Merge branch 'vendor/OPENSSL'
[dragonfly.git] / contrib / binutils-2.21 / gold / reloc.cc
1 // reloc.cc -- relocate input files for gold.
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <algorithm>
26
27 #include "workqueue.h"
28 #include "layout.h"
29 #include "symtab.h"
30 #include "output.h"
31 #include "merge.h"
32 #include "object.h"
33 #include "target-reloc.h"
34 #include "reloc.h"
35 #include "icf.h"
36 #include "compressed_output.h"
37 #include "incremental.h"
38
39 namespace gold
40 {
41
42 // Read_relocs methods.
43
44 // These tasks just read the relocation information from the file.
45 // After reading it, the start another task to process the
46 // information.  These tasks requires access to the file.
47
48 Task_token*
49 Read_relocs::is_runnable()
50 {
51   return this->object_->is_locked() ? this->object_->token() : NULL;
52 }
53
54 // Lock the file.
55
56 void
57 Read_relocs::locks(Task_locker* tl)
58 {
59   tl->add(this, this->object_->token());
60 }
61
62 // Read the relocations and then start a Scan_relocs_task.
63
64 void
65 Read_relocs::run(Workqueue* workqueue)
66 {
67   Read_relocs_data* rd = new Read_relocs_data;
68   this->object_->read_relocs(rd);
69   this->object_->set_relocs_data(rd);
70   this->object_->release();
71
72   // If garbage collection or identical comdat folding is desired, we  
73   // process the relocs first before scanning them.  Scanning of relocs is
74   // done only after garbage or identical sections is identified.
75   if (parameters->options().gc_sections()
76       || parameters->options().icf_enabled())
77     {
78       workqueue->queue_next(new Gc_process_relocs(this->symtab_,
79                                                   this->layout_, 
80                                                   this->object_, rd,
81                                                   this->this_blocker_,
82                                                   this->next_blocker_));
83     }
84   else
85     {
86       workqueue->queue_next(new Scan_relocs(this->symtab_, this->layout_,
87                                             this->object_, rd,
88                                             this->this_blocker_,
89                                             this->next_blocker_));
90     }
91 }
92
93 // Return a debugging name for the task.
94
95 std::string
96 Read_relocs::get_name() const
97 {
98   return "Read_relocs " + this->object_->name();
99 }
100
101 // Gc_process_relocs methods.
102
103 Gc_process_relocs::~Gc_process_relocs()
104 {
105   if (this->this_blocker_ != NULL)
106     delete this->this_blocker_;
107 }
108
109 // These tasks process the relocations read by Read_relocs and
110 // determine which sections are referenced and which are garbage.
111 // This task is done only when --gc-sections is used.  This is blocked
112 // by THIS_BLOCKER_.  It unblocks NEXT_BLOCKER_.
113
114 Task_token*
115 Gc_process_relocs::is_runnable()
116 {
117   if (this->this_blocker_ != NULL && this->this_blocker_->is_blocked())
118     return this->this_blocker_;
119   if (this->object_->is_locked())
120     return this->object_->token();
121   return NULL;
122 }
123
124 void
125 Gc_process_relocs::locks(Task_locker* tl)
126 {
127   tl->add(this, this->object_->token());
128   tl->add(this, this->next_blocker_);
129 }
130
131 void
132 Gc_process_relocs::run(Workqueue*)
133 {
134   this->object_->gc_process_relocs(this->symtab_, this->layout_, this->rd_);
135   this->object_->release();
136 }
137
138 // Return a debugging name for the task.
139
140 std::string
141 Gc_process_relocs::get_name() const
142 {
143   return "Gc_process_relocs " + this->object_->name();
144 }
145
146 // Scan_relocs methods.
147
148 Scan_relocs::~Scan_relocs()
149 {
150   if (this->this_blocker_ != NULL)
151     delete this->this_blocker_;
152 }
153
154 // These tasks scan the relocations read by Read_relocs and mark up
155 // the symbol table to indicate which relocations are required.  We
156 // use a lock on the symbol table to keep them from interfering with
157 // each other.
158
159 Task_token*
160 Scan_relocs::is_runnable()
161 {
162   if (this->this_blocker_ != NULL && this->this_blocker_->is_blocked())
163     return this->this_blocker_;
164   if (this->object_->is_locked())
165     return this->object_->token();
166   return NULL;
167 }
168
169 // Return the locks we hold: one on the file, one on the symbol table
170 // and one blocker.
171
172 void
173 Scan_relocs::locks(Task_locker* tl)
174 {
175   tl->add(this, this->object_->token());
176   tl->add(this, this->next_blocker_);
177 }
178
179 // Scan the relocs.
180
181 void
182 Scan_relocs::run(Workqueue*)
183 {
184   this->object_->scan_relocs(this->symtab_, this->layout_, this->rd_);
185   delete this->rd_;
186   this->rd_ = NULL;
187   this->object_->release();
188 }
189
190 // Return a debugging name for the task.
191
192 std::string
193 Scan_relocs::get_name() const
194 {
195   return "Scan_relocs " + this->object_->name();
196 }
197
198 // Relocate_task methods.
199
200 // We may have to wait for the output sections to be written.
201
202 Task_token*
203 Relocate_task::is_runnable()
204 {
205   if (this->object_->relocs_must_follow_section_writes()
206       && this->output_sections_blocker_->is_blocked())
207     return this->output_sections_blocker_;
208
209   if (this->object_->is_locked())
210     return this->object_->token();
211
212   return NULL;
213 }
214
215 // We want to lock the file while we run.  We want to unblock
216 // INPUT_SECTIONS_BLOCKER and FINAL_BLOCKER when we are done.
217 // INPUT_SECTIONS_BLOCKER may be NULL.
218
219 void
220 Relocate_task::locks(Task_locker* tl)
221 {
222   if (this->input_sections_blocker_ != NULL)
223     tl->add(this, this->input_sections_blocker_);
224   tl->add(this, this->final_blocker_);
225   tl->add(this, this->object_->token());
226 }
227
228 // Run the task.
229
230 void
231 Relocate_task::run(Workqueue*)
232 {
233   this->object_->relocate(this->symtab_, this->layout_, this->of_);
234
235   // This is normally the last thing we will do with an object, so
236   // uncache all views.
237   this->object_->clear_view_cache_marks();
238
239   this->object_->release();
240 }
241
242 // Return a debugging name for the task.
243
244 std::string
245 Relocate_task::get_name() const
246 {
247   return "Relocate_task " + this->object_->name();
248 }
249
250 // Read the relocs and local symbols from the object file and store
251 // the information in RD.
252
253 template<int size, bool big_endian>
254 void
255 Sized_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
256 {
257   rd->relocs.clear();
258
259   unsigned int shnum = this->shnum();
260   if (shnum == 0)
261     return;
262
263   rd->relocs.reserve(shnum / 2);
264
265   const Output_sections& out_sections(this->output_sections());
266   const std::vector<Address>& out_offsets(this->section_offsets_);
267
268   const unsigned char* pshdrs = this->get_view(this->elf_file_.shoff(),
269                                                shnum * This::shdr_size,
270                                                true, true);
271   // Skip the first, dummy, section.
272   const unsigned char* ps = pshdrs + This::shdr_size;
273   for (unsigned int i = 1; i < shnum; ++i, ps += This::shdr_size)
274     {
275       typename This::Shdr shdr(ps);
276
277       unsigned int sh_type = shdr.get_sh_type();
278       if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
279         continue;
280
281       unsigned int shndx = this->adjust_shndx(shdr.get_sh_info());
282       if (shndx >= shnum)
283         {
284           this->error(_("relocation section %u has bad info %u"),
285                       i, shndx);
286           continue;
287         }
288
289       Output_section* os = out_sections[shndx];
290       if (os == NULL)
291         continue;
292
293       // We are scanning relocations in order to fill out the GOT and
294       // PLT sections.  Relocations for sections which are not
295       // allocated (typically debugging sections) should not add new
296       // GOT and PLT entries.  So we skip them unless this is a
297       // relocatable link or we need to emit relocations.  FIXME: What
298       // should we do if a linker script maps a section with SHF_ALLOC
299       // clear to a section with SHF_ALLOC set?
