igb: Unbreak compile on i386
[dragonfly.git] / sys / dev / netif / igb / if_igb.c
1 /*
2  * Copyright (c) 2001-2011, Intel Corporation 
3  * All rights reserved.
4  * 
5  * Redistribution and use in source and binary forms, with or without 
6  * modification, are permitted provided that the following conditions are met:
7  * 
8  *  1. Redistributions of source code must retain the above copyright notice, 
9  *     this list of conditions and the following disclaimer.
10  * 
11  *  2. Redistributions in binary form must reproduce the above copyright 
12  *     notice, this list of conditions and the following disclaimer in the 
13  *     documentation and/or other materials provided with the distribution.
14  * 
15  *  3. Neither the name of the Intel Corporation nor the names of its 
16  *     contributors may be used to endorse or promote products derived from 
17  *     this software without specific prior written permission.
18  * 
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31
32 #include "opt_polling.h"
33
34 #include <sys/param.h>
35 #include <sys/bus.h>
36 #include <sys/endian.h>
37 #include <sys/interrupt.h>
38 #include <sys/kernel.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/proc.h>
42 #include <sys/rman.h>
43 #include <sys/serialize.h>
44 #include <sys/serialize2.h>
45 #include <sys/socket.h>
46 #include <sys/sockio.h>
47 #include <sys/sysctl.h>
48 #include <sys/systm.h>
49
50 #include <net/bpf.h>
51 #include <net/ethernet.h>
52 #include <net/if.h>
53 #include <net/if_arp.h>
54 #include <net/if_dl.h>
55 #include <net/if_media.h>
56 #include <net/ifq_var.h>
57 #include <net/toeplitz.h>
58 #include <net/toeplitz2.h>
59 #include <net/vlan/if_vlan_var.h>
60 #include <net/vlan/if_vlan_ether.h>
61 #include <net/if_poll.h>
62
63 #include <netinet/in_systm.h>
64 #include <netinet/in.h>
65 #include <netinet/ip.h>
66 #include <netinet/tcp.h>
67 #include <netinet/udp.h>
68
69 #include <bus/pci/pcivar.h>
70 #include <bus/pci/pcireg.h>
71
72 #include <dev/netif/ig_hal/e1000_api.h>
73 #include <dev/netif/ig_hal/e1000_82575.h>
74 #include <dev/netif/igb/if_igb.h>
75
76 #define IGB_NAME        "Intel(R) PRO/1000 "
77 #define IGB_DEVICE(id)  \
78         { IGB_VENDOR_ID, E1000_DEV_ID_##id, IGB_NAME #id }
79 #define IGB_DEVICE_NULL { 0, 0, NULL }
80
81 static struct igb_device {
82         uint16_t        vid;
83         uint16_t        did;
84         const char      *desc;
85 } igb_devices[] = {
86         IGB_DEVICE(82575EB_COPPER),
87         IGB_DEVICE(82575EB_FIBER_SERDES),
88         IGB_DEVICE(82575GB_QUAD_COPPER),
89         IGB_DEVICE(82576),
90         IGB_DEVICE(82576_NS),
91         IGB_DEVICE(82576_NS_SERDES),
92         IGB_DEVICE(82576_FIBER),
93         IGB_DEVICE(82576_SERDES),
94         IGB_DEVICE(82576_SERDES_QUAD),
95         IGB_DEVICE(82576_QUAD_COPPER),
96         IGB_DEVICE(82576_QUAD_COPPER_ET2),
97         IGB_DEVICE(82576_VF),
98         IGB_DEVICE(82580_COPPER),
99         IGB_DEVICE(82580_FIBER),
100         IGB_DEVICE(82580_SERDES),
101         IGB_DEVICE(82580_SGMII),
102         IGB_DEVICE(82580_COPPER_DUAL),
103         IGB_DEVICE(82580_QUAD_FIBER),
104         IGB_DEVICE(DH89XXCC_SERDES),
105         IGB_DEVICE(DH89XXCC_SGMII),
106         IGB_DEVICE(DH89XXCC_SFP),
107         IGB_DEVICE(DH89XXCC_BACKPLANE),
108         IGB_DEVICE(I350_COPPER),
109         IGB_DEVICE(I350_FIBER),
110         IGB_DEVICE(I350_SERDES),
111         IGB_DEVICE(I350_SGMII),
112         IGB_DEVICE(I350_VF),
113
114         /* required last entry */
115         IGB_DEVICE_NULL
116 };
117
118 static int      igb_probe(device_t);
119 static int      igb_attach(device_t);
120 static int      igb_detach(device_t);
121 static int      igb_shutdown(device_t);
122 static int      igb_suspend(device_t);
123 static int      igb_resume(device_t);
124
125 static boolean_t igb_is_valid_ether_addr(const uint8_t *);
126 static void     igb_setup_ifp(struct igb_softc *);
127 static int      igb_txctx_pullup(struct igb_tx_ring *, struct mbuf **);
128 static boolean_t igb_txctx(struct igb_tx_ring *, struct mbuf *);
129 static void     igb_add_sysctl(struct igb_softc *);
130 static int      igb_sysctl_intr_rate(SYSCTL_HANDLER_ARGS);
131 static int      igb_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS);
132
133 static void     igb_vf_init_stats(struct igb_softc *);
134 static void     igb_reset(struct igb_softc *);
135 static void     igb_update_stats_counters(struct igb_softc *);
136 static void     igb_update_vf_stats_counters(struct igb_softc *);
137 static void     igb_update_link_status(struct igb_softc *);
138 static void     igb_init_tx_unit(struct igb_softc *);
139 static void     igb_init_rx_unit(struct igb_softc *);
140
141 static void     igb_set_vlan(struct igb_softc *);
142 static void     igb_set_multi(struct igb_softc *);
143 static void     igb_set_promisc(struct igb_softc *);
144 static void     igb_disable_promisc(struct igb_softc *);
145
146 static int      igb_dma_alloc(struct igb_softc *);
147 static void     igb_dma_free(struct igb_softc *);
148 static int      igb_create_tx_ring(struct igb_tx_ring *);
149 static int      igb_create_rx_ring(struct igb_rx_ring *);
150 static void     igb_free_tx_ring(struct igb_tx_ring *);
151 static void     igb_free_rx_ring(struct igb_rx_ring *);
152 static void     igb_destroy_tx_ring(struct igb_tx_ring *, int);
153 static void     igb_destroy_rx_ring(struct igb_rx_ring *, int);
154 static void     igb_init_tx_ring(struct igb_tx_ring *);
155 static int      igb_init_rx_ring(struct igb_rx_ring *);
156 static int      igb_newbuf(struct igb_rx_ring *, int, boolean_t);
157 static int      igb_encap(struct igb_tx_ring *, struct mbuf **);
158
159 static void     igb_stop(struct igb_softc *);
160 static void     igb_init(void *);
161 static int      igb_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
162 static void     igb_media_status(struct ifnet *, struct ifmediareq *);
163 static int      igb_media_change(struct ifnet *);
164 static void     igb_timer(void *);
165 static void     igb_watchdog(struct ifnet *);
166 static void     igb_start(struct ifnet *);
167 #ifdef DEVICE_POLLING
168 static void     igb_poll(struct ifnet *, enum poll_cmd, int);
169 #endif
170
171 static void     igb_intr(void *);
172 static void     igb_rxeof(struct igb_rx_ring *, int);
173 static void     igb_txeof(struct igb_tx_ring *);
174 static void     igb_set_itr(struct igb_softc *);
175 static void     igb_enable_intr(struct igb_softc *);
176 static void     igb_disable_intr(struct igb_softc *);
177
178 /* Management and WOL Support */
179 static void     igb_get_mgmt(struct igb_softc *);
180 static void     igb_rel_mgmt(struct igb_softc *);
181 static void     igb_get_hw_control(struct igb_softc *);
182 static void     igb_rel_hw_control(struct igb_softc *);
183 static void     igb_enable_wol(device_t);
184
185 static device_method_t igb_methods[] = {
186         /* Device interface */
187         DEVMETHOD(device_probe,         igb_probe),
188         DEVMETHOD(device_attach,        igb_attach),
189         DEVMETHOD(device_detach,        igb_detach),
190         DEVMETHOD(device_shutdown,      igb_shutdown),
191         DEVMETHOD(device_suspend,       igb_suspend),
192         DEVMETHOD(device_resume,        igb_resume),
193         { 0, 0 }
194 };
195
196 static driver_t igb_driver = {
197         "igb",
198         igb_methods,
199         sizeof(struct igb_softc),
200 };
201
202 static devclass_t igb_devclass;
203
204 DECLARE_DUMMY_MODULE(if_igb);
205 MODULE_DEPEND(igb, ig_hal, 1, 1, 1);
206 DRIVER_MODULE(if_igb, pci, igb_driver, igb_devclass, NULL, NULL);
207
208 static int      igb_rxd = IGB_DEFAULT_RXD;
209 static int      igb_txd = IGB_DEFAULT_TXD;
210 static int      igb_msi_enable = 1;
211 static int      igb_msix_enable = 1;
212 static int      igb_eee_disabled = 1;   /* Energy Efficient Ethernet */
213 static int      igb_fc_setting = e1000_fc_full;
214
215 /*
216  * DMA Coalescing, only for i350 - default to off,
217  * this feature is for power savings
218  */
219 static int      igb_dma_coalesce = 0;
220
221 TUNABLE_INT("hw.igb.rxd", &igb_rxd);
222 TUNABLE_INT("hw.igb.txd", &igb_txd);
223 TUNABLE_INT("hw.igb.msi.enable", &igb_msi_enable);
224 TUNABLE_INT("hw.igb.msix.enable", &igb_msix_enable);
225 TUNABLE_INT("hw.igb.fc_setting", &igb_fc_setting);
226
227 /* i350 specific */
228 TUNABLE_INT("hw.igb.eee_disabled", &igb_eee_disabled);
229 TUNABLE_INT("hw.igb.dma_coalesce", &igb_dma_coalesce);
230
231 static __inline void
232 igb_rxcsum(uint32_t staterr, struct mbuf *mp)
233 {
234         /* Ignore Checksum bit is set */
235         if (staterr & E1000_RXD_STAT_IXSM)
236                 return;
237
238         if ((staterr & (E1000_RXD_STAT_IPCS | E1000_RXDEXT_STATERR_IPE)) ==
239             E1000_RXD_STAT_IPCS)
240                 mp->m_pkthdr.csum_flags |= CSUM_IP_CHECKED | CSUM_IP_VALID;
241
242         if (staterr & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)) {
243                 if ((staterr & E1000_RXDEXT_STATERR_TCPE) == 0) {
244                         mp->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
245                             CSUM_PSEUDO_HDR | CSUM_FRAG_NOT_CHECKED;
246                         mp->m_pkthdr.csum_data = htons(0xffff);
247                 }
248         }
249 }
250
251 static int
252 igb_probe(device_t dev)
253 {
254         const struct igb_device *d;
255         uint16_t vid, did;
256
257         vid = pci_get_vendor(dev);
258         did = pci_get_device(dev);
259
260         for (d = igb_devices; d->desc != NULL; ++d) {
261                 if (vid == d->vid && did == d->did) {
262                         device_set_desc(dev, d->desc);
263                         return 0;
264                 }
265         }
266         return ENXIO;
267 }
268
269 static int
270 igb_attach(device_t dev)
271 {
272         struct igb_softc *sc = device_get_softc(dev);
273         struct ifnet *ifp = &sc->arpcom.ac_if;
274         uint16_t eeprom_data;
275         u_int intr_flags;
276         int error = 0;
277
278 #ifdef notyet
279         /* SYSCTL stuff */
280         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
281             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
282             OID_AUTO, "nvm", CTLTYPE_INT|CTLFLAG_RW, adapter, 0,
283             igb_sysctl_nvm_info, "I", "NVM Information");
284
285         SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
286             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
287             OID_AUTO, "enable_aim", CTLTYPE_INT|CTLFLAG_RW,
288             &igb_enable_aim, 1, "Interrupt Moderation");
289
290         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
291             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
292             OID_AUTO, "flow_control", CTLTYPE_INT|CTLFLAG_RW,
293             adapter, 0, igb_set_flowcntl, "I", "Flow Control");
294 #endif
295
296         callout_init_mp(&sc->timer);
297
298         sc->dev = sc->osdep.dev = dev;
299
300         /*
301          * Determine hardware and mac type
302          */
303         sc->hw.vendor_id = pci_get_vendor(dev);
304         sc->hw.device_id = pci_get_device(dev);
305         sc->hw.revision_id = pci_read_config(dev, PCIR_REVID, 1);
306         sc->hw.subsystem_vendor_id = pci_read_config(dev, PCIR_SUBVEND_0, 2);
307         sc->hw.subsystem_device_id = pci_read_config(dev, PCIR_SUBDEV_0, 2);
308
309         if (e1000_set_mac_type(&sc->hw))
310                 return ENXIO;
311
312         /* Are we a VF device? */
313         if (sc->hw.mac.type == e1000_vfadapt ||
314             sc->hw.mac.type == e1000_vfadapt_i350)
315                 sc->vf_ifp = 1;
316         else
317                 sc->vf_ifp = 0;
318
319         /* Enable bus mastering */
320         pci_enable_busmaster(dev);
321
322         /*
323          * Allocate IO memory
324          */
325         sc->mem_rid = PCIR_BAR(0);
326         sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
327             RF_ACTIVE);
328         if (sc->mem_res == NULL) {
329                 device_printf(dev, "Unable to allocate bus resource: memory\n");
330                 error = ENXIO;
331                 goto failed;
332         }
333         sc->osdep.mem_bus_space_tag = rman_get_bustag(sc->mem_res);
334         sc->osdep.mem_bus_space_handle = rman_get_bushandle(sc->mem_res);
335
336         sc->hw.hw_addr = (uint8_t *)&sc->osdep.mem_bus_space_handle;
337
338         /*
339          * Allocate interrupt
340          */
341         sc->intr_type = pci_alloc_1intr(dev, igb_msi_enable,
342             &sc->intr_rid, &intr_flags);
343
344         sc->intr_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->intr_rid,
345             intr_flags);
346         if (sc->intr_res == NULL) {
347                 device_printf(dev, "Unable to allocate bus resource: "
348                     "interrupt\n");
349                 error = ENXIO;
350                 goto failed;
351         }
352
353         /* Save PCI command register for Shared Code */
354         sc->hw.bus.pci_cmd_word = pci_read_config(dev, PCIR_COMMAND, 2);
355         sc->hw.back = &sc->osdep;
356
357         sc->num_queues = 1; /* Defaults for Legacy or MSI */
358         sc->intr_rate = IGB_INTR_RATE;
359
360         /* Do Shared Code initialization */
361         if (e1000_setup_init_funcs(&sc->hw, TRUE)) {
362                 device_printf(dev, "Setup of Shared code failed\n");
363                 error = ENXIO;
364                 goto failed;
365         }
366
367         e1000_get_bus_info(&sc->hw);
368
369         sc->hw.mac.autoneg = DO_AUTO_NEG;
370         sc->hw.phy.autoneg_wait_to_complete = FALSE;
371         sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
372
373         /* Copper options */
374         if (sc->hw.phy.media_type == e1000_media_type_copper) {
375                 sc->hw.phy.mdix = AUTO_ALL_MODES;
376                 sc->hw.phy.disable_polarity_correction = FALSE;
377                 sc->hw.phy.ms_type = IGB_MASTER_SLAVE;
378         }
379
380         /* Set the frame limits assuming  standard ethernet sized frames. */
381         sc->max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN;
382         sc->min_frame_size = ETHER_MIN_LEN;
383
384         /* Allocate RX/TX rings' busdma(9) stuffs */
385         error = igb_dma_alloc(sc);
386         if (error)
387                 goto failed;
388
389         /* Allocate the appropriate stats memory */
390         if (sc->vf_ifp) {
391                 sc->stats = kmalloc(sizeof(struct e1000_vf_stats), M_DEVBUF,
392                     M_WAITOK | M_ZERO);
393                 igb_vf_init_stats(sc);
394         } else {
395                 sc->stats = kmalloc(sizeof(struct e1000_hw_stats), M_DEVBUF,
396                     M_WAITOK | M_ZERO);
397         }
398
399         /* Allocate multicast array memory. */
400         sc->mta = kmalloc(ETHER_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES,
401             M_DEVBUF, M_WAITOK);
402
403         /* Some adapter-specific advanced features */
404         if (sc->hw.mac.type >= e1000_i350) {
405 #ifdef notyet
406                 igb_set_sysctl_value(adapter, "dma_coalesce",
407                     "configure dma coalesce",
408                     &adapter->dma_coalesce, igb_dma_coalesce);
409                 igb_set_sysctl_value(adapter, "eee_disabled",
410                     "enable Energy Efficient Ethernet",
411                     &adapter->hw.dev_spec._82575.eee_disable,
412                     igb_eee_disabled);
413 #else
414                 sc->dma_coalesce = igb_dma_coalesce;
415                 sc->hw.dev_spec._82575.eee_disable = igb_eee_disabled;
416 #endif
417                 e1000_set_eee_i350(&sc->hw);
418         }
419
420         /*
421          * Start from a known state, this is important in reading the nvm and
422          * mac from that.
