Import pre-release gcc-5.0 to new vendor branch
[dragonfly.git] / contrib / gcc-5.0 / gcc / tree-ssa-loop-manip.c
1 /* High-level loop manipulation functions.
2    Copyright (C) 2004-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "hash-set.h"
25 #include "machmode.h"
26 #include "vec.h"
27 #include "double-int.h"
28 #include "input.h"
29 #include "alias.h"
30 #include "symtab.h"
31 #include "wide-int.h"
32 #include "inchash.h"
33 #include "tree.h"
34 #include "fold-const.h"
35 #include "tm_p.h"
36 #include "predict.h"
37 #include "hard-reg-set.h"
38 #include "input.h"
39 #include "function.h"
40 #include "dominance.h"
41 #include "cfg.h"
42 #include "cfganal.h"
43 #include "basic-block.h"
44 #include "tree-ssa-alias.h"
45 #include "internal-fn.h"
46 #include "gimple-expr.h"
47 #include "is-a.h"
48 #include "gimple.h"
49 #include "gimplify.h"
50 #include "gimple-iterator.h"
51 #include "gimplify-me.h"
52 #include "gimple-ssa.h"
53 #include "tree-cfg.h"
54 #include "tree-phinodes.h"
55 #include "ssa-iterators.h"
56 #include "stringpool.h"
57 #include "tree-ssanames.h"
58 #include "tree-ssa-loop-ivopts.h"
59 #include "tree-ssa-loop-manip.h"
60 #include "tree-ssa-loop-niter.h"
61 #include "tree-ssa-loop.h"
62 #include "tree-into-ssa.h"
63 #include "tree-ssa.h"
64 #include "dumpfile.h"
65 #include "gimple-pretty-print.h"
66 #include "cfgloop.h"
67 #include "tree-pass.h"  /* ??? for TODO_update_ssa but this isn't a pass.  */
68 #include "tree-scalar-evolution.h"
69 #include "params.h"
70 #include "tree-inline.h"
71 #include "langhooks.h"
72
73 /* All bitmaps for rewriting into loop-closed SSA go on this obstack,
74    so that we can free them all at once.  */
75 static bitmap_obstack loop_renamer_obstack;
76
77 /* Creates an induction variable with value BASE + STEP * iteration in LOOP.
78    It is expected that neither BASE nor STEP are shared with other expressions
79    (unless the sharing rules allow this).  Use VAR as a base var_decl for it
80    (if NULL, a new temporary will be created).  The increment will occur at
81    INCR_POS (after it if AFTER is true, before it otherwise).  INCR_POS and
82    AFTER can be computed using standard_iv_increment_position.  The ssa versions
83    of the variable before and after increment will be stored in VAR_BEFORE and
84    VAR_AFTER (unless they are NULL).  */
85
86 void
87 create_iv (tree base, tree step, tree var, struct loop *loop,
88            gimple_stmt_iterator *incr_pos, bool after,
89            tree *var_before, tree *var_after)
90 {
91   gassign *stmt;
92   gphi *phi;
93   tree initial, step1;
94   gimple_seq stmts;
95   tree vb, va;
96   enum tree_code incr_op = PLUS_EXPR;
97   edge pe = loop_preheader_edge (loop);
98
99   if (var != NULL_TREE)
100     {
101       vb = make_ssa_name (var);
102       va = make_ssa_name (var);
103     }
104   else
105     {
106       vb = make_temp_ssa_name (TREE_TYPE (base), NULL, "ivtmp");
107       va = make_temp_ssa_name (TREE_TYPE (base), NULL, "ivtmp");
108     }
109   if (var_before)
110     *var_before = vb;
111   if (var_after)
112     *var_after = va;
113
114   /* For easier readability of the created code, produce MINUS_EXPRs
115      when suitable.  */
116   if (TREE_CODE (step) == INTEGER_CST)
117     {
118       if (TYPE_UNSIGNED (TREE_TYPE (step)))
119         {
120           step1 = fold_build1 (NEGATE_EXPR, TREE_TYPE (step), step);
121           if (tree_int_cst_lt (step1, step))
122             {
123               incr_op = MINUS_EXPR;
124               step = step1;
125             }
126         }
127       else
128         {
129           bool ovf;
130
131           if (!tree_expr_nonnegative_warnv_p (step, &ovf)
132               && may_negate_without_overflow_p (step))
133             {
134               incr_op = MINUS_EXPR;
135               step = fold_build1 (NEGATE_EXPR, TREE_TYPE (step), step);
136             }
137         }
138     }
139   if (POINTER_TYPE_P (TREE_TYPE (base)))
140     {
141       if (TREE_CODE (base) == ADDR_EXPR)
142         mark_addressable (TREE_OPERAND (base, 0));
143       step = convert_to_ptrofftype (step);
144       if (incr_op == MINUS_EXPR)
145         step = fold_build1 (NEGATE_EXPR, TREE_TYPE (step), step);
146       incr_op = POINTER_PLUS_EXPR;
147     }
148   /* Gimplify the step if necessary.  We put the computations in front of the
149      loop (i.e. the step should be loop invariant).  */
150   step = force_gimple_operand (step, &stmts, true, NULL_TREE);
151   if (stmts)
152     gsi_insert_seq_on_edge_immediate (pe, stmts);
153
154   stmt = gimple_build_assign (va, incr_op, vb, step);
155   if (after)
156     gsi_insert_after (incr_pos, stmt, GSI_NEW_STMT);
157   else
158     gsi_insert_before (incr_pos, stmt, GSI_NEW_STMT);
159
160   initial = force_gimple_operand (base, &stmts, true, var);
161   if (stmts)
162     gsi_insert_seq_on_edge_immediate (pe, stmts);
163
164   phi = create_phi_node (vb, loop->header);
165   add_phi_arg (phi, initial, loop_preheader_edge (loop), UNKNOWN_LOCATION);
166   add_phi_arg (phi, va, loop_latch_edge (loop), UNKNOWN_LOCATION);
167 }
168
169 /* Return the innermost superloop LOOP of USE_LOOP that is a superloop of
170    both DEF_LOOP and USE_LOOP.  */
171
172 static inline struct loop *
173 find_sibling_superloop (struct loop *use_loop, struct loop *def_loop)
174 {
175   unsigned ud = loop_depth (use_loop);
176   unsigned dd = loop_depth (def_loop);
177   gcc_assert (ud > 0 && dd > 0);
178   if (ud > dd)
179     use_loop = superloop_at_depth (use_loop, dd);
180   if (ud < dd)
181     def_loop = superloop_at_depth (def_loop, ud);
182   while (loop_outer (use_loop) != loop_outer (def_loop))
183     {
184       use_loop = loop_outer (use_loop);
185       def_loop = loop_outer (def_loop);
186       gcc_assert (use_loop && def_loop);
187     }
188   return use_loop;
189 }
190
191 /* DEF_BB is a basic block containing a DEF that needs rewriting into
192    loop-closed SSA form.  USE_BLOCKS is the set of basic blocks containing
193    uses of DEF that "escape" from the loop containing DEF_BB (i.e. blocks in
194    USE_BLOCKS are dominated by DEF_BB but not in the loop father of DEF_B).
195    ALL_EXITS[I] is the set of all basic blocks that exit loop I.
196
197    Compute the subset of LOOP_EXITS that exit the loop containing DEF_BB
198    or one of its loop fathers, in which DEF is live.  This set is returned
199    in the bitmap LIVE_EXITS.
