the correct
3496      behaviour.  */
3497   if (execution_direction == EXEC_REVERSE)
3498     return;
3499
3500   /* If the target can tell whether the thread hit a SW breakpoint,
3501      trust it.  Targets that can tell also adjust the PC
3502      themselves.  */
3503   if (target_supports_stopped_by_sw_breakpoint ())
3504     return;
3505
3506   /* Note that relying on whether a breakpoint is planted in memory to
3507      determine this can fail.  E.g,. the breakpoint could have been
3508      removed since.  Or the thread could have been told to step an
3509      instruction the size of a breakpoint instruction, and only
3510      _after_ was a breakpoint inserted at its address.  */
3511
3512   /* If this target does not decrement the PC after breakpoints, then
3513      we have nothing to do.  */
3514   regcache = get_thread_regcache (ecs->ptid);
3515   gdbarch = get_regcache_arch (regcache);
3516
3517   decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3518   if (decr_pc == 0)
3519     return;
3520
3521   aspace = get_regcache_aspace (regcache);
3522
3523   /* Find the location where (if we've hit a breakpoint) the
3524      breakpoint would be.  */
3525   breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
3526
3527   /* If the target can't tell whether a software breakpoint triggered,
3528      fallback to figuring it out based on breakpoints we think were
3529      inserted in the target, and on whether the thread was stepped or
3530      continued.  */
3531
3532   /* Check whether there actually is a software breakpoint inserted at
3533      that location.
3534
3535      If in non-stop mode, a race condition is possible where we've
3536      removed a breakpoint, but stop events for that breakpoint were
3537      already queued and arrive later.  To suppress those spurious
3538      SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3539      and retire them after a number of stop events are reported.  Note
3540      this is an heuristic and can thus get confused.  The real fix is
3541      to get the "stopped by SW BP and needs adjustment" info out of
3542      the target/kernel (and thus never reach here; see above).  */
3543   if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3544       || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
3545     {
3546       struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
3547
3548       if (record_full_is_used ())
3549         record_full_gdb_operation_disable_set ();
3550
3551       /* When using hardware single-step, a SIGTRAP is reported for both
3552          a completed single-step and a software breakpoint.  Need to
3553          differentiate between the two, as the latter needs adjusting
3554          but the former does not.
3555
3556          The SIGTRAP can be due to a completed hardware single-step only if 
3557           - we didn't insert software single-step breakpoints
3558           - this thread is currently being stepped
3559
3560          If any of these events did not occur, we must have stopped due
3561          to hitting a software breakpoint, and have to back up to the
3562          breakpoint address.
3563
3564          As a special case, we could have hardware single-stepped a
3565          software breakpoint.  In this case (prev_pc == breakpoint_pc),
3566          we also need to back up to the breakpoint address.  */
3567
3568       if (thread_has_single_step_breakpoints_set (ecs->event_thread)
3569           || !currently_stepping (ecs->event_thread)
3570           || (ecs->event_thread->stepped_breakpoint
3571               && ecs->event_thread->prev_pc == breakpoint_pc))
3572         regcache_write_pc (regcache, breakpoint_pc);
3573
3574       do_cleanups (old_cleanups);
3575     }
3576 }
3577
3578 static int
3579 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3580 {
3581   for (frame = get_prev_frame (frame);
3582        frame != NULL;
3583        frame = get_prev_frame (frame))
3584     {
3585       if (frame_id_eq (get_frame_id (frame), step_frame_id))
3586         return 1;
3587       if (get_frame_type (frame) != INLINE_FRAME)
3588         break;
3589     }
3590
3591   return 0;
3592 }
3593
3594 /* Auxiliary function that handles syscall entry/return events.
3595    It returns 1 if the inferior should keep going (and GDB
3596    should ignore the event), or 0 if the event deserves to be
3597    processed.  */
3598
3599 static int
3600 handle_syscall_event (struct execution_control_state *ecs)
3601 {
3602   struct regcache *regcache;
3603   int syscall_number;
3604
3605   if (!ptid_equal (ecs->ptid, inferior_ptid))
3606     context_switch (ecs->ptid);
3607
3608   regcache = get_thread_regcache (ecs->ptid);
3609   syscall_number = ecs->ws.value.syscall_number;
3610   stop_pc = regcache_read_pc (regcache);
3611
3612   if (catch_syscall_enabled () > 0
3613       && catching_syscall_number (syscall_number) > 0)
3614     {
3615       if (debug_infrun)
3616         fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3617                             syscall_number);
3618
3619       ecs->event_thread->control.stop_bpstat
3620         = bpstat_stop_status (get_regcache_aspace (regcache),
3621                               stop_pc, ecs->ptid, &ecs->ws);
3622
3623       if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3624         {
3625           /* Catchpoint hit.  */
3626           return 0;
3627         }
3628     }
3629
3630   /* If no catchpoint triggered for this, then keep going.  */
3631   keep_going (ecs);
3632   return 1;
3633 }
3634
3635 /* Lazily fill in the execution_control_state's stop_func_* fields.  */
3636
3637 static void
3638 fill_in_stop_func (struct gdbarch *gdbarch,
3639                    struct execution_control_state *ecs)
3640 {
3641   if (!ecs->stop_func_filled_in)
3642     {
3643       /* Don't care about return value; stop_func_start and stop_func_name
3644          will both be 0 if it doesn't work.  */
3645       find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3646                                 &ecs->stop_func_start, &ecs->stop_func_end);
3647       ecs->stop_func_start
3648         += gdbarch_deprecated_function_start_offset (gdbarch);
3649
3650       if (gdbarch_skip_entrypoint_p (gdbarch))
3651         ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
3652                                                         ecs->stop_func_start);
3653
3654       ecs->stop_func_filled_in = 1;
3655     }
3656 }
3657
3658
3659 /* Return the STOP_SOON field of the inferior pointed at by PTID.  */
3660
3661 static enum stop_kind
3662 get_inferior_stop_soon (ptid_t ptid)
3663 {
3664   struct inferior *inf = find_inferior_ptid (ptid);
3665
3666   gdb_assert (inf != NULL);
3667   return inf->control.stop_soon;
3668 }
3669
3670 /* Given an execution control state that has been freshly filled in by
3671    an event from the inferior, figure out what it means and take
3672    appropriate action.
3673
3674    The alternatives are:
3675
3676    1) stop_waiting and return; to really stop and return to the
3677    debugger.
3678
3679    2) keep_going and return; to wait for the next event (set
3680    ecs->event_thread->stepping_over_breakpoint to 1 to single step
3681    once).  */
3682
3683 static void
3684 handle_inferior_event_1 (struct execution_control_state *ecs)
3685 {
3686   enum stop_kind stop_soon;
3687
3688   if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3689     {
3690       /* We had an event in the inferior, but we are not interested in
3691          handling it at this level.  The lower layers have already
3692          done what needs to be done, if anything.
3693
3694          One of the possible circumstances for this is when the
3695          inferior produces output for the console.  The inferior has
3696          not stopped, and we are ignoring the event.  Another possible
3697          circumstance is any event which the lower level knows will be
3698          reported multiple times without an intervening resume.  */
3699       if (debug_infrun)
3700         fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3701       prepare_to_wait (ecs);
3702       return;
3703     }
3704
3705   if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3706       && target_can_async_p () && !sync_execution)
3707     {
3708       /* There were no unwaited-for children left in the target, but,
3709          we're not synchronously waiting for events either.  Just
3710          ignore.  Otherwise, if we were running a synchronous
3711          execution command, we need to cancel it and give the user
3712          back the terminal.  */
3713       if (debug_infrun)
3714         fprintf_unfiltered (gdb_stdlog,
3715                             "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3716       prepare_to_wait (ecs);
3717       return;
3718     }
3719
3720   /* Cache the last pid/waitstatus.  */
3721   set_last_target_status (ecs->ptid, ecs->ws);
3722
3723   /* Always clear state belonging to the previous time we stopped.  */
3724   stop_stack_dummy = STOP_NONE;
3725
3726   if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3727     {
3728       /* No unwaited-for children left.  IOW, all resumed children
3729          have exited.  */
3730       if (debug_infrun)
3731         fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3732
3733       stop_print_frame = 0;
3734       stop_waiting (ecs);
3735       return;
3736     }
3737
3738   if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3739       && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
3740     {
3741       ecs->event_thread = find_thread_ptid (ecs->ptid);
3742       /* If it's a new thread, add it to the thread database.  */
3743       if (ecs->event_thread == NULL)
3744         ecs->event_thread = add_thread (ecs->ptid);
3745
3746       /* Disable range stepping.  If the next step request could use a
3747          range, this will be end up re-enabled then.  */
3748       ecs->event_thread->control.may_range_step = 0;
3749     }
3750
3751   /* Dependent on valid ECS->EVENT_THREAD.  */
3752   adjust_pc_after_break (ecs);
3753
3754   /* Dependent on the current PC value modified by adjust_pc_after_break.  */
3755   reinit_frame_cache ();
3756
3757   breakpoint_retire_moribund ();
3758
3759   /* First, distinguish signals caused by the debugger from signals
3760      that have to do with the program's own actions.  Note that
3761      breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3762      on the operating system version.  Here we detect when a SIGILL or
3763      SIGEMT is really a breakpoint and change it to SIGTRAP.  We do
3764      something similar for SIGSEGV, since a SIGSEGV will be generated
3765      when we're trying to execute a breakpoint instruction on a
3766      non-executable stack.  This happens for call dummy breakpoints
3767      for architectures like SPARC that place call dummies on the
3768      stack.  */
3769   if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3770       && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3771           || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3772           || ecs->ws.value.sig == GDB_SIGNAL_EMT))
3773     {
3774       struct regcache *regcache = get_thread_regcache (ecs->ptid);
3775
3776       if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3777                                       regcache_read_pc (regcache)))
3778         {
3779           if (debug_infrun)
3780             fprintf_unfiltered (gdb_stdlog,
3781                                 "infrun: Treating signal as SIGTRAP\n");
3782           ecs->ws.value.sig = GDB_SIGNAL_TRAP;
3783         }
3784     }
3785
3786   /* Mark the non-executing threads accordingly.  In all-stop, all
3787      threads of all processes are stopped when we get any event
3788      reported.  In non-stop mode, only the event thread stops.  If
3789      we're handling a process exit in non-stop mode, there's nothing
3790      to do, as threads of the dead process are gone, and threads of
3791      any other process were left running.  */
3792   if (!non_stop)
3793     set_executing (minus_one_ptid, 0);
3794   else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3795            && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3796     set_executing (ecs->ptid, 0);
3797
3798   switch (ecs->ws.kind)
3799     {
3800     case TARGET_WAITKIND_LOADED:
3801       if (debug_infrun)
3802         fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3803       if (!ptid_equal (ecs->ptid, inferior_ptid))
3804         context_switch (ecs->ptid);
3805       /* Ignore gracefully during startup of the inferior, as it might
3806          be the shell which has just loaded some objects, otherwise
3807          add the symbols for the newly loaded objects.  Also ignore at
3808          the beginning of an attach or remote session; we will query
3809          the full list of libraries once the connection is
3810          established.  */
3811
3812       stop_soon = get_inferior_stop_soon (ecs->ptid);
3813       if (stop_soon == NO_STOP_QUIETLY)
3814         {
3815           struct regcache *regcache;
3816
3817           regcache = get_thread_regcache (ecs->ptid);
3818
3819           handle_solib_event ();
3820
3821           ecs->event_thread->control.stop_bpstat
3822             = bpstat_stop_status (get_regcache_aspace (regcache),
3823                                   stop_pc, ecs->ptid, &ecs->ws);
3824
3825           if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3826             {
3827               /* A catchpoint triggered.  */
3828               process_event_stop_test (ecs);
3829               return;
3830             }
3831
3832           /* If requested, stop when the dynamic linker notifies
3833              gdb of events.  This allows the user to get control
3834              and place breakpoints in initializer routines for
3835              dynamically loaded objects (among other things).  */
3836           ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3837           if (stop_on_solib_events)
3838             {
3839               /* Make sure we print "Stopped due to solib-event" in
3840                  normal_stop.  */
3841               stop_print_frame = 1;
3842
3843               stop_waiting (ecs);
3844               return;
3845             }
3846         }
3847
3848       /* If we are skipping through a shell, or through shared library
3849          loading that we aren't interested in, resume the program.  If
3850          we're running the program normally, also resume.  */
3851       if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3852         {
3853           /* Loading of shared libraries might have changed breakpoint
3854              addresses.  Make sure new breakpoints are inserted.  */
3855           if (stop_soon == NO_STOP_QUIETLY)
3856             insert_breakpoints ();
3857           resume (GDB_SIGNAL_0);
3858           prepare_to_wait (ecs);
3859           return;
3860         }
3861
3862       /* But stop if we're attaching or setting up a remote
3863          connection.  */
3864       if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3865           || stop_soon == STOP_QUIETLY_REMOTE)
3866         {
3867           if (debug_infrun)
3868             fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
3869           stop_waiting (ecs);
3870           return;
3871         }
3872
3873       internal_error (__FILE__, __LINE__,
3874                       _("unhandled stop_soon: %d"), (int) stop_soon);
3875
3876     case TARGET_WAITKIND_SPURIOUS:
3877       if (debug_infrun)
3878         fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3879       if (!ptid_equal (ecs->ptid, inferior_ptid))
3880         context_switch (ecs->ptid);
3881       resume (GDB_SIGNAL_0);
3882       prepare_to_wait (ecs);
3883       return;
3884
3885     case TARGET_WAITKIND_EXITED:
3886     case TARGET_WAITKIND_SIGNALLED:
3887       if (debug_infrun)
3888         {
3889           if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3890             fprintf_unfiltered (gdb_stdlog,
3891                                 "infrun: TARGET_WAITKIND_EXITED\n");
3892           else
3893             fprintf_unfiltered (gdb_stdlog,
3894                                 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3895         }
3896
3897       inferior_ptid = ecs->ptid;
3898       set_current_inferior (find_inferior_ptid (ecs->ptid));
3899       set_current_program_space (current_inferior ()->pspace);
3900       handle_vfork_child_exec_or_exit (0);
3901       target_terminal_ours ();  /* Must do this before mourn anyway.  */
3902
3903       /* Clearing any previous state of convenience variables.  */
3904       clear_exit_convenience_vars ();
3905
3906       if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3907         {
3908           /* Record the exit code in the convenience variable $_exitcode, so
3909              that the user can inspect this again later.  */
3910           set_internalvar_integer (lookup_internalvar ("_exitcode"),
3911                                    (LONGEST) ecs->ws.value.integer);
3912
3913           /* Also record this in the inferior itself.  */
3914           current_inferior ()->has_exit_code = 1;
3915           current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3916
3917           /* Support the --return-child-result option.  */
3918           return_child_result_value = ecs->ws.value.integer;
3919
3920           observer_notify_exited (ecs->ws.value.integer);
3921         }
3922       else
3923         {
3924           struct regcache *regcache = get_thread_regcache (ecs->ptid);
3925           struct gdbarch *gdbarch = get_regcache_arch (regcache);
3926
3927           if (gdbarch_gdb_signal_to_target_p (gdbarch))
3928             {
3929               /* Set the value of the internal variable $_exitsignal,
3930                  which holds the signal uncaught by the inferior.  */
3931               set_internalvar_integer (lookup_internalvar ("_exitsignal"),
3932                                        gdbarch_gdb_signal_to_target (gdbarch,
3933                                                           ecs->ws.value.sig));
3934             }
3935           else
3936             {
3937               /* We don't have access to the target's method used for
3938                  converting between signal numbers (GDB's internal
3939                  representation <-> target's representation).
3940                  Therefore, we cannot do a good job at displaying this
3941                  information to the user.  It's better to just warn
3942                  her about it (if infrun debugging is enabled), and
3943                  give up.  */
3944               if (debug_infrun)
3945                 fprintf_filtered (gdb_stdlog, _("\
3946 Cannot fill $_exitsignal with the correct signal number.\n"));
3947             }
3948
3949           observer_notify_signal_exited (ecs->ws.value.sig);
3950         }
3951
3952       gdb_flush (gdb_stdout);
3953       target_mourn_inferior ();
3954       stop_print_frame = 0;
3955       stop_waiting (ecs);
3956       return;
3957
3958       /* The following are the only cases in which we keep going;
3959          the above cases end in a continue or goto.  */
3960     case TARGET_WAITKIND_FORKED:
3961     case TARGET_WAITKIND_VFORKED:
3962       if (debug_infrun)
3963         {
3964           if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3965             fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3966           else
3967             fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3968         }
3969
3970       /* Check whether the inferior is displaced stepping.  */
3971       {
3972         struct regcache *regcache = get_thread_regcache (ecs->ptid);
3973         struct gdbarch *gdbarch = get_regcache_arch (regcache);
3974         struct displaced_step_inferior_state *displaced
3975           = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3976
3977         /* If checking displaced stepping is supported, and thread
3978            ecs->ptid is displaced stepping.  */
3979         if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3980           {
3981             struct inferior *parent_inf
3982               = find_inferior_ptid (ecs->ptid);
3983             struct regcache *child_regcache;
3984             CORE_ADDR parent_pc;
3985
3986             /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3987                indicating that the displaced stepping of syscall instruction
3988                has been done.  Perform cleanup for parent process here.  Note
3989                that this operation also cleans up the child process for vfork,
3990                because their pages are shared.  */
3991             displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
3992
3993             if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3994               {
3995                 /* Restore scratch pad for child process.  */
3996                 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3997               }
3998
3999             /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4000                the child's PC is also within the scratchpad.  Set the child's PC
4001                to the parent's PC value, which has already been fixed up.
4002                FIXME: we use the parent's aspace here, although we're touching
4003                the child, because the child hasn't been added to the inferior
4004                list yet at this point.  */
4005
4006             child_regcache
4007               = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4008                                                  gdbarch,
4009                                                  parent_inf->aspace);
4010             /* Read PC value of parent process.  */
4011             parent_pc = regcache_read_pc (regcache);
4012
4013             if (debug_displaced)
4014               fprintf_unfiltered (gdb_stdlog,
4015                                   "displaced: write child pc from %s to %s\n",
4016                                   paddress (gdbarch,
4017                                             regcache_read_pc (child_regcache)),
4018                                   paddress (gdbarch, parent_pc));
4019
4020             regcache_write_pc (child_regcache, parent_pc);
4021           }
4022       }
4023
4024       if (!ptid_equal (ecs->ptid, inferior_ptid))
4025         context_switch (ecs->ptid);
4026
4027       /* Immediately detach breakpoints from the child before there's
4028          any chance of letting the user delete breakpoints from the
4029          breakpoint lists.  If we don't do this early, it's easy to
4030          leave left over traps in the child, vis: "break foo; catch
4031          fork; c; <fork>; del; c; <child calls foo>".  We only follow
4032          the fork on the last `continue', and by that time the
4033          breakpoint at "foo" is long gone from the breakpoint table.