423          */
424         e1000_reset_hw(&sc->hw);
425
426         /* Make sure we have a good EEPROM before we read from it */
427         if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
428                 /*
429                  * Some PCI-E parts fail the first check due to
430                  * the link being in sleep state, call it again,
431                  * if it fails a second time its a real issue.
432                  */
433                 if (e1000_validate_nvm_checksum(&sc->hw) < 0) {
434                         device_printf(dev,
435                             "The EEPROM Checksum Is Not Valid\n");
436                         error = EIO;
437                         goto failed;
438                 }
439         }
440
441         /* Copy the permanent MAC address out of the EEPROM */
442         if (e1000_read_mac_addr(&sc->hw) < 0) {
443                 device_printf(dev, "EEPROM read error while reading MAC"
444                     " address\n");
445                 error = EIO;
446                 goto failed;
447         }
448         if (!igb_is_valid_ether_addr(sc->hw.mac.addr)) {
449                 device_printf(dev, "Invalid MAC address\n");
450                 error = EIO;
451                 goto failed;
452         }
453
454 #ifdef notyet
455         /* 
456         ** Configure Interrupts
457         */
458         if ((adapter->msix > 1) && (igb_enable_msix))
459                 error = igb_allocate_msix(adapter);
460         else /* MSI or Legacy */
461                 error = igb_allocate_legacy(adapter);
462         if (error)
463                 goto err_late;
464 #endif
465
466         /* Setup OS specific network interface */
467         igb_setup_ifp(sc);
468
469         /* Add sysctl tree, must after igb_setup_ifp() */
470         igb_add_sysctl(sc);
471
472         /* Now get a good starting state */
473         igb_reset(sc);
474
475         /* Initialize statistics */
476         igb_update_stats_counters(sc);
477
478         sc->hw.mac.get_link_status = 1;
479         igb_update_link_status(sc);
480
481         /* Indicate SOL/IDER usage */
482         if (e1000_check_reset_block(&sc->hw)) {
483                 device_printf(dev,
484                     "PHY reset is blocked due to SOL/IDER session.\n");
485         }
486
487         /* Determine if we have to control management hardware */
488         sc->has_manage = e1000_enable_mng_pass_thru(&sc->hw);
489
490         /*
491          * Setup Wake-on-Lan
492          */
493         /* APME bit in EEPROM is mapped to WUC.APME */
494         eeprom_data = E1000_READ_REG(&sc->hw, E1000_WUC) & E1000_WUC_APME;
495         if (eeprom_data)
496                 sc->wol = E1000_WUFC_MAG;
497         /* XXX disable WOL */
498         sc->wol = 0; 
499
500 #ifdef notyet
501         /* Register for VLAN events */
502         adapter->vlan_attach = EVENTHANDLER_REGISTER(vlan_config,
503              igb_register_vlan, adapter, EVENTHANDLER_PRI_FIRST);
504         adapter->vlan_detach = EVENTHANDLER_REGISTER(vlan_unconfig,
505              igb_unregister_vlan, adapter, EVENTHANDLER_PRI_FIRST);
506 #endif
507
508 #ifdef notyet
509         igb_add_hw_stats(adapter);
510 #endif
511
512         error = bus_setup_intr(dev, sc->intr_res, INTR_MPSAFE, igb_intr, sc,
513             &sc->intr_tag, ifp->if_serializer);
514         if (error) {
515                 device_printf(dev, "Failed to register interrupt handler");
516                 ether_ifdetach(&sc->arpcom.ac_if);
517                 goto failed;
518         }
519
520         ifp->if_cpuid = rman_get_cpuid(sc->intr_res);
521         KKASSERT(ifp->if_cpuid >= 0 && ifp->if_cpuid < ncpus);
522
523         return 0;
524
525 failed:
526         igb_detach(dev);
527         return error;
528 }
529
530 static int
531 igb_detach(device_t dev)
532 {
533         struct igb_softc *sc = device_get_softc(dev);
534
535         if (device_is_attached(dev)) {
536                 struct ifnet *ifp = &sc->arpcom.ac_if;
537
538                 ifnet_serialize_all(ifp);
539
540                 igb_stop(sc);
541
542                 e1000_phy_hw_reset(&sc->hw);
543
544                 /* Give control back to firmware */
545                 igb_rel_mgmt(sc);
546                 igb_rel_hw_control(sc);
547
548                 if (sc->wol) {
549                         E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
550                         E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
551                         igb_enable_wol(dev);
552                 }
553
554                 bus_teardown_intr(dev, sc->intr_res, sc->intr_tag);
555
556                 ifnet_deserialize_all(ifp);
557
558                 ether_ifdetach(ifp);
559         } else if (sc->mem_res != NULL) {
560                 igb_rel_hw_control(sc);
561         }
562         bus_generic_detach(dev);
563
564         if (sc->intr_res != NULL) {
565                 bus_release_resource(dev, SYS_RES_IRQ, sc->intr_rid,
566                     sc->intr_res);
567         }
568         if (sc->intr_type == PCI_INTR_TYPE_MSI)
569                 pci_release_msi(dev);
570
571         if (sc->mem_res != NULL) {
572                 bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid,
573                     sc->mem_res);
574         }
575
576         igb_dma_free(sc);
577
578         if (sc->mta != NULL)
579                 kfree(sc->mta, M_DEVBUF);
580         if (sc->stats != NULL)
581                 kfree(sc->stats, M_DEVBUF);
582
583         if (sc->sysctl_tree != NULL)
584                 sysctl_ctx_free(&sc->sysctl_ctx);
585
586         return 0;
587 }
588
589 static int
590 igb_shutdown(device_t dev)
591 {
592         return igb_suspend(dev);
593 }
594
595 static int
596 igb_suspend(device_t dev)
597 {
598         struct igb_softc *sc = device_get_softc(dev);
599         struct ifnet *ifp = &sc->arpcom.ac_if;
600
601         ifnet_serialize_all(ifp);
602
603         igb_stop(sc);
604
605         igb_rel_mgmt(sc);
606         igb_rel_hw_control(sc);
607
608         if (sc->wol) {
609                 E1000_WRITE_REG(&sc->hw, E1000_WUC, E1000_WUC_PME_EN);
610                 E1000_WRITE_REG(&sc->hw, E1000_WUFC, sc->wol);
611                 igb_enable_wol(dev);
612         }
613
614         ifnet_deserialize_all(ifp);
615
616         return bus_generic_suspend(dev);
617 }
618
619 static int
620 igb_resume(device_t dev)
621 {
622         struct igb_softc *sc = device_get_softc(dev);
623         struct ifnet *ifp = &sc->arpcom.ac_if;
624
625         ifnet_serialize_all(ifp);
626
627         igb_init(sc);
628         igb_get_mgmt(sc);
629
630         if_devstart(ifp);
631
632         ifnet_deserialize_all(ifp);
633
634         return bus_generic_resume(dev);
635 }
636
637 static int
638 igb_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
639 {
640         struct igb_softc *sc = ifp->if_softc;
641         struct ifreq *ifr = (struct ifreq *)data;
642         int max_frame_size, mask, reinit;
643         int error = 0;
644
645         ASSERT_IFNET_SERIALIZED_ALL(ifp);
646
647         switch (command) {
648         case SIOCSIFMTU:
649                 max_frame_size = 9234;
650                 if (ifr->ifr_mtu > max_frame_size - ETHER_HDR_LEN -
651                     ETHER_CRC_LEN) {
652                         error = EINVAL;
653                         break;
654                 }
655
656                 ifp->if_mtu = ifr->ifr_mtu;
657                 sc->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN +
658                     ETHER_CRC_LEN;
659
660                 if (ifp->if_flags & IFF_RUNNING)
661                         igb_init(sc);
662                 break;
663
664         case SIOCSIFFLAGS:
665                 if (ifp->if_flags & IFF_UP) {
666                         if (ifp->if_flags & IFF_RUNNING) {
667                                 if ((ifp->if_flags ^ sc->if_flags) &
668                                     (IFF_PROMISC | IFF_ALLMULTI)) {
669                                         igb_disable_promisc(sc);
670                                         igb_set_promisc(sc);
671                                 }
672                         } else {
673                                 igb_init(sc);
674                         }
675                 } else if (ifp->if_flags & IFF_RUNNING) {
676                         igb_stop(sc);
677                 }
678                 sc->if_flags = ifp->if_flags;
679                 break;
680
681         case SIOCADDMULTI:
682         case SIOCDELMULTI:
683                 if (ifp->if_flags & IFF_RUNNING) {
684                         igb_disable_intr(sc);
685                         igb_set_multi(sc);
686 #ifdef DEVICE_POLLING
687                         if (!(ifp->if_flags & IFF_POLLING))
688 #endif
689                                 igb_enable_intr(sc);
690                 }
691                 break;
692
693         case SIOCSIFMEDIA:
694                 /*
695                  * As the speed/duplex settings are being
696                  * changed, we need toreset the PHY.
697                  */
698                 sc->hw.phy.reset_disable = FALSE;
699
700                 /* Check SOL/IDER usage */
701                 if (e1000_check_reset_block(&sc->hw)) {
702                         if_printf(ifp, "Media change is "
703                             "blocked due to SOL/IDER session.\n");
704                         break;
705                 }
706                 /* FALL THROUGH */
707
708         case SIOCGIFMEDIA:
709                 error = ifmedia_ioctl(ifp, ifr, &sc->media, command);
710                 break;
711
712         case SIOCSIFCAP:
713                 reinit = 0;
714                 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
715                 if (mask & IFCAP_HWCSUM) {
716                         ifp->if_capenable ^= (mask & IFCAP_HWCSUM);
717                         reinit = 1;
718                 }
719                 if (mask & IFCAP_VLAN_HWTAGGING) {
720                         ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
721                         reinit = 1;
722                 }
723                 if (reinit && (ifp->if_flags & IFF_RUNNING))
724                         igb_init(sc);
725                 break;
726
727         default:
728                 error = ether_ioctl(ifp, command, data);
729                 break;
730         }
731         return error;
732 }
733
734 static void
735 igb_init(void *xsc)
736 {
737         struct igb_softc *sc = xsc;
738         struct ifnet *ifp = &sc->arpcom.ac_if;
739         int i;
740
741         ASSERT_IFNET_SERIALIZED_ALL(ifp);
742
743         igb_stop(sc);
744
745         /* Get the latest mac address, User can use a LAA */
746         bcopy(IF_LLADDR(ifp), sc->hw.mac.addr, ETHER_ADDR_LEN);
747
748         /* Put the address into the Receive Address Array */
749         e1000_rar_set(&sc->hw, sc->hw.mac.addr, 0);
750
751         igb_reset(sc);
752         igb_update_link_status(sc);
753
754         E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
755
756         /* Set hardware offload abilities */
757         if (ifp->if_capenable & IFCAP_TXCSUM)
758                 ifp->if_hwassist = IGB_CSUM_FEATURES;
759         else
760                 ifp->if_hwassist = 0;
761
762         /* Configure for OS presence */
763         igb_get_mgmt(sc);
764
765         /* Prepare transmit descriptors and buffers */
766         for (i = 0; i < sc->num_queues; ++i)
767                 igb_init_tx_ring(&sc->tx_rings[i]);
768         igb_init_tx_unit(sc);
769
770         /* Setup Multicast table */
771         igb_set_multi(sc);
772
773 #if 0
774         /*
775          * Figure out the desired mbuf pool
776          * for doing jumbo/packetsplit
777          */
778         if (adapter->max_frame_size <= 2048)
779                 adapter->rx_mbuf_sz = MCLBYTES;
780         else if (adapter->max_frame_size <= 4096)
781                 adapter->rx_mbuf_sz = MJUMPAGESIZE;
782         else
783                 adapter->rx_mbuf_sz = MJUM9BYTES;
784 #else
785         sc->rx_mbuf_sz = MCLBYTES;
786 #endif
787
788         /* Prepare receive descriptors and buffers */
789         for (i = 0; i < sc->num_queues; ++i) {
790                 int error;
791
792                 error = igb_init_rx_ring(&sc->rx_rings[i]);
793                 if (error) {
794                         if_printf(ifp, "Could not setup receive structures\n");
795                         igb_stop(sc);
796                         return;
797                 }
798         }
799         igb_init_rx_unit(sc);
800
801         /* Enable VLAN support */
802         if (ifp->if_capenable & IFCAP_VLAN_HWTAGGING)
803                 igb_set_vlan(sc);
804
805         /* Don't lose promiscuous settings */
806         igb_set_promisc(sc);
807
808         /* Configure interrupt moderation */
809         igb_set_itr(sc);
810
811         ifp->if_flags |= IFF_RUNNING;
812         ifp->if_flags &= ~IFF_OACTIVE;
813
814         callout_reset(&sc->timer, hz, igb_timer, sc);
815         e1000_clear_hw_cntrs_base_generic(&sc->hw);
816
817 #if 0
818         if (adapter->msix > 1) /* Set up queue routing */
819                 igb_configure_queues(adapter);
820 #endif
821
822         /* this clears any pending interrupts */
823         E1000_READ_REG(&sc->hw, E1000_ICR);
824 #ifdef DEVICE_POLLING
825         /*
826          * Only enable interrupts if we are not polling, make sure
827          * they are off otherwise.