200
201    Instead of computing the complete livein set of the def, we use the loop
202    nesting tree as a form of poor man's structure analysis.  This greatly
203    speeds up the analysis, which is important because this function may be
204    called on all SSA names that need rewriting, one at a time.  */
205
206 static void
207 compute_live_loop_exits (bitmap live_exits, bitmap use_blocks,
208                          bitmap *loop_exits, basic_block def_bb)
209 {
210   unsigned i;
211   bitmap_iterator bi;
212   struct loop *def_loop = def_bb->loop_father;
213   unsigned def_loop_depth = loop_depth (def_loop);
214   bitmap def_loop_exits;
215
216   /* Normally the work list size is bounded by the number of basic
217      blocks in the largest loop.  We don't know this number, but we
218      can be fairly sure that it will be relatively small.  */
219   auto_vec<basic_block> worklist (MAX (8, n_basic_blocks_for_fn (cfun) / 128));
220
221   EXECUTE_IF_SET_IN_BITMAP (use_blocks, 0, i, bi)
222     {
223       basic_block use_bb = BASIC_BLOCK_FOR_FN (cfun, i);
224       struct loop *use_loop = use_bb->loop_father;
225       gcc_checking_assert (def_loop != use_loop
226                            && ! flow_loop_nested_p (def_loop, use_loop));
227       if (! flow_loop_nested_p (use_loop, def_loop))
228         use_bb = find_sibling_superloop (use_loop, def_loop)->header;
229       if (bitmap_set_bit (live_exits, use_bb->index))
230         worklist.safe_push (use_bb);
231     }
232
233   /* Iterate until the worklist is empty.  */
234   while (! worklist.is_empty ())
235     {
236       edge e;
237       edge_iterator ei;
238
239       /* Pull a block off the worklist.  */
240       basic_block bb = worklist.pop ();
241
242       /* Make sure we have at least enough room in the work list
243          for all predecessors of this block.  */
244       worklist.reserve (EDGE_COUNT (bb->preds));
245
246       /* For each predecessor block.  */
247       FOR_EACH_EDGE (e, ei, bb->preds)
248         {
249           basic_block pred = e->src;
250           struct loop *pred_loop = pred->loop_father;
251           unsigned pred_loop_depth = loop_depth (pred_loop);
252           bool pred_visited;
253
254           /* We should have met DEF_BB along the way.  */
255           gcc_assert (pred != ENTRY_BLOCK_PTR_FOR_FN (cfun));
256
257           if (pred_loop_depth >= def_loop_depth)
258             {
259               if (pred_loop_depth > def_loop_depth)
260                 pred_loop = superloop_at_depth (pred_loop, def_loop_depth);
261               /* If we've reached DEF_LOOP, our train ends here.  */
262               if (pred_loop == def_loop)
263                 continue;
264             }
265           else if (! flow_loop_nested_p (pred_loop, def_loop))
266             pred = find_sibling_superloop (pred_loop, def_loop)->header;
267
268           /* Add PRED to the LIVEIN set.  PRED_VISITED is true if
269              we had already added PRED to LIVEIN before.  */
270           pred_visited = !bitmap_set_bit (live_exits, pred->index);
271
272           /* If we have visited PRED before, don't add it to the worklist.
273              If BB dominates PRED, then we're probably looking at a loop.
274              We're only interested in looking up in the dominance tree
275              because DEF_BB dominates all the uses.  */
276           if (pred_visited || dominated_by_p (CDI_DOMINATORS, pred, bb))
277             continue;
278
279           worklist.quick_push (pred);
280         }
281     }
282
283   def_loop_exits = BITMAP_ALLOC (&loop_renamer_obstack);
284   for (struct loop *loop = def_loop;
285        loop != current_loops->tree_root;
286        loop = loop_outer (loop))
287     bitmap_ior_into (def_loop_exits, loop_exits[loop->num]);
288   bitmap_and_into (live_exits, def_loop_exits);
289   BITMAP_FREE (def_loop_exits);
290 }
291
292 /* Add a loop-closing PHI for VAR in basic block EXIT.  */
293
294 static void
295 add_exit_phi (basic_block exit, tree var)
296 {
297   gphi *phi;
298   edge e;
299   edge_iterator ei;
300
301 #ifdef ENABLE_CHECKING
302   /* Check that at least one of the edges entering the EXIT block exits
303      the loop, or a superloop of that loop, that VAR is defined in.  */
304   gimple def_stmt = SSA_NAME_DEF_STMT (var);
305   basic_block def_bb = gimple_bb (def_stmt);
306   FOR_EACH_EDGE (e, ei, exit->preds)
307     {
308       struct loop *aloop = find_common_loop (def_bb->loop_father,
309                                              e->src->loop_father);
310       if (!flow_bb_inside_loop_p (aloop, e->dest))
311         break;
312     }
313
314   gcc_checking_assert (e);
315 #endif
316
317   phi = create_phi_node (NULL_TREE, exit);
318   create_new_def_for (var, phi, gimple_phi_result_ptr (phi));
319   FOR_EACH_EDGE (e, ei, exit->preds)
320     add_phi_arg (phi, var, e, UNKNOWN_LOCATION);
321
322   if (dump_file && (dump_flags & TDF_DETAILS))
323     {
324       fprintf (dump_file, ";; Created LCSSA PHI: ");
325       print_gimple_stmt (dump_file, phi, 0, dump_flags);
326     }
327 }
328
329 /* Add exit phis for VAR that is used in LIVEIN.
330    Exits of the loops are stored in LOOP_EXITS.  */
331
332 static void
333 add_exit_phis_var (tree var, bitmap use_blocks, bitmap *loop_exits)
334 {
335   unsigned index;
336   bitmap_iterator bi;
337   basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (var));
338   bitmap live_exits = BITMAP_ALLOC (&loop_renamer_obstack);
339
340   gcc_checking_assert (! bitmap_bit_p (use_blocks, def_bb->index));
341
342   compute_live_loop_exits (live_exits, use_blocks, loop_exits, def_bb);
343
344   EXECUTE_IF_SET_IN_BITMAP (live_exits, 0, index, bi)
345     {
346       add_exit_phi (BASIC_BLOCK_FOR_FN (cfun, index), var);
347     }
348
349   BITMAP_FREE (live_exits);
350 }
351
352 /* Add exit phis for the names marked in NAMES_TO_RENAME.