4034          If we vforked, then we don't need to unpatch here, since both
4035          parent and child are sharing the same memory pages; we'll
4036          need to unpatch at follow/detach time instead to be certain
4037          that new breakpoints added between catchpoint hit time and
4038          vfork follow are detached.  */
4039       if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
4040         {
4041           /* This won't actually modify the breakpoint list, but will
4042              physically remove the breakpoints from the child.  */
4043           detach_breakpoints (ecs->ws.value.related_pid);
4044         }
4045
4046       delete_just_stopped_threads_single_step_breakpoints ();
4047
4048       /* In case the event is caught by a catchpoint, remember that
4049          the event is to be followed at the next resume of the thread,
4050          and not immediately.  */
4051       ecs->event_thread->pending_follow = ecs->ws;
4052
4053       stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
4054
4055       ecs->event_thread->control.stop_bpstat
4056         = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4057                               stop_pc, ecs->ptid, &ecs->ws);
4058
4059       /* If no catchpoint triggered for this, then keep going.  Note
4060          that we're interested in knowing the bpstat actually causes a
4061          stop, not just if it may explain the signal.  Software
4062          watchpoints, for example, always appear in the bpstat.  */
4063       if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4064         {
4065           ptid_t parent;
4066           ptid_t child;
4067           int should_resume;
4068           int follow_child
4069             = (follow_fork_mode_string == follow_fork_mode_child);
4070
4071           ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4072
4073           should_resume = follow_fork ();
4074
4075           parent = ecs->ptid;
4076           child = ecs->ws.value.related_pid;
4077
4078           /* In non-stop mode, also resume the other branch.  */
4079           if (non_stop && !detach_fork)
4080             {
4081               if (follow_child)
4082                 switch_to_thread (parent);
4083               else
4084                 switch_to_thread (child);
4085
4086               ecs->event_thread = inferior_thread ();
4087               ecs->ptid = inferior_ptid;
4088               keep_going (ecs);
4089             }
4090
4091           if (follow_child)
4092             switch_to_thread (child);
4093           else
4094             switch_to_thread (parent);
4095
4096           ecs->event_thread = inferior_thread ();
4097           ecs->ptid = inferior_ptid;
4098
4099           if (should_resume)
4100             keep_going (ecs);
4101           else
4102             stop_waiting (ecs);
4103           return;
4104         }
4105       process_event_stop_test (ecs);
4106       return;
4107
4108     case TARGET_WAITKIND_VFORK_DONE:
4109       /* Done with the shared memory region.  Re-insert breakpoints in
4110          the parent, and keep going.  */
4111
4112       if (debug_infrun)
4113         fprintf_unfiltered (gdb_stdlog,
4114                             "infrun: TARGET_WAITKIND_VFORK_DONE\n");
4115
4116       if (!ptid_equal (ecs->ptid, inferior_ptid))
4117         context_switch (ecs->ptid);
4118
4119       current_inferior ()->waiting_for_vfork_done = 0;
4120       current_inferior ()->pspace->breakpoints_not_allowed = 0;
4121       /* This also takes care of reinserting breakpoints in the
4122          previously locked inferior.  */
4123       keep_going (ecs);
4124       return;
4125
4126     case TARGET_WAITKIND_EXECD:
4127       if (debug_infrun)
4128         fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
4129
4130       if (!ptid_equal (ecs->ptid, inferior_ptid))
4131         context_switch (ecs->ptid);
4132
4133       stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
4134
4135       /* Do whatever is necessary to the parent branch of the vfork.  */
4136       handle_vfork_child_exec_or_exit (1);
4137
4138       /* This causes the eventpoints and symbol table to be reset.
4139          Must do this now, before trying to determine whether to
4140          stop.  */
4141       follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
4142
4143       ecs->event_thread->control.stop_bpstat
4144         = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4145                               stop_pc, ecs->ptid, &ecs->ws);
4146
4147       /* Note that this may be referenced from inside
4148          bpstat_stop_status above, through inferior_has_execd.  */
4149       xfree (ecs->ws.value.execd_pathname);
4150       ecs->ws.value.execd_pathname = NULL;
4151
4152       /* If no catchpoint triggered for this, then keep going.  */
4153       if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4154         {
4155           ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4156           keep_going (ecs);
4157           return;
4158         }
4159       process_event_stop_test (ecs);
4160       return;
4161
4162       /* Be careful not to try to gather much state about a thread
4163          that's in a syscall.  It's frequently a losing proposition.  */
4164     case TARGET_WAITKIND_SYSCALL_ENTRY:
4165       if (debug_infrun)
4166         fprintf_unfiltered (gdb_stdlog,
4167                             "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
4168       /* Getting the current syscall number.  */
4169       if (handle_syscall_event (ecs) == 0)
4170         process_event_stop_test (ecs);
4171       return;
4172
4173       /* Before examining the threads further, step this thread to
4174          get it entirely out of the syscall.  (We get notice of the
4175          event when the thread is just on the verge of exiting a
4176          syscall.  Stepping one instruction seems to get it back
4177          into user code.)  */
4178     case TARGET_WAITKIND_SYSCALL_RETURN:
4179       if (debug_infrun)
4180         fprintf_unfiltered (gdb_stdlog,
4181                             "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
4182       if (handle_syscall_event (ecs) == 0)
4183         process_event_stop_test (ecs);
4184       return;
4185
4186     case TARGET_WAITKIND_STOPPED:
4187       if (debug_infrun)
4188         fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
4189       ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
4190       handle_signal_stop (ecs);
4191       return;
4192
4193     case TARGET_WAITKIND_NO_HISTORY:
4194       if (debug_infrun)
4195         fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
4196       /* Reverse execution: target ran out of history info.  */
4197
4198       delete_just_stopped_threads_single_step_breakpoints ();
4199       stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
4200       observer_notify_no_history ();
4201       stop_waiting (ecs);
4202       return;
4203     }
4204 }
4205
4206 /* A wrapper around handle_inferior_event_1, which also makes sure
4207    that all temporary struct value objects that were created during
4208    the handling of the event get deleted at the end.  */
4209
4210 static void
4211 handle_inferior_event (struct execution_control_state *ecs)
4212 {
4213   struct value *mark = value_mark ();
4214
4215   handle_inferior_event_1 (ecs);
4216   /* Purge all temporary values created during the event handling,
4217      as it could be a long time before we return to the command level
4218      where such values would otherwise be purged.  */
4219   value_free_to_mark (mark);
4220 }
4221
4222 /* Come here when the program has stopped with a signal.  */
4223
4224 static void
4225 handle_signal_stop (struct execution_control_state *ecs)
4226 {
4227   struct frame_info *frame;
4228   struct gdbarch *gdbarch;
4229   int stopped_by_watchpoint;
4230   enum stop_kind stop_soon;
4231   int random_signal;
4232
4233   gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
4234
4235   /* Do we need to clean up the state of a thread that has
4236      completed a displaced single-step?  (Doing so usually affects
4237      the PC, so do it here, before we set stop_pc.)  */
4238   displaced_step_fixup (ecs->ptid,
4239                         ecs->event_thread->suspend.stop_signal);
4240
4241   /* If we either finished a single-step or hit a breakpoint, but
4242      the user wanted this thread to be stopped, pretend we got a
4243      SIG0 (generic unsignaled stop).  */
4244   if (ecs->event_thread->stop_requested
4245       && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4246     ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4247
4248   stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
4249
4250   if (debug_infrun)
4251     {
4252       struct regcache *regcache = get_thread_regcache (ecs->ptid);
4253       struct gdbarch *gdbarch = get_regcache_arch (regcache);
4254       struct cleanup *old_chain = save_inferior_ptid ();
4255
4256       inferior_ptid = ecs->ptid;
4257
4258       fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
4259                           paddress (gdbarch, stop_pc));
4260       if (target_stopped_by_watchpoint ())
4261         {
4262           CORE_ADDR addr;
4263
4264           fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
4265
4266           if (target_stopped_data_address (&current_target, &addr))
4267             fprintf_unfiltered (gdb_stdlog,
4268                                 "infrun: stopped data address = %s\n",
4269                                 paddress (gdbarch, addr));
4270           else
4271             fprintf_unfiltered (gdb_stdlog,
4272                                 "infrun: (no data address available)\n");
4273         }
4274
4275       do_cleanups (old_chain);
4276     }
4277
4278   /* This is originated from start_remote(), start_inferior() and
4279      shared libraries hook functions.  */
4280   stop_soon = get_inferior_stop_soon (ecs->ptid);
4281   if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4282     {
4283       if (!ptid_equal (ecs->ptid, inferior_ptid))
4284         context_switch (ecs->ptid);
4285       if (debug_infrun)
4286         fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4287       stop_print_frame = 1;
4288       stop_waiting (ecs);
4289       return;
4290     }
4291
4292   if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4293       && stop_after_trap)
4294     {
4295       if (!ptid_equal (ecs->ptid, inferior_ptid))
4296         context_switch (ecs->ptid);
4297       if (debug_infrun)
4298         fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4299       stop_print_frame = 0;
4300       stop_waiting (ecs);
4301       return;
4302     }
4303
4304   /* This originates from attach_command().  We need to overwrite
4305      the stop_signal here, because some kernels don't ignore a
4306      SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4307      See more comments in inferior.h.  On the other hand, if we
4308      get a non-SIGSTOP, report it to the user - assume the backend
4309      will handle the SIGSTOP if it should show up later.
4310
4311      Also consider that the attach is complete when we see a
4312      SIGTRAP.  Some systems (e.g. Windows), and stubs supporting
4313      target extended-remote report it instead of a SIGSTOP
4314      (e.g. gdbserver).  We already rely on SIGTRAP being our
4315      signal, so this is no exception.
4316
4317      Also consider that the attach is complete when we see a
4318      GDB_SIGNAL_0.  In non-stop mode, GDB will explicitly tell
4319      the target to stop all threads of the inferior, in case the
4320      low level attach operation doesn't stop them implicitly.  If
4321      they weren't stopped implicitly, then the stub will report a
4322      GDB_SIGNAL_0, meaning: stopped for no particular reason
4323      other than GDB's request.  */
4324   if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4325       && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4326           || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4327           || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4328     {
4329       stop_print_frame = 1;
4330       stop_waiting (ecs);
4331       ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4332       return;
4333     }
4334
4335   /* See if something interesting happened to the non-current thread.  If
4336      so, then switch to that thread.  */
4337   if (!ptid_equal (ecs->ptid, inferior_ptid))
4338     {
4339       if (debug_infrun)
4340         fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
4341
4342       context_switch (ecs->ptid);
4343
4344       if (deprecated_context_hook)
4345         deprecated_context_hook (pid_to_thread_id (ecs->ptid));
4346     }
4347
4348   /* At this point, get hold of the now-current thread's frame.  */
4349   frame = get_current_frame ();
4350   gdbarch = get_frame_arch (frame);
4351
4352   /* Pull the single step breakpoints out of the target.  */
4353   if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4354     {
4355       struct regcache *regcache;
4356       struct address_space *aspace;
4357       CORE_ADDR pc;
4358
4359       regcache = get_thread_regcache (ecs->ptid);
4360       aspace = get_regcache_aspace (regcache);
4361       pc = regcache_read_pc (regcache);
4362
4363       /* However, before doing so, if this single-step breakpoint was
4364          actually for another thread, set this thread up for moving
4365          past it.  */
4366       if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
4367                                                    aspace, pc))
4368         {
4369           if (single_step_breakpoint_inserted_here_p (aspace, pc))
4370             {
4371               if (debug_infrun)
4372                 {
4373                   fprintf_unfiltered (gdb_stdlog,
4374                                       "infrun: [%s] hit another thread's "
4375                                       "single-step breakpoint\n",
4376                                       target_pid_to_str (ecs->ptid));
4377                 }
4378               ecs->hit_singlestep_breakpoint = 1;
4379             }
4380         }
4381       else
4382         {
4383           if (debug_infrun)
4384             {
4385               fprintf_unfiltered (gdb_stdlog,
4386                                   "infrun: [%s] hit its "
4387                                   "single-step breakpoint\n",
4388                                   target_pid_to_str (ecs->ptid));
4389             }
4390         }
4391     }
4392   delete_just_stopped_threads_single_step_breakpoints ();
4393
4394   if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4395       && ecs->event_thread->control.trap_expected
4396       && ecs->event_thread->stepping_over_watchpoint)
4397     stopped_by_watchpoint = 0;
4398   else
4399     stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4400
4401   /* If necessary, step over this watchpoint.  We'll be back to display
4402      it in a moment.  */
4403   if (stopped_by_watchpoint
4404       && (target_have_steppable_watchpoint
4405           || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
4406     {
4407       /* At this point, we are stopped at an instruction which has
4408          attempted to write to a piece of memory under control of
4409          a watchpoint.  The instruction hasn't actually executed
4410          yet.  If we were to evaluate the watchpoint expression
4411          now, we would get the old value, and therefore no change
4412          would seem to have occurred.
4413
4414          In order to make watchpoints work `right', we really need
4415          to complete the memory write, and then evaluate the
4416          watchpoint expression.  We do this by single-stepping the
4417          target.
4418
4419          It may not be necessary to disable the watchpoint to step over
4420          it.  For example, the PA can (with some kernel cooperation)
4421          single step over a watchpoint without disabling the watchpoint.
4422
4423          It is far more common to need to disable a watchpoint to step
4424          the inferior over it.  If we have non-steppable watchpoints,
4425          we must disable the current watchpoint; it's simplest to
4426          disable all watchpoints.
4427
4428          Any breakpoint at PC must also be stepped over -- if there's
4429          one, it will have already triggered before the watchpoint
4430          triggered, and we either already reported it to the user, or
4431          it didn't cause a stop and we called keep_going.  In either
4432          case, if there was a breakpoint at PC, we must be trying to
4433          step past it.  */
4434       ecs->event_thread->stepping_over_watchpoint = 1;
4435       keep_going (ecs);
4436       return;
4437     }
4438
4439   ecs->event_thread->stepping_over_breakpoint = 0;
4440   ecs->event_thread->stepping_over_watchpoint = 0;
4441   bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4442   ecs->event_thread->control.stop_step = 0;
4443   stop_print_frame = 1;
4444   stopped_by_random_signal = 0;
4445
4446   /* Hide inlined functions starting here, unless we just performed stepi or
4447      nexti.  After stepi and nexti, always show the innermost frame (not any
4448      inline function call sites).  */
4449   if (ecs->event_thread->control.step_range_end != 1)
4450     {
4451       struct address_space *aspace = 
4452         get_regcache_aspace (get_thread_regcache (ecs->ptid));
4453
4454       /* skip_inline_frames is expensive, so we avoid it if we can
4455          determine that the address is one where functions cannot have
4456          been inlined.  This improves performance with inferiors that
4457          load a lot of shared libraries, because the solib event
4458          breakpoint is defined as the address of a function (i.e. not
4459          inline).  Note that we have to check the previous PC as well
4460          as the current one to catch cases when we have just
4461          single-stepped off a breakpoint prior to reinstating it.
4462          Note that we're assuming that the code we single-step to is
4463          not inline, but that's not definitive: there's nothing
4464          preventing the event breakpoint function from containing
4465          inlined code, and the single-step ending up there.  If the
4466          user had set a breakpoint on that inlined code, the missing
4467          skip_inline_frames call would break things.  Fortunately
4468          that's an extremely unlikely scenario.  */
4469       if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
4470           && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4471                && ecs->event_thread->control.trap_expected
4472                && pc_at_non_inline_function (aspace,
4473                                              ecs->event_thread->prev_pc,
4474                                              &ecs->ws)))
4475         {
4476           skip_inline_frames (ecs->ptid);
4477
4478           /* Re-fetch current thread's frame in case that invalidated
4479              the frame cache.  */
4480           frame = get_current_frame ();
4481           gdbarch = get_frame_arch (frame);
4482         }
4483     }
4484
4485   if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4486       && ecs->event_thread->control.trap_expected
4487       && gdbarch_single_step_through_delay_p (gdbarch)
4488       && currently_stepping (ecs->event_thread))
4489     {
4490       /* We're trying to step off a breakpoint.  Turns out that we're
4491          also on an instruction that needs to be stepped multiple
4492          times before it's been fully executing.  E.g., architectures
4493          with a delay slot.  It needs to be stepped twice, once for
4494          the instruction and once for the delay slot.  */
4495       int step_through_delay
4496         = gdbarch_single_step_through_delay (gdbarch, frame);
4497
4498       if (debug_infrun && step_through_delay)
4499         fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4500       if (ecs->event_thread->control.step_range_end == 0
4501           && step_through_delay)
4502         {
4503           /* The user issued a continue when stopped at a breakpoint.
4504              Set up for another trap and get out of here.  */
4505          ecs->event_thread->stepping_over_breakpoint = 1;
4506          keep_going (ecs);
4507          return;
4508         }
4509       else if (step_through_delay)
4510         {
4511           /* The user issued a step when stopped at a breakpoint.
4512              Maybe we should stop, maybe we should not - the delay
4513              slot *might* correspond to a line of source.  In any
4514              case, don't decide that here, just set 
4515              ecs->stepping_over_breakpoint, making sure we 
4516              single-step again before breakpoints are re-inserted.  */
4517           ecs->event_thread->stepping_over_breakpoint = 1;
4518         }
4519     }
4520
4521   /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4522      handles this event.  */
4523   ecs->event_thread->control.stop_bpstat
4524     = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4525                           stop_pc, ecs->ptid, &ecs->ws);
4526
4527   /* Following in case break condition called a
4528      function.  */
4529   stop_print_frame = 1;
4530
4531   /* This is where we handle "moribund" watchpoints.  Unlike
4532      software breakpoints traps, hardware watchpoint traps are
4533      always distinguishable from random traps.  If no high-level
4534      watchpoint is associated with the reported stop data address
4535      anymore, then the bpstat does not explain the signal ---
4536      simply make sure to ignore it if `stopped_by_watchpoint' is
4537      set.  */
4538
4539   if (debug_infrun
4540       && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4541       && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4542                                   GDB_SIGNAL_TRAP)
4543       && stopped_by_watchpoint)
4544     fprintf_unfiltered (gdb_stdlog,
4545                         "infrun: no user watchpoint explains "
4546                         "watchpoint SIGTRAP, ignoring\n");
4547
4548   /* NOTE: cagney/2003-03-29: These checks for a random signal
4549      at one stage in the past included checks for an inferior
4550      function call's call dummy's return breakpoint.  The original
4551      comment, that went with the test, read:
4552
4553      ``End of a stack dummy.  Some systems (e.g. Sony news) give
4554      another signal besides SIGTRAP, so check here as well as
4555      above.''
4556
4557      If someone ever tries to get call dummys on a
4558      non-executable stack to work (where the target would stop
4559      with something like a SIGSEGV), then those tests might need
4560      to be re-instated.  Given, however, that the tests were only
4561      enabled when momentary breakpoints were not being used, I
4562      suspect that it won't be the case.