828          */
829         if (ifp->if_flags & IFF_POLLING)
830                 igb_disable_intr(sc);
831         else
832 #endif /* DEVICE_POLLING */
833         {
834                 igb_enable_intr(sc);
835                 E1000_WRITE_REG(&sc->hw, E1000_ICS, E1000_ICS_LSC);
836         }
837
838         /* Set Energy Efficient Ethernet */
839         e1000_set_eee_i350(&sc->hw);
840
841         /* Don't reset the phy next time init gets called */
842         sc->hw.phy.reset_disable = TRUE;
843 }
844
845 static void
846 igb_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
847 {
848         struct igb_softc *sc = ifp->if_softc;
849         u_char fiber_type = IFM_1000_SX;
850
851         ASSERT_IFNET_SERIALIZED_ALL(ifp);
852
853         igb_update_link_status(sc);
854
855         ifmr->ifm_status = IFM_AVALID;
856         ifmr->ifm_active = IFM_ETHER;
857
858         if (!sc->link_active)
859                 return;
860
861         ifmr->ifm_status |= IFM_ACTIVE;
862
863         if (sc->hw.phy.media_type == e1000_media_type_fiber ||
864             sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
865                 ifmr->ifm_active |= fiber_type | IFM_FDX;
866         } else {
867                 switch (sc->link_speed) {
868                 case 10:
869                         ifmr->ifm_active |= IFM_10_T;
870                         break;
871
872                 case 100:
873                         ifmr->ifm_active |= IFM_100_TX;
874                         break;
875
876                 case 1000:
877                         ifmr->ifm_active |= IFM_1000_T;
878                         break;
879                 }
880                 if (sc->link_duplex == FULL_DUPLEX)
881                         ifmr->ifm_active |= IFM_FDX;
882                 else
883                         ifmr->ifm_active |= IFM_HDX;
884         }
885 }
886
887 static int
888 igb_media_change(struct ifnet *ifp)
889 {
890         struct igb_softc *sc = ifp->if_softc;
891         struct ifmedia *ifm = &sc->media;
892
893         ASSERT_IFNET_SERIALIZED_ALL(ifp);
894
895         if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
896                 return EINVAL;
897
898         switch (IFM_SUBTYPE(ifm->ifm_media)) {
899         case IFM_AUTO:
900                 sc->hw.mac.autoneg = DO_AUTO_NEG;
901                 sc->hw.phy.autoneg_advertised = AUTONEG_ADV_DEFAULT;
902                 break;
903
904         case IFM_1000_LX:
905         case IFM_1000_SX:
906         case IFM_1000_T:
907                 sc->hw.mac.autoneg = DO_AUTO_NEG;
908                 sc->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
909                 break;
910
911         case IFM_100_TX:
912                 sc->hw.mac.autoneg = FALSE;
913                 sc->hw.phy.autoneg_advertised = 0;
914                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
915                         sc->hw.mac.forced_speed_duplex = ADVERTISE_100_FULL;
916                 else
917                         sc->hw.mac.forced_speed_duplex = ADVERTISE_100_HALF;
918                 break;
919
920         case IFM_10_T:
921                 sc->hw.mac.autoneg = FALSE;
922                 sc->hw.phy.autoneg_advertised = 0;
923                 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
924                         sc->hw.mac.forced_speed_duplex = ADVERTISE_10_FULL;
925                 else
926                         sc->hw.mac.forced_speed_duplex = ADVERTISE_10_HALF;
927                 break;
928
929         default:
930                 if_printf(ifp, "Unsupported media type\n");
931                 break;
932         }
933
934         igb_init(sc);
935
936         return 0;
937 }
938
939 static void
940 igb_set_promisc(struct igb_softc *sc)
941 {
942         struct ifnet *ifp = &sc->arpcom.ac_if;
943         struct e1000_hw *hw = &sc->hw;
944         uint32_t reg;
945
946         if (sc->vf_ifp) {
947                 e1000_promisc_set_vf(hw, e1000_promisc_enabled);
948                 return;
949         }
950
951         reg = E1000_READ_REG(hw, E1000_RCTL);
952         if (ifp->if_flags & IFF_PROMISC) {
953                 reg |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
954                 E1000_WRITE_REG(hw, E1000_RCTL, reg);
955         } else if (ifp->if_flags & IFF_ALLMULTI) {
956                 reg |= E1000_RCTL_MPE;
957                 reg &= ~E1000_RCTL_UPE;
958                 E1000_WRITE_REG(hw, E1000_RCTL, reg);
959         }
960 }
961
962 static void
963 igb_disable_promisc(struct igb_softc *sc)
964 {
965         struct e1000_hw *hw = &sc->hw;
966         uint32_t reg;
967
968         if (sc->vf_ifp) {
969                 e1000_promisc_set_vf(hw, e1000_promisc_disabled);
970                 return;
971         }
972         reg = E1000_READ_REG(hw, E1000_RCTL);
973         reg &= ~E1000_RCTL_UPE;
974         reg &= ~E1000_RCTL_MPE;
975         E1000_WRITE_REG(hw, E1000_RCTL, reg);
976 }
977
978 static void
979 igb_set_multi(struct igb_softc *sc)
980 {
981         struct ifnet *ifp = &sc->arpcom.ac_if;
982         struct ifmultiaddr *ifma;
983         uint32_t reg_rctl = 0;
984         uint8_t *mta;
985         int mcnt = 0;
986
987         mta = sc->mta;
988         bzero(mta, ETH_ADDR_LEN * MAX_NUM_MULTICAST_ADDRESSES);
989
990         TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
991                 if (ifma->ifma_addr->sa_family != AF_LINK)
992                         continue;
993
994                 if (mcnt == MAX_NUM_MULTICAST_ADDRESSES)
995                         break;
996
997                 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
998                     &mta[mcnt * ETH_ADDR_LEN], ETH_ADDR_LEN);
999                 mcnt++;
1000         }
1001
1002         if (mcnt >= MAX_NUM_MULTICAST_ADDRESSES) {
1003                 reg_rctl = E1000_READ_REG(&sc->hw, E1000_RCTL);
1004                 reg_rctl |= E1000_RCTL_MPE;
1005                 E1000_WRITE_REG(&sc->hw, E1000_RCTL, reg_rctl);
1006         } else {
1007                 e1000_update_mc_addr_list(&sc->hw, mta, mcnt);
1008         }
1009 }
1010
1011 static void
1012 igb_timer(void *xsc)
1013 {
1014         struct igb_softc *sc = xsc;
1015         struct ifnet *ifp = &sc->arpcom.ac_if;
1016
1017         ifnet_serialize_all(ifp);
1018
1019         igb_update_link_status(sc);
1020         igb_update_stats_counters(sc);
1021
1022         callout_reset(&sc->timer, hz, igb_timer, sc);
1023
1024         ifnet_deserialize_all(ifp);
1025 }
1026
1027 static void
1028 igb_update_link_status(struct igb_softc *sc)
1029 {
1030         struct ifnet *ifp = &sc->arpcom.ac_if;
1031         struct e1000_hw *hw = &sc->hw;
1032         uint32_t link_check, thstat, ctrl;
1033
1034         link_check = thstat = ctrl = 0;
1035
1036         /* Get the cached link value or read for real */
1037         switch (hw->phy.media_type) {
1038         case e1000_media_type_copper:
1039                 if (hw->mac.get_link_status) {
1040                         /* Do the work to read phy */
1041                         e1000_check_for_link(hw);
1042                         link_check = !hw->mac.get_link_status;
1043                 } else {
1044                         link_check = TRUE;
1045                 }
1046                 break;
1047
1048         case e1000_media_type_fiber:
1049                 e1000_check_for_link(hw);
1050                 link_check = E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU;
1051                 break;
1052
1053         case e1000_media_type_internal_serdes:
1054                 e1000_check_for_link(hw);
1055                 link_check = hw->mac.serdes_has_link;
1056                 break;
1057
1058         /* VF device is type_unknown */
1059         case e1000_media_type_unknown:
1060                 e1000_check_for_link(hw);
1061                 link_check = !hw->mac.get_link_status;
1062                 /* Fall thru */
1063         default:
1064                 break;
1065         }
1066
1067         /* Check for thermal downshift or shutdown */
1068         if (hw->mac.type == e1000_i350) {
1069                 thstat = E1000_READ_REG(hw, E1000_THSTAT);
1070                 ctrl = E1000_READ_REG(hw, E1000_CTRL_EXT);
1071         }
1072
1073         /* Now we check if a transition has happened */
1074         if (link_check && sc->link_active == 0) {
1075                 e1000_get_speed_and_duplex(hw, 
1076                     &sc->link_speed, &sc->link_duplex);
1077                 if (bootverbose) {
1078                         if_printf(ifp, "Link is up %d Mbps %s\n",
1079                             sc->link_speed,
1080                             sc->link_duplex == FULL_DUPLEX ?
1081                             "Full Duplex" : "Half Duplex");
1082                 }
1083                 sc->link_active = 1;
1084
1085                 ifp->if_baudrate = sc->link_speed * 1000000;
1086                 if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1087                     (thstat & E1000_THSTAT_LINK_THROTTLE))
1088                         if_printf(ifp, "Link: thermal downshift\n");
1089                 /* This can sleep */
1090                 ifp->if_link_state = LINK_STATE_UP;
1091                 if_link_state_change(ifp);
1092         } else if (!link_check && sc->link_active == 1) {
1093                 ifp->if_baudrate = sc->link_speed = 0;
1094                 sc->link_duplex = 0;
1095                 if (bootverbose)
1096                         if_printf(ifp, "Link is Down\n");
1097                 if ((ctrl & E1000_CTRL_EXT_LINK_MODE_GMII) &&
1098                     (thstat & E1000_THSTAT_PWR_DOWN))
1099                         if_printf(ifp, "Link: thermal shutdown\n");
1100                 sc->link_active = 0;
1101                 /* This can sleep */
1102                 ifp->if_link_state = LINK_STATE_DOWN;
1103                 if_link_state_change(ifp);
1104         }
1105 }
1106
1107 static void
1108 igb_stop(struct igb_softc *sc)
1109 {
1110         struct ifnet *ifp = &sc->arpcom.ac_if;
1111         int i;
1112
1113         ASSERT_IFNET_SERIALIZED_ALL(ifp);
1114
1115         igb_disable_intr(sc);
1116
1117         callout_stop(&sc->timer);
1118
1119         ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1120         ifp->if_timer = 0;
1121
1122         e1000_reset_hw(&sc->hw);
1123         E1000_WRITE_REG(&sc->hw, E1000_WUC, 0);
1124
1125         e1000_led_off(&sc->hw);
1126         e1000_cleanup_led(&sc->hw);
1127
1128         for (i = 0; i < sc->num_queues; ++i)
1129                 igb_free_tx_ring(&sc->tx_rings[i]);
1130         for (i = 0; i < sc->num_queues; ++i)
1131                 igb_free_rx_ring(&sc->rx_rings[i]);
1132 }
1133
1134 static void
1135 igb_reset(struct igb_softc *sc)
1136 {
1137         struct ifnet *ifp = &sc->arpcom.ac_if;
1138         struct e1000_hw *hw = &sc->hw;
1139         struct e1000_fc_info *fc = &hw->fc;
1140         uint32_t pba = 0;
1141         uint16_t hwm;
1142
1143         /* Let the firmware know the OS is in control */
1144         igb_get_hw_control(sc);
1145
1146         /*
1147          * Packet Buffer Allocation (PBA)
1148          * Writing PBA sets the receive portion of the buffer
1149          * the remainder is used for the transmit buffer.
1150          */
1151         switch (hw->mac.type) {
1152         case e1000_82575:
1153                 pba = E1000_PBA_32K;
1154                 break;
1155
1156         case e1000_82576:
1157         case e1000_vfadapt:
1158                 pba = E1000_READ_REG(hw, E1000_RXPBS);
1159                 pba &= E1000_RXPBS_SIZE_MASK_82576;
1160                 break;
1161
1162         case e1000_82580:
1163         case e1000_i350:
1164         case e1000_vfadapt_i350:
1165                 pba = E1000_READ_REG(hw, E1000_RXPBS);
1166                 pba = e1000_rxpbs_adjust_82580(pba);
1167                 break;
1168                 /* XXX pba = E1000_PBA_35K; */
1169
1170         default:
1171                 break;
1172         }
1173
1174         /* Special needs in case of Jumbo frames */
1175         if (hw->mac.type == e1000_82575 && ifp->if_mtu > ETHERMTU) {
1176                 uint32_t tx_space, min_tx, min_rx;
1177
1178                 pba = E1000_READ_REG(hw, E1000_PBA);
1179                 tx_space = pba >> 16;
1180                 pba &= 0xffff;
1181
1182                 min_tx = (sc->max_frame_size +
1183                     sizeof(struct e1000_tx_desc) - ETHER_CRC_LEN) * 2;
1184                 min_tx = roundup2(min_tx, 1024);
1185                 min_tx >>= 10;
1186                 min_rx = sc->max_frame_size;
1187                 min_rx = roundup2(min_rx, 1024);
1188                 min_rx >>= 10;
1189                 if (tx_space < min_tx && (min_tx - tx_space) < pba) {
1190                         pba = pba - (min_tx - tx_space);
1191                         /*
1192                          * if short on rx space, rx wins
1193                          * and must trump tx adjustment
1194                          */
1195                         if (pba < min_rx)
1196                                 pba = min_rx;
1197                 }
1198                 E1000_WRITE_REG(hw, E1000_PBA, pba);
1199         }
1200
1201         /*
1202          * These parameters control the automatic generation (Tx) and
1203          * response (Rx) to Ethernet PAUSE frames.
1204          * - High water mark should allow for at least two frames to be
1205          *   received after sending an XOFF.
1206          * - Low water mark works best when it is very near the high water mark.
1207          *   This allows the receiver to restart by sending XON when it has
1208          *   drained a bit.