353    Exits of the loops are stored in EXITS.  Sets of blocks where the ssa
354    names are used are stored in USE_BLOCKS.  */
355
356 static void
357 add_exit_phis (bitmap names_to_rename, bitmap *use_blocks, bitmap *loop_exits)
358 {
359   unsigned i;
360   bitmap_iterator bi;
361
362   EXECUTE_IF_SET_IN_BITMAP (names_to_rename, 0, i, bi)
363     {
364       add_exit_phis_var (ssa_name (i), use_blocks[i], loop_exits);
365     }
366 }
367
368 /* Fill the array of bitmaps LOOP_EXITS with all loop exit edge targets.  */
369
370 static void
371 get_loops_exits (bitmap *loop_exits)
372 {
373   struct loop *loop;
374   unsigned j;
375   edge e;
376
377   FOR_EACH_LOOP (loop, 0)
378     {
379       vec<edge> exit_edges = get_loop_exit_edges (loop);
380       loop_exits[loop->num] = BITMAP_ALLOC (&loop_renamer_obstack);
381       FOR_EACH_VEC_ELT (exit_edges, j, e)
382         bitmap_set_bit (loop_exits[loop->num], e->dest->index);
383       exit_edges.release ();
384     }
385 }
386
387 /* For USE in BB, if it is used outside of the loop it is defined in,
388    mark it for rewrite.  Record basic block BB where it is used
389    to USE_BLOCKS.  Record the ssa name index to NEED_PHIS bitmap.  */
390
391 static void
392 find_uses_to_rename_use (basic_block bb, tree use, bitmap *use_blocks,
393                          bitmap need_phis)
394 {
395   unsigned ver;
396   basic_block def_bb;
397   struct loop *def_loop;
398
399   if (TREE_CODE (use) != SSA_NAME)
400     return;
401
402   ver = SSA_NAME_VERSION (use);
403   def_bb = gimple_bb (SSA_NAME_DEF_STMT (use));
404   if (!def_bb)
405     return;
406   def_loop = def_bb->loop_father;
407
408   /* If the definition is not inside a loop, it is not interesting.  */
409   if (!loop_outer (def_loop))
410     return;
411
412   /* If the use is not outside of the loop it is defined in, it is not
413      interesting.  */
414   if (flow_bb_inside_loop_p (def_loop, bb))
415     return;
416
417   /* If we're seeing VER for the first time, we still have to allocate
418      a bitmap for its uses.  */
419   if (bitmap_set_bit (need_phis, ver))
420     use_blocks[ver] = BITMAP_ALLOC (&loop_renamer_obstack);
421   bitmap_set_bit (use_blocks[ver], bb->index);
422 }
423
424 /* For uses in STMT, mark names that are used outside of the loop they are
425    defined to rewrite.  Record the set of blocks in that the ssa
426    names are defined to USE_BLOCKS and the ssa names themselves to
427    NEED_PHIS.  */
428
429 static void
430 find_uses_to_rename_stmt (gimple stmt, bitmap *use_blocks, bitmap need_phis)
431 {
432   ssa_op_iter iter;
433   tree var;
434   basic_block bb = gimple_bb (stmt);
435
436   if (is_gimple_debug (stmt))
437     return;
438
439   FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_USE)
440     find_uses_to_rename_use (bb, var, use_blocks, need_phis);
441 }
442
443 /* Marks names that are used in BB and outside of the loop they are
444    defined in for rewrite.  Records the set of blocks in that the ssa
445    names are defined to USE_BLOCKS.  Record the SSA names that will
446    need exit PHIs in NEED_PHIS.  */
447
448 static void
449 find_uses_to_rename_bb (basic_block bb, bitmap *use_blocks, bitmap need_phis)
450 {
451   edge e;
452   edge_iterator ei;
453
454   FOR_EACH_EDGE (e, ei, bb->succs)
455     for (gphi_iterator bsi = gsi_start_phis (e->dest); !gsi_end_p (bsi);
456          gsi_next (&bsi))
457       {
458         gphi *phi = bsi.phi ();
459         if (! virtual_operand_p (gimple_phi_result (phi)))
460           find_uses_to_rename_use (bb, PHI_ARG_DEF_FROM_EDGE (phi, e),
461                                    use_blocks, need_phis);
462       }
463
464   for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi);
465        gsi_next (&bsi))
466     find_uses_to_rename_stmt (gsi_stmt (bsi), use_blocks, need_phis);
467 }
468
469 /* Marks names that are used outside of the loop they are defined in
470    for rewrite.  Records the set of blocks in that the ssa
471    names are defined to USE_BLOCKS.  If CHANGED_BBS is not NULL,
472    scan only blocks in this set.  */
473
474 static void
475 find_uses_to_rename (bitmap changed_bbs, bitmap *use_blocks, bitmap need_phis)
476 {
477   basic_block bb;
478   unsigned index;
479   bitmap_iterator bi;
480
481   if (changed_bbs)
482     EXECUTE_IF_SET_IN_BITMAP (changed_bbs, 0, index, bi)
483       find_uses_to_rename_bb (BASIC_BLOCK_FOR_FN (cfun, index), use_blocks, need_phis);
484   else
485     FOR_EACH_BB_FN (bb, cfun)
486       find_uses_to_rename_bb (bb, use_blocks, need_phis);
487 }
488
489 /* Rewrites the program into a loop closed ssa form -- i.e. inserts extra
490    phi nodes to ensure that no variable is used outside the loop it is
491    defined in.
492
493    This strengthening of the basic ssa form has several advantages:
494
495    1) Updating it during unrolling/peeling/versioning is trivial, since
496       we do not need to care about the uses outside of the loop.
497       The same applies to virtual operands which are also rewritten into
498       loop closed SSA form.  Note that virtual operands are always live
499       until function exit.
500    2) The behavior of all uses of an induction variable is the same.
501       Without this, you need to distinguish the case when the variable
502       is used outside of the loop it is defined in, for example
503
504       for (i = 0; i < 100; i++)
505         {
506           for (j = 0; j < 100; j++)
507             {
508               k = i + j;
509               use1 (k);
510             }
511           use2 (k);
512         }
513
514       Looking from the outer loop with the normal SSA form, the first use of k
515       is not well-behaved, while the second one is an induction variable with
516       base 99 and step 1.
517
518       If CHANGED_BBS is not NULL, we look for uses outside loops only in
519       the basic blocks in this set.