300       typename This::Shdr secshdr(pshdrs + shndx * This::shdr_size);
301       bool is_section_allocated = ((secshdr.get_sh_flags() & elfcpp::SHF_ALLOC)
302                                    != 0);
303       if (!is_section_allocated
304           && !parameters->options().relocatable()
305           && !parameters->options().emit_relocs()
306           && !parameters->incremental())
307         continue;
308
309       if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx_)
310         {
311           this->error(_("relocation section %u uses unexpected "
312                         "symbol table %u"),
313                       i, this->adjust_shndx(shdr.get_sh_link()));
314           continue;
315         }
316
317       off_t sh_size = shdr.get_sh_size();
318
319       unsigned int reloc_size;
320       if (sh_type == elfcpp::SHT_REL)
321         reloc_size = elfcpp::Elf_sizes<size>::rel_size;
322       else
323         reloc_size = elfcpp::Elf_sizes<size>::rela_size;
324       if (reloc_size != shdr.get_sh_entsize())
325         {
326           this->error(_("unexpected entsize for reloc section %u: %lu != %u"),
327                       i, static_cast<unsigned long>(shdr.get_sh_entsize()),
328                       reloc_size);
329           continue;
330         }
331
332       size_t reloc_count = sh_size / reloc_size;
333       if (static_cast<off_t>(reloc_count * reloc_size) != sh_size)
334         {
335           this->error(_("reloc section %u size %lu uneven"),
336                       i, static_cast<unsigned long>(sh_size));
337           continue;
338         }
339
340       rd->relocs.push_back(Section_relocs());
341       Section_relocs& sr(rd->relocs.back());
342       sr.reloc_shndx = i;
343       sr.data_shndx = shndx;
344       sr.contents = this->get_lasting_view(shdr.get_sh_offset(), sh_size,
345                                            true, true);
346       sr.sh_type = sh_type;
347       sr.reloc_count = reloc_count;
348       sr.output_section = os;
349       sr.needs_special_offset_handling = out_offsets[shndx] == invalid_address;
350       sr.is_data_section_allocated = is_section_allocated;
351     }
352
353   // Read the local symbols.
354   gold_assert(this->symtab_shndx_ != -1U);
355   if (this->symtab_shndx_ == 0 || this->local_symbol_count_ == 0)
356     rd->local_symbols = NULL;
357   else
358     {
359       typename This::Shdr symtabshdr(pshdrs
360                                      + this->symtab_shndx_ * This::shdr_size);
361       gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
362       const int sym_size = This::sym_size;
363       const unsigned int loccount = this->local_symbol_count_;
364       gold_assert(loccount == symtabshdr.get_sh_info());
365       off_t locsize = loccount * sym_size;
366       rd->local_symbols = this->get_lasting_view(symtabshdr.get_sh_offset(),
367                                                  locsize, true, true);
368     }
369 }
370
371 // Process the relocs to generate mappings from source sections to referenced
372 // sections.  This is used during garbage colletion to determine garbage 
373 // sections.
374
375 template<int size, bool big_endian>
376 void
377 Sized_relobj<size, big_endian>::do_gc_process_relocs(Symbol_table* symtab,
378                                                      Layout* layout,
379                                                      Read_relocs_data* rd)
380 {  
381   Sized_target<size, big_endian>* target =
382     parameters->sized_target<size, big_endian>();
383
384   const unsigned char* local_symbols;
385   if (rd->local_symbols == NULL)
386     local_symbols = NULL;
387   else
388     local_symbols = rd->local_symbols->data();
389
390   for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
391        p != rd->relocs.end();
392        ++p)
393     {
394       if (!parameters->options().relocatable())
395           {
396             // As noted above, when not generating an object file, we
397             // only scan allocated sections.  We may see a non-allocated
398             // section here if we are emitting relocs.
399             if (p->is_data_section_allocated)
400               target->gc_process_relocs(symtab, layout, this, 
401                                         p->data_shndx, p->sh_type, 
402                                         p->contents->data(), p->reloc_count, 
403                                         p->output_section,
404                                         p->needs_special_offset_handling,
405                                         this->local_symbol_count_, 
406                                         local_symbols);
407         }
408     }
409 }
410
411
412 // Scan the relocs and adjust the symbol table.  This looks for
413 // relocations which require GOT/PLT/COPY relocations.
414
415 template<int size, bool big_endian>
416 void
417 Sized_relobj<size, big_endian>::do_scan_relocs(Symbol_table* symtab,
418                                                Layout* layout,
419                                                Read_relocs_data* rd)
420 {
421   Sized_target<size, big_endian>* target =
422     parameters->sized_target<size, big_endian>();
423
424   const unsigned char* local_symbols;
425   if (rd->local_symbols == NULL)
426     local_symbols = NULL;
427   else
428     local_symbols = rd->local_symbols->data();
429
430   // For incremental links, allocate the counters for incremental relocations.
431   if (layout->incremental_inputs() != NULL)
432     this->allocate_incremental_reloc_counts();
433
434   for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
435        p != rd->relocs.end();
436        ++p)
437     {
438       // When garbage collection is on, unreferenced sections are not included
439       // in the link that would have been included normally. This is known only
440       // after Read_relocs hence this check has to be done again.
441       if (parameters->options().gc_sections()
442           || parameters->options().icf_enabled())
443         {
444           if (p->output_section == NULL)
445             continue;
446         }
447       if (!parameters->options().relocatable())
448         {
449           // As noted above, when not generating an object file, we
450           // only scan allocated sections.  We may see a non-allocated
451           // section here if we are emitting relocs.
452           if (p->is_data_section_allocated)
453             target->scan_relocs(symtab, layout, this, p->data_shndx,
454                                 p->sh_type, p->contents->data(),
455                                 p->reloc_count, p->output_section,
456                                 p->needs_special_offset_handling,
457                                 this->local_symbol_count_,
458                                 local_symbols);
459           if (parameters->options().emit_relocs())
460             this->emit_relocs_scan(symtab, layout, local_symbols, p);
461           if (layout->incremental_inputs() != NULL)
462             this->incremental_relocs_scan(p);
463         }
464       else
465         {
466           Relocatable_relocs* rr = this->relocatable_relocs(p->reloc_shndx);
467           gold_assert(rr != NULL);
468           rr->set_reloc_count(p->reloc_count);
469           target->scan_relocatable_relocs(symtab, layout, this,
470                                           p->data_shndx, p->sh_type,
471                                           p->contents->data(),
472                                           p->reloc_count,
473                                           p->output_section,
474                                           p->needs_special_offset_handling,
475                                           this->local_symbol_count_,
476                                           local_symbols,
477                                           rr);
478         }
479
480       delete p->contents;
481       p->contents = NULL;
482     }
483
484   // For incremental links, finalize the allocation of relocations.
485   if (layout->incremental_inputs() != NULL)
486     this->finalize_incremental_relocs(layout);
487
488   if (rd->local_symbols != NULL)
489     {
490       delete rd->local_symbols;
491       rd->local_symbols = NULL;
492     }
493 }
494
495 // This is a strategy class we use when scanning for --emit-relocs.
496
497 template<int sh_type>
498 class Emit_relocs_strategy
499 {
500  public:
501   // A local non-section symbol.
502   inline Relocatable_relocs::Reloc_strategy
503   local_non_section_strategy(unsigned int, Relobj*, unsigned int)
504   { return Relocatable_relocs::RELOC_COPY; }
505
506   // A local section symbol.