1209          */
1210         hwm = min(((pba << 10) * 9 / 10),
1211             ((pba << 10) - 2 * sc->max_frame_size));
1212
1213         if (hw->mac.type < e1000_82576) {
1214                 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
1215                 fc->low_water = fc->high_water - 8;
1216         } else {
1217                 fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1218                 fc->low_water = fc->high_water - 16;
1219         }
1220         fc->pause_time = IGB_FC_PAUSE_TIME;
1221         fc->send_xon = TRUE;
1222
1223         /* Issue a global reset */
1224         e1000_reset_hw(hw);
1225         E1000_WRITE_REG(hw, E1000_WUC, 0);
1226
1227         if (e1000_init_hw(hw) < 0)
1228                 if_printf(ifp, "Hardware Initialization Failed\n");
1229
1230         /* Setup DMA Coalescing */
1231         if (hw->mac.type == e1000_i350 && sc->dma_coalesce) {
1232                 uint32_t reg;
1233
1234                 hwm = (pba - 4) << 10;
1235                 reg = ((pba - 6) << E1000_DMACR_DMACTHR_SHIFT)
1236                     & E1000_DMACR_DMACTHR_MASK;
1237
1238                 /* transition to L0x or L1 if available..*/
1239                 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
1240
1241                 /* timer = +-1000 usec in 32usec intervals */
1242                 reg |= (1000 >> 5);
1243                 E1000_WRITE_REG(hw, E1000_DMACR, reg);
1244
1245                 /* No lower threshold */
1246                 E1000_WRITE_REG(hw, E1000_DMCRTRH, 0);
1247
1248                 /* set hwm to PBA -  2 * max frame size */
1249                 E1000_WRITE_REG(hw, E1000_FCRTC, hwm);
1250
1251                 /* Set the interval before transition */
1252                 reg = E1000_READ_REG(hw, E1000_DMCTLX);
1253                 reg |= 0x800000FF; /* 255 usec */
1254                 E1000_WRITE_REG(hw, E1000_DMCTLX, reg);
1255
1256                 /* free space in tx packet buffer to wake from DMA coal */
1257                 E1000_WRITE_REG(hw, E1000_DMCTXTH,
1258                     (20480 - (2 * sc->max_frame_size)) >> 6);
1259
1260                 /* make low power state decision controlled by DMA coal */
1261                 reg = E1000_READ_REG(hw, E1000_PCIEMISC);
1262                 E1000_WRITE_REG(hw, E1000_PCIEMISC,
1263                     reg | E1000_PCIEMISC_LX_DECISION);
1264                 if_printf(ifp, "DMA Coalescing enabled\n");
1265         }
1266
1267         E1000_WRITE_REG(&sc->hw, E1000_VET, ETHERTYPE_VLAN);
1268         e1000_get_phy_info(hw);
1269         e1000_check_for_link(hw);
1270 }
1271
1272 static void
1273 igb_setup_ifp(struct igb_softc *sc)
1274 {
1275         struct ifnet *ifp = &sc->arpcom.ac_if;
1276
1277         if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
1278         ifp->if_softc = sc;
1279         ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1280         ifp->if_init =  igb_init;
1281         ifp->if_ioctl = igb_ioctl;
1282         ifp->if_start = igb_start;
1283 #ifdef DEVICE_POLLING
1284         ifp->if_poll = igb_poll;
1285 #endif
1286         ifp->if_watchdog = igb_watchdog;
1287
1288         ifq_set_maxlen(&ifp->if_snd, sc->num_tx_desc - 1);
1289         ifq_set_ready(&ifp->if_snd);
1290
1291         ether_ifattach(ifp, sc->hw.mac.addr, NULL);
1292
1293         ifp->if_capabilities =
1294             IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
1295         ifp->if_capenable = ifp->if_capabilities;
1296         ifp->if_hwassist = IGB_CSUM_FEATURES;
1297
1298         /*
1299          * Tell the upper layer(s) we support long frames
1300          */
1301         ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1302
1303         /*
1304          * Specify the media types supported by this adapter and register
1305          * callbacks to update media and link information
1306          */
1307         ifmedia_init(&sc->media, IFM_IMASK, igb_media_change, igb_media_status);
1308         if (sc->hw.phy.media_type == e1000_media_type_fiber ||
1309             sc->hw.phy.media_type == e1000_media_type_internal_serdes) {
1310                 ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX,
1311                     0, NULL);
1312                 ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX, 0, NULL);
1313         } else {
1314                 ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL);
1315                 ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX,
1316                     0, NULL);
1317                 ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL);
1318                 ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX,
1319                     0, NULL);
1320                 if (sc->hw.phy.type != e1000_phy_ife) {
1321                         ifmedia_add(&sc->media,
1322                             IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1323                         ifmedia_add(&sc->media,
1324                             IFM_ETHER | IFM_1000_T, 0, NULL);
1325                 }
1326         }
1327         ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL);
1328         ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO);
1329 }
1330
1331 static void
1332 igb_add_sysctl(struct igb_softc *sc)
1333 {
1334         sysctl_ctx_init(&sc->sysctl_ctx);
1335         sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
1336             SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO,
1337             device_get_nameunit(sc->dev), CTLFLAG_RD, 0, "");
1338         if (sc->sysctl_tree == NULL) {
1339                 device_printf(sc->dev, "can't add sysctl node\n");
1340                 return;
1341         }
1342
1343         SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1344             OID_AUTO, "rxd", CTLFLAG_RD, &sc->num_rx_desc, 0, NULL);
1345         SYSCTL_ADD_INT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1346             OID_AUTO, "txd", CTLFLAG_RD, &sc->num_tx_desc, 0, NULL);
1347
1348         SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1349             OID_AUTO, "intr_rate", CTLTYPE_INT | CTLFLAG_RW,
1350             sc, 0, igb_sysctl_intr_rate, "I", "interrupt rate");
1351
1352         SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
1353             OID_AUTO, "tx_intr_nsegs", CTLTYPE_INT | CTLFLAG_RW,
1354             sc, 0, igb_sysctl_tx_intr_nsegs, "I",
1355             "# segments per TX interrupt");
1356 }
1357
1358 static int
1359 igb_dma_alloc(struct igb_softc *sc)
1360 {
1361         int error, i;
1362
1363         /* First allocate the top level queue structs */
1364         sc->queues = kmalloc(sizeof(struct igb_queue) * sc->num_queues,
1365             M_DEVBUF, M_WAITOK | M_ZERO);
1366
1367         /*
1368          * Create top level busdma tag
1369          */
1370         error = bus_dma_tag_create(NULL, 1, 0,
1371             BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1372             BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
1373             &sc->parent_tag);
1374         if (error) {
1375                 device_printf(sc->dev, "could not create top level DMA tag\n");
1376                 return error;
1377         }
1378
1379         /*
1380          * Allocate TX descriptor rings and buffers
1381          */
1382         sc->tx_rings = kmalloc(sizeof(struct igb_tx_ring) * sc->num_queues,
1383             M_DEVBUF, M_WAITOK | M_ZERO);
1384         for (i = 0; i < sc->num_queues; ++i) {
1385                 struct igb_tx_ring *txr = &sc->tx_rings[i];
1386
1387                 /* Set up some basics */
1388                 txr->sc = sc;
1389                 txr->me = i;
1390
1391                 error = igb_create_tx_ring(txr);
1392                 if (error)
1393                         return error;
1394         }
1395
1396         /*
1397          * Allocate RX descriptor rings and buffers
1398          */ 
1399         sc->rx_rings = kmalloc(sizeof(struct igb_rx_ring) * sc->num_queues,
1400             M_DEVBUF, M_WAITOK | M_ZERO);
1401         for (i = 0; i < sc->num_queues; ++i) {
1402                 struct igb_rx_ring *rxr = &sc->rx_rings[i];
1403
1404                 /* Set up some basics */
1405                 rxr->sc = sc;
1406                 rxr->me = i;
1407
1408                 error = igb_create_rx_ring(rxr);
1409                 if (error)
1410                         return error;
1411         }
1412
1413         /*
1414          * Finally set up the queue holding structs
1415          */
1416         for (i = 0; i < sc->num_queues; i++) {
1417                 struct igb_queue *que = &sc->queues[i];
1418
1419                 que->sc = sc;
1420                 que->txr = &sc->tx_rings[i];
1421                 que->rxr = &sc->rx_rings[i];
1422         }
1423         return 0;
1424 }
1425
1426 static void
1427 igb_dma_free(struct igb_softc *sc)
1428 {
1429         int i;
1430
1431         if (sc->queues != NULL)
1432                 kfree(sc->queues, M_DEVBUF);
1433
1434         if (sc->tx_rings != NULL) {
1435                 for (i = 0; i < sc->num_queues; ++i)
1436                         igb_destroy_tx_ring(&sc->tx_rings[i], sc->num_tx_desc);
1437                 kfree(sc->tx_rings, M_DEVBUF);
1438         }
1439
1440         if (sc->rx_rings != NULL) {
1441                 for (i = 0; i < sc->num_queues; ++i)
1442                         igb_destroy_rx_ring(&sc->rx_rings[i], sc->num_rx_desc);
1443                 kfree(sc->rx_rings, M_DEVBUF);
1444         }
1445 }
1446
1447 static int
1448 igb_create_tx_ring(struct igb_tx_ring *txr)
1449 {
1450         int tsize, error, i;
1451
1452         /*
1453          * Validate number of transmit descriptors. It must not exceed
1454          * hardware maximum, and must be multiple of IGB_DBA_ALIGN.
1455          */
1456         if (((igb_txd * sizeof(struct e1000_tx_desc)) % IGB_DBA_ALIGN) != 0 ||
1457             (igb_txd > IGB_MAX_TXD) || (igb_txd < IGB_MIN_TXD)) {
1458                 device_printf(txr->sc->dev,
1459                     "Using %d TX descriptors instead of %d!\n",
1460                     IGB_DEFAULT_TXD, igb_txd);
1461                 txr->sc->num_tx_desc = IGB_DEFAULT_TXD;
1462         } else {
1463                 txr->sc->num_tx_desc = igb_txd;
1464         }
1465
1466         /*
1467          * Allocate TX descriptor ring
1468          */
1469         tsize = roundup2(txr->sc->num_tx_desc * sizeof(union e1000_adv_tx_desc),
1470             IGB_DBA_ALIGN);
1471         txr->txdma.dma_vaddr = bus_dmamem_coherent_any(txr->sc->parent_tag,
1472             IGB_DBA_ALIGN, tsize, BUS_DMA_WAITOK,
1473             &txr->txdma.dma_tag, &txr->txdma.dma_map, &txr->txdma.dma_paddr);
1474         if (txr->txdma.dma_vaddr == NULL) {
1475                 device_printf(txr->sc->dev,
1476                     "Unable to allocate TX Descriptor memory\n");
1477                 return ENOMEM;
1478         }
1479         txr->tx_base = txr->txdma.dma_vaddr;
1480         bzero(txr->tx_base, tsize);
1481
1482         txr->tx_buf = kmalloc(sizeof(struct igb_tx_buf) * txr->sc->num_tx_desc,
1483             M_DEVBUF, M_WAITOK | M_ZERO);
1484
1485         /*
1486          * Allocate TX head write-back buffer
1487          */
1488         txr->tx_hdr = bus_dmamem_coherent_any(txr->sc->parent_tag,
1489             __VM_CACHELINE_SIZE, __VM_CACHELINE_SIZE, BUS_DMA_WAITOK,
1490             &txr->tx_hdr_dtag, &txr->tx_hdr_dmap, &txr->tx_hdr_paddr);
1491         if (txr->tx_hdr == NULL) {
1492                 device_printf(txr->sc->dev,
1493                     "Unable to allocate TX head write-back buffer\n");
1494                 return ENOMEM;
1495         }
1496
1497         /*
1498          * Create DMA tag for TX buffers
1499          */
1500         error = bus_dma_tag_create(txr->sc->parent_tag,
1501             1, 0,               /* alignment, bounds */
1502             BUS_SPACE_MAXADDR,  /* lowaddr */
1503             BUS_SPACE_MAXADDR,  /* highaddr */
1504             NULL, NULL,         /* filter, filterarg */
1505             IGB_TSO_SIZE,       /* maxsize */
1506             IGB_MAX_SCATTER,    /* nsegments */
1507             PAGE_SIZE,          /* maxsegsize */
1508             BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW |
1509             BUS_DMA_ONEBPAGE,   /* flags */
1510             &txr->tx_tag);
1511         if (error) {
1512                 device_printf(txr->sc->dev, "Unable to allocate TX DMA tag\n");
1513                 kfree(txr->tx_buf, M_DEVBUF);