4563
4564      NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4565      be necessary for call dummies on a non-executable stack on
4566      SPARC.  */
4567
4568   /* See if the breakpoints module can explain the signal.  */
4569   random_signal
4570     = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4571                                ecs->event_thread->suspend.stop_signal);
4572
4573   /* Maybe this was a trap for a software breakpoint that has since
4574      been removed.  */
4575   if (random_signal && target_stopped_by_sw_breakpoint ())
4576     {
4577       if (program_breakpoint_here_p (gdbarch, stop_pc))
4578         {
4579           struct regcache *regcache;
4580           int decr_pc;
4581
4582           /* Re-adjust PC to what the program would see if GDB was not
4583              debugging it.  */
4584           regcache = get_thread_regcache (ecs->event_thread->ptid);
4585           decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4586           if (decr_pc != 0)
4587             {
4588               struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
4589
4590               if (record_full_is_used ())
4591                 record_full_gdb_operation_disable_set ();
4592
4593               regcache_write_pc (regcache, stop_pc + decr_pc);
4594
4595               do_cleanups (old_cleanups);
4596             }
4597         }
4598       else
4599         {
4600           /* A delayed software breakpoint event.  Ignore the trap.  */
4601           if (debug_infrun)
4602             fprintf_unfiltered (gdb_stdlog,
4603                                 "infrun: delayed software breakpoint "
4604                                 "trap, ignoring\n");
4605           random_signal = 0;
4606         }
4607     }
4608
4609   /* Maybe this was a trap for a hardware breakpoint/watchpoint that
4610      has since been removed.  */
4611   if (random_signal && target_stopped_by_hw_breakpoint ())
4612     {
4613       /* A delayed hardware breakpoint event.  Ignore the trap.  */
4614       if (debug_infrun)
4615         fprintf_unfiltered (gdb_stdlog,
4616                             "infrun: delayed hardware breakpoint/watchpoint "
4617                             "trap, ignoring\n");
4618       random_signal = 0;
4619     }
4620
4621   /* If not, perhaps stepping/nexting can.  */
4622   if (random_signal)
4623     random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4624                       && currently_stepping (ecs->event_thread));
4625
4626   /* Perhaps the thread hit a single-step breakpoint of _another_
4627      thread.  Single-step breakpoints are transparent to the
4628      breakpoints module.  */
4629   if (random_signal)
4630     random_signal = !ecs->hit_singlestep_breakpoint;
4631
4632   /* No?  Perhaps we got a moribund watchpoint.  */
4633   if (random_signal)
4634     random_signal = !stopped_by_watchpoint;
4635
4636   /* For the program's own signals, act according to
4637      the signal handling tables.  */
4638
4639   if (random_signal)
4640     {
4641       /* Signal not for debugging purposes.  */
4642       struct inferior *inf = find_inferior_ptid (ecs->ptid);
4643       enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
4644
4645       if (debug_infrun)
4646          fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
4647                              gdb_signal_to_symbol_string (stop_signal));
4648
4649       stopped_by_random_signal = 1;
4650
4651       /* Always stop on signals if we're either just gaining control
4652          of the program, or the user explicitly requested this thread
4653          to remain stopped.  */
4654       if (stop_soon != NO_STOP_QUIETLY
4655           || ecs->event_thread->stop_requested
4656           || (!inf->detaching
4657               && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4658         {
4659           stop_waiting (ecs);
4660           return;
4661         }
4662
4663       /* Notify observers the signal has "handle print" set.  Note we
4664          returned early above if stopping; normal_stop handles the
4665          printing in that case.  */
4666       if (signal_print[ecs->event_thread->suspend.stop_signal])
4667         {
4668           /* The signal table tells us to print about this signal.  */
4669           target_terminal_ours_for_output ();
4670           observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
4671           target_terminal_inferior ();
4672         }
4673
4674       /* Clear the signal if it should not be passed.  */
4675       if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4676         ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4677
4678       if (ecs->event_thread->prev_pc == stop_pc
4679           && ecs->event_thread->control.trap_expected
4680           && ecs->event_thread->control.step_resume_breakpoint == NULL)
4681         {
4682           /* We were just starting a new sequence, attempting to
4683              single-step off of a breakpoint and expecting a SIGTRAP.
4684              Instead this signal arrives.  This signal will take us out
4685              of the stepping range so GDB needs to remember to, when
4686              the signal handler returns, resume stepping off that
4687              breakpoint.  */
4688           /* To simplify things, "continue" is forced to use the same
4689              code paths as single-step - set a breakpoint at the
4690              signal return address and then, once hit, step off that
4691              breakpoint.  */
4692           if (debug_infrun)
4693             fprintf_unfiltered (gdb_stdlog,
4694                                 "infrun: signal arrived while stepping over "
4695                                 "breakpoint\n");
4696
4697           insert_hp_step_resume_breakpoint_at_frame (frame);
4698           ecs->event_thread->step_after_step_resume_breakpoint = 1;
4699           /* Reset trap_expected to ensure breakpoints are re-inserted.  */
4700           ecs->event_thread->control.trap_expected = 0;
4701
4702           /* If we were nexting/stepping some other thread, switch to
4703              it, so that we don't continue it, losing control.  */
4704           if (!switch_back_to_stepped_thread (ecs))
4705             keep_going (ecs);
4706           return;
4707         }
4708
4709       if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
4710           && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
4711               || ecs->event_thread->control.step_range_end == 1)
4712           && frame_id_eq (get_stack_frame_id (frame),
4713                           ecs->event_thread->control.step_stack_frame_id)
4714           && ecs->event_thread->control.step_resume_breakpoint == NULL)
4715         {
4716           /* The inferior is about to take a signal that will take it
4717              out of the single step range.  Set a breakpoint at the
4718              current PC (which is presumably where the signal handler
4719              will eventually return) and then allow the inferior to
4720              run free.
4721
4722              Note that this is only needed for a signal delivered
4723              while in the single-step range.  Nested signals aren't a
4724              problem as they eventually all return.  */
4725           if (debug_infrun)
4726             fprintf_unfiltered (gdb_stdlog,
4727                                 "infrun: signal may take us out of "
4728                                 "single-step range\n");
4729
4730           insert_hp_step_resume_breakpoint_at_frame (frame);
4731           ecs->event_thread->step_after_step_resume_breakpoint = 1;
4732           /* Reset trap_expected to ensure breakpoints are re-inserted.  */
4733           ecs->event_thread->control.trap_expected = 0;
4734           keep_going (ecs);
4735           return;
4736         }
4737
4738       /* Note: step_resume_breakpoint may be non-NULL.  This occures
4739          when either there's a nested signal, or when there's a
4740          pending signal enabled just as the signal handler returns
4741          (leaving the inferior at the step-resume-breakpoint without
4742          actually executing it).  Either way continue until the
4743          breakpoint is really hit.  */
4744
4745       if (!switch_back_to_stepped_thread (ecs))
4746         {
4747           if (debug_infrun)
4748             fprintf_unfiltered (gdb_stdlog,
4749                                 "infrun: random signal, keep going\n");
4750
4751           keep_going (ecs);
4752         }
4753       return;
4754     }
4755
4756   process_event_stop_test (ecs);
4757 }
4758
4759 /* Come here when we've got some debug event / signal we can explain
4760    (IOW, not a random signal), and test whether it should cause a
4761    stop, or whether we should resume the inferior (transparently).
4762    E.g., could be a breakpoint whose condition evaluates false; we
4763    could be still stepping within the line; etc.  */
4764
4765 static void
4766 process_event_stop_test (struct execution_control_state *ecs)
4767 {
4768   struct symtab_and_line stop_pc_sal;
4769   struct frame_info *frame;
4770   struct gdbarch *gdbarch;
4771   CORE_ADDR jmp_buf_pc;
4772   struct bpstat_what what;
4773
4774   /* Handle cases caused by hitting a breakpoint.  */
4775
4776   frame = get_current_frame ();
4777   gdbarch = get_frame_arch (frame);
4778
4779   what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4780
4781   if (what.call_dummy)
4782     {
4783       stop_stack_dummy = what.call_dummy;
4784     }
4785
4786   /* If we hit an internal event that triggers symbol changes, the
4787      current frame will be invalidated within bpstat_what (e.g., if we
4788      hit an internal solib event).  Re-fetch it.  */
4789   frame = get_current_frame ();
4790   gdbarch = get_frame_arch (frame);
4791
4792   switch (what.main_action)
4793     {
4794     case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4795       /* If we hit the breakpoint at longjmp while stepping, we
4796          install a momentary breakpoint at the target of the
4797          jmp_buf.  */
4798
4799       if (debug_infrun)
4800         fprintf_unfiltered (gdb_stdlog,
4801                             "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4802
4803       ecs->event_thread->stepping_over_breakpoint = 1;
4804
4805       if (what.is_longjmp)
4806         {
4807           struct value *arg_value;
4808
4809           /* If we set the longjmp breakpoint via a SystemTap probe,
4810              then use it to extract the arguments.  The destination PC
4811              is the third argument to the probe.  */
4812           arg_value = probe_safe_evaluate_at_pc (frame, 2);
4813           if (arg_value)
4814             {
4815               jmp_buf_pc = value_as_address (arg_value);
4816               jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
4817             }
4818           else if (!gdbarch_get_longjmp_target_p (gdbarch)
4819                    || !gdbarch_get_longjmp_target (gdbarch,
4820                                                    frame, &jmp_buf_pc))
4821             {
4822               if (debug_infrun)
4823                 fprintf_unfiltered (gdb_stdlog,
4824                                     "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4825                                     "(!gdbarch_get_longjmp_target)\n");
4826               keep_going (ecs);
4827               return;
4828             }
4829
4830           /* Insert a breakpoint at resume address.  */
4831           insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4832         }
4833       else
4834         check_exception_resume (ecs, frame);
4835       keep_going (ecs);
4836       return;
4837
4838     case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4839       {
4840         struct frame_info *init_frame;
4841
4842         /* There are several cases to consider.
4843
4844            1. The initiating frame no longer exists.  In this case we
4845            must stop, because the exception or longjmp has gone too
4846            far.
4847
4848            2. The initiating frame exists, and is the same as the
4849            current frame.  We stop, because the exception or longjmp
4850            has been caught.
4851
4852            3. The initiating frame exists and is different from the
4853            current frame.  This means the exception or longjmp has
4854            been caught beneath the initiating frame, so keep going.
4855
4856            4. longjmp breakpoint has been placed just to protect
4857            against stale dummy frames and user is not interested in
4858            stopping around longjmps.  */
4859
4860         if (debug_infrun)
4861           fprintf_unfiltered (gdb_stdlog,
4862                               "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4863
4864         gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4865                     != NULL);
4866         delete_exception_resume_breakpoint (ecs->event_thread);
4867
4868         if (what.is_longjmp)
4869           {
4870             check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
4871
4872             if (!frame_id_p (ecs->event_thread->initiating_frame))
4873               {
4874                 /* Case 4.  */
4875                 keep_going (ecs);
4876                 return;
4877               }
4878           }
4879
4880         init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
4881
4882         if (init_frame)
4883           {
4884             struct frame_id current_id
4885               = get_frame_id (get_current_frame ());
4886             if (frame_id_eq (current_id,
4887                              ecs->event_thread->initiating_frame))
4888               {
4889                 /* Case 2.  Fall through.  */
4890               }
4891             else
4892               {
4893                 /* Case 3.  */
4894                 keep_going (ecs);
4895                 return;
4896               }
4897           }
4898
4899         /* For Cases 1 and 2, remove the step-resume breakpoint, if it
4900            exists.  */
4901         delete_step_resume_breakpoint (ecs->event_thread);
4902
4903         end_stepping_range (ecs);
4904       }
4905       return;
4906
4907     case BPSTAT_WHAT_SINGLE:
4908       if (debug_infrun)
4909         fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4910       ecs->event_thread->stepping_over_breakpoint = 1;
4911       /* Still need to check other stuff, at least the case where we
4912          are stepping and step out of the right range.  */
4913       break;
4914
4915     case BPSTAT_WHAT_STEP_RESUME:
4916       if (debug_infrun)
4917         fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4918
4919       delete_step_resume_breakpoint (ecs->event_thread);
4920       if (ecs->event_thread->control.proceed_to_finish
4921           && execution_direction == EXEC_REVERSE)
4922         {
4923           struct thread_info *tp = ecs->event_thread;
4924
4925           /* We are finishing a function in reverse, and just hit the
4926              step-resume breakpoint at the start address of the
4927              function, and we're almost there -- just need to back up
4928              by one more single-step, which should take us back to the
4929              function call.  */
4930           tp->control.step_range_start = tp->control.step_range_end = 1;
4931           keep_going (ecs);
4932           return;
4933         }
4934       fill_in_stop_func (gdbarch, ecs);
4935       if (stop_pc == ecs->stop_func_start
4936           && execution_direction == EXEC_REVERSE)
4937         {
4938           /* We are stepping over a function call in reverse, and just
4939              hit the step-resume breakpoint at the start address of
4940              the function.  Go back to single-stepping, which should
4941              take us back to the function call.  */
4942           ecs->event_thread->stepping_over_breakpoint = 1;
4943           keep_going (ecs);
4944           return;
4945         }
4946       break;
4947
4948     case BPSTAT_WHAT_STOP_NOISY:
4949       if (debug_infrun)
4950         fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4951       stop_print_frame = 1;
4952
4953       /* Assume the thread stopped for a breapoint.  We'll still check
4954          whether a/the breakpoint is there when the thread is next
4955          resumed.  */
4956       ecs->event_thread->stepping_over_breakpoint = 1;
4957
4958       stop_waiting (ecs);
4959       return;
4960
4961     case BPSTAT_WHAT_STOP_SILENT:
4962       if (debug_infrun)
4963         fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4964       stop_print_frame = 0;
4965
4966       /* Assume the thread stopped for a breapoint.  We'll still check
4967          whether a/the breakpoint is there when the thread is next
4968          resumed.  */
4969       ecs->event_thread->stepping_over_breakpoint = 1;
4970       stop_waiting (ecs);
4971       return;
4972
4973     case BPSTAT_WHAT_HP_STEP_RESUME:
4974       if (debug_infrun)
4975         fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4976
4977       delete_step_resume_breakpoint (ecs->event_thread);
4978       if (ecs->event_thread->step_after_step_resume_breakpoint)
4979         {
4980           /* Back when the step-resume breakpoint was inserted, we
4981              were trying to single-step off a breakpoint.  Go back to
4982              doing that.  */
4983           ecs->event_thread->step_after_step_resume_breakpoint = 0;
4984           ecs->event_thread->stepping_over_breakpoint = 1;
4985           keep_going (ecs);
4986           return;
4987         }
4988       break;
4989
4990     case BPSTAT_WHAT_KEEP_CHECKING:
4991       break;
4992     }
4993
4994   /* If we stepped a permanent breakpoint and we had a high priority
4995      step-resume breakpoint for the address we stepped, but we didn't
4996      hit it, then we must have stepped into the signal handler.  The
4997      step-resume was only necessary to catch the case of _not_
4998      stepping into the handler, so delete it, and fall through to
4999      checking whether the step finished.  */
5000   if (ecs->event_thread->stepped_breakpoint)
5001     {
5002       struct breakpoint *sr_bp
5003         = ecs->event_thread->control.step_resume_breakpoint;
5004
5005       if (sr_bp != NULL
5006           && sr_bp->loc->permanent
5007           && sr_bp->type == bp_hp_step_resume
5008           && sr_bp->loc->address == ecs->event_thread->prev_pc)
5009         {
5010           if (debug_infrun)
5011             fprintf_unfiltered (gdb_stdlog,
5012                                 "infrun: stepped permanent breakpoint, stopped in "
5013                                 "handler\n");
5014           delete_step_resume_breakpoint (ecs->event_thread);
5015           ecs->event_thread->step_after_step_resume_breakpoint = 0;
5016         }
5017     }
5018
5019   /* We come here if we hit a breakpoint but should not stop for it.
5020      Possibly we also were stepping and should stop for that.  So fall
5021      through and test for stepping.  But, if not stepping, do not
5022      stop.  */
5023
5024   /* In all-stop mode, if we're currently stepping but have stopped in
5025      some other thread, we need to switch back to the stepped thread.  */
5026   if (switch_back_to_stepped_thread (ecs))
5027     return;
5028
5029   if (ecs->event_thread->control.step_resume_breakpoint)
5030     {
5031       if (debug_infrun)
5032          fprintf_unfiltered (gdb_stdlog,
5033                              "infrun: step-resume breakpoint is inserted\n");
5034
5035       /* Having a step-resume breakpoint overrides anything
5036          else having to do with stepping commands until
5037          that breakpoint is reached.  */
5038       keep_going (ecs);
5039       return;
5040     }
5041
5042   if (ecs->event_thread->control.step_range_end == 0)
5043     {
5044       if (debug_infrun)
5045          fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
5046       /* Likewise if we aren't even stepping.  */
5047       keep_going (ecs);
5048       return;
5049     }
5050
5051   /* Re-fetch current thread's frame in case the code above caused
5052      the frame cache to be re-initialized, making our FRAME variable
5053      a dangling pointer.  */
5054   frame = get_current_frame ();
5055   gdbarch = get_frame_arch (frame);
5056   fill_in_stop_func (gdbarch, ecs);
5057
5058   /* If stepping through a line, keep going if still within it.
5059
5060      Note that step_range_end is the address of the first instruction
5061      beyond the step range, and NOT the address of the last instruction
5062      within it!
5063
5064      Note also that during reverse execution, we may be stepping
5065      through a function epilogue and therefore must detect when
5066      the current-frame changes in the middle of a line.  */
5067
5068   if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
5069       && (execution_direction != EXEC_REVERSE
5070           || frame_id_eq (get_frame_id (frame),
5071                           ecs->event_thread->control.step_frame_id)))
5072     {
5073       if (debug_infrun)
5074         fprintf_unfiltered
5075           (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
5076            paddress (gdbarch, ecs->event_thread->control.step_range_start),
5077            paddress (gdbarch, ecs->event_thread->control.step_range_end));
5078
5079       /* Tentatively re-enable range stepping; `resume' disables it if
5080          necessary (e.g., if we're stepping over a breakpoint or we
5081          have software watchpoints).  */
5082       ecs->event_thread->control.may_range_step = 1;
5083
5084       /* When stepping backward, stop at beginning of line range
5085          (unless it's the function entry point, in which case
5086          keep going back to the call point).  */
5087       if (stop_pc == ecs->event_thread->control.step_range_start
5088           && stop_pc != ecs->stop_func_start
5089           && execution_direction == EXEC_REVERSE)
5090         end_stepping_range (ecs);
5091       else
5092         keep_going (ecs);
5093
5094       return;
5095     }
5096
5097   /* We stepped out of the stepping range.  */
5098
5099   /* If we are stepping at the source level and entered the runtime
5100      loader dynamic symbol resolution code...
5101
5102      EXEC_FORWARD: we keep on single stepping until we exit the run
5103      time loader code and reach the callee's address.