520
521       UPDATE_FLAG is used in the call to update_ssa.  See
522       TODO_update_ssa* for documentation.  */
523
524 void
525 rewrite_into_loop_closed_ssa (bitmap changed_bbs, unsigned update_flag)
526 {
527   bitmap *use_blocks;
528   bitmap names_to_rename;
529
530   loops_state_set (LOOP_CLOSED_SSA);
531   if (number_of_loops (cfun) <= 1)
532     return;
533
534   /* If the pass has caused the SSA form to be out-of-date, update it
535      now.  */
536   update_ssa (update_flag);
537
538   bitmap_obstack_initialize (&loop_renamer_obstack);
539
540   names_to_rename = BITMAP_ALLOC (&loop_renamer_obstack);
541
542   /* Uses of names to rename.  We don't have to initialize this array,
543      because we know that we will only have entries for the SSA names
544      in NAMES_TO_RENAME.  */
545   use_blocks = XNEWVEC (bitmap, num_ssa_names);
546
547   /* Find the uses outside loops.  */
548   find_uses_to_rename (changed_bbs, use_blocks, names_to_rename);
549
550   if (!bitmap_empty_p (names_to_rename))
551     {
552       /* An array of bitmaps where LOOP_EXITS[I] is the set of basic blocks
553          that are the destination of an edge exiting loop number I.  */
554       bitmap *loop_exits = XNEWVEC (bitmap, number_of_loops (cfun));
555       get_loops_exits (loop_exits);
556
557       /* Add the PHI nodes on exits of the loops for the names we need to
558          rewrite.  */
559       add_exit_phis (names_to_rename, use_blocks, loop_exits);
560
561       free (loop_exits);
562
563       /* Fix up all the names found to be used outside their original
564          loops.  */
565       update_ssa (TODO_update_ssa);
566     }
567
568   bitmap_obstack_release (&loop_renamer_obstack);
569   free (use_blocks);
570 }
571
572 /* Check invariants of the loop closed ssa form for the USE in BB.  */
573
574 static void
575 check_loop_closed_ssa_use (basic_block bb, tree use)
576 {
577   gimple def;
578   basic_block def_bb;
579
580   if (TREE_CODE (use) != SSA_NAME || virtual_operand_p (use))
581     return;
582
583   def = SSA_NAME_DEF_STMT (use);
584   def_bb = gimple_bb (def);
585   gcc_assert (!def_bb
586               || flow_bb_inside_loop_p (def_bb->loop_father, bb));
587 }
588
589 /* Checks invariants of loop closed ssa form in statement STMT in BB.  */
590
591 static void
592 check_loop_closed_ssa_stmt (basic_block bb, gimple stmt)
593 {
594   ssa_op_iter iter;
595   tree var;
596
597   if (is_gimple_debug (stmt))
598     return;
599
600   FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_USE)
601     check_loop_closed_ssa_use (bb, var);
602 }
603
604 /* Checks that invariants of the loop closed ssa form are preserved.
605    Call verify_ssa when VERIFY_SSA_P is true.  */
606
607 DEBUG_FUNCTION void
608 verify_loop_closed_ssa (bool verify_ssa_p)
609 {
610   basic_block bb;
611   edge e;
612   edge_iterator ei;
613
614   if (number_of_loops (cfun) <= 1)
615     return;
616
617   if (verify_ssa_p)
618     verify_ssa (false, true);
619
620   timevar_push (TV_VERIFY_LOOP_CLOSED);
621
622   FOR_EACH_BB_FN (bb, cfun)
623     {
624       for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi);
625            gsi_next (&bsi))
626         {
627           gphi *phi = bsi.phi ();
628           FOR_EACH_EDGE (e, ei, bb->preds)
629             check_loop_closed_ssa_use (e->src,
630                                        PHI_ARG_DEF_FROM_EDGE (phi, e));
631         }
632
633       for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi);
634            gsi_next (&bsi))
635         check_loop_closed_ssa_stmt (bb, gsi_stmt (bsi));
636     }
637
638   timevar_pop (TV_VERIFY_LOOP_CLOSED);
639 }
640
641 /* Split loop exit edge EXIT.  The things are a bit complicated by a need to
642    preserve the loop closed ssa form.  The newly created block is returned.  */
643
644 basic_block
645 split_loop_exit_edge (edge exit)
646 {
647   basic_block dest = exit->dest;
648   basic_block bb = split_edge (exit);
649   gphi *phi, *new_phi;
650   tree new_name, name;
651   use_operand_p op_p;
652   gphi_iterator psi;
653   source_location locus;
654
655   for (psi = gsi_start_phis (dest); !gsi_end_p (psi); gsi_next (&psi))
656     {
657       phi = psi.phi ();
658       op_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, single_succ_edge (bb));
659       locus = gimple_phi_arg_location_from_edge (phi, single_succ_edge (bb));
660
661       name = USE_FROM_PTR (op_p);
662
663       /* If the argument of the PHI node is a constant, we do not need
664          to keep it inside loop.  */
665       if (TREE_CODE (name) != SSA_NAME)
666         continue;
667
668       /* Otherwise create an auxiliary phi node that will copy the value
669          of the SSA name out of the loop.  */
670       new_name = duplicate_ssa_name (name, NULL);
671       new_phi = create_phi_node (new_name, bb);
672       add_phi_arg (new_phi, name, exit, locus);
673       SET_USE (op_p, new_name);
674     }
675
676   return bb;
677 }
678
679 /* Returns the basic block in that statements should be emitted for induction
680    variables incremented at the end of the LOOP.  */
681
682 basic_block
683 ip_end_pos (struct loop *loop)
684 {
685   return loop->latch;
686 }
687
688 /* Returns the basic block in that statements should be emitted for induction
689    variables incremented just before exit condition of a LOOP.  */
690
691 basic_block
692 ip_normal_pos (struct loop *loop)
693 {
694   gimple last;
695   basic_block bb;
696   edge exit;
697
698   if (!single_pred_p (loop->latch))
699     return NULL;
700
701   bb = single_pred (loop->latch);
702   last = last_stmt (bb);
703   if (!last
704       || gimple_code (last) != GIMPLE_COND)
705     return NULL;
706
707   exit = EDGE_SUCC (bb, 0);
708   if (exit->dest == loop->latch)
709     exit = EDGE_SUCC (bb, 1);
710
711   if (flow_bb_inside_loop_p (loop, exit->dest))
712     return NULL;
713
714   return bb;
715 }
716
717 /* Stores the standard position for induction variable increment in LOOP
718    (just before the exit condition if it is available and latch block is empty,
719    end of the latch block otherwise) to BSI.  INSERT_AFTER is set to true if
720    the increment should be inserted after *BSI.  */
721
722 void
723 standard_iv_increment_position (struct loop *loop, gimple_stmt_iterator *bsi,
724                                 bool *insert_after)
725 {
726   basic_block bb = ip_normal_pos (loop), latch = ip_end_pos (loop);
727   gimple last = last_stmt (latch);
728
729   if (!bb
730       || (last && gimple_code (last) != GIMPLE_LABEL))
731     {
732       *bsi = gsi_last_bb (latch);
733       *insert_after = true;
734     }
735   else
736     {
737       *bsi = gsi_last_bb (bb);
738       *insert_after = false;
739     }
740 }
741
742 /* Copies phi node arguments for duplicated blocks.  The index of the first
743    duplicated block is FIRST_NEW_BLOCK.  */
744
745 static void
746 copy_phi_node_args (unsigned first_new_block)
747 {
748   unsigned i;
749
750   for (i = first_new_block; i < (unsigned) last_basic_block_for_fn (cfun); i++)
751     BASIC_BLOCK_FOR_FN (cfun, i)->flags |= BB_DUPLICATED;
752
753   for (i = first_new_block; i < (unsigned) last_basic_block_for_fn (cfun); i++)
754     add_phi_args_after_copy_bb (BASIC_BLOCK_FOR_FN (cfun, i));
755
756   for (i = first_new_block; i < (unsigned) last_basic_block_for_fn (cfun); i++)
757     BASIC_BLOCK_FOR_FN (cfun, i)->flags &= ~BB_DUPLICATED;
758 }
759
760
761 /* The same as cfgloopmanip.c:duplicate_loop_to_header_edge, but also
762    updates the PHI nodes at start of the copied region.  In order to
763    achieve this, only loops whose exits all lead to the same location
764    are handled.