1514                 txr->tx_buf = NULL;
1515                 return error;
1516         }
1517
1518         /*
1519          * Create DMA maps for TX buffers
1520          */
1521         for (i = 0; i < txr->sc->num_tx_desc; ++i) {
1522                 struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1523
1524                 error = bus_dmamap_create(txr->tx_tag,
1525                     BUS_DMA_WAITOK | BUS_DMA_ONEBPAGE, &txbuf->map);
1526                 if (error) {
1527                         device_printf(txr->sc->dev,
1528                             "Unable to create TX DMA map\n");
1529                         igb_destroy_tx_ring(txr, i);
1530                         return error;
1531                 }
1532         }
1533
1534         /*
1535          * Initialize various watermark
1536          */
1537         txr->spare_desc = IGB_TX_SPARE;
1538         txr->intr_nsegs = txr->sc->num_tx_desc / 16;
1539         txr->oact_hi_desc = txr->sc->num_tx_desc / 2;
1540         txr->oact_lo_desc = txr->sc->num_tx_desc / 8;
1541         if (txr->oact_lo_desc > IGB_TX_OACTIVE_MAX)
1542                 txr->oact_lo_desc = IGB_TX_OACTIVE_MAX;
1543         if (txr->oact_lo_desc < txr->spare_desc + IGB_TX_RESERVED)
1544                 txr->oact_lo_desc = txr->spare_desc + IGB_TX_RESERVED;
1545
1546         return 0;
1547 }
1548
1549 static void
1550 igb_free_tx_ring(struct igb_tx_ring *txr)
1551 {
1552         int i;
1553
1554         for (i = 0; i < txr->sc->num_tx_desc; ++i) {
1555                 struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1556
1557                 if (txbuf->m_head != NULL) {
1558                         bus_dmamap_unload(txr->tx_tag, txbuf->map);
1559                         m_freem(txbuf->m_head);
1560                         txbuf->m_head = NULL;
1561                 }
1562         }
1563 }
1564
1565 static void
1566 igb_destroy_tx_ring(struct igb_tx_ring *txr, int ndesc)
1567 {
1568         int i;
1569
1570         if (txr->txdma.dma_vaddr != NULL) {
1571                 bus_dmamap_unload(txr->txdma.dma_tag, txr->txdma.dma_map);
1572                 bus_dmamem_free(txr->txdma.dma_tag, txr->txdma.dma_vaddr,
1573                     txr->txdma.dma_map);
1574                 bus_dma_tag_destroy(txr->txdma.dma_tag);
1575                 txr->txdma.dma_vaddr = NULL;
1576         }
1577
1578         if (txr->tx_hdr != NULL) {
1579                 bus_dmamap_unload(txr->tx_hdr_dtag, txr->tx_hdr_dmap);
1580                 bus_dmamem_free(txr->tx_hdr_dtag, txr->tx_hdr,
1581                     txr->tx_hdr_dmap);
1582                 bus_dma_tag_destroy(txr->tx_hdr_dtag);
1583                 txr->tx_hdr = NULL;
1584         }
1585
1586         if (txr->tx_buf == NULL)
1587                 return;
1588
1589         for (i = 0; i < ndesc; ++i) {
1590                 struct igb_tx_buf *txbuf = &txr->tx_buf[i];
1591
1592                 KKASSERT(txbuf->m_head == NULL);
1593                 bus_dmamap_destroy(txr->tx_tag, txbuf->map);
1594         }
1595         bus_dma_tag_destroy(txr->tx_tag);
1596
1597         kfree(txr->tx_buf, M_DEVBUF);
1598         txr->tx_buf = NULL;
1599 }
1600
1601 static void
1602 igb_init_tx_ring(struct igb_tx_ring *txr)
1603 {
1604         /* Clear the old descriptor contents */
1605         bzero(txr->tx_base,
1606             sizeof(union e1000_adv_tx_desc) * txr->sc->num_tx_desc);
1607
1608         /* Clear TX head write-back buffer */
1609         *(txr->tx_hdr) = 0;
1610
1611         /* Reset indices */
1612         txr->next_avail_desc = 0;
1613         txr->next_to_clean = 0;
1614         txr->tx_nsegs = 0;
1615
1616         /* Set number of descriptors available */
1617         txr->tx_avail = txr->sc->num_tx_desc;
1618 }
1619
1620 static void
1621 igb_init_tx_unit(struct igb_softc *sc)
1622 {
1623         struct e1000_hw *hw = &sc->hw;
1624         uint32_t tctl;
1625         int i;
1626
1627         /* Setup the Tx Descriptor Rings */
1628         for (i = 0; i < sc->num_queues; ++i) {
1629                 struct igb_tx_ring *txr = &sc->tx_rings[i];
1630                 uint64_t bus_addr = txr->txdma.dma_paddr;
1631                 uint64_t hdr_paddr = txr->tx_hdr_paddr;
1632                 uint32_t txdctl = 0;
1633                 uint32_t dca_txctrl;
1634
1635                 E1000_WRITE_REG(hw, E1000_TDLEN(i),
1636                     sc->num_tx_desc * sizeof(struct e1000_tx_desc));
1637                 E1000_WRITE_REG(hw, E1000_TDBAH(i),
1638                     (uint32_t)(bus_addr >> 32));
1639                 E1000_WRITE_REG(hw, E1000_TDBAL(i),
1640                     (uint32_t)bus_addr);
1641
1642                 /* Setup the HW Tx Head and Tail descriptor pointers */
1643                 E1000_WRITE_REG(hw, E1000_TDT(i), 0);
1644                 E1000_WRITE_REG(hw, E1000_TDH(i), 0);
1645
1646                 txdctl |= IGB_TX_PTHRESH;
1647                 txdctl |= IGB_TX_HTHRESH << 8;
1648                 txdctl |= IGB_TX_WTHRESH << 16;
1649                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1650                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
1651
1652                 dca_txctrl = E1000_READ_REG(hw, E1000_DCA_TXCTRL(i));
1653                 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1654                 E1000_WRITE_REG(hw, E1000_DCA_TXCTRL(i), dca_txctrl);
1655
1656                 E1000_WRITE_REG(hw, E1000_TDWBAH(i),
1657                     (uint32_t)(hdr_paddr >> 32));
1658                 E1000_WRITE_REG(hw, E1000_TDWBAL(i),
1659                     ((uint32_t)hdr_paddr) | E1000_TX_HEAD_WB_ENABLE);
1660         }
1661
1662         if (sc->vf_ifp)
1663                 return;
1664
1665         e1000_config_collision_dist(hw);
1666
1667         /* Program the Transmit Control Register */
1668         tctl = E1000_READ_REG(hw, E1000_TCTL);
1669         tctl &= ~E1000_TCTL_CT;
1670         tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
1671             (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
1672
1673         /* This write will effectively turn on the transmit unit. */
1674         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1675 }
1676
1677 static boolean_t
1678 igb_txctx(struct igb_tx_ring *txr, struct mbuf *mp)
1679 {
1680         struct e1000_adv_tx_context_desc *TXD;
1681         struct igb_tx_buf *txbuf;
1682         uint32_t vlan_macip_lens, type_tucmd_mlhl, mss_l4len_idx;
1683         struct ether_vlan_header *eh;
1684         struct ip *ip = NULL;
1685         int ehdrlen, ctxd, ip_hlen = 0;
1686         uint16_t etype, vlantag = 0;
1687         boolean_t offload = TRUE;
1688
1689         if ((mp->m_pkthdr.csum_flags & IGB_CSUM_FEATURES) == 0)
1690                 offload = FALSE;
1691
1692         vlan_macip_lens = type_tucmd_mlhl = mss_l4len_idx = 0;
1693         ctxd = txr->next_avail_desc;
1694         txbuf = &txr->tx_buf[ctxd];
1695         TXD = (struct e1000_adv_tx_context_desc *)&txr->tx_base[ctxd];
1696
1697         /*
1698          * In advanced descriptors the vlan tag must 
1699          * be placed into the context descriptor, thus
1700          * we need to be here just for that setup.
1701          */
1702         if (mp->m_flags & M_VLANTAG) {
1703                 vlantag = htole16(mp->m_pkthdr.ether_vlantag);
1704                 vlan_macip_lens |= (vlantag << E1000_ADVTXD_VLAN_SHIFT);
1705         } else if (!offload) {
1706                 return FALSE;
1707         }
1708
1709         /*
1710          * Determine where frame payload starts.
1711          * Jump over vlan headers if already present,
1712          * helpful for QinQ too.
1713          */
1714         KASSERT(mp->m_len >= ETHER_HDR_LEN,
1715             ("igb_txctx_pullup is not called (eh)?\n"));
1716         eh = mtod(mp, struct ether_vlan_header *);
1717         if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
1718                 KASSERT(mp->m_len >= ETHER_HDR_LEN + EVL_ENCAPLEN,
1719                     ("igb_txctx_pullup is not called (evh)?\n"));
1720                 etype = ntohs(eh->evl_proto);
1721                 ehdrlen = ETHER_HDR_LEN + EVL_ENCAPLEN;
1722         } else {
1723                 etype = ntohs(eh->evl_encap_proto);
1724                 ehdrlen = ETHER_HDR_LEN;
1725         }
1726
1727         /* Set the ether header length */
1728         vlan_macip_lens |= ehdrlen << E1000_ADVTXD_MACLEN_SHIFT;
1729
1730         switch (etype) {
1731         case ETHERTYPE_IP:
1732                 KASSERT(mp->m_len >= ehdrlen + IGB_IPVHL_SIZE,
1733                     ("igb_txctx_pullup is not called (eh+ip_vhl)?\n"));
1734
1735                 /* NOTE: We could only safely access ip.ip_vhl part */
1736                 ip = (struct ip *)(mp->m_data + ehdrlen);
1737                 ip_hlen = ip->ip_hl << 2;
1738
1739                 if (mp->m_pkthdr.csum_flags & CSUM_IP)
1740                         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
1741                 break;
1742
1743 #ifdef notyet
1744         case ETHERTYPE_IPV6:
1745                 ip6 = (struct ip6_hdr *)(mp->m_data + ehdrlen);
1746                 ip_hlen = sizeof(struct ip6_hdr);
1747                 type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV6;
1748                 break;
1749 #endif
1750
1751         default:
1752                 offload = FALSE;
1753                 break;
1754         }
1755
1756         vlan_macip_lens |= ip_hlen;
1757         type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
1758
1759         if (mp->m_pkthdr.csum_flags & CSUM_TCP)
1760                 type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
1761         else if (mp->m_pkthdr.csum_flags & CSUM_UDP)
1762                 type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP;
1763
1764         /* 82575 needs the queue index added */
1765         if (txr->sc->hw.mac.type == e1000_82575)
1766                 mss_l4len_idx = txr->me << 4;
1767
1768         /* Now copy bits into descriptor */
1769         TXD->vlan_macip_lens = htole32(vlan_macip_lens);
1770         TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
1771         TXD->seqnum_seed = htole32(0);
1772         TXD->mss_l4len_idx = htole32(mss_l4len_idx);
1773
1774         txbuf->m_head = NULL;
1775
1776         /* We've consumed the first desc, adjust counters */
1777         if (++ctxd == txr->sc->num_tx_desc)
1778                 ctxd = 0;
1779         txr->next_avail_desc = ctxd;
1780         --txr->tx_avail;
1781
1782         return offload;
1783 }
1784
1785 static void
1786 igb_txeof(struct igb_tx_ring *txr)
1787 {
1788         struct ifnet *ifp = &txr->sc->arpcom.ac_if;
1789         int first, hdr, avail;
1790
1791         if (txr->tx_avail == txr->sc->num_tx_desc)
1792                 return;
1793
1794         first = txr->next_to_clean;
1795         hdr = *(txr->tx_hdr);
1796
1797         if (first == hdr)
1798                 return;
1799
1800         avail = txr->tx_avail;
1801         while (first != hdr) {
1802                 struct igb_tx_buf *txbuf = &txr->tx_buf[first];
1803
1804                 ++avail;
1805                 if (txbuf->m_head) {
1806                         bus_dmamap_unload(txr->tx_tag, txbuf->map);
1807                         m_freem(txbuf->m_head);
1808                         txbuf->m_head = NULL;
1809                         ++ifp->if_opackets;
1810                 }
1811                 if (++first == txr->sc->num_tx_desc)
1812                         first = 0;
1813         }
1814         txr->next_to_clean = first;
1815         txr->tx_avail = avail;
1816
1817         /*
1818          * If we have a minimum free, clear IFF_OACTIVE
1819          * to tell the stack that it is OK to send packets.
1820          */
1821         if (IGB_IS_NOT_OACTIVE(txr)) {
1822                 ifp->if_flags &= ~IFF_OACTIVE;
1823
1824                 /*
1825                  * We have enough TX descriptors, turn off
1826                  * the watchdog.  We allow small amount of
1827                  * packets (roughly intr_nsegs) pending on
1828                  * the transmit ring.
1829                  */
1830                 ifp->if_timer = 0;
1831         }
1832 }
1833
1834 static int
1835 igb_create_rx_ring(struct igb_rx_ring *rxr)
1836 {
1837         int rsize, i, error;
1838
1839         /*
1840          * Validate number of receive descriptors. It must not exceed
1841          * hardware maximum, and must be multiple of IGB_DBA_ALIGN.