5104
5105      EXEC_REVERSE: we've already executed the callee (backward), and
5106      the runtime loader code is handled just like any other
5107      undebuggable function call.  Now we need only keep stepping
5108      backward through the trampoline code, and that's handled further
5109      down, so there is nothing for us to do here.  */
5110
5111   if (execution_direction != EXEC_REVERSE
5112       && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5113       && in_solib_dynsym_resolve_code (stop_pc))
5114     {
5115       CORE_ADDR pc_after_resolver =
5116         gdbarch_skip_solib_resolver (gdbarch, stop_pc);
5117
5118       if (debug_infrun)
5119          fprintf_unfiltered (gdb_stdlog,
5120                              "infrun: stepped into dynsym resolve code\n");
5121
5122       if (pc_after_resolver)
5123         {
5124           /* Set up a step-resume breakpoint at the address
5125              indicated by SKIP_SOLIB_RESOLVER.  */
5126           struct symtab_and_line sr_sal;
5127
5128           init_sal (&sr_sal);
5129           sr_sal.pc = pc_after_resolver;
5130           sr_sal.pspace = get_frame_program_space (frame);
5131
5132           insert_step_resume_breakpoint_at_sal (gdbarch,
5133                                                 sr_sal, null_frame_id);
5134         }
5135
5136       keep_going (ecs);
5137       return;
5138     }
5139
5140   if (ecs->event_thread->control.step_range_end != 1
5141       && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5142           || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5143       && get_frame_type (frame) == SIGTRAMP_FRAME)
5144     {
5145       if (debug_infrun)
5146          fprintf_unfiltered (gdb_stdlog,
5147                              "infrun: stepped into signal trampoline\n");
5148       /* The inferior, while doing a "step" or "next", has ended up in
5149          a signal trampoline (either by a signal being delivered or by
5150          the signal handler returning).  Just single-step until the
5151          inferior leaves the trampoline (either by calling the handler
5152          or returning).  */
5153       keep_going (ecs);
5154       return;
5155     }
5156
5157   /* If we're in the return path from a shared library trampoline,
5158      we want to proceed through the trampoline when stepping.  */
5159   /* macro/2012-04-25: This needs to come before the subroutine
5160      call check below as on some targets return trampolines look
5161      like subroutine calls (MIPS16 return thunks).  */
5162   if (gdbarch_in_solib_return_trampoline (gdbarch,
5163                                           stop_pc, ecs->stop_func_name)
5164       && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5165     {
5166       /* Determine where this trampoline returns.  */
5167       CORE_ADDR real_stop_pc;
5168
5169       real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
5170
5171       if (debug_infrun)
5172          fprintf_unfiltered (gdb_stdlog,
5173                              "infrun: stepped into solib return tramp\n");
5174
5175       /* Only proceed through if we know where it's going.  */
5176       if (real_stop_pc)
5177         {
5178           /* And put the step-breakpoint there and go until there.  */
5179           struct symtab_and_line sr_sal;
5180
5181           init_sal (&sr_sal);   /* initialize to zeroes */
5182           sr_sal.pc = real_stop_pc;
5183           sr_sal.section = find_pc_overlay (sr_sal.pc);
5184           sr_sal.pspace = get_frame_program_space (frame);
5185
5186           /* Do not specify what the fp should be when we stop since
5187              on some machines the prologue is where the new fp value
5188              is established.  */
5189           insert_step_resume_breakpoint_at_sal (gdbarch,
5190                                                 sr_sal, null_frame_id);
5191
5192           /* Restart without fiddling with the step ranges or
5193              other state.  */
5194           keep_going (ecs);
5195           return;
5196         }
5197     }
5198
5199   /* Check for subroutine calls.  The check for the current frame
5200      equalling the step ID is not necessary - the check of the
5201      previous frame's ID is sufficient - but it is a common case and
5202      cheaper than checking the previous frame's ID.
5203
5204      NOTE: frame_id_eq will never report two invalid frame IDs as
5205      being equal, so to get into this block, both the current and
5206      previous frame must have valid frame IDs.  */
5207   /* The outer_frame_id check is a heuristic to detect stepping
5208      through startup code.  If we step over an instruction which
5209      sets the stack pointer from an invalid value to a valid value,
5210      we may detect that as a subroutine call from the mythical
5211      "outermost" function.  This could be fixed by marking
5212      outermost frames as !stack_p,code_p,special_p.  Then the
5213      initial outermost frame, before sp was valid, would
5214      have code_addr == &_start.  See the comment in frame_id_eq
5215      for more.  */
5216   if (!frame_id_eq (get_stack_frame_id (frame),
5217                     ecs->event_thread->control.step_stack_frame_id)
5218       && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
5219                        ecs->event_thread->control.step_stack_frame_id)
5220           && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
5221                             outer_frame_id)
5222               || (ecs->event_thread->control.step_start_function
5223                   != find_pc_function (stop_pc)))))
5224     {
5225       CORE_ADDR real_stop_pc;
5226
5227       if (debug_infrun)
5228          fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
5229
5230       if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
5231         {
5232           /* I presume that step_over_calls is only 0 when we're
5233              supposed to be stepping at the assembly language level
5234              ("stepi").  Just stop.  */
5235           /* And this works the same backward as frontward.  MVS */
5236           end_stepping_range (ecs);
5237           return;
5238         }
5239
5240       /* Reverse stepping through solib trampolines.  */
5241
5242       if (execution_direction == EXEC_REVERSE
5243           && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
5244           && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5245               || (ecs->stop_func_start == 0
5246                   && in_solib_dynsym_resolve_code (stop_pc))))
5247         {
5248           /* Any solib trampoline code can be handled in reverse
5249              by simply continuing to single-step.  We have already
5250              executed the solib function (backwards), and a few 
5251              steps will take us back through the trampoline to the
5252              caller.  */
5253           keep_going (ecs);
5254           return;
5255         }
5256
5257       if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5258         {
5259           /* We're doing a "next".
5260
5261              Normal (forward) execution: set a breakpoint at the
5262              callee's return address (the address at which the caller
5263              will resume).
5264
5265              Reverse (backward) execution.  set the step-resume
5266              breakpoint at the start of the function that we just
5267              stepped into (backwards), and continue to there.  When we
5268              get there, we'll need to single-step back to the caller.  */
5269
5270           if (execution_direction == EXEC_REVERSE)
5271             {
5272               /* If we're already at the start of the function, we've either
5273                  just stepped backward into a single instruction function,
5274                  or stepped back out of a signal handler to the first instruction
5275                  of the function.  Just keep going, which will single-step back
5276                  to the caller.  */
5277               if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
5278                 {
5279                   struct symtab_and_line sr_sal;
5280
5281                   /* Normal function call return (static or dynamic).  */
5282                   init_sal (&sr_sal);
5283                   sr_sal.pc = ecs->stop_func_start;
5284                   sr_sal.pspace = get_frame_program_space (frame);
5285                   insert_step_resume_breakpoint_at_sal (gdbarch,
5286                                                         sr_sal, null_frame_id);
5287                 }
5288             }
5289           else
5290             insert_step_resume_breakpoint_at_caller (frame);
5291
5292           keep_going (ecs);
5293           return;
5294         }
5295
5296       /* If we are in a function call trampoline (a stub between the
5297          calling routine and the real function), locate the real
5298          function.  That's what tells us (a) whether we want to step
5299          into it at all, and (b) what prologue we want to run to the
5300          end of, if we do step into it.  */
5301       real_stop_pc = skip_language_trampoline (frame, stop_pc);
5302       if (real_stop_pc == 0)
5303         real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
5304       if (real_stop_pc != 0)
5305         ecs->stop_func_start = real_stop_pc;
5306
5307       if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
5308         {
5309           struct symtab_and_line sr_sal;
5310
5311           init_sal (&sr_sal);
5312           sr_sal.pc = ecs->stop_func_start;
5313           sr_sal.pspace = get_frame_program_space (frame);
5314
5315           insert_step_resume_breakpoint_at_sal (gdbarch,
5316                                                 sr_sal, null_frame_id);
5317           keep_going (ecs);
5318           return;
5319         }
5320
5321       /* If we have line number information for the function we are
5322          thinking of stepping into and the function isn't on the skip
5323          list, step into it.
5324
5325          If there are several symtabs at that PC (e.g. with include
5326          files), just want to know whether *any* of them have line
5327          numbers.  find_pc_line handles this.  */
5328       {
5329         struct symtab_and_line tmp_sal;
5330
5331         tmp_sal = find_pc_line (ecs->stop_func_start, 0);
5332         if (tmp_sal.line != 0
5333             && !function_name_is_marked_for_skip (ecs->stop_func_name,
5334                                                   &tmp_sal))
5335           {
5336             if (execution_direction == EXEC_REVERSE)
5337               handle_step_into_function_backward (gdbarch, ecs);
5338             else
5339               handle_step_into_function (gdbarch, ecs);
5340             return;
5341           }
5342       }
5343
5344       /* If we have no line number and the step-stop-if-no-debug is
5345          set, we stop the step so that the user has a chance to switch
5346          in assembly mode.  */
5347       if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5348           && step_stop_if_no_debug)
5349         {
5350           end_stepping_range (ecs);
5351           return;
5352         }
5353
5354       if (execution_direction == EXEC_REVERSE)
5355         {
5356           /* If we're already at the start of the function, we've either just
5357              stepped backward into a single instruction function without line
5358              number info, or stepped back out of a signal handler to the first
5359              instruction of the function without line number info.  Just keep
5360              going, which will single-step back to the caller.  */
5361           if (ecs->stop_func_start != stop_pc)
5362             {
5363               /* Set a breakpoint at callee's start address.
5364                  From there we can step once and be back in the caller.  */
5365               struct symtab_and_line sr_sal;
5366
5367               init_sal (&sr_sal);
5368               sr_sal.pc = ecs->stop_func_start;
5369               sr_sal.pspace = get_frame_program_space (frame);
5370               insert_step_resume_breakpoint_at_sal (gdbarch,
5371                                                     sr_sal, null_frame_id);
5372             }
5373         }
5374       else
5375         /* Set a breakpoint at callee's return address (the address
5376            at which the caller will resume).  */
5377         insert_step_resume_breakpoint_at_caller (frame);
5378
5379       keep_going (ecs);
5380       return;
5381     }
5382
5383   /* Reverse stepping through solib trampolines.  */
5384
5385   if (execution_direction == EXEC_REVERSE
5386       && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5387     {
5388       if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5389           || (ecs->stop_func_start == 0
5390               && in_solib_dynsym_resolve_code (stop_pc)))
5391         {
5392           /* Any solib trampoline code can be handled in reverse
5393              by simply continuing to single-step.  We have already
5394              executed the solib function (backwards), and a few 
5395              steps will take us back through the trampoline to the
5396              caller.  */
5397           keep_going (ecs);
5398           return;
5399         }
5400       else if (in_solib_dynsym_resolve_code (stop_pc))
5401         {
5402           /* Stepped backward into the solib dynsym resolver.
5403              Set a breakpoint at its start and continue, then
5404              one more step will take us out.  */
5405           struct symtab_and_line sr_sal;
5406
5407           init_sal (&sr_sal);
5408           sr_sal.pc = ecs->stop_func_start;
5409           sr_sal.pspace = get_frame_program_space (frame);
5410           insert_step_resume_breakpoint_at_sal (gdbarch, 
5411                                                 sr_sal, null_frame_id);
5412           keep_going (ecs);
5413           return;
5414         }
5415     }
5416
5417   stop_pc_sal = find_pc_line (stop_pc, 0);
5418
5419   /* NOTE: tausq/2004-05-24: This if block used to be done before all
5420      the trampoline processing logic, however, there are some trampolines 
5421      that have no names, so we should do trampoline handling first.  */
5422   if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5423       && ecs->stop_func_name == NULL
5424       && stop_pc_sal.line == 0)
5425     {
5426       if (debug_infrun)
5427          fprintf_unfiltered (gdb_stdlog,
5428                              "infrun: stepped into undebuggable function\n");
5429
5430       /* The inferior just stepped into, or returned to, an
5431          undebuggable function (where there is no debugging information
5432          and no line number corresponding to the address where the
5433          inferior stopped).  Since we want to skip this kind of code,
5434          we keep going until the inferior returns from this
5435          function - unless the user has asked us not to (via
5436          set step-mode) or we no longer know how to get back
5437          to the call site.  */
5438       if (step_stop_if_no_debug
5439           || !frame_id_p (frame_unwind_caller_id (frame)))
5440         {
5441           /* If we have no line number and the step-stop-if-no-debug
5442              is set, we stop the step so that the user has a chance to
5443              switch in assembly mode.  */
5444           end_stepping_range (ecs);
5445           return;
5446         }
5447       else
5448         {
5449           /* Set a breakpoint at callee's return address (the address
5450              at which the caller will resume).  */
5451           insert_step_resume_breakpoint_at_caller (frame);
5452           keep_going (ecs);
5453           return;
5454         }
5455     }
5456
5457   if (ecs->event_thread->control.step_range_end == 1)
5458     {
5459       /* It is stepi or nexti.  We always want to stop stepping after
5460          one instruction.  */
5461       if (debug_infrun)
5462          fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
5463       end_stepping_range (ecs);
5464       return;
5465     }
5466
5467   if (stop_pc_sal.line == 0)
5468     {
5469       /* We have no line number information.  That means to stop
5470          stepping (does this always happen right after one instruction,
5471          when we do "s" in a function with no line numbers,
5472          or can this happen as a result of a return or longjmp?).  */
5473       if (debug_infrun)
5474          fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
5475       end_stepping_range (ecs);
5476       return;
5477     }
5478
5479   /* Look for "calls" to inlined functions, part one.  If the inline
5480      frame machinery detected some skipped call sites, we have entered
5481      a new inline function.  */
5482
5483   if (frame_id_eq (get_frame_id (get_current_frame ()),
5484                    ecs->event_thread->control.step_frame_id)
5485       && inline_skipped_frames (ecs->ptid))
5486     {
5487       struct symtab_and_line call_sal;
5488
5489       if (debug_infrun)
5490         fprintf_unfiltered (gdb_stdlog,
5491                             "infrun: stepped into inlined function\n");
5492
5493       find_frame_sal (get_current_frame (), &call_sal);
5494
5495       if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
5496         {
5497           /* For "step", we're going to stop.  But if the call site
5498              for this inlined function is on the same source line as
5499              we were previously stepping, go down into the function
5500              first.  Otherwise stop at the call site.  */
5501
5502           if (call_sal.line == ecs->event_thread->current_line
5503               && call_sal.symtab == ecs->event_thread->current_symtab)
5504             step_into_inline_frame (ecs->ptid);
5505
5506           end_stepping_range (ecs);
5507           return;
5508         }
5509       else
5510         {
5511           /* For "next", we should stop at the call site if it is on a
5512              different source line.  Otherwise continue through the
5513              inlined function.  */
5514           if (call_sal.line == ecs->event_thread->current_line
5515               && call_sal.symtab == ecs->event_thread->current_symtab)
5516             keep_going (ecs);
5517           else
5518             end_stepping_range (ecs);
5519           return;
5520         }
5521     }
5522
5523   /* Look for "calls" to inlined functions, part two.  If we are still
5524      in the same real function we were stepping through, but we have
5525      to go further up to find the exact frame ID, we are stepping
5526      through a more inlined call beyond its call site.  */
5527
5528   if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5529       && !frame_id_eq (get_frame_id (get_current_frame ()),
5530                        ecs->event_thread->control.step_frame_id)
5531       && stepped_in_from (get_current_frame (),
5532                           ecs->event_thread->control.step_frame_id))
5533     {
5534       if (debug_infrun)
5535         fprintf_unfiltered (gdb_stdlog,
5536                             "infrun: stepping through inlined function\n");
5537
5538       if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5539         keep_going (ecs);
5540       else
5541         end_stepping_range (ecs);
5542       return;
5543     }
5544
5545   if ((stop_pc == stop_pc_sal.pc)
5546       && (ecs->event_thread->current_line != stop_pc_sal.line
5547           || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5548     {
5549       /* We are at the start of a different line.  So stop.  Note that
5550          we don't stop if we step into the middle of a different line.
5551          That is said to make things like for (;;) statements work
5552          better.  */
5553       if (debug_infrun)
5554          fprintf_unfiltered (gdb_stdlog,
5555                              "infrun: stepped to a different line\n");
5556       end_stepping_range (ecs);
5557       return;
5558     }
5559
5560   /* We aren't done stepping.
5561
5562      Optimize by setting the stepping range to the line.
5563      (We might not be in the original line, but if we entered a
5564      new line in mid-statement, we continue stepping.  This makes
5565      things like for(;;) statements work better.)  */
5566
5567   ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5568   ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5569   ecs->event_thread->control.may_range_step = 1;
5570   set_step_info (frame, stop_pc_sal);
5571
5572   if (debug_infrun)
5573      fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5574   keep_going (ecs);
5575 }
5576
5577 /* In all-stop mode, if we're currently stepping but have stopped in
5578    some other thread, we may need to switch back to the stepped
5579    thread.  Returns true we set the inferior running, false if we left
5580    it stopped (and the event needs further processing).  */
5581
5582 static int
5583 switch_back_to_stepped_thread (struct execution_control_state *ecs)
5584 {
5585   if (!non_stop)
5586     {
5587       struct thread_info *tp;
5588       struct thread_info *stepping_thread;
5589       struct thread_info *step_over;
5590
5591       /* If any thread is blocked on some internal breakpoint, and we
5592          simply need to step over that breakpoint to get it going
5593          again, do that first.  */
5594
5595       /* However, if we see an event for the stepping thread, then we
5596          know all other threads have been moved past their breakpoints
5597          already.  Let the caller check whether the step is finished,
5598          etc., before deciding to move it past a breakpoint.  */
5599       if (ecs->event_thread->control.step_range_end != 0)
5600         return 0;
5601
5602       /* Check if the current thread is blocked on an incomplete
5603          step-over, interrupted by a random signal.  */
5604       if (ecs->event_thread->control.trap_expected
5605           && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5606         {
5607           if (debug_infrun)
5608             {
5609               fprintf_unfiltered (gdb_stdlog,
5610                                   "infrun: need to finish step-over of [%s]\n",
5611                                   target_pid_to_str (ecs->event_thread->ptid));
5612             }
5613           keep_going (ecs);
5614           return 1;
5615         }
5616
5617       /* Check if the current thread is blocked by a single-step
5618          breakpoint of another thread.  */
5619       if (ecs->hit_singlestep_breakpoint)
5620        {
5621          if (debug_infrun)
5622            {
5623              fprintf_unfiltered (gdb_stdlog,
5624                                  "infrun: need to step [%s] over single-step "
5625                                  "breakpoint\n",
5626                                  target_pid_to_str (ecs->ptid));
5627            }
5628          keep_going (ecs);
5629          return 1;
5630        }
5631
5632       /* Otherwise, we no longer expect a trap in the current thread.
5633          Clear the trap_expected flag before switching back -- this is
5634          what keep_going does as well, if we call it.  */
5635       ecs->event_thread->control.trap_expected = 0;
5636
5637       /* Likewise, clear the signal if it should not be passed.  */
5638       if (!signal_program[ecs->event_thread->suspend.stop_signal])
5639         ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5640
5641       /* If scheduler locking applies even if not stepping, there's no
5642          need to walk over threads.  Above we've checked whether the
5643          current thread is stepping.  If some other thread not the
5644          event thread is stepping, then it must be that scheduler
5645          locking is not in effect.  */
5646       if (schedlock_applies (ecs->event_thread))
5647         return 0;
5648
5649       /* Look for the stepping/nexting thread, and check if any other
5650          thread other than the stepping thread needs to start a
5651          step-over.  Do all step-overs before actually proceeding with
5652          step/next/etc.  */
5653       stepping_thread = NULL;
5654       step_over = NULL;
5655       ALL_NON_EXITED_THREADS (tp)
5656         {
5657           /* Ignore threads of processes we're not resuming.  */
5658           if (!sched_multi
5659               && ptid_get_pid (tp->ptid) != ptid_get_pid (inferior_ptid))
5660             continue;
5661
5662           /* When stepping over a breakpoint, we lock all threads
5663              except the one that needs to move past the breakpoint.