507   inline Relocatable_relocs::Reloc_strategy
508   local_section_strategy(unsigned int, Relobj*)
509   {
510     if (sh_type == elfcpp::SHT_RELA)
511       return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
512     else
513       {
514         // The addend is stored in the section contents.  Since this
515         // is not a relocatable link, we are going to apply the
516         // relocation contents to the section as usual.  This means
517         // that we have no way to record the original addend.  If the
518         // original addend is not zero, there is basically no way for
519         // the user to handle this correctly.  Caveat emptor.
520         return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
521       }
522   }
523
524   // A global symbol.
525   inline Relocatable_relocs::Reloc_strategy
526   global_strategy(unsigned int, Relobj*, unsigned int)
527   { return Relocatable_relocs::RELOC_COPY; }
528 };
529
530 // Scan the input relocations for --emit-relocs.
531
532 template<int size, bool big_endian>
533 void
534 Sized_relobj<size, big_endian>::emit_relocs_scan(
535     Symbol_table* symtab,
536     Layout* layout,
537     const unsigned char* plocal_syms,
538     const Read_relocs_data::Relocs_list::iterator& p)
539 {
540   Relocatable_relocs* rr = this->relocatable_relocs(p->reloc_shndx);
541   gold_assert(rr != NULL);
542   rr->set_reloc_count(p->reloc_count);
543
544   if (p->sh_type == elfcpp::SHT_REL)
545     this->emit_relocs_scan_reltype<elfcpp::SHT_REL>(symtab, layout,
546                                                     plocal_syms, p, rr);
547   else
548     {
549       gold_assert(p->sh_type == elfcpp::SHT_RELA);
550       this->emit_relocs_scan_reltype<elfcpp::SHT_RELA>(symtab, layout,
551                                                        plocal_syms, p, rr);
552     }
553 }
554
555 // Scan the input relocation for --emit-relocs, templatized on the
556 // type of the relocation section.
557
558 template<int size, bool big_endian>
559 template<int sh_type>
560 void
561 Sized_relobj<size, big_endian>::emit_relocs_scan_reltype(
562     Symbol_table* symtab,
563     Layout* layout,
564     const unsigned char* plocal_syms,
565     const Read_relocs_data::Relocs_list::iterator& p,
566     Relocatable_relocs* rr)
567 {
568   scan_relocatable_relocs<size, big_endian, sh_type,
569                           Emit_relocs_strategy<sh_type> >(
570     symtab,
571     layout,
572     this,
573     p->data_shndx,
574     p->contents->data(),
575     p->reloc_count,
576     p->output_section,
577     p->needs_special_offset_handling,
578     this->local_symbol_count_,
579     plocal_syms,
580     rr);
581 }
582
583 // Scan the input relocations for --incremental.
584
585 template<int size, bool big_endian>
586 void
587 Sized_relobj<size, big_endian>::incremental_relocs_scan(
588     const Read_relocs_data::Relocs_list::iterator& p)
589 {
590   if (p->sh_type == elfcpp::SHT_REL)
591     this->incremental_relocs_scan_reltype<elfcpp::SHT_REL>(p);
592   else
593     {
594       gold_assert(p->sh_type == elfcpp::SHT_RELA);
595       this->incremental_relocs_scan_reltype<elfcpp::SHT_RELA>(p);
596     }
597 }
598
599 // Scan the input relocation for --emit-relocs, templatized on the
600 // type of the relocation section.
601
602 template<int size, bool big_endian>
603 template<int sh_type>
604 void
605 Sized_relobj<size, big_endian>::incremental_relocs_scan_reltype(
606     const Read_relocs_data::Relocs_list::iterator& p)
607 {
608   typedef typename Reloc_types<sh_type, size, big_endian>::Reloc Reltype;
609   const int reloc_size = Reloc_types<sh_type, size, big_endian>::reloc_size;
610   const unsigned char* prelocs = p->contents->data();
611   size_t reloc_count = p->reloc_count;
612
613   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
614     {
615       Reltype reloc(prelocs);
616
617       if (p->needs_special_offset_handling
618           && !p->output_section->is_input_address_mapped(this, p->data_shndx,
619                                                          reloc.get_r_offset()))
620         continue;
621
622       typename elfcpp::Elf_types<size>::Elf_WXword r_info =
623           reloc.get_r_info();
624       const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
625
626       if (r_sym >= this->local_symbol_count_)
627         this->count_incremental_reloc(r_sym - this->local_symbol_count_);
628     }
629 }
630
631 // Relocate the input sections and write out the local symbols.
632
633 template<int size, bool big_endian>
634 void
635 Sized_relobj<size, big_endian>::do_relocate(const Symbol_table* symtab,
636                                             const Layout* layout,
637                                             Output_file* of)
638 {
639   unsigned int shnum = this->shnum();
640
641   // Read the section headers.
642   const unsigned char* pshdrs = this->get_view(this->elf_file_.shoff(),
643                                                shnum * This::shdr_size,
644                                                true, true);
645
646   Views views;
647   views.resize(shnum);
648
649   // Make two passes over the sections.  The first one copies the
650   // section data to the output file.  The second one applies
651   // relocations.
652
653   this->write_sections(pshdrs, of, &views);
654
655   // To speed up relocations, we set up hash tables for fast lookup of
656   // input offsets to output addresses.
657   this->initialize_input_to_output_maps();
658
659   // Apply relocations.
660
661   this->relocate_sections(symtab, layout, pshdrs, of, &views);
662
663   // After we've done the relocations, we release the hash tables,
664   // since we no longer need them.
665   this->free_input_to_output_maps();
666
667   // Write out the accumulated views.
668   for (unsigned int i = 1; i < shnum; ++i)
669     {
670       if (views[i].view != NULL)
671         {
672           if (!views[i].is_postprocessing_view)
673             {
674               if (views[i].is_input_output_view)
675                 of->write_input_output_view(views[i].offset,
676                                             views[i].view_size,
677                                             views[i].view);
678               else
679                 of->write_output_view(views[i].offset, views[i].view_size,
680                                       views[i].view);
681             }
682         }
683     }
684
685   // Write out the local symbols.
686   this->write_local_symbols(of, layout->sympool(), layout->dynpool(),
687                             layout->symtab_xindex(), layout->dynsym_xindex());
688 }
689
690 // Sort a Read_multiple vector by file offset.
691 struct Read_multiple_compare
692 {
693   inline bool
694   operator()(const File_read::Read_multiple_entry& rme1,
695              const File_read::Read_multiple_entry& rme2) const
696   { return rme1.file_offset < rme2.file_offset; }
697 };
698
699 // Write section data to the output file.  PSHDRS points to the
700 // section headers.  Record the views in *PVIEWS for use when
701 // relocating.
702
703 template<int size, bool big_endian>
704 void
705 Sized_relobj<size, big_endian>::write_sections(const unsigned char* pshdrs,
706                                                Output_file* of,
707                                                Views* pviews)
708 {
709   unsigned int shnum = this->shnum();
710   const Output_sections& out_sections(this->output_sections());
711   const std::vector<Address>& out_offsets(this->section_offsets_);
712
713   File_read::Read_multiple rm;
714   bool is_sorted = true;
715
716   const unsigned char* p = pshdrs + This::shdr_size;
717   for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
718     {
719       View_size* pvs = &(*pviews)[i];
720
721       pvs->view = NULL;
722
723       const Output_section* os = out_sections[i];
724       if (os == NULL)
725         continue;
726       Address output_offset = out_offsets[i];
727
728       typename This::Shdr shdr(p);
729
730       if (shdr.get_sh_type() == elfcpp::SHT_NOBITS)
731         continue;
732
733       if ((parameters->options().relocatable()
734            || parameters->options().emit_relocs())
735           && (shdr.get_sh_type() == elfcpp::SHT_REL
736               || shdr.get_sh_type() == elfcpp::SHT_RELA)
737           && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
738         {
739           // This is a reloc section in a relocatable link or when
740           // emitting relocs.  We don't need to read the input file.