1842          */
1843         if (((igb_rxd * sizeof(struct e1000_rx_desc)) % IGB_DBA_ALIGN) != 0 ||
1844             (igb_rxd > IGB_MAX_RXD) || (igb_rxd < IGB_MIN_RXD)) {
1845                 device_printf(rxr->sc->dev,
1846                     "Using %d RX descriptors instead of %d!\n",
1847                     IGB_DEFAULT_RXD, igb_rxd);
1848                 rxr->sc->num_rx_desc = IGB_DEFAULT_RXD;
1849         } else {
1850                 rxr->sc->num_rx_desc = igb_rxd;
1851         }
1852
1853         /*
1854          * Allocate RX descriptor ring
1855          */
1856         rsize = roundup2(rxr->sc->num_rx_desc * sizeof(union e1000_adv_rx_desc),
1857             IGB_DBA_ALIGN);
1858         rxr->rxdma.dma_vaddr = bus_dmamem_coherent_any(rxr->sc->parent_tag,
1859             IGB_DBA_ALIGN, rsize, BUS_DMA_WAITOK,
1860             &rxr->rxdma.dma_tag, &rxr->rxdma.dma_map,
1861             &rxr->rxdma.dma_paddr);
1862         if (rxr->rxdma.dma_vaddr == NULL) {
1863                 device_printf(rxr->sc->dev,
1864                     "Unable to allocate RxDescriptor memory\n");
1865                 return ENOMEM;
1866         }
1867         rxr->rx_base = rxr->rxdma.dma_vaddr;
1868         bzero(rxr->rx_base, rsize);
1869
1870         rxr->rx_buf = kmalloc(sizeof(struct igb_rx_buf) * rxr->sc->num_rx_desc,
1871             M_DEVBUF, M_WAITOK | M_ZERO);
1872
1873         /*
1874          * Create DMA tag for RX buffers
1875          */
1876         error = bus_dma_tag_create(rxr->sc->parent_tag,
1877             1, 0,               /* alignment, bounds */
1878             BUS_SPACE_MAXADDR,  /* lowaddr */
1879             BUS_SPACE_MAXADDR,  /* highaddr */
1880             NULL, NULL,         /* filter, filterarg */
1881             MCLBYTES,           /* maxsize */
1882             1,                  /* nsegments */
1883             MCLBYTES,           /* maxsegsize */
1884             BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, /* flags */
1885             &rxr->rx_tag);
1886         if (error) {
1887                 device_printf(rxr->sc->dev,
1888                     "Unable to create RX payload DMA tag\n");
1889                 kfree(rxr->rx_buf, M_DEVBUF);
1890                 rxr->rx_buf = NULL;
1891                 return error;
1892         }
1893
1894         /*
1895          * Create spare DMA map for RX buffers
1896          */
1897         error = bus_dmamap_create(rxr->rx_tag, BUS_DMA_WAITOK,
1898             &rxr->rx_sparemap);
1899         if (error) {
1900                 device_printf(rxr->sc->dev,
1901                     "Unable to create spare RX DMA maps\n");
1902                 bus_dma_tag_destroy(rxr->rx_tag);
1903                 kfree(rxr->rx_buf, M_DEVBUF);
1904                 rxr->rx_buf = NULL;
1905                 return error;
1906         }
1907
1908         /*
1909          * Create DMA maps for RX buffers
1910          */
1911         for (i = 0; i < rxr->sc->num_rx_desc; i++) {
1912                 struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
1913
1914                 error = bus_dmamap_create(rxr->rx_tag,
1915                     BUS_DMA_WAITOK, &rxbuf->map);
1916                 if (error) {
1917                         device_printf(rxr->sc->dev,
1918                             "Unable to create RX DMA maps\n");
1919                         igb_destroy_rx_ring(rxr, i);
1920                         return error;
1921                 }
1922         }
1923         return 0;
1924 }
1925
1926 static void
1927 igb_free_rx_ring(struct igb_rx_ring *rxr)
1928 {
1929         int i;
1930
1931         for (i = 0; i < rxr->sc->num_rx_desc; ++i) {
1932                 struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
1933
1934                 if (rxbuf->m_head != NULL) {
1935                         bus_dmamap_unload(rxr->rx_tag, rxbuf->map);
1936                         m_freem(rxbuf->m_head);
1937                         rxbuf->m_head = NULL;
1938                 }
1939         }
1940
1941         if (rxr->fmp != NULL)
1942                 m_freem(rxr->fmp);
1943         rxr->fmp = NULL;
1944         rxr->lmp = NULL;
1945 }
1946
1947 static void
1948 igb_destroy_rx_ring(struct igb_rx_ring *rxr, int ndesc)
1949 {
1950         int i;
1951
1952         if (rxr->rxdma.dma_vaddr != NULL) {
1953                 bus_dmamap_unload(rxr->rxdma.dma_tag, rxr->rxdma.dma_map);
1954                 bus_dmamem_free(rxr->rxdma.dma_tag, rxr->rxdma.dma_vaddr,
1955                     rxr->rxdma.dma_map);
1956                 bus_dma_tag_destroy(rxr->rxdma.dma_tag);
1957                 rxr->rxdma.dma_vaddr = NULL;
1958         }
1959
1960         if (rxr->rx_buf == NULL)
1961                 return;
1962
1963         for (i = 0; i < ndesc; ++i) {
1964                 struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
1965
1966                 KKASSERT(rxbuf->m_head == NULL);
1967                 bus_dmamap_destroy(rxr->rx_tag, rxbuf->map);
1968         }
1969         bus_dmamap_destroy(rxr->rx_tag, rxr->rx_sparemap);
1970         bus_dma_tag_destroy(rxr->rx_tag);
1971
1972         kfree(rxr->rx_buf, M_DEVBUF);
1973         rxr->rx_buf = NULL;
1974 }
1975
1976 static void
1977 igb_setup_rxdesc(union e1000_adv_rx_desc *rxd, const struct igb_rx_buf *rxbuf)
1978 {
1979         rxd->read.pkt_addr = htole64(rxbuf->paddr);
1980         rxd->wb.upper.status_error = 0;
1981 }
1982
1983 static int
1984 igb_newbuf(struct igb_rx_ring *rxr, int i, boolean_t wait)
1985 {
1986         struct mbuf *m;
1987         bus_dma_segment_t seg;
1988         bus_dmamap_t map;
1989         struct igb_rx_buf *rxbuf;
1990         int error, nseg;
1991
1992         m = m_getcl(wait ? MB_WAIT : MB_DONTWAIT, MT_DATA, M_PKTHDR);
1993         if (m == NULL) {
1994                 if (wait) {
1995                         if_printf(&rxr->sc->arpcom.ac_if,
1996                             "Unable to allocate RX mbuf\n");
1997                 }
1998                 return ENOBUFS;
1999         }
2000         m->m_len = m->m_pkthdr.len = MCLBYTES;
2001
2002         if (rxr->sc->max_frame_size <= MCLBYTES - ETHER_ALIGN)
2003                 m_adj(m, ETHER_ALIGN);
2004
2005         error = bus_dmamap_load_mbuf_segment(rxr->rx_tag,
2006             rxr->rx_sparemap, m, &seg, 1, &nseg, BUS_DMA_NOWAIT);
2007         if (error) {
2008                 m_freem(m);
2009                 if (wait) {
2010                         if_printf(&rxr->sc->arpcom.ac_if,
2011                             "Unable to load RX mbuf\n");
2012                 }
2013                 return error;
2014         }
2015
2016         rxbuf = &rxr->rx_buf[i];
2017         if (rxbuf->m_head != NULL)
2018                 bus_dmamap_unload(rxr->rx_tag, rxbuf->map);
2019
2020         map = rxbuf->map;
2021         rxbuf->map = rxr->rx_sparemap;
2022         rxr->rx_sparemap = map;
2023
2024         rxbuf->m_head = m;
2025         rxbuf->paddr = seg.ds_addr;
2026
2027         igb_setup_rxdesc(&rxr->rx_base[i], rxbuf);
2028         return 0;
2029 }
2030
2031 static int
2032 igb_init_rx_ring(struct igb_rx_ring *rxr)
2033 {
2034         int i;
2035
2036         /* Clear the ring contents */
2037         bzero(rxr->rx_base,
2038             rxr->sc->num_rx_desc * sizeof(union e1000_adv_rx_desc));
2039
2040         /* Now replenish the ring mbufs */
2041         for (i = 0; i < rxr->sc->num_rx_desc; ++i) {
2042                 int error;
2043
2044                 error = igb_newbuf(rxr, i, TRUE);
2045                 if (error)
2046                         return error;
2047         }
2048
2049         /* Setup our descriptor indices */
2050         rxr->next_to_check = 0;
2051
2052         rxr->fmp = NULL;
2053         rxr->lmp = NULL;
2054         rxr->discard = FALSE;
2055
2056         return 0;
2057 }
2058
2059 static void
2060 igb_init_rx_unit(struct igb_softc *sc)
2061 {
2062         struct ifnet *ifp = &sc->arpcom.ac_if;
2063         struct e1000_hw *hw = &sc->hw;
2064         uint32_t rctl, rxcsum, srrctl = 0;
2065         int i;
2066
2067         /*
2068          * Make sure receives are disabled while setting
2069          * up the descriptor ring
2070          */
2071         rctl = E1000_READ_REG(hw, E1000_RCTL);
2072         E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2073
2074 #if 0
2075         /*
2076         ** Set up for header split
2077         */
2078         if (igb_header_split) {
2079                 /* Use a standard mbuf for the header */
2080                 srrctl |= IGB_HDR_BUF << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
2081                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
2082         } else
2083 #endif
2084                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2085
2086         /*
2087         ** Set up for jumbo frames
2088         */
2089         if (ifp->if_mtu > ETHERMTU) {
2090                 rctl |= E1000_RCTL_LPE;
2091 #if 0
2092                 if (adapter->rx_mbuf_sz == MJUMPAGESIZE) {
2093                         srrctl |= 4096 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2094                         rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX;
2095                 } else if (adapter->rx_mbuf_sz > MJUMPAGESIZE) {
2096                         srrctl |= 8192 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2097                         rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX;
2098                 }
2099                 /* Set maximum packet len */
2100                 psize = adapter->max_frame_size;
2101                 /* are we on a vlan? */
2102                 if (adapter->ifp->if_vlantrunk != NULL)
2103                         psize += VLAN_TAG_SIZE;
2104                 E1000_WRITE_REG(&adapter->hw, E1000_RLPML, psize);
2105 #else
2106                 srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2107                 rctl |= E1000_RCTL_SZ_2048;
2108 #endif
2109         } else {
2110                 rctl &= ~E1000_RCTL_LPE;
2111                 srrctl |= 2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
2112                 rctl |= E1000_RCTL_SZ_2048;
2113         }
2114
2115         /* Setup the Base and Length of the Rx Descriptor Rings */
2116         for (i = 0; i < sc->num_queues; ++i) {
2117                 struct igb_rx_ring *rxr = &sc->rx_rings[i];
2118                 uint64_t bus_addr = rxr->rxdma.dma_paddr;
2119                 uint32_t rxdctl;
2120
2121                 E1000_WRITE_REG(hw, E1000_RDLEN(i),
2122                     sc->num_rx_desc * sizeof(struct e1000_rx_desc));
2123                 E1000_WRITE_REG(hw, E1000_RDBAH(i),
2124                     (uint32_t)(bus_addr >> 32));
2125                 E1000_WRITE_REG(hw, E1000_RDBAL(i),
2126                     (uint32_t)bus_addr);
2127                 E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
2128                 /* Enable this Queue */
2129                 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
2130                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2131                 rxdctl &= 0xFFF00000;
2132                 rxdctl |= IGB_RX_PTHRESH;
2133                 rxdctl |= IGB_RX_HTHRESH << 8;
2134                 rxdctl |= IGB_RX_WTHRESH << 16;
2135                 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
2136         }
2137
2138         /*
2139          * Setup for RX MultiQueue
2140          */
2141         rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2142 #if 0
2143         if (adapter->num_queues >1) {
2144                 u32 random[10], mrqc, shift = 0;
2145                 union igb_reta {
2146                         u32 dword;
2147                         u8  bytes[4];
2148                 } reta;
2149
2150                 arc4rand(&random, sizeof(random), 0);
2151                 if (adapter->hw.mac.type == e1000_82575)
2152                         shift = 6;
2153                 /* Warning FM follows */
2154                 for (int i = 0; i < 128; i++) {
2155                         reta.bytes[i & 3] =
2156                             (i % adapter->num_queues) << shift;
2157                         if ((i & 3) == 3)
2158                                 E1000_WRITE_REG(hw,
2159                                     E1000_RETA(i >> 2), reta.dword);
2160                 }
2161                 /* Now fill in hash table */
2162                 mrqc = E1000_MRQC_ENABLE_RSS_4Q;
2163                 for (int i = 0; i < 10; i++)
2164                         E1000_WRITE_REG_ARRAY(hw,
2165                             E1000_RSSRK(0), i, random[i]);
2166
2167                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
2168                     E1000_MRQC_RSS_FIELD_IPV4_TCP);
2169                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV6 |
2170                     E1000_MRQC_RSS_FIELD_IPV6_TCP);
2171                 mrqc |=( E1000_MRQC_RSS_FIELD_IPV4_UDP |
2172                     E1000_MRQC_RSS_FIELD_IPV6_UDP);
2173                 mrqc |=( E1000_MRQC_RSS_FIELD_IPV6_UDP_EX |
2174                     E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
2175
2176                 E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2177
2178                 /*
2179                 ** NOTE: Receive Full-Packet Checksum Offload 
2180                 ** is mutually exclusive with Multiqueue. However
2181                 ** this is not the same as TCP/IP checksums which
2182                 ** still work.
2183                 */
2184                 rxcsum |= E1000_RXCSUM_PCSD;
2185         } else
2186 #endif
2187         {
2188                 /* Non RSS setup */
2189                 if (ifp->if_capenable & IFCAP_RXCSUM)
2190                         rxcsum |= E1000_RXCSUM_IPPCSE;
2191                 else
2192                         rxcsum &= ~E1000_RXCSUM_TUOFL;
2193         }
2194         E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2195
2196         /* Setup the Receive Control Register */
2197         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2198         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2199             E1000_RCTL_RDMTS_HALF |
2200             (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2201         /* Strip CRC bytes. */
2202         rctl |= E1000_RCTL_SECRC;
2203         /* Make sure VLAN Filters are off */
2204         rctl &= ~E1000_RCTL_VFE;
2205         /* Don't store bad packets */
2206         rctl &= ~E1000_RCTL_SBP;
2207
2208         /* Enable Receives */
2209         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2210
2211         /*
2212          * Setup the HW Rx Head and Tail Descriptor Pointers
2213          *   - needs to be after enable
2214          */
2215         for (i = 0; i < sc->num_queues; ++i) {
2216                 struct igb_rx_ring *rxr = &sc->rx_rings[i];
2217
2218                 E1000_WRITE_REG(hw, E1000_RDH(i), rxr->next_to_check);
2219                 E1000_WRITE_REG(hw, E1000_RDT(i), rxr->sc->num_rx_desc - 1);
2220         }
2221 }
2222
2223 static void
2224 igb_rxeof(struct igb_rx_ring *rxr, int count)
2225 {
2226         struct ifnet *ifp = &rxr->sc->arpcom.ac_if;
2227         union e1000_adv_rx_desc *cur;
2228         uint32_t staterr;
2229         int i;
2230
2231         i = rxr->next_to_check;
2232         cur = &rxr->rx_base[i];
2233         staterr = le32toh(cur->wb.upper.status_error);
2234
2235         if ((staterr & E1000_RXD_STAT_DD) == 0)
2236                 return;
2237
2238         while ((staterr & E1000_RXD_STAT_DD) && count != 0) {
2239                 struct igb_rx_buf *rxbuf = &rxr->rx_buf[i];
2240                 struct mbuf *m = NULL;
2241                 boolean_t eop;
2242
2243                 eop = (staterr & E1000_RXD_STAT_EOP) ? TRUE : FALSE;
2244                 if (eop)
2245                         --count;
2246
2247                 if ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) == 0 &&
2248                     !rxr->discard) {
2249                         struct mbuf *mp = rxbuf->m_head;
2250                         uint16_t vlan;
2251                         int len;
2252
2253                         len = le16toh(cur->wb.upper.length);
2254                         if (rxr->sc->hw.mac.type == e1000_i350 &&
2255                             (staterr & E1000_RXDEXT_STATERR_LB))
2256                                 vlan = be16toh(cur->wb.upper.vlan);
2257                         else
2258                                 vlan = le16toh(cur->wb.upper.vlan);
2259
2260                         bus_dmamap_sync(rxr->rx_tag, rxbuf->map,
2261                             BUS_DMASYNC_POSTREAD);
2262
2263                         if (igb_newbuf(rxr, i, FALSE) != 0) {
2264                                 ifp->if_iqdrops++;
2265                                 goto discard;
2266                         }
2267
2268                         mp->m_len = len;
2269                         if (rxr->fmp == NULL) {
2270                                 mp->m_pkthdr.len = len;
2271                                 rxr->fmp = mp;
2272                                 rxr->lmp = mp;
2273                         } else {
2274                                 rxr->lmp->m_next = mp;
2275                                 rxr->lmp = rxr->lmp->m_next;
2276                                 rxr->fmp->m_pkthdr.len += len;
2277                         }
2278
2279                         if (eop) {
2280                                 m = rxr->fmp;
2281                                 rxr->fmp = NULL;
2282                                 rxr->lmp = NULL;
2283
2284                                 m->m_pkthdr.rcvif = ifp;
2285                                 ifp->if_ipackets++;
2286
2287                                 if (ifp->if_capenable & IFCAP_RXCSUM)
2288                                         igb_rxcsum(staterr, m);
2289
2290                                 if (staterr & E1000_RXD_STAT_VP) {
2291                                         m->m_pkthdr.ether_vlantag = vlan;
2292                                         m->m_flags |= M_VLANTAG;
2293                                 }
2294
2295 #if 0
2296                                 if (ifp->if_capenable & IFCAP_RSS) {
2297                                         pi = emx_rssinfo(m, &pi0, mrq,
2298                                                          rss_hash, staterr);
2299                                 }
2300 #endif
2301                         }
2302                 } else {
2303                         ifp->if_ierrors++;
2304 discard:
2305                         igb_setup_rxdesc(cur, rxbuf);
2306                         if (!eop)
2307                                 rxr->discard = TRUE;
2308                         else
2309                                 rxr->discard = FALSE;
2310                         if (rxr->fmp != NULL) {
2311                                 m_freem(rxr->fmp);
2312                                 rxr->fmp = NULL;
2313                                 rxr->lmp = NULL;
2314                         }
2315                         m = NULL;
2316                 }
2317
2318                 if (m != NULL)
2319                         ether_input_pkt(ifp, m, NULL);
2320
2321                 /* Advance our pointers to the next descriptor. */
2322                 if (++i == rxr->sc->num_rx_desc)
2323                         i = 0;
2324
2325                 cur = &rxr->rx_base[i];
2326                 staterr = le32toh(cur->wb.upper.status_error);
2327         }
2328         rxr->next_to_check = i;
2329
2330         if (--i < 0)
2331                 i = rxr->sc->num_rx_desc - 1;
2332         E1000_WRITE_REG(&rxr->sc->hw, E1000_RDT(rxr->me), i);
2333 }
2334
2335
2336 static void
2337 igb_set_vlan(struct igb_softc *sc)
2338 {
2339         struct e1000_hw *hw = &sc->hw;
2340         uint32_t reg;
2341 #if 0
2342         struct ifnet *ifp = sc->arpcom.ac_if;
2343 #endif
2344
2345         if (sc->vf_ifp) {
2346                 e1000_rlpml_set_vf(hw, sc->max_frame_size + VLAN_TAG_SIZE);
2347                 return;
2348         }
2349
2350         reg = E1000_READ_REG(hw, E1000_CTRL);
2351         reg |= E1000_CTRL_VME;
2352         E1000_WRITE_REG(hw, E1000_CTRL, reg);
2353
2354 #if 0
2355         /* Enable the Filter Table */
2356         if (ifp->if_capenable & IFCAP_VLAN_HWFILTER) {
2357                 reg = E1000_READ_REG(hw, E1000_RCTL);
2358                 reg &= ~E1000_RCTL_CFIEN;
2359                 reg |= E1000_RCTL_VFE;
2360                 E1000_WRITE_REG(hw, E1000_RCTL, reg);
2361         }
2362 #endif
2363
2364         /* Update the frame size */
2365         E1000_WRITE_REG(&sc->hw, E1000_RLPML,
2366             sc->max_frame_size + VLAN_TAG_SIZE);
2367
2368 #if 0
2369         /* Don't bother with table if no vlans */
2370         if ((adapter->num_vlans == 0) ||
2371             ((ifp->if_capenable & IFCAP_VLAN_HWFILTER) == 0))
2372                 return;
2373         /*
2374         ** A soft reset zero's out the VFTA, so
2375         ** we need to repopulate it now.