5664              If a non-event thread has this set, the "incomplete
5665              step-over" check above should have caught it earlier.  */
5666           gdb_assert (!tp->control.trap_expected);
5667
5668           /* Did we find the stepping thread?  */
5669           if (tp->control.step_range_end)
5670             {
5671               /* Yep.  There should only one though.  */
5672               gdb_assert (stepping_thread == NULL);
5673
5674               /* The event thread is handled at the top, before we
5675                  enter this loop.  */
5676               gdb_assert (tp != ecs->event_thread);
5677
5678               /* If some thread other than the event thread is
5679                  stepping, then scheduler locking can't be in effect,
5680                  otherwise we wouldn't have resumed the current event
5681                  thread in the first place.  */
5682               gdb_assert (!schedlock_applies (tp));
5683
5684               stepping_thread = tp;
5685             }
5686           else if (thread_still_needs_step_over (tp))
5687             {
5688               step_over = tp;
5689
5690               /* At the top we've returned early if the event thread
5691                  is stepping.  If some other thread not the event
5692                  thread is stepping, then scheduler locking can't be
5693                  in effect, and we can resume this thread.  No need to
5694                  keep looking for the stepping thread then.  */
5695               break;
5696             }
5697         }
5698
5699       if (step_over != NULL)
5700         {
5701           tp = step_over;
5702           if (debug_infrun)
5703             {
5704               fprintf_unfiltered (gdb_stdlog,
5705                                   "infrun: need to step-over [%s]\n",
5706                                   target_pid_to_str (tp->ptid));
5707             }
5708
5709           /* Only the stepping thread should have this set.  */
5710           gdb_assert (tp->control.step_range_end == 0);
5711
5712           ecs->ptid = tp->ptid;
5713           ecs->event_thread = tp;
5714           switch_to_thread (ecs->ptid);
5715           keep_going (ecs);
5716           return 1;
5717         }
5718
5719       if (stepping_thread != NULL)
5720         {
5721           struct frame_info *frame;
5722           struct gdbarch *gdbarch;
5723
5724           tp = stepping_thread;
5725
5726           /* If the stepping thread exited, then don't try to switch
5727              back and resume it, which could fail in several different
5728              ways depending on the target.  Instead, just keep going.
5729
5730              We can find a stepping dead thread in the thread list in
5731              two cases:
5732
5733              - The target supports thread exit events, and when the
5734              target tries to delete the thread from the thread list,
5735              inferior_ptid pointed at the exiting thread.  In such
5736              case, calling delete_thread does not really remove the
5737              thread from the list; instead, the thread is left listed,
5738              with 'exited' state.
5739
5740              - The target's debug interface does not support thread
5741              exit events, and so we have no idea whatsoever if the
5742              previously stepping thread is still alive.  For that
5743              reason, we need to synchronously query the target
5744              now.  */
5745           if (is_exited (tp->ptid)
5746               || !target_thread_alive (tp->ptid))
5747             {
5748               if (debug_infrun)
5749                 fprintf_unfiltered (gdb_stdlog,
5750                                     "infrun: not switching back to "
5751                                     "stepped thread, it has vanished\n");
5752
5753               delete_thread (tp->ptid);
5754               keep_going (ecs);
5755               return 1;
5756             }
5757
5758           if (debug_infrun)
5759             fprintf_unfiltered (gdb_stdlog,
5760                                 "infrun: switching back to stepped thread\n");
5761
5762           ecs->event_thread = tp;
5763           ecs->ptid = tp->ptid;
5764           context_switch (ecs->ptid);
5765
5766           stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5767           frame = get_current_frame ();
5768           gdbarch = get_frame_arch (frame);
5769
5770           /* If the PC of the thread we were trying to single-step has
5771              changed, then that thread has trapped or been signaled,
5772              but the event has not been reported to GDB yet.  Re-poll
5773              the target looking for this particular thread's event
5774              (i.e. temporarily enable schedlock) by:
5775
5776                - setting a break at the current PC
5777                - resuming that particular thread, only (by setting
5778                  trap expected)
5779
5780              This prevents us continuously moving the single-step
5781              breakpoint forward, one instruction at a time,
5782              overstepping.  */
5783
5784           if (stop_pc != tp->prev_pc)
5785             {
5786               ptid_t resume_ptid;
5787
5788               if (debug_infrun)
5789                 fprintf_unfiltered (gdb_stdlog,
5790                                     "infrun: expected thread advanced also\n");
5791
5792               /* Clear the info of the previous step-over, as it's no
5793                  longer valid.  It's what keep_going would do too, if
5794                  we called it.  Must do this before trying to insert
5795                  the sss breakpoint, otherwise if we were previously
5796                  trying to step over this exact address in another
5797                  thread, the breakpoint ends up not installed.  */
5798               clear_step_over_info ();
5799
5800               insert_single_step_breakpoint (get_frame_arch (frame),
5801                                              get_frame_address_space (frame),
5802                                              stop_pc);
5803
5804               resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
5805               do_target_resume (resume_ptid,
5806                                 currently_stepping (tp), GDB_SIGNAL_0);
5807               prepare_to_wait (ecs);
5808             }
5809           else
5810             {
5811               if (debug_infrun)
5812                 fprintf_unfiltered (gdb_stdlog,
5813                                     "infrun: expected thread still "
5814                                     "hasn't advanced\n");
5815               keep_going (ecs);
5816             }
5817
5818           return 1;
5819         }
5820     }
5821   return 0;
5822 }
5823
5824 /* Is thread TP in the middle of single-stepping?  */
5825
5826 static int
5827 currently_stepping (struct thread_info *tp)
5828 {
5829   return ((tp->control.step_range_end
5830            && tp->control.step_resume_breakpoint == NULL)
5831           || tp->control.trap_expected
5832           || tp->stepped_breakpoint
5833           || bpstat_should_step ());
5834 }
5835
5836 /* Inferior has stepped into a subroutine call with source code that
5837    we should not step over.  Do step to the first line of code in
5838    it.  */
5839
5840 static void
5841 handle_step_into_function (struct gdbarch *gdbarch,
5842                            struct execution_control_state *ecs)
5843 {
5844   struct compunit_symtab *cust;
5845   struct symtab_and_line stop_func_sal, sr_sal;
5846
5847   fill_in_stop_func (gdbarch, ecs);
5848
5849   cust = find_pc_compunit_symtab (stop_pc);
5850   if (cust != NULL && compunit_language (cust) != language_asm)
5851     ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5852                                                   ecs->stop_func_start);
5853
5854   stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5855   /* Use the step_resume_break to step until the end of the prologue,
5856      even if that involves jumps (as it seems to on the vax under
5857      4.2).  */
5858   /* If the prologue ends in the middle of a source line, continue to
5859      the end of that source line (if it is still within the function).
5860      Otherwise, just go to end of prologue.  */
5861   if (stop_func_sal.end
5862       && stop_func_sal.pc != ecs->stop_func_start
5863       && stop_func_sal.end < ecs->stop_func_end)
5864     ecs->stop_func_start = stop_func_sal.end;
5865
5866   /* Architectures which require breakpoint adjustment might not be able
5867      to place a breakpoint at the computed address.  If so, the test
5868      ``ecs->stop_func_start == stop_pc'' will never succeed.  Adjust
5869      ecs->stop_func_start to an address at which a breakpoint may be
5870      legitimately placed.
5871
5872      Note:  kevinb/2004-01-19:  On FR-V, if this adjustment is not
5873      made, GDB will enter an infinite loop when stepping through
5874      optimized code consisting of VLIW instructions which contain
5875      subinstructions corresponding to different source lines.  On
5876      FR-V, it's not permitted to place a breakpoint on any but the
5877      first subinstruction of a VLIW instruction.  When a breakpoint is
5878      set, GDB will adjust the breakpoint address to the beginning of
5879      the VLIW instruction.  Thus, we need to make the corresponding
5880      adjustment here when computing the stop address.  */
5881
5882   if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5883     {
5884       ecs->stop_func_start
5885         = gdbarch_adjust_breakpoint_address (gdbarch,
5886                                              ecs->stop_func_start);
5887     }
5888
5889   if (ecs->stop_func_start == stop_pc)
5890     {
5891       /* We are already there: stop now.  */
5892       end_stepping_range (ecs);
5893       return;
5894     }
5895   else
5896     {
5897       /* Put the step-breakpoint there and go until there.  */
5898       init_sal (&sr_sal);       /* initialize to zeroes */
5899       sr_sal.pc = ecs->stop_func_start;
5900       sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5901       sr_sal.pspace = get_frame_program_space (get_current_frame ());
5902
5903       /* Do not specify what the fp should be when we stop since on
5904          some machines the prologue is where the new fp value is
5905          established.  */
5906       insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5907
5908       /* And make sure stepping stops right away then.  */
5909       ecs->event_thread->control.step_range_end
5910         = ecs->event_thread->control.step_range_start;
5911     }
5912   keep_going (ecs);
5913 }
5914
5915 /* Inferior has stepped backward into a subroutine call with source
5916    code that we should not step over.  Do step to the beginning of the
5917    last line of code in it.  */
5918
5919 static void
5920 handle_step_into_function_backward (struct gdbarch *gdbarch,
5921                                     struct execution_control_state *ecs)
5922 {
5923   struct compunit_symtab *cust;
5924   struct symtab_and_line stop_func_sal;
5925
5926   fill_in_stop_func (gdbarch, ecs);
5927
5928   cust = find_pc_compunit_symtab (stop_pc);
5929   if (cust != NULL && compunit_language (cust) != language_asm)
5930     ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5931                                                   ecs->stop_func_start);
5932
5933   stop_func_sal = find_pc_line (stop_pc, 0);
5934
5935   /* OK, we're just going to keep stepping here.  */
5936   if (stop_func_sal.pc == stop_pc)
5937     {
5938       /* We're there already.  Just stop stepping now.  */
5939       end_stepping_range (ecs);
5940     }
5941   else
5942     {
5943       /* Else just reset the step range and keep going.
5944          No step-resume breakpoint, they don't work for
5945          epilogues, which can have multiple entry paths.  */
5946       ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5947       ecs->event_thread->control.step_range_end = stop_func_sal.end;
5948       keep_going (ecs);
5949     }
5950   return;
5951 }
5952
5953 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5954    This is used to both functions and to skip over code.  */
5955
5956 static void
5957 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5958                                         struct symtab_and_line sr_sal,
5959                                         struct frame_id sr_id,
5960                                         enum bptype sr_type)
5961 {
5962   /* There should never be more than one step-resume or longjmp-resume
5963      breakpoint per thread, so we should never be setting a new
5964      step_resume_breakpoint when one is already active.  */
5965   gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5966   gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5967
5968   if (debug_infrun)
5969     fprintf_unfiltered (gdb_stdlog,
5970                         "infrun: inserting step-resume breakpoint at %s\n",
5971                         paddress (gdbarch, sr_sal.pc));
5972
5973   inferior_thread ()->control.step_resume_breakpoint
5974     = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5975 }
5976
5977 void
5978 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5979                                       struct symtab_and_line sr_sal,
5980                                       struct frame_id sr_id)
5981 {
5982   insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5983                                           sr_sal, sr_id,
5984                                           bp_step_resume);
5985 }
5986
5987 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5988    This is used to skip a potential signal handler.
5989
5990    This is called with the interrupted function's frame.  The signal
5991    handler, when it returns, will resume the interrupted function at
5992    RETURN_FRAME.pc.  */
5993
5994 static void
5995 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5996 {
5997   struct symtab_and_line sr_sal;
5998   struct gdbarch *gdbarch;
5999
6000   gdb_assert (return_frame != NULL);
6001   init_sal (&sr_sal);           /* initialize to zeros */
6002
6003   gdbarch = get_frame_arch (return_frame);
6004   sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
6005   sr_sal.section = find_pc_overlay (sr_sal.pc);
6006   sr_sal.pspace = get_frame_program_space (return_frame);
6007
6008   insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
6009                                           get_stack_frame_id (return_frame),
6010                                           bp_hp_step_resume);
6011 }
6012
6013 /* Insert a "step-resume breakpoint" at the previous frame's PC.  This
6014    is used to skip a function after stepping into it (for "next" or if
6015    the called function has no debugging information).
6016
6017    The current function has almost always been reached by single
6018    stepping a call or return instruction.  NEXT_FRAME belongs to the
6019    current function, and the breakpoint will be set at the caller's
6020    resume address.
6021
6022    This is a separate function rather than reusing
6023    insert_hp_step_resume_breakpoint_at_frame in order to avoid
6024    get_prev_frame, which may stop prematurely (see the implementation
6025    of frame_unwind_caller_id for an example).  */
6026
6027 static void
6028 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
6029 {
6030   struct symtab_and_line sr_sal;
6031   struct gdbarch *gdbarch;
6032
6033   /* We shouldn't have gotten here if we don't know where the call site
6034      is.  */
6035   gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
6036
6037   init_sal (&sr_sal);           /* initialize to zeros */
6038
6039   gdbarch = frame_unwind_caller_arch (next_frame);
6040   sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
6041                                         frame_unwind_caller_pc (next_frame));
6042   sr_sal.section = find_pc_overlay (sr_sal.pc);
6043   sr_sal.pspace = frame_unwind_program_space (next_frame);
6044
6045   insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
6046                                         frame_unwind_caller_id (next_frame));
6047 }
6048
6049 /* Insert a "longjmp-resume" breakpoint at PC.  This is used to set a
6050    new breakpoint at the target of a jmp_buf.  The handling of
6051    longjmp-resume uses the same mechanisms used for handling
6052    "step-resume" breakpoints.  */
6053
6054 static void
6055 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
6056 {
6057   /* There should never be more than one longjmp-resume breakpoint per
6058      thread, so we should never be setting a new
6059      longjmp_resume_breakpoint when one is already active.  */
6060   gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
6061
6062   if (debug_infrun)
6063     fprintf_unfiltered (gdb_stdlog,
6064                         "infrun: inserting longjmp-resume breakpoint at %s\n",
6065                         paddress (gdbarch, pc));
6066
6067   inferior_thread ()->control.exception_resume_breakpoint =
6068     set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
6069 }
6070
6071 /* Insert an exception resume breakpoint.  TP is the thread throwing
6072    the exception.  The block B is the block of the unwinder debug hook
6073    function.  FRAME is the frame corresponding to the call to this
6074    function.  SYM is the symbol of the function argument holding the
6075    target PC of the exception.  */
6076
6077 static void
6078 insert_exception_resume_breakpoint (struct thread_info *tp,
6079                                     const struct block *b,
6080                                     struct frame_info *frame,
6081                                     struct symbol *sym)
6082 {
6083   TRY
6084     {
6085       struct symbol *vsym;
6086       struct value *value;
6087       CORE_ADDR handler;
6088       struct breakpoint *bp;
6089
6090       vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
6091       value = read_var_value (vsym, frame);
6092       /* If the value was optimized out, revert to the old behavior.  */
6093       if (! value_optimized_out (value))
6094         {
6095           handler = value_as_address (value);
6096
6097           if (debug_infrun)
6098             fprintf_unfiltered (gdb_stdlog,
6099                                 "infrun: exception resume at %lx\n",
6100                                 (unsigned long) handler);
6101
6102           bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
6103                                                handler, bp_exception_resume);
6104
6105           /* set_momentary_breakpoint_at_pc invalidates FRAME.  */
6106           frame = NULL;
6107
6108           bp->thread = tp->num;
6109           inferior_thread ()->control.exception_resume_breakpoint = bp;
6110         }
6111     }
6112   CATCH (e, RETURN_MASK_ERROR)
6113     {
6114       /* We want to ignore errors here.  */
6115     }
6116   END_CATCH
6117 }
6118
6119 /* A helper for check_exception_resume that sets an
6120    exception-breakpoint based on a SystemTap probe.  */
6121
6122 static void
6123 insert_exception_resume_from_probe (struct thread_info *tp,
6124                                     const struct bound_probe *probe,
6125                                     struct frame_info *frame)
6126 {
6127   struct value *arg_value;
6128   CORE_ADDR handler;
6129   struct breakpoint *bp;
6130
6131   arg_value = probe_safe_evaluate_at_pc (frame, 1);
6132   if (!arg_value)
6133     return;
6134
6135   handler = value_as_address (arg_value);
6136
6137   if (debug_infrun)
6138     fprintf_unfiltered (gdb_stdlog,
6139                         "infrun: exception resume at %s\n",
6140                         paddress (get_objfile_arch (probe->objfile),
6141                                   handler));
6142
6143   bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
6144                                        handler, bp_exception_resume);
6145   bp->thread = tp->num;
6146   inferior_thread ()->control.exception_resume_breakpoint = bp;
6147 }
6148
6149 /* This is called when an exception has been intercepted.  Check to
6150    see whether the exception's destination is of interest, and if so,
6151    set an exception resume breakpoint there.  */
6152
6153 static void
6154 check_exception_resume (struct execution_control_state *ecs,
6155                         struct frame_info *frame)
6156 {
6157   struct bound_probe probe;
6158   struct symbol *func;
6159
6160   /* First see if this exception unwinding breakpoint was set via a
6161      SystemTap probe point.  If so, the probe has two arguments: the
6162      CFA and the HANDLER.  We ignore the CFA, extract the handler, and
6163      set a breakpoint there.  */
6164   probe = find_probe_by_pc (get_frame_pc (frame));
6165   if (probe.probe)
6166     {
6167       insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
6168       return;
6169     }
6170
6171   func = get_frame_function (frame);
6172   if (!func)
6173     return;
6174
6175   TRY
6176     {
6177       const struct block *b;
6178       struct block_iterator iter;
6179       struct symbol *sym;
6180       int argno = 0;
6181
6182       /* The exception breakpoint is a thread-specific breakpoint on
6183          the unwinder's debug hook, declared as:
6184          
6185          void _Unwind_DebugHook (void *cfa, void *handler);
6186          
6187          The CFA argument indicates the frame to which control is
6188          about to be transferred.  HANDLER is the destination PC.
6189          
6190          We ignore the CFA and set a temporary breakpoint at HANDLER.
6191          This is not extremely efficient but it avoids issues in gdb
6192          with computing the DWARF CFA, and it also works even in weird
6193          cases such as throwing an exception from inside a signal
6194          handler.  */
6195
6196       b = SYMBOL_BLOCK_VALUE (func);
6197       ALL_BLOCK_SYMBOLS (b, iter, sym)
6198         {
6199           if (!SYMBOL_IS_ARGUMENT (sym))
6200             continue;
6201
6202           if (argno == 0)
6203             ++argno;
6204           else
6205             {
6206               insert_exception_resume_breakpoint (ecs->event_thread,
6207                                                   b, frame, sym);
6208               break;
6209             }
6210         }
6211     }
6212   CATCH (e, RETURN_MASK_ERROR)
6213     {
6214     }
6215   END_CATCH
6216 }
6217
6218 static void
6219 stop_waiting (struct execution_control_state *ecs)
6220 {
6221   if (debug_infrun)
6222     fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
6223
6224   clear_step_over_info ();
6225
6226   /* Let callers know we don't want to wait for the inferior anymore.  */
6227   ecs->wait_some_more = 0;
6228 }
6229
6230 /* Called when we should continue running the inferior, because the
6231    current event doesn't cause a user visible stop.  This does the
6232    resuming part; waiting for the next event is done elsewhere.  */
6233
6234 static void
6235 keep_going (struct execution_control_state *ecs)
6236 {
6237   /* Make sure normal_stop is called if we get a QUIT handled before
6238      reaching resume.  */
6239   struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
6240
6241   /* Save the pc before execution, to compare with pc after stop.  */
6242   ecs->event_thread->prev_pc
6243     = regcache_read_pc (get_thread_regcache (ecs->ptid));
6244
6245   if (ecs->event_thread->control.trap_expected
6246       && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
6247     {
6248       /* We haven't yet gotten our trap, and either: intercepted a
6249          non-signal event (e.g., a fork); or took a signal which we
6250          are supposed to pass through to the inferior.  Simply
6251          continue.  */
6252       discard_cleanups (old_cleanups);
6253       resume (ecs->event_thread->suspend.stop_signal);
6254     }
6255   else
6256     {
6257       struct regcache *regcache = get_current_regcache ();
6258       int remove_bp;
6259       int remove_wps;
6260
6261       /* Either the trap was not expected, but we are continuing
6262          anyway (if we got a signal, the user asked it be passed to
6263          the child)
6264          -- or --
6265          We got our expected trap, but decided we should resume from
6266          it.