741           // The size and file offset are stored in the
742           // Relocatable_relocs structure.
743           Relocatable_relocs* rr = this->relocatable_relocs(i);
744           gold_assert(rr != NULL);
745           Output_data* posd = rr->output_data();
746           gold_assert(posd != NULL);
747
748           pvs->offset = posd->offset();
749           pvs->view_size = posd->data_size();
750           pvs->view = of->get_output_view(pvs->offset, pvs->view_size);
751           pvs->address = posd->address();
752           pvs->is_input_output_view = false;
753           pvs->is_postprocessing_view = false;
754
755           continue;
756         }
757
758       // In the normal case, this input section is simply mapped to
759       // the output section at offset OUTPUT_OFFSET.
760
761       // However, if OUTPUT_OFFSET == INVALID_ADDRESS, then input data is
762       // handled specially--e.g., a .eh_frame section.  The relocation
763       // routines need to check for each reloc where it should be
764       // applied.  For this case, we need an input/output view for the
765       // entire contents of the section in the output file.  We don't
766       // want to copy the contents of the input section to the output
767       // section; the output section contents were already written,
768       // and we waited for them in Relocate_task::is_runnable because
769       // relocs_must_follow_section_writes is set for the object.
770
771       // Regardless of which of the above cases is true, we have to
772       // check requires_postprocessing of the output section.  If that
773       // is false, then we work with views of the output file
774       // directly.  If it is true, then we work with a separate
775       // buffer, and the output section is responsible for writing the
776       // final data to the output file.
777
778       off_t output_section_offset;
779       Address output_section_size;
780       if (!os->requires_postprocessing())
781         {
782           output_section_offset = os->offset();
783           output_section_size = convert_types<Address, off_t>(os->data_size());
784         }
785       else
786         {
787           output_section_offset = 0;
788           output_section_size =
789               convert_types<Address, off_t>(os->postprocessing_buffer_size());
790         }
791
792       off_t view_start;
793       section_size_type view_size;
794       bool must_decompress = false;
795       if (output_offset != invalid_address)
796         {
797           view_start = output_section_offset + output_offset;
798           view_size = convert_to_section_size_type(shdr.get_sh_size());
799           section_size_type uncompressed_size;
800           if (this->section_is_compressed(i, &uncompressed_size))
801             {
802               view_size = uncompressed_size;
803               must_decompress = true;
804             }
805         }
806       else
807         {
808           view_start = output_section_offset;
809           view_size = convert_to_section_size_type(output_section_size);
810         }
811
812       if (view_size == 0)
813         continue;
814
815       gold_assert(output_offset == invalid_address
816                   || output_offset + view_size <= output_section_size);
817
818       unsigned char* view;
819       if (os->requires_postprocessing())
820         {
821           unsigned char* buffer = os->postprocessing_buffer();
822           view = buffer + view_start;
823           if (output_offset != invalid_address && !must_decompress)
824             {
825               off_t sh_offset = shdr.get_sh_offset();
826               if (!rm.empty() && rm.back().file_offset > sh_offset)
827                 is_sorted = false;
828               rm.push_back(File_read::Read_multiple_entry(sh_offset,
829                                                           view_size, view));
830             }
831         }
832       else
833         {
834           if (output_offset == invalid_address)
835             view = of->get_input_output_view(view_start, view_size);
836           else
837             {
838               view = of->get_output_view(view_start, view_size);
839               if (!must_decompress)
840                 {
841                   off_t sh_offset = shdr.get_sh_offset();
842                   if (!rm.empty() && rm.back().file_offset > sh_offset)
843                     is_sorted = false;
844                   rm.push_back(File_read::Read_multiple_entry(sh_offset,
845                                                               view_size, view));
846                 }
847             }
848         }
849
850       if (must_decompress)
851         {
852           // Read and decompress the section.
853           section_size_type len;
854           const unsigned char* p = this->section_contents(i, &len, false);
855           if (!decompress_input_section(p, len, view, view_size))
856             this->error(_("could not decompress section %s"),
857                         this->section_name(i).c_str());
858         }
859
860       pvs->view = view;
861       pvs->address = os->address();
862       if (output_offset != invalid_address)
863         pvs->address += output_offset;
864       pvs->offset = view_start;
865       pvs->view_size = view_size;
866       pvs->is_input_output_view = output_offset == invalid_address;
867       pvs->is_postprocessing_view = os->requires_postprocessing();
868     }
869
870   // Actually read the data.
871   if (!rm.empty())
872     {
873       if (!is_sorted)
874         std::sort(rm.begin(), rm.end(), Read_multiple_compare());
875       this->read_multiple(rm);
876     }
877 }
878
879 // Relocate section data.  VIEWS points to the section data as views
880 // in the output file.
881
882 template<int size, bool big_endian>
883 void
884 Sized_relobj<size, big_endian>::do_relocate_sections(
885     const Symbol_table* symtab,
886     const Layout* layout,
887     const unsigned char* pshdrs,
888     Output_file* of,
889     Views* pviews)
890 {
891   unsigned int shnum = this->shnum();
892   Sized_target<size, big_endian>* target =
893     parameters->sized_target<size, big_endian>();
894
895   const Output_sections& out_sections(this->output_sections());
896   const std::vector<Address>& out_offsets(this->section_offsets_);
897
898   Relocate_info<size, big_endian> relinfo;
899   relinfo.symtab = symtab;
900   relinfo.layout = layout;
901   relinfo.object = this;
902
903   const unsigned char* p = pshdrs + This::shdr_size;
904   for (unsigned int i = 1; i < shnum; ++i, p += This::shdr_size)
905     {
906       typename This::Shdr shdr(p);
907
908       unsigned int sh_type = shdr.get_sh_type();
909       if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
910         continue;
911
912       off_t sh_size = shdr.get_sh_size();
913       if (sh_size == 0)
914         continue;
915
916       unsigned int index = this->adjust_shndx(shdr.get_sh_info());
917       if (index >= this->shnum())
918         {
919           this->error(_("relocation section %u has bad info %u"),
920                       i, index);
921           continue;
922         }
923
924       Output_section* os = out_sections[index];
925       if (os == NULL)
926         {
927           // This relocation section is against a section which we
928           // discarded.