765
766    Notice that we do not completely update the SSA web after
767    duplication.  The caller is responsible for calling update_ssa
768    after the loop has been duplicated.  */
769
770 bool
771 gimple_duplicate_loop_to_header_edge (struct loop *loop, edge e,
772                                     unsigned int ndupl, sbitmap wont_exit,
773                                     edge orig, vec<edge> *to_remove,
774                                     int flags)
775 {
776   unsigned first_new_block;
777
778   if (!loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
779     return false;
780   if (!loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS))
781     return false;
782
783   first_new_block = last_basic_block_for_fn (cfun);
784   if (!duplicate_loop_to_header_edge (loop, e, ndupl, wont_exit,
785                                       orig, to_remove, flags))
786     return false;
787
788   /* Readd the removed phi args for e.  */
789   flush_pending_stmts (e);
790
791   /* Copy the phi node arguments.  */
792   copy_phi_node_args (first_new_block);
793
794   scev_reset ();
795
796   return true;
797 }
798
799 /* Returns true if we can unroll LOOP FACTOR times.  Number
800    of iterations of the loop is returned in NITER.  */
801
802 bool
803 can_unroll_loop_p (struct loop *loop, unsigned factor,
804                    struct tree_niter_desc *niter)
805 {
806   edge exit;
807
808   /* Check whether unrolling is possible.  We only want to unroll loops
809      for that we are able to determine number of iterations.  We also
810      want to split the extra iterations of the loop from its end,
811      therefore we require that the loop has precisely one
812      exit.  */
813
814   exit = single_dom_exit (loop);
815   if (!exit)
816     return false;
817
818   if (!number_of_iterations_exit (loop, exit, niter, false)
819       || niter->cmp == ERROR_MARK
820       /* Scalar evolutions analysis might have copy propagated
821          the abnormal ssa names into these expressions, hence
822          emitting the computations based on them during loop
823          unrolling might create overlapping life ranges for
824          them, and failures in out-of-ssa.  */
825       || contains_abnormal_ssa_name_p (niter->may_be_zero)
826       || contains_abnormal_ssa_name_p (niter->control.base)
827       || contains_abnormal_ssa_name_p (niter->control.step)
828       || contains_abnormal_ssa_name_p (niter->bound))
829     return false;
830
831   /* And of course, we must be able to duplicate the loop.  */
832   if (!can_duplicate_loop_p (loop))
833     return false;
834
835   /* The final loop should be small enough.  */
836   if (tree_num_loop_insns (loop, &eni_size_weights) * factor
837       > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS))
838     return false;
839
840   return true;
841 }
842
843 /* Determines the conditions that control execution of LOOP unrolled FACTOR
844    times.  DESC is number of iterations of LOOP.  ENTER_COND is set to
845    condition that must be true if the main loop can be entered.
846    EXIT_BASE, EXIT_STEP, EXIT_CMP and EXIT_BOUND are set to values describing
847    how the exit from the unrolled loop should be controlled.  */
848
849 static void
850 determine_exit_conditions (struct loop *loop, struct tree_niter_desc *desc,
851                            unsigned factor, tree *enter_cond,
852                            tree *exit_base, tree *exit_step,
853                            enum tree_code *exit_cmp, tree *exit_bound)
854 {
855   gimple_seq stmts;
856   tree base = desc->control.base;
857   tree step = desc->control.step;
858   tree bound = desc->bound;
859   tree type = TREE_TYPE (step);
860   tree bigstep, delta;
861   tree min = lower_bound_in_type (type, type);
862   tree max = upper_bound_in_type (type, type);
863   enum tree_code cmp = desc->cmp;
864   tree cond = boolean_true_node, assum;
865
866   /* For pointers, do the arithmetics in the type of step.  */
867   base = fold_convert (type, base);
868   bound = fold_convert (type, bound);
869
870   *enter_cond = boolean_false_node;
871   *exit_base = NULL_TREE;
872   *exit_step = NULL_TREE;
873   *exit_cmp = ERROR_MARK;
874   *exit_bound = NULL_TREE;
875   gcc_assert (cmp != ERROR_MARK);
876
877   /* We only need to be correct when we answer question
878      "Do at least FACTOR more iterations remain?" in the unrolled loop.
879      Thus, transforming BASE + STEP * i <> BOUND to
880      BASE + STEP * i < BOUND is ok.  */
881   if (cmp == NE_EXPR)
882     {
883       if (tree_int_cst_sign_bit (step))
884         cmp = GT_EXPR;
885       else
886         cmp = LT_EXPR;
887     }
888   else if (cmp == LT_EXPR)
889     {
890       gcc_assert (!tree_int_cst_sign_bit (step));
891     }
892   else if (cmp == GT_EXPR)
893     {
894       gcc_assert (tree_int_cst_sign_bit (step));
895     }
896   else
897     gcc_unreachable ();
898
899   /* The main body of the loop may be entered iff:
900
901      1) desc->may_be_zero is false.
902      2) it is possible to check that there are at least FACTOR iterations
903         of the loop, i.e., BOUND - step * FACTOR does not overflow.