6267
6268          We're going to run this baby now!
6269
6270          Note that insert_breakpoints won't try to re-insert
6271          already inserted breakpoints.  Therefore, we don't
6272          care if breakpoints were already inserted, or not.  */
6273
6274       /* If we need to step over a breakpoint, and we're not using
6275          displaced stepping to do so, insert all breakpoints
6276          (watchpoints, etc.) but the one we're stepping over, step one
6277          instruction, and then re-insert the breakpoint when that step
6278          is finished.  */
6279
6280       remove_bp = (ecs->hit_singlestep_breakpoint
6281                    || thread_still_needs_step_over (ecs->event_thread));
6282       remove_wps = (ecs->event_thread->stepping_over_watchpoint
6283                     && !target_have_steppable_watchpoint);
6284
6285       /* We can't use displaced stepping if we need to step past a
6286          watchpoint.  The instruction copied to the scratch pad would
6287          still trigger the watchpoint.  */
6288       if (remove_bp
6289           && (remove_wps
6290               || !use_displaced_stepping (get_regcache_arch (regcache))))
6291         {
6292           set_step_over_info (get_regcache_aspace (regcache),
6293                               regcache_read_pc (regcache), remove_wps);
6294         }
6295       else if (remove_wps)
6296         set_step_over_info (NULL, 0, remove_wps);
6297       else
6298         clear_step_over_info ();
6299
6300       /* Stop stepping if inserting breakpoints fails.  */
6301       TRY
6302         {
6303           insert_breakpoints ();
6304         }
6305       CATCH (e, RETURN_MASK_ERROR)
6306         {
6307           exception_print (gdb_stderr, e);
6308           stop_waiting (ecs);
6309           discard_cleanups (old_cleanups);
6310           return;
6311         }
6312       END_CATCH
6313
6314       ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
6315
6316       /* Do not deliver GDB_SIGNAL_TRAP (except when the user
6317          explicitly specifies that such a signal should be delivered
6318          to the target program).  Typically, that would occur when a
6319          user is debugging a target monitor on a simulator: the target
6320          monitor sets a breakpoint; the simulator encounters this
6321          breakpoint and halts the simulation handing control to GDB;
6322          GDB, noting that the stop address doesn't map to any known
6323          breakpoint, returns control back to the simulator; the
6324          simulator then delivers the hardware equivalent of a
6325          GDB_SIGNAL_TRAP to the program being debugged.  */
6326       if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6327           && !signal_program[ecs->event_thread->suspend.stop_signal])
6328         ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6329
6330       discard_cleanups (old_cleanups);
6331       resume (ecs->event_thread->suspend.stop_signal);
6332     }
6333
6334   prepare_to_wait (ecs);
6335 }
6336
6337 /* This function normally comes after a resume, before
6338    handle_inferior_event exits.  It takes care of any last bits of
6339    housekeeping, and sets the all-important wait_some_more flag.  */
6340
6341 static void
6342 prepare_to_wait (struct execution_control_state *ecs)
6343 {
6344   if (debug_infrun)
6345     fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
6346
6347   /* This is the old end of the while loop.  Let everybody know we
6348      want to wait for the inferior some more and get called again
6349      soon.  */
6350   ecs->wait_some_more = 1;
6351 }
6352
6353 /* We are done with the step range of a step/next/si/ni command.
6354    Called once for each n of a "step n" operation.  */
6355
6356 static void
6357 end_stepping_range (struct execution_control_state *ecs)
6358 {
6359   ecs->event_thread->control.stop_step = 1;
6360   stop_waiting (ecs);
6361 }
6362
6363 /* Several print_*_reason functions to print why the inferior has stopped.
6364    We always print something when the inferior exits, or receives a signal.
6365    The rest of the cases are dealt with later on in normal_stop and
6366    print_it_typical.  Ideally there should be a call to one of these
6367    print_*_reason functions functions from handle_inferior_event each time
6368    stop_waiting is called.
6369
6370    Note that we don't call these directly, instead we delegate that to
6371    the interpreters, through observers.  Interpreters then call these
6372    with whatever uiout is right.  */
6373
6374 void
6375 print_end_stepping_range_reason (struct ui_out *uiout)
6376 {
6377   /* For CLI-like interpreters, print nothing.  */
6378
6379   if (ui_out_is_mi_like_p (uiout))
6380     {
6381       ui_out_field_string (uiout, "reason",
6382                            async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
6383     }
6384 }
6385
6386 void
6387 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
6388 {
6389   annotate_signalled ();
6390   if (ui_out_is_mi_like_p (uiout))
6391     ui_out_field_string
6392       (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
6393   ui_out_text (uiout, "\nProgram terminated with signal ");
6394   annotate_signal_name ();
6395   ui_out_field_string (uiout, "signal-name",
6396                        gdb_signal_to_name (siggnal));
6397   annotate_signal_name_end ();
6398   ui_out_text (uiout, ", ");
6399   annotate_signal_string ();
6400   ui_out_field_string (uiout, "signal-meaning",
6401                        gdb_signal_to_string (siggnal));
6402   annotate_signal_string_end ();
6403   ui_out_text (uiout, ".\n");
6404   ui_out_text (uiout, "The program no longer exists.\n");
6405 }
6406
6407 void
6408 print_exited_reason (struct ui_out *uiout, int exitstatus)
6409 {
6410   struct inferior *inf = current_inferior ();
6411   const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
6412
6413   annotate_exited (exitstatus);
6414   if (exitstatus)
6415     {
6416       if (ui_out_is_mi_like_p (uiout))
6417         ui_out_field_string (uiout, "reason", 
6418                              async_reason_lookup (EXEC_ASYNC_EXITED));
6419       ui_out_text (uiout, "[Inferior ");
6420       ui_out_text (uiout, plongest (inf->num));
6421       ui_out_text (uiout, " (");
6422       ui_out_text (uiout, pidstr);
6423       ui_out_text (uiout, ") exited with code ");
6424       ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
6425       ui_out_text (uiout, "]\n");
6426     }
6427   else
6428     {
6429       if (ui_out_is_mi_like_p (uiout))
6430         ui_out_field_string
6431           (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
6432       ui_out_text (uiout, "[Inferior ");
6433       ui_out_text (uiout, plongest (inf->num));
6434       ui_out_text (uiout, " (");
6435       ui_out_text (uiout, pidstr);
6436       ui_out_text (uiout, ") exited normally]\n");
6437     }
6438 }
6439
6440 void
6441 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
6442 {
6443   annotate_signal ();
6444
6445   if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
6446     {
6447       struct thread_info *t = inferior_thread ();
6448
6449       ui_out_text (uiout, "\n[");
6450       ui_out_field_string (uiout, "thread-name",
6451                            target_pid_to_str (t->ptid));
6452       ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
6453       ui_out_text (uiout, " stopped");
6454     }
6455   else
6456     {
6457       ui_out_text (uiout, "\nProgram received signal ");
6458       annotate_signal_name ();
6459       if (ui_out_is_mi_like_p (uiout))
6460         ui_out_field_string
6461           (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
6462       ui_out_field_string (uiout, "signal-name",
6463                            gdb_signal_to_name (siggnal));
6464       annotate_signal_name_end ();
6465       ui_out_text (uiout, ", ");
6466       annotate_signal_string ();
6467       ui_out_field_string (uiout, "signal-meaning",
6468                            gdb_signal_to_string (siggnal));
6469       annotate_signal_string_end ();
6470     }
6471   ui_out_text (uiout, ".\n");
6472 }
6473
6474 void
6475 print_no_history_reason (struct ui_out *uiout)
6476 {
6477   ui_out_text (uiout, "\nNo more reverse-execution history.\n");
6478 }
6479
6480 /* Print current location without a level number, if we have changed
6481    functions or hit a breakpoint.  Print source line if we have one.
6482    bpstat_print contains the logic deciding in detail what to print,
6483    based on the event(s) that just occurred.  */
6484
6485 void
6486 print_stop_event (struct target_waitstatus *ws)
6487 {
6488   int bpstat_ret;
6489   int source_flag;
6490   int do_frame_printing = 1;
6491   struct thread_info *tp = inferior_thread ();
6492
6493   bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
6494   switch (bpstat_ret)
6495     {
6496     case PRINT_UNKNOWN:
6497       /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
6498          should) carry around the function and does (or should) use
6499          that when doing a frame comparison.  */
6500       if (tp->control.stop_step
6501           && frame_id_eq (tp->control.step_frame_id,
6502                           get_frame_id (get_current_frame ()))
6503           && tp->control.step_start_function == find_pc_function (stop_pc))
6504         {
6505           /* Finished step, just print source line.  */
6506           source_flag = SRC_LINE;
6507         }
6508       else
6509         {
6510           /* Print location and source line.  */
6511           source_flag = SRC_AND_LOC;
6512         }
6513       break;
6514     case PRINT_SRC_AND_LOC:
6515       /* Print location and source line.  */
6516       source_flag = SRC_AND_LOC;
6517       break;
6518     case PRINT_SRC_ONLY:
6519       source_flag = SRC_LINE;
6520       break;
6521     case PRINT_NOTHING:
6522       /* Something bogus.  */
6523       source_flag = SRC_LINE;
6524       do_frame_printing = 0;
6525       break;
6526     default:
6527       internal_error (__FILE__, __LINE__, _("Unknown value."));
6528     }
6529
6530   /* The behavior of this routine with respect to the source
6531      flag is:
6532      SRC_LINE: Print only source line
6533      LOCATION: Print only location
6534      SRC_AND_LOC: Print location and source line.  */
6535   if (do_frame_printing)
6536     print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
6537
6538   /* Display the auto-display expressions.  */
6539   do_displays ();
6540 }
6541
6542 /* Here to return control to GDB when the inferior stops for real.
6543    Print appropriate messages, remove breakpoints, give terminal our modes.
6544
6545    STOP_PRINT_FRAME nonzero means print the executing frame
6546    (pc, function, args, file, line number and line text).
6547    BREAKPOINTS_FAILED nonzero means stop was due to error
6548    attempting to insert breakpoints.  */
6549
6550 void
6551 normal_stop (void)
6552 {
6553   struct target_waitstatus last;
6554   ptid_t last_ptid;
6555   struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6556
6557   get_last_target_status (&last_ptid, &last);
6558
6559   /* If an exception is thrown from this point on, make sure to
6560      propagate GDB's knowledge of the executing state to the
6561      frontend/user running state.  A QUIT is an easy exception to see
6562      here, so do this before any filtered output.  */
6563   if (!non_stop)
6564     make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
6565   else if (last.kind != TARGET_WAITKIND_SIGNALLED
6566            && last.kind != TARGET_WAITKIND_EXITED
6567            && last.kind != TARGET_WAITKIND_NO_RESUMED)
6568     make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
6569
6570   /* As we're presenting a stop, and potentially removing breakpoints,
6571      update the thread list so we can tell whether there are threads
6572      running on the target.  With target remote, for example, we can
6573      only learn about new threads when we explicitly update the thread
6574      list.  Do this before notifying the interpreters about signal
6575      stops, end of stepping ranges, etc., so that the "new thread"
6576      output is emitted before e.g., "Program received signal FOO",
6577      instead of after.  */
6578   update_thread_list ();
6579
6580   if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
6581     observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
6582
6583   /* As with the notification of thread events, we want to delay
6584      notifying the user that we've switched thread context until
6585      the inferior actually stops.
6586
6587      There's no point in saying anything if the inferior has exited.
6588      Note that SIGNALLED here means "exited with a signal", not
6589      "received a signal".
6590
6591      Also skip saying anything in non-stop mode.  In that mode, as we
6592      don't want GDB to switch threads behind the user's back, to avoid
6593      races where the user is typing a command to apply to thread x,
6594      but GDB switches to thread y before the user finishes entering
6595      the command, fetch_inferior_event installs a cleanup to restore
6596      the current thread back to the thread the user had selected right
6597      after this event is handled, so we're not really switching, only
6598      informing of a stop.  */
6599   if (!non_stop
6600       && !ptid_equal (previous_inferior_ptid, inferior_ptid)
6601       && target_has_execution
6602       && last.kind != TARGET_WAITKIND_SIGNALLED
6603       && last.kind != TARGET_WAITKIND_EXITED
6604       && last.kind != TARGET_WAITKIND_NO_RESUMED)
6605     {
6606       target_terminal_ours_for_output ();
6607       printf_filtered (_("[Switching to %s]\n"),
6608                        target_pid_to_str (inferior_ptid));
6609       annotate_thread_changed ();
6610       previous_inferior_ptid = inferior_ptid;
6611     }
6612
6613   if (last.kind == TARGET_WAITKIND_NO_RESUMED)
6614     {
6615       gdb_assert (sync_execution || !target_can_async_p ());
6616
6617       target_terminal_ours_for_output ();
6618       printf_filtered (_("No unwaited-for children left.\n"));
6619     }
6620
6621   /* Note: this depends on the update_thread_list call above.  */
6622   if (!breakpoints_should_be_inserted_now () && target_has_execution)
6623     {
6624       if (remove_breakpoints ())
6625         {
6626           target_terminal_ours_for_output ();
6627           printf_filtered (_("Cannot remove breakpoints because "
6628                              "program is no longer writable.\nFurther "
6629                              "execution is probably impossible.\n"));
6630         }
6631     }
6632
6633   /* If an auto-display called a function and that got a signal,
6634      delete that auto-display to avoid an infinite recursion.  */
6635
6636   if (stopped_by_random_signal)
6637     disable_current_display ();
6638
6639   /* Notify observers if we finished a "step"-like command, etc.  */
6640   if (target_has_execution
6641       && last.kind != TARGET_WAITKIND_SIGNALLED
6642       && last.kind != TARGET_WAITKIND_EXITED
6643       && inferior_thread ()->control.stop_step)
6644     {
6645       /* But not if in the middle of doing a "step n" operation for
6646          n > 1 */
6647       if (inferior_thread ()->step_multi)
6648         goto done;
6649
6650       observer_notify_end_stepping_range ();
6651     }
6652
6653   target_terminal_ours ();
6654   async_enable_stdin ();
6655
6656   /* Set the current source location.  This will also happen if we
6657      display the frame below, but the current SAL will be incorrect
6658      during a user hook-stop function.  */
6659   if (has_stack_frames () && !stop_stack_dummy)
6660     set_current_sal_from_frame (get_current_frame ());
6661
6662   /* Let the user/frontend see the threads as stopped, but defer to
6663      call_function_by_hand if the thread finished an infcall
6664      successfully.  We may be e.g., evaluating a breakpoint condition.
6665      In that case, the thread had state THREAD_RUNNING before the
6666      infcall, and shall remain marked running, all without informing
6667      the user/frontend about state transition changes.  */
6668   if (target_has_execution
6669       && inferior_thread ()->control.in_infcall
6670       && stop_stack_dummy == STOP_STACK_DUMMY)
6671     discard_cleanups (old_chain);
6672   else
6673     do_cleanups (old_chain);
6674
6675   /* Look up the hook_stop and run it (CLI internally handles problem
6676      of stop_command's pre-hook not existing).  */
6677   if (stop_command)
6678     catch_errors (hook_stop_stub, stop_command,
6679                   "Error while running hook_stop:\n", RETURN_MASK_ALL);
6680
6681   if (!has_stack_frames ())
6682     goto done;
6683
6684   if (last.kind == TARGET_WAITKIND_SIGNALLED
6685       || last.kind == TARGET_WAITKIND_EXITED)
6686     goto done;
6687
6688   /* Select innermost stack frame - i.e., current frame is frame 0,
6689      and current location is based on that.
6690      Don't do this on return from a stack dummy routine,
6691      or if the program has exited.  */
6692
6693   if (!stop_stack_dummy)
6694     {
6695       select_frame (get_current_frame ());
6696
6697       /* If --batch-silent is enabled then there's no need to print the current
6698          source location, and to try risks causing an error message about
6699          missing source files.  */
6700       if (stop_print_frame && !batch_silent)
6701         print_stop_event (&last);
6702     }
6703
6704   if (stop_stack_dummy == STOP_STACK_DUMMY)
6705     {
6706       /* Pop the empty frame that contains the stack dummy.
6707          This also restores inferior state prior to the call
6708          (struct infcall_suspend_state).  */
6709       struct frame_info *frame = get_current_frame ();
6710
6711       gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6712       frame_pop (frame);
6713       /* frame_pop() calls reinit_frame_cache as the last thing it
6714          does which means there's currently no selected frame.  We
6715          don't need to re-establish a selected frame if the dummy call
6716          returns normally, that will be done by
6717          restore_infcall_control_state.  However, we do have to handle
6718          the case where the dummy call is returning after being
6719          stopped (e.g. the dummy call previously hit a breakpoint).
6720          We can't know which case we have so just always re-establish
6721          a selected frame here.  */
6722       select_frame (get_current_frame ());
6723     }
6724
6725 done:
6726   annotate_stopped ();
6727
6728   /* Suppress the stop observer if we're in the middle of:
6729
6730      - a step n (n > 1), as there still more steps to be done.
6731
6732      - a "finish" command, as the observer will be called in
6733        finish_command_continuation, so it can include the inferior
6734        function's return value.
6735
6736      - calling an inferior function, as we pretend we inferior didn't
6737        run at all.  The return value of the call is handled by the
6738        expression evaluator, through call_function_by_hand.  */
6739
6740   if (!target_has_execution
6741       || last.kind == TARGET_WAITKIND_SIGNALLED
6742       || last.kind == TARGET_WAITKIND_EXITED
6743       || last.kind == TARGET_WAITKIND_NO_RESUMED
6744       || (!(inferior_thread ()->step_multi
6745             && inferior_thread ()->control.stop_step)
6746           && !(inferior_thread ()->control.stop_bpstat
6747                && inferior_thread ()->control.proceed_to_finish)
6748           && !inferior_thread ()->control.in_infcall))
6749     {
6750       if (!ptid_equal (inferior_ptid, null_ptid))
6751         observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
6752                                      stop_print_frame);
6753       else
6754         observer_notify_normal_stop (NULL, stop_print_frame);
6755     }
6756
6757   if (target_has_execution)
6758     {
6759       if (last.kind != TARGET_WAITKIND_SIGNALLED
6760           && last.kind != TARGET_WAITKIND_EXITED)
6761         /* Delete the breakpoint we stopped at, if it wants to be deleted.
6762            Delete any breakpoint that is to be deleted at the next stop.  */
6763         breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
6764     }
6765
6766   /* Try to get rid of automatically added inferiors that are no
6767      longer needed.  Keeping those around slows down things linearly.