929           continue;
930         }
931       Address output_offset = out_offsets[index];
932
933       gold_assert((*pviews)[index].view != NULL);
934       if (parameters->options().relocatable())
935         gold_assert((*pviews)[i].view != NULL);
936
937       if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx_)
938         {
939           gold_error(_("relocation section %u uses unexpected "
940                        "symbol table %u"),
941                      i, this->adjust_shndx(shdr.get_sh_link()));
942           continue;
943         }
944
945       const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
946                                                     sh_size, true, false);
947
948       unsigned int reloc_size;
949       if (sh_type == elfcpp::SHT_REL)
950         reloc_size = elfcpp::Elf_sizes<size>::rel_size;
951       else
952         reloc_size = elfcpp::Elf_sizes<size>::rela_size;
953
954       if (reloc_size != shdr.get_sh_entsize())
955         {
956           gold_error(_("unexpected entsize for reloc section %u: %lu != %u"),
957                      i, static_cast<unsigned long>(shdr.get_sh_entsize()),
958                      reloc_size);
959           continue;
960         }
961
962       size_t reloc_count = sh_size / reloc_size;
963       if (static_cast<off_t>(reloc_count * reloc_size) != sh_size)
964         {
965           gold_error(_("reloc section %u size %lu uneven"),
966                      i, static_cast<unsigned long>(sh_size));
967           continue;
968         }
969
970       gold_assert(output_offset != invalid_address
971                   || this->relocs_must_follow_section_writes());
972
973       relinfo.reloc_shndx = i;
974       relinfo.reloc_shdr = p;
975       relinfo.data_shndx = index;
976       relinfo.data_shdr = pshdrs + index * This::shdr_size;
977       unsigned char* view = (*pviews)[index].view;
978       Address address = (*pviews)[index].address;
979       section_size_type view_size = (*pviews)[index].view_size;
980
981       Reloc_symbol_changes* reloc_map = NULL;
982       if (this->uses_split_stack() && output_offset != invalid_address)
983         {
984           typename This::Shdr data_shdr(pshdrs + index * This::shdr_size);
985           if ((data_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
986             this->split_stack_adjust(symtab, pshdrs, sh_type, index,
987                                      prelocs, reloc_count, view, view_size,
988                                      &reloc_map);
989         }
990
991       if (!parameters->options().relocatable())
992         {
993           target->relocate_section(&relinfo, sh_type, prelocs, reloc_count, os,
994                                    output_offset == invalid_address,
995                                    view, address, view_size, reloc_map);
996           if (parameters->options().emit_relocs())
997             this->emit_relocs(&relinfo, i, sh_type, prelocs, reloc_count,
998                               os, output_offset, view, address, view_size,
999                               (*pviews)[i].view, (*pviews)[i].view_size);
1000           if (parameters->incremental())
1001             this->incremental_relocs_write(&relinfo, sh_type, prelocs,
1002                                            reloc_count, os, output_offset, of);
1003         }
1004       else
1005         {
1006           Relocatable_relocs* rr = this->relocatable_relocs(i);
1007           target->relocate_for_relocatable(&relinfo, sh_type, prelocs,
1008                                            reloc_count, os, output_offset, rr,
1009                                            view, address, view_size,
1010                                            (*pviews)[i].view,
1011                                            (*pviews)[i].view_size);
1012         }
1013     }
1014 }
1015
1016 // Emit the relocs for --emit-relocs.
1017
1018 template<int size, bool big_endian>
1019 void
1020 Sized_relobj<size, big_endian>::emit_relocs(
1021     const Relocate_info<size, big_endian>* relinfo,
1022     unsigned int i,
1023     unsigned int sh_type,
1024     const unsigned char* prelocs,
1025     size_t reloc_count,
1026     Output_section* output_section,
1027     typename elfcpp::Elf_types<size>::Elf_Addr offset_in_output_section,
1028     unsigned char* view,
1029     typename elfcpp::Elf_types<size>::Elf_Addr address,
1030     section_size_type view_size,
1031     unsigned char* reloc_view,
1032     section_size_type reloc_view_size)
1033 {
1034   if (sh_type == elfcpp::SHT_REL)
1035     this->emit_relocs_reltype<elfcpp::SHT_REL>(relinfo, i, prelocs,
1036                                                reloc_count, output_section,
1037                                                offset_in_output_section,
1038                                                view, address, view_size,
1039                                                reloc_view, reloc_view_size);
1040   else
1041     {
1042       gold_assert(sh_type == elfcpp::SHT_RELA);
1043       this->emit_relocs_reltype<elfcpp::SHT_RELA>(relinfo, i, prelocs,
1044                                                   reloc_count, output_section,
1045                                                   offset_in_output_section,
1046                                                   view, address, view_size,
1047                                                   reloc_view, reloc_view_size);
1048     }
1049 }
1050
1051 // Emit the relocs for --emit-relocs, templatized on the type of the
1052 // relocation section.
1053
1054 template<int size, bool big_endian>
1055 template<int sh_type>
1056 void
1057 Sized_relobj<size, big_endian>::emit_relocs_reltype(
1058     const Relocate_info<size, big_endian>* relinfo,
1059     unsigned int i,
1060     const unsigned char* prelocs,
1061     size_t reloc_count,
1062     Output_section* output_section,
1063     typename elfcpp::Elf_types<size>::Elf_Addr offset_in_output_section,
1064     unsigned char* view,
1065     typename elfcpp::Elf_types<size>::Elf_Addr address,
1066     section_size_type view_size,
1067     unsigned char* reloc_view,
1068     section_size_type reloc_view_size)
1069 {
1070   const Relocatable_relocs* rr = this->relocatable_relocs(i);
1071   relocate_for_relocatable<size, big_endian, sh_type>(
1072     relinfo,
1073     prelocs,
1074     reloc_count,
1075     output_section,
1076     offset_in_output_section,
1077     rr,
1078     view,
1079     address,
1080     view_size,
1081     reloc_view,
1082     reloc_view_size);
1083 }
1084
1085 // Write the incremental relocs.
1086
1087 template<int size, bool big_endian>
1088 void
1089 Sized_relobj<size, big_endian>::incremental_relocs_write(
1090     const Relocate_info<size, big_endian>* relinfo,
1091     unsigned int sh_type,
1092     const unsigned char* prelocs,
1093     size_t reloc_count,
1094     Output_section* output_section,
1095     Address output_offset,
1096     Output_file* of)
1097 {
1098   if (sh_type == elfcpp::SHT_REL)
1099     this->incremental_relocs_write_reltype<elfcpp::SHT_REL>(
1100         relinfo,
1101         prelocs,
1102         reloc_count,
1103         output_section,
1104         output_offset,
1105         of);
1106   else
1107     {
1108       gold_assert(sh_type == elfcpp::SHT_RELA);
1109       this->incremental_relocs_write_reltype<elfcpp::SHT_RELA>(
1110           relinfo,
1111           prelocs,
1112           reloc_count,
1113           output_section,
1114           output_offset,
1115           of);
1116     }
1117 }
1118
1119 // Write the incremental relocs, templatized on the type of the
1120 // relocation section.
1121
1122 template<int size, bool big_endian>
1123 template<int sh_type>
1124 void
1125 Sized_relobj<size, big_endian>::incremental_relocs_write_reltype(
1126     const Relocate_info<size, big_endian>* relinfo,
1127     const unsigned char* prelocs,
1128     size_t reloc_count,
1129     Output_section* output_section,
1130     Address output_offset,
1131     Output_file* of)
1132 {
1133   typedef typename Reloc_types<sh_type, size, big_endian>::Reloc Reloc;
1134   const unsigned int reloc_size =
1135       Reloc_types<sh_type, size, big_endian>::reloc_size;
1136   const unsigned int sizeof_addr = size / 8;
1137   const unsigned int incr_reloc_size = 8 + 2 * sizeof_addr;
1138
1139   unsigned int out_shndx = output_section->out_shndx();
1140
1141   // Get a view for the .gnu_incremental_relocs section.
1142
1143   Incremental_inputs* inputs = relinfo->layout->incremental_inputs();
1144   gold_assert(inputs != NULL);
1145   const off_t relocs_off = inputs->relocs_section()->offset();
1146   const off_t relocs_size = inputs->relocs_section()->data_size();
1147   unsigned char* const view = of->get_output_view(relocs_off, relocs_size);
1148
1149   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1150     {
1151       Reloc reloc(prelocs);
1152
1153       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
1154       const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1155       const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1156
1157       if (r_sym < this->local_symbol_count_)
1158         continue;
1159
1160       // Get the new offset--the location in the output section where
1161       // this relocation should be applied.
1162
1163       Address offset = reloc.get_r_offset();
1164       if (output_offset != invalid_address)
1165         offset += output_offset;
1166       else
1167         {
1168           section_offset_type sot_offset =
1169               convert_types<section_offset_type, Address>(offset);
1170           section_offset_type new_sot_offset =
1171               output_section->output_offset(relinfo->object,
1172                                             relinfo->data_shndx,
1173                                             sot_offset);
1174           gold_assert(new_sot_offset != -1);
1175           offset += new_sot_offset;
1176         }
1177
1178       // Get the addend.