904      3) # of iterations is at least FACTOR  */
905
906   if (!integer_zerop (desc->may_be_zero))
907     cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
908                         invert_truthvalue (desc->may_be_zero),
909                         cond);
910
911   bigstep = fold_build2 (MULT_EXPR, type, step,
912                          build_int_cst_type (type, factor));
913   delta = fold_build2 (MINUS_EXPR, type, bigstep, step);
914   if (cmp == LT_EXPR)
915     assum = fold_build2 (GE_EXPR, boolean_type_node,
916                          bound,
917                          fold_build2 (PLUS_EXPR, type, min, delta));
918   else
919     assum = fold_build2 (LE_EXPR, boolean_type_node,
920                          bound,
921                          fold_build2 (PLUS_EXPR, type, max, delta));
922   cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, assum, cond);
923
924   bound = fold_build2 (MINUS_EXPR, type, bound, delta);
925   assum = fold_build2 (cmp, boolean_type_node, base, bound);
926   cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, assum, cond);
927
928   cond = force_gimple_operand (unshare_expr (cond), &stmts, false, NULL_TREE);
929   if (stmts)
930     gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
931   /* cond now may be a gimple comparison, which would be OK, but also any
932      other gimple rhs (say a && b).  In this case we need to force it to
933      operand.  */
934   if (!is_gimple_condexpr (cond))
935     {
936       cond = force_gimple_operand (cond, &stmts, true, NULL_TREE);
937       if (stmts)
938         gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
939     }
940   *enter_cond = cond;
941
942   base = force_gimple_operand (unshare_expr (base), &stmts, true, NULL_TREE);
943   if (stmts)
944     gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
945   bound = force_gimple_operand (unshare_expr (bound), &stmts, true, NULL_TREE);
946   if (stmts)
947     gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
948
949   *exit_base = base;
950   *exit_step = bigstep;
951   *exit_cmp = cmp;
952   *exit_bound = bound;
953 }
954
955 /* Scales the frequencies of all basic blocks in LOOP that are strictly
956    dominated by BB by NUM/DEN.  */
957
958 static void
959 scale_dominated_blocks_in_loop (struct loop *loop, basic_block bb,
960                                 int num, int den)
961 {
962   basic_block son;
963
964   if (den == 0)
965     return;
966
967   for (son = first_dom_son (CDI_DOMINATORS, bb);
968        son;
969        son = next_dom_son (CDI_DOMINATORS, son))
970     {
971       if (!flow_bb_inside_loop_p (loop, son))
972         continue;
973       scale_bbs_frequencies_int (&son, 1, num, den);
974       scale_dominated_blocks_in_loop (loop, son, num, den);
975     }
976 }
977
978 /* Unroll LOOP FACTOR times.  DESC describes number of iterations of LOOP.
979    EXIT is the exit of the loop to that DESC corresponds.
980
981    If N is number of iterations of the loop and MAY_BE_ZERO is the condition
982    under that loop exits in the first iteration even if N != 0,
983
984    while (1)
985      {
986        x = phi (init, next);
987
988        pre;
989        if (st)
990          break;
991        post;
992      }
993
994    becomes (with possibly the exit conditions formulated a bit differently,
995    avoiding the need to create a new iv):
996
997    if (MAY_BE_ZERO || N < FACTOR)
998      goto rest;
999
1000    do
1001      {
1002        x = phi (init, next);
1003
1004        pre;
1005        post;
1006        pre;
1007        post;
1008        ...
1009        pre;
1010        post;
1011        N -= FACTOR;
1012
1013      } while (N >= FACTOR);
1014
1015    rest:
1016      init' = phi (init, x);
1017
1018    while (1)
1019      {
1020        x = phi (init', next);
1021
1022        pre;
1023        if (st)
1024          break;
1025        post;
1026      }
1027
1028    Before the loop is unrolled, TRANSFORM is called for it (only for the
1029    unrolled loop, but not for its versioned copy).  DATA is passed to
1030    TRANSFORM.  */
1031
1032 /* Probability in % that the unrolled loop is entered.  Just a guess.  */
1033 #define PROB_UNROLLED_LOOP_ENTERED 90
1034
1035 void
1036 tree_transform_and_unroll_loop (struct loop *loop, unsigned factor,
1037                                 edge exit, struct tree_niter_desc *desc,
1038                                 transform_callback transform,
1039                                 void *data)
1040 {
1041   gcond *exit_if;
1042   tree ctr_before, ctr_after;
1043   tree enter_main_cond, exit_base, exit_step, exit_bound;
1044   enum tree_code exit_cmp;
1045   gphi *phi_old_loop, *phi_new_loop, *phi_rest;
1046   gphi_iterator psi_old_loop, psi_new_loop;
1047   tree init, next, new_init;
1048   struct loop *new_loop;
1049   basic_block rest, exit_bb;
1050   edge old_entry, new_entry, old_latch, precond_edge, new_exit;
1051   edge new_nonexit, e;
1052   gimple_stmt_iterator bsi;
1053   use_operand_p op;
1054   bool ok;
1055   unsigned est_niter, prob_entry, scale_unrolled, scale_rest, freq_e, freq_h;
1056   unsigned new_est_niter, i, prob;
1057   unsigned irr = loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP;
1058   sbitmap wont_exit;
1059   auto_vec<edge> to_remove;
1060
1061   est_niter = expected_loop_iterations (loop);
1062   determine_exit_conditions (loop, desc, factor,
1063                              &enter_main_cond, &exit_base, &exit_step,
1064                              &exit_cmp, &exit_bound);
1065
1066   /* Let us assume that the unrolled loop is quite likely to be entered.  */
1067   if (integer_nonzerop (enter_main_cond))
1068     prob_entry = REG_BR_PROB_BASE;
1069   else
1070     prob_entry = PROB_UNROLLED_LOOP_ENTERED * REG_BR_PROB_BASE / 100;
1071
1072   /* The values for scales should keep profile consistent, and somewhat close
1073      to correct.