6768      Note that this never removes the current inferior.  */
6769   prune_inferiors ();
6770 }
6771
6772 static int
6773 hook_stop_stub (void *cmd)
6774 {
6775   execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
6776   return (0);
6777 }
6778 \f
6779 int
6780 signal_stop_state (int signo)
6781 {
6782   return signal_stop[signo];
6783 }
6784
6785 int
6786 signal_print_state (int signo)
6787 {
6788   return signal_print[signo];
6789 }
6790
6791 int
6792 signal_pass_state (int signo)
6793 {
6794   return signal_program[signo];
6795 }
6796
6797 static void
6798 signal_cache_update (int signo)
6799 {
6800   if (signo == -1)
6801     {
6802       for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
6803         signal_cache_update (signo);
6804
6805       return;
6806     }
6807
6808   signal_pass[signo] = (signal_stop[signo] == 0
6809                         && signal_print[signo] == 0
6810                         && signal_program[signo] == 1
6811                         && signal_catch[signo] == 0);
6812 }
6813
6814 int
6815 signal_stop_update (int signo, int state)
6816 {
6817   int ret = signal_stop[signo];
6818
6819   signal_stop[signo] = state;
6820   signal_cache_update (signo);
6821   return ret;
6822 }
6823
6824 int
6825 signal_print_update (int signo, int state)
6826 {
6827   int ret = signal_print[signo];
6828
6829   signal_print[signo] = state;
6830   signal_cache_update (signo);
6831   return ret;
6832 }
6833
6834 int
6835 signal_pass_update (int signo, int state)
6836 {
6837   int ret = signal_program[signo];
6838
6839   signal_program[signo] = state;
6840   signal_cache_update (signo);
6841   return ret;
6842 }
6843
6844 /* Update the global 'signal_catch' from INFO and notify the
6845    target.  */
6846
6847 void
6848 signal_catch_update (const unsigned int *info)
6849 {
6850   int i;
6851
6852   for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6853     signal_catch[i] = info[i] > 0;
6854   signal_cache_update (-1);
6855   target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6856 }
6857
6858 static void
6859 sig_print_header (void)
6860 {
6861   printf_filtered (_("Signal        Stop\tPrint\tPass "
6862                      "to program\tDescription\n"));
6863 }
6864
6865 static void
6866 sig_print_info (enum gdb_signal oursig)
6867 {
6868   const char *name = gdb_signal_to_name (oursig);
6869   int name_padding = 13 - strlen (name);
6870
6871   if (name_padding <= 0)
6872     name_padding = 0;
6873
6874   printf_filtered ("%s", name);
6875   printf_filtered ("%*.*s ", name_padding, name_padding, "                 ");
6876   printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6877   printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6878   printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6879   printf_filtered ("%s\n", gdb_signal_to_string (oursig));
6880 }
6881
6882 /* Specify how various signals in the inferior should be handled.  */
6883
6884 static void
6885 handle_command (char *args, int from_tty)
6886 {
6887   char **argv;
6888   int digits, wordlen;
6889   int sigfirst, signum, siglast;
6890   enum gdb_signal oursig;
6891   int allsigs;
6892   int nsigs;
6893   unsigned char *sigs;
6894   struct cleanup *old_chain;
6895
6896   if (args == NULL)
6897     {
6898       error_no_arg (_("signal to handle"));
6899     }
6900
6901   /* Allocate and zero an array of flags for which signals to handle.  */
6902
6903   nsigs = (int) GDB_SIGNAL_LAST;
6904   sigs = (unsigned char *) alloca (nsigs);
6905   memset (sigs, 0, nsigs);
6906
6907   /* Break the command line up into args.  */
6908
6909   argv = gdb_buildargv (args);
6910   old_chain = make_cleanup_freeargv (argv);
6911
6912   /* Walk through the args, looking for signal oursigs, signal names, and
6913      actions.  Signal numbers and signal names may be interspersed with
6914      actions, with the actions being performed for all signals cumulatively
6915      specified.  Signal ranges can be specified as <LOW>-<HIGH>.  */
6916
6917   while (*argv != NULL)
6918     {
6919       wordlen = strlen (*argv);
6920       for (digits = 0; isdigit ((*argv)[digits]); digits++)
6921         {;
6922         }
6923       allsigs = 0;
6924       sigfirst = siglast = -1;
6925
6926       if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6927         {
6928           /* Apply action to all signals except those used by the
6929              debugger.  Silently skip those.  */
6930           allsigs = 1;
6931           sigfirst = 0;
6932           siglast = nsigs - 1;
6933         }
6934       else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6935         {
6936           SET_SIGS (nsigs, sigs, signal_stop);
6937           SET_SIGS (nsigs, sigs, signal_print);
6938         }
6939       else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6940         {
6941           UNSET_SIGS (nsigs, sigs, signal_program);
6942         }
6943       else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6944         {
6945           SET_SIGS (nsigs, sigs, signal_print);
6946         }
6947       else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6948         {
6949           SET_SIGS (nsigs, sigs, signal_program);
6950         }
6951       else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6952         {
6953           UNSET_SIGS (nsigs, sigs, signal_stop);
6954         }
6955       else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6956         {
6957           SET_SIGS (nsigs, sigs, signal_program);
6958         }
6959       else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6960         {
6961           UNSET_SIGS (nsigs, sigs, signal_print);
6962           UNSET_SIGS (nsigs, sigs, signal_stop);
6963         }
6964       else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6965         {
6966           UNSET_SIGS (nsigs, sigs, signal_program);
6967         }
6968       else if (digits > 0)
6969         {
6970           /* It is numeric.  The numeric signal refers to our own
6971              internal signal numbering from target.h, not to host/target
6972              signal  number.  This is a feature; users really should be
6973              using symbolic names anyway, and the common ones like
6974              SIGHUP, SIGINT, SIGALRM, etc. will work right anyway.  */
6975
6976           sigfirst = siglast = (int)
6977             gdb_signal_from_command (atoi (*argv));
6978           if ((*argv)[digits] == '-')
6979             {
6980               siglast = (int)
6981                 gdb_signal_from_command (atoi ((*argv) + digits + 1));
6982             }
6983           if (sigfirst > siglast)
6984             {
6985               /* Bet he didn't figure we'd think of this case...  */
6986               signum = sigfirst;
6987               sigfirst = siglast;
6988               siglast = signum;
6989             }
6990         }
6991       else
6992         {
6993           oursig = gdb_signal_from_name (*argv);
6994           if (oursig != GDB_SIGNAL_UNKNOWN)
6995             {
6996               sigfirst = siglast = (int) oursig;
6997             }
6998           else
6999             {
7000               /* Not a number and not a recognized flag word => complain.  */
7001               error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
7002             }
7003         }
7004
7005       /* If any signal numbers or symbol names were found, set flags for
7006          which signals to apply actions to.  */
7007
7008       for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
7009         {
7010           switch ((enum gdb_signal) signum)
7011             {
7012             case GDB_SIGNAL_TRAP:
7013             case GDB_SIGNAL_INT:
7014               if (!allsigs && !sigs[signum])
7015                 {
7016                   if (query (_("%s is used by the debugger.\n\
7017 Are you sure you want to change it? "),
7018                              gdb_signal_to_name ((enum gdb_signal) signum)))
7019                     {
7020                       sigs[signum] = 1;
7021                     }
7022                   else
7023                     {
7024                       printf_unfiltered (_("Not confirmed, unchanged.\n"));
7025                       gdb_flush (gdb_stdout);
7026                     }
7027                 }
7028               break;
7029             case GDB_SIGNAL_0:
7030             case GDB_SIGNAL_DEFAULT:
7031             case GDB_SIGNAL_UNKNOWN:
7032               /* Make sure that "all" doesn't print these.  */
7033               break;
7034             default:
7035               sigs[signum] = 1;
7036               break;
7037             }
7038         }
7039
7040       argv++;
7041     }
7042
7043   for (signum = 0; signum < nsigs; signum++)
7044     if (sigs[signum])
7045       {
7046         signal_cache_update (-1);
7047         target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
7048         target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
7049
7050         if (from_tty)
7051           {
7052             /* Show the results.  */
7053             sig_print_header ();
7054             for (; signum < nsigs; signum++)
7055               if (sigs[signum])
7056                 sig_print_info (signum);
7057           }
7058
7059         break;
7060       }
7061
7062   do_cleanups (old_chain);
7063 }
7064
7065 /* Complete the "handle" command.  */
7066
7067 static VEC (char_ptr) *
7068 handle_completer (struct cmd_list_element *ignore,
7069                   const char *text, const char *word)
7070 {
7071   VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
7072   static const char * const keywords[] =
7073     {
7074       "all",
7075       "stop",
7076       "ignore",
7077       "print",
7078       "pass",
7079       "nostop",
7080       "noignore",
7081       "noprint",
7082       "nopass",
7083       NULL,
7084     };
7085
7086   vec_signals = signal_completer (ignore, text, word);
7087   vec_keywords = complete_on_enum (keywords, word, word);
7088
7089   return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
7090   VEC_free (char_ptr, vec_signals);
7091   VEC_free (char_ptr, vec_keywords);
7092   return return_val;
7093 }
7094
7095 enum gdb_signal
7096 gdb_signal_from_command (int num)
7097 {
7098   if (num >= 1 && num <= 15)
7099     return (enum gdb_signal) num;
7100   error (_("Only signals 1-15 are valid as numeric signals.\n\
7101 Use \"info signals\" for a list of symbolic signals."));
7102 }
7103
7104 /* Print current contents of the tables set by the handle command.
7105    It is possible we should just be printing signals actually used
7106    by the current target (but for things to work right when switching
7107    targets, all signals should be in the signal tables).  */
7108
7109 static void
7110 signals_info (char *signum_exp, int from_tty)
7111 {
7112   enum gdb_signal oursig;
7113
7114   sig_print_header ();
7115
7116   if (signum_exp)
7117     {
7118       /* First see if this is a symbol name.  */
7119       oursig = gdb_signal_from_name (signum_exp);
7120       if (oursig == GDB_SIGNAL_UNKNOWN)
7121         {
7122           /* No, try numeric.  */
7123           oursig =
7124             gdb_signal_from_command (parse_and_eval_long (signum_exp));
7125         }
7126       sig_print_info (oursig);
7127       return;
7128     }
7129
7130   printf_filtered ("\n");
7131   /* These ugly casts brought to you by the native VAX compiler.  */
7132   for (oursig = GDB_SIGNAL_FIRST;
7133        (int) oursig < (int) GDB_SIGNAL_LAST;
7134        oursig = (enum gdb_signal) ((int) oursig + 1))
7135     {
7136       QUIT;
7137
7138       if (oursig != GDB_SIGNAL_UNKNOWN
7139           && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
7140         sig_print_info (oursig);
7141     }
7142
7143   printf_filtered (_("\nUse the \"handle\" command "
7144                      "to change these tables.\n"));
7145 }
7146
7147 /* Check if it makes sense to read $_siginfo from the current thread
7148    at this point.  If not, throw an error.  */
7149
7150 static void
7151 validate_siginfo_access (void)
7152 {
7153   /* No current inferior, no siginfo.  */
7154   if (ptid_equal (inferior_ptid, null_ptid))
7155     error (_("No thread selected."));
7156
7157   /* Don't try to read from a dead thread.  */
7158   if (is_exited (inferior_ptid))
7159     error (_("The current thread has terminated"));
7160
7161   /* ... or from a spinning thread.  */
7162   if (is_running (inferior_ptid))
7163     error (_("Selected thread is running."));
7164 }
7165
7166 /* The $_siginfo convenience variable is a bit special.  We don't know
7167    for sure the type of the value until we actually have a chance to
7168    fetch the data.  The type can change depending on gdbarch, so it is
7169    also dependent on which thread you have selected.
7170
7171      1. making $_siginfo be an internalvar that creates a new value on
7172      access.
7173
7174      2. making the value of $_siginfo be an lval_computed value.  */
7175
7176 /* This function implements the lval_computed support for reading a
7177    $_siginfo value.  */
7178
7179 static void
7180 siginfo_value_read (struct value *v)
7181 {
7182   LONGEST transferred;
7183
7184   validate_siginfo_access ();
7185
7186   transferred =
7187     target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
7188                  NULL,
7189                  value_contents_all_raw (v),
7190                  value_offset (v),
7191                  TYPE_LENGTH (value_type (v)));
7192
7193   if (transferred != TYPE_LENGTH (value_type (v)))
7194     error (_("Unable to read siginfo"));
7195 }
7196
7197 /* This function implements the lval_computed support for writing a
7198    $_siginfo value.  */
7199
7200 static void
7201 siginfo_value_write (struct value *v, struct value *fromval)
7202 {
7203   LONGEST transferred;
7204
7205   validate_siginfo_access ();
7206
7207   transferred = target_write (&current_target,
7208                               TARGET_OBJECT_SIGNAL_INFO,
7209                               NULL,
7210                               value_contents_all_raw (fromval),
7211                               value_offset (v),
7212                               TYPE_LENGTH (value_type (fromval)));
7213
7214   if (transferred != TYPE_LENGTH (value_type (fromval)))
7215     error (_("Unable to write siginfo"));
7216 }
7217
7218 static const struct lval_funcs siginfo_value_funcs =
7219   {
7220     siginfo_value_read,
7221     siginfo_value_write
7222   };
7223
7224 /* Return a new value with the correct type for the siginfo object of
7225    the current thread using architecture GDBARCH.  Return a void value
7226    if there's no object available.  */
7227
7228 static struct value *
7229 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
7230                     void *ignore)
7231 {
7232   if (target_has_stack
7233       && !ptid_equal (inferior_ptid, null_ptid)
7234       && gdbarch_get_siginfo_type_p (gdbarch))
7235     {
7236       struct type *type = gdbarch_get_siginfo_type (gdbarch);
7237
7238       return allocate_computed_value (type, &siginfo_value_funcs, NULL);
7239     }
7240
7241   return allocate_value (builtin_type (gdbarch)->builtin_void);
7242 }
7243
7244 \f
7245 /* infcall_suspend_state contains state about the program itself like its
7246    registers and any signal it received when it last stopped.
7247    This state must be restored regardless of how the inferior function call
7248    ends (either successfully, or after it hits a breakpoint or signal)
7249    if the program is to properly continue where it left off.  */
7250
7251 struct infcall_suspend_state
7252 {
7253   struct thread_suspend_state thread_suspend;
7254
7255   /* Other fields:  */
7256   CORE_ADDR stop_pc;
7257   struct regcache *registers;
7258
7259   /* Format of SIGINFO_DATA or NULL if it is not present.  */
7260   struct gdbarch *siginfo_gdbarch;
7261
7262   /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
7263      TYPE_LENGTH (gdbarch_get_siginfo_type ()).  For different gdbarch the
7264      content would be invalid.  */
7265   gdb_byte *siginfo_data;
7266 };
7267
7268 struct infcall_suspend_state *
7269 save_infcall_suspend_state (void)
7270 {
7271   struct infcall_suspend_state *inf_state;
7272   struct thread_info *tp = inferior_thread ();
7273   struct regcache *regcache = get_current_regcache ();
7274   struct gdbarch *gdbarch = get_regcache_arch (regcache);
7275   gdb_byte *siginfo_data = NULL;
7276
7277   if (gdbarch_get_siginfo_type_p (gdbarch))
7278     {
7279       struct type *type = gdbarch_get_siginfo_type (gdbarch);
7280       size_t len = TYPE_LENGTH (type);
7281       struct cleanup *back_to;
7282
7283       siginfo_data = xmalloc (len);
7284       back_to = make_cleanup (xfree, siginfo_data);
7285
7286       if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
7287                        siginfo_data, 0, len) == len)
7288         discard_cleanups (back_to);
7289       else
7290         {
7291           /* Errors ignored.  */
7292           do_cleanups (back_to);
7293           siginfo_data = NULL;
7294         }
7295     }
7296
7297   inf_state = XCNEW (struct infcall_suspend_state);
7298
7299   if (siginfo_data)
7300     {
7301       inf_state->siginfo_gdbarch = gdbarch;
7302       inf_state->siginfo_data = siginfo_data;
7303     }
7304
7305   inf_state->thread_suspend = tp->suspend;
7306
7307   /* run_inferior_call will not use the signal due to its `proceed' call with
7308      GDB_SIGNAL_0 anyway.  */
7309   tp->suspend.stop_signal = GDB_SIGNAL_0;
7310
7311   inf_state->stop_pc = stop_pc;
7312
7313   inf_state->registers = regcache_dup (regcache);
7314
7315   return inf_state;
7316 }
7317
7318 /* Restore inferior session state to INF_STATE.  */
7319
7320 void
7321 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
7322 {
7323   struct thread_info *tp = inferior_thread ();
7324   struct regcache *regcache = get_current_regcache ();
7325   struct gdbarch *gdbarch = get_regcache_arch (regcache);
7326
7327   tp->suspend = inf_state->thread_suspend;
7328
7329   stop_pc = inf_state->stop_pc;
7330
7331   if (inf_state->siginfo_gdbarch == gdbarch)
7332     {
7333       struct type *type = gdbarch_get_siginfo_type (gdbarch);
7334
7335       /* Errors ignored.  */
7336       target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
7337                     inf_state->siginfo_data, 0, TYPE_LENGTH (type));
7338     }
7339
7340   /* The inferior can be gone if the user types "print exit(0)"
7341      (and perhaps other times).  */
7342   if (target_has_execution)
7343     /* NB: The register write goes through to the target.  */
7344     regcache_cpy (regcache, inf_state->registers);
7345
7346   discard_infcall_suspend_state (inf_state);
7347 }
7348
7349 static void
7350 do_restore_infcall_suspend_state_cleanup (void *state)
7351 {
7352   restore_infcall_suspend_state (state);
7353 }
7354
7355 struct cleanup *
7356 make_cleanup_restore_infcall_suspend_state
7357   (struct infcall_suspend_state *inf_state)
7358 {
7359   return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
7360 }
7361
7362 void
7363 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
7364 {
7365   regcache_xfree (inf_state->registers);
7366   xfree (inf_state->siginfo_data);
7367   xfree (inf_state);
7368 }
7369
7370 struct regcache *
7371 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
7372 {
7373   return inf_state->registers;
7374 }
7375
7376 /* infcall_control_state contains state regarding gdb's control of the
7377    inferior itself like stepping control.  It also contains session state like
7378    the user's currently selected frame.  */
7379
7380 struct infcall_control_state
7381 {
7382   struct thread_control_state thread_control;
7383   struct inferior_control_state inferior_control;
7384
7385   /* Other fields:  */
7386   enum stop_stack_kind stop_stack_dummy;
7387   int stopped_by_random_signal;
7388   int stop_after_trap;
7389
7390   /* ID if the selected frame when the inferior function call was made.  */
7391   struct frame_id selected_frame_id;
7392 };
7393
7394 /* Save all of the information associated with the inferior<==>gdb
7395    connection.  */
7396
7397 struct infcall_control_state *
7398 save_infcall_control_state (void)
7399 {
7400   struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
7401   struct thread_info *tp = inferior_thread ();
7402   struct inferior *inf = current_inferior ();
7403
7404   inf_status->thread_control = tp->control;
7405   inf_status->inferior_control = inf->control;
7406
7407   tp->control.step_resume_breakpoint = NULL;
7408   tp->control.exception_resume_breakpoint = NULL;
7409
7410   /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
7411      chain.  If caller's caller is walking the chain, they'll be happier if we
7412      hand them back the original chain when restore_infcall_control_state is
7413      called.  */
7414   tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
7415
7416   /* Other fields:  */
7417   inf_status->stop_stack_dummy = stop_stack_dummy;
7418   inf_status->stopped_by_random_signal = stopped_by_random_signal;
7419   inf_status->stop_after_trap = stop_after_trap;