1179       typename elfcpp::Elf_types<size>::Elf_Swxword addend;
1180       if (sh_type == elfcpp::SHT_RELA)
1181         addend =
1182             Reloc_types<sh_type, size, big_endian>::get_reloc_addend(&reloc);
1183       else
1184         {
1185           // FIXME: Get the addend for SHT_REL.
1186           addend = 0;
1187         }
1188
1189       // Get the index of the output relocation.
1190
1191       unsigned int reloc_index =
1192           this->next_incremental_reloc_index(r_sym - this->local_symbol_count_);
1193
1194       // Write the relocation.
1195
1196       unsigned char* pov = view + reloc_index * incr_reloc_size;
1197       elfcpp::Swap<32, big_endian>::writeval(pov, r_type);
1198       elfcpp::Swap<32, big_endian>::writeval(pov + 4, out_shndx);
1199       elfcpp::Swap<size, big_endian>::writeval(pov + 8, offset);
1200       elfcpp::Swap<size, big_endian>::writeval(pov + 8 + sizeof_addr, addend);
1201       of->write_output_view(pov - view, incr_reloc_size, view);
1202     }
1203 }
1204
1205 // Create merge hash tables for the local symbols.  These are used to
1206 // speed up relocations.
1207
1208 template<int size, bool big_endian>
1209 void
1210 Sized_relobj<size, big_endian>::initialize_input_to_output_maps()
1211 {
1212   const unsigned int loccount = this->local_symbol_count_;
1213   for (unsigned int i = 1; i < loccount; ++i)
1214     {
1215       Symbol_value<size>& lv(this->local_values_[i]);
1216       lv.initialize_input_to_output_map(this);
1217     }
1218 }
1219
1220 // Free merge hash tables for the local symbols.
1221
1222 template<int size, bool big_endian>
1223 void
1224 Sized_relobj<size, big_endian>::free_input_to_output_maps()
1225 {
1226   const unsigned int loccount = this->local_symbol_count_;
1227   for (unsigned int i = 1; i < loccount; ++i)
1228     {
1229       Symbol_value<size>& lv(this->local_values_[i]);
1230       lv.free_input_to_output_map();
1231     }
1232 }
1233
1234 // If an object was compiled with -fsplit-stack, this is called to
1235 // check whether any relocations refer to functions defined in objects
1236 // which were not compiled with -fsplit-stack.  If they were, then we
1237 // need to apply some target-specific adjustments to request
1238 // additional stack space.
1239
1240 template<int size, bool big_endian>
1241 void
1242 Sized_relobj<size, big_endian>::split_stack_adjust(
1243     const Symbol_table* symtab,
1244     const unsigned char* pshdrs,
1245     unsigned int sh_type,
1246     unsigned int shndx,
1247     const unsigned char* prelocs,
1248     size_t reloc_count,
1249     unsigned char* view,
1250     section_size_type view_size,
1251     Reloc_symbol_changes** reloc_map)
1252 {
1253   if (sh_type == elfcpp::SHT_REL)
1254     this->split_stack_adjust_reltype<elfcpp::SHT_REL>(symtab, pshdrs, shndx,
1255                                                       prelocs, reloc_count,
1256                                                       view, view_size,
1257                                                       reloc_map);
1258   else
1259     {
1260       gold_assert(sh_type == elfcpp::SHT_RELA);
1261       this->split_stack_adjust_reltype<elfcpp::SHT_RELA>(symtab, pshdrs, shndx,
1262                                                          prelocs, reloc_count,
1263                                                          view, view_size,
1264                                                          reloc_map);
1265     }
1266 }
1267
1268 // Adjust for -fsplit-stack, templatized on the type of the relocation
1269 // section.
1270
1271 template<int size, bool big_endian>
1272 template<int sh_type>
1273 void
1274 Sized_relobj<size, big_endian>::split_stack_adjust_reltype(
1275     const Symbol_table* symtab,
1276     const unsigned char* pshdrs,
1277     unsigned int shndx,
1278     const unsigned char* prelocs,
1279     size_t reloc_count,
1280     unsigned char* view,
1281     section_size_type view_size,
1282     Reloc_symbol_changes** reloc_map)
1283 {
1284   typedef typename Reloc_types<sh_type, size, big_endian>::Reloc Reltype;
1285   const int reloc_size = Reloc_types<sh_type, size, big_endian>::reloc_size;
1286
1287   size_t local_count = this->local_symbol_count();
1288
1289   std::vector<section_offset_type> non_split_refs;
1290
1291   const unsigned char* pr = prelocs;
1292   for (size_t i = 0; i < reloc_count; ++i, pr += reloc_size)
1293     {
1294       Reltype reloc(pr);
1295
1296       typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
1297       unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1298       if (r_sym < local_count)
1299         continue;
1300
1301       const Symbol* gsym = this->global_symbol(r_sym);
1302       gold_assert(gsym != NULL);
1303       if (gsym->is_forwarder())
1304         gsym = symtab->resolve_forwards(gsym);
1305
1306       // See if this relocation refers to a function defined in an
1307       // object compiled without -fsplit-stack.  Note that we don't
1308       // care about the type of relocation--this means that in some
1309       // cases we will ask for a large stack unnecessarily, but this
1310       // is not fatal.  FIXME: Some targets have symbols which are
1311       // functions but are not type STT_FUNC, e.g., STT_ARM_TFUNC.
1312       if (!gsym->is_undefined()
1313           && gsym->source() == Symbol::FROM_OBJECT
1314           && !gsym->object()->uses_split_stack())
1315         {
1316           unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
1317           if (parameters->target().is_call_to_non_split(gsym, r_type))
1318             {
1319               section_offset_type offset =
1320                 convert_to_section_size_type(reloc.get_r_offset());
1321               non_split_refs.push_back(offset);
1322             }
1323         }
1324     }
1325
1326   if (non_split_refs.empty())
1327     return;
1328
1329   // At this point, every entry in NON_SPLIT_REFS indicates a
1330   // relocation which refers to a function in an object compiled
1331   // without -fsplit-stack.  We now have to convert that list into a
1332   // set of offsets to functions.  First, we find all the functions.
1333
1334   Function_offsets function_offsets;
1335   this->find_functions(pshdrs, shndx, &function_offsets);
1336   if (function_offsets.empty())
1337     return;
1338
1339   // Now get a list of the function with references to non split-stack
1340   // code.
1341
1342   Function_offsets calls_non_split;
1343   for (std::vector<section_offset_type>::const_iterator p
1344          = non_split_refs.begin();
1345        p != non_split_refs.end();
1346        ++p)
1347     {
1348       Function_offsets::const_iterator low = function_offsets.lower_bound(*p);
1349       if (low == function_offsets.end())
1350         --low;
1351       else if (low->first == *p)
1352         ;
1353       else if (low == function_offsets.begin())
1354         continue;
1355       else
1356         --low;
1357
1358       calls_non_split.insert(*low);
1359     }
1360   if (calls_non_split.empty())
1361     return;
1362
1363   // Now we have a set of functions to adjust.  The adjustments are
1364   // target specific.  Besides changing the output section view
1365   // however, it likes, the target may request a relocation change
1366   // from one global symbol name to another.
1367
1368   for (Function_offsets::const_iterator p = calls_non_split.begin();
1369        p != calls_non_split.end();
1370        ++p)
1371     {
1372       std::string from;
1373       std::string to;
1374       parameters->target().calls_non_split(this, shndx, p->first, p->second,
1375                                            view, view_size, &from, &to);
1376       if (!from.empty())
1377         {
1378           gold_assert(!to.empty());
1379           Symbol* tosym = NULL;
1380
1381           // Find relocations in the relevant function which are for
1382           // FROM.