2376         */
2377         for (int i = 0; i < IGB_VFTA_SIZE; i++)
2378                 if (adapter->shadow_vfta[i] != 0) {
2379                         if (adapter->vf_ifp)
2380                                 e1000_vfta_set_vf(hw,
2381                                     adapter->shadow_vfta[i], TRUE);
2382                         else
2383                                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA,
2384                                  i, adapter->shadow_vfta[i]);
2385                 }
2386 #endif
2387 }
2388
2389 static void
2390 igb_enable_intr(struct igb_softc *sc)
2391 {
2392         lwkt_serialize_handler_enable(sc->arpcom.ac_if.if_serializer);
2393
2394         /* With RSS set up what to auto clear */
2395         if (sc->msix_mem) {
2396                 uint32_t mask = (sc->que_mask | sc->link_mask);
2397
2398                 E1000_WRITE_REG(&sc->hw, E1000_EIAC, mask);
2399                 E1000_WRITE_REG(&sc->hw, E1000_EIAM, mask);
2400                 E1000_WRITE_REG(&sc->hw, E1000_EIMS, mask);
2401                 E1000_WRITE_REG(&sc->hw, E1000_IMS, E1000_IMS_LSC);
2402         } else {
2403                 E1000_WRITE_REG(&sc->hw, E1000_IMS, IMS_ENABLE_MASK);
2404         }
2405         E1000_WRITE_FLUSH(&sc->hw);
2406 }
2407
2408 static void
2409 igb_disable_intr(struct igb_softc *sc)
2410 {
2411         if (sc->msix_mem != NULL) {
2412                 E1000_WRITE_REG(&sc->hw, E1000_EIMC, 0xffffffff);
2413                 E1000_WRITE_REG(&sc->hw, E1000_EIAC, 0);
2414         } 
2415         E1000_WRITE_REG(&sc->hw, E1000_IMC, 0xffffffff);
2416         E1000_WRITE_FLUSH(&sc->hw);
2417
2418         lwkt_serialize_handler_disable(sc->arpcom.ac_if.if_serializer);
2419 }
2420
2421 /*
2422  * Bit of a misnomer, what this really means is
2423  * to enable OS management of the system... aka
2424  * to disable special hardware management features 
2425  */
2426 static void
2427 igb_get_mgmt(struct igb_softc *sc)
2428 {
2429         if (sc->has_manage) {
2430                 int manc2h = E1000_READ_REG(&sc->hw, E1000_MANC2H);
2431                 int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2432
2433                 /* disable hardware interception of ARP */
2434                 manc &= ~E1000_MANC_ARP_EN;
2435
2436                 /* enable receiving management packets to the host */
2437                 manc |= E1000_MANC_EN_MNG2HOST;
2438                 manc2h |= 1 << 5; /* Mng Port 623 */
2439                 manc2h |= 1 << 6; /* Mng Port 664 */
2440                 E1000_WRITE_REG(&sc->hw, E1000_MANC2H, manc2h);
2441                 E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2442         }
2443 }
2444
2445 /*
2446  * Give control back to hardware management controller
2447  * if there is one.
2448  */
2449 static void
2450 igb_rel_mgmt(struct igb_softc *sc)
2451 {
2452         if (sc->has_manage) {
2453                 int manc = E1000_READ_REG(&sc->hw, E1000_MANC);
2454
2455                 /* Re-enable hardware interception of ARP */
2456                 manc |= E1000_MANC_ARP_EN;
2457                 manc &= ~E1000_MANC_EN_MNG2HOST;
2458
2459                 E1000_WRITE_REG(&sc->hw, E1000_MANC, manc);
2460         }
2461 }
2462
2463 /*
2464  * Sets CTRL_EXT:DRV_LOAD bit.
2465  *
2466  * For ASF and Pass Through versions of f/w this means that
2467  * the driver is loaded. 
2468  */
2469 static void
2470 igb_get_hw_control(struct igb_softc *sc)
2471 {
2472         uint32_t ctrl_ext;
2473
2474         if (sc->vf_ifp)
2475                 return;
2476
2477         /* Let firmware know the driver has taken over */
2478         ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2479         E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2480             ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2481 }
2482
2483 /*
2484  * Resets CTRL_EXT:DRV_LOAD bit.
2485  *
2486  * For ASF and Pass Through versions of f/w this means that the
2487  * driver is no longer loaded.
2488  */
2489 static void
2490 igb_rel_hw_control(struct igb_softc *sc)
2491 {
2492         uint32_t ctrl_ext;
2493
2494         if (sc->vf_ifp)
2495                 return;
2496
2497         /* Let firmware taken over control of h/w */
2498         ctrl_ext = E1000_READ_REG(&sc->hw, E1000_CTRL_EXT);
2499         E1000_WRITE_REG(&sc->hw, E1000_CTRL_EXT,
2500             ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2501 }
2502
2503 static int
2504 igb_is_valid_ether_addr(const uint8_t *addr)
2505 {
2506         uint8_t zero_addr[ETHER_ADDR_LEN] = { 0, 0, 0, 0, 0, 0 };
2507
2508         if ((addr[0] & 1) || !bcmp(addr, zero_addr, ETHER_ADDR_LEN))
2509                 return FALSE;
2510         return TRUE;
2511 }
2512
2513 /*
2514  * Enable PCI Wake On Lan capability
2515  */
2516 static void
2517 igb_enable_wol(device_t dev)
2518 {
2519         uint16_t cap, status;
2520         uint8_t id;
2521
2522         /* First find the capabilities pointer*/
2523         cap = pci_read_config(dev, PCIR_CAP_PTR, 2);
2524
2525         /* Read the PM Capabilities */
2526         id = pci_read_config(dev, cap, 1);
2527         if (id != PCIY_PMG)     /* Something wrong */
2528                 return;
2529
2530         /*
2531          * OK, we have the power capabilities,
2532          * so now get the status register
2533          */
2534         cap += PCIR_POWER_STATUS;
2535         status = pci_read_config(dev, cap, 2);
2536         status |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2537         pci_write_config(dev, cap, status, 2);
2538 }
2539
2540 static void
2541 igb_update_stats_counters(struct igb_softc *sc)
2542 {
2543         struct e1000_hw *hw = &sc->hw;
2544         struct e1000_hw_stats *stats;
2545         struct ifnet *ifp = &sc->arpcom.ac_if;
2546
2547         /* 
2548          * The virtual function adapter has only a
2549          * small controlled set of stats, do only 
2550          * those and return.
2551          */
2552         if (sc->vf_ifp) {
2553                 igb_update_vf_stats_counters(sc);
2554                 return;
2555         }
2556         stats = sc->stats;
2557
2558         if (sc->hw.phy.media_type == e1000_media_type_copper ||
2559             (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
2560                 stats->symerrs +=
2561                     E1000_READ_REG(hw,E1000_SYMERRS);
2562                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
2563         }
2564
2565         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
2566         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
2567         stats->scc += E1000_READ_REG(hw, E1000_SCC);
2568         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
2569
2570         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
2571         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
2572         stats->colc += E1000_READ_REG(hw, E1000_COLC);
2573         stats->dc += E1000_READ_REG(hw, E1000_DC);
2574         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
2575         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
2576         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
2577
2578         /*
2579          * For watchdog management we need to know if we have been
2580          * paused during the last interval, so capture that here.
2581          */ 
2582         sc->pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
2583         stats->xoffrxc += sc->pause_frames;
2584         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
2585         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
2586         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
2587         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
2588         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
2589         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
2590         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
2591         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
2592         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
2593         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
2594         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
2595         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
2596
2597         /* For the 64-bit byte counters the low dword must be read first. */
2598         /* Both registers clear on the read of the high dword */
2599
2600         stats->gorc += E1000_READ_REG(hw, E1000_GORCL) +
2601             ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
2602         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL) +
2603             ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
2604
2605         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
2606         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
2607         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
2608         stats->roc += E1000_READ_REG(hw, E1000_ROC);
2609         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
2610
2611         stats->tor += E1000_READ_REG(hw, E1000_TORH);
2612         stats->tot += E1000_READ_REG(hw, E1000_TOTH);
2613
2614         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
2615         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
2616         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
2617         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
2618         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
2619         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
2620         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
2621         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
2622         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
2623         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
2624
2625         /* Interrupt Counts */
2626
2627         stats->iac += E1000_READ_REG(hw, E1000_IAC);
2628         stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
2629         stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
2630         stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
2631         stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
2632         stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
2633         stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
2634         stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
2635         stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
2636
2637         /* Host to Card Statistics */
2638
2639         stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
2640         stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
2641         stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
2642         stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
2643         stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
2644         stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
2645         stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
2646         stats->hgorc += (E1000_READ_REG(hw, E1000_HGORCL) +
2647             ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32));
2648         stats->hgotc += (E1000_READ_REG(hw, E1000_HGOTCL) +
2649             ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32));
2650         stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
2651         stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
2652         stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
2653
2654         stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
2655         stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
2656         stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
2657         stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
2658         stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
2659         stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
2660
2661         ifp->if_collisions = stats->colc;
2662
2663         /* Rx Errors */
2664         ifp->if_ierrors = stats->rxerrc + stats->crcerrs + stats->algnerrc +
2665             stats->ruc + stats->roc + stats->mpc + stats->cexterr;
2666
2667         /* Tx Errors */
2668         ifp->if_oerrors = stats->ecol + stats->latecol + sc->watchdog_events;
2669
2670         /* Driver specific counters */
2671         sc->device_control = E1000_READ_REG(hw, E1000_CTRL);
2672         sc->rx_control = E1000_READ_REG(hw, E1000_RCTL);
2673         sc->int_mask = E1000_READ_REG(hw, E1000_IMS);
2674         sc->eint_mask = E1000_READ_REG(hw, E1000_EIMS);
2675         sc->packet_buf_alloc_tx =
2676             ((E1000_READ_REG(hw, E1000_PBA) & 0xffff0000) >> 16);
2677         sc->packet_buf_alloc_rx =
2678             (E1000_READ_REG(hw, E1000_PBA) & 0xffff);
2679 }
2680
2681 static void
2682 igb_vf_init_stats(struct igb_softc *sc)
2683 {
2684         struct e1000_hw *hw = &sc->hw;
2685         struct e1000_vf_stats *stats;
2686
2687         stats = sc->stats;
2688         stats->last_gprc = E1000_READ_REG(hw, E1000_VFGPRC);
2689         stats->last_gorc = E1000_READ_REG(hw, E1000_VFGORC);
2690         stats->last_gptc = E1000_READ_REG(hw, E1000_VFGPTC);
2691         stats->last_gotc = E1000_READ_REG(hw, E1000_VFGOTC);
2692         stats->last_mprc = E1000_READ_REG(hw, E1000_VFMPRC);
2693 }
2694  
2695 static void
2696 igb_update_vf_stats_counters(struct igb_softc *sc)
2697 {
2698         struct e1000_hw *hw = &sc->hw;
2699         struct e1000_vf_stats *stats;
2700
2701         if (sc->link_speed == 0)
2702                 return;
2703
2704         stats = sc->stats;
2705         UPDATE_VF_REG(E1000_VFGPRC, stats->last_gprc, stats->gprc);
2706         UPDATE_VF_REG(E1000_VFGORC, stats->last_gorc, stats->gorc);
2707         UPDATE_VF_REG(E1000_VFGPTC, stats->last_gptc, stats->gptc);
2708         UPDATE_VF_REG(E1000_VFGOTC, stats->last_gotc, stats->gotc);
2709         UPDATE_VF_REG(E1000_VFMPRC, stats->last_mprc, stats->mprc);
2710 }
2711
2712 #ifdef DEVICE_POLLING
2713
2714 static void
2715 igb_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2716 {
2717         struct igb_softc *sc = ifp->if_softc;
2718         uint32_t reg_icr;
2719
2720         ASSERT_SERIALIZED(ifp->if_serializer);
2721
2722         switch (cmd) {
2723         case POLL_REGISTER:
2724                 igb_disable_intr(sc);
2725                 break;
2726
2727         case POLL_DEREGISTER:
2728                 igb_enable_intr(sc);
2729                 break;
2730
2731         case POLL_AND_CHECK_STATUS:
2732                 reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
2733                 if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
2734                         sc->hw.mac.get_link_status = 1;
2735                         igb_update_link_status(sc);
2736                 }
2737                 /* FALL THROUGH */
2738         case POLL_ONLY:
2739                 if (ifp->if_flags & IFF_RUNNING) {
2740                         igb_rxeof(sc->queues[0].rxr, count);
2741
2742                         igb_txeof(sc->queues[0].txr);
2743                         if (!ifq_is_empty(&ifp->if_snd))
2744                                 if_devstart(ifp);
2745                 }
2746                 break;
2747         }
2748 }
2749
2750 #endif /* DEVICE_POLLING */
2751
2752 static void
2753 igb_intr(void *xsc)
2754 {
2755         struct igb_softc *sc = xsc;
2756         struct ifnet *ifp = &sc->arpcom.ac_if;
2757         uint32_t reg_icr;
2758
2759         ASSERT_IFNET_SERIALIZED_ALL(ifp);
2760
2761         reg_icr = E1000_READ_REG(&sc->hw, E1000_ICR);
2762
2763         /* Hot eject?  */
2764         if (reg_icr == 0xffffffff)
2765                 return;
2766
2767         /* Definitely not our interrupt.  */
2768         if (reg_icr == 0x0)
2769                 return;
2770
2771         if ((reg_icr & E1000_ICR_INT_ASSERTED) == 0)
2772                 return;
2773
2774         if (ifp->if_flags & IFF_RUNNING) {
2775                 igb_rxeof(sc->queues[0].rxr, -1);
2776
2777                 igb_txeof(sc->queues[0].txr);
2778                 if (!ifq_is_empty(&ifp->if_snd))
2779                         if_devstart(ifp);
2780         }
2781
2782         /* Link status change */
2783         if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
2784                 sc->hw.mac.get_link_status = 1;
2785                 igb_update_link_status(sc);
2786         }
2787
2788         if (reg_icr & E1000_ICR_RXO)
2789                 sc->rx_overruns++;
2790 }
2791
2792 static int
2793 igb_txctx_pullup(struct igb_tx_ring *txr, struct mbuf **m0)
2794 {
2795         struct mbuf *m = *m0;
2796         struct ether_header *eh;
2797         int len;
2798
2799         txr->ctx_try_pullup++;
2800
2801         len = ETHER_HDR_LEN + IGB_IPVHL_SIZE;
2802
2803         if (__predict_false(!M_WRITABLE(m))) {
2804                 if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2805                         txr->ctx_drop1++;
2806                         m_freem(m);
2807                         *m0 = NULL;
2808                         return ENOBUFS;
2809                 }
2810                 eh = mtod(m, struct ether_header *);
2811
2812                 if (eh->ether_type == htons(ETHERTYPE_VLAN))
2813                         len += EVL_ENCAPLEN;
2814
2815                 if (m->m_len < len) {
2816                         txr->ctx_drop2++;
2817                         m_freem(m);
2818                         *m0 = NULL;
2819                         return ENOBUFS;
2820                 }
2821                 return 0;
2822         }
2823
2824         if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
2825                 txr->ctx_pullup1++;
2826                 m = m_pullup(m, ETHER_HDR_LEN);
2827                 if (m == NULL) {
2828                         txr->ctx_pullup1_failed++;
2829                         *m0 = NULL;
2830                         return ENOBUFS;
2831                 }
2832                 *m0 = m;
2833         }
2834         eh = mtod(m, struct ether_header *);
2835
2836         if (eh->ether_type == htons(ETHERTYPE_VLAN))
2837                 len += EVL_ENCAPLEN;
2838
2839         if (m->m_len < len) {
2840                 txr->ctx_pullup2++;
2841                 m = m_pullup(m, len);
2842                 if (m == NULL) {
2843                         txr->ctx_pullup2_failed++;
2844                         *m0 = NULL;
2845                         return ENOBUFS;
2846                 }
2847                 *m0 = m;
2848         }
2849         return 0;
2850 }
2851
2852 static int
2853 igb_encap(struct igb_tx_ring *txr, struct mbuf **m_headp)
2854 {
2855         bus_dma_segment_t segs[IGB_MAX_SCATTER];
2856         bus_dmamap_t map;
2857         struct igb_tx_buf *tx_buf, *tx_buf_mapped;
2858         union e1000_adv_tx_desc *txd = NULL;
2859         struct mbuf *m_head = *m_headp;
2860         uint32_t olinfo_status = 0, cmd_type_len = 0, cmd_rs = 0;
2861         int maxsegs, nsegs, i, j, error, last = 0;
2862         uint32_t hdrlen = 0;
2863
2864         if (m_head->m_len < IGB_TXCSUM_MINHL &&
2865             ((m_head->m_pkthdr.csum_flags & IGB_CSUM_FEATURES) ||
2866              (m_head->m_flags & M_VLANTAG))) {
2867                 /*
2868                  * Make sure that ethernet header and ip.ip_hl are in
2869                  * contiguous memory, since if TXCSUM or VLANTAG is
2870                  * enabled, later TX context descriptor's setup need
2871                  * to access ip.ip_hl.