7420
7421   inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
7422
7423   return inf_status;
7424 }
7425
7426 static int
7427 restore_selected_frame (void *args)
7428 {
7429   struct frame_id *fid = (struct frame_id *) args;
7430   struct frame_info *frame;
7431
7432   frame = frame_find_by_id (*fid);
7433
7434   /* If inf_status->selected_frame_id is NULL, there was no previously
7435      selected frame.  */
7436   if (frame == NULL)
7437     {
7438       warning (_("Unable to restore previously selected frame."));
7439       return 0;
7440     }
7441
7442   select_frame (frame);
7443
7444   return (1);
7445 }
7446
7447 /* Restore inferior session state to INF_STATUS.  */
7448
7449 void
7450 restore_infcall_control_state (struct infcall_control_state *inf_status)
7451 {
7452   struct thread_info *tp = inferior_thread ();
7453   struct inferior *inf = current_inferior ();
7454
7455   if (tp->control.step_resume_breakpoint)
7456     tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
7457
7458   if (tp->control.exception_resume_breakpoint)
7459     tp->control.exception_resume_breakpoint->disposition
7460       = disp_del_at_next_stop;
7461
7462   /* Handle the bpstat_copy of the chain.  */
7463   bpstat_clear (&tp->control.stop_bpstat);
7464
7465   tp->control = inf_status->thread_control;
7466   inf->control = inf_status->inferior_control;
7467
7468   /* Other fields:  */
7469   stop_stack_dummy = inf_status->stop_stack_dummy;
7470   stopped_by_random_signal = inf_status->stopped_by_random_signal;
7471   stop_after_trap = inf_status->stop_after_trap;
7472
7473   if (target_has_stack)
7474     {
7475       /* The point of catch_errors is that if the stack is clobbered,
7476          walking the stack might encounter a garbage pointer and
7477          error() trying to dereference it.  */
7478       if (catch_errors
7479           (restore_selected_frame, &inf_status->selected_frame_id,
7480            "Unable to restore previously selected frame:\n",
7481            RETURN_MASK_ERROR) == 0)
7482         /* Error in restoring the selected frame.  Select the innermost
7483            frame.  */
7484         select_frame (get_current_frame ());
7485     }
7486
7487   xfree (inf_status);
7488 }
7489
7490 static void
7491 do_restore_infcall_control_state_cleanup (void *sts)
7492 {
7493   restore_infcall_control_state (sts);
7494 }
7495
7496 struct cleanup *
7497 make_cleanup_restore_infcall_control_state
7498   (struct infcall_control_state *inf_status)
7499 {
7500   return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
7501 }
7502
7503 void
7504 discard_infcall_control_state (struct infcall_control_state *inf_status)
7505 {
7506   if (inf_status->thread_control.step_resume_breakpoint)
7507     inf_status->thread_control.step_resume_breakpoint->disposition
7508       = disp_del_at_next_stop;
7509
7510   if (inf_status->thread_control.exception_resume_breakpoint)
7511     inf_status->thread_control.exception_resume_breakpoint->disposition
7512       = disp_del_at_next_stop;
7513
7514   /* See save_infcall_control_state for info on stop_bpstat.  */
7515   bpstat_clear (&inf_status->thread_control.stop_bpstat);
7516
7517   xfree (inf_status);
7518 }
7519 \f
7520 /* restore_inferior_ptid() will be used by the cleanup machinery
7521    to restore the inferior_ptid value saved in a call to
7522    save_inferior_ptid().  */
7523
7524 static void
7525 restore_inferior_ptid (void *arg)
7526 {
7527   ptid_t *saved_ptid_ptr = arg;
7528
7529   inferior_ptid = *saved_ptid_ptr;
7530   xfree (arg);
7531 }
7532
7533 /* Save the value of inferior_ptid so that it may be restored by a
7534    later call to do_cleanups().  Returns the struct cleanup pointer
7535    needed for later doing the cleanup.  */
7536
7537 struct cleanup *
7538 save_inferior_ptid (void)
7539 {
7540   ptid_t *saved_ptid_ptr;
7541
7542   saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7543   *saved_ptid_ptr = inferior_ptid;
7544   return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7545 }
7546
7547 /* See infrun.h.  */
7548
7549 void
7550 clear_exit_convenience_vars (void)
7551 {
7552   clear_internalvar (lookup_internalvar ("_exitsignal"));
7553   clear_internalvar (lookup_internalvar ("_exitcode"));
7554 }
7555 \f
7556
7557 /* User interface for reverse debugging:
7558    Set exec-direction / show exec-direction commands
7559    (returns error unless target implements to_set_exec_direction method).  */
7560
7561 int execution_direction = EXEC_FORWARD;
7562 static const char exec_forward[] = "forward";
7563 static const char exec_reverse[] = "reverse";
7564 static const char *exec_direction = exec_forward;
7565 static const char *const exec_direction_names[] = {
7566   exec_forward,
7567   exec_reverse,
7568   NULL
7569 };
7570
7571 static void
7572 set_exec_direction_func (char *args, int from_tty,
7573                          struct cmd_list_element *cmd)
7574 {
7575   if (target_can_execute_reverse)
7576     {
7577       if (!strcmp (exec_direction, exec_forward))
7578         execution_direction = EXEC_FORWARD;
7579       else if (!strcmp (exec_direction, exec_reverse))
7580         execution_direction = EXEC_REVERSE;
7581     }
7582   else
7583     {
7584       exec_direction = exec_forward;
7585       error (_("Target does not support this operation."));
7586     }
7587 }
7588
7589 static void
7590 show_exec_direction_func (struct ui_file *out, int from_tty,
7591                           struct cmd_list_element *cmd, const char *value)
7592 {
7593   switch (execution_direction) {
7594   case EXEC_FORWARD:
7595     fprintf_filtered (out, _("Forward.\n"));
7596     break;
7597   case EXEC_REVERSE:
7598     fprintf_filtered (out, _("Reverse.\n"));
7599     break;
7600   default:
7601     internal_error (__FILE__, __LINE__,
7602                     _("bogus execution_direction value: %d"),
7603                     (int) execution_direction);
7604   }
7605 }
7606
7607 static void
7608 show_schedule_multiple (struct ui_file *file, int from_tty,
7609                         struct cmd_list_element *c, const char *value)
7610 {
7611   fprintf_filtered (file, _("Resuming the execution of threads "
7612                             "of all processes is %s.\n"), value);
7613 }
7614
7615 /* Implementation of `siginfo' variable.  */
7616
7617 static const struct internalvar_funcs siginfo_funcs =
7618 {
7619   siginfo_make_value,
7620   NULL,
7621   NULL
7622 };
7623
7624 void
7625 _initialize_infrun (void)
7626 {
7627   int i;
7628   int numsigs;
7629   struct cmd_list_element *c;
7630
7631   add_info ("signals", signals_info, _("\
7632 What debugger does when program gets various signals.\n\
7633 Specify a signal as argument to print info on that signal only."));
7634   add_info_alias ("handle", "signals", 0);
7635
7636   c = add_com ("handle", class_run, handle_command, _("\
7637 Specify how to handle signals.\n\
7638 Usage: handle SIGNAL [ACTIONS]\n\
7639 Args are signals and actions to apply to those signals.\n\
7640 If no actions are specified, the current settings for the specified signals\n\
7641 will be displayed instead.\n\
7642 \n\
7643 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7644 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7645 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7646 The special arg \"all\" is recognized to mean all signals except those\n\
7647 used by the debugger, typically SIGTRAP and SIGINT.\n\
7648 \n\
7649 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
7650 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7651 Stop means reenter debugger if this signal happens (implies print).\n\
7652 Print means print a message if this signal happens.\n\
7653 Pass means let program see this signal; otherwise program doesn't know.\n\
7654 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7655 Pass and Stop may be combined.\n\
7656 \n\
7657 Multiple signals may be specified.  Signal numbers and signal names\n\
7658 may be interspersed with actions, with the actions being performed for\n\
7659 all signals cumulatively specified."));
7660   set_cmd_completer (c, handle_completer);
7661
7662   if (!dbx_commands)
7663     stop_command = add_cmd ("stop", class_obscure,
7664                             not_just_help_class_command, _("\
7665 There is no `stop' command, but you can set a hook on `stop'.\n\
7666 This allows you to set a list of commands to be run each time execution\n\
7667 of the program stops."), &cmdlist);
7668
7669   add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7670 Set inferior debugging."), _("\
7671 Show inferior debugging."), _("\
7672 When non-zero, inferior specific debugging is enabled."),
7673                              NULL,
7674                              show_debug_infrun,
7675                              &setdebuglist, &showdebuglist);
7676
7677   add_setshow_boolean_cmd ("displaced", class_maintenance,
7678                            &debug_displaced, _("\
7679 Set displaced stepping debugging."), _("\
7680 Show displaced stepping debugging."), _("\
7681 When non-zero, displaced stepping specific debugging is enabled."),
7682                             NULL,
7683                             show_debug_displaced,
7684                             &setdebuglist, &showdebuglist);
7685
7686   add_setshow_boolean_cmd ("non-stop", no_class,
7687                            &non_stop_1, _("\
7688 Set whether gdb controls the inferior in non-stop mode."), _("\
7689 Show whether gdb controls the inferior in non-stop mode."), _("\
7690 When debugging a multi-threaded program and this setting is\n\
7691 off (the default, also called all-stop mode), when one thread stops\n\
7692 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7693 all other threads in the program while you interact with the thread of\n\
7694 interest.  When you continue or step a thread, you can allow the other\n\
7695 threads to run, or have them remain stopped, but while you inspect any\n\
7696 thread's state, all threads stop.\n\
7697 \n\
7698 In non-stop mode, when one thread stops, other threads can continue\n\
7699 to run freely.  You'll be able to step each thread independently,\n\
7700 leave it stopped or free to run as needed."),
7701                            set_non_stop,
7702                            show_non_stop,
7703                            &setlist,
7704                            &showlist);
7705
7706   numsigs = (int) GDB_SIGNAL_LAST;
7707   signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7708   signal_print = (unsigned char *)
7709     xmalloc (sizeof (signal_print[0]) * numsigs);
7710   signal_program = (unsigned char *)
7711     xmalloc (sizeof (signal_program[0]) * numsigs);
7712   signal_catch = (unsigned char *)
7713     xmalloc (sizeof (signal_catch[0]) * numsigs);
7714   signal_pass = (unsigned char *)
7715     xmalloc (sizeof (signal_pass[0]) * numsigs);
7716   for (i = 0; i < numsigs; i++)
7717     {
7718       signal_stop[i] = 1;
7719       signal_print[i] = 1;
7720       signal_program[i] = 1;
7721       signal_catch[i] = 0;
7722     }
7723
7724   /* Signals caused by debugger's own actions
7725      should not be given to the program afterwards.  */
7726   signal_program[GDB_SIGNAL_TRAP] = 0;
7727   signal_program[GDB_SIGNAL_INT] = 0;
7728
7729   /* Signals that are not errors should not normally enter the debugger.  */
7730   signal_stop[GDB_SIGNAL_ALRM] = 0;
7731   signal_print[GDB_SIGNAL_ALRM] = 0;
7732   signal_stop[GDB_SIGNAL_VTALRM] = 0;
7733   signal_print[GDB_SIGNAL_VTALRM] = 0;
7734   signal_stop[GDB_SIGNAL_PROF] = 0;
7735   signal_print[GDB_SIGNAL_PROF] = 0;
7736   signal_stop[GDB_SIGNAL_CHLD] = 0;
7737   signal_print[GDB_SIGNAL_CHLD] = 0;
7738   signal_stop[GDB_SIGNAL_IO] = 0;
7739   signal_print[GDB_SIGNAL_IO] = 0;
7740   signal_stop[GDB_SIGNAL_POLL] = 0;
7741   signal_print[GDB_SIGNAL_POLL] = 0;
7742   signal_stop[GDB_SIGNAL_URG] = 0;
7743   signal_print[GDB_SIGNAL_URG] = 0;
7744   signal_stop[GDB_SIGNAL_WINCH] = 0;
7745   signal_print[GDB_SIGNAL_WINCH] = 0;
7746   signal_stop[GDB_SIGNAL_PRIO] = 0;
7747   signal_print[GDB_SIGNAL_PRIO] = 0;
7748
7749   /* These signals are used internally by user-level thread
7750      implementations.  (See signal(5) on Solaris.)  Like the above
7751      signals, a healthy program receives and handles them as part of
7752      its normal operation.  */
7753   signal_stop[GDB_SIGNAL_LWP] = 0;
7754   signal_print[GDB_SIGNAL_LWP] = 0;
7755   signal_stop[GDB_SIGNAL_WAITING] = 0;
7756   signal_print[GDB_SIGNAL_WAITING] = 0;
7757   signal_stop[GDB_SIGNAL_CANCEL] = 0;
7758   signal_print[GDB_SIGNAL_CANCEL] = 0;
7759
7760   /* Update cached state.  */
7761   signal_cache_update (-1);
7762
7763   add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7764                             &stop_on_solib_events, _("\
7765 Set stopping for shared library events."), _("\
7766 Show stopping for shared library events."), _("\
7767 If nonzero, gdb will give control to the user when the dynamic linker\n\
7768 notifies gdb of shared library events.  The most common event of interest\n\
7769 to the user would be loading/unloading of a new library."),
7770                             set_stop_on_solib_events,
7771                             show_stop_on_solib_events,
7772                             &setlist, &showlist);
7773
7774   add_setshow_enum_cmd ("follow-fork-mode", class_run,
7775                         follow_fork_mode_kind_names,
7776                         &follow_fork_mode_string, _("\
7777 Set debugger response to a program call of fork or vfork."), _("\
7778 Show debugger response to a program call of fork or vfork."), _("\
7779 A fork or vfork creates a new process.  follow-fork-mode can be:\n\
7780   parent  - the original process is debugged after a fork\n\
7781   child   - the new process is debugged after a fork\n\
7782 The unfollowed process will continue to run.\n\
7783 By default, the debugger will follow the parent process."),
7784                         NULL,
7785                         show_follow_fork_mode_string,
7786                         &setlist, &showlist);
7787
7788   add_setshow_enum_cmd ("follow-exec-mode", class_run,
7789                         follow_exec_mode_names,
7790                         &follow_exec_mode_string, _("\
7791 Set debugger response to a program call of exec."), _("\
7792 Show debugger response to a program call of exec."), _("\
7793 An exec call replaces the program image of a process.\n\
7794 \n\
7795 follow-exec-mode can be:\n\
7796 \n\
7797   new - the debugger creates a new inferior and rebinds the process\n\
7798 to this new inferior.  The program the process was running before\n\
7799 the exec call can be restarted afterwards by restarting the original\n\
7800 inferior.\n\
7801 \n\
7802   same - the debugger keeps the process bound to the same inferior.\n\
7803 The new executable image replaces the previous executable loaded in\n\
7804 the inferior.  Restarting the inferior after the exec call restarts\n\
7805 the executable the process was running after the exec call.\n\
7806 \n\
7807 By default, the debugger will use the same inferior."),
7808                         NULL,
7809                         show_follow_exec_mode_string,
7810                         &setlist, &showlist);
7811
7812   add_setshow_enum_cmd ("scheduler-locking", class_run, 
7813                         scheduler_enums, &scheduler_mode, _("\
7814 Set mode for locking scheduler during execution."), _("\
7815 Show mode for locking scheduler during execution."), _("\
7816 off  == no locking (threads may preempt at any time)\n\
7817 on   == full locking (no thread except the current thread may run)\n\
7818 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
7819         In this mode, other threads may run during other commands."),
7820                         set_schedlock_func,     /* traps on target vector */
7821                         show_scheduler_mode,
7822                         &setlist, &showlist);
7823
7824   add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7825 Set mode for resuming threads of all processes."), _("\
7826 Show mode for resuming threads of all processes."), _("\
7827 When on, execution commands (such as 'continue' or 'next') resume all\n\
7828 threads of all processes.  When off (which is the default), execution\n\
7829 commands only resume the threads of the current process.  The set of\n\
7830 threads that are resumed is further refined by the scheduler-locking\n\
7831 mode (see help set scheduler-locking)."),
7832                            NULL,
7833                            show_schedule_multiple,
7834                            &setlist, &showlist);
7835
7836   add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7837 Set mode of the step operation."), _("\
7838 Show mode of the step operation."), _("\
7839 When set, doing a step over a function without debug line information\n\
7840 will stop at the first instruction of that function. Otherwise, the\n\
7841 function is skipped and the step command stops at a different source line."),
7842                            NULL,
7843                            show_step_stop_if_no_debug,
7844                            &setlist, &showlist);
7845
7846   add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7847                                 &can_use_displaced_stepping, _("\
7848 Set debugger's willingness to use displaced stepping."), _("\
7849 Show debugger's willingness to use displaced stepping."), _("\
7850 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7851 supported by the target architecture.  If off, gdb will not use displaced\n\
7852 stepping to step over breakpoints, even if such is supported by the target\n\
7853 architecture.  If auto (which is the default), gdb will use displaced stepping\n\
7854 if the target architecture supports it and non-stop mode is active, but will not\n\
7855 use it in all-stop mode (see help set non-stop)."),
7856                                 NULL,
7857                                 show_can_use_displaced_stepping,
7858                                 &setlist, &showlist);
7859
7860   add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7861                         &exec_direction, _("Set direction of execution.\n\
7862 Options are 'forward' or 'reverse'."),
7863                         _("Show direction of execution (forward/reverse)."),
7864                         _("Tells gdb whether to execute forward or backward."),
7865                         set_exec_direction_func, show_exec_direction_func,
7866                         &setlist, &showlist);
7867
7868   /* Set/show detach-on-fork: user-settable mode.  */
7869
7870   add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7871 Set whether gdb will detach the child of a fork."), _("\
7872 Show whether gdb will detach the child of a fork."), _("\
7873 Tells gdb whether to detach the child of a fork."),
7874                            NULL, NULL, &setlist, &showlist);
7875
7876   /* Set/show disable address space randomization mode.  */
7877
7878   add_setshow_boolean_cmd ("disable-randomization", class_support,
7879                            &disable_randomization, _("\
7880 Set disabling of debuggee's virtual address space randomization."), _("\
7881 Show disabling of debuggee's virtual address space randomization."), _("\
7882 When this mode is on (which is the default), randomization of the virtual\n\
7883 address space is disabled.  Standalone programs run with the randomization\n\
7884 enabled by default on some platforms."),
7885                            &set_disable_randomization,
7886                            &show_disable_randomization,
7887                            &setlist, &showlist);
7888
7889   /* ptid initializations */
7890   inferior_ptid = null_ptid;
7891   target_last_wait_ptid = minus_one_ptid;
7892
7893   observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7894   observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7895   observer_attach_thread_exit (infrun_thread_thread_exit);
7896   observer_attach_inferior_exit (infrun_inferior_exit);
7897
7898   /* Explicitly create without lookup, since that tries to create a
7899      value with a void typed value, and when we get here, gdbarch
7900      isn't initialized yet.  At this point, we're quite sure there
7901      isn't another convenience variable of the same name.  */
7902   create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
7903
7904   add_setshow_boolean_cmd ("observer", no_class,
7905                            &observer_mode_1, _("\
7906 Set whether gdb controls the inferior in observer mode."), _("\
7907 Show whether gdb controls the inferior in observer mode."), _("\
7908 In observer mode, GDB can get data from the inferior, but not\n\
7909 affect its execution.  Registers and memory may not be changed,\n\
7910 breakpoints may not be set, and the program cannot be interrupted\n\
7911 or signalled."),
7912                            set_observer_mode,
7913                            show_observer_mode,
7914                            &setlist,
7915                            &showlist);
7916 }