1383           pr = prelocs;
1384           for (size_t i = 0; i < reloc_count; ++i, pr += reloc_size)
1385             {
1386               Reltype reloc(pr);
1387
1388               typename elfcpp::Elf_types<size>::Elf_WXword r_info =
1389                 reloc.get_r_info();
1390               unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1391               if (r_sym < local_count)
1392                 continue;
1393
1394               section_offset_type offset =
1395                 convert_to_section_size_type(reloc.get_r_offset());
1396               if (offset < p->first
1397                   || (offset
1398                       >= (p->first
1399                           + static_cast<section_offset_type>(p->second))))
1400                 continue;
1401
1402               const Symbol* gsym = this->global_symbol(r_sym);
1403               if (from == gsym->name())
1404                 {
1405                   if (tosym == NULL)
1406                     {
1407                       tosym = symtab->lookup(to.c_str());
1408                       if (tosym == NULL)
1409                         {
1410                           this->error(_("could not convert call "
1411                                         "to '%s' to '%s'"),
1412                                       from.c_str(), to.c_str());
1413                           break;
1414                         }
1415                     }
1416
1417                   if (*reloc_map == NULL)
1418                     *reloc_map = new Reloc_symbol_changes(reloc_count);
1419                   (*reloc_map)->set(i, tosym);
1420                 }
1421             }
1422         }
1423     }
1424 }
1425
1426 // Find all the function in this object defined in section SHNDX.
1427 // Store their offsets in the section in FUNCTION_OFFSETS.
1428
1429 template<int size, bool big_endian>
1430 void
1431 Sized_relobj<size, big_endian>::find_functions(
1432     const unsigned char* pshdrs,
1433     unsigned int shndx,
1434     Sized_relobj<size, big_endian>::Function_offsets* function_offsets)
1435 {
1436   // We need to read the symbols to find the functions.  If we wanted
1437   // to, we could cache reading the symbols across all sections in the
1438   // object.
1439   const unsigned int symtab_shndx = this->symtab_shndx_;
1440   typename This::Shdr symtabshdr(pshdrs + symtab_shndx * This::shdr_size);
1441   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1442
1443   typename elfcpp::Elf_types<size>::Elf_WXword sh_size =
1444     symtabshdr.get_sh_size();
1445   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1446                                               sh_size, true, true);
1447
1448   const int sym_size = This::sym_size;
1449   const unsigned int symcount = sh_size / sym_size;
1450   for (unsigned int i = 0; i < symcount; ++i, psyms += sym_size)
1451     {
1452       typename elfcpp::Sym<size, big_endian> isym(psyms);
1453
1454       // FIXME: Some targets can have functions which do not have type
1455       // STT_FUNC, e.g., STT_ARM_TFUNC.
1456       if (isym.get_st_type() != elfcpp::STT_FUNC
1457           || isym.get_st_size() == 0)
1458         continue;
1459
1460       bool is_ordinary;
1461       unsigned int sym_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
1462                                                       &is_ordinary);
1463       if (!is_ordinary || sym_shndx != shndx)
1464         continue;
1465
1466       section_offset_type value =
1467         convert_to_section_size_type(isym.get_st_value());
1468       section_size_type fnsize =
1469         convert_to_section_size_type(isym.get_st_size());
1470
1471       (*function_offsets)[value] = fnsize;
1472     }
1473 }
1474
1475 // Class Merged_symbol_value.
1476
1477 template<int size>
1478 void
1479 Merged_symbol_value<size>::initialize_input_to_output_map(
1480     const Relobj* object,
1481     unsigned int input_shndx)
1482 {
1483   Object_merge_map* map = object->merge_map();
1484   map->initialize_input_to_output_map<size>(input_shndx,
1485                                             this->output_start_address_,
1486                                             &this->output_addresses_);
1487 }
1488
1489 // Get the output value corresponding to an input offset if we
1490 // couldn't find it in the hash table.
1491
1492 template<int size>
1493 typename elfcpp::Elf_types<size>::Elf_Addr
1494 Merged_symbol_value<size>::value_from_output_section(
1495     const Relobj* object,
1496     unsigned int input_shndx,
1497     typename elfcpp::Elf_types<size>::Elf_Addr input_offset) const
1498 {
1499   section_offset_type output_offset;
1500   bool found = object->merge_map()->get_output_offset(NULL, input_shndx,
1501                                                       input_offset,
1502                                                       &output_offset);
1503
1504   // If this assertion fails, it means that some relocation was
1505   // against a portion of an input merge section which we didn't map
1506   // to the output file and we didn't explicitly discard.  We should
1507   // always map all portions of input merge sections.
1508   gold_assert(found);
1509
1510   if (output_offset == -1)
1511     return 0;
1512   else
1513     return this->output_start_address_ + output_offset;
1514 }
1515
1516 // Track_relocs methods.
1517
1518 // Initialize the class to track the relocs.  This gets the object,
1519 // the reloc section index, and the type of the relocs.  This returns
1520 // false if something goes wrong.
1521
1522 template<int size, bool big_endian>
1523 bool
1524 Track_relocs<size, big_endian>::initialize(
1525     Object* object,
1526     unsigned int reloc_shndx,
1527     unsigned int reloc_type)
1528 {
1529   // If RELOC_SHNDX is -1U, it means there is more than one reloc
1530   // section for the .eh_frame section.  We can't handle that case.
1531   if (reloc_shndx == -1U)
1532     return false;
1533
1534   // If RELOC_SHNDX is 0, there is no reloc section.
1535   if (reloc_shndx == 0)
1536     return true;
1537
1538   // Get the contents of the reloc section.
1539   this->prelocs_ = object->section_contents(reloc_shndx, &this->len_, false);
1540
1541   if (reloc_type == elfcpp::SHT_REL)
1542     this->reloc_size_ = elfcpp::Elf_sizes<size>::rel_size;
1543   else if (reloc_type == elfcpp::SHT_RELA)
1544     this->reloc_size_ = elfcpp::Elf_sizes<size>::rela_size;
1545   else
1546     gold_unreachable();
1547
1548   if (this->len_ % this->reloc_size_ != 0)
1549     {
1550       object->error(_("reloc section size %zu is not a multiple of "
1551                       "reloc size %d\n"),
1552                     static_cast<size_t>(this->len_),
1553                     this->reloc_size_);
1554       return false;
1555     }
1556
1557   return true;
1558 }
1559
1560 // Return the offset of the next reloc, or -1 if there isn't one.
1561
1562 template<int size, bool big_endian>
1563 off_t
1564 Track_relocs<size, big_endian>::next_offset() const
1565 {
1566   if (this->pos_ >= this->len_)
1567     return -1;
1568
1569   // Rel and Rela start out the same, so we can always use Rel to find
1570   // the r_offset value.
1571   elfcpp::Rel<size, big_endian> rel(this->prelocs_ + this->pos_);
1572   return rel.get_r_offset();
1573 }
1574
1575 // Return the index of the symbol referenced by the next reloc, or -1U
1576 // if there aren't any more relocs.
1577
1578 template<int size, bool big_endian>
1579 unsigned int
1580 Track_relocs<size, big_endian>::next_symndx() const
1581 {
1582   if (this->pos_ >= this->len_)
1583     return -1U;
1584
1585   // Rel and Rela start out the same, so we can use Rel to find the
1586   // symbol index.
1587   elfcpp::Rel<size, big_endian> rel(this->prelocs_ + this->pos_);
1588   return elfcpp::elf_r_sym<size>(rel.get_r_info());
1589 }
1590
1591 // Advance to the next reloc whose r_offset is greater than or equal
1592 // to OFFSET.  Return the number of relocs we skip.
1593
1594 template<int size, bool big_endian>
1595 int
1596 Track_relocs<size, big_endian>::advance(off_t offset)
1597 {
1598   int ret = 0;
1599   while (this->pos_ < this->len_)
1600     {
1601       // Rel and Rela start out the same, so we can always use Rel to
1602       // find the r_offset value.