1074
1075      TODO: The current value of SCALE_REST makes it appear that the loop that
1076      is created by splitting the remaining iterations of the unrolled loop is
1077      executed the same number of times as the original loop, and with the same
1078      frequencies, which is obviously wrong.  This does not appear to cause
1079      problems, so we do not bother with fixing it for now.  To make the profile
1080      correct, we would need to change the probability of the exit edge of the
1081      loop, and recompute the distribution of frequencies in its body because
1082      of this change (scale the frequencies of blocks before and after the exit
1083      by appropriate factors).  */
1084   scale_unrolled = prob_entry;
1085   scale_rest = REG_BR_PROB_BASE;
1086
1087   new_loop = loop_version (loop, enter_main_cond, NULL,
1088                            prob_entry, scale_unrolled, scale_rest, true);
1089   gcc_assert (new_loop != NULL);
1090   update_ssa (TODO_update_ssa);
1091
1092   /* Determine the probability of the exit edge of the unrolled loop.  */
1093   new_est_niter = est_niter / factor;
1094
1095   /* Without profile feedback, loops for that we do not know a better estimate
1096      are assumed to roll 10 times.  When we unroll such loop, it appears to
1097      roll too little, and it may even seem to be cold.  To avoid this, we
1098      ensure that the created loop appears to roll at least 5 times (but at
1099      most as many times as before unrolling).  */
1100   if (new_est_niter < 5)
1101     {
1102       if (est_niter < 5)
1103         new_est_niter = est_niter;
1104       else
1105         new_est_niter = 5;
1106     }
1107
1108   /* Prepare the cfg and update the phi nodes.  Move the loop exit to the
1109      loop latch (and make its condition dummy, for the moment).  */
1110   rest = loop_preheader_edge (new_loop)->src;
1111   precond_edge = single_pred_edge (rest);
1112   split_edge (loop_latch_edge (loop));
1113   exit_bb = single_pred (loop->latch);
1114
1115   /* Since the exit edge will be removed, the frequency of all the blocks
1116      in the loop that are dominated by it must be scaled by
1117      1 / (1 - exit->probability).  */
1118   scale_dominated_blocks_in_loop (loop, exit->src,
1119                                   REG_BR_PROB_BASE,
1120                                   REG_BR_PROB_BASE - exit->probability);
1121
1122   bsi = gsi_last_bb (exit_bb);
1123   exit_if = gimple_build_cond (EQ_EXPR, integer_zero_node,
1124                                integer_zero_node,
1125                                NULL_TREE, NULL_TREE);
1126
1127   gsi_insert_after (&bsi, exit_if, GSI_NEW_STMT);
1128   new_exit = make_edge (exit_bb, rest, EDGE_FALSE_VALUE | irr);
1129   rescan_loop_exit (new_exit, true, false);
1130
1131   /* Set the probability of new exit to the same of the old one.  Fix
1132      the frequency of the latch block, by scaling it back by
1133      1 - exit->probability.  */
1134   new_exit->count = exit->count;
1135   new_exit->probability = exit->probability;
1136   new_nonexit = single_pred_edge (loop->latch);
1137   new_nonexit->probability = REG_BR_PROB_BASE - exit->probability;
1138   new_nonexit->flags = EDGE_TRUE_VALUE;
1139   new_nonexit->count -= exit->count;
1140   if (new_nonexit->count < 0)
1141     new_nonexit->count = 0;
1142   scale_bbs_frequencies_int (&loop->latch, 1, new_nonexit->probability,
1143                              REG_BR_PROB_BASE);
1144
1145   old_entry = loop_preheader_edge (loop);
1146   new_entry = loop_preheader_edge (new_loop);
1147   old_latch = loop_latch_edge (loop);
1148   for (psi_old_loop = gsi_start_phis (loop->header),
1149        psi_new_loop = gsi_start_phis (new_loop->header);
1150        !gsi_end_p (psi_old_loop);
1151        gsi_next (&psi_old_loop), gsi_next (&psi_new_loop))
1152     {
1153       phi_old_loop = psi_old_loop.phi ();
1154       phi_new_loop = psi_new_loop.phi ();
1155
1156       init = PHI_ARG_DEF_FROM_EDGE (phi_old_loop, old_entry);
1157       op = PHI_ARG_DEF_PTR_FROM_EDGE (phi_new_loop, new_entry);
1158       gcc_assert (operand_equal_for_phi_arg_p (init, USE_FROM_PTR (op)));
1159       next = PHI_ARG_DEF_FROM_EDGE (phi_old_loop, old_latch);
1160
1161       /* Prefer using original variable as a base for the new ssa name.
1162          This is necessary for virtual ops, and useful in order to avoid
1163          losing debug info for real ops.  */
1164       if (TREE_CODE (next) == SSA_NAME
1165           && useless_type_conversion_p (TREE_TYPE (next),
1166                                         TREE_TYPE (init)))
1167         new_init = copy_ssa_name (next);
1168       else if (TREE_CODE (init) == SSA_NAME
1169                && useless_type_conversion_p (TREE_TYPE (init),
1170                                              TREE_TYPE (next)))
1171         new_init = copy_ssa_name (init);
1172       else if (useless_type_conversion_p (TREE_TYPE (next), TREE_TYPE (init)))
1173         new_init = make_temp_ssa_name (TREE_TYPE (next), NULL, "unrinittmp");
1174       else
1175         new_init = make_temp_ssa_name (TREE_TYPE (init), NULL, "unrinittmp");
1176
1177       phi_rest = create_phi_node (new_init, rest);
1178
1179       add_phi_arg (phi_rest, init, precond_edge, UNKNOWN_LOCATION);
1180       add_phi_arg (phi_rest, next, new_exit, UNKNOWN_LOCATION);
1181       SET_USE (op, new_init);
1182     }
1183
1184   remove_path (exit);
1185
1186   /* Transform the loop.  */
1187   if (transform)
1188     (*transform) (loop, data);
1189
1190   /* Unroll the loop and remove the exits in all iterations except for the
1191      last one.  */
1192   wont_exit = sbitmap_alloc (factor);
1193   bitmap_ones (wont_exit);
1194   bitmap_clear_bit (wont_exit, factor - 1);
1195
1196   ok = gimple_duplicate_loop_to_header_edge
1197           (loop, loop_latch_edge (loop), factor - 1,
1198            wont_exit, new_exit, &to_remove, DLTHE_FLAG_UPDATE_FREQ);
1199   free (wont_exit);
1200   gcc_assert (ok);
1201
1202   FOR_EACH_VEC_ELT (to_remove, i, e)
1203     {
1204       ok = remove_path (e);
1205       gcc_assert (ok);
1206     }
1207   update_ssa (TODO_update_ssa);
1208
1209   /* Ensure that the frequencies in the loop match the new estimated
1210      number of iterations, and change the probability of the new
1211      exit edge.  */
1212   freq_h = loop->header->frequency;
1213   freq_e = EDGE_FREQUENCY (loop_preheader_edge (loop));
1214   if (freq_h != 0)
1215     scale_loop_frequencies (loop, freq_e * (new_est_niter + 1), freq_h);
1216
1217   exit_bb = single_pred (loop->latch);
1218   new_exit = find_edge (exit_bb, rest);
1219   new_exit->count = loop_preheader_edge (loop)->count;
1220   new_exit->probability = REG_BR_PROB_BASE / (new_est_niter + 1);
1221
1222   rest->count += new_exit->count;
1223   rest->frequency += EDGE_FREQUENCY (new_exit);