2872                  */
2873                 error = igb_txctx_pullup(txr, m_headp);
2874                 if (error) {
2875                         KKASSERT(*m_headp == NULL);
2876                         return error;
2877                 }
2878                 m_head = *m_headp;
2879         }
2880
2881         /* Set basic descriptor constants */
2882         cmd_type_len |= E1000_ADVTXD_DTYP_DATA;
2883         cmd_type_len |= E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
2884         if (m_head->m_flags & M_VLANTAG)
2885                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2886
2887         /*
2888          * Map the packet for DMA.
2889          */
2890         tx_buf = &txr->tx_buf[txr->next_avail_desc];
2891         tx_buf_mapped = tx_buf;
2892         map = tx_buf->map;
2893
2894         maxsegs = txr->tx_avail - IGB_TX_RESERVED;
2895         KASSERT(maxsegs >= txr->spare_desc, ("not enough spare TX desc\n"));
2896         if (maxsegs > IGB_MAX_SCATTER)
2897                 maxsegs = IGB_MAX_SCATTER;
2898
2899         error = bus_dmamap_load_mbuf_defrag(txr->tx_tag, map, m_headp,
2900             segs, maxsegs, &nsegs, BUS_DMA_NOWAIT);
2901         if (error) {
2902                 if (error == ENOBUFS)
2903                         txr->sc->mbuf_defrag_failed++;
2904                 else
2905                         txr->sc->no_tx_dma_setup++;
2906
2907                 m_freem(*m_headp);
2908                 *m_headp = NULL;
2909                 return error;
2910         }
2911         bus_dmamap_sync(txr->tx_tag, map, BUS_DMASYNC_PREWRITE);
2912
2913         m_head = *m_headp;
2914
2915 #if 0
2916         /*
2917          * Set up the context descriptor:
2918          * used when any hardware offload is done.
2919          * This includes CSUM, VLAN, and TSO. It
2920          * will use the first descriptor.
2921          */
2922         if (m_head->m_pkthdr.csum_flags & CSUM_TSO) {
2923                 if (igb_tso_setup(txr, m_head, &hdrlen)) {
2924                         cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2925                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2926                         olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2927                 } else
2928                         return (ENXIO); 
2929         } else if (igb_tx_ctx_setup(txr, m_head))
2930                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2931 #else
2932         if (igb_txctx(txr, m_head)) {
2933                 olinfo_status |= (E1000_TXD_POPTS_IXSM << 8);
2934                 if (m_head->m_pkthdr.csum_flags & (CSUM_UDP | CSUM_TCP))
2935                         olinfo_status |= (E1000_TXD_POPTS_TXSM << 8);
2936                 txr->tx_nsegs++;
2937         }
2938 #endif
2939
2940         txr->tx_nsegs += nsegs;
2941         if (txr->tx_nsegs >= txr->intr_nsegs) {
2942                 /*
2943                  * Report Status (RS) is turned on every intr_nsegs
2944                  * descriptors (roughly).
2945                  */
2946                 txr->tx_nsegs = 0;
2947                 cmd_rs = E1000_ADVTXD_DCMD_RS;
2948         }
2949
2950         /* Calculate payload length */
2951         olinfo_status |= ((m_head->m_pkthdr.len - hdrlen)
2952             << E1000_ADVTXD_PAYLEN_SHIFT);
2953
2954         /* 82575 needs the queue index added */
2955         if (txr->sc->hw.mac.type == e1000_82575)
2956                 olinfo_status |= txr->me << 4;
2957
2958         /* Set up our transmit descriptors */
2959         i = txr->next_avail_desc;
2960         for (j = 0; j < nsegs; j++) {
2961                 bus_size_t seg_len;
2962                 bus_addr_t seg_addr;
2963
2964                 tx_buf = &txr->tx_buf[i];
2965                 txd = (union e1000_adv_tx_desc *)&txr->tx_base[i];
2966                 seg_addr = segs[j].ds_addr;
2967                 seg_len = segs[j].ds_len;
2968
2969                 txd->read.buffer_addr = htole64(seg_addr);
2970                 txd->read.cmd_type_len = htole32(cmd_type_len | seg_len);
2971                 txd->read.olinfo_status = htole32(olinfo_status);
2972                 last = i;
2973                 if (++i == txr->sc->num_tx_desc)
2974                         i = 0;
2975                 tx_buf->m_head = NULL;
2976         }
2977
2978         KASSERT(txr->tx_avail > nsegs, ("invalid avail TX desc\n"));
2979         txr->next_avail_desc = i;
2980         txr->tx_avail -= nsegs;
2981
2982         tx_buf->m_head = m_head;
2983         tx_buf_mapped->map = tx_buf->map;
2984         tx_buf->map = map;
2985
2986         /*
2987          * Last Descriptor of Packet needs End Of Packet (EOP)
2988          */
2989         txd->read.cmd_type_len |= htole32(E1000_ADVTXD_DCMD_EOP | cmd_rs);
2990
2991         /*
2992          * Advance the Transmit Descriptor Tail (TDT), this tells the E1000
2993          * that this frame is available to transmit.
2994          */
2995         E1000_WRITE_REG(&txr->sc->hw, E1000_TDT(txr->me), i);
2996         ++txr->tx_packets;
2997
2998         return 0;
2999 }
3000
3001 static void
3002 igb_start(struct ifnet *ifp)
3003 {
3004         struct igb_softc *sc = ifp->if_softc;
3005         struct igb_tx_ring *txr = sc->queues[0].txr;
3006         struct mbuf *m_head;
3007
3008         ASSERT_IFNET_SERIALIZED_ALL(ifp);
3009
3010         if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
3011                 return;
3012
3013         if (!sc->link_active) {
3014                 ifq_purge(&ifp->if_snd);
3015                 return;
3016         }
3017
3018         if (!IGB_IS_NOT_OACTIVE(txr))
3019                 igb_txeof(txr);
3020
3021         while (!ifq_is_empty(&ifp->if_snd)) {
3022                 if (IGB_IS_OACTIVE(txr)) {
3023                         ifp->if_flags |= IFF_OACTIVE;
3024                         /* Set watchdog on */
3025                         ifp->if_timer = 5;
3026                         break;
3027                 }
3028
3029                 m_head = ifq_dequeue(&ifp->if_snd, NULL);
3030                 if (m_head == NULL)
3031                         break;
3032
3033                 if (igb_encap(txr, &m_head)) {
3034                         ifp->if_oerrors++;
3035                         continue;
3036                 }
3037
3038                 /* Send a copy of the frame to the BPF listener */
3039                 ETHER_BPF_MTAP(ifp, m_head);
3040         }
3041 }
3042
3043 static void
3044 igb_watchdog(struct ifnet *ifp)
3045 {
3046         struct igb_softc *sc = ifp->if_softc;
3047         struct igb_tx_ring *txr = sc->queues[0].txr;
3048
3049         ASSERT_IFNET_SERIALIZED_ALL(ifp);
3050
3051         /* 
3052          * If flow control has paused us since last checking
3053          * it invalidates the watchdog timing, so dont run it.
3054          */
3055         if (sc->pause_frames) {
3056                 sc->pause_frames = 0;
3057                 ifp->if_timer = 5;
3058                 return;
3059         }
3060
3061         if_printf(ifp, "Watchdog timeout -- resetting\n");
3062         if_printf(ifp, "Queue(%d) tdh = %d, hw tdt = %d\n", txr->me,
3063             E1000_READ_REG(&sc->hw, E1000_TDH(txr->me)),
3064             E1000_READ_REG(&sc->hw, E1000_TDT(txr->me)));
3065         if_printf(ifp, "TX(%d) desc avail = %d, "
3066             "Next TX to Clean = %d\n",
3067             txr->me, txr->tx_avail, txr->next_to_clean);
3068
3069         ifp->if_oerrors++;
3070         sc->watchdog_events++;
3071
3072         igb_init(sc);
3073         if (!ifq_is_empty(&ifp->if_snd))
3074                 if_devstart(ifp);
3075 }
3076
3077 static void
3078 igb_set_itr(struct igb_softc *sc)
3079 {
3080         uint32_t itr = 0;
3081
3082         if (sc->intr_rate > 0) {
3083                 if (sc->hw.mac.type == e1000_82575) {
3084                         itr = 1000000000 / 256 / sc->intr_rate;
3085                         /*
3086                          * NOTE:
3087                          * Document is wrong on the 2 bits left shift
3088                          */
3089                 } else {
3090                         itr = 1000000 / sc->intr_rate;
3091                         itr <<= 2;
3092                 }
3093                 itr &= 0x7FFC;
3094         }
3095         if (sc->hw.mac.type == e1000_82575)
3096                 itr |= itr << 16;
3097         else
3098                 itr |= E1000_EITR_CNT_IGNR;
3099         E1000_WRITE_REG(&sc->hw, E1000_EITR(0), itr);
3100 }
3101
3102 static int
3103 igb_sysctl_intr_rate(SYSCTL_HANDLER_ARGS)
3104 {
3105         struct igb_softc *sc = (void *)arg1;
3106         struct ifnet *ifp = &sc->arpcom.ac_if;
3107         int error, intr_rate;
3108
3109         intr_rate = sc->intr_rate;
3110         error = sysctl_handle_int(oidp, &intr_rate, 0, req);
3111         if (error || req->newptr == NULL)
3112                 return error;
3113         if (intr_rate < 0)
3114                 return EINVAL;
3115
3116         ifnet_serialize_all(ifp);
3117
3118         sc->intr_rate = intr_rate;
3119         if (ifp->if_flags & IFF_RUNNING)
3120                 igb_set_itr(sc);
3121
3122         ifnet_deserialize_all(ifp);
3123
3124         if (bootverbose)
3125                 if_printf(ifp, "Interrupt rate set to %d/sec\n", sc->intr_rate);
3126         return 0;
3127 }
3128
3129 static int
3130 igb_sysctl_tx_intr_nsegs(SYSCTL_HANDLER_ARGS)
3131 {
3132         struct igb_softc *sc = (void *)arg1;
3133         struct ifnet *ifp = &sc->arpcom.ac_if;
3134         struct igb_tx_ring *txr = sc->queues[0].txr;
3135         int error, nsegs;
3136
3137         nsegs = txr->intr_nsegs;
3138         error = sysctl_handle_int(oidp, &nsegs, 0, req);
3139         if (error || req->newptr == NULL)
3140                 return error;
3141         if (nsegs <= 0)
3142                 return EINVAL;
3143
3144         ifnet_serialize_all(ifp);
3145
3146         if (nsegs >= sc->num_tx_desc - txr->oact_lo_desc ||
3147             nsegs >= txr->oact_hi_desc - IGB_MAX_SCATTER) {
3148                 error = EINVAL;
3149         } else {
3150                 error = 0;
3151                 txr->intr_nsegs = nsegs;
3152         }
3153
3154         ifnet_deserialize_all(ifp);
3155
3156         return error;
3157 }