1603       elfcpp::Rel<size, big_endian> rel(this->prelocs_ + this->pos_);
1604       if (static_cast<off_t>(rel.get_r_offset()) >= offset)
1605         break;
1606       ++ret;
1607       this->pos_ += this->reloc_size_;
1608     }
1609   return ret;
1610 }
1611
1612 // Instantiate the templates we need.
1613
1614 #ifdef HAVE_TARGET_32_LITTLE
1615 template
1616 void
1617 Sized_relobj<32, false>::do_read_relocs(Read_relocs_data* rd);
1618 #endif
1619
1620 #ifdef HAVE_TARGET_32_BIG
1621 template
1622 void
1623 Sized_relobj<32, true>::do_read_relocs(Read_relocs_data* rd);
1624 #endif
1625
1626 #ifdef HAVE_TARGET_64_LITTLE
1627 template
1628 void
1629 Sized_relobj<64, false>::do_read_relocs(Read_relocs_data* rd);
1630 #endif
1631
1632 #ifdef HAVE_TARGET_64_BIG
1633 template
1634 void
1635 Sized_relobj<64, true>::do_read_relocs(Read_relocs_data* rd);
1636 #endif
1637
1638 #ifdef HAVE_TARGET_32_LITTLE
1639 template
1640 void
1641 Sized_relobj<32, false>::do_gc_process_relocs(Symbol_table* symtab,
1642                                               Layout* layout,
1643                                               Read_relocs_data* rd);
1644 #endif
1645
1646 #ifdef HAVE_TARGET_32_BIG
1647 template
1648 void
1649 Sized_relobj<32, true>::do_gc_process_relocs(Symbol_table* symtab,
1650                                              Layout* layout,
1651                                              Read_relocs_data* rd);
1652 #endif
1653
1654 #ifdef HAVE_TARGET_64_LITTLE
1655 template
1656 void
1657 Sized_relobj<64, false>::do_gc_process_relocs(Symbol_table* symtab,
1658                                               Layout* layout,
1659                                               Read_relocs_data* rd);
1660 #endif
1661
1662 #ifdef HAVE_TARGET_64_BIG
1663 template
1664 void
1665 Sized_relobj<64, true>::do_gc_process_relocs(Symbol_table* symtab,
1666                                              Layout* layout,
1667                                              Read_relocs_data* rd);
1668 #endif
1669
1670 #ifdef HAVE_TARGET_32_LITTLE
1671 template
1672 void
1673 Sized_relobj<32, false>::do_scan_relocs(Symbol_table* symtab,
1674                                         Layout* layout,
1675                                         Read_relocs_data* rd);
1676 #endif
1677
1678 #ifdef HAVE_TARGET_32_BIG
1679 template
1680 void
1681 Sized_relobj<32, true>::do_scan_relocs(Symbol_table* symtab,
1682                                        Layout* layout,
1683                                        Read_relocs_data* rd);
1684 #endif
1685
1686 #ifdef HAVE_TARGET_64_LITTLE
1687 template
1688 void
1689 Sized_relobj<64, false>::do_scan_relocs(Symbol_table* symtab,
1690                                         Layout* layout,
1691                                         Read_relocs_data* rd);
1692 #endif
1693
1694 #ifdef HAVE_TARGET_64_BIG
1695 template
1696 void
1697 Sized_relobj<64, true>::do_scan_relocs(Symbol_table* symtab,
1698                                        Layout* layout,
1699                                        Read_relocs_data* rd);
1700 #endif
1701
1702 #ifdef HAVE_TARGET_32_LITTLE
1703 template
1704 void
1705 Sized_relobj<32, false>::do_relocate(const Symbol_table* symtab,
1706                                      const Layout* layout,
1707                                      Output_file* of);
1708 #endif
1709
1710 #ifdef HAVE_TARGET_32_BIG
1711 template
1712 void
1713 Sized_relobj<32, true>::do_relocate(const Symbol_table* symtab,
1714                                     const Layout* layout,
1715                                     Output_file* of);
1716 #endif
1717
1718 #ifdef HAVE_TARGET_64_LITTLE
1719 template
1720 void
1721 Sized_relobj<64, false>::do_relocate(const Symbol_table* symtab,
1722                                      const Layout* layout,
1723                                      Output_file* of);
1724 #endif
1725
1726 #ifdef HAVE_TARGET_64_BIG
1727 template
1728 void
1729 Sized_relobj<64, true>::do_relocate(const Symbol_table* symtab,
1730                                     const Layout* layout,
1731                                     Output_file* of);
1732 #endif
1733
1734 #ifdef HAVE_TARGET_32_LITTLE
1735 template
1736 void
1737 Sized_relobj<32, false>::do_relocate_sections(
1738     const Symbol_table* symtab,
1739     const Layout* layout,
1740     const unsigned char* pshdrs,
1741     Output_file* of,
1742     Views* pviews);
1743 #endif
1744
1745 #ifdef HAVE_TARGET_32_BIG
1746 template
1747 void
1748 Sized_relobj<32, true>::do_relocate_sections(
1749     const Symbol_table* symtab,
1750     const Layout* layout,
1751     const unsigned char* pshdrs,
1752     Output_file* of,
1753     Views* pviews);
1754 #endif
1755
1756 #ifdef HAVE_TARGET_64_LITTLE
1757 template
1758 void
1759 Sized_relobj<64, false>::do_relocate_sections(
1760     const Symbol_table* symtab,
1761     const Layout* layout,
1762     const unsigned char* pshdrs,
1763     Output_file* of,
1764     Views* pviews);
1765 #endif
1766
1767 #ifdef HAVE_TARGET_64_BIG
1768 template
1769 void
1770 Sized_relobj<64, true>::do_relocate_sections(
1771     const Symbol_table* symtab,
1772     const Layout* layout,
1773     const unsigned char* pshdrs,
1774     Output_file* of,
1775     Views* pviews);
1776 #endif
1777
1778 #ifdef HAVE_TARGET_32_LITTLE
1779 template
1780 void
1781 Sized_relobj<32, false>::initialize_input_to_output_maps();
1782
1783 template
1784 void
1785 Sized_relobj<32, false>::free_input_to_output_maps();
1786 #endif
1787
1788 #ifdef HAVE_TARGET_32_BIG
1789 template
1790 void
1791 Sized_relobj<32, true>::initialize_input_to_output_maps();
1792
1793 template
1794 void
1795 Sized_relobj<32, true>::free_input_to_output_maps();
1796 #endif
1797
1798 #ifdef HAVE_TARGET_64_LITTLE
1799 template
1800 void
1801 Sized_relobj<64, false>::initialize_input_to_output_maps();
1802
1803 template
1804 void
1805 Sized_relobj<64, false>::free_input_to_output_maps();
1806 #endif
1807
1808 #ifdef HAVE_TARGET_64_BIG
1809 template
1810 void
1811 Sized_relobj<64, true>::initialize_input_to_output_maps();
1812
1813 template
1814 void
1815 Sized_relobj<64, true>::free_input_to_output_maps();
1816 #endif
1817
1818 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1819 template
1820 class Merged_symbol_value<32>;
1821 #endif
1822
1823 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1824 template
1825 class Merged_symbol_value<64>;
1826 #endif
1827
1828 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1829 template
1830 class Symbol_value<32>;
1831 #endif
1832
1833 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1834 template
1835 class Symbol_value<64>;
1836 #endif
1837
1838 #ifdef HAVE_TARGET_32_LITTLE
1839 template
1840 class Track_relocs<32, false>;
1841 #endif
1842
1843 #ifdef HAVE_TARGET_32_BIG
1844 template
1845 class Track_relocs<32, true>;
1846 #endif
1847
1848 #ifdef HAVE_TARGET_64_LITTLE
1849 template
1850 class Track_relocs<64, false>;
1851 #endif
1852
1853 #ifdef HAVE_TARGET_64_BIG
1854 template
1855 class Track_relocs<64, true>;
1856 #endif
1857
1858 } // End namespace gold.