1224
1225   new_nonexit = single_pred_edge (loop->latch);
1226   prob = new_nonexit->probability;
1227   new_nonexit->probability = REG_BR_PROB_BASE - new_exit->probability;
1228   new_nonexit->count = exit_bb->count - new_exit->count;
1229   if (new_nonexit->count < 0)
1230     new_nonexit->count = 0;
1231   if (prob > 0)
1232     scale_bbs_frequencies_int (&loop->latch, 1, new_nonexit->probability,
1233                                prob);
1234
1235   /* Finally create the new counter for number of iterations and add the new
1236      exit instruction.  */
1237   bsi = gsi_last_nondebug_bb (exit_bb);
1238   exit_if = as_a <gcond *> (gsi_stmt (bsi));
1239   create_iv (exit_base, exit_step, NULL_TREE, loop,
1240              &bsi, false, &ctr_before, &ctr_after);
1241   gimple_cond_set_code (exit_if, exit_cmp);
1242   gimple_cond_set_lhs (exit_if, ctr_after);
1243   gimple_cond_set_rhs (exit_if, exit_bound);
1244   update_stmt (exit_if);
1245
1246 #ifdef ENABLE_CHECKING
1247   verify_flow_info ();
1248   verify_loop_structure ();
1249   verify_loop_closed_ssa (true);
1250 #endif
1251 }
1252
1253 /* Wrapper over tree_transform_and_unroll_loop for case we do not
1254    want to transform the loop before unrolling.  The meaning
1255    of the arguments is the same as for tree_transform_and_unroll_loop.  */
1256
1257 void
1258 tree_unroll_loop (struct loop *loop, unsigned factor,
1259                   edge exit, struct tree_niter_desc *desc)
1260 {
1261   tree_transform_and_unroll_loop (loop, factor, exit, desc,
1262                                   NULL, NULL);
1263 }
1264
1265 /* Rewrite the phi node at position PSI in function of the main
1266    induction variable MAIN_IV and insert the generated code at GSI.  */
1267
1268 static void
1269 rewrite_phi_with_iv (loop_p loop,
1270                      gphi_iterator *psi,
1271                      gimple_stmt_iterator *gsi,
1272                      tree main_iv)
1273 {
1274   affine_iv iv;
1275   gassign *stmt;
1276   gphi *phi = psi->phi ();
1277   tree atype, mtype, val, res = PHI_RESULT (phi);
1278
1279   if (virtual_operand_p (res) || res == main_iv)
1280     {
1281       gsi_next (psi);
1282       return;
1283     }
1284
1285   if (!simple_iv (loop, loop, res, &iv, true))
1286     {
1287       gsi_next (psi);
1288       return;
1289     }
1290
1291   remove_phi_node (psi, false);
1292
1293   atype = TREE_TYPE (res);
1294   mtype = POINTER_TYPE_P (atype) ? sizetype : atype;
1295   val = fold_build2 (MULT_EXPR, mtype, unshare_expr (iv.step),
1296                      fold_convert (mtype, main_iv));
1297   val = fold_build2 (POINTER_TYPE_P (atype)
1298                      ? POINTER_PLUS_EXPR : PLUS_EXPR,
1299                      atype, unshare_expr (iv.base), val);
1300   val = force_gimple_operand_gsi (gsi, val, false, NULL_TREE, true,
1301                                   GSI_SAME_STMT);
1302   stmt = gimple_build_assign (res, val);
1303   gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1304 }
1305
1306 /* Rewrite all the phi nodes of LOOP in function of the main induction
1307    variable MAIN_IV.  */
1308
1309 static void
1310 rewrite_all_phi_nodes_with_iv (loop_p loop, tree main_iv)
1311 {
1312   unsigned i;
1313   basic_block *bbs = get_loop_body_in_dom_order (loop);
1314   gphi_iterator psi;
1315
1316   for (i = 0; i < loop->num_nodes; i++)
1317     {
1318       basic_block bb = bbs[i];
1319       gimple_stmt_iterator gsi = gsi_after_labels (bb);
1320
1321       if (bb->loop_father != loop)
1322         continue;
1323
1324       for (psi = gsi_start_phis (bb); !gsi_end_p (psi); )
1325         rewrite_phi_with_iv (loop, &psi, &gsi, main_iv);
1326     }
1327
1328   free (bbs);
1329 }
1330
1331 /* Bases all the induction variables in LOOP on a single induction
1332    variable (unsigned with base 0 and step 1), whose final value is
1333    compared with *NIT.  When the IV type precision has to be larger
1334    than *NIT type precision, *NIT is converted to the larger type, the
1335    conversion code is inserted before the loop, and *NIT is updated to
1336    the new definition.  When BUMP_IN_LATCH is true, the induction
1337    variable is incremented in the loop latch, otherwise it is
1338    incremented in the loop header.  Return the induction variable that
1339    was created.  */
1340
1341 tree
1342 canonicalize_loop_ivs (struct loop *loop, tree *nit, bool bump_in_latch)
1343 {
1344   unsigned precision = TYPE_PRECISION (TREE_TYPE (*nit));
1345   unsigned original_precision = precision;
1346   tree type, var_before;
1347   gimple_stmt_iterator gsi;
1348   gphi_iterator psi;
1349   gcond *stmt;
1350   edge exit = single_dom_exit (loop);
1351   gimple_seq stmts;
1352   machine_mode mode;
1353   bool unsigned_p = false;
1354
1355   for (psi = gsi_start_phis (loop->header);
1356        !gsi_end_p (psi); gsi_next (&psi))
1357     {
1358       gphi *phi = psi.phi ();
1359       tree res = PHI_RESULT (phi);
1360       bool uns;
1361
1362       type = TREE_TYPE (res);
1363       if (virtual_operand_p (res)
1364           || (!INTEGRAL_TYPE_P (type)
1365               && !POINTER_TYPE_P (type))
1366           || TYPE_PRECISION (type) < precision)
1367         continue;
1368
1369       uns = POINTER_TYPE_P (type) | TYPE_UNSIGNED (type);
1370
1371       if (TYPE_PRECISION (type) > precision)
1372         unsigned_p = uns;
1373       else
1374         unsigned_p |= uns;
1375
1376       precision = TYPE_PRECISION (type);
1377     }
1378
1379   mode = smallest_mode_for_size (precision, MODE_INT);
1380   precision = GET_MODE_PRECISION (mode);
1381   type = build_nonstandard_integer_type (precision, unsigned_p);
1382
1383   if (original_precision != precision)
1384     {
1385       *nit = fold_convert (type, *nit);
1386       *nit = force_gimple_operand (*nit, &stmts, true, NULL_TREE);
1387       if (stmts)
1388         gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
1389     }
1390
1391   if (bump_in_latch)
1392     gsi = gsi_last_bb (loop->latch);
1393   else
1394     gsi = gsi_last_nondebug_bb (loop->header);
1395   create_iv (build_int_cst_type (type, 0), build_int_cst (type, 1), NULL_TREE,
1396              loop, &gsi, bump_in_latch, &var_before, NULL);
1397
1398   rewrite_all_phi_nodes_with_iv (loop, var_before);
1399
1400   stmt = as_a <gcond *> (last_stmt (exit->src));
1401   /* Make the loop exit if the control condition is not satisfied.  */
1402   if (exit->flags & EDGE_TRUE_VALUE)
1403     {
1404       edge te, fe;
1405
1406       extract_true_false_edges_from_block (exit->src, &te, &fe);
1407       te->flags = EDGE_FALSE_VALUE;
1408       fe->flags = EDGE_TRUE_VALUE;
1409     }
1410   gimple_cond_set_code (stmt, LT_EXPR);
1411   gimple_cond_set_lhs (stmt, var_before);
1412   gimple_cond_set_rhs (stmt, *nit);
1413   update_stmt (stmt);
1414
1415   return var_before;
1